WorldWideScience

Sample records for sub-cellular scale confocal

  1. Confocal Light Absorption and Scattering Spectroscopic (CLASS) imaging: From cancer detection to sub-cellular function

    Science.gov (United States)

    Qiu, Le

    Light scattering spectroscopy (LSS), an optical technique that relates the spectroscopic properties of light elastically scattered by small particles to their size, refractive index and shape, has been recently successfully employed for sensing morphological and biochemical properties of epithelial tissues and cells in vivo. LSS does not require exogenous markers, is non-invasive, and, due to its multispectral nature, can sense biological structures well beyond the diffraction limit. All that makes LSS be a very good candidate to be used both in clinical medicine for in vivo detection of disease and in cell biology to monitor cell function on the organelle scale. Recently we developed two LSS-based imaging modalities: clinical Polarized LSS (PLSS) Endoscopic Technique for locating early pre-cancerous changes in GI tract and Confocal Light Absorption and Scattering Spectroscopic (CLASS) Microscopy for studying cells in vivo without exogenous markers. One important application of the clinical PLSS endoscopic instrument, a noncontact scanning imaging device compatible with the standard clinical endoscopes and capable of detecting dysplastic changes, is to serve as a guide for biopsy in Barrett's esophagus (BE). The instrument detects parallel and perpendicular components of the polarized light, backscattered from epithelial tissues, and determines characteristics of epithelial nuclei from the residual spectra. It also can find tissue oxygenation, hemoglobin content and other properties from the diffuse light component. By rapidly scanning esophagus the PLSS endoscopic instrument makes sure the entire BE portion is scanned and examined for the presence of dysplasia. CLASS microscopy, on the other hand, combines principles of light scattering spectroscopy (LSS) with confocal microscopy. Its main purpose is to image cells on organelle scale in vivo without the use of exogenous labels which may affect the cell function. The confocal geometry selects specific region and

  2. Precision automation of cell type classification and sub-cellular fluorescence quantification from laser scanning confocal images

    Directory of Open Access Journals (Sweden)

    Hardy Craig Hall

    2016-02-01

    Full Text Available While novel whole-plant phenotyping technologies have been successfully implemented into functional genomics and breeding programs, the potential of automated phenotyping with cellular resolution is largely unexploited. Laser scanning confocal microscopy has the potential to close this gap by providing spatially highly resolved images containing anatomic as well as chemical information on a subcellular basis. However, in the absence of automated methods, the assessment of the spatial patterns and abundance of fluorescent markers with subcellular resolution is still largely qualitative and time-consuming. Recent advances in image acquisition and analysis, coupled with improvements in microprocessor performance, have brought such automated methods within reach, so that information from thousands of cells per image for hundreds of images may be derived in an experimentally convenient time-frame. Here, we present a MATLAB-based analytical pipeline to 1 segment radial plant organs into individual cells, 2 classify cells into cell type categories based upon random forest classification, 3 divide each cell into sub-regions, and 4 quantify fluorescence intensity to a subcellular degree of precision for a separate fluorescence channel. In this research advance, we demonstrate the precision of this analytical process for the relatively complex tissues of Arabidopsis hypocotyls at various stages of development. High speed and robustness make our approach suitable for phenotyping of large collections of stem-like material and other tissue types.

  3. WE-AB-204-12: Dosimetry at the Sub-Cellular Scale of Auger-Electron Emitter 99m-Tc in a Mouse Single Thyroid Follicle Model

    Energy Technology Data Exchange (ETDEWEB)

    Taborda, A; Benabdallah, N; Desbree, A [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-roses (France)

    2015-06-15

    Purpose: To perform a dosimetry study at the sub-cellular scale of Auger-electron emitter 99m-Tc using a mouse single thyroid cellular model to investigate the contribution of the 99m-Tc Auger-electrons to the absorbed dose and possible link to the thyroid stunning in in vivo experiments in mice, recently reported in literature. Methods: The simulation of S-values for Auger-electron emitting radionuclides was performed using both the recent MCNP6 software and the Geant4-DNA extension of the Geant4 toolkit. The dosimetric calculations were validated through comparison with results from literature, using a simple model of a single cell consisting of two concentric spheres of unit density water and for six Auger-electron emitting radionuclides. Furthermore, the S-values were calculated using a single thyroid follicle model for uniformly distributed 123-I and 125-I radionuclides and compared with published S-values. After validation, the simulation of the S-values was performed for the 99m-Tc radionuclide within the several mouse thyroid follicle cellular compartments, considering the radiative and non-radiative transitions of the 99m-Tc radiation spectrum. Results: The calculated S-values using MCNP6 are in good agreement with the results from literature, validating its use for the 99m-Tc S-values calculations. The most significant absorbed dose corresponds to the case where the radionuclide is uniformly distributed in the follicular cell’s nucleus, with a S-value of 7.8 mGy/disintegration, due mainly to the absorbed Auger-electrons. The results show that, at a sub-cellular scale, the emitted X-rays and gamma particles do not contribute significantly to the absorbed dose. Conclusion: In this work, MCNP6 was validated for dosimetric studies at the sub-cellular scale. It was shown that the contribution of the Auger-electrons to the absorbed dose is important at this scale compared to the emitted photons’ contribution and can’t be neglected. The obtained S

  4. A sub-cellular viscoelastic model for cell population mechanics.

    Directory of Open Access Journals (Sweden)

    Yousef Jamali

    Full Text Available Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and 'in silico' (computational models as an alternate solution. This paper introduces a single-cell-based model representing the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements, such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point incorporates the cell's interaction and communication with other cells and its environment. The model is capable of simulating how cells cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with extra-cellular matrix (ECM, effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of individual cells and the

  5. Sub-cellular distribution and translocation of TRP channels.

    Science.gov (United States)

    Toro, Carlos A; Arias, Luis A; Brauchi, Sebastian

    2011-01-01

    Cellular electrical activity is the result of a highly complex processes that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.

  6. A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout.

    Science.gov (United States)

    McConnell, Gail; Trägårdh, Johanna; Amor, Rumelo; Dempster, John; Reid, Es; Amos, William Bradshaw

    2016-09-23

    Current optical microscope objectives of low magnification have low numerical aperture and therefore have too little depth resolution and discrimination to perform well in confocal and nonlinear microscopy. This is a serious limitation in important areas, including the phenotypic screening of human genes in transgenic mice by study of embryos undergoing advanced organogenesis. We have built an optical lens system for 3D imaging of objects up to 6 mm wide and 3 mm thick with depth resolution of only a few microns instead of the tens of microns currently attained, allowing sub-cellular detail to be resolved throughout the volume. We present this lens, called the Mesolens, with performance data and images from biological specimens including confocal images of whole fixed and intact fluorescently-stained 12.5-day old mouse embryos.

  7. Methods to calibrate and scale axial distances in confocal microscopy as a function of refractive index

    NARCIS (Netherlands)

    Besseling, T. H.|info:eu-repo/dai/nl/35218602X; Jose, J.|info:eu-repo/dai/nl/371558158; Blaaderen, A. Van|info:eu-repo/dai/nl/092946488

    2015-01-01

    Accurate distance measurement in 3D confocal microscopy is important for quantitative analysis, volume visualization and image restoration. However, axial distances can be distorted by both the point spread function (PSF) and by a refractive-index mismatch between the sample and immersion liquid,

  8. Confocal microscopy: A new tool for erosion measurements on large scale plasma facing components in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, E., E-mail: eric.gauthier@cea.fr [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Brosset, C.; Roche, H.; Tsitrone, E.; Pégourié, B.; Martinez, A. [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Languille, P. [PIIM, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille, Cedex 20 (France); Courtois, X.; Lallier, Y. [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Salami, M. [AVANTIS CONCEPT, 75 Rue Marcelin Berthelot, 13858 Aix en Provence (France)

    2013-07-15

    A diagnostic based on confocal microscopy was developed at CEA Cadarache in order to measure erosion on large plasma facing components during shutdown in situ in Tore Supra. This paper describes the diagnostic and presents results obtained on Beryllium and Carbon Fibre Composite (CFC) materials. Erosion in the range of 800 μm was found on one sector of the Toroidal Pumped Limiter (TPL) which provides, by integration to the full limiter a net carbon erosion of about 900 g over the period 2002–2007.

  9. The in vitro sub-cellular localization and in vivo efficacy of novel chitosan/GMO nanostructures containing paclitaxel.

    Science.gov (United States)

    Trickler, W J; Nagvekar, A A; Dash, A K

    2009-08-01

    To determine the in vitro sub-cellular localization and in vivo efficacy of chitosan/GMO nanostructures containing paclitaxel (PTX) compared to a conventional PTX treatment (Taxol). The sub-cellular localization of coumarin-6 labeled chitosan/GMO nanostructures was determined by confocal microscopy in MDA-MB-231 cells. The antitumor efficacy was evaluated in two separate studies using FOX-Chase (CB17) SCID Female-Mice MDA-MB-231 xenograph model. Treatments consisted of intravenous Taxol or chitosan/GMO nanostructures with or without PTX, local intra-tumor bolus of Taxol or chitosan/GMO nanostructures with or without PTX. The tumor diameter and animal weight was monitored at various intervals. Histopathological changes were evaluated in end-point tumors. The tumor diameter increased at a constant rate for all the groups between days 7-14. After a single intratumoral bolus dose of chitosan/GMO containing PTX showed significant reduction in tumor diameter on day 15 when compared to control, placebo and intravenous PTX administration. The tumor diameter reached a maximal decrease (4-fold) by day 18, and the difference was reduced to approximately 2-fold by day 21. Qualitatively similar results were observed in a separate study containing PTX when administered intravenously. Chitosan/GMO nanostructures containing PTX are safe and effective administered locally or intravenously. Partially supported by DOD Award BC045664.

  10. Measuring Cellular-scale Nutrient Distribution in Algal Biofilms with Synchrotron Confocal Infrared Microspectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    J Murdock; W Dodds; J Reffner; D Wetzel

    2011-12-31

    The microscope and infrared spectrometer are two of the most useful tools for the study of biological materials, and their combined analytical power far exceeds the sum of the two. Performing molecular spectroscopy through a microscope superimposes chemical information onto the physical microstructure obtained from the optical microscope when visible and infrared information are collected under the same conditions. The instrument developments that enable current infrared microspectroscopic studies began with the introduction of the first research-grade infrared microscope, patented in 1989 (1). By 1993, published reports using this method to determine macroalgae (seaweed) cell-wall composition appeared (2-4). Since these initial reports, the use of infrared microspectroscopy (IMS) in microalgal (single cells or groups of cells) research has grown. Primarily, cultured algae have been used to hone IMS methodology and evaluate its capabilities in algal research (5-8). Studies involving natural, mixed species assemblages, which can utilize the spatial resolution potential of this technique fully are rare (9-11). For instance, in a recent review of IMS microalgal ecological research (12), only 3 of the 29 peer-reviewed publications investigated natural algal assemblages. Both thermal and synchrotron infrared sources provide a resolution capable of measuring individual algae in mixed species assemblages, and each has its advantages. For example, thermal source IMS is more accessible, allowing more samples to be analyzed than synchrotron IMS. However, synchrotron IMS with confocal masking provides superior resolution, which can be critical in isolating small or contiguous cells. Algal ecology is the study of the interaction between algae and their environment. Infrared microspectroscopy addresses a major logistical problem in this field, obtaining species-specific cellular biochemical information from natural, mixed-species assemblages (11,12). Benthic (bottom

  11. Confocal microscopy

    Indian Academy of Sciences (India)

    molecular aggregates in artificial light harvesting sys- tem it is important to elucidate the exciton dynamics of individual micro-rods which can be achieved by using confocal microscopy and polarization resolved single molecule fluorescence spectroscopy.30 41 In the present work, we have studied exciton dynamics of two.

  12. Sub-cellular force microscopy in single normal and cancer cells.

    Science.gov (United States)

    Babahosseini, H; Carmichael, B; Strobl, J S; Mahmoodi, S N; Agah, M

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Sub-cellular force microscopy in single normal and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Babahosseini, H. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Carmichael, B. [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Strobl, J.S. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Mahmoodi, S.N., E-mail: nmahmoodi@eng.ua.edu [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Agah, M., E-mail: agah@vt.edu [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States)

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.

  14. LOCnet and LOCtarget: sub-cellular localization for structural genomics targets

    Science.gov (United States)

    Nair, Rajesh; Rost, Burkhard

    2004-01-01

    LOCtarget is a web server and database that predicts and annotates sub-cellular localization for structural genomics targets; LOCnet is one of the methods used in LOCtarget that can predict sub-cellular localization for all eukaryotic and prokaryotic proteins. Targets are taken from the central registration database for structural genomics, namely, TargetDB. LOCtarget predicts localization through a combination of four different methods: known nuclear localization signals (PredictNLS), homology-based transfer of experimental annotations (LOChom), inference through automatic text analysis of SWISS-PROT keywords (LOCkey) and de novo prediction through a system of neural networks (LOCnet). Additionally, we report predictions from SignalP. The final prediction is based on the method with the highest confidence. The web server can be used to predict sub-cellular localization of proteins from their amino acid sequence. The LOCtarget database currently contains localization predictions for all eukaryotic proteins from TargetDB and is updated every week. The server is available at http://www.rostlab.org/services/LOCtarget/. PMID:15215440

  15. Optically-controlled platforms for transfection and single- and sub-cellular surgery

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Casey, Duncan; Glückstad, Jesper

    2015-01-01

    Improving the resolution of biological research to the single- or sub-cellular level is of critical importance in a wide variety of processes and disease conditions. Most obvious are those linked to aging and cancer, many of which are dependent upon stochastic processes where individual, unpredic......Improving the resolution of biological research to the single- or sub-cellular level is of critical importance in a wide variety of processes and disease conditions. Most obvious are those linked to aging and cancer, many of which are dependent upon stochastic processes where individual...... and specificity of optical trapping in conjunction with other modalities to perform single and sub-cellular surgery. These tools form highly tuneable platforms for the delivery or removal of material from cells of interest, but can simultaneously excite fluorescent probes for imaging purposes or plasmonic...... structures for very local heating. We discuss both the history and recent applications of the field, highlighting the key findings and developments over the last 40 years of biophotonics research....

  16. Nano-scale Biophysical and Structural Investigations on Intact and Neuropathic Nerve Fibers by Simultaneous Combination of Atomic Force and Confocal Microscopy

    Science.gov (United States)

    Rosso, Gonzalo; Liashkovich, Ivan; Young, Peter; Shahin, Victor

    2017-01-01

    The links between neuropathies of the peripheral nervous system (PNS), including Charcot-Marie-Tooth1A and hereditary neuropathy with liability to pressure palsies, and impaired biomechanical and structural integrity of PNS nerves remain poorly understood despite the medical urgency. Here, we present a protocol describing simultaneous structural and biomechanical integrity investigations on isolated nerve fibers, the building blocks of nerves. Nerve fibers are prepared from nerves harvested from wild-type and exemplary PNS neuropathy mouse models. The basic principle of the designed experimental approach is based on the simultaneous combination of atomic force microscopy (AFM) and confocal microscopy. AFM is used to visualize the surface structure of nerve fibers at nano-scale resolution. The simultaneous combination of AFM and confocal microscopy is used to perform biomechanical, structural, and functional integrity measurements at nano- to micro-scale. Isolation of sciatic nerves and subsequent teasing of nerve fibers take ~45 min. Teased fibers can be maintained at 37°C in a culture medium and kept viable for up to 6 h allowing considerable time for all measurements which require 3–4 h. The approach is designed to be widely applicable for nerve fibers from mice of any PNS neuropathy. It can be extended to human nerve biopsies. PMID:28912683

  17. Nano-scale Biophysical and Structural Investigations on Intact and Neuropathic Nerve Fibers by Simultaneous Combination of Atomic Force and Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Gonzalo Rosso

    2017-08-01

    Full Text Available The links between neuropathies of the peripheral nervous system (PNS, including Charcot-Marie-Tooth1A and hereditary neuropathy with liability to pressure palsies, and impaired biomechanical and structural integrity of PNS nerves remain poorly understood despite the medical urgency. Here, we present a protocol describing simultaneous structural and biomechanical integrity investigations on isolated nerve fibers, the building blocks of nerves. Nerve fibers are prepared from nerves harvested from wild-type and exemplary PNS neuropathy mouse models. The basic principle of the designed experimental approach is based on the simultaneous combination of atomic force microscopy (AFM and confocal microscopy. AFM is used to visualize the surface structure of nerve fibers at nano-scale resolution. The simultaneous combination of AFM and confocal microscopy is used to perform biomechanical, structural, and functional integrity measurements at nano- to micro-scale. Isolation of sciatic nerves and subsequent teasing of nerve fibers take ~45 min. Teased fibers can be maintained at 37°C in a culture medium and kept viable for up to 6 h allowing considerable time for all measurements which require 3–4 h. The approach is designed to be widely applicable for nerve fibers from mice of any PNS neuropathy. It can be extended to human nerve biopsies.

  18. Sub-micrometer-scale mapping of magnetite crystals and sulfur globules in magnetotactic bacteria using confocal Raman micro-spectrometry.

    Directory of Open Access Journals (Sweden)

    Stephan H K Eder

    Full Text Available The ferrimagnetic mineral magnetite Fe3O4 is biomineralized by magnetotactic microorganisms and a diverse range of animals. Here we demonstrate that confocal Raman microscopy can be used to visualize chains of magnetite crystals in magnetotactic bacteria, even though magnetite is a poor Raman scatterer and in bacteria occurs in typical grain sizes of only 35-120 nm, well below the diffraction-limited optical resolution. When using long integration times together with low laser power (<0.25 mW to prevent laser induced damage of magnetite, we can identify and map magnetite by its characteristic Raman spectrum (303, 535, 665 cm(-1 against a large autofluorescence background in our natural magnetotactic bacteria samples. While greigite (cubic Fe3S4; Raman lines of 253 and 351 cm(-1 is often found in the Deltaproteobacteria class, it is not present in our samples. In intracellular sulfur globules of Candidatus Magnetobacterium bavaricum (Nitrospirae, we identified the sole presence of cyclo-octasulfur (S8: 151, 219, 467 cm(-1, using green (532 nm, red (638 nm and near-infrared excitation (785 nm. The Raman-spectra of phosphorous-rich intracellular accumulations point to orthophosphate in magnetic vibrios and to polyphosphate in magnetic cocci. Under green excitation, the cell envelopes are dominated by the resonant Raman lines of the heme cofactor of the b or c-type cytochrome, which can be used as a strong marker for label-free live-cell imaging of bacterial cytoplasmic membranes, as well as an indicator for the redox state.

  19. Fluorescence (Multiwave) Confocal Microscopy.

    Science.gov (United States)

    Welzel, J; Kästle, Raphaela; Sattler, Elke C

    2016-10-01

    In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Steady and out-of-equilibrium phase diagram of a complex fluid at the nanolitre scale: combining microevaporation, confocal Raman imaging and small angle X-ray scattering.

    Science.gov (United States)

    Daubersies, Laure; Leng, Jacques; Salmon, Jean-Baptiste

    2013-03-07

    We engineered specific microfluidic devices based on the pervaporation of water through a PDMS membrane, to formulate continuous and steady concentration gradients of a binary aqueous molecular mixture at the nanolitre scale. In the case of a model complex fluid (a triblock copolymer solution), we demonstrate that such a steady gradient crosses the phase diagram from pure water up to a succession of highly viscous mesophases. We then performed in situ spatially resolved measurements (confocal spectroscopy and small-angle X-ray scattering) to quantitatively measure the concentration profile and to determine the microstructure of the different textures. Within a single microfluidic channel, we thus screen quantitatively and continuously the phase diagram of a complex fluid. Beside, as such a gradient corresponds to an out-of-equilibrium regime, we also extract from the concentration measurement a precise estimate of the collective diffusion coefficient of the mixture as a function of the concentration. In the present case of the triblock copolymer, this transport coefficient features discontinuities at some phase boundaries, which have never been observed before.

  1. Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images

    Directory of Open Access Journals (Sweden)

    Paul Grégory

    2010-07-01

    Full Text Available Abstract Background Sub-cellular structures interact in numerous direct and indirect ways in order to fulfill cellular functions. While direct molecular interactions crucially depend on spatial proximity, other interactions typically result in spatial correlations between the interacting structures. Such correlations are the target of microscopy-based co-localization analysis, which can provide hints of potential interactions. Two complementary approaches to co-localization analysis can be distinguished: intensity correlation methods capitalize on pattern discovery, whereas object-based methods emphasize detection power. Results We first reinvestigate the classical co-localization measure in the context of spatial point pattern analysis. This allows us to unravel the set of implicit assumptions inherent to this measure and to identify potential confounding factors commonly ignored. We generalize object-based co-localization analysis to a statistical framework involving spatial point processes. In this framework, interactions are understood as position co-dependencies in the observed localization patterns. The framework is based on a model of effective pairwise interaction potentials and the specification of a null hypothesis for the expected pattern in the absence of interaction. Inferred interaction potentials thus reflect all significant effects that are not explained by the null hypothesis. Our model enables the use of a wealth of well-known statistical methods for analyzing experimental data, as demonstrated on synthetic data and in a case study considering virus entry into live cells. We show that the classical co-localization measure typically under-exploits the information contained in our data. Conclusions We establish a connection between co-localization and spatial interaction of sub-cellular structures by formulating the object-based interaction analysis problem in a spatial statistics framework based on nearest-neighbor distance

  2. Movies of cellular and sub-cellular motion by digital holographic microscopy

    Directory of Open Access Journals (Sweden)

    Yu Lingfeng

    2006-03-01

    Full Text Available Abstract Background Many biological specimens, such as living cells and their intracellular components, often exhibit very little amplitude contrast, making it difficult for conventional bright field microscopes to distinguish them from their surroundings. To overcome this problem phase contrast techniques such as Zernike, Normarsky and dark-field microscopies have been developed to improve specimen visibility without chemically or physically altering them by the process of staining. These techniques have proven to be invaluable tools for studying living cells and furthering scientific understanding of fundamental cellular processes such as mitosis. However a drawback of these techniques is that direct quantitative phase imaging is not possible. Quantitative phase imaging is important because it enables determination of either the refractive index or optical thickness variations from the measured optical path length with sub-wavelength accuracy. Digital holography is an emergent phase contrast technique that offers an excellent approach in obtaining both qualitative and quantitative phase information from the hologram. A CCD camera is used to record a hologram onto a computer and numerical methods are subsequently applied to reconstruct the hologram to enable direct access to both phase and amplitude information. Another attractive feature of digital holography is the ability to focus on multiple focal planes from a single hologram, emulating the focusing control of a conventional microscope. Methods A modified Mach-Zender off-axis setup in transmission is used to record and reconstruct a number of holographic amplitude and phase images of cellular and sub-cellular features. Results Both cellular and sub-cellular features are imaged with sub-micron, diffraction-limited resolution. Movies of holographic amplitude and phase images of living microbes and cells are created from a series of holograms and reconstructed with numerically adjustable

  3. Investigating the correlation between white matter and microvasculature changes in aging using large scale optical coherence tomography and confocal fluorescence imaging combined with tissue sectioning

    Science.gov (United States)

    Castonguay, Alexandre; Avti, Pramod K.; Moeini, Mohammad; Pouliot, Philippe; Tabatabaei, Maryam S.; Bélanger, Samuel; Lesage, Frédéric

    2015-03-01

    Here, we present a serial OCT/confocal scanner for histological study of the mouse brain. Three axis linear stages combined with a sectioning vibratome allows to cut thru the entire biological tissue and to image every section at a microscopic resolution. After acquisition, each OCT volume and confocal image is re-stitched with adjacent acquisitions to obtain a reconstructed, digital volume of the imaged tissue. This imaging platform was used to investigate correlations between white matter and microvasculature changes in aging mice. Three age groups were used in this study (4, 12, 24 months). At sacrifice, mice were transcardially perfused with a FITC containing gel. The dual imaging capability of the system allowed to reveal different contrast information: OCT imaging reveals changes in refractive indices giving contrast between white and grey matter in the mouse brain, while transcardial perfusion of a FITC shows microsvasculature in the brain with confocal imaging.

  4. Local Delivery of Fluorescent Dye For Fiber-Optics Confocal Microscopy of the Living Heart

    Directory of Open Access Journals (Sweden)

    Chao eHuang

    2014-09-01

    Full Text Available Fiber-optics confocal microscopy (FCM is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release versus foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  5. Improving axial resolution in confocal microscopy with new high refractive index mounting media.

    Directory of Open Access Journals (Sweden)

    Coralie Fouquet

    Full Text Available Resolution, high signal intensity and elevated signal to noise ratio (SNR are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF, a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.

  6. Improving axial resolution in confocal microscopy with new high refractive index mounting media.

    Science.gov (United States)

    Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne

    2015-01-01

    Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.

  7. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart.

    Science.gov (United States)

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2014-01-01

    Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  8. Mathematical modeling of sub-cellular asymmetry of fat-dachsous heterodimer for generation of planar cell polarity.

    Directory of Open Access Journals (Sweden)

    Mohit Kumar Jolly

    Full Text Available Planar Cell Polarity (PCP is an evolutionarily conserved characteristic of animal tissues marked by coordinated polarization of cells or structures in the plane of a tissue. In insect wing epithelium, for instance, PCP is characterized by en masse orientation of hairs orthogonal to its apical-basal axis and pointing along the proximal-distal axis of the organ. Directional cue for PCP has been proposed to be generated by complex sets of interactions amongst three proteins - Fat (Ft, Dachsous (Ds and Four-jointed (Fj. Ft and Ds are two atypical cadherins, which are phosphorylated by Fj, a Golgi kinase. Ft and Ds from adjacent cells bind heterophilically via their tandem cadherin repeats, and their binding affinities are regulated by Fj. Further, in the wing epithelium, sub-cellular levels of Ft-Ds heterodimers are seen to be elevated at the distal edges of individual cells, prefiguring their PCP. Mechanisms generating this sub-cellular asymmetry of Ft-Ds heterodimer in proximal and distal edges of cells, however, have not been resolved yet. Using a mathematical modeling approach, here we provide a framework for generation of this sub-cellular asymmetry of Ft-Ds heterodimer. First, we explain how the known interactions within Ft-Ds-Fj system translate into sub-cellular asymmetry of Ft-Ds heterodimer. Second, we show that this asymmetric localization of Ft-Ds heterodimer is lost when tissue-level gradient of Fj is flattened, or when phosphorylation of Ft by Fj is abolished, but not when tissue-level gradient of Ds is flattened or when phosphorylation of Ds is abrogated. Finally, we show that distal enrichment of Ds also amplifies Ft-Ds asymmetry. These observations reveal that gradient of Fj expression, phosphorylation of Ft by Fj and sub-cellular distal accumulation of Ds are three critical elements required for generating sub-cellular asymmetry of Ft-Ds heterodimer. Our model integrates the known experimental data and presents testable predictions

  9. Sub-cellular trafficking of phytochemicals explored using auto-fluorescent compounds in maize cells

    Directory of Open Access Journals (Sweden)

    Grotewold Erich

    2003-12-01

    Full Text Available Abstract Background Little is known regarding the trafficking mechanisms of small molecules within plant cells. It remains to be established whether phytochemicals are transported by pathways similar to those used by proteins, or whether the expansion of metabolic pathways in plants was associated with the evolution of novel trafficking pathways. In this paper, we exploited the induction of green and yellow auto-fluorescent compounds in maize cultured cells by the P1 transcription factor to investigate their targeting to the cell wall and vacuole, respectively. Results We investigated the accumulation and sub-cellular localization of the green and yellow auto-fluorescent compounds in maize BMS cells expressing the P1 transcription factor from an estradiol inducible promoter. We established that the yellow fluorescent compounds accumulate inside the vacuole in YFBs that resemble AVIs. The green fluorescent compounds accumulate initially in the cytoplasm in large spherical GFBs. Cells accumulating GFBs also contain electron-dense structures that accumulate initially in the ER and which later appear to fuse with the plasma membrane. Structures resembling the GFBs were also observed in the periplasmic space of plasmolized cells. Ultimately, the green fluorescence accumulates in the cell wall, in a process that is insensitive to the Golgi-disturbing agents BFA and monensin. Conclusions Our results suggest the presence of at least two distinct trafficking pathways, one to the cell wall and the other to the vacuole, for different auto-fluorescent compounds induced by the same transcription factor in maize BMS cells. These compartments represent two of the major sites of accumulation of phenolic compounds characteristic of maize cells. The secretion of the green auto-fluorescent compounds occurs by a pathway that does not involve the TGN, suggesting that it is different from the secretion of most proteins, polysaccharides or epicuticular waxes. The

  10. Confocal scanning microscopy

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report is based on a metrological investigation on confocal microscopy technique carried out by Uffe Rolf Arlø Theilade and Paolo Bariani. The purpose of the experimental activity was twofold a metrological instrument characterization and application to assessment of rough PP injection moulded...... replicated topography. Confocal microscopy is seen to be a promising technique in metrology of microstructures. Some limitations with respect to surface metrology were found during the experiments. The experiments were carried out using a Zeiss LSM 5 Pascal microscope owned by the Danish Polymer Centre...

  11. Confocal Raman microscopy

    CERN Document Server

    Dieing, Thomas; Hollricher, Olaf

    2018-01-01

    This second edition provides a cutting-edge overview of physical, technical and scientific aspects related to the widely used analytical method of confocal Raman microscopy. The book includes expanded background information and adds insights into how confocal Raman microscopy, especially 3D Raman imaging, can be integrated with other methods to produce a variety of correlative microscopy combinations. The benefits are then demonstrated and supported by numerous examples from the fields of materials science, 2D materials, the life sciences, pharmaceutical research and development, as well as the geosciences.

  12. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    Science.gov (United States)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  13. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  14. Confocal light scattering and absorption spectroscopic microscopy

    Science.gov (United States)

    Qiu, Le; Vitkin, Edward; Salahuddin, Saira; Zaman, Munir M.; Andersson, Charlotte; Freedman, Steven D.; Hanlon, Eugene B.; Itzkan, Irving; Perelman, Lev T.

    2008-04-01

    We have developed a novel optical method for observing submicron intracellular structures in living cells which is called confocal light absorption and scattering spectroscopic (CLASS) microscopy. It combines confocal microscopy, a well-established high-resolution microscopic technique, with light scattering spectroscopy (LSS). CLASS microscopy requires no exogenous labels and is capable of imaging and continuously monitoring individual viable cells, enabling the observation of cell and organelle functioning at scales on the order of 100 nm. In addition, it provides not only size information but also information about the biochemical and physical properties of the cell.

  15. Intracellular delivery of nanomaterials for sub-cellular imaging and tracking of biomolecules

    Science.gov (United States)

    Medepalli, Krishna Kiran

    . Confocal microscopy and flow cytometric studies are performed to characterize the interactions. Results from this acute immune response study demonstrate the biocompatibility of SWCNTs in whole blood and also confirm the cellular delivery of single stranded DNA. The second part of the research is on colloidal quantum dots (QDs): nanometer sized semiconductor crystals typically between 1 nm to 20 nm in diameter. In addition to being size comparable with many biological systems, and having large surface area for multiple biomolecules attachment, they possess high resistance to chemical and photo degradation, tunable emission based on size and composition which makes them excellent candidates for cellular delivery and imaging. The main objectives of this research was to demonstrate the use of QDs for cellular imaging as well as targeted biomolecule delivery by conjugating the QDs with an antibody to a functional protein and delivery into live cells. Conventional techniques deliver QDs as aggregates, however, a major challenge in the use of QDs for cellular imaging and biomolecule delivery is achieving freely dispersed QDs inside the cells. In this research, a new technique to deliver monodispersed QDs inside live cells was developed. The approach combines osmosis driven fluid transport into cells achieved by creating hypotonic environment and reversible permeabilization using low concentrations of cell permeabilization agents like Saponin. The results confirm that highly efficient endocytosis-free intracellular delivery of QDs can be accomplished using this method. Confocal microscopy is used to image the QDs inside the cells and flow cytometry is used for quantifying the fluorescence. To demonstrate targeted delivery, QDs are conjugated to the antibody of a protein: the nuclear transcriptional factor, NFkB (Nuclear Factor kappa-light chain-enhancer of activated B cells) using EDC/sulfo NHS chemistry methods. NFkB is a family of proteins with 5 different subunits and is

  16. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ayer, Anita; Sanwald, Julia; Pillay, Bethany A; Meyer, Andreas J; Perrone, Gabriel G; Dawes, Ian W

    2013-01-01

    Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E GSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (-340 to -350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H(+)/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H(+)/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions.

  17. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Anita Ayer

    Full Text Available Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E GSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (-340 to -350 mV were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H(+/2GSH and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H(+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions.

  18. Confocal laser endomicroscopy

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Săftoiu, Adrian; Brynskov, Jørn

    2016-01-01

    BACKGROUND AND STUDY AIMS: Confocal laser endomicroscopy (CLE) has been shown to predict relapse in ulcerative colitis in remission, but little is currently known about its role in Crohn's disease. The aim of this study was to identify reproducible CLE features in patients with Crohn's disease.......01, respectively). Inter- and intraobserver reproducibility was almost perfect (κ > 0.80) or substantial (κ > 0.60) for the majority of CLE parameters. CONCLUSIONS: CLE can identify reproducible microscopic changes in the terminal ileum that are risk factors for relapse in patients with otherwise inactive Crohn...

  19. Confocal scanning Mueller polarimeter

    Science.gov (United States)

    Lompado, Arthur

    2009-08-01

    We describe the design, construction, calibration and testing of a confocal scanning Mueller polarimeter. A polarization state generator and polarization state analyzer have been inserted into the optical path of a conventional confocal scanning imager to collect the reflectance Muller matrix of samples measuring up to 6.26 mm on a side. Four sources are available for sample interrogation using diode lasers centered at 532 nm, 635 nm, 670 nm, and 785 nm. The device captures all required imagery to calculate the Mueller matrix of each image pixel in approximately 90 s. These matrices are then reduced into polarization imagery such as the diattenuation, retardance and depolarization index. Oftentimes this polarization imagery is quite different and potentially more informative than a conventional intensity image. There are a number of fields that can benefit from alternative/enhanced imagery, most notably in the biomedical, discrimination, and target recognition communities. The sensor has been designed for biomedical applications aimed at improving the technique of noninvasive detection of melanoma lesions.

  20. Reflection across plant cell boundaries in confocal laser scanning microscopy.

    Science.gov (United States)

    Liu, D Y T; Kuhlmey, B T; Smith, P M C; Day, D A; Faulkner, C R; Overall, R L

    2008-08-01

    The fluorescence patterns of proteins tagged with the green fluorescent protein (GFP) and its derivatives are routinely used in conjunction with confocal laser scanning microscopy to identify their sub-cellular localization in plant cells. GFP-tagged proteins localized to plasmodesmata, the intercellular junctions of plants, are often identified by single or paired punctate labelling across the cell wall. The observation of paired puncta, or 'doublets', across cell boundaries in tissues that have been transformed through biolistic bombardment is unexpected if there is no intercellular movement of the GFP-tagged protein, since bombardment usually leads to the transformation of single, isolated cells. We expressed a putative plasmodesmal protein tagged with GFP by bombarding Allium porrum epidermal cells and assessed the nature of the doublets observed at the cell boundaries. Doublets were formed when fluorescent spots were abutting a cell boundary and were only observable at certain focal planes. Fluorescence emitted from the half of a doublet lying outside the transformed cells was polarized. Optical simulations performed using finite-difference time-domain computations showed a dramatic distortion of the confocal microscope's point spread function when imaging voxels close to the plant cell wall due to refractive index differences between the wall and the cytosol. Consequently, axially and radially out-of-focus light could be detected. A model of this phenomenon suggests how a doublet may form when imaging only a single real fluorescent body in the vicinity of a plant cell wall using confocal microscopy. We suggest, therefore, that the appearance of doublets across cell boundaries is insufficient evidence for plasmodesmal localization due to the effects of the cell wall on the reflection and scattering of light.

  1. Fluorescence confocal microscopy for pathologists.

    Science.gov (United States)

    Ragazzi, Moira; Piana, Simonetta; Longo, Caterina; Castagnetti, Fabio; Foroni, Monica; Ferrari, Guglielmo; Gardini, Giorgio; Pellacani, Giovanni

    2014-03-01

    Confocal microscopy is a non-invasive method of optical imaging that may provide microscopic images of untreated tissue that correspond almost perfectly to hematoxylin- and eosin-stained slides. Nowadays, following two confocal imaging systems are available: (1) reflectance confocal microscopy, based on the natural differences in refractive indices of subcellular structures within the tissues; (2) fluorescence confocal microscopy, based on the use of fluorochromes, such as acridine orange, to increase the contrast epithelium-stroma. In clinical practice to date, confocal microscopy has been used with the goal of obviating the need for excision biopsies, thereby reducing the need for pathological examination. The aim of our study was to test fluorescence confocal microscopy on different types of surgical specimens, specifically breast, lymph node, thyroid, and colon. The confocal images were correlated to the corresponding histological sections in order to provide a morphologic parallel and to highlight current limitations and possible applications of this technology for surgical pathology practice. As a result, neoplastic tissues were easily distinguishable from normal structures and reactive processes such as fibrosis; the use of fluorescence enhanced contrast and image quality in confocal microscopy without compromising final histologic evaluation. Finally, the fluorescence confocal microscopy images of the adipose tissue were as accurate as those of conventional histology and were devoid of the frozen-section-related artefacts that can compromise intraoperative evaluation. Despite some limitations mainly related to black/white images, which require training in imaging interpretation, this study confirms that fluorescence confocal microscopy may represent an alternative to frozen sections in the assessment of margin status in selected settings or when the conservation of the specimen is crucial. This is the first study to employ fluorescent confocal microscopy on

  2. Characterization, sub-cellular localization and expression profiling of the isoprenylcysteine methylesterase gene family in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Ma Wujun

    2010-09-01

    Full Text Available Abstract Background Isoprenylcysteine methylesterases (ICME demethylate prenylated protein in eukaryotic cell. Until now, knowledge about their molecular information, localization and expression pattern is largely unavailable in plant species. One ICME in Arabidopsis, encoded by At5g15860, has been identified recently. Over-expression of At5g15860 caused an ABA hypersensitive phenotype in transgenic Arabidopsis plants, indicating that it functions as a positive regulator of ABA signaling. Moreover, ABA induced the expression of this gene in Arabidopsis seedlings. The current study extends these findings by examining the sub-cellular localization, expression profiling, and physiological functions of ICME and two other ICME-like proteins, ICME-LIKE1 and ICME-LIKE2, which were encoded by two related genes At1g26120 and At3g02410, respectively. Results Bioinformatics investigations showed that the ICME and other two ICME-like homologs comprise a small subfamily of carboxylesterase (EC 3.1.1.1 in Arabidopsis. Sub-cellular localization of GFP tagged ICME and its homologs showed that the ICME and ICME-like proteins are intramembrane proteins predominantly localizing in the endoplasmic reticulum (ER and Golgi apparatus. Semi-quantitative and real-time quantitative PCR revealed that the ICME and ICME-like genes are expressed in all examined tissues, including roots, rosette leaves, cauline leaves, stems, flowers, and siliques, with differential expression levels. Within the gene family, the base transcript abundance of ICME-LIKE2 gene is very low with higher expression in reproductive organs (flowers and siliques. Time-course analysis uncovered that both ICME and ICME-like genes are up-regulated by mannitol, NaCl and ABA treatment, with ICME showing the highest level of up-regulation by these treatments. Heat stress resulted in up-regulation of the ICME gene significantly but down-regulation of the ICME-LIKE1 and ICME-LIKE2 genes. Cold and dehydration

  3. Two-Photon Irradiation of an Intracellular Singlet Oxygen Photosensitizer: Achieving Localized Sub-Cellular Excitation in Spatially-Resolved Experiments

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Breitenbach, Thomas; Redmond, Robert W.

    2010-01-01

    The response of a given cell to spatially-resolved sub-cellular irradiation of a singlet oxygen photosensitizer (protoporphyrin IX, PpIX) using a focused laser was assessed. In these experiments, incident light was scattered over a volume greater than that defi ned by the dimensions of the laser...

  4. Confocal Endomicroscopy of Colorectal Polyps

    Directory of Open Access Journals (Sweden)

    Vivian M. Ussui

    2012-01-01

    Full Text Available Confocal laser endomicroscopy (CLE is one of several novel methods that provide real-time, high-resolution imaging at a micron scale via endoscopes. CLE has the potential to be a disruptive technology in that it can change the current algorithms that depend on biopsy to perform surveillance of high-risk conditions. Furthermore, it allows on-table decision making that has the potential to guide therapy in real time and reduce the need for repeated procedures. CLE and related technologies are often termed “virtual biopsy” as they simulate the images seen in traditional histology. However, the imaging of living tissue allows more than just pragmatic convenience; it also allows imaging of living tissue such as active capillary circulation, cellular death, and vascular and endothelial translocation, thus extending beyond what is capable in traditional biopsy. Immediate potential applications of CLE are to guide biopsy sampling in Barrett's esophagus and inflammatory bowel disease surveillance, evaluation of colorectal polyps, and intraductal imaging of the pancreas and bile duct. Data on these applications is rapidly emerging, and more is needed to clearly demonstrate the optimal applications of CLE. In this paper, we will focus on the role of CLE as applied to colorectal polyps detected during colonoscopy.

  5. mTOR direct interactions with Rheb-GTPase and raptor: sub-cellular localization using fluorescence lifetime imaging

    Directory of Open Access Journals (Sweden)

    Yadav Rahul B

    2013-01-01

    Full Text Available Abstract Background The mammalian target of rapamycin (mTOR signalling pathway has a key role in cellular regulation and several diseases. While it is thought that Rheb GTPase regulates mTOR, acting immediately upstream, while raptor is immediately downstream of mTOR, direct interactions have yet to be verified in living cells, furthermore the localisation of Rheb has been reported to have only a cytoplasmic cellular localization. Results In this study a cytoplasmic as well as a significant sub-cellular nuclear mTOR localization was shown , utilizing green and red fluorescent protein (GFP and DsRed fusion and highly sensitive single photon counting fluorescence lifetime imaging microscopy (FLIM of live cells. The interaction of the mTORC1 components Rheb, mTOR and raptor, tagged with EGFP/DsRed was determined using fluorescence energy transfer-FLIM. The excited-state lifetime of EGFP-mTOR of ~2400 ps was reduced by energy transfer to ~2200 ps in the cytoplasm and to 2000 ps in the nucleus when co-expressed with DsRed-Rheb, similar results being obtained for co-expressed EGFP-mTOR and DsRed-raptor. The localization and distribution of mTOR was modified by amino acid withdrawal and re-addition but not by rapamycin. Conclusions The results illustrate the power of GFP-technology combined with FRET-FLIM imaging in the study of the interaction of signalling components in living cells, here providing evidence for a direct physical interaction between mTOR and Rheb and between mTOR and raptor in living cells for the first time.

  6. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela, E-mail: angela.pearson@iaf.inrs.ca

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs. Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.

  7. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar,; Kumari, Neeti [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India); Goyal, Neena, E-mail: neenacdri@yahoo.com [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer The study presents cloning and characterization of TCP1{gamma} gene from L. donovani. Black-Right-Pointing-Pointer TCP1{gamma} is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. Black-Right-Pointing-Pointer LdTCP{gamma} exhibited differential expression in different stages of promastigotes. Black-Right-Pointing-Pointer LdTCP{gamma} co-localized with actin, a cytoskeleton protein. Black-Right-Pointing-Pointer The data suggests that this gene may have a role in differentiation/biogenesis. Black-Right-Pointing-Pointer First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1{gamma}), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1{gamma} of Leishmania donovani (LdTCP1{gamma}), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1{gamma} revealed the presence of all the characteristic features of TCP1{gamma}. However, leishmanial TCP1{gamma} represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1{gamma} exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1{gamma} as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1{gamma} was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1{gamma} with actin suggests

  8. Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions.

    Science.gov (United States)

    Gareau, Dan; Bar, Anna; Snaveley, Nicholas; Lee, Ken; Chen, Nathaniel; Swanson, Neil; Simpson, Eric; Jacques, Steve

    2012-06-01

    For rapid, intra-operative pathological margin assessment to guide staged cancer excisions, multimodal confocal mosaic scan image wide surgical margins (approximately 1 cm) with sub-cellular resolution and mimic the appearance of conventional hematoxylin and eosin histopathology (H&E). The goal of this work is to combine three confocal imaging modes: acridine orange fluorescence (AO) for labeling nuclei, eosin fluorescence (Eo) for labeling cytoplasm, and endogenous reflectance (R) for marking collagen and keratin. Absorption contrast is achieved by alternating the excitation wavelength: 488 nm (AO fluorescence) and 532 nm (Eo fluorescence). Superposition and false-coloring of these modes mimics H&E, enabling detection of cutaneous squamous cell carcinomas (SCC). The sum of mosaic Eo+R is false-colored pink to mimic the appearance of eosin, while the AO mosaic is false-colored purple to mimic the appearance of hematoxylin in H&E. In this study, mosaics of 10 Mohs surgical excisions containing invasive SCC, and five containing only normal tissue were subdivided for digital presentation equivalent to 4 × histology. Of the total 50 SCC and 25 normal sub-mosaics presented, two reviewers made two and three type-2 errors (false positives), respectively. Limitations to precisely mimic H&E included occasional elastin staining by AO. These results suggest that confocal mosaics may effectively guide staged SCC excisions in skin and other tissues.

  9. Sub-cellular localisation studies may spuriously detect the Yes-associated protein, YAP, in nucleoli leading to potentially invalid conclusions of its function.

    Directory of Open Access Journals (Sweden)

    Megan L Finch

    Full Text Available The Yes-associated protein (YAP is a potent transcriptional co-activator that functions as a nuclear effector of the Hippo signaling pathway. YAP is oncogenic and its activity is linked to its cellular abundance and nuclear localisation. Activation of the Hippo pathway restricts YAP nuclear entry via its phosphorylation by Lats kinases and consequent cytoplasmic retention bound to 14-3-3 proteins. We examined YAP expression in liver progenitor cells (LPCs and surprisingly found that transformed LPCs did not show an increase in YAP abundance compared to the non-transformed LPCs from which they were derived. We then sought to ascertain whether nuclear YAP was more abundant in transformed LPCs. We used an antibody that we confirmed was specific for YAP by immunoblotting to determine YAP's sub-cellular localisation by immunofluorescence. This antibody showed diffuse staining for YAP within the cytosol and nuclei, but, noticeably, it showed intense staining of the nucleoli of LPCs. This staining was non-specific, as shRNA treatment of cells abolished YAP expression to undetectable levels by Western blot yet the nucleolar staining remained. Similar spurious YAP nucleolar staining was also seen in mouse embryonic fibroblasts and mouse liver tissue, indicating that this antibody is unsuitable for immunological applications to determine YAP sub-cellular localisation in mouse cells or tissues. Interestingly nucleolar staining was not evident in D645 cells suggesting the antibody may be suitable for use in human cells. Given the large body of published work on YAP in recent years, many of which utilise this antibody, this study raises concerns regarding its use for determining sub-cellular localisation. From a broader perspective, it serves as a timely reminder of the need to perform appropriate controls to ensure the validity of published data.

  10. Imaging of Caenorhabditis elegans samples and sub-cellular localization of new generation photosensitizers for photodynamic therapy, using non-linear microscopy

    Science.gov (United States)

    Filippidis, G.; Kouloumentas, C.; Kapsokalyvas, D.; Voglis, G.; Tavernarakis, N.; Papazoglou, T. G.

    2005-08-01

    Two-photon excitation fluorescence (TPEF) and second-harmonic generation (SHG) are relatively new promising tools for the imaging and mapping of biological structures and processes at the microscopic level. The combination of the two image-contrast modes in a single instrument can provide unique and complementary information concerning the structure and the function of tissues and individual cells. The extended application of this novel, innovative technique by the biological community is limited due to the high price of commercial multiphoton microscopes. In this study, a compact, inexpensive and reliable setup utilizing femtosecond pulses for excitation was developed for the TPEF and SHG imaging of biological samples. Specific cell types of the nematode Caenorhabditis elegans were imaged. Detection of the endogenous structural proteins of the worm, which are responsible for observation of SHG signals, was achieved. Additionally, the binding of different photosensitizers in the HL-60 cell line was investigated, using non-linear microscopy. The sub-cellular localization of photosensitizers of a new generation, very promising for photodynamic therapy (PDT), (Hypericum perforatum L. extracts) was achieved. The sub-cellular localization of these novel photosensitizers was linked with their photodynamic action during PDT, and the possible mechanisms for cell killing have been elucidated.

  11. Expanding the multicolor capabilities of basic confocal microscopes by employing red and near-infrared quantum dot conjugates

    Directory of Open Access Journals (Sweden)

    Schaefer Brian C

    2009-05-01

    Full Text Available Abstract Background Confocal microscopy is a widely employed methodology in cellular biology, commonly used for investigating biological organization at the cellular and sub-cellular level. Most basic confocal microscopes are equipped to cleanly discriminate no more than four fluorophores in a given sample, limiting the utility of this method for co-localization, co-expression, and other multi-parameter analyses. In this study, we evaluated the use of red and near-infrared emitting quantum dot staining reagents to expand the multi-parameter capabilities of basic confocal microscopes. Results We modified a three-laser Zeiss Pascal confocal microscope by the addition of two band-pass filters and one long-pass filter for the detection of three different red to near-infrared quantum dot conjugates. We then performed direct comparisons between organic dye- and quantum dot-labeled detection reagents for the detection of subcellular structures. We found that the quality of staining was generally indistinguishable, although quantum dot reagents do have certain limitations, relative to organic dye conjugates. Using the modified Pascal system, three quantum dot conjugates, two organic dye conjugates, and one fluorescent protein, we demonstrated clean discrimination of six distinct fluorescent labels in a single sample. Conclusion Our data demonstrate that nearly any basic confocal microscope can be modified by the simple addition of appropriate emission filters, allowing the detection of red and near-infrared quantum dot conjugates. Additionally, quantum dot- and organic dye-based secondary reagents can be successfully combined in complex intracellular staining experiments. Substantial expansion of the multi-parameter capabilities of basic confocal instruments can be achieved with a financial investment that is minimal in comparison to instrument replacement or upgrade with additional lasers.

  12. A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43.

    Directory of Open Access Journals (Sweden)

    Merlin Nanayakkara

    Full Text Available Celiac disease (CD is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides P31-43 and P57-68 induce innate and adaptive T cell-mediated immune responses, respectively. Alterations in the cell shape and actin cytoskeleton are present in celiac enterocytes, and gliadin peptides induce actin rearrangements in both the CD mucosa and cell lines. Cell shape is maintained by the actin cytoskeleton and focal adhesions, sites of membrane attachment to the extracellular matrix. The locus of the human Lipoma Preferred Partner (LPP gene was identified as strongly associated with CD using genome-wide association studies (GWAS. The LPP protein plays an important role in focal adhesion architecture and acts as a transcription factor in the nucleus. In this study, we examined the hypothesis that a constitutive alteration of the cell shape and the cytoskeleton, involving LPP, occurs in a cell compartment far from the main inflammation site in CD fibroblasts from skin explants. We analyzed the cell shape, actin organization, focal adhesion number, focal adhesion proteins, LPP sub-cellular distribution and adhesion to fibronectin of fibroblasts obtained from CD patients on a Gluten-Free Diet (GFD and controls, without and with treatment with A-gliadin peptide P31-43. We observed a "CD cellular phenotype" in these fibroblasts, characterized by an altered cell shape and actin organization, increased number of focal adhesions, and altered intracellular LPP protein distribution. The treatment of controls fibroblasts with gliadin peptide P31-43 mimics the CD cellular phenotype regarding the cell shape, adhesion capacity, focal adhesion number and LPP sub-cellular distribution, suggesting a close association between these alterations and CD pathogenesis.

  13. Automated Multi-Peak Tracking Kymography (AMTraK: A Tool to Quantify Sub-Cellular Dynamics with Sub-Pixel Accuracy.

    Directory of Open Access Journals (Sweden)

    Anushree R Chaphalkar

    Full Text Available Kymographs or space-time plots are widely used in cell biology to reduce the dimensions of a time-series in microscopy for both qualitative and quantitative insight into spatio-temporal dynamics. While multiple tools for image kymography have been described before, quantification remains largely manual. Here, we describe a novel software tool for automated multi-peak tracking kymography (AMTraK, which uses peak information and distance minimization to track and automatically quantify kymographs, integrated in a GUI. The program takes fluorescence time-series data as an input and tracks contours in the kymographs based on intensity and gradient peaks. By integrating a branch-point detection method, it can be used to identify merging and splitting events of tracks, important in separation and coalescence events. In tests with synthetic images, we demonstrate sub-pixel positional accuracy of the program. We test the program by quantifying sub-cellular dynamics in rod-shaped bacteria, microtubule (MT transport and vesicle dynamics. A time-series of E. coli cell division with labeled nucleoid DNA is used to identify the time-point and rate at which the nucleoid segregates. The mean velocity of microtubule (MT gliding motility due to a recombinant kinesin motor is estimated as 0.5 μm/s, in agreement with published values, and comparable to estimates using software for nanometer precision filament-tracking. We proceed to employ AMTraK to analyze previously published time-series microscopy data where kymographs had been manually quantified: clathrin polymerization kinetics during vesicle formation and anterograde and retrograde transport in axons. AMTraK analysis not only reproduces the reported parameters, it also provides an objective and automated method for reproducible analysis of kymographs from in vitro and in vivo fluorescence microscopy time-series of sub-cellular dynamics.

  14. Automated Multi-Peak Tracking Kymography (AMTraK): A Tool to Quantify Sub-Cellular Dynamics with Sub-Pixel Accuracy.

    Science.gov (United States)

    Chaphalkar, Anushree R; Jain, Kunalika; Gangan, Manasi S; Athale, Chaitanya A

    2016-01-01

    Kymographs or space-time plots are widely used in cell biology to reduce the dimensions of a time-series in microscopy for both qualitative and quantitative insight into spatio-temporal dynamics. While multiple tools for image kymography have been described before, quantification remains largely manual. Here, we describe a novel software tool for automated multi-peak tracking kymography (AMTraK), which uses peak information and distance minimization to track and automatically quantify kymographs, integrated in a GUI. The program takes fluorescence time-series data as an input and tracks contours in the kymographs based on intensity and gradient peaks. By integrating a branch-point detection method, it can be used to identify merging and splitting events of tracks, important in separation and coalescence events. In tests with synthetic images, we demonstrate sub-pixel positional accuracy of the program. We test the program by quantifying sub-cellular dynamics in rod-shaped bacteria, microtubule (MT) transport and vesicle dynamics. A time-series of E. coli cell division with labeled nucleoid DNA is used to identify the time-point and rate at which the nucleoid segregates. The mean velocity of microtubule (MT) gliding motility due to a recombinant kinesin motor is estimated as 0.5 μm/s, in agreement with published values, and comparable to estimates using software for nanometer precision filament-tracking. We proceed to employ AMTraK to analyze previously published time-series microscopy data where kymographs had been manually quantified: clathrin polymerization kinetics during vesicle formation and anterograde and retrograde transport in axons. AMTraK analysis not only reproduces the reported parameters, it also provides an objective and automated method for reproducible analysis of kymographs from in vitro and in vivo fluorescence microscopy time-series of sub-cellular dynamics.

  15. High Spatio-Temporal-Resolution Detection of Chlorophyll Fluorescence Dynamics from a Single Chloroplast with Confocal Imaging Fluorometer

    CERN Document Server

    Tseng, Yi-Chin

    2016-01-01

    Chlorophyll fluorescence (CF) is a key indicator to study plant physiology or photosynthesis efficiency. Conventionally, CF is characterized by fluorometers, which only allows ensemble measurement through wide-field detection. For imaging fluorometers, the typical spatial and temporal resolutions are on the order of millimeter and second, far from enough to study cellular/sub-cellular CF dynamics. In addition, due to the lack of optical sectioning capability, conventional imaging fluorometers cannot identify CF from a single cell or even a single chloroplast. Here we demonstrated a novel fluorometer based on confocal imaging, that not only provides high contrast images, but also allows CF measurement with spatiotemporal resolution as high as micrometer and millisecond. CF transient (the Kautsky curve) from a single chloroplast is successfully obtained, with both the temporal dynamics and the intensity dependences corresponding well to the ensemble measurement from conventional studies. The significance of con...

  16. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  17. Confocal Raman Microscopy; applications in tissue engineering

    NARCIS (Netherlands)

    van Apeldoorn, Aart A.

    2005-01-01

    This dissertation describes the use of confocal Raman microscopy and spectroscopy in the field of tissue engineering. Moreover, it describes the combination of two already existing technologies, namely scanning electron microscopy and confocal Raman spectroscopy in one apparatus for the enhancement

  18. Foraminiferal Metabolism Under Hypoxia: Sub-Cellular NanoSIMS Imaging of Intertidal Ammonia tepida Feeding Behavior

    Science.gov (United States)

    LeKieffre, C.; Spangenberg, J.; Geslin, E.; Meibom, A.

    2016-02-01

    Hypoxic events particularly affect benthic ecosystems on continental shelves and in coastal areas where renewal of bottom waters slow. Foraminifera living in such environments are among the most tolerant to hypoxia in the meiofauna. Some foraminifera species are able to survive hypoxia, and even anoxia, for weeks to months. Different species must have developed different mechanisms for survival - hypotheses include reduction of the metabolism, symbiosis with bacteria, or denitrification. NanoSIMS (Secondary Ion Mass Spectrometry) imaging is a powerful analytical technique to visualize and quantify the incorporation and transfer of isotopically labeled compounds in organisms with subcellular resolution. We used NanoSIMS imaging, correlated with TEM ultrastructural observations of individual foraminifera, to study the metabolism of intertidal Ammonia tepida, which has shown strongly reduced metabolism under anoxia. Individuals were fed with a 13C-labeled microalgal biofilm and incubated for 4 weeks in oxic and anoxic conditions, respectively. NanoSIMS imaging reveal strongly contrasting cellular-level dynamics of integration and transfer of the ingested biofilm components under the two conditions. In oxic conditions, ingested biofilm components are internalized, metabolized, and used for biosynthesis of different cellular components on a time scale of 24 hours: Lipid droplets are formed, then consumed through respiration. In contrast, upon the onset of anoxia, individual internalized biofilm components remain visible within the cytoplasm after 4 weeks. Lipids of different compositions are initially formed but then not respired. These observations indicate that foraminifera do initially have an active heterotrophic metabolism in the absence of oxygen, but this it is strongly reduced when oxygen is no longer available. Isotopic labeling experiments, NanoSIMS and TEM imaging, and GC-MS will be key to study metabolic mechanisms under anoxic conditions in marine

  19. Metal-induced stress in bivalves living along a gradient of Cd contamination: relating sub-cellular metal distribution to population-level responses

    Energy Technology Data Exchange (ETDEWEB)

    Perceval, Olivier [Groupe de recherche interuniversitaire en limnologie (GRIL), Departement de sciences biologiques, Universite de Montreal, C.P. 6128, Succursale Centre-ville, Montreal, Que., H3C 3J7 (Canada)], E-Mail: olivier.perceval@umontreal.ca; Couillard, Yves [Division de l' evaluation des Produits Chimiques, Environnement Canada, Place Vincent Massey, 351 Bd Saint-Joseph, Hull, Que., K1A 0H3 (Canada); Pinel-Alloul, Bernadette [Groupe de recherche interuniversitaire en limnologie (GRIL), Departement de sciences biologiques, Universite de Montreal, C.P. 6128, Succursale Centre-ville, Montreal, Que., H3C 3J7 (Canada); Giguere, Anik [INRS-ETE, Universite du Quebec, C.P. 7500, 2800 rue Einstein, Sainte-Foy, Que., G1V 4C7 (Canada); Campbell, Peter G.C. [INRS-ETE, Universite du Quebec, C.P. 7500, 2800 rue Einstein, Sainte-Foy, Que., G1V 4C7 (Canada)

    2004-09-20

    The use of biomarkers to assess the impacts of contaminants on aquatic ecosystems has noticeably increased over the past few years. Few of these studies, however, have contributed to the prediction of ecologically significant effects (i.e., at the population or community levels). The present field study was designed to evaluate the potential of metallothionein (MT) and sub-cellular metal partitioning measurements for predicting toxic effects at higher levels of the biological organization in freshwater bivalves (Pyganodon grandis) chronically exposed to Cd. For that purpose, we quantitatively sampled P. grandis populations in the littoral zone of nine lakes on the Precambrian Canadian Shield during two consecutive summers (1998 and 1999); lakes were characterized by contrasting Cd levels but similar trophic status. We tested relationships between the population status of P. grandis (i.e., growth parameters, density, biomass, secondary production, turnover ratio and cumulative fecundity) and (i) ambient Cd concentrations, (ii) sub-organismal responses (MT concentrations in the gill cytosol of individuals and Cd concentrations in three metal-ligand pools identified as M-HMW, the high molecular weight pool, M-MT, the metallothionein-like pool and M-LMW, the low molecular weight pool) and (iii) ecological confounding factors (food resources, presence of host fishes for the obligatory parasitic larval stage of P. grandis). Our results show that littoral density, live weight, dry viscera biomass, production and cumulative fecundity decreased with increasing concentrations of the free-cadmium ion in the environment (Pearson's r ranging from -0.63 to -0.78). On the other hand, theoretical maximum shell lengths (L{sub {infinity}}) in our populations were related to both the dissolved Ca concentration and food quality (sestonic C and N concentrations). Overall, Cd concentrations in the gill cytosolic HMW pool of the individual molluscs were the biomarker response that

  20. Solar Confocal interferometers for Sub-Picometer-Resolution Spectral Filters

    Science.gov (United States)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines. Terence C.

    2007-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. In particular, profile inversion allows improved velocity and magnetic field gradients to be determined independent of multiple line analysis using different energy levels and ions. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. The higher throughput for the interferometer provides significant decrease in the aperture, which is important in spaceflight considerations. We have constructed and tested two confocal interferometers. A slow-response thermal-controlled interferometer provides a stable system for laboratory investigation, while a piezoelectric interferometer provides a rapid response for solar observations. In this paper we provide design parameters, show construction details, and report on the laboratory test for these interferometers. The field of view versus aperture for confocal interferometers is compared with other types of spectral imaging filters. We propose a multiple etalon system for observing with these units using existing planar interferometers as pre-filters. The radiometry for these tests established that high spectral resolution profiles can be obtained with imaging confocal interferometers. These sub-picometer spectral data of the photosphere in both the visible and near-infrared can provide important height variation information. However, at the diffraction-limited spatial resolution of the telescope, the spectral data is photon starved due to the decreased spectral passband.

  1. A Monte Carlo study of energy deposition at the sub-cellular level for application to targeted radionuclide therapy with low-energy electron emitters

    Science.gov (United States)

    Emfietzoglou, D.; Bousis, C.; Hindorf, C.; Fotopoulos, A.; Pathak, A.; Kostarelos, K.

    2007-03-01

    Optimizing targeted radionuclide therapy for patients with circulating malignant cells (e.g. blood-related cancers) or a micrometastatic spread requires quantification of various dosimetric parameters at the single-cell level. We present results on the energy deposition of monoenergetic electrons of initial energy from 100 eV to 20 keV - relevant to Auger emitting radionuclides - distributed either uniformly or at the surface of spherical volumes of radii from 10 nm to 1 μm which correspond to critical sub-cellular targets. Calculations have been carried out by our detailed-history Monte Carlo (MC) code which simulates event-by-event the complete slowing down (to 1 Ry) of both the primary and all subsequent generations of electrons, as well as, by the continuous-slowing-down-approximation (CSDA) using analytic range-energy relationships. The latter method has been adopted by the MIRD committee of the Society of Nuclear Medicine for dosimetry at the cellular level (>1 μm). Differences between the MC and CSDA results are up to ∼50% and are expected to be even larger at higher energies and/or smaller volumes. They are attributed to the deficiencies of the CSDA method associated with the neglect of straggling and δ-ray transport. The results are particularly relevant to targeted radiotherapy at the genome level by Auger emitters.

  2. A video rate laser scanning confocal microscope

    Science.gov (United States)

    Ma, Hongzhou; Jiang, James; Ren, Hongwu; Cable, Alex E.

    2008-02-01

    A video-rate laser scanning microscope was developed as an imaging engine to integrate with other photonic building blocks to fulfill various microscopic imaging applications. The system is quipped with diode laser source, resonant scanner, galvo scanner, control electronic and computer loaded with data acquisition boards and imaging software. Based on an open frame design, the system can be combined with varies optics to perform the functions of fluorescence confocal microscopy, multi-photon microscopy and backscattering confocal microscopy. Mounted to the camera port, it allows a traditional microscope to obtain confocal images at video rate. In this paper, we will describe the design principle and demonstrate examples of applications.

  3. Diffractive elements performance in chromatic confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, J; Duque, D; Alean, A; Toledo, M [Grupo de Optica y EspectroscopIa, Centro de Ciencia Basica, Universidad Pontificia Bolivariana. Medellin (Colombia); Meneses, J [Laboratorio de Optica y Tratamiento de Senales, Instituto de Fisica, Universidad Industrial de Santander, Bucaramanga (Colombia); Gharbi, T, E-mail: jgarzonr10@une.net.co [Laboratoire d' Optique P. M. Duffieux, UMR-6603 CNR/Universite de Franche-Comte. 16 route de Gray, 25030 Besancon Cedex (France)

    2011-01-01

    The Confocal Laser Scanning Microscopy (CLSM) has been widely used in the semiconductor industry and biomedicine because of its depth discrimination capability. Subsequent to this technique has been developed in recent years Chromatic Confocal Microscopy. This method retains the same principle of confocal and offers the added advantage of removing the axial movement of the moving system. This advantage is usually accomplished with an optical element that generates a longitudinal chromatic aberration and a coding system that relates the axial position of each point of the sample with the wavelength that is focused on each. The present paper shows the performance of compact chromatic confocal microscope when some different diffractive elements are used for generation of longitudinal chromatic aberration. Diffractive elements, according to the process and manufacturing parameters, may have different diffraction efficiency and focus a specific wavelength in a specific focal position. The performance assessment is carried out with various light sources which exhibit an incoherent behaviour and a broad spectral width.

  4. Live Confocal Imaging of Developing Arabidopsis Flowers

    OpenAIRE

    Prunet, Nathanaël

    2017-01-01

    The study of plant growth and development has long relied on experimental techniques using dead, fixed tissues and lacking proper cellular resolution. Recent advances in confocal microscopy, combined with the development of numerous fluorophores, have overcome these issues and opened the possibility to study the expression of several genes simultaneously, with a good cellular resolution, in live samples. Live confocal imaging provides plant biologists with a powerful tool to study development...

  5. Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat.

    Science.gov (United States)

    Li, Xiangnan; Cai, Jian; Liu, Fulai; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2014-09-01

    Low temperature seriously depresses the growth of wheat through inhibition of photosynthesis, while earlier cold priming may enhance the tolerance of plants to subsequent low temperature stress. Here, winter wheat plants were firstly cold primed (5.2 °C lower temperature than the ambient temperature, viz., 10.0 °C) at the Zadoks growth stage 28 (i.e. re-greening stage, starting on 20th of March) for 7 d, and after 14 d of recovery the plants were subsequently subjected to a 5 d low temperature stress (8.4 °C lower than the ambient temperature, viz., 14.1 °C) at the Zadoks growth stage 31 (i.e. jointing stage, starting on 8th April). Compared to the non-primed plants, the cold-primed plants possessed more effective oxygen scavenging systems in chloroplasts and mitochondria as exemplified by the increased activities of SOD, APX and CAT, resulting in a better maintenance in homeostasis of ROS production. The trapped energy flux (TRO/CSO) and electron transport (ETO/CSO) in the photosynthetic apparatus were found functioning well in the cold-primed plants leading to higher photosynthetic rate during the subsequent low temperature stress. Collectively, the results indicate that cold priming activated the sub-cellular antioxidant systems, depressing the oxidative burst in photosynthetic apparatus, hereby enhanced the tolerance to subsequent low temperature stress in winter wheat plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Corneal Cell Morphology in Keratoconus: A Confocal Microscopic Observation

    Science.gov (United States)

    Ghosh, Somnath; Mutalib, Haliza Abdul; Kaur, Sharanjeet; Ghoshal, Rituparna; Retnasabapathy, Shamala

    2017-01-01

    Purpose To evaluate corneal cell morphology in patients with keratoconus using an in vivo slit scanning confocal microscope. Methods A cross-sectional study was conducted to evaluate the corneal cell morphology of 47 keratoconus patients and 32 healthy eyes without any ocular disease. New keratoconus patients with different disease severities and without any other ocular co-morbidity were recruited from the ophthalmology department of a public hospital in Malaysia from June 2013 to May 2014. Corneal cell morphology was evaluated using an in vivo slit-scanning confocal microscope. Qualitative and quantitative data were analysed using a grading scale and the Nidek Advanced Visual Information System software, respectively. Results The corneal cell morphology of patients with keratoconus was significantly different from that of healthy eyes except in endothelial cell density (P = 0.072). In the keratoconus group, increased level of stromal haze, alterations such as the elongation of keratocyte nuclei and clustering of cells at the anterior stroma, and dark bands in the posterior stroma were observed with increased severity of the disease. The mean anterior and posterior stromal keratocyte densities and cell areas among the different stages of keratoconus were significantly different (P 0.05) among the three stages of keratoconus. Conclusion Confocal microscopy observation showed significant changes in corneal cell morphology in keratoconic cornea from normal healthy cornea. Analysis also showed significant changes in different severities of keratoconus. Understanding the corneal cell morphology changes in keratoconus may help in the long-term monitoring and management of keratoconus. PMID:28894403

  7. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    Science.gov (United States)

    De Luca, Giulia; Breedijk, Ronald; Hoebe, Ron; Stallinga, Sjoerd; Manders, Erik

    2017-03-01

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial resolution and signal-to-noise ratio, are characterized and compared with properties of standard confocal microscopy. The results show that the lateral resolution of RCM is ~170 nm compared to ~240 nm of confocal microscopy for 488 nm excitation and 1.49 NA. As the theory predicts, this improved lateral resolution is independent of the pinhole diameter. In standard confocal microscopy, the same lateral resolution can only be achieved with an almost closed pinhole and, consequently, with a major loss of signal. We show that the sectioning capabilities of the standard confocal microscope are preserved in RCM and that the axial resolution of RCM is slightly better (~15%) than the standard confocal microscope. Furthermore, the signal-to-noise ratio in RCM is a factor of 2 higher than in standard confocal microscopy, also due to the use of highly sensitive modern cameras. In case the pinhole of a confocal microscope is adjusted in such way that the lateral resolution is comparable to that of RCM, the signal-to-noise ratio in RCM is 4 times higher than standard confocal microscopy. Therefore, RCM offers a good alternative to standard confocal microscopy for higher lateral resolution with the main advantage of strongly improved sensitivity.

  8. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin

    NARCIS (Netherlands)

    P.J. Caspers (Peter); G.W. Lucassen (Gerald); G.J. Puppels (Gerwin)

    2003-01-01

    textabstractIn vivo confocal Raman spectroscopy is a noninvasive optical method to obtain detailed information about the molecular composition of the skin with high spatial resolution. In vivo confocal scanning laser microscopy is an imaging modality that provides optical sections

  9. Differential uptake and oxidative stress response in zebrafish fed a single dose of the principal copper and zinc enriched sub-cellular fractions of Gammarus pulex

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Farhan R., E-mail: f.khan@nhm.ac.uk [Nutritional Sciences Division, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Bury, Nicolas R.; Hogstrand, Christer [Nutritional Sciences Division, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom)

    2010-09-15

    The sub-cellular compartmentalisation of trace metals and its effect on trophic transfer and toxicity in the aquatic food chain has been a subject of growing interest. In the present study, the crustacean Gammarus pulex was exposed to either 11 {mu}g Cu l{sup -1}, added solely as the enriched stable isotope {sup 65}Cu, or 660 {mu}g Zn l{sup -1}, radiolabeled with 2MBq {sup 65}Zn, for 16 days. Post-exposure the heat stable cytosol containing metallothionein-like proteins (MTLP) and a combined granular and exoskeletal (MRG + exo) fractions were isolated by differential centrifugation, incorporated into gelatin and fed to zebrafish as a single meal. Assimilation efficiency (AE) and intestinal lipid peroxidation, as malondialdehyde (MDA) were measured. There was a significant difference (p < 0.05) between the retention of the MTLP-Zn (39.0 {+-} 6.4%) and MRG + exo-Zn (17.2 {+-} 3.7%) and of this zinc retained by the zebrafish a significantly greater proportion of the MTLP-Zn feed had been transported away from the site of uptake. For {sup 65}Cu, although the results pointed towards greater bioavailability of the MTLP fraction compared to MRG + exo during the slow elimination phase (24-72 h) these results were not significant (p = 0.155). Neither zinc feed provoked a lipid peroxidation response in the intestinal tissue of zebrafish compared to control fish (gelatin fed), but both {sup 65}Cu labeled feeds did. The greater effect was exerted by the MRG + exo (2.96 {+-} 0.29 nmol MDA mg protein{sup -1}) feed which three-fold greater than control (p < 0.01) and almost twice the MDA concentration of the MTLP feed (1.76 {+-} 0.21 nmol MDA mg protein{sup -1}, p < 0.05). The oxidative stress response produced by Zn and Cu is in keeping with their respective redox potentials; Zn being oxidatively inert and Cu being redox active. These results are similar, in terms of bioavailability and stress response of each feed, to those in our previous study in which {sup 109}Cd labeled G

  10. Confocal microscopy in the diagnosis of melanoma

    Directory of Open Access Journals (Sweden)

    Apostolović-Stojanović Milica

    2013-01-01

    Full Text Available Melanoma is the most deadly form of skin cancer of melanocytic origin. The tumor has a high malignant potential and early metastasis. Prognosis is directly linked to the stage of the disease. Diagnosing thin melanoma at an early stage offers patients their best chance for survival. The crucial innovation in the early recognition of melanoma was the development of in vivo examination of the skin in high-resolution, by confocal microscopy. Confocal microscopy and its modifications provides a “virtual biopsy“, owing to melanosomes and melanin, which are a source of endogenous contrast. Confocal scanning laser microscopy (CSLM provides visualization of microanatomical structures and cellular detail in real time (pigmented keratinocytes, melanocytes, melanosomes and melanophages in the epidermis, dermoepidermal junction and superficial dermis at a resolution equivalent to the resolution of conventional microscopes. [Projekat Ministarstva nauke Republike Srbije, br. 41002

  11. High-speed multispectral confocal biomedical imaging.

    Science.gov (United States)

    Carver, Gary E; Locknar, Sarah A; Morrison, William A; Ramanujan, V Krishnan; Farkas, Daniel L

    2014-03-01

    A new approach for generating high-speed multispectral confocal images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This approach merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described and illustrated by multispectral images of laser-induced autofluorescence in biological tissues.

  12. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cosgriff, Eireann C.; D' Alfonso, Adrian J.; Morgan, Andrew J.; Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Takeguchi, Masaki [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Quantum Dot Research Center, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

    2011-06-15

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. -- Research Highlights: {yields} The confocal probe image in a scanning confocal electron microscopy image reveals information about the thickness and height of the crystalline layer. {yields} The form of the contrast in a three-dimensional bright-field scanning confocal electron microscopy image can be explained in terms of the confocal probe image. {yields} Despite the complicated form of the contrast in bright-field scanning confocal electron microscopy, we see that depth information is transferred on a 10 nm scale.

  13. Fluorescence confocal polarizing microscopy: Three-dimensional ...

    Indian Academy of Sciences (India)

    Three-dimensional imaging of the director. O D LAVRENTOVICH. Chemical Physics ... cholesteric LCs. Keywords. 3D imaging; confocal microscopy; liquid crystals; dislocations. PACS Nos 07.60. ... magnetic resonance, x-ray diffraction, optical phase retardation, etc., suffer from the same deficiency: they produce only an ...

  14. Confocal microscopy imaging of the biofilm matrix

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke L

    2017-01-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens...

  15. Fluorescence confocal polarizing microscopy: Three-dimensional ...

    Indian Academy of Sciences (India)

    A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by fluorescence confocal polarizing microscopy (FCPM). The technique employs the property of LC to orient the fluorescent dye ...

  16. Image inpainting for the differential confocal microscope

    Science.gov (United States)

    Qiu, Lirong; Wang, Lei; Liu, Dali; Hou, Maosheng; Zhao, Weiqian

    2015-02-01

    In the process of zero-crossing trigger measurement of differential confocal microscope, the sample surface features or tilt will cause the edges can't be triggered. Meanwhile, environment vibration can also cause false triggering. In order to restore the invalid information of sample, and realize high-precision surface topography measurement, Total Variation (TV) inpainting model is applied to restore the scanning images. Emulation analysis and experimental verification of this method are investigated. The image inpainting algorithm based on TV model solves the minimization of the energy equation by calculus of variations, and it can effectively restore the non-textured image with noises. Using this algorithm, the simulation confocal laser intensity curve and height curve of standard step sample are restored. After inpainting the intensity curve below the threshold is repaired, the maximum deviation from ideal situation is 0.0042, the corresponding edge contour of height curve is restored, the maximum deviation is 0.1920, which proves the algorithm is effective. Experiment of grating inpainting indicates that the TV algorithm can restore the lost information caused by failed triggering and eliminate the noise caused by false triggering in zero-crossing trigger measurement of differential confocal microscope. The restored image is consistent with the scanning result of OLYMPUS confocal microscope, which can satisfy the request of follow-up measurement analysis.

  17. Confocal unrolled areal measurements of cylindrical surfaces

    Science.gov (United States)

    Matilla, A.; Bermudez, C.; Mariné, J.; Martínez, D.; Cadevall, C.; Artigas, R.

    2017-06-01

    Confocal microscopes are widely used for areal measurements thanks to its good height resolution and the capability to measure high local slopes. For the measurement of large areas while keeping few nm of system noise, it is needed to use high numerical aperture objectives, move the sample in the XY plane and stitch several fields together to cover the required surface. On cylindrical surfaces a rotational stage is used to measure fields along the round surface and stitch them in order to obtain a complete 3D measurement. The required amount of fields depends on the microscope's magnification, as well as on the cylinder diameter. However, for small diameters, if the local shape reaches slopes not suitable for the objective under use, the active field of the camera has to be reduced, leading to an increase of the required number of fields to be measured and stitched. In this paper we show a new approach for areal measurements of cylindrical surfaces that uses a rotational stage in combination with a slit projection confocal arrangement and a highspeed camera. An unrolled confocal image of the cylinder surface is built by rotating the sample and calculating the confocal intensity in the centre of the slit using a gradient algorithm. A set of 360º confocal images can be obtained at different heights of the sample relative to the sensor and used to calculate an unrolled areal measure of the cylinder. This method has several advantages over the conventional one such as no stitching required, or reduced measurement time. In addition, the result shows less residual flatness error since the surface lies flat in the measurement direction in comparison to field measures where the highest slope regions will show field distortion and non-constant sampling. We have also studied the influence on the areal measurements of wobble and run-out introduced by the clamping mechanism and the rotational axis.

  18. Optimal pupil design for confocal microscopy

    Science.gov (United States)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2010-02-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current instruments are large, complex, and expensive. A simpler, confocal line-scanning microscope may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A confocal reflectance microscope may use a beamsplitter, transmitting and detecting through the pupil, or a divided pupil, or theta configuration, with half used for transmission and half for detection. The divided pupil may offer better sectioning and contrast. We present a Fourier optics model and compare the on-axis irradiance of a confocal point-scanning microscope in both pupil configurations, optimizing the profile of a Gaussian beam in a circular or semicircular aperture. We repeat both calculations with a cylindrical lens which focuses the source to a line. The variable parameter is the fillfactor, h, the ratio of the 1/e2 diameter of the Gaussian beam to the diameter of the full aperture. The optimal values of h, for point scanning are 0.90 (full) and 0.66 for the half-aperture. For line-scanning, the fill-factors are 1.02 (full) and 0.52 (half). Additional parameters to consider are the optimal location of the point-source beam in the divided-pupil configuration, the optimal line width for the line-source, and the width of the aperture in the divided-pupil configuration. Additional figures of merit are field-of-view and sectioning. Use of optimal designs is critical in comparing the experimental performance of the different configurations.

  19. A confocal laser scanning microscopic study on thermoresponsive ...

    Indian Academy of Sciences (India)

    CdTe QDs composites using a fluorescence confocal laser scanning microscope. These composites have potential applications both in material science and biology. Keywords. Confocal ... of binary colloidal alloys and other soft matter systems.

  20. Description and Performance of a Highly Sensitive Confocal Raman Microspectrometer

    NARCIS (Netherlands)

    Puppels, G.J.; Puppels, G.J.; Colier, W.; Olminkhof, J.H.F.; Otto, Cornelis; de Mul, F.F.M.; Greve, Jan

    1991-01-01

    A confocal Raman microspectrometer was developed for the study of small biological objects such as single living cells and metaphase and polytene chromosomes. It employs a confocal detection scheme, well known from confocal fluorescence microscopes, in order to avoid signal contributions from the

  1. Fungal keratitis - improving diagnostics by confocal microscopy

    DEFF Research Database (Denmark)

    Nielsen, Esben; Heegaard, S; Prause, J U

    2013-01-01

    Purpose: Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM) images in filamentous fungal keratitis. Setting: Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological...... analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. Methods: A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience...... with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. Results: A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12...

  2. Reflectance Confocal Microscopy in Lentigo Maligna.

    Science.gov (United States)

    Gamo, R; Pampín, A; Floristán, U

    2016-12-01

    Lentigo maligna is the most common type of facial melanoma. Diagnosis is complicated, however, as it shares clinical and dermoscopic characteristics with other cutaneous lesions of the face. Reflectance confocal microscopy is an imaging technique that permits the visualization of characteristic features of lentigo maligna. These include a disrupted honeycomb pattern and pagetoid cells with a tendency to show folliculotropism. These cells typically have a dendritic morphology, although they may also appear as round cells measuring over 20μm with atypical nuclei. Poorly defined dermal papillae and atypical cells may be seen at the dermal-epidermal junction and can form bridges resembling mitochondrial structures. Other characteristic findings include junctional swelling with atypical cells located around the follicles, resembling caput medusae. Reflectance confocal microscopy is a very useful tool for diagnosing lentigo maligna. Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Digital confocal microscopy through a multimode fiber.

    Science.gov (United States)

    Loterie, Damien; Farahi, Salma; Papadopoulos, Ioannis; Goy, Alexandre; Psaltis, Demetri; Moser, Christophe

    2015-09-07

    Acquiring high-contrast optical images deep inside biological tissues is still a challenging problem. Confocal microscopy is an important tool for biomedical imaging since it improves image quality by rejecting background signals. However, it suffers from low sensitivity in deep tissues due to light scattering. Recently, multimode fibers have provided a new paradigm for minimally invasive endoscopic imaging by controlling light propagation through them. Here we introduce a combined imaging technique where confocal images are acquired through a multimode fiber. We achieve this by digitally engineering the excitation wavefront and then applying a virtual digital pinhole on the collected signal. In this way, we are able to acquire images through the fiber with significantly increased contrast. With a fiber of numerical aperture 0.22, we achieve a lateral resolution of 1.5µm, and an axial resolution of 12.7µm. The point-scanning rate is currently limited by our spatial light modulator (20Hz).

  4. Confocal Laser Endomicroscopy in Inflammatory Bowel Disease

    DEFF Research Database (Denmark)

    Rasmussen, Ditlev Nytoft; Karstensen, John Gásdal; Riis, Lene Buhl

    2015-01-01

    BACKGROUND AND AIMS: Confocal laser endomicroscopy is an endoscopic method that provides in vivo real-time imaging of the mucosa at a cellular level, elucidating mucosal changes that are undetectable by white light endoscopy. This paper systematically reviews current indications and perspectives...... of intestinal barrier function. There is great heterogeneity in the literature and no single approach has been validated and reproduced to the level of general acceptance....

  5. Clinical applications of corneal confocal microscopy

    Directory of Open Access Journals (Sweden)

    Mitra Tavakoli

    2008-06-01

    Full Text Available Mitra Tavakoli1, Parwez Hossain2, Rayaz A Malik11Division of Cardiovascular Medicine, University of Manchester and Manchester Royal Infirmary, Manchester, UK; 2University of Southampton, Southampton Eye Unit, Southampton General Hospital, Southampton, UKAbstract: Corneal confocal microscopy is a novel clinical technique for the study of corneal cellular structure. It provides images which are comparable to in-vitro histochemical techniques delineating corneal epithelium, Bowman’s layer, stroma, Descemet’s membrane and the corneal endothelium. Because, corneal confocal microscopy is a non invasive technique for in vivo imaging of the living cornea it has huge clinical potential to investigate numerous corneal diseases. Thus far it has been used in the detection and management of pathologic and infectious conditions, corneal dystrophies and ecstasies, monitoring contact lens induced corneal changes and for pre and post surgical evaluation (PRK, LASIK and LASEK, flap evaluations and Radial Keratotomy, and penetrating keratoplasty. Most recently it has been used as a surrogate for peripheral nerve damage in a variety of peripheral neuropathies and may have potential in acting as a surrogate marker for endothelial abnormalities.Keywords: corneal confocal microscopy, cornea, infective keratitis, corneal dystrophy, neuropathy

  6. An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research

    KAUST Repository

    Yong Wan,

    2009-11-01

    Confocal microscopy is widely used in neurobiology for studying the three-dimensional structure of the nervous system. Confocal image data are often multi-channel, with each channel resulting from a different fluorescent dye or fluorescent protein; one channel may have dense data, while another has sparse; and there are often structures at several spatial scales: subneuronal domains, neurons, and large groups of neurons (brain regions). Even qualitative analysis can therefore require visualization using techniques and parameters fine-tuned to a particular dataset. Despite the plethora of volume rendering techniques that have been available for many years, the techniques standardly used in neurobiological research are somewhat rudimentary, such as looking at image slices or maximal intensity projections. Thus there is a real demand from neurobiologists, and biologists in general, for a flexible visualization tool that allows interactive visualization of multi-channel confocal data, with rapid fine-tuning of parameters to reveal the three-dimensional relationships of structures of interest. Together with neurobiologists, we have designed such a tool, choosing visualization methods to suit the characteristics of confocal data and a typical biologist\\'s workflow. We use interactive volume rendering with intuitive settings for multidimensional transfer functions, multiple render modes and multi-views for multi-channel volume data, and embedding of polygon data into volume data for rendering and editing. As an example, we apply this tool to visualize confocal microscopy datasets of the developing zebrafish visual system.

  7. An Interactive Visualization Tool for Multi-channel Confocal Microscopy Data in Neurobiology Research

    Science.gov (United States)

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2010-01-01

    Confocal microscopy is widely used in neurobiology for studying the three-dimensional structure of the nervous system. Confocal image data are often multi-channel, with each channel resulting from a different fluorescent dye or fluorescent protein; one channel may have dense data, while another has sparse; and there are often structures at several spatial scales: subneuronal domains, neurons, and large groups of neurons (brain regions). Even qualitative analysis can therefore require visualization using techniques and parameters fine-tuned to a particular dataset. Despite the plethora of volume rendering techniques that have been available for many years, the techniques standardly used in neurobiological research are somewhat rudimentary, such as looking at image slices or maximal intensity projections. Thus there is a real demand from neurobiologists, and biologists in general, for a flexible visualization tool that allows interactive visualization of multi-channel confocal data, with rapid fine-tuning of parameters to reveal the three-dimensional relationships of structures of interest. Together with neurobiologists, we have designed such a tool, choosing visualization methods to suit the characteristics of confocal data and a typical biologist’s workflow. We use interactive volume rendering with intuitive settings for multidimensional transfer functions, multiple render modes and multi-views for multi-channel volume data, and embedding of polygon data into volume data for rendering and editing. As an example, we apply this tool to visualize confocal microscopy datasets of the developing zebrafish visual system. PMID:19834225

  8. ConfocalCheck--a software tool for the automated monitoring of confocal microscope performance.

    Directory of Open Access Journals (Sweden)

    Keng Imm Hng

    Full Text Available Laser scanning confocal microscopy has become an invaluable tool in biomedical research but regular quality testing is vital to maintain the system's performance for diagnostic and research purposes. Although many methods have been devised over the years to characterise specific aspects of a confocal microscope like measuring the optical point spread function or the field illumination, only very few analysis tools are available. Our aim was to develop a comprehensive quality assurance framework ranging from image acquisition to automated analysis and documentation. We created standardised test data to assess the performance of the lasers, the objective lenses and other key components required for optimum confocal operation. The ConfocalCheck software presented here analyses the data fully automatically. It creates numerous visual outputs indicating potential issues requiring further investigation. By storing results in a web browser compatible file format the software greatly simplifies record keeping allowing the operator to quickly compare old and new data and to spot developing trends. We demonstrate that the systematic monitoring of confocal performance is essential in a core facility environment and how the quantitative measurements obtained can be used for the detailed characterisation of system components as well as for comparisons across multiple instruments.

  9. ConfocalCheck - A Software Tool for the Automated Monitoring of Confocal Microscope Performance

    Science.gov (United States)

    Hng, Keng Imm; Dormann, Dirk

    2013-01-01

    Laser scanning confocal microscopy has become an invaluable tool in biomedical research but regular quality testing is vital to maintain the system’s performance for diagnostic and research purposes. Although many methods have been devised over the years to characterise specific aspects of a confocal microscope like measuring the optical point spread function or the field illumination, only very few analysis tools are available. Our aim was to develop a comprehensive quality assurance framework ranging from image acquisition to automated analysis and documentation. We created standardised test data to assess the performance of the lasers, the objective lenses and other key components required for optimum confocal operation. The ConfocalCheck software presented here analyses the data fully automatically. It creates numerous visual outputs indicating potential issues requiring further investigation. By storing results in a web browser compatible file format the software greatly simplifies record keeping allowing the operator to quickly compare old and new data and to spot developing trends. We demonstrate that the systematic monitoring of confocal performance is essential in a core facility environment and how the quantitative measurements obtained can be used for the detailed characterisation of system components as well as for comparisons across multiple instruments. PMID:24224017

  10. Visualizing Epithelial Expression in Vertical and Horizontal Planes With Dual Axes Confocal Endomicroscope Using Compact Distal Scanner.

    Science.gov (United States)

    Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R; Wang, Thomas D

    2017-07-01

    The epithelium is a thin layer of tissue that lines hollow organs, such as colon. Visualizing in vertical cross sections with sub-cellular resolution is essential to understanding early disease mechanisms that progress naturally in the plane perpendicular to the tissue surface. The dual axes confocal architecture collects optical sections in tissue by directing light at an angle incident to the surface using separate illumination and collection beams to reduce effects of scattering, enhance dynamic range, and increase imaging depth. This configuration allows for images to be collected in the vertical as well as horizontal planes. We designed a fast, compact monolithic scanner based on the principle of parametric resonance. The mirrors were fabricated using microelectromechanical systems (MEMS) technology and were coated with aluminum to maximize near-infrared reflectivity. We achieved large axial displacements [Formula: see text] and wide lateral deflections >20°. The MEMS chip has a 3.2×2.9 mm 2 form factor that allows for efficient packaging in the distal end of an endomicroscope. Imaging can be performed in either the vertical or horizontal planes with [Formula: see text] depth or 1 ×1 mm 2 area, respectively, at 5 frames/s. We systemically administered a Cy5.5-labeled peptide that is specific for EGFR, and collected near-infrared fluorescence images ex vivo from pre-malignant mouse colonic epithelium to reveal the spatial distribution of this molecular target. Here, we demonstrate a novel scanning mechanism in a dual axes confocal endomicroscope that collects optical sections of near-infrared fluorescence in either vertical or horizontal planes to visualize molecular expression in the epithelium.

  11. Confocal laser endomicroscopy in ulcerative colitis

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Săftoiu, Adrian; Brynskov, Jørn

    2016-01-01

    was to correlate colonic confocal laser endomicroscopy (CLE) in ulcerative colitis with histopathology and macroscopic appearance before and after intensification of medical treatment. METHODS: Twenty-two patients with ulcerative colitis in clinical relapse and 7 control subjects referred for colonoscopy were...... colitis compared with inactive ulcerative colitis...... is an emerging endoscopic technique that reproducibly identifies mucosal changes in ulcerative colitis. With the exception of crypt changes, endomicroscopic features appear to improve slowly with time after medical treatment. ( CLINICAL TRIAL REGISTRATION NUMBER: NCT01684514.)....

  12. Reflectance Confocal Microscopy for Inflammatory Skin Diseases.

    Science.gov (United States)

    Agozzino, M; Gonzalez, S; Ardigò, M

    2016-10-01

    In vivo reflectance confocal microscopy (RCM) is a relatively novel non-invasive tool for microscopic evaluation of the skin used prevalently for diagnosis and management of skin tumour. Its axial resolution, its non-invasive and easy clinical application represents the goals for a large diffusion of this technique. During the last 15 years, RCM has been demonstrated to be able to increase the sensibility and sensitivity of dermoscopy in the diagnosis of skin tumours integrating in real time clinic, dermoscopic and microscopic information useful for the definition of malignancy. Despite to date, no large comparative studies on inflammatory skin diseases has been published in the literature, several papers already showed that RCM has a potential for the evaluation of the descriptive features of the most common inflammatory skin diseases as psoriasis, lupus erythematosus, contact dermatitis and others. The aim of the application of this technique in non-neoplastic skin diseases has been prevalently focused on the possibility of clinical diagnosis confirmation, as well as therapeutic management. Moreover, the use of RCM as driver for an optimised skin biopsy has been also followed in order to reduce the number of unsuccessful histopathological examination. In this review article we describe the confocal features of the major groups of inflammatory skin disorders focusing on psoriasiform dermatitis, interface dermatitis and spongiotic dermatitis. Publicado por Elsevier España, S.L.U.

  13. Fungal keratitis - improving diagnostics by confocal microscopy.

    Science.gov (United States)

    Nielsen, E; Heegaard, S; Prause, J U; Ivarsen, A; Mortensen, K L; Hjortdal, J

    2013-09-01

    Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM) images in filamentous fungal keratitis. Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12-69), 6 out of 17 (35%) cultures were positive and a total of 6/7 (86%) IVCM scans were positive. Three different categories of IVCM results for the grading of diagnostic certainty were formed. IVCM is a valuable tool for diagnosing filamentous fungal keratitis. In order to improve the reliability of IVCM, we suggest implementing a simple and clinically applicable grading system for aiding the interpretation of IVCM images of filamentous fungal keratitis.

  14. Fungal Keratitis - Improving Diagnostics by Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Esben Nielsen

    2013-12-01

    Full Text Available Purpose: Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM images in filamentous fungal keratitis. Setting: Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. Methods: A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. Results: A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12-69, 6 out of 17 (35% cultures were positive and a total of 6/7 (86% IVCM scans were positive. Three different categories of IVCM results for the grading of diagnostic certainty were formed. Conclusion: IVCM is a valuable tool for diagnosing filamentous fungal keratitis. In order to improve the reliability of IVCM, we suggest implementing a simple and clinically applicable grading system for aiding the interpretation of IVCM images of filamentous fungal keratitis.

  15. Refractive index measurement based on confocal method

    Science.gov (United States)

    An, Zhe; Xu, XiPing; Yang, JinHua; Qiao, Yang; Liu, Yang

    2017-10-01

    The development of transparent materials is closed to optoelectronic technology. It plays an increasingly important role in various fields. It is not only widely used in optical lens, optical element, optical fiber grating, optoelectronics, but also widely used in the building material, pharmaceutical industry with vessel, aircraft windshield and daily wear glasses.Regard of solving the problem of refractive index measurement in optical transparent materials. We proposed that using the polychromatic confocal method to measuring the refractive index of transparent materials. In this article, we describes the principle of polychromatic confocal method for measuring the refractive index of glass,and sketched the optical system and its optimization. Then we establish the measurement model of the refractive index, and set up the experimental system. In this way, the refractive index of the glass has been calibrated for refractive index experiment. Due to the error in the experimental process, we manipulated the experiment data to compensate the refractive index measurement formula. The experiment taking the quartz glass for instance. The measurement accuracy of the refractive index of the glass is +/-1.8×10-5. This method is more practical and accurate, especially suitable for non-contact measurement occasions, which environmental requirements is not high. Environmental requirements are not high, the ordinary glass production line up to the ambient temperature can be fully adapted. There is no need for the color of the measured object that you can measure the white and a variety of colored glass.

  16. Microscopia confocal en operados de queratoplastia perforante Confocal microscopy in patients operated from penetrating keratoplasty

    Directory of Open Access Journals (Sweden)

    Zulema Gómez Castillo

    2009-06-01

    Full Text Available La microscopia confocal es un examen exploratorio, práctico y poco invasivo que permite conocer las características microscópicas del tejido corneal después del trasplante, por lo que constituye una herramienta muy útil en el manejo de los pacientes operados de queratoplastia. El presente trabajo tiene como finalidad describir las características del tejido corneal en pacientes operados de este tipo de trasplante, mediante la microscopia confocal in vivo. MÉTODOS: Se realizó un estudio descriptivo, de corte transversal, en 40 ojos de 40 pacientes operados de queratoplastia perforante, en el Servicio de Córnea del Instituto Cubano de Oftalmología "Ramón Pando Ferrer", de marzo de 2006 a marzo de 2007. Se confeccionó una historia clínica oftalmológica y se les realizó a todos el examen de microscopia confocal en el injerto corneal con el microscopio confocal CONFOSCAN 4. RESULTADOS: La queratopatía bullosa pseudofáquica fue la afección más frecuente previa a la cirugía y estuvo presente en el 77,5 % de los pacientes. En el 72,5 % de los intervenidos se encontró una disminución del grosor corneal. El epitelio presentó alteraciones en el 62,5 % de los pacientes. Todos presentaron afectación de la forma y el tamaño celular endotelial. En el 82,5 % de los pacientes se observó ausencia de plexos nerviosos. CONCLUSIONES: La microscopia confocal como nueva ciencia en el campo de la oftalmología, favorece el seguimiento evolutivo de las queratoplastias perforantes y con esto no solo a prevenir la aparición de posibles complicaciones, sino además de garantizar el éxito de la cirugía y la función refractiva de la córnea.Confocal microscopy is a practical, exploratory and less invassive examination that allows finding out the microscopic characteristics of the corneal tissue after transplantation, so it is a very useful tool for the management of patients operated from keratoplasty. The present paper was aimed at describing

  17. 4D confocal microscopy for visualisation of bone remodelling

    NARCIS (Netherlands)

    Konijn, GA; Vardaxis, NJ; Boon, ME; Kok, LP; Rietveld, DC; SCHUT, JJ

    Until recently it was very time consuming and difficult to make three-dimensional (3D) images of newly formed bone. With the advent of confocal technologies and increased computer power 3D imaging is greatly facilitated. In this paper we demonstrate that enhanced confocal visualisation of newly

  18. Time-resolved measurements of DNA interactions in an electrowetting-on-dielectric system using confocal microscopy

    Science.gov (United States)

    Sparrenberg, Lorenz T.; Greiner, Benjamin; Mueller, Christian; Mathis, Harald P.

    2017-11-01

    To identify new drug candidates a deep and profound knowledge of molecule interactions is needed. In the current work, a combination of an electrowetting-on-dielectric (EWOD) system with a confocal microscopy is presented for the first time. The aim of this research is to attain time-resolved information about nucleic acid interactions at a single molecule level. Confocal microscopy is a promising technique for reaction analysis on a molecular scale. But the liquid handling of the needed tiny volumes of highly diluted solutions is very challenging. An EWOD based system for droplet handling can address this demand. In this paper the development of an EWOD system for droplet handling in nanoliter scale is discussed and the combination of the EWOD system with a confocal microscope, to investigate nucleic acid interactions, is evaluated.

  19. Machine learning-assisted hyperspectral analysis of plasmonic contrast agent microbiodistribution with single-particle sensitivity and sub-cellular resolution

    Science.gov (United States)

    SoRelle, Elliott D.; Liba, Orly; Campbell, Jos L.; Dalal, Roopa; Zavaleta, Cristina L.; de la Zerda, Adam

    2017-02-01

    Nanoparticles have been explored extensively as potential biomedical imaging and therapeutic agents. One critical aspect of in vivo nanoparticle use is the characterization of biodistribution profiles. Such studies improve our understanding of particle uptake, specificity, and clearance mechanisms. Currently, the most prevalent nanoparticle biodistribution methods provide either aspatial quantification of whole-organ particle accumulation or nanometerresolution images of uptake in single cells. Few existing techniques are well-suited to study particle uptake on the micron to millimeter scales relevant to sub-tissue physiology. Here we demonstrate a new method called Hyperspectral Microscopy with Adaptive Detection (HSM-AD) that uses machine learning classification of hyperspectral dark-field images to study interactions between tissues and administered nanoparticles. This label-free, non-destructive method enables quantitative particle identification in histological sections and detailed observations of sub-organ accumulation patterns consistent with organ-specific clearance mechanisms, particle size, and the molecular specificity of the nanoparticle surface. Unlike studies with electron microscopy, HSM-AD is readily applied for large fields of view. HSM-AD achieves excellent detection sensitivity (99.4%) and specificity (99.7%) and can identify single nanoparticles. To demonstrate HSM-AD's potential for novel nanoparticle uptake studies, we collected the first data on the sub-organ localization of large gold nanorods (LGNRs) in mice. We also observed differences in particle accumulation and localization patterns in tumors as a function of conjugated molecular targeting moieties. Thus, HSM-AD affords new degrees of detail for the study of nanoparticle uptake at physiological scales. HSM-AD may offer an auxiliary or alternative approach to study the biodistribution profiles of existing and novel nanoparticles.

  20. Digital differential confocal microscopy based on spatial shift transformation.

    Science.gov (United States)

    Liu, J; Wang, Y; Liu, C; Wilson, T; Wang, H; Tan, J

    2014-11-01

    Differential confocal microscopy is a particularly powerful surface profilometry technique in industrial metrology due to its high axial sensitivity and insensitivity to noise. However, the practical implementation of the technique requires the accurate positioning of point detectors in three-dimensions. We describe a simple alternative based on spatial transformation of a through-focus series of images obtained from a homemade beam scanning confocal microscope. This digital differential confocal microscopy approach is described and compared with the traditional Differential confocal microscopy approach. The ease of use of the digital differential confocal microscopy system is illustrated by performing measurements on a 3D standard specimen. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  1. Pupil engineering for a confocal reflectance line-scanning microscope

    Science.gov (United States)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2011-03-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current confocal point-scanning systems are large, complex, and expensive. A confocal line-scanning microscope, utilizing a of linear array detector can be simpler, smaller, less expensive, and may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A line scanner may be implemented with a divided-pupil, half used for transmission and half for detection, or with a full-pupil using a beamsplitter. The premise is that a confocal line-scanner with either a divided-pupil or a full-pupil will provide high resolution and optical sectioning that would be competitive to that of the standard confocal point-scanner. We have developed a confocal line-scanner that combines both divided-pupil and full-pupil configurations. This combined-pupil prototype is being evaluated to determine the advantages and limitations of each configuration for imaging skin, and comparison of performance to that of commercially available standard confocal point-scanning microscopes. With the combined configuration, experimental evaluation of line spread functions (LSFs), contrast, signal-to-noise ratio, and imaging performance is in progress under identical optical and skin conditions. Experimental comparisons between divided-pupil and full-pupil LSFs will be used to determine imaging performance. Both results will be compared to theoretical calculations using our previously reported Fourier analysis model and to the confocal point spread function (PSF). These results may lead to a simpler class of confocal reflectance scanning microscopes for clinical and surgical dermatology.

  2. Confocal Raman Microspectroscopy of Oral Streptococci

    Science.gov (United States)

    Beier, Brooke D.

    Raman spectroscopy has been used in a variety of applications throughout the field of biomedical optics. It has the ability to acquire chemically-specific information in a non-invasive manner, without the need for exogenous markers. This makes it useful in the identification of bacterial species, as well as in the study of tissues and other cells. In this work, a species identification model has been created in order to discriminate between the oral bacterial species Streptococcus sanguinis and Streptococcus mutans. These are two of the most prevalent species within the human mouth and their relative concentrations can be an indicator of a patient's oral health and risk of tooth decay. They are predominantly found within plaque on the tooth's surface. To study a simplified model for dental plaque, we have examined S. sanguinis and S. mutans grown in biofilm forms. Raman spectroscopy has been implemented here through a confocal microscope. The optical system has been equipped with computationally controlled stages to allow for automated scanning, including autofocusing to probe a consistent depth within a sample. A spectrum has been acquired from each position within a scan and sent for spectral preprocessing before being submitted for species identification. This preprocessing includes an algorithm that has been developed to remove fluorescence features from known contaminants within the confocal volume, to include signal from a fluorescent substrate. Species classification has been accomplished using a principal component score-fed logistic regression model constructed from a variety of biofilm samples that have been transferred and allowed to dry, as might occur with the study of plaque samples. This binary classification model has been validated on other samples with identical preparations. The model has also been transferred to determine the species of hydrated biofilms studied in situ. Artificially mixed biofilms have been examined to test the spatial

  3. Understanding the sub-cellular dynamics of silicon transportation and synthesis in diatoms using population-level data and computational optimization.

    Directory of Open Access Journals (Sweden)

    Narjes Javaheri

    2014-06-01

    Full Text Available Controlled synthesis of silicon is a major challenge in nanotechnology and material science. Diatoms, the unicellular algae, are an inspiring example of silica biosynthesis, producing complex and delicate nano-structures. This happens in several cell compartments, including cytoplasm and silica deposition vesicle (SDV. Considering the low concentration of silicic acid in oceans, cells have developed silicon transporter proteins (SIT. Moreover, cells change the level of active SITs during one cell cycle, likely as a response to the level of external nutrients and internal deposition rates. Despite this topic being of fundamental interest, the intracellular dynamics of nutrients and cell regulation strategies remain poorly understood. One reason is the difficulties in measurements and manipulation of these mechanisms at such small scales, and even when possible, data often contain large errors. Therefore, using computational techniques seems inevitable. We have constructed a mathematical model for silicon dynamics in the diatom Thalassiosira pseudonana in four compartments: external environment, cytoplasm, SDV and deposited silica. The model builds on mass conservation and Michaelis-Menten kinetics as mass transport equations. In order to find the free parameters of the model from sparse, noisy experimental data, an optimization technique (global and local search, together with enzyme related penalty terms, has been applied. We have connected population-level data to individual-cell-level quantities including the effect of early division of non-synchronized cells. Our model is robust, proven by sensitivity and perturbation analysis, and predicts dynamics of intracellular nutrients and enzymes in different compartments. The model produces different uptake regimes, previously recognized as surge, externally-controlled and internally-controlled uptakes. Finally, we imposed a flux of SITs to the model and compared it with previous classical kinetics

  4. Deep stroma investigation by confocal microscopy

    Science.gov (United States)

    Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Valente, Paola; Ardia, Roberta; Buzzonetti, Luca; Canovetti, Annalisa; Malandrini, Alex; Lenzetti, Ivo; Menabuoni, Luca

    2015-03-01

    Laser assisted keratoplasty is nowadays largely used to perform minimally invasive surgery and partial thickness keratoplasty [1-3]. The use of the femtosecond laser enables to perform a customized surgery, solving the specific problem of the single patient, designing new graft profiles and partial thickness keratoplasty (PTK). The common characteristics of the PTKs and that make them eligible respect to the standard penetrating keratoplasty, are: the preservation of eyeball integrity, a reduced risk of graft rejection, a controlled postoperative astigmatism. On the other hand, the optimal surgical results after these PTKs are related to a correct comprehension of the deep stroma layers morphology, which can help in the identification of the correct cleavage plane during surgeries. In the last years some studies were published, giving new insights about the posterior stroma morphology in adult subjects [4,5]. In this work we present a study performed on two groups of tissues: one group is from 20 adult subjects aged 59 +/- 18 y.o., and the other group is from 15 young subjects, aged 12+/-5 y.o.. The samples were from tissues not suitable for transplant in patients. Confocal microscopy and Environmental Scanning Electron Microscopy (ESEM) were used for the analysis of the deep stroma. The preliminary results of this analysis show the main differences in between young and adult tissues, enabling to improve the knowledge of the morphology and of the biomechanical properties of human cornea, in order to improve the surgical results in partial thickness keratoplasty.

  5. Chromatic confocal microscopy using staircase diffractive surface.

    Science.gov (United States)

    Rayer, Mathieu; Mansfield, Daniel

    2014-08-10

    A chromatic confocal microscope (CCM) is a high-dynamic-range noncontact distance measurement sensor; it is based on a hyperchromatic lens. The vast majority of commercial CCMs use refractive-based chromatic dispersion to chromatically code the optical axis. This approach significantly limits the range of applications and performance of the CCM. In order to be a suitable alternative to a laser triangulation gauge and laser encoder, the performance of the CCM must be improved. In this paper, it is shown how hybrid aspheric diffractive (HAD) lenses can bring the CCM to its full potential by increasing the dynamic range by a factor of 2 and the resolution by a factor of 5 while passively athermizing and increasing the light throughput efficiency of the optical head [M. Rayer, U.S. patent 1122052.2 (2011)]. The only commercially suitable manufacturing process is single-point diamond turning. However, the optical power carried by the diffractive side of a hybrid aspheric diffractive lens is limited by the manufacturing process. A theoretical study of manufacturing losses has revealed that the HAD configuration with the highest diffraction efficiency is for a staircase diffractive surface (SDS). SDS lenses have the potential to reduce light losses associated with manufacturing limits by a factor of 5 without increasing surface roughness, allowing scalar diffraction-limited optical design with a diffractive element.

  6. Plastic-to-Elastic Transition in Aggregated Emulsion Networks, Studied with Atomic Force Microscopy-Confocal Scanning Laser Microscopy Microrheology

    NARCIS (Netherlands)

    Filip, D.; Duits, Michael H.G.; Uricanu, V.I.; Mellema, J.

    2006-01-01

    In this paper, we demonstrate how the simultaneous application of atomic force microscopy (AFM) and confocal scanning laser microscopy (CSLM) can be used to characterize the (local) rheological properties of soft condensed matter at micrometer length scales. Measurement of AFM force curves as a

  7. [Current application of confocal laser scanning microscope (CLSM) in stomatology].

    Science.gov (United States)

    Zhang, Yu-sen; Li, Ning-yi

    2007-04-01

    Confocal laser scanning microscopy is one kind of modern Hi-tech on the basis of confocal imaging which is characterized by depth discrimination capability. It has been widely used in the field of stomatology due to its great advantages of non-destructive and non-invasive optical sectioning and three-dimensional reconstruction of the vital objects, in situ and dynamic real-time observation of the tissues and cells can be performed at high resolution. This paper reviews the fundamentals of confocal imaging and the application of CLSM in the fields of dental material, caries, dentin bonding interface and other basic researches in stomatology in recent years.

  8. Cellular resolution expression profiling using confocal detection of NBT/BCIP precipitate by reflection microscopy.

    Science.gov (United States)

    Jékely, Gáspár; Arendt, Detlev

    2007-06-01

    The determination of gene expression patterns in three dimensions with cellular resolution is an important goal in developmental biology. However the most sensitive, efficient, and widely used staining technique for whole-mount in situ hybridization (WMISH), nitroblue tetrazolium (NBT)/5-bromo-4-chloro-3-indolyl phosphate (BCIP) precipitation by alkaline phosphatase, could not yet be combined with the most precise, high-resolution detection technique, confocal laser-scanning microscopy (CLSM). Here we report the efficient visualization of the NBT/BCIP precipitate using confocal reflection microscopy for WMISH samples of Drosophila, zebrafish, and the marine annelid worm, Platynereis dumerilii. In our simple WMISH protocol for reflection CLSM, NBT/BCIP staining can be combined with fluorescent WMISH, immunostainings, or transgenic green fluorescent protein (GFP) marker lines, allowing double labeling of cell types or of embryological structures of interest. Whole-mount reflection CLSM will thus greatly facilitate large-scale cellular resolution expression profiling in vertebrate and invertebrate model organisms.

  9. Probing intracellular mass density fluctuation through confocal microscopy: application in cancer diagnostics as a case study

    CERN Document Server

    Sahay, Peeyush; Ghimire, Hemendra M; Almabadi, Huda; Yallappu, Murali M; Skalli, Omar; Jaggi, Meena; Chauhan, Subhash C; Pradhan, Prabhakar

    2015-01-01

    Intracellular structural alterations are hallmark of several disease conditions and treatment modalities. However, robust methods to quantify these changes are scarce. In view of this, we introduce a new method to quantify structural alterations in biological cells through the widely used confocal microscopy. This novel method employs optical eigenfunctions localization properties of cells and quantifies the degree of structural alterations, in terms of nano- to micron scale intracellular mass density fluctuations, in one single parameter. Such approach allows a powerful way to compare changing structures in heterogeneous cellular media irrespective of the origin of the cause. As a case study, we demonstrate its applicability in cancer detection with breast and prostate cancer cases of different tumorigenicity levels. Adding new dimensions to the confocal based studies, this technique has potentially significant applications in areas ranging from disease diagnostics to therapeutic studies, such as patient pro...

  10. Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning.

    Science.gov (United States)

    Wang, Thomas D; Contag, Christopher H; Mandella, Michael J; Chan, Ning Y; Kino, Gordon S

    2004-01-01

    We present a novel confocal microscope that has dual-axis architecture and biaxial postobjective scanning for the collection of fluorescence images from biological specimens. This design uses two low-numerical-aperture lenses to achieve high axial resolution and long working distance, and the scanning mirror located distal to the lenses rotates along the orthogonal axes to produce arc-surface images over a large field of view (FOV). With fiber optic coupling, this microscope can potentially be scaled down to millimeter dimensions via microelectromechanical systems (MEMS) technology. We demonstrate a benchtop prototype with a spatial resolution < or =4.4 microm that collects fluorescence images with a high SNR and a good contrast ratio from specimens expressing GFP. Furthermore, the scanning mechanism produces only small differences in aberrations over the image FOV. These results demonstrate proof of concept of the dual-axis confocal architecture for in vivo molecular and cellular imaging.

  11. Microelectrophoresis of Silica Rods Using Confocal Microscopy

    Science.gov (United States)

    2017-01-01

    The electrophoretic mobility and the zeta potential (ζ) of fluorescently labeled colloidal silica rods, with an aspect ratio of 3.8 and 6.1, were determined with microelectrophoresis measurements using confocal microscopy. In the case where the colloidal particles all move at the same speed parallel to the direction of the electric field, we record a xyz-stack over the whole depth of the capillary. This method is faster and more robust compared to taking xyt-series at different depths inside the capillary to obtain the parabolic flow profile, as was done in previous work from our group. In some cases, rodlike particles do not move all at the same speed in the electric field, but exhibit a velocity that depends on the angle between the long axis of the rod and the electric field. We measured the orientation-dependent velocity of individual silica rods during electrophoresis as a function of κa, where κ–1 is the double layer thickness and a is the radius of the rod associated with the diameter. Thus, we determined the anisotropic electrophoretic mobility of the silica rods with different sized double layers. The size of the double layer was tuned by suspending silica rods in different solvents at different electrolyte concentrations. We compared these results with theoretical predictions. We show that even at already relatively high κa when the Smoluchowski limiting law is assumed to be valid (κa > 10), an orientation dependent velocity was measured. Furthermore, we observed that at decreasing values of κa the anisotropy in the electrophoretic mobility of the rods increases. However, in low polar solvents with κa mobility of the rods decreased. We argue that this decrease is due to end effects, which was already predicted theoretically. When end effects are not taken into account, this will lead to strong underestimation of the experimentally determined zeta potential. PMID:28045541

  12. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Ping; Fang, Shaoxi; Li, Zhe; Tang, Peng; Gao, Xia; Guo, Jinsong; Tlili, Chaker; Wang, Deqiang

    2018-02-01

    The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.

  13. [Advances of in vivo confocal scanning laser microscopy].

    Science.gov (United States)

    Tian, Ke-bin; Zhou, Guo-yu

    2006-02-01

    In vivo confocal scanning laser microscopy is being widely established as a time-saving, non-invasive, investigative methods in the study of body surfaces. Skin can be observed in its native state in vivo without the fixing, sectioning and staining that is necessary for routine histology. It is a new technology that can provide detailed images of tissue architecture and cellular morphology of living tissue. This paper reviews the fundamentals of in vivo confocal imaging and its clinical applications.

  14. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    Directory of Open Access Journals (Sweden)

    Yunhai Zhang

    2013-01-01

    Full Text Available We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments.

  15. Handheld reflectance confocal microscopy for the diagnosis of conjunctival tumors.

    Science.gov (United States)

    Cinotti, Elisa; Perrot, Jean-Luc; Labeille, Bruno; Campolmi, Nelly; Espinasse, Marine; Grivet, Damien; Thuret, Gilles; Gain, Philippe; Douchet, Catherine; Andrea, Caroline; Haouas, Maher; Cambazard, Frédéric

    2015-02-01

    To evaluate whether the handheld in vivo reflectance confocal microscopy that has been recently developed for the study of skin tumors is suitable for the diagnosis of conjunctival tumors. Prospective study, observational case series. We prospectively evaluated the reflectance confocal microscopy features of 53 conjunctival lesions clinically suspicious for tumors of 46 patients referred to the University Hospital of Saint-Etienne (France) by using the handheld device. Twenty-three lesions were excised (3 nevi, 10 melanomas, 5 squamous cell carcinoma, 2 lymphomas, and 3 pinguecula/pterygium) while the other 30, presenting no reflectance confocal microscopy malignant features, were under follow-up for at least 1 year. Clinical reflectance confocal microscopy and histologic diagnosis were compared. In vivo reflectance confocal microscopy diagnosis was in agreement with the histologic diagnosis in all cases and none of the lesions that were not excised show any clinical progression under follow-up. In vivo reflectance confocal microscopy with a handheld dermatology-dedicated microscope can play a role in the noninvasive diagnosis of conjunctival lesions. Further studies should be performed to better define the diagnostic ability of this technique. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue.

    Science.gov (United States)

    Egea, Isabel; Bian, Wanping; Barsan, Cristina; Jauneau, Alain; Pech, Jean-Claude; Latché, Alain; Li, Zhengguo; Chervin, Christian

    2011-08-01

    There are several studies suggesting that tomato (Solanum lycopersicum) chromoplasts arise from chloroplasts, but there is still no report showing the fluorescence of both chlorophylls and carotenoids in an intermediate plastid, and no video showing this transition phase. Pigment fluorescence within individual plastids, isolated from tomato fruit using sucrose gradients, was observed at different ripening stages, and an in situ real-time recording of pigment fluorescence was performed on live tomato fruit slices. At the mature green and red stages, homogenous fractions of chloroplasts and chromoplasts were obtained, respectively. At the breaker stage, spectral confocal microscopy showed that intermediate plastids contained both chlorophylls and carotenoids. Furthermore, an in situ real-time recording (a) showed that the chloroplast to chromoplast transition was synchronous for all plastids of a single cell; and (b) confirmed that all chromoplasts derived from pre-existing chloroplasts. These results give details of the early steps of tomato chromoplast biogenesis from chloroplasts, with the formation of intermediate plastids containing both carotenoids and chlorophylls. They provide information at the sub-cellular level on the synchronism of plastid transition and pigment changes.

  17. Confocal imaging of confined quiescent and flowing colloid-polymer mixtures.

    Science.gov (United States)

    Pandey, Rahul; Spannuth, Melissa; Conrad, Jacinta C

    2014-05-20

    The behavior of confined colloidal suspensions with attractive interparticle interactions is critical to the rational design of materials for directed assembly(1-3), drug delivery(4), improved hydrocarbon recovery(5-7), and flowable electrodes for energy storage(8). Suspensions containing fluorescent colloids and non-adsorbing polymers are appealing model systems, as the ratio of the polymer radius of gyration to the particle radius and concentration of polymer control the range and strength of the interparticle attraction, respectively. By tuning the polymer properties and the volume fraction of the colloids, colloid fluids, fluids of clusters, gels, crystals, and glasses can be obtained(9). Confocal microscopy, a variant of fluorescence microscopy, allows an optically transparent and fluorescent sample to be imaged with high spatial and temporal resolution in three dimensions. In this technique, a small pinhole or slit blocks the emitted fluorescent light from regions of the sample that are outside the focal volume of the microscope optical system. As a result, only a thin section of the sample in the focal plane is imaged. This technique is particularly well suited to probe the structure and dynamics in dense colloidal suspensions at the single-particle scale: the particles are large enough to be resolved using visible light and diffuse slowly enough to be captured at typical scan speeds of commercial confocal systems(10). Improvements in scan speeds and analysis algorithms have also enabled quantitative confocal imaging of flowing suspensions(11-16,37). In this paper, we demonstrate confocal microscopy experiments to probe the confined phase behavior and flow properties of colloid-polymer mixtures. We first prepare colloid-polymer mixtures that are density- and refractive-index matched. Next, we report a standard protocol for imaging quiescent dense colloid-polymer mixtures under varying confinement in thin wedge-shaped cells. Finally, we demonstrate a protocol

  18. Real-Time Confocal Imaging Of The Living Eye

    Science.gov (United States)

    Jester, James V.; Cavanagh, H. Dwight; Essepian, John; Shields, William J.; Lemp, Michael A.

    1989-12-01

    In 1986, we adapted the Tandem Scanning Reflected Light Microscope of Petran and Hadraysky to permit non-invasive, confocal imaging of the living eye in real-time. We were first to obtain stable, confocal optical sections in vivo, from human and animal eyes. Using confocal imaging systems we have now studied living, normal volunteers, rabbits, cats and primates sequentially, non-invasively, and in real-time. The continued development of real-time confocal imaging systems will unlock the door to a new field of cell biology involving for the first time the study of dynamic cellular processes in living organ systems. Towards this end we have concentrated our initial studies on three areas (1) evaluation of confocal microscope systems for real-time image acquisition, (2) studies of the living normal cornea (epithelium, stroma, endothelium) in human and other species; and (3) sequential wound-healing responses in the cornea in single animals to lamellar-keratectomy injury (cellular migration, inflammation, scarring). We believe that this instrument represents an important, new paradigm for research in cell biology and pathology and that it will fundamentally alter all experimental and clinical approaches in future years.

  19. Second-harmonic patterned polarization-analyzed reflection confocal microscope

    Science.gov (United States)

    Okoro, Chukwuemeka; Toussaint, Kimani C.

    2017-08-01

    We introduce the second-harmonic patterned polarization-analyzed reflection confocal (SPPARC) microscope-a multimodal imaging platform that integrates Mueller matrix polarimetry with reflection confocal and second-harmonic generation (SHG) microscopy. SPPARC microscopy provides label-free three-dimensional (3-D), SHG-patterned confocal images that lend themselves to spatially dependent, linear polarimetric analysis for extraction of rich polarization information based on the Mueller calculus. To demonstrate its capabilities, we use SPPARC microscopy to analyze both porcine tendon and ligament samples and find differences in both circular degree-of-polarization and depolarization parameters. Moreover, using the collagen-generated SHG signal as an endogenous counterstain, we show that the technique can be used to provide 3-D polarimetric information of the surrounding extrafibrillar matrix plus cells or EFMC region. The unique characteristics of SPPARC microscopy holds strong potential for it to more accurately and quantitatively describe microstructural changes in collagen-rich samples in three spatial dimensions.

  20. A GRISM-based probe for spectrally encoded confocal microscopy.

    Science.gov (United States)

    Pitris, C; Bouma, B; Shiskov, M; Tearney, G

    2003-01-27

    Spectrally encoded confocal microscopy (SECM) is a novel approach for obtaining high resolution, depth-sectioned images of microstructure within turbid samples. By encoding one spatial dimension in wavelength, imaging probes can be greatly simplified compared to standard scanning confocal microscopes, potentially enabling endoscopic implementation. The use of a diffraction grating for spectral encoding, however, skews the optical axis through the probe, thus complicating the design of narrow diameter instruments. In this Letter, we describe a novel use of a single-optical-axis element based on high index-of-refraction prisms and a transmission holographic grating for the design of narrow diameter SECM devices. Confocal images obtained with a 10.0 mm probe demonstrate a transverse resolution of 1.1 microm and a field of view of 650 microm.

  1. EUS-Guided Needle-Based Confocal Laser Endomicroscopy

    DEFF Research Database (Denmark)

    Bhutani, Manoop S; Koduru, Pramoda; Joshi, Virendra

    2015-01-01

    the gut, providing further diagnostic and staging information. Confocal laser endomicroscopy (CLE) is a novel endoscopic method that enables imaging at a subcellular level of resolution during endoscopy, allowing up to 1000-fold magnification of tissue and providing an optical biopsy. A new procedure...... that has been developed in the past few years is needle-based confocal laser endomicroscopy (nCLE), which involves a mini-CLE probe that can be passed through a 1 9-gauge needle during EUS-FNA. This enables the real-time visualization of tissue at a microscopic level, with the potential to further improve...

  2. Enhanced compton backscattering by confocal multipath laser cavity

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Sho; Miyamoto, Shuji; Mochizuki, Takayasu [Himeji Institute of Technology, Laboratory of Advanced Science Technology for Industry, Kamigori, Hyogo (Japan)

    2001-10-01

    The design considerations of a confocal multipath laser cavity to enhance Compton backscattering are presented. Laser pulses are superposed at a confocal point of the cavity and enhance laser peak filed there. Ray trace simulation results predicted that the 29 - 14-fold enhanced laser filed could be achieved with the mode locked laser pulses whose repetition rate and duration time were 89.25 MHz and 10 ps, respectively. As a result, Compton backscattered X-rays generated by interaction of this intense laser field with a relativistic electron beam, will be enhanced efficiently by a factor of more than 10 at least. (author)

  3. Microscopia confocal in vivo na cistinose: relato de caso

    Directory of Open Access Journals (Sweden)

    Victor Gustavo

    2004-01-01

    Full Text Available A cistinose é doença autossômica recessiva rara caracterizada pelo acúmulo do aminoácido cistina livre dentro dos lisossomos e geralmente é fatal na primeira década de vida na ausência de transplante renal. O presente estudo tem por objetivo relatar os achados da microscopia confocal in vivo em paciente adulto com cistinose infantil. O exame de microscopia confocal in vivo revelou que há diferenças quanto à intensidade de acometimento, tamanho e forma dos depósitos nas diversas camadas corneanas.

  4. Confocal Raman microscopy for identification of bacterial species in biofilms

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  5. Adaptive optics in digital micromirror based confocal microscopy

    NARCIS (Netherlands)

    Pozzi, P.; Wilding, D.; Soloviev, O.A.; Vdovine, G.V.; Verhaegen, M.H.G.; Bifano, Thomas G.; Kubby, Joel; Gigan, Sylvain

    2016-01-01

    This proceeding reports early results in the development of a new technique for adaptive optics in confocal microscopy. The term adaptive optics refers to the branch of optics in which an active element in the optical system is used to correct inhomogeneities in the media through which light

  6. Axial Confocal Tomography of Capillary-Contained Colloidal Structures.

    Science.gov (United States)

    Liber, Shir R; Indech, Ganit; van der Wee, Ernest B; Butenko, Alexander V; Kodger, Thomas E; Lu, Peter J; Schofield, Andrew B; Weitz, David A; van Blaaderen, Alfons; Sloutskin, Eli

    2017-10-27

    Confocal microscopy is widely used for three-dimensional (3D) sample reconstructions. Arguably, the most significant challenge in such reconstructions is posed by the resolution along the optical axis being significantly lower than in the lateral directions. In addition, the imaging rate is lower along the optical axis in most confocal architectures, prohibiting reliable 3D reconstruction of dynamic samples. Here, we demonstrate a very simple, cheap, and generic method of multiangle microscopy, allowing high-resolution high-rate confocal slice collection to be carried out with capillary-contained colloidal samples in a wide range of slice orientations. This method, realizable with any common confocal architecture and recently implemented with macroscopic specimens enclosed in rotatable cylindrical capillaries, allows 3D reconstructions of colloidal structures to be verified by direct experiments and provides a solid testing ground for complex reconstruction algorithms. In this paper, we focus on the implementation of this method for dense nonrotatable colloidal samples, contained in complex-shaped capillaries. Additionally, we discuss strategies to minimize potential pitfalls of this method, such as the artificial appearance of chain-like particle structures.

  7. Confocal direct imaging Raman microscope: Design and applications in biology

    NARCIS (Netherlands)

    Sijtsema, N M; Wouters, S D; Grauw, C J De; Otto, C; Greve, J

    1998-01-01

    A confocal direct imaging Raman microscope (CDIRM) based on two synchronized scanning mirrors, a monochromator, and two charge-coupled device (CCD) cameras has been developed. With this system it is possible to make both Raman spectra of a small measurement volume and images of a larger sample area

  8. Confocal microscopy patterns in nonmelanoma skin cancer and clinical applications.

    Science.gov (United States)

    González, S; Sánchez, V; González-Rodríguez, A; Parrado, C; Ullrich, M

    2014-06-01

    Reflectance confocal microscopy is currently the most promising noninvasive diagnostic tool for studying cutaneous structures between the stratum corneum and the superficial reticular dermis. This tool gives real-time images parallel to the skin surface; the microscopic resolution is similar to that of conventional histology. Numerous studies have identified the main confocal features of various inflammatory skin diseases and tumors, demonstrating the good correlation of these features with certain dermatoscopic patterns and histologic findings. Confocal patterns and diagnostic algorithms have been shown to have high sensitivity and specificity in melanoma and nonmelanoma skin cancer. Possible present and future applications of this noninvasive technology are wide ranging and reach beyond its use in noninvasive diagnosis. This tool can also be used, for example, to evaluate dynamic skin processes that occur after UV exposure or to assess tumor response to noninvasive treatments such as photodynamic therapy. We explain the characteristic confocal features found in the main nonmelanoma skin tumors and discuss possible applications for this novel diagnostic technique in routine dermatology practice. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  9. Optomechatronics Design and Control for Confocal Laser Scanning Microscopy

    NARCIS (Netherlands)

    Yoo, H.W.

    2015-01-01

    Confocal laser scanning microscopy (CLSM) is considered as one of the major advancements in microscopy in the last century and is widely accepted as a 3D fluorescence imaging tool for biological studies. For the emerging biological questions CLSM requires fast imaging to detect rapid biological

  10. Fiber optic confocal microscope: In vivo precancer detection

    Science.gov (United States)

    Carlson, Kristen Dawn

    Cancer is a significant public health problem worldwide. Many cancers originate as precancerous lesions in the epithelium which, when removed in sufficient time, can prevent progression to cancer. However, current detection techniques are typically time-consuming and expensive, limiting their acceptance and accessibility. Optical techniques, such as confocal microscopy, have significant potential to provide clinicians with real-time, high-resolution images of cells and tissue without tissue removal. These images of cell morphology and tissue architecture can be used to characterize tissue and determine the presence or extent of precancer and cancer. This dissertation explores the instrumentation and application of fiber optic reflectance confocal microscopy for in vivo precancer detection. The first part of the dissertation presents in vivo imaging of suspicious lesions in the human uterine cervix and oral mucosa using a fiber bundle based confocal microscope with a complex glass miniature objective lens. Images are analyzed quantitatively and qualitatively to determine the potential of this technology in vivo. An analysis of nuclear density from images of 30 cervical epithelium sites shows differentiation between normal and precancerous sites. Similarly, images from 20 oral mucosa sites demonstrate changes in nuclear density and tissue architecture indicative of progression of precancer and cancer. In addition to this multi-fiber confocal microscope used with a glass objective lens for the clinical studies, imaging of tissue samples has been accomplished with the same confocal system using an injection molded plastic miniature objective lens demonstrating comparable optical quality for a significantly less expensive optical component. Finally, a benchtop prototype of a single fiber confocal microscope using a gimbaled two-axis MEMS scanner has been designed and constructed. Imaging of a resolution target and cellular samples demonstrates sufficient resolution and

  11. Confocal microscopy on the beamline: novel three-dimensional imaging and sample positioning

    OpenAIRE

    Khan, I.; Gillilan, R; Kriksunov, I.; Williams, R.; Zipfel, W.R.; Englich, U.

    2012-01-01

    Possibilities of applying confocal microscopy on an X-ray beamline have been explored. Confocal microscopy images have the potential to give detailed, on-axis and three-dimensional views of protein crystals on a synchrotron beamline.

  12. Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy

    Science.gov (United States)

    Shieh, Ian C.

    Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films

  13. Automated identification of epidermal keratinocytes in reflectance confocal microscopy

    Science.gov (United States)

    Gareau, Dan

    2011-03-01

    Keratinocytes in skin epidermis, which have bright cytoplasmic contrast and dark nuclear contrast in reflectance confocal microscopy (RCM), were modeled with a simple error function reflectance profile: erf( ). Forty-two example keratinocytes were identified as a training set which characterized the nuclear size a = 8.6+/-2.8 μm and reflectance gradient b = 3.6+/-2.1 μm at the nuclear/cytoplasmic boundary. These mean a and b parameters were used to create a rotationally symmetric erf( ) mask that approximated the mean keratinocyte image. A computer vision algorithm used an erf( ) mask to scan RCM images, identifying the coordinates of keratinocytes. Applying the mask to the confocal data identified the positions of keratinocytes in the epidermis. This simple model may be used to noninvasively evaluate keratinocyte populations as a quantitative morphometric diagnostic in skin cancer detection and evaluation of dermatological cosmetics.

  14. Modular Scanning Confocal Microscope with Digital Image Processing.

    Science.gov (United States)

    Ye, Xianjun; McCluskey, Matthew D

    2016-01-01

    In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.

  15. Clinical feasibility of rapid confocal melanoma feature detection

    Science.gov (United States)

    Hennessy, Ricky; Jacques, Steve; Pellacani, Giovanni; Gareau, Daniel

    2010-02-01

    In vivo reflectance confocal microscopy shows promise for the early detection of malignant melanoma. One diagnostic trait of malignancy is the presence of pagetoid melanocytes in the epidermis. For automated detection of MM, this feature must be identified quantitatively through software. Beginning with in vivo, noninvasive confocal images from 10 unequivocal MMs and benign nevi, we developed a pattern recognition algorithm that automatically identified pagetoid melanocytes in all four MMs and identified none in five benign nevi. One data set was discarded due to artifacts caused by patient movement. With future work to bring the performance of this pattern recognition technique to the level of the clinicians on difficult lesions, melanoma diagnosis could be brought to primary care facilities and save many lives by improving early diagnosis.

  16. Full-field interferometric confocal microscopy using a VCSEL array.

    Science.gov (United States)

    Redding, Brandon; Bromberg, Yaron; Choma, Michael A; Cao, Hui

    2014-08-01

    We present an interferometric confocal microscope using an array of 1200 vertical cavity surface emitting lasers (VCSELs) coupled to a multimode fiber. Spatial coherence gating provides ~18,000 continuous virtual pinholes, allowing an entire en face plane to be imaged in a snapshot. This approach maintains the same optical sectioning as a scanning confocal microscope without moving parts, while the high power of the VCSEL array (∼5  mW per laser) enables high-speed image acquisition with integration times as short as 100 μs. Interferometric detection also recovers the phase of the image, enabling quantitative phase measurements and improving the contrast when imaging phase objects.

  17. Line-scanning confocal microendoscope for nuclear morphometry imaging

    Science.gov (United States)

    Tang, Yubo; Carns, Jennifer; Richards-Kortum, Rebecca R.

    2017-11-01

    Fiber-optic endomicroscopy is a minimally invasive method to image cellular morphology in vivo. Using a coherent fiber bundle as an image relay, it allows additional imaging optics to be placed at the distal end of the fiber outside the body. In this research, we use this approach to demonstrate a compact, low-cost line-scanning confocal fluorescence microendoscope that can be constructed for pathological conditions.

  18. Generalized vector wave theory for ultrahigh resolution confocal optical microscopy.

    Science.gov (United States)

    Yang, Ken; Xie, Xiangsheng; Zhou, Jianying

    2017-01-01

    Polarization modulation of a tightly focused beam in a confocal imaging scheme is considered for incident and collected light fields. Rigorous vector wave theory of a confocal optical microscopy is developed, which provides clear physical pictures without the requirement for fragmentary calculations. Multiple spatial modulations on polarization, phase, or amplitude of the illuminating and the detected beams can be mathematically described by a uniform expression. Linear and nonlinear excitation schemes are derived with tailored excitation and detection fields within this generalized theory, whose results show that the ultimate resolution achieved with the linear excitation can reach one-fifth of the excitation wavelength (or λ/5), while the nonlinear excitation scheme gives rise to a resolution better than λ/12 for two-photon fluorescence excitation and λ/20 for three-photon fluorescence excitation. Hence the resolution of optical microscopy with a near-infrared excitation can routinely reach sub-60 nm. In addition, simulations for confocal laser scanning microscopy are carried out with the linear excitation scheme and the fluorescent one, respectively.

  19. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    Science.gov (United States)

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Laser confocal cylindrical radius measurement method and its system.

    Science.gov (United States)

    Xiao, Yang; Qiu, Lirong; Zhao, Weiqian

    2017-08-10

    This paper proposes a laser confocal cylindrical radius of the curvature measurement (CCRM) method. The CCRM method precisely identifies the positions of the vertex and curvature center of the test cylindrical surface by using the property so that the maximum point of the laser confocal axial intensity curve precisely corresponds to the focus of the laser confocal measurement system, and the accurate distance of these two positions is obtained by the distance measuring instrument, thus achieving the precise measurement of the cylindrical radius. The quadratic fitting method is used to further improve the measurement accuracy. Compared with existing measurement methods, the CCRM method has high measurement precision, simple structure, and strong environmental interference capability, and it is more suitable for engineering applications. Based on the CCRM, the CCRM system is established, and theoretical analysis and preliminary experiments indicate that the relative uncertainty of cylindrical radius measurement is better than 0.045%. Therefore, the CCRM provides an effective approach for the high-precision measurement of cylindrical radius.

  1. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    Science.gov (United States)

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  2. Cross-polarization confocal imaging of subsurface flaws in silicon nitride.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.; Sun, J. G.; Pei, Z. (Nuclear Engineering Division); (Kansas State Univ.)

    2011-03-01

    A cross-polarization confocal microscopy (CPCM) method was developed to image subsurface flaws in optically translucent silicon nitride (Si{sub 3}N{sub 4}) ceramics. Unlike conventional confocal microscopy, which measures reflected light so is applicable only to transparent and semi-transparent materials, CPCM detects scattered light from subsurface while filtering out the reflected light from ceramic surface. For subsurface imaging, the refractive-index mismatch between imaging (air) and imaged (ceramic) medium may cause image distortion and reduce resolution in the depth direction. This effect, characterized by an axial scaling factor (ASF), was analyzed and experimentally determined for glass and Si{sub 3}N{sub 4} materials. The experimental CPCM system was used to image Hertzian C-cracks generated by various indentation loads in the subsurface of a Si{sub 3}N{sub 4} specimen. It was demonstrated that CPCM may provide detailed information of subsurface cracks, such as crack angle and path, and subsurface microstructural variations.

  3. In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract.

    Science.gov (United States)

    Piyawattanametha, Wibool; Ra, Hyejun; Qiu, Zhen; Friedland, Shai; Liu, Jonathan T C; Loewke, Kevin; Kino, Gordon S; Solgaard, Olav; Wang, Thomas D; Mandella, Michael J; Contag, Christopher H

    2012-02-01

    Near-infrared confocal microendoscopy is a promising technique for deep in vivo imaging of tissues and can generate high-resolution cross-sectional images at the micron-scale. We demonstrate the use of a dual-axis confocal (DAC) near-infrared fluorescence microendoscope with a 5.5-mm outer diameter for obtaining clinical images of human colorectal mucosa. High-speed two-dimensional en face scanning was achieved through a microelectromechanical systems (MEMS) scanner while a micromotor was used for adjusting the axial focus. In vivo images of human patients are collected at 5 frames/sec with a field of view of 362×212 μm(2) and a maximum imaging depth of 140 μm. During routine endoscopy, indocyanine green (ICG) was topically applied a nonspecific optical contrasting agent to regions of the human colon. The DAC microendoscope was then used to obtain microanatomic images of the mucosa by detecting near-infrared fluorescence from ICG. These results suggest that DAC microendoscopy may have utility for visualizing the anatomical and, perhaps, functional changes associated with colorectal pathology for the early detection of colorectal cancer.

  4. Ophthalmic applications of confocal microscopy: diagnostics, refractive surgery, and eye banking

    Science.gov (United States)

    Masters, Barry R.

    1990-11-01

    Confocal microscopy of ocular tissue provides two advantages over traditional imaging techniques: increased range and transverse resolution and increased contrast. The semitransparent cornea and ocular lens in the living eye can be optically sectioned and observed by reflected light confocal microscopy. Within the cornea we observed various cell components nerve fibers nerve cell bodies and fibrous networks. The confocal microscopic images from the in-situ ocular lens show the lens capsule the lens epithelium and the individual lens fibrils. All of the reflected light confocal microscopic images have high contrast and high resolution. Some of the applications of confocal imaging in ophthalmology include: diagnostics of the cornea and the ocular lens examination prior to and after refractive surgery examination of intraocular lenses (IOL) and examination of eye bank material. Other ophthalmic uses of confocal imaging include: studies of wound healing therapeutics and the effects of contact lenses on the cornea. The proposed features of a clinical confocal microscope are reviewed. 2.

  5. Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope.

    Science.gov (United States)

    Mathew, Manoj; Santos, Susana I C O; Zalvidea, Dobryna; Loza-Alvarez, Pablo

    2009-07-01

    In this work we propose and build a multimodal optical workstation that extends a commercially available confocal microscope (Nikon Confocal C1-Si) to include nonlinear/multiphoton microscopy and optical manipulation/stimulation tools such as nanosurgery. The setup allows both subsystems (confocal and nonlinear) to work independently and simultaneously. The workstation enables, for instance, nanosurgery along with simultaneous confocal and brightfield imaging. The nonlinear microscopy capabilities are added around the commercial confocal microscope by exploiting all the flexibility offered by this microscope and without need for any mechanical or electronic modification of the confocal microscope systems. As an example, the standard differential interference contrast condenser and diascopic detector in the confocal microscope are readily used as a forward detection mount for second harmonic generation imaging. The various capabilities of this workstation, as applied directly to biology, are demonstrated using the model organism Caenorhabditis elegans.

  6. Parameter-free binarization and skeletonization of fiber networks from confocal image stacks.

    Directory of Open Access Journals (Sweden)

    Patrick Krauss

    Full Text Available We present a method to reconstruct a disordered network of thin biopolymers, such as collagen gels, from three-dimensional (3D image stacks recorded with a confocal microscope. The method is based on a template matching algorithm that simultaneously performs a binarization and skeletonization of the network. The size and intensity pattern of the template is automatically adapted to the input data so that the method is scale invariant and generic. Furthermore, the template matching threshold is iteratively optimized to ensure that the final skeletonized network obeys a universal property of voxelized random line networks, namely, solid-phase voxels have most likely three solid-phase neighbors in a 3 x 3 x 3 neighborhood. This optimization criterion makes our method free of user-defined parameters and the output exceptionally robust against imaging noise.

  7. A portable confocal hyperspectral microscope without any scan or tube lens and its application in fluorescence and Raman spectral imaging

    Science.gov (United States)

    Li, Jingwei; Cai, Fuhong; Dong, Yongjiang; Zhu, Zhenfeng; Sun, Xianhe; Zhang, Hequn; He, Sailing

    2017-06-01

    In this study, a portable confocal hyperspectral microscope is developed. In traditional confocal laser scanning microscopes, scan lens and tube lens are utilized to achieve a conjugate relationship between the galvanometer and the back focal plane of the objective, in order to achieve a better resolution. However, these lenses make it difficult to scale down the volume of the system. In our portable confocal hyperspectral microscope (PCHM), the objective is placed directly next to the galvomirror. Thus, scan lens and tube lens are not included in our system and the size of this system is greatly reduced. Furthermore, the resolution is also acceptable in many biomedical and food-safety applications. Through reducing the optical length of the system, the signal detection efficiency is enhanced. This is conducive to realizing both the fluorescence and Raman hyperspectral imaging. With a multimode fiber as a pinhole, an improved image contrast is also achieved. Fluorescent spectral images for HeLa cells/fingers and Raman spectral images of kumquat pericarp are present. The spectral resolution and spatial resolutions are about 0.4 nm and 2.19 μm, respectively. These results demonstrate that this portable hyperspectral microscope can be used in in-vivo fluorescence imaging and in situ Raman spectral imaging.

  8. Depth-profiling by confocal Raman microscopy (CRM): data correction by numerical techniques.

    Science.gov (United States)

    Tomba, J Pablo; Eliçabe, Guillermo E; Miguel, María de la Paz; Perez, Claudio J

    2011-03-01

    The data obtained in confocal Raman microscopy (CRM) depth profiling experiments with dry optics are subjected to significant distortions, including an artificial compression of the depth scale, due to the combined influence of diffraction, refraction, and instrumental effects that operate on the measurement. This work explores the use of (1) regularized deconvolution and (2) the application of simple rescaling of the depth scale as methodologies to obtain an improved, more precise, confocal response. The deconvolution scheme is based on a simple predictive model for depth resolution and the use of regularization techniques to minimize the dramatic oscillations in the recovered response typical of problem inversion. That scheme is first evaluated using computer simulations on situations that reproduce smooth and sharp sample transitions between two materials and finally it is applied to correct genuine experimental data, obtained in this case from a sharp transition (planar interface) between two polymeric materials. It is shown that the methodology recovers very well most of the lost profile features in all the analyzed situations. The use of simple rescaling appears to be only useful for correcting smooth transitions, particularly those extended over distances larger than those spanned by the operative depth resolution, which limits the strategy to the study of profiles near the sample surface. However, through computer simulations, it is shown that the use of water immersion objectives may help to reduce optical distortions and to expand the application window of this simple methodology, which could be useful, for instance, to safely monitor Fickean sorption/desorption of penetrants in polymer films/coatings in a nearly noninvasive way.

  9. Confocal Imaging of Biological Tissues Using Second Harmonic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B-M.; Stoller, P.; Reiser, K.; Eichler, J.; Yan, M.; Rubenchik, A.; Da Silva, L.

    2000-03-06

    A confocal microscopy imaging system was devised to selectively detect Second harmonic signals generated by biological tissues. Several types of biological tissues were examined using this imaging system, including human teeth, bovine blood vessels, and chicken skin. All these tissues generated strong second harmonic signals. There is considerable evidence that the source of these signals in tissue is collagen. Collagen, the predominant component of most tissues, is known to have second order nonlinear susceptibility. This technique may have diagnostic usefulness in pathophysiological conditions characterized by changes in collagen structure including malignant transformation of nevi, progression of diabetic complications, and abnormalities in wound healing.

  10. 3D confocal imaging in CUBIC-cleared mouse heart

    Energy Technology Data Exchange (ETDEWEB)

    Nehrhoff, I.; Bocancea, D.; Vaquero, J.; Vaquero, J.J.; Lorrio, M.T.; Ripoll, J.; Desco, M.; Gomez-Gaviro, M.V.

    2016-07-01

    Acquiring high resolution 3D images of the heart enables the ability to study heart diseases more in detail. Here, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was adapted for thick mouse heart sections to increase the penetration depth of the confocal microscope lasers into the tissue. The adapted CUBIC clearing of the heart lets the antibody penetrate deeper into the tissue by a factor of five. The here shown protocol enables deep 3D highresolution image acquisition in the heart. This allows a much more accurate assessment of the cellular and structural changes that underlie heart diseases. (Author)

  11. Atherosclerotic plaque detection by confocal Brillouin and Raman microscopies

    Science.gov (United States)

    Meng, Zhaokai; Basagaoglu, Berkay; Yakovlev, Vladislav V.

    2015-02-01

    Atherosclerosis, the development of intraluminal plaque, is a fundamental pathology of cardiovascular system and remains the leading cause of morbidity and mortality worldwide. Biomechanical in nature, plaque rupture occurs when the mechanical properties of the plaque, related to the morphology and viscoelastic properties, are compromised, resulting in intraluminal thrombosis and reduction of coronary blood flow. In this report, we describe the first simultaneous application of confocal Brillouin and Raman microscopies to ex-vivo aortic wall samples. Such a non-invasive, high specific approach allows revealing a direct relationship between the biochemical and mechanical properties of atherosclerotic tissue.

  12. Calcium oxalate crystal growth modification; investigations with confocal Raman microscopy

    Science.gov (United States)

    McMulkin, Calum J.; Massi, Massimiliano; Jones, Franca

    2017-06-01

    Confocal Raman Microscopy (CRM) in combination with a photophysical investigation has been employed to give insight into the interaction between calcium oxalate monohydrate (COM) and a series of tetrazole containing crystal growth modifier's (CGM's), in conjunction with characterisation of morphological changes using scanning electron and optical microscopy. The tetrazole CGM's were found to interact by surface adsorption with minimal morphological changes to the COM crystals however, significant interactions via chemisorption were observed; it was discovered that the chemisorption is sufficiently strong for aggregation of the tetrazole species to occur within the crystal during crystallisation.

  13. Microscopia confocal in vivo nos depósitos corneanos por amiodarona In vivo confocal microscopy in amiodarone corneal deposits

    Directory of Open Access Journals (Sweden)

    Gustavo Victor

    2007-02-01

    Full Text Available OBJETIVO: Descrever os achados da microscopia confocal in vivo em pacientes nos diversos estágios de ceratopatia induzida por amiodarona, e correlacionar o estadiamento biomicroscópico com o estadiamento confocal. MÉTODOS: Vinte olhos de 10 pacientes (6 homens e 4 mulheres em tratamento com amiodarona, que apresentavam ceratopatia induzida pela droga, foram selecionados para o estudo, com a microscopia confocal (MC. RESULTADOS: A média de idade foi 58 ± 6,2 anos (50-66 anos e o tempo de uso da droga foi de 6 ± 3,2 anos (2-11 anos. Todos pacientes tinham acuidade visual com correção melhor ou igual a 20/40. A biomicroscopia evidenciou ceratopatia por amiodarona: dois pacientes no estágio 1, quatro no estágio 2 e quatro no estágio 3. Todas as córneas apresentaram inclusões intracelulares brilhantes e de alta refletividade na camada epitelial basal. A partir dos estágios 2 e 3, foram encontrados microdepósitos em todas camadas corneanas. Foram observados afilamento e aumento da tortuosidade dos nervos corneanos nos estágios 2 e 3 da ceratopatia. A contagem endotelial média foi de 2.524 ± 150,3 células/mm². CONCLUSÃO: O epitélio basal foi o mais acometido nos diferentes estágios da ceratopatia. Nos pacientes do estágio 1 a biomicroscopia, os microdepósitos subepiteliais são restritos ao epitélio superficial e basal, ao passo que nos pacientes dos estágios 2 e 3, os microdepósitos afetam todas camadas corneanas. À medida que a ceratopatia avança, os nervos corneanos ficam mais afilados e tortuosos.PURPOSE: To describe in vivo confocal microscopy findings in patients with different stages of amiodarone-induced keratopathy, and correlate biomicroscopy stages with confocal stages. METHODS: Twenty eyes of 10 patients (6 men and 4 women, who receive treatment with amiodarone were selected for the study with confocal microscopy (MC. RESULTS: The average age was 58 ± 6.2 years (50-66 years and time of use of the drug was 6

  14. Computerized Reconstruction of Pulpal Blood Vessels Examined under Confocal Microscope

    Directory of Open Access Journals (Sweden)

    Digka Anna

    2015-03-01

    Full Text Available The purpose of this study was the evaluation of 3 different histological methods for studying pulpal blood vessels in combination with 2 types of confocal microscope and computer assisted 3-dimensional reconstruction. 10 human, healthy, free of restorations or caries teeth that were extracted for orthodontic reasons were used. From these teeth, the pulp tissues of 5 were removed, fixed in formalin solution, dehydrated and embedded in paraffin. Serial cross sections 5μm thick were taken from 3 of the above mentioned pulpal tissues and stained with CD34 according to the immunohistochemical ABC technique, while the rest 2 were stained with CD34 and Cy5 by means of immunofluorescence after serial cross sectioning of 10μm. 5 of the 10 teeth were fixed, decalcified, serial cross sectioned (30μm thickness and stained with eosin. The physical sections were examined under 2 types of confocal laser microscope. Serial images were taken for each section, alignment of the images was followed and finally 3-dimensional reconstructions of the pulpal vessels were achieved.

  15. Variety of corneal endothelial cell in glaucoma by confocal microscope

    Directory of Open Access Journals (Sweden)

    Hong-Liang Gao

    2014-10-01

    Full Text Available ATM: To define the causes of corneal endothelial cell damage, to investigate the preventive methods, and to observe the variety of corneal endothelial cell in glaucoma using confocal microscope.METHODS: Totally, 143 eyes of 97 patients with different types of glaucoma, and matched normal people were 20 cases, all 40 eyes. The cell density, cell area and cell variable coefficient were measured used confocal microscope. These indicatives of every kind of glaucoma were compared.RESULTS: The corneal endothelial cell density of normal group was 2 893.88±255.026/mm2, the group of acute angle-closure glaucoma(AACGwas 1 674.11±683.95/mm2, and the group of open angle glaucoma(OAGwas 2 687.22±391.87/mm2, the group of chronic angle-closure glaucoma(CACGwas 2 706.97±351.27/mm2. In all index the average cell density of corneal endothelial and the average area have statistical significance(F=62.950, 8.795; P=0.000, especially the group of AACG. CONCLUSION: The index of corneal endothelial cell in AACG is lower than that of normal. All index in OAG and CACG is difference with that of normal, but the difference has no statistical significance. And the dominant factor of damaged corneal endothelial is the time of intraocular hypertension.

  16. Quantification and confocal imaging of protein specific molecularly imprinted polymers.

    Science.gov (United States)

    Hawkins, Daniel M; Trache, Andreea; Ellis, E Ann; Stevenson, Derek; Holzenburg, Andreas; Meininger, Gerald A; Reddy, Subrayal M

    2006-09-01

    We have employed FITC--albumin as the protein template molecule in an aqueous phase molecular imprinted polymer (HydroMIP) strategy. For the first time, the use of a fluorescently labeled template is reported, with subsequent characterization of the smart material to show that the HydroMIP possesses a significant molecular memory in comparison to that of the nonimprinted control polymer (HydroNIP). The imaging of the FITC--albumin imprinted HydroMIP using confocal microscopy is described, with the in situ removal of the imprinted protein displayed in terms of observed changes in the fluorescence of the imprinted polymer, both before and after template elution (using a 10% SDS/10% AcOH (w/v) solution). We also report the imaging of a bovine hemoglobin (BHb) imprinted HydroMIP using two-photon confocal microscopy and describe the effects of template elution upon protein autofluorescence. The findings further contribute to the understanding of aqueous phase molecular imprinting protocols and document the use of fluorescence as a useful tool in template labeling/detection and novel imaging strategies.

  17. Assessment of corneal alterations by confocal microscopy in vernal keratoconjunctivitis.

    Science.gov (United States)

    Nebbioso, Marcella; Zicari, Anna Maria; Lollobrigida, Valeria; Marenco, Marco; Duse, Marzia

    2015-01-01

    Vernal keratoconjunctivitis (VKC) is a bilateral chronic, seasonally exacerbated inflammation of the ocular surface that especially affects male children and young boys. To evaluate the corneal microscopic features of patients affected by VKC and to assess whether some corneal changes were associated with specific ocular symptoms and/or signs. 20 children aged between 4 and 14 years were enrolled. All patients underwent corneal confocal microscopy by Confoscan CS3 (Nidek). 350 images of the central cornea of each eye were obtained with a ×40 noncontact lens 3,5 micron gap in automode. Some alterations of the sub-basal and stromal corneal nerves were detected. These alterations were more evident in patients with higher severity of photophobia. On the other hand, there were scarce other signs of the anterior segment of the eye. Our preliminary findings show that there is another group of patients affected by VKC, characterized by an intense photophobia caused by corneal damage and without other significant ocular alterations. Therefore confocal microscopy may be useful for an early identification of corneal alterations before the onset of severe ocular symptoms and to set an appropriate therapeutic management.

  18. In vivo confocal microscopy in goldenhar syndrome: a case report.

    Science.gov (United States)

    Triolo, Giacinto; Ferrari, Giulio; Doglioni, Claudio; Rama, Paolo

    2013-10-16

    Goldenhar Syndrome is characterized by malformations of multiple anatomical districts. Between these, bulbar dermoids are common and represent a significant clinical problem as they can affect both ocular function and aesthetic comfort.Histologic characterization of dermoids has been extensively performed; however, no reports exist describing in vivo confocal microscopy (IVCM) of these lesions. We aimed to (i) describe the in vivo confocal morphology of limbal dermoids in Goldenhar syndrome and (ii) compare these findings with standard light microscopy. A 15-year-old Caucasian female affected by Goldenhar Syndrome showed a left, infero-temporal, limbal neoformation, with extension to the left orbital region. Prior to surgical removal, IVCM was performed with the Heidelberg Retina Tomograph II, Cornea Module, using the "section" modality. The IVCM sections showed structures resembling corneal epithelium and vascular structures. Surgical removal of the lesion was decided as it caused poor eyelid closure. After surgical removal, sectioning and standard optical microscopy were performed. The comparison between IVCM imaging and standard microscopy sections were highly correlated in the detection of the pilar and vascular structures. This study showed that IVCM may be a useful technique to study limbal dermoids, given its ability to detect typical microscopic features and its comparability to optical microscopy, which is the current standard.

  19. Application of confocal X-ray fluorescence micro-spectroscopy to the investigation of paint layers.

    Science.gov (United States)

    Sun, Tianxi; Liu, Zhiguo; Wang, Guangfu; Ma, Yongzhong; Peng, Song; Sun, Weiyuan; Li, Fangzuo; Sun, Xuepeng; Ding, Xunliang

    2014-12-01

    A confocal micro X-ray fluorescence (MXRF) spectrometer based on polycapillary X-ray optics was used for the identification of paint layers. The performance of the confocal MXRF was studied. Multilayered paint fragments of a car were analyzed nondestructively to demonstrate that this confocal MXRF instrument could be used in the discrimination of the various layers in multilayer paint systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Confocal laser endomicroscopy in the “in vivo” histological diagnosis of the gastrointestinal tract

    OpenAIRE

    Palma, Giovanni D De

    2009-01-01

    Recent technological advances in miniaturization have allowed for a confocal scanning microscope to be integrated into a conventional flexible endoscope, or into trans-endoscopic probes, a technique now known as confocal endomicroscopy or confocal laser endomicroscopy. This newly-developed technology has enabled endoscopists to collect real-time in vivo histological images or “virtual biopsies” of the gastrointestinal mucosa during endoscopy, and has stimulated significant interest in the app...

  1. Low-power, Confocal Imaging of Protein Localization in Living Cells (7214-150) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed technology genetically labels intracellular structures and visualizes protein interactions in living cells using a compact, confocal microscope with...

  2. Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F., E-mail: robert.cook@nist.gov

    2016-04-15

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA–AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2×10{sup −4} in strain. CRM was similarly precise, but was limited in accuracy to several times this value. - Highlights: • We map strain by electron backscatter diffraction and confocal Raman microscopy. • The test vehicle is the multi-axial strain field of wedge-indented silicon. • Strain accuracy is assessed by direct experimental intercomparison. • Accuracy is also assessed by atomic force microscopy and finite element analyses. • Electron diffraction measurements are accurate; Raman measurements need refinement.

  3. Confocal laser scanning microscopy-guided surgery for neurofibroma.

    Science.gov (United States)

    Koller, S; Horn, M; Weger, W; Massone, C; Smolle, J; Gerger, A

    2009-12-01

    The neurofibromatoses comprise at least two separate genetic disorders with variable clinical features and an unpredictable course. The most common type, neurofibromatosis 1, is characterized by > or = 6 café-au-lait spots and the occurrence of neurofibromas, which may present as cutaneous, subcutaneous or plexiform lesions. Normally, excision of neurofibromas is only indicated in the presence of neurological symptoms, suspicion of malignancy or for exceptional cosmetic reasons. For a good functional and aesthetic result with the least danger of recurrence, the surgeon's goal is to excise as much tissue as necessary and as little tissue as possible. One of the main issues during the surgical procedure is to distinguish between neurofibroma and surrounding tissue. We report for the first time the use of confocal laser scanning microscopy to differentiate between neurofibroma and healthy skin.

  4. Materials and corrosion characterization using the confocal resonator

    Energy Technology Data Exchange (ETDEWEB)

    Tigges, C.P.; Sorensen, N.R.; Hietala, V.M.; Plut, T.A. [and others

    1997-05-01

    Improved characterization and process control is important to many Sandia and DOE programs related to manufacturing. Many processes/structures are currently under-characterized including thin film growth, corrosion and semiconductor structures, such as implant profiles. A sensitive tool is required that is able to provide lateral and vertical imaging of the electromagnetic properties of a sample. The confocal resonator is able to characterize the surface and near-surface impedance of materials. This device may be applied to a broad range of applications including in situ evaluation of thin film processes, physical defect detection/characterization, the characterization of semiconductor devices and corrosion studies. In all of these cases, the technology should work as a real-time process diagnostic or as a feedback mechanism regarding the quality of a manufacturing process. This report summarizes the development and exploration of several diagnostic applications.

  5. Automatic, high-accuracy image registration in confocal microscopy.

    Science.gov (United States)

    Liu, Jian; Li, Yong; Wang, Weibo; Wang, Yuhang; Zhang, He; Tan, Jiubin

    2017-11-10

    We proposed a high-accuracy image registration method of confocal microscopy for a large field of view and high resolution. The spatial information (edge information) and the entropy correlation coefficient have been both taken into account for higher accuracy of registration. The edge information is introduced to calculate the normalization correlation coefficient of the image. Then the normalization correlation coefficient and the entropy correlation coefficient of the original image have been used to improve the proposed similarity measures, the normalized mutual information with edge information (called EMI). Meanwhile, a parallel particle swarm optimization (pa-PSO) with the idea of conditional initialization and parallel cooperation is developed to speed up the convergence rate and further reduce the mismatch. Experiments verified that the registration accuracy can be up to 0.2 pixel and has better robustness to the noise.

  6. Integrated Confocal and Scanning Probe Microscopy for Biomedical Research

    Directory of Open Access Journals (Sweden)

    B.J. Haupt

    2006-01-01

    Full Text Available Atomic force microscopy (AFM continues to be developed, not only in design, but also in application. The new focus of using AFM is changing from pure material to biomedical studies. More frequently, it is being used in combination with other optical imaging methods, such as confocal laser scanning microscopy (CLSM and fluorescent imaging, to provide a more comprehensive understanding of biological systems. To date, AFM has been used increasingly as a precise micromanipulator, probing and altering the mechanobiological characteristics of living cells and tissues, in order to examine specific, receptor-ligand interactions, material properties, and cell behavior. In this review, we discuss the development of this new hybrid AFM, current research, and potential applications in diagnosis and the detection of disease.

  7. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    Science.gov (United States)

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  8. Reflectance confocal microscopy for cutaneous infections and infestations.

    Science.gov (United States)

    Cinotti, E; Perrot, J L; Labeille, B; Cambazard, F

    2016-05-01

    Reflectance confocal microscopy (RCM) is a high-resolution emerging imaging technique that allows non-invasive diagnosis of several cutaneous disorders. A systematic review of the literature on the use of RCM for the study of infections and infestations has been performed to evaluate the current use of this technique and its possible future applications in this field. RCM is particularly suitable for the identification of Sarcoptes scabies, Demodex folliculorum, Ixodes, Dermatophytes and Candida species in the clinical practice and for the follow-up after treatment. The cytopathic effect of herpes simplex virus, varicella zoster virus and molluscipoxvirus is also detectable by this imaging technique even in a pre-vesicular stage. In addition, thanks to its non-invasiveness, RCM allows pathophysiological studies. © 2015 European Academy of Dermatology and Venereology.

  9. Endocrine and metabolic disease: Confocal microscopy as a diagnostic aid

    Directory of Open Access Journals (Sweden)

    Jaikrit Bhutani

    2015-01-01

    Full Text Available Diabetes is a systemic disease associated with many complications. These can be prevented and managed effectively if detected promptly. Confocal microscopy (CFM is a diagnostic tool which has the potential to help in early detection of disease and timely management. CFM has the potential to serve as an excellent noninvasive modality for in vivo imaging and morphological analysis, which can aid us in assessing and monitoring various infectious and pathological diseases at the cellular level. Besides ophthalmological indications, CFM has shown good sensitivity and specificity for identifying those at risk of neuropathy and foot ulceration, monitoring evolution and therapeutic response in a wide range of neuropathies apart from diabetic neuropathy. Through this communication, we aim to sensitize the endocrinologists towards cerebral cavernous malformation as a biomarker to evaluate potential outcomes and therapies in human diabetic neuropathy.

  10. Straightness measurements by use of a reflection confocal optical system.

    Science.gov (United States)

    Matsuda, K; Roy, M; O'Byrne, J W; Fekete, P W; Eiju, T; Sheppard, C J

    1999-09-01

    Straightness measurement is a very important technique in the field of mechanical engineering. A particular application for straightness measurement is high-accuracy machining on a diamond-turning lathe. We propose a novel, to our knowledge, optical method for measuring the straightness of motion, and its mathematical analysis is outlined. The technique is based on measurement of the lateral displacement of point images by use of reflection confocal optical systems. The advantages of this method are that (i) the lateral displacements in the direction of the two axes perpendicular to the optical axis can be measured, (ii) the rotation angles around all three axes can be measured, and (iii) reflection optical systems are more compact in length than are transmission optical systems.

  11. The Reliability and Reproducibility of Corneal Confocal Microscopy in Children.

    Science.gov (United States)

    Pacaud, Danièle; Romanchuk, Kenneth G; Tavakoli, Mitra; Gougeon, Claire; Virtanen, Heidi; Ferdousi, Maryam; Nettel-Aguirre, Alberto; Mah, Jean K; Malik, Rayaz A

    2015-08-01

    To assess the image and patient level interrater agreement and repeatability within 1 month for corneal nerve fiber length (CNFL) measured using in vivo corneal confocal microscopy (IVCCM) in children. Seventy-one subjects (mean [SD] age 14.3 [2.6] years, range 8-18 years; 44 with type 1 diabetes and 27 controls; 36 males and 35 females) were included. 547 images (∼6 images per subject) were analyzed manually by two independent and masked observers. One-month repeat visit images were analyzed by a single masked observer in 21 patients. Automated image analysis was then performed using a specialized computerized software (ACCMetrics). For CNFL, the ICC (95% CI) were 0.94 (0.93-0.95) for image-level, 0.86 (0.78-0.91) for patient-level, and 0.88 (0.72-0.95) for the 1-month repeat assessment, and the Bland-Altman plots showed minimal bias between observers. Although there was excellent agreement between manual and automated analysis according to an ICC 0.89 (0.82-0.93), the Bland-Altman plot showed a consistent bias with manual measurements providing higher readings. In vivo corneal confocal microscopy image analysis shows good reproducibility with excellent intraindividual and interindividual variability in pediatric subjects. Since the image-level reproducibility is stronger than the patient-level reproducibility, refinement of the method for image selection will likely further increase the robustness of this novel, rapid, and noninvasive approach to detect early neuropathy in children with diabetes. Further studies on the use of IVCCM to identify early subclinical neuropathy in children are indicated.

  12. Reflectance confocal microscopy for the evaluation of sensitive skin.

    Science.gov (United States)

    Ma, Y-F; Yuan, C; Jiang, W-C; Wang, X-L; Humbert, P

    2017-05-01

    Nowadays, the diagnosis for sensitive skin relies on subjective assessment or on the combination of subjective and objective evaluation. No quantitative evaluation is available. It could be expected that confocal microscopy imaging could be of interest to better define the condition. Total 166 healthy female subjects were recruited in this study. Firstly, all subjects completed the sensitive questionnaire. Then, the cutaneous structures were measured by the reflectance confocal microscopy (RCM) on the face and fossa cubitalia. The lactic acid sting test was conducted finally. According to the results of self-perception sensitive skin questionnaire and lactic acid stinging test to evaluate facial skin sensitivity the both positive subjects were regarded as sensitive skin group and both negative group as healthy control group. The results of RCM indicating that the proportion of 'disarranged honeycomb pattern' and 'spongiform edema' in the sensitive group and healthy control group were statistically different (P 0.05). The epidermal thickness was 38.88 ± 6.81 μm, healthy control group was 40.31 ± 9.37 μm in, respectively, sensitive skin group and healthy control group, there was no significant statistical difference between the two groups (P > 0.05). The honeycomb structure depth of sensitive group was 20.57 ± 4.86 μm. It was for 23.27 ± 6.38 μm, healthy control group the difference being statistically different between the two groups (P skin signs of RCM evaluation of sensitive skin effectively. Indeed, sensitive skin honeycomb structure depth was thinner compared with healthy control group. Such a specific pattern has good clinical and monitoring value for the further exploration. RCM could provide new data and patterns for the evaluation of sensitive skin. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Quantification of confocal images of human corneal endothelium

    Science.gov (United States)

    Laird, Jeffery A.; Beuerman, Roger W.; Kaufman, Stephen C.

    1996-05-01

    Real-time, in vivo, confocal microscopic examination permits visualization of human corneal endothelium cells as bright bodies organized into a densely packed hexagonal arrangement. Quantification of endothelial cell number would be useful in assessing the condition of this cell layer in various disease states. In this study, we sought to use an image analysis method developed in this laboratory that utilizes digital filtering techniques and morphological operations to determine the boundaries of each cell. Images were corrected to establish a uniform luminance level, and then convolved by various matrices until distinct peaks in luminance value were identified. These peaks were used as seed points from which cell boundaries were recursively expanded until they collided with other cell boundaries. This method automatically counts the number of cells and determines the size and position of each cell. The resulting histograms of cell size are readily indicative of changes in cellular density, cell loss, and deviation from uniform arrangement. The numbers of cells counted by this method are consistently within 3% of the numbers counted manually. Results relating cell counts obtained by manual and computerized methods are as follows: 200/184; 276/262; 87/87; 234/232; 236/232; 299/297; 145/147; 119/122; 237/243; 119/119; 245/253; 189/193. Thus, confocal microscopy coupled with these image analysis and statistical procedures provides an accurate quantitative approach to monitoring the endothelium under normal, pathological, and experimental conditions, such as those following surgery and trauma or in the evaluation of the efficacy of topical therapeutic agents.

  14. Estudio del endotelio corneal en el queratocono por microscopia confocal Study of the corneal endothelium confocal microscopy in keratoconus

    Directory of Open Access Journals (Sweden)

    María del Carmen Benítez Merino

    2011-12-01

    Full Text Available Objetivo: Describir los hallazgos morfométricos del endotelio corneal por microscopia confocal con CONFOSCAN S-4. Métodos: Estudio descriptivo transversal de 102 ojos con queratocono en el período de septiembre de 2008 a septiembre 2009. A estos pacientes se les realizó microscopia confocal con CosfoscanS-4 para el estudio del endotelio corneal atendiendo el grado de queratocono. Se analizó el comportamiento de la evolución del queratocono según edad y sexo. Las imágenes fueron analizadas y procesadas mediante un programa informático diseñado específicamente para esto. Resultados: Fueron semejantes las edades de los pacientes con queratocono grado I y II, (35,2 y 34,7 años, los grado III presentaron una edad promedio mayor (38,4 años, sin diferencias significativas (p= 0,279. El sexo femenino predominó en 80,4 % de los pacientes. El 100 % de los queratoconos grado III tuvieron endotelios patológicos. Los valores promedios de la densidad celular en los queratoconos grado III (2585,9 células/mm² resultó no significativo (p= 0,339. El polimegatismo en los queratoconos grado III para un 48,69 % fue significativo (p= 0,002. En el pleomorfismo resultó significativo las diferencias observadas entre los tres grados (p= 0,002. Conclusión: Predominó el queratocono grado II para las mujeres y el grado I para los hombres. Los hallazgos morfológicos se manifestaron en la forma y tamaño de las células endoteliales. En córneas con queratocono grado II y III confluyeron células de mediano y gran tamaño con pérdida de su hexagonalidad. La densidad celular se mantuvo dentro del rango de valores normales para cualquier grado de queratocono.Objective: To describe the morphometric findings of the corneal endothelium confocal microscopy with CONFOSCAN S-4 Methods: Descriptive cross-sectional study of 102 eyes with keratoconus performed from September 2008 to September 2009. The study patients had undergone confocal microscopy with

  15. Microscopia confocal en córneas de cien ojos sanos Confocal microscopy results of one hundred healthy eye corneas

    Directory of Open Access Journals (Sweden)

    Zulema Gómez Castillo

    2012-06-01

    Full Text Available Objetivo: Analizar las estructuras celulares por microscopia confocal, Confoscan 4, en córneas sanas en nuestro medio. Métodos: Se realizó un estudio prospectivo longitudinal a 100 ojos sanos de médicos que trabajan en nuestra institución, y pacientes que asistieron al servicio de córnea. Esta investigación fue desde mayo de 2007 a mayo 2008, en el Instituto Cubano de Oftalmología "Ramón Pando Ferrer", La Habana. En los médicos se examinaron ambos ojos y en los pacientes el ojo no afectado. Se recopilaron un total de 50 casos sin afección corneal. Resultados: De los 100 ojos estudiados, 64 tenían paquimetrías por encima del valor medio. Estuvieron presentes los tres tipos de células epiteliales en casi la totalidad de los pacientes; así como los queratocitos en las diferentes profundidades del estroma corneal. La mayoría de los ojos tenían un conteo celular endotelial por encima de 2 500, cifra comprendida dentro de los valores normales. Se encontraron fibras nerviosas en cada una de sus capas. Conclusiones: La microscopia confocal se presenta como una nueva herramienta que permite observar en vivo la histología corneal y complementar las observaciones de la biomicroscopia convencional. Esto constituye un reto para el mejor entendimiento de la histopatología corneal. De esta manera podemos actuar de forma profiláctica y terapéutica, en el seguimiento y evolución de patologías corneales.Objective: This paper is aimed at analyzing the corneal cellular structures through Confoscan S4-aided confocal microscopy in apparently healthy corneas. Methods: A prospective longitudinal study of 100 healthy eyes from practicing doctors, and from patients who had attended the corneal service at “Ramón Pando Ferrer” Cuban Institute of Ophthalmology in Havana since May 2007 was conducted. Both eyes of participating doctors were examined whereas the non-affected eye was examined in the patients. A total of 50 cases with no corneal

  16. Total Internal Reflection Fluorescence Microscopy Imaging-Guided Confocal Single-Molecule Fluorescence Spectroscopy

    OpenAIRE

    Zheng, Desheng; Kaldaras, Leonora; Lu, H. Peter

    2013-01-01

    We have developed an integrated spectroscopy system combining total internal reflection fluorescence microscopy imaging with confocal single-molecule fluorescence spectroscopy for two-dimensional interfaces. This spectroscopy approach is capable of both multiple molecules simultaneously sampling and in situ confocal fluorescence dynamics analyses of individual molecules of interest. We have demonstrated the calibration with fluorescent microspheres, and carried out single-molecule spectroscop...

  17. Fluorescence Blinking and Photobleaching of Single Terrylenediimide Molecules Studied with a Confocal Microscope

    NARCIS (Netherlands)

    Göhde, Jr.; Fischer, U.C.; Fuchs, H.; Tittel, J.; Basché, Th.; Bräuchle, Ch.; Herrmann, A.; Müllen, K.

    1998-01-01

    Single terrylenediimide molecules diluted in a 20-nm-thick polyvinylbutyral polymer film were localized and observed by scanning confocal fluorescence microscopy. A modular and compact confocal microscope and the high optical stability of the molecules allowed a repeated imaging and observation over

  18. 3-D Reconstruction of Neurons from Multichannel Confocal Laser Scanning Image Series

    NARCIS (Netherlands)

    Wouterlood, F.G.

    2014-01-01

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used

  19. An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy.

    Science.gov (United States)

    White, J G; Amos, W B; Fordham, M

    1987-07-01

    Scanning confocal microscopes offer improved rejection of out-of-focus noise and greater resolution than conventional imaging. In such a microscope, the imaging and condenser lenses are identical and confocal. These two lenses are replaced by a single lens when epi-illumination is used, making confocal imaging particularly applicable to incident light microscopy. We describe the results we have obtained with a confocal system in which scanning is performed by moving the light beam, rather than the stage. This system is considerably faster than the scanned stage microscope and is easy to use. We have found that confocal imaging gives greatly enhanced images of biological structures viewed with epifluorescence. The improvements are such that it is possible to optically section thick specimens with little degradation in the image quality of interior sections.

  20. Confocal laser scanning microscopy in study of bone calcification

    Science.gov (United States)

    Nishikawa, Tetsunari; Kokubu, Mayu; Kato, Hirohito; Imai, Koichi; Tanaka, Akio

    2012-12-01

    Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 μm/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  1. CRAFT: Multimodality confocal skin imaging for early cancer diagnosis.

    Science.gov (United States)

    Peng, Tong; Xie, Hao; Ding, Yichen; Wang, Weichao; Li, Zhiming; Jin, Dayong; Tang, Yuanhe; Ren, Qiushi; Xi, Peng

    2012-05-01

    Although histological analysis serves as a gold standard to cancer diagnosis, its application on skin cancer detection is largely prohibited due to its invasive nature. To obtain both the structural and pathological information in situ, a Confocal Reflectance/Auto-Fluorescence Tomography (CRAFT) system was established to examine the skin sites in vivo with both reflectance and autofluorescence modes simultaneously. Nude mice skin with cancerous sites and normal skin sites were imaged and compared with the system. The cellular density and reflective intensity in cancerous sites reflects the structural change of the tissue. With the decay coefficient analysis, the corresponding NAD(P)H decay index for cancerous sites is 1.65-fold that of normal sites, leading to a 97.8% of sensitivity and specificity for early cancer diagnosis. The results are verified by the followed histological analysis. Therefore, CRAFT may provide a novel method for the in vivo, non-invasive diagnosis of early cancer. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Demodex mites in acne rosacea: reflectance confocal microscopic study.

    Science.gov (United States)

    Turgut Erdemir, Asli; Gurel, Mehmet Salih; Koku Aksu, Ayse Esra; Falay, Tugba; Inan Yuksel, Esma; Sarikaya, Ebru

    2017-05-01

    Demodex mite density is emphasised in the aetiopathogenesis of acne rosacea. Reflectance confocal microscopy (RCM) has been shown to be a good method for determining demodex mite density. The objective was to determine demodex mite density using RCM in acne rosacea patients and compare them with controls. In all, 30 papulopustular rosacea (PPR) and 30 erythematotelangiectatic rosacea (ETR) totally 60 acne rosacea patients and 40 controls, were enrolled in the study. The right cheek was selected for imaging and RCM was used for scanning. Ten images of 1000 × 1000 μm (total 10 mm2 ) area were scanned from adjacent areas. The numbers of follicles, infested follicles and mites were counted. The mean numbers of mites per follicle and infested follicles were calculated and compared in the patients and control groups. The mean number of mites was 44.30 ± 23.22 in PPR, 14.57 ± 15.86 in ETR and 3.55 ± 6.48 in the control group (P Demodex mite density was markedly increased in both ETR and PPR patients. It is believed that the presence of demodex mites plays an important role in rosacea aetiopathogenesis. Demodex mite treatment may reduce the severity of the disease and slow its progressive nature. © 2016 The Australasian College of Dermatologists.

  3. Confocal microscopy-based goniometry of barnacle cyprid permanent adhesive.

    Science.gov (United States)

    Aldred, Nick; Gohad, Neeraj V; Petrone, Luigi; Orihuela, Beatriz; Liedberg, Bo; Ederth, Thomas; Mount, Andrew; Rittschof, Dan; Clare, Anthony S

    2013-06-01

    Biological adhesives are materials of particular interest in the fields of bio-inspired technology and antifouling research. The adhesive of adult barnacles has received much attention over the years; however, the permanent adhesive of the cyprid - the colonisation stage of barnacles - is a material about which very little is presently known. We applied confocal laser-scanning microscopy to the measurement of contact angles between the permanent adhesive of barnacle cyprid larvae and self-assembled monolayers of OH- and CH3-terminated thiols. Measurement of contact angles between actual bioadhesives and surfaces has never previously been achieved and the data may provide insight into the physicochemical properties and mechanism of action of these functional materials. The adhesive is a dual-phase system post-secretion, with the behaviour of the components governed separately by the surface chemistry. The findings imply that the cyprid permanent adhesion process is more complex than previously thought, necessitating broad re-evaluation of the system. Improved understanding will have significant implications for the production of barnacle-resistant coatings as well as development of bio-inspired glues for niche applications.

  4. Confocal imaging to quantify passive transport across biomimetic lipid membranes.

    Science.gov (United States)

    Li, Su; Hu, Peichi; Malmstadt, Noah

    2010-09-15

    The ability of a molecule to pass through the plasma membrane without the aid of any active cellular mechanisms is central to that molecule's pharmaceutical characteristics. Passive transport has been understood in the context of Overton's rule, which states that more lipophilic molecules cross membrane lipid bilayers more readily. Existing techniques for measuring passive transport lack reproducibility and are hampered by the presence of an unstirred layer (USL) that dominates transport across the bilayer. This report describes assays based on spinning-disk confocal microscopy (SDCM) of giant unilamellar vesicles (GUVs) that allow for the detailed investigation of passive transport processes and mechanisms. This approach allows the concentration field to be directly observed, allowing membrane permeability to be determined easily from the transient concentration profile data. A series of molecules of increasing hydrophilicity was constructed, and the transport of these molecules into GUVs was observed. The observed permeability trend is consistent with Overton's rule. However, the values measured depart from the simple partition-diffusion proportionality model of passive transport. This technique is easy to implement and has great promise as an approach to measure membrane transport. It is optimally suited to precise quantitative measurements of the dependence of passive transport on membrane properties.

  5. Spatial resolution of confocal XRF technique using capillary optics.

    Science.gov (United States)

    Dehlinger, Maël; Fauquet, Carole; Lavandier, Sebastien; Aumporn, Orawan; Jandard, Franck; Arkadiev, Vladimir; Bjeoumikhov, Aniouar; Tonneau, Didier

    2013-06-07

    XRF (X-ray fluorescence) is a powerful technique for elemental analysis with a high sensitivity. The resolution is presently limited by the size of the primary excitation X-ray beam. A test-bed for confocal-type XRF has been developed to estimate the ultimate lateral resolution which could be reached in chemical mapping using this technique. A polycapillary lens is used to tightly focus the primary X-ray beam of a low power rhodium X-ray source, while the fluorescence signal is collected by a SDD detector through a cylindrical monocapillary. This system was used to characterize the geometry of the fluorescent zone. Capillary radii ranging from 50 μm down to 5 μm were used to investigate the fluorescence signal maximum level This study allows to estimate the ultimate resolution which could be reached in-lab or on a synchrotron beamline. A new tool combining local XRF and scanning probe microscopy is finally proposed.

  6. Optical coherence tomography and confocal microscopy investigations of dental prostheses

    Science.gov (United States)

    Negrutiu, Meda L.; Sinescu, Cosmin; Hughes, Michael; Bradu, Adrian; Rominu, Mihai; Todea, Carmen; Dobre, George; Podoleanu, Adrian

    2008-09-01

    Dental prostheses are very complex systems, heterogenous in structure, made up from various materials, with different physical properties. An essential question mark is on the physical, chemical and mechanical compatibility between these materials. They have to satisfy high stress requirements as well as esthetic challenges. The masticatory stress may induce fractures of the prostheses, which may be triggered by initial materials defects or by alterations of the technological process. The failures of dental prostheses lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. The purpose of this study is to evaluate the capability of en-face optical coherence tomography as a possible non-invasive high resolution method in supplying the necessary information on the material defects of dental prostheses and microleakage at prosthetic interfaces. C-scan and B-scan OCT images as well as confocal images are acquired from a large range of samples. Gaps between the dental interfaces and material defects are clearly exposed. We conclude that OCT can successfully be used as a noninvasive analysis method.

  7. Real-time mapping of the corneal sub-basal nerve plexus by in vivo laser scanning confocal microscopy

    Science.gov (United States)

    Guthoff, Rudolf F.; Zhivov, Andrey; Stachs, Oliver

    2010-02-01

    The aim of the study was to produce two-dimensional reconstruction maps of the living corneal sub-basal nerve plexus by in vivo laser scanning confocal microscopy in real time. CLSM source data (frame rate 30Hz, 384x384 pixel) were used to create large-scale maps of the scanned area by selecting the Automatic Real Time (ART) composite mode. The mapping algorithm is based on an affine transformation. Microscopy of the sub-basal nerve plexus was performed on normal and LASIK eyes as well as on rabbit eyes. Real-time mapping of the sub-basal nerve plexus was performed in large-scale up to a size of 3.2mm x 3.2mm. The developed method enables a real-time in vivo mapping of the sub-basal nerve plexus which is stringently necessary for statistically firmed conclusions about morphometric plexus alterations.

  8. Classifying distinct basal cell carcinoma subtype by means of dermatoscopy and reflectance confocal microscopy.

    Science.gov (United States)

    Longo, Caterina; Lallas, Aimilios; Kyrgidis, Athanassios; Rabinovitz, Harold; Moscarella, Elvira; Ciardo, Silvana; Zalaudek, Iris; Oliviero, Margaret; Losi, Amanda; Gonzalez, Salvador; Guitera, Pascale; Piana, Simonetta; Argenziano, Giuseppe; Pellacani, Giovanni

    2014-10-01

    The current guidelines for the management of basal cell carcinoma (BCC) suggest a different therapeutic approach according to histopathologic subtype. Although dermatoscopic and confocal criteria of BCC have been investigated, no specific studies were performed to evaluate the distinct reflectance confocal microscopy (RCM) aspects of BCC subtypes. To define the specific dermatoscopic and confocal criteria for delineating different BCC subtypes. Dermatoscopic and confocal images of histopathologically confirmed BCCs were retrospectively evaluated for the presence of predefined criteria. Frequencies of dermatoscopic and confocal parameters are provided. Univariate and adjusted odds ratios were calculated. Discriminant analyses were performed to define the independent confocal criteria for distinct BCC subtypes. Eighty-eight BCCs were included. Dermatoscopically, superficial BCCs (n=44) were primarily typified by the presence of fine telangiectasia, multiple erosions, leaf-like structures, and revealed cords connected to the epidermis and epidermal streaming upon RCM. Nodular BCCs (n=22) featured the classic dermatoscopic features and well outlined large basaloid islands upon RCM. Infiltrative BCCs (n=22) featured structureless, shiny red areas, fine telangiectasia, and arborizing vessels on dermatoscopy and dark silhouettes upon RCM. The retrospective design. Dermatoscopy and confocal microscopy can reliably classify different BCC subtypes. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  9. Comparison of confocal biomicroscopy and noncontact specular microscopy for evaluation of the corneal endothelium.

    Science.gov (United States)

    Hara, Makiko; Morishige, Naoyuki; Chikama, Tai-Ichiro; Nishida, Teruo

    2003-08-01

    To compare the clinical efficacy of confocal biomicroscopy with that of noncontact specular microscopy for the evaluation of the corneal endothelium. The corneal endothelium was examined in 14 normal subjects (28 eyes) and in 6 patients (11 eyes) with Fuchs corneal endothelial dystrophy using a noncontact specular microscope (SP-2000P, Topcon, Japan) and a confocal biomicroscope (ConfoScan, Tomey, Japan). The images and the calculated densities of corneal endothelial cells obtained by the 2 techniques were compared. For normal subjects, the images of corneal endothelial cells obtained by the 2 techniques were almost identical, although the density of these cells determined by confocal biomicroscopy (2916 +/- 334 cells/mm2) was slightly higher than that determined by noncontact specular microscopy (2765 +/- 323 cells/mm2). In contrast, whereas clear images of corneal endothelial cells, allowing the determination of cell density, were obtained for all 11 eyes of the patient group by confocal biomicroscopy, clear images were obtained for only 4 of these 11 eyes (36.4%) by noncontact specular microscopy. Both noncontact specular microscopy and confocal biomicroscopy revealed the shapes and number of endothelial cells in the normal cornea. However, for corneas with Fuchs dystrophy, clear images were obtained only by confocal biomicroscopy. Confocal biomicroscopy is thus an effective tool for evaluation of the diseased corneal endothelium.

  10. Confocal laser scanning microscopy. Using new technology to answer old questions in forensic investigations.

    Science.gov (United States)

    Turillazzi, Emanuela; Karch, Steven B; Neri, Margherita; Pomara, Cristoforo; Riezzo, Irene; Fineschi, Vittorio

    2008-03-01

    Confocal laser scanning microscopy (CLSM) is a relatively new technique for microscopic imaging. It has found a wide field of application in the general sphere of biological sciences. It has completely changed the study of cells and tissues by allowing greater resolution, optical sectioning of the sample and three-dimensional sanoke reconstruction. Confocal microscopy represents a valid, precious and useful tool capable of providing data (images) of unrivalled clearness and definition. This review discusses the possible applications of confocal microscopy in specific fields of forensic investigation, with specific regard to ballistics, forensic histopathology and toxicological pathology.

  11. Keratoconus associated with corneal macular dystrophy: in vivo confocal microscopic evaluation.

    Science.gov (United States)

    Balestrazzi, A; Martone, G; Traversi, C; Haka, G; Toti, P; Caporossi, A

    2006-01-01

    The authors present a case, studied through in vivo confocal microscopy, of concomitant keratoconus and macular corneal dystrophy (MCD). A 29-year-old man underwent a penetrating keratoplasty in the right eye in May 2005. Confocal microscopy was performed to examine the cornea of the right eye. A diagnosis of concomitant keratoconus and MCD was suspected, due to the simultaneous findings of corneal ectasia and stromal opacities. In this case, using in vivo confocal microscopy, morphologic changes were detected in many corneal layers and compared with the histopathologic findings. The morphologic alterations were found mainly in the area of the cornea apex.

  12. How Confocal Is Confocal Raman Microspectroscopy on the Skin? Impact of Microscope Configuration and Sample Preparation on Penetration Depth Profiles.

    Science.gov (United States)

    Lunter, Dominique Jasmin

    2016-01-01

    The aim of the study was to elucidate the effect of sample preparation and microscope configuration on the results of confocal Raman microspectroscopic evaluation of the penetration of a pharmaceutical active into the skin (depth profiling). Pig ear skin and a hydrophilic formulation containing procaine HCl were used as a model system. The formulation was either left on the skin during the measurement, or was wiped off or washed off prior to the analysis. The microscope configuration was varied with respect to objectives and pinholes used. Sample preparation and microscope configuration had a tremendous effect on the results of depth profiling. Regarding sample preparation, the best results could be observed when the formulation was washed off the skin prior to the analysis. Concerning microscope configuration, the use of a 40 × 0.6 numerical aperture (NA) objective in combination with a 25-µm pinhole or a 100 × 1.25 NA objective in combination with a 50-µm pinhole was found to be advantageous. Complete removal of the sample from the skin before the analysis was found to be crucial. A thorough analysis of the suitability of the chosen microscope configuration should be performed before acquiring concentration depth profiles. © 2016 S. Karger AG, Basel.

  13. Grading keratinocyte atypia in actinic keratosis: a correlation of reflectance confocal microscopy and histopathology.

    Science.gov (United States)

    Pellacani, G; Ulrich, M; Casari, A; Prow, T W; Cannillo, F; Benati, E; Losi, A; Cesinaro, A M; Longo, C; Argenziano, G; Soyer, H P

    2015-11-01

    Actinic Keratosis (AK) is the clinical manifestation of cutaneous dysplasia of epidermal keratinocytes, with progressive trend towards squamous cell carcinoma. To evaluate the strength of the correlation between keratinocyte atypia, as detected by Reflectance Confocal Microscopy (RCM) and histopathology, and to develop a more objective atypia grading scale for RCM quantification, through a discrete ranking. A total of 48 AKs and two control areas (photodamaged and non-photodamaged skin) were selected for this study. All these areas were documented by RCM and biopsied for histopathology. One representative image of the epidermis was selected for RCM and for histopathology and used for side-by-side comparison with purpose written software. The assessor chose which of two images displayed more keratinocyte atypia, and an ordered list from the image showing the least to the most keratinocyte atypia was generated. Three evaluations were obtained for RCM and two for histopathology. Good interobserver correlation was obtained for RCM and histopathology grading, with high concordance between RCM and histopathology grading. Expert rater scan consistently distinguish different grades of cytological atypia. Non-invasive RCM data from in vivo imaging can be graded for keratinocyte atypia, comparable to histopathological grading. © 2015 European Academy of Dermatology and Venereology.

  14. Measuring the penetration of a skin sensitizer and its delivery vehicles simultaneously with confocal Raman spectroscopy.

    Science.gov (United States)

    Bonnist, E Y M; Gorce, J-P; Mackay, C; Pendlington, R U; Pudney, P D A

    2011-01-01

    Among the factors determining the propensity of a chemical to induce skin allergy are the penetration into skin and the kinetics of ingress. Confocal Raman spectroscopy can provide such information as it enables direct, spatially resolved measurement of the skin and of any chemical uptake. Several chemicals can be monitored at once, and the method is non-destructive (light in, light out) so that the skin can be kept intact for repeated and continuous measurement. Raman spectroscopy was used to follow the penetration of 2.5 weight percent trans-cinnamaldehyde and its delivery vehicle into skin in vitro, up to 24 h after topical application. A custom-made Bronaugh-type diffusion cell that was suitable for the Raman experiment was used. Four different vehicles were tested: absolute ethanol, 50% aqueous ethanol, propylene glycol and acetone:olive oil (4:1); these gave different time scales for cinnamaldehyde penetration. The acetone:olive oil vehicle phase-separated on the skin surface and the cinnamaldehyde penetrated at different rates in the different phases, which may be of significance since this is the preferred solvent for the local lymph node assay (an in vivo animal test used to generate hazard information on skin sensitization). In conclusion, the Raman method gives valuable detailed information on chemical ingress, clearly differentiates between different delivery rates and allows solvent monitoring alongside the chemical of interest. Copyright © 2011 S. Karger AG, Basel.

  15. Combining confocal microscopy and optical coherence tomography for imaging in developmental biology

    Science.gov (United States)

    Bradu, A.; Ma, Lisha; Bloor, J.; Podoleanu, A.

    2008-04-01

    In-vivo Optical Coherence Tomography (OCT) imaging of the fruit fly Drosophila melanogaster larval heart allows non invasive visualizations and assesment of its cardiac functions. To image Drosophila melanogaster heart, we have developed a dedicated imaging instrument able to provide simultaneous Optical Coherence Tomography (OCT) and Laser Confocal Scanning Microscopy (LCSM) or Laser Scanning Fluorescence Microscopy (LSFM) images and can be used to produce B-scan OCT images. With this dual imaging system, the image of heart can be easily located in the specimen and the change of the heart shape in a cardiac cycle monitored. This technique therefore provides an excellent tool for large scale screen of candidate genes responsible for the contractility of the Drosophila heart. As this technique can also image the dynamic process of the heartbeat in a non-invasive fashion, it provides a new avenue to study the physiology of the heart function. En-face and B-scan OCT images of the Drosophila melanogaster heart showing its chambers have been obtained with our imaging instruments. Our results are consistent with detailed anatomical studies from the literature.

  16. Confocal reflectance and two-photon microscopy studies of a songbird skull for preparation of transcranial imaging

    Science.gov (United States)

    Abi-Haidar, Darine; Oliver, Thomas

    2009-05-01

    We present experiments and analyses of confocal reflectance and two-photon microscopy studies of zebra finch skull samples. The thin and hollow structure of these birds' skulls is quite translucent, which can allow in vivo transcranial two-photon imaging for brain activation monitoring. However, the skull structure is also quite complex, with high refractive index changes on a macroscopic scale. These studies aim at exploring the geometrical and scattering properties of these skull samples with the use of several confocal microscopy contrasts. Moreover, the study of the axial reflectance exponential decay is used to estimate the scattering coefficients of the bone. Finally, two-photon imaging experiments of a fluorescent object located beneath the skull are carried out. It reveals that two-photon fluorescence can be collected through the skull with a strong signal. It also reveals that the spatial resolution loss is quite high and cannot be fully explained by the bulk scattering properties of the bone, but also by the presence of the high refractive index inhomogeneity of this pneumatic skull structure. Even if the optical properties of the skull are different during in vivo experiments, these preliminary studies are aimed at preparing and optimizing transcranial brain activation monitoring experiments on songbirds.

  17. Confocal laser scanning microscopy in study of bone calcification

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Tetsunari, E-mail: tetsu-n@cc.osaka-dent.ac.jp [Department of Oral Pathology, Osaka Dental University, Osaka (Japan); Kokubu, Mayu; Kato, Hirohito [Department of Oral Pathology, Osaka Dental University, Osaka (Japan); Imai, Koichi [Department of Biomaterials, Osaka Dental University, Osaka (Japan); Tanaka, Akio [Department of Oral Pathology, Osaka Dental University, Osaka (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer High-magnification images with depth selection, and thin sections were observed using CLSM. Black-Right-Pointing-Pointer The direction and velocity of calcification of the bone was observed by administration of 2 fluorescent dyes. Black-Right-Pointing-Pointer In dog femora grafted with coral blocks, newly-formed bone was observed in the coral block space with a rough surface. Black-Right-Pointing-Pointer Twelve weeks after dental implant was grafted in dog femora, the space between screws was filled with newly-formed bones. - Abstract: Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 {mu}m/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  18. Nevomelanocytic atypia detection by in vivo reflectance confocal microscopy.

    Science.gov (United States)

    Vaišnorienė, Ingrida; Rotomskis, Ričardas; Kulvietis, Vytautas; Eidukevičius, Rimantas; Zalgevičienė, Violeta; Laurinavičienė, Aida; Venius, Jonas; Didžiapetrienė, Janina

    2014-01-01

    In vivo reflectance confocal microscopy (RCM) is a promising novel technology for non-invasive early diagnostics of cutaneous melanoma. However, the possibility to detect melanocytic atypia in nevi by means of in vivo RCM remains unknown. The aim of the study was to evaluate the significance of in vivo RCM features of melanocytic atypia for the diagnosis of melanocytic nevi, dysplastic nevi and cutaneous melanoma. A total of 138 melanocytic skin lesions comprising 25 melanocytic nevi, 69 dysplastic nevi and 44 melanomas were analyzed by means of dermoscopy, in vivo RCM and routine histopathology. In vivo RCM images were analyzed for the arrangement of keratinocytes in epidermis, pagetoid cells and junctional melanocytic nests and correlated refractivity aspects of nests with histopathology. Separately and all together taken the in vivo RCM features of melanocytic atypia were significant in differential diagnosis of benign and malignant melanocytic skin lesions, though none of the features was significant in discriminating nevi without cytologic atypia of dysplastic nevi. In vivo RCM feature of dense cell clusters corresponded with melanin containing nevomelanocytes on histopathology though exact correspondence of non-homogeneous and atypical sparse cell clusters remained questionable. Nevus with histopathologically confirmed nevomelanocytic atypia (dysplastic nevus) could not be distinguished from nevus without atypia using analyzed in vivo RCM features of melanocytic atypia. More accurate diagnostics by means of in vivo RCM needs further investigation on reflectance of single and nested cutaneous melanocytes in benign and malignant skin lesions. Copyright © 2014 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Wavelength and alignment tests for confocal spectral imaging systems.

    Science.gov (United States)

    Zucker, Robert M; Lerner, Jeremy M

    2005-12-01

    Confocal spectral imaging (CSI) microscope systems now on the market delineate multiple fluorescent proteins, labels, or dyes within biological specimens by performing spectral characterizations. However, we find that some CSI present inconsistent spectral profiles of reference spectra within a particular system as well as between related and unrelated instruments. We also find evidence of instability that, if not diagnosed, could lead to inconsistent data. This variability confirms the need for diagnostic tools to provide a standardized, objective means of characterizing instability, evidence of misalignment, as well as performing calibration and validation functions. Our protocol uses an inexpensive multi-ion discharge lamp (MIDL) that contains Hg+, Ar+, and inorganic fluorophores that emit distinct, stable spectral features, in place of a sample. An MIDL characterization verifies the accuracy and consistency of a CSI system and validates acquisitions of biological samples. We examined a total of 10 CSI systems, all of which displayed spectral inconsistencies, enabling us to identify malfunctioning subsystems. Only one of the 10 instruments met its optimal performance expectations. We have found that using a primary light source that emits an absolute standard "reference spectrum" enabled us to diagnose instrument errors and measure accuracy and reproducibility under normalized conditions. Using this information, a CSI operator can determine whether a CSI system is working optimally and make objective comparisons with the performance of other CSI systems. It is evident that if CSI systems of a similar make and model were standardized to reveal the same spectral profile from a standard light source, then researchers could be confident that real-life experimental findings would be repeatable on any similar system. (c) 2005 Wiley-Liss, Inc.

  20. Concepts in Imaging and Microscopy: Exploring Biological Structure and Function with Confocal Microscopy

    National Research Council Canada - National Science Library

    Michael Dailey; Glen Marrs; Jakob Satz; Marc Waite

    1999-01-01

    .... The utility of confocal microscopy relies on its fundamental capacity to reject out-of-focus light, thus providing sharp, high-contrast images of cells and subcellular structures within thick samples...

  1. Modeling of fibrin gels based on confocal microscopy and light-scattering data

    National Research Council Canada - National Science Library

    Magatti, Davide; Molteni, Matteo; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-01-01

    .... Electron and confocal microscopies show a collection of fibers that are relatively monodisperse in diameter, not uniformly distributed, and connected at nodal points with a branching order of ∼3-4...

  2. Clinical usefulness of reflectance confocal microscopy in the management of facial lentigo maligna melanoma.

    Science.gov (United States)

    Alarcón, I; Carrera, C; Puig, S; Malvehy, J

    2014-04-01

    Facial lentigo maligna melanoma can be a diagnostic challenge in daily clinical practice as it has similar clinical and morphological features to other lesions such as solar lentigines and pigmented actinic keratoses. Confocal microscopy is a noninvasive technique that provides real-time images of the epidermis and superficial dermis with cellular-level resolution. We describe 3 cases of suspected facial lentigo maligna that were assessed using dermoscopy and confocal microscopy before histopathology study. In the first case, diagnosed as lentigo maligna melanoma, presurgical mapping by confocal microscopy was performed to define the margins more accurately. In the second and third cases, with a clinical and dermoscopic suspicion of lentigo maligna melanoma, confocal microscopy was used to identify the optimal site for biopsy. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  3. Corneal Confocal Microscopy Detects Corneal Nerve Damage in Patients Admitted With Acute Ischemic Stroke.

    Science.gov (United States)

    Khan, Adnan; Akhtar, Naveed; Kamran, Saadat; Ponirakis, Georgios; Petropoulos, Ioannis N; Tunio, Nahel A; Dargham, Soha R; Imam, Yahia; Sartaj, Faheem; Parray, Aijaz; Bourke, Paula; Khan, Rabia; Santos, Mark; Joseph, Sujatha; Shuaib, Ashfaq; Malik, Rayaz A

    2017-11-01

    Corneal confocal microscopy can identify corneal nerve damage in patients with peripheral and central neurodegeneration. However, the use of corneal confocal microscopy in patients presenting with acute ischemic stroke is unknown. One hundred thirty patients (57 without diabetes mellitus [normal glucose tolerance], 32 with impaired glucose tolerance, and 41 with type 2 diabetes mellitus) admitted with acute ischemic stroke, and 28 age-matched healthy control participants underwent corneal confocal microscopy to quantify corneal nerve fiber density, corneal nerve branch density, and corneal nerve fiber length. There was a significant reduction in corneal nerve fiber density, corneal nerve branch density, and corneal nerve fiber length in stroke patients with normal glucose tolerance ( P stroke. Corneal confocal microscopy is a rapid noninvasive ophthalmic imaging technique that identifies corneal nerve fiber loss in patients with acute ischemic stroke. © 2017 American Heart Association, Inc.

  4. In vivo Confocal Microscopy Report after Lasik with Sequential Accelerated Corneal Collagen Cross-Linking Treatment

    National Research Council Canada - National Science Library

    Mazzotta, Cosimo; Balestrazzi, Angelo; Traversi, Claudio; Caragiuli, Stefano; Caporossi, Aldo

    2014-01-01

    ...) treatment combined with sequential high-fluence accelerated corneal collagen cross-linking, denominated Lasik XTra, by means of HRT II laser scanning in vivo confocal microscopy after a 6-month follow-up...

  5. Ex Vivo (Fluorescence) Confocal Microscopy in Surgical Pathology: State of the Art.

    Science.gov (United States)

    Ragazzi, Moira; Longo, Caterina; Piana, Simonetta

    2016-05-01

    First developed in 1957, confocal microscopy is a powerful imaging tool that can be used to obtain near real-time reflected light images of untreated human tissue with nearly histologic resolution. Besides its research applications, in the last decades, confocal microscopy technology has been proposed as a useful device to improve clinical diagnosis, especially in ophthalmology, dermatology, and endomicroscopy settings, thanks to advances in instrument development. Compared with the wider use of the in vivo tissue assessment, ex vivo applications of confocal microscopy are not fully explored. A comprehensive review of the current literature was performed here, focusing on the reliable applications of ex vivo confocal microscopy in surgical pathology and on some potential evolutions of this new technique from pathologists' viewpoint.

  6. Evaluation of allergic vesicular reaction to patch test using in vivo confocal microscopy.

    Science.gov (United States)

    Ardigò, Marco; Longo, Caterina; Cristaudo, Antonio; Berardesca, Enzo; Pellacani, Giovanni

    2012-02-01

    Confocal microscopy has been successfully applied both in oncologic and inflammatory diseases. In particular, it has been proved as a useful tool for the in vivo detection of microscopical changes occurring in allergic reactions. To evaluate microscopic changes occurring in positive patch test reactions. Eight patients with history of allergic dermatitis and positive patch test reaction were analysed by means of confocal microscopy. Confocal microscopy showed the presence of spongiotic vesicle preferentially localized around the adnexal ducts that appeared to be in the middle of the spongiotic phenomena. Confocal microscopy offered for the first time new insight into vesicle formation and development, showing that adnexal ducts can play a role in allergic reaction. © 2011 John Wiley & Sons A/S.

  7. WHOLE INSECT AND MAMMALIAN EMBRYO IMAGING WITH CONFOCAL MICROSCOPY: MORPHOLOGY AND APOPTOSIS

    Science.gov (United States)

    Background: After fluorochromes are incorporated into cells, tissues, and organisms, confocal microscopy can be used to observe three-dimensional structures. LysoTracker Red (LT) is a paraformaldehyde fixable probe that concentrates into acidic compartments of cells and indicates...

  8. A microchannel confocal examination of arsenic speciation and distribution in Bufo americanus

    Science.gov (United States)

    Nearing, Michelle M.; Koch, Iris; Gordon, Robert A.; Reimer, Kenneth J.

    2016-05-01

    We have used confocal methods to examine the distribution and speciation of arsenic within amphibian tissue (Bufo americanus) from a contaminated mine site. The use of new microchannel technology permits a confocal, and energy-independent, examination of a given voxel within the amphibian tissue without the need for sectioning. We observe differences in arsenic concentration and speciation depending on tissue type, with the Eberth- Katschenko layer in particular containing Mn, Fe, Cu and Zn in addition to Ca and pentavalent arsenic.

  9. In vivo confocal microscopy for the detection of canine fungal keratitis and monitoring of therapeutic response.

    Science.gov (United States)

    Ledbetter, Eric C; Norman, Mary L; Starr, Jennifer K

    2016-05-01

    To describe in vivo corneal confocal microscopy of dogs during the clinical course of fungal keratitis and correlate findings with clinical evaluations and an ex vivo experimental canine fungal keratitis model. Seven dogs with naturally acquired fungal keratitis and ex vivo canine corneas experimentally infected with clinical fungal isolates. Dogs with naturally acquired fungal keratitis were examined by in vivo laser scanning confocal microscopy. Initial confocal microscopic examinations were performed to assist in establishing the diagnosis of fungal keratitis. Serial confocal microscopic examinations were performed to guide antifungal chemotherapy. Confocal microscopy images of canine corneal fungal isolates were obtained by examination of experimentally infected ex vivo canine corneas to corroborate in vivo findings. Fungi cultured and detected by PCR from canine corneal samples included Candida albicans, Fusarium incarnatum-equiseti, Malassezia pachydermatis, and a Rhodotorula sp. Linear, branching, interlocking, hyperreflective structures were detected by confocal microscopy in dogs with filamentous fungal keratitis and round to oval hyperreflective structures were detected in dogs with yeast fungal keratitis. Antifungal chemotherapy was associated with a progressive reduction in the distribution and density of corneal fungal elements, alterations to fungal morphology, decreased leukocyte numbers, restoration of epithelial layers, and an increased number of visible keratocyte nuclei. No dogs had a recurrence of fungal keratitis following medication discontinuation. Confocal microscopic fungal morphologies were similar between in vivo and ex vivo examinations. In vivo corneal confocal microscopy is a rapid method of diagnosing fungal keratitis in dogs and provides a noninvasive mechanism for monitoring therapeutic response. © 2015 American College of Veterinary Ophthalmologists.

  10. Improved axial point spread function in a two-frequency laser scanning confocal fluorescence microscope.

    Science.gov (United States)

    Wu, Jheng-Syong; Chung, Yung-Chin; Chien, Jun-Jei; Chou, Chien

    2018-01-01

    A two-frequency laser scanning confocal fluorescence microscope (TF-LSCFM) based on intensity modulated fluorescence signal detection was proposed. The specimen-induced spherical aberration and scattering effect were suppressed intrinsically, and high image contrast was presented due to heterodyne interference. An improved axial point spread function in a TF-LSCFM compared with a conventional laser scanning confocal fluorescence microscope was demonstrated and discussed. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  11. Reproducibility of fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope

    OpenAIRE

    Lois, N.; Halfyard, A.; Bunce, C.; Bird, A.; Fitzke, F.

    1999-01-01

    AIM—To evaluate the reproducibility of the background fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope.
METHODS—10 normal volunteers and 10 patients with retinal disease were included in the study. One eye per subject was chosen randomly. Five images of the same eye of each individual were obtained, after pupillary dilatation, by two investigators using a confocal scanning laser ophthalmoscope. Background fundus autofluorescence was measured at 7 de...

  12. Confocal Raman Microscopy: new perspective on the weathering of anhydrous cement

    Science.gov (United States)

    Torres-Carrasco, M.; del Campo, A.; de la Rubia, MA; Reyes, E.; Moragues, A.; Fernández, JF

    2017-10-01

    Raman spectroscopy when is combined with Confocal microscopy is a non-destructive technique that allow us to obtain information in cementitious materials. In this study, we present non-destructive image and structural analysis of anhydrous cement with carbonation evidences by Confocal Raman Microscopy (CRM). The results obtained by CRM show a direct relationship between the presence of the weathering processes of an anhydrous cement with the presence of sulphates and surprisingly, with the existence of amorphous carbon in the medium.

  13. Analysis of reactive oxygen species in the guard cell of wheat stoma with confocal microscope.

    Science.gov (United States)

    Liu, Dongwu; Chen, Zhiwei; Shi, Peiguo; Wang, Xue; Cai, Weiwei

    2011-09-01

    Recently, the laser-scanning confocal microscope has become a routine technique and indispensable tool for cell biological studies. Previous studies indicated that reactive oxygen species (ROS) were generated in tobacco epidermal cells with confocal microscope. In the present studies, the probe 2',7'-dichlorof luorescein diacetate (H₂DCF-DA) was used to research the change of ROS in the guard cell of wheat stoma, and catalase (CAT) was used to demonstrate that ROS had been labeled. The laser-scanning mode of confocal microscope was XYT, and the time interval between two sections was 1.6351 s. Sixty optical sections were acquired with the laser-scanning confocal microscope, and CAT (60,000 U mg⁻¹) was added after four optical sections were scanned. Furthermore, the region of interest (ROI) was circled and the fluorescence intensity of ROS was quantified with Leica Confocal Software. The quantitative data were exported and the trend chart was made with software Excell. The results indicated that ROS were produced intracellularly in stomatal guard cells, and the quantified fluorescence intensity of ROS was declined with CAT added. It is a good method to research the instantaneous change of ROS in plant cells with confocal microscope and fluorescence probe H₂DCF-DA. Copyright © 2010 Wiley-Liss, Inc.

  14. Development of an add-on kit for scanning confocal microscopy (Conference Presentation)

    Science.gov (United States)

    Guo, Kaikai; Zheng, Guoan

    2017-03-01

    Scanning confocal microscopy is a standard choice for many fluorescence imaging applications in basic biomedical research. It is able to produce optically sectioned images and provide acquisition versatility to address many samples and application demands. However, scanning a focused point across the specimen limits the speed of image acquisition. As a result, scanning confocal microscope only works well with stationary samples. Researchers have performed parallel confocal scanning using digital-micromirror-device (DMD), which was used to project a scanning multi-point pattern across the sample. The DMD based parallel confocal systems increase the imaging speed while maintaining the optical sectioning ability. In this paper, we report the development of an add-on kit for high-speed and low-cost confocal microscopy. By adapting this add-on kit to an existing regular microscope, one can convert it into a confocal microscope without significant hardware modifications. Compared with current DMD-based implementations, the reported approach is able to recover multiple layers along the z axis simultaneously. It may find applications in wafer inspection and 3D metrology of semiconductor circuit. The dissemination of the proposed add-on kit under $1000 budget could also lead to new types of experimental designs for biological research labs, e.g., cytology analysis in cell culture experiments, genetic studies on multicellular organisms, pharmaceutical drug profiling, RNA interference studies, investigation of microbial communities in environmental systems, and etc.

  15. Confocal microscopy on the beamline: novel three-dimensional imaging and sample positioning

    Science.gov (United States)

    Khan, I.; Gillilan, R.; Kriksunov, I.; Williams, R.; Zipfel, W. R.; Englich, U.

    2012-01-01

    Confocal microscopy, a technique that has been extensively applied in cellular biological studies, may also be applied to the visualization and three-dimensional imaging of protein crystals at high resolution on synchrotron beamlines. Protein crystal samples are examined using a commercially available confocal microscope adapted for cryogenic use. A preliminary test using a custom confocal design adapted for beamline use is also presented. The confocal optics configuration is compatible with nonlinear imaging techniques such as two-photon excited fluorescence imaging and second harmonic generation. The possibilities of this method are explored using two modes: fluorescence and reflection confocal. In fluorescence mode, small amounts of dye are introduced into the crystal through soaking or growth conditions. Under such conditions, protein crystals are easily resolved from salts and amorphous precipitates, which do not generally take up dye. Reflection mode, which does not require dye, still exhibits greater resolution and sensitivity to surface detail than conventional wide-field microscopy as a result of the confocal optics configuration. The inherent three-dimensional nature of the method means that on-axis sample views (along the direction of the X-ray beam) can be reconstructed from an off-axis configuration, simplifying the beamline setup and providing uniquely detailed views of cryogenically cooled crystals. PMID:22997474

  16. Improved sampling and analysis of images in corneal confocal microscopy.

    Science.gov (United States)

    Schaldemose, E L; Fontain, F I; Karlsson, P; Nyengaard, J R

    2017-10-01

    Corneal confocal microscopy (CCM) is a noninvasive clinical method to analyse and quantify corneal nerve fibres in vivo. Although the CCM technique is in constant progress, there are methodological limitations in terms of sampling of images and objectivity of the nerve quantification. The aim of this study was to present a randomized sampling method of the CCM images and to develop an adjusted area-dependent image analysis. Furthermore, a manual nerve fibre analysis method was compared to a fully automated method. 23 idiopathic small-fibre neuropathy patients were investigated using CCM. Corneal nerve fibre length density (CNFL) and corneal nerve fibre branch density (CNBD) were determined in both a manual and automatic manner. Differences in CNFL and CNBD between (1) the randomized and the most common sampling method, (2) the adjusted and the unadjusted area and (3) the manual and automated quantification method were investigated. The CNFL values were significantly lower when using the randomized sampling method compared to the most common method (p = 0.01). There was not a statistical significant difference in the CNBD values between the randomized and the most common sampling method (p = 0.85). CNFL and CNBD values were increased when using the adjusted area compared to the standard area. Additionally, the study found a significant increase in the CNFL and CNBD values when using the manual method compared to the automatic method (p ≤ 0.001). The study demonstrated a significant difference in the CNFL values between the randomized and common sampling method indicating the importance of clear guidelines for the image sampling. The increase in CNFL and CNBD values when using the adjusted cornea area is not surprising. The observed increases in both CNFL and CNBD values when using the manual method of nerve quantification compared to the automatic method are consistent with earlier findings. This study underlines the importance of improving the analysis of the

  17. In vivo skin characterization by confocal Raman microspectroscopy

    NARCIS (Netherlands)

    P.J. Caspers (Peter)

    2003-01-01

    markdownabstract__Abstract__ Various areas of skin research depend on detailed knowledge of the molecular composition of skin and molecular structure of skin constituents. On a microscopic scale the skin is a highly heterogeneous tissue. Molecular composition and structure vary

  18. In situ protein expression in tumour spheres: development of an immunostaining protocol for confocal microscopy

    Directory of Open Access Journals (Sweden)

    Saubaméa Bruno

    2010-03-01

    Full Text Available Abstract Background Multicellular tumour sphere models have been shown to closely mimic phenotype characteristics of in vivo solid tumours, or to allow in vitro propagation of cancer stem cells (CSCs. CSCs are usually characterized by the expression of specific membrane markers using flow cytometry (FC after enzymatic dissociation. Consequently, the spatial location of positive cells within spheres is not documented. Confocal microscopy is the best technique for the imaging of thick biological specimens after multi-labelling but suffers from poor antibody penetration. Thus, we describe here a new protocol for in situ confocal imaging of protein expression in intact spheroids. Methods Protein expression in whole spheroids (150 μm in diameter from two human colon cancer cell lines, HT29 and CT320X6, has been investigated with confocal immunostaining, then compared with profiles obtained through paraffin immunohistochemistry (pIHC and FC. Target antigens, relevant for colon cancer and with different expression patterns, have been studied. Results We first demonstrate that our procedure overcomes the well-known problem of antibody penetration in compact structures by performing immunostaining of EpCAM, a membrane protein expressed by all cells within our spheroids. EpCAM expression is detected in all cells, even the deepest ones. Likewise, antibody access is confirmed with CK20 and CD44 immunostaining. Confocal imaging shows that 100% of cells express β-catenin, mainly present in the plasma membrane with also cytoplasmic and nuclear staining, in agreement with FC and pIHC data. pIHC and confocal imaging show similar CA 19-9 cytoplasmic and membranar expression profile in a cell subpopulation. CA 19-9+ cell count confirms confocal imaging as a highly sensitive method (75%, 62% and 51%, for FC, confocal imaging and pIHC, respectively. Finally, confocal imaging reveals that the weak expression of CD133, a putative colon CSC marker, is restricted to

  19. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide

    KAUST Repository

    Rodighiero, Simona

    2015-03-22

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  20. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide.

    Science.gov (United States)

    Rodighiero, Simona; Torre, Bruno; Sogne, Elisa; Ruffilli, Roberta; Cagnoli, Cinzia; Francolini, Maura; Di Fabrizio, Enzo; Falqui, Andrea

    2015-06-01

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  1. Analysis of Microstructure of the Cardiac Conduction System Based on Three-Dimensional Confocal Microscopy.

    Directory of Open Access Journals (Sweden)

    Daniel Romero

    Full Text Available The specialised conducting tissues present in the ventricles are responsible for the fast distribution of the electrical impulse from the atrio-ventricular node to regions in the subendocardial myocardium. Characterisation of anatomical features of the specialised conducting tissues in the ventricles is highly challenging, in particular its most distal section, which is connected to the working myocardium via Purkinje-myocardial junctions. The goal of this work is to characterise the architecture of the distal section of the Purkinje network by differentiating Purkinje cells from surrounding tissue, performing a segmentation of Purkinje fibres at cellular scale, and mathematically describing its morphology and interconnections. Purkinje cells from rabbit hearts were visualised by confocal microscopy using wheat germ agglutinin labelling. A total of 16 3D stacks including labeled Purkinje cells were collected, and semi-automatically segmented. State-of-the-art graph metrics were applied to estimate regional and global features of the Purkinje network complexity. Two types of cell types, tubular and star-like, were characterised from 3D segmentations. The analysis of 3D imaging data confirms the previously suggested presence of two types of Purkinje-myocardium connections, a 2D interconnection sheet and a funnel one, in which the narrow side of a Purkinje fibre connect progressively to muscle fibres. The complex network analysis of interconnected Purkinje cells showed no small-world connectivity or assortativity properties. These results might help building more realistic computational PK systems at high resolution levels including different cell configurations and shapes. Better knowledge on the organisation of the network might help in understanding the effects that several treatments such as radio-frequency ablation might have when the PK system is disrupted locally.

  2. Diagnosis of thalassemia and iron deficiency anemia using confocal and atomic force microscopy

    Science.gov (United States)

    Tariq, Saira; Bilal, Muhammad; Shahzad, Shaheen; Firdous, Shamaraz; Aziz, Uzma; Ahmed, Mushtaq

    2017-11-01

    Anemia is the most prevalent blood disorder, categorized into thalassemia and iron deficiency anemia. In anemia, the morphology of erythrocytes is disturbed, thus leading to abnormal functioning of the erythrocytes. Globally, thalassemia affects 1.3% of individuals and is one of the most widespread monogenic disorders in Pakistan. All over the World, women and children are most frequently affected by a type of nutritional deficiency known as iron deficiency anemia. The morphological changes that occur in erythrocytes due to these diseases are investigated in this study at the nano-scale level. Fifty samples of blood from individuals suffering from thalassemia or iron deficiency anemia were obtained from different hospitals in Rawalpindi and Islamabad. The blood samples were scanned using atomic force microscopy (AFM) and laser scanning confocal microscopy (LSCM) to check the morphological changes in both types of anemia. According to the present study, thalassemia is most prevalent in females in the age group between 5 and 15 years old, and iron deficiency is most prevalent in females in the age groups of 16–25 and 36–45 years old. Erythrocyte morphology is the significant determinant for diagnosing and discriminating between these two types of diseases. The study reports deformed erythrocytes in anemic patients, which were different from the ones that existed in the control. Thalassemia erythrocytes showed a crenated shape, iron deficiency anemia erythrocytes showed an elliptocyte shape and healthy erythrocytes showed a biconcave disk shape when using AFM and LSCM. These techniques seem to be very promising, cheap and less time consuming in determining the structure–function relationship of erythrocytes of thalassemic and iron deficiency anemic patients. The results of LSCM and AFM are quite useful in determining the morphological changes in erythrocytes and to study the disease at the molecular level within short period of time. Hence, we encourage

  3. Superresolution upgrade for confocal spinning disk systems using image scanning microscopy (Conference Presentation)

    Science.gov (United States)

    Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg

    2017-02-01

    Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).

  4. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    Directory of Open Access Journals (Sweden)

    Nohra E. Beltran

    2013-01-01

    Full Text Available The gastric mucosa ischemic tissular damage plays an important role in critical care patients’ outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine. The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10% for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (. Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia.

  5. High resolution, high speed, long working distance, large field of view confocal fluorescence microscope.

    Science.gov (United States)

    Pacheco, Shaun; Wang, Chengliang; Chawla, Monica K; Nguyen, Minhkhoi; Baggett, Brend K; Utzinger, Urs; Barnes, Carol A; Liang, Rongguang

    2017-10-17

    Confocal fluorescence microscopy is often used in brain imaging experiments, however conventional confocal microscopes are limited in their field of view, working distance, and speed for high resolution imaging. We report here the development of a novel high resolution, high speed, long working distance, and large field of view confocal fluorescence microscope (H2L2-CFM) with the capability of multi-region and multifocal imaging. To demonstrate the concept, a 0.5 numerical aperture (NA) confocal fluorescence microscope is prototyped with a 3 mm × 3 mm field of view and 12 mm working distance, an array of 9 beams is scanned over the field of view in 9 different regions to speed up the acquisition time by a factor of 9. We test this custom designed confocal fluorescence microscope for future use with brain clarification methods to image large volumes of the brain at subcellular resolution. This multi-region and multi-spot imaging method can be used in other imaging modalities, such as multiphoton microscopes, and the field of view can be extended well beyond 12 mm × 12 mm.

  6. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    Science.gov (United States)

    Beltran, Nohra E.; Garcia, Laura E.; Garcia-Lorenzana, Mario

    2013-01-01

    The gastric mucosa ischemic tissular damage plays an important role in critical care patients' outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine). The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10%) for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (P < 0.01). Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia. PMID:23841094

  7. Depth elemental imaging of forensic samples by confocal micro-XRF method.

    Science.gov (United States)

    Nakano, Kazuhiko; Nishi, Chihiro; Otsuki, Kazunori; Nishiwaki, Yoshinori; Tsuji, Kouichi

    2011-05-01

    Micro-XRF is a significant tool for the analysis of small regions. A micro-X-ray beam can be created in the laboratory by various focusing X-ray optics. Previously, nondestructive 3D-XRF analysis had not been easy because of the high penetration of fluorescent X-rays emitted into the sample. A recently developed confocal micro-XRF technique combined with polycapillary X-ray lenses enables depth-selective analysis. In this paper, we applied a new tabletop confocal micro-XRF system to analyze several forensic samples, that is, multilayered automotive paint fragments and leather samples, for use in the criminaliztics. Elemental depth profiles and mapping images of forensic samples were successfully obtained by the confocal micro-XRF technique. Multilayered structures can be distinguished in forensic samples by their elemental depth profiles. However, it was found that some leather sheets exhibited heterogeneous distribution. To confirm the validity, the result of a conventional micro-XRF of the cross section was compared with that of the confocal micro-XRF. The results obtained by the confocal micro-XRF system were in approximate agreement with those obtained by the conventional micro-XRF. Elemental depth imaging was performed on the paint fragments and leather sheets to confirm the homogeneity of the respective layers of the sample. The depth images of the paint fragment showed homogeneous distribution in each layer expect for Fe and Zn. In contrast, several components in the leather sheets were predominantly localized.

  8. Dermoscopic and reflectance confocal microscopic presentation of Hailey-Hailey disease: A case series.

    Science.gov (United States)

    Oliveira, A; Arzberger, E; Pimentel, B; de Sousa, V C; Leal-Filipe, P

    2017-08-07

    Hailey-Hailey disease is a rare inherited acantholytic skin disorder characterized by heterogeneous clinical presentation. Its differential diagnosis might be wide, including other genodermatoses, inflammatory, and infectious skin diseases. Although histopathology remains as diagnostic gold standard, noninvasive techniques such as dermoscopy and reflectance confocal microscopy may assist clinical examination. Herein, we aim to further characterize the dermoscopic and reflectance confocal microscopic presentation of Hailey-Hailey disease with histologic correlation. Eight patients with Hailey-Hailey disease were consecutively recruited. All patients were examined using dermoscopy and reflectance confocal microscopy. In all cases, dermoscopy enabled the visualization of polymorphous vessels, including glomerular and linear-looped vessels, within a pink-whitish background. Reflectance confocal microscopy revealed wide suprabasilar partial acantholysis and clefting, crusts, dilated papillae with tortuous vessels, and inflammatory cells. Dyskeratosis, uplocated papillae, and adnexal sparing were also observed. Although definite diagnosis was obtained by histopathology in all cases, dermoscopy and reflectance confocal microscopy allowed the identification of common features (even in cases with dissimilar clinical presentation) that may support an early diagnosis of Hailey-Hailey disease, and its differentiation from other more frequent skin disorders. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Time-Lapse Förster Resonance Energy Transfer Imaging by Confocal Laser Scanning Microscopy for Analyzing Dynamic Molecular Interactions in the Plasma Membrane of B Cells.

    Science.gov (United States)

    Sohn, Hae Won; Brzostowski, Joseph

    2018-01-01

    For decades, various Förster resonance energy transfer (FRET) techniques have been developed to measure the distance between interacting molecules. FRET imaging by the sensitized acceptor emission method has been widely applied to study the dynamical association between two molecules at a nanometer scale in live cells. Here, we provide a detailed protocol for FRET imaging by sensitized emission using a confocal laser scanning microscope to analyze the interaction of the B cell receptor (BCR) with the Lyn-enriched lipid microdomain on the plasma membrane of live cells upon antigen binding, one of the earliest signaling events in BCR-mediated B cell activation.

  10. A novel method for enhancing the lateral resolution and image SNR in confocal microscopy

    Science.gov (United States)

    Chen, Youhua; Zhu, Dazhao; Fang, Yue; Kuang, Cuifang; Liu, Xu

    2017-12-01

    There is always a tradeoff between the resolution and the signal-to-noise ratio (SNR) in confocal microscopy. In particular, the pinhole size is very important for maintaining a balance between them. In this paper, we propose a method for improving the lateral resolution and image SNR in confocal microscopy without making any changes to the hardware. By using the fluorescence emission difference (FED) approach, we divide the images acquired by different pinhole sizes into one image acquired by the central pinhole and several images acquired by ring-shaped pinholes. Then, they are added together with the deconvolution method. Simulation and experimental results for fluorescent particles and cells show that our method can achieve a far better resolution than a large pinhole and a higher SNR than a small pinhole. Moreover, our method can improve the performance of classic confocal laser scanning microscopy (CLSM) to a certain extent, especially CLSM with a continuously variable pinhole.

  11. Studying cell behavior in whole zebrafish embryos by confocal live imaging: application to hematopoietic stem cells.

    Science.gov (United States)

    Renaud, Olivier; Herbomel, Philippe; Kissa, Karima

    2011-11-10

    Confocal live imaging is a key tool for studying cell behavior in the whole zebrafish embryo. Here we provide a detailed protocol that is adaptable for imaging any progenitor cell behavior in live zebrafish embryos. As an example, we imaged the emergence of the first hematopoietic stem cells from the aorta. We discuss the importance of selecting the appropriate zebrafish transgenic line as well as methods for immobilization of embryos to be imaged. In addition, we highlight the confocal microscopy acquisition parameters required for stem cell imaging and the software tools we used to analyze 4D movies. The whole protocol takes 2 h 15 min and allows confocal live imaging from a few hours to several days.

  12. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging.

    Science.gov (United States)

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-05-05

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  13. Application of digital image quality criteria to optimize the confocal microscope setup

    Science.gov (United States)

    Kriete, Andres

    1994-04-01

    This paper discusses how digital image quality criteria help to optimize image quality, in particular for applications in laser scanning microscopy. Image quality considerations offer a uniform description of the available transfer characteristics, which are summed up and weighted properly to finally represent the system by a single number. In the spatial domain we can measure sharpness and contrast of the (digital) volumes by analyzing intensities and their local dependencies in a statistical fashion. This includes sum modulus difference, gray level variance, and lateral inhibition. Based on information theory, the criterion volume fidelity takes into account the knowledge of the spatial structure of a test object and compares the intensities with those present in the final digital image. Applications presented here include measurement of image quality improvement when going from non-confocal to confocal imaging, testing of new confocal system designs and the evaluation of digital post-processing methods. Limitations in the presence of noise are discussed.

  14. Confocal laser endomicroscopy in the "in vivo" histological diagnosis of the gastrointestinal tract.

    Science.gov (United States)

    De Palma, Giovanni D

    2009-12-14

    Recent technological advances in miniaturization have allowed for a confocal scanning microscope to be integrated into a conventional flexible endoscope, or into trans-endoscopic probes, a technique now known as confocal endomicroscopy or confocal laser endomicroscopy. This newly-developed technology has enabled endoscopists to collect real-time in vivo histological images or "virtual biopsies" of the gastrointestinal mucosa during endoscopy, and has stimulated significant interest in the application of this technique in clinical gastroenterology. This review aims to evaluate the current data on the technical aspects and the utility of this new technology in clinical gastroenterology and its potential impact in the future, particularly in the screening or surveillance of gastrointestinal neoplasia.

  15. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    Science.gov (United States)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

  16. Use of Corneal Confocal Microscopy to Detect Corneal Nerve Loss and Increased Dendritic Cells in Patients With Multiple Sclerosis.

    Science.gov (United States)

    Bitirgen, Gulfidan; Akpinar, Zehra; Malik, Rayaz A; Ozkagnici, Ahmet

    2017-07-01

    Multiple sclerosis (MS) is characterized by demyelination, axonal degeneration, and inflammation. Corneal confocal microscopy has been used to identify axonal degeneration in several peripheral neuropathies. To assess corneal subbasal nerve plexus morphologic features, corneal dendritic cell (DC) density, and peripapillary retinal nerve fiber layer (RNFL) thickness in patients with MS. This single-center, cross-sectional comparative study was conducted at a tertiary referral university hospital between May 27, 2016, and January 30, 2017. Fifty-seven consecutive patients with relapsing-remitting MS and 30 healthy, age-matched control participants were enrolled in the study. Corneal subbasal nerve plexus measures and DC density were quantified in images acquired with the laser scanning in vivo corneal confocal microscope, and peripapillary RNFL thickness was measured with spectral-domain optical coherence tomography. Corneal nerve fiber density, nerve branch density, nerve fiber length, DC density, peripapillary RNFL thickness, and association with the severity of neurologic disability as assessed by the Kurtzke Expanded Disability Status Scale (score range, 0-10; higher scores indicate greater disability) and Multiple Sclerosis Severity Score (score range, 0.01-9.99; higher scores indicate greater severity). Of the 57 participants with MS, 42 (74%) were female and the mean (SD) age was 35.4 (8.9) years; of the 30 healthy controls, 19 (63%) were female and the mean (SD) age was 34.8 (10.2) years. Corneal nerve fiber density (mean [SE] difference, -6.78 [2.14] fibers/mm2; 95% CI, -11.04 to -2.52; P = .002), nerve branch density (mean [SE] difference, -17.94 [5.45] branches/mm2; 95% CI, -28.77 to -7.10; P = .001), nerve fiber length (mean [SE] difference, -3.03 [0.89] mm/mm2; 95% CI, -4.81 to -1.25; P = .001), and the mean peripapillary RNFL thickness (mean [SE] difference, -17.06 [3.14] μm; 95% CI, -23.29 to -10.82; P < .001) were reduced in patients with MS compared

  17. Clinical use of in vivo confocal microscopy through focusing in corneal refractive surgery.

    Science.gov (United States)

    Ying, Li; Xiao, Zhang; Liuxueying, Zhong; Yumei, Jin

    2006-11-01

    To illustrate the use of in vivo confocal microscopy through focusing to observe normal cornea and corneal wound healing after excimer laser refractive surgery. A total of 197 eyes, including both unoperated eyes and eyes that had undergone LASIK, photorefractive keratectomy (PRK), or laser epithelial keratomileusis (LASEK), were examined using in vivo confocal microscopy through focusing. Images of the various corneal layers resolved by confocal microscopy through focusing were recorded and analyzed. Pachymetry of the cornea, epithelium, and stroma was also recorded for all eyes. The t test was used to evaluate the differences between unoperated eyes and postoperative eyes and the change in corneal pachymetry preoperatively to postoperatively with each type of surgery. A P value <.05 was considered statistically significant. Each layer of the cornea could be resolved in unoperated eyes and eyes that had undergone refractive surgery. Wound healing could be followed over time using confocal microscopy through focusing. In eyes that underwent PRK, at 1 month postoperatively, the entire cornea and stroma were thinner than preoperatively, whereas the epithelial layer was statistically significantly thicker (P<.05). Haze after PRK is seen as reflectivity of subepithelial anterior stroma. No clinically significant haze was observed in eyes that underwent LASEK or LASIK. The features of the eyes that underwent LASIK were the same as those of unoperated eyes. Confocal microscopy through focusing was useful in documenting cellular morphology in unoperated corneas and corneas that had undergone refractive surgery. Wound-healing characteristics of eyes that had undergone refractive surgery were also documented using confocal microscopy.

  18. Localizing Proteins in Fixed Giardia lamblia and Live Cultured Mammalian Cells by Confocal Fluorescence Microscopy.

    Science.gov (United States)

    Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E

    2016-01-01

    Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes.

  19. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023% PC5, 0.00095% PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm-1). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  20. Ex vivo confocal imaging with contrast agents for the detection of oral potentially malignant lesions.

    Science.gov (United States)

    El Hallani, S; Poh, C F; Macaulay, C E; Follen, M; Guillaud, M; Lane, P

    2013-06-01

    We investigated the potential use of real-time confocal microscopy in the non-invasive detection of occult oral potentially malignant lesions. Our objectives were to select the best fluorescence contrast agent for cellular morphology enhancement, to build an atlas of confocal microscopic images of normal human oral mucosa, and to determine the accuracy of confocal microscopy to recognize oral high-grade dysplasia lesions on live human tissue. Five clinically used fluorescent contrast agents were tested in vitro on cultured human cells and validated ex vivo on human oral mucosa. Images acquired ex vivo from normal and diseased human oral biopsies with bench-top fluorescent confocal microscope were compared to conventional histology. Image analyzer software was used as an adjunct tool to objectively compare high-grade dysplasia versus low-grade dysplasia and normal epithelium. Acriflavine Hydrochloride provided the best cellular contrast by preferentially staining the nuclei of the epithelium. Using topical application of Acriflavine Hydrochloride followed by confocal microscopy, we could define morphological characteristics of each cellular layer of the normal human oral mucosa, building an atlas of histology-like images. Applying this technique to diseased oral tissue specimen, we were also able to accurately diagnose the presence of high-grade dysplasia through the increased cellularity and changes in nuclear morphological features. Objective measurement of cellular density by quantitative image analysis was a strong discriminant to differentiate between high-grade dysplasia and low-grade dysplasia lesions. Pending clinical investigation, real-time confocal microscopy may become a useful adjunct to detect precancerous lesions that are at high risk of cancer progression, direct biopsy and delineate excision margins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Changing paradigms in dermatology: confocal microscopy in clinical and surgical dermatology.

    Science.gov (United States)

    González, Salvador; Swindells, Kirsty; Rajadhyaksha, Milind; Torres, Abel

    2003-01-01

    The current practice of pathology and dermatopathology depends upon the evaluation of tissue in some manner extirpated from the patient and then processed and stained. While high resolution of detail can be accomplished by this method, there are certain risks and disadvantages. Recent imaging techniques now allow for a potential of achieving noninvasive high-resolution analysis of lesions in situ in the patient. Of these, Reflectance mode confocal microscopy offers the highest resolution imaging comparable to routine histology. Being entirely non invasive, skin can be observed in its native, dynamic state. This chapter will review the fundamentals of in vivo confocal imaging and the clinical applications in general and surgical dermatology.

  2. Quantitative of pesticide residue on the surface of navel orange by confocal microscopy Raman spectrometer

    Directory of Open Access Journals (Sweden)

    Yande Liu

    2015-03-01

    Full Text Available The potential of Confocal micro-Raman spectroscopy in the quantitative analysis of pesticide (Chlorpyrifos, Omethoate residues on orange surface is investigated in this work. Quantitative analysis models were established by partial least squares (PLS using different preprocessing methods (Smoothing, First derivative, MSC, Baseline for pesticide residues. For pesticide residues, the higher correlation coefficients (r is 0.972 and 0.943, the root mean square error of prediction (RMSEP is 2.05% and 2.36%, respectively. It is therefore clear that Confocal micro-Raman spectroscopy techniques enable rapid, nondestructive and reliable measurements, so Raman spectrometry appears to be a promising tool for pesticide residues.

  3. Numerical study of a confocal ultrasonic setup for creation of cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, Maxime, E-mail: maxime.lafond@inserm.fr; Chavrier, Françoise; Prieur, Fabrice [Inserm, U1032, LabTau, Lyon, F-69003 (France); Université de Lyon, Lyon, F-69003 (France); Université Lyon 1, Lyon, F-69003 (France); Mestas, Jean-Louis; Lafon, Cyril [Inserm, U1032, LabTau, Lyon, F-69003 (France); Université de Lyon, Lyon, F-69003 (France); Université Lyon 1, Lyon, F-69003 (France); Caviskills SAS, Vaulx-En-Velin, F-69120 (France)

    2015-10-28

    Acoustic cavitation is used for various therapeutic applications such as local enhancement of drug delivery, histotripsy or hyperthermia. One of the utmost important parameter for cavitation creation is the rarefaction pressure. The typical magnitude of the rarefaction pressure required to initiate cavitation from gas dissolved in tissue is beyond the range of the megapascal. Because nonlinear effects need to be taken into account, a numerical simulator based on the Westervelt equation was used to study the pressure waveform and the acoustic field generated by a setup for creation of cavitation consisting of two high intensity focused ultrasound transducers mounted confocally. At constant acoustic power, simulations with only one and both transducers from the confocal setup showed that the distortion of the pressure waveform due to the combined effects of nonlinearity and diffraction is less pronounced when both confocal transducers are used. Consequently, the confocal setup generates a greater peak negative pressure at focus which is more favorable for cavitation initiation. Comparison between the confocal setup and a single transducer with the same total emitting surface puts in evidence the role of the spatial separation of the two beams. Furthermore, it has been previously shown that the location of the peak negative pressure created by a single transducer shifts from focus towards the transducers in the presence of nonlinear effects. The simulator was used to study a configuration where the acoustical axes of transducers intersect on the peak negative pressure instead of the geometrical focus. For a representative confocal setup, namely moderate nonlinear effects, a 2% increase of the peak negative pressure and 8% decrease of the peak positive pressure resulted from this configuration. These differences tend to increase by increasing nonlinear effects. Although the optimal position of the transducers varies with the nonlinear regimen, the intersection point

  4. Optical clearing assisted confocal microscopy of ex vivo transgenic mouse skin

    Science.gov (United States)

    Song, Eunjoo; Ahn, YoonJoon; Ahn, Jinhyo; Ahn, Soyeon; Kim, Changhwan; Choi, Sanghoon; Boutilier, Richard Martin; Lee, Yongjoong; Kim, Pilhan; Lee, Ho

    2015-10-01

    We examined the optical clearing assisted confocal microscopy of the transgenic mouse skin. The pinna and dorsal skin were imaged with a confocal microscope after the application of glycerol and FocusClear. In case of the glycerol-treated pinna, the clearing was minimal due to the inefficient permeability. However, the imaging depth was improved when the pinna was treated with FocusClear. In case of dorsal skin, we were able to image deeply to the subcutaneous connective tissue with both agents. Various skin structures such as the vessel, epithelium cells, cartilage, dermal cells, and hair follicles were clearly imaged.

  5. Comparison of Noncontact Specular and Confocal Microscopy for Evaluation of Corneal Endothelium.

    Science.gov (United States)

    Huang, Jianyan; Maram, Jyotsna; Tepelus, Tudor C; Sadda, Srinivas R; Chopra, Vikas; Lee, Olivia L

    2017-03-24

    To compare endothelial cell analysis obtained by noncontact specular and confocal microscopy, using the Konan NSP-9900 and Nidek ConfoScan4 systems, respectively. Three groups including 70 healthy eyes, 49 eyes with Fuchs endothelial corneal dystrophy (FECD), and 78 eyes with glaucoma were examined with both the Konan NSP-9900 specular microscope and the Nidek ConfocScan4 confocal microscope. Certified graders at the Doheny Image Reading Center compared corneal endothelial images from both instruments side by side to assess image quality. Endothelial cell density (ECD) measurements were calculated and compared using three different modalities: (1) each instrument's fully automated analysis; (2) each instrument's semiautomatic analysis with grader input; and (3) manual grading methods by certified grader. All normal eyes yielded gradable endothelial images, and most but not all glaucomatous eyes yielded images with high enough image quality to allow grading. In addition, in corneas with severe FECD, poor image quality precluded ECD grading by specular microscopy in 20 eyes (40.8%) but in only 4 (8.2%) confocal images from the same eyes. For the gradable images, the ECD values obtained using the manual grading method from either device were comparable with no statistically significant difference (P>0.05) between specular and confocal devices. Machine-generated ECD values were significantly different from manual results, measuring greater in all cases with specular microscopy. Machine-generated ECD values from confocal microscopy also differed significantly from manual determinations, but not in a consistent direction. Semiautomatic methods for both instruments obtained clinically acceptable ECD values. Automatic machine-generated ECD measurements differed significantly from manual assessments of corneal endothelium by both specular and confocal microscopy, suggesting that automated results should be used with caution. But ECD values derived manually were comparable

  6. Measuring skin penetration by confocal Raman microscopy (CRM): correlation to results from conventional experiments

    Science.gov (United States)

    Lunter, Dominique; Daniels, Rolf

    2016-03-01

    Confocal Raman microscopy has become an advancing technique in the characterization of drug transport into the skin. In this study the skin penetration of a local anesthetic from a semisolid preparation was investigated. Furthermore, the effect of the chemical enhancers propylene glycol and POE-23-lauryl ether on its penetration was investigated. The results show that confocal Raman microscopy may provide detailed information on the penetration of APIs into the skin and may elucidate their distribution within the skin with high resolution. The results of the CRM analysis are fully in line with those of conventional permeation and penetration experiments.

  7. A confocal optical microscope for detection of single impurities in a bulk crystal at cryogenic temperatures.

    Science.gov (United States)

    Karlsson, Jenny; Rippe, Lars; Kröll, Stefan

    2016-03-01

    A compact sample-scanning confocal optical microscope for detection of single impurities below the surface of a bulk crystal at cryogenic temperatures is described. The sample, lens, and scanners are mounted inside a helium bath cryostat and have a footprint of only 19 × 19 mm. Wide field imaging and confocal imaging using a Blu-ray lens immersed in liquid helium are demonstrated with excitation at 370 nm. A spatial resolution of 300 nm and a detection efficiency of 1.6% were achieved.

  8. Straightness measurements with a reflection confocal optical system-an experimental study.

    Science.gov (United States)

    Matsuda, Kiyofumi; Roy, Maitreyee; Eiju, Tomoaki; O'Byrne, John W; Sheppard, Colin J R

    2002-07-01

    Straightness measurement is an important technique in the field of mechanical engineering. We previously proposed a novel optical method for measuring straightness of motion using reflection confocal optics. The advantage of this method in comparison with the transmission optical systems of others [Opt. Laser Technol. 6, 166 (1974)] is that the lateral displacements in the two axes perpendicular to the optical axis and the rotation angles around all three axes can be measured simultaneously. We demonstrate straightness measurements using reflection confocal optics and show these measurements to be in good agreement with the theory.

  9. Through the looking glass : Confocal microscopy imaging of basal cell carcinoma

    NARCIS (Netherlands)

    Kadouch, D.J.

    2017-01-01

    This thesis focuses on improving diagnosis and treatment for patients suffering from BCC. Although some aspects of optical coherence tomography imaging and Raman spectroscopy will be discussed in this thesis, it focuses mainly on incorporating reflectance confocal microscopy (RCM) as noninvasive

  10. Uses of probe-based confocal laser endomicroscopy: responses to a question to practitioners.

    Science.gov (United States)

    Paul, Navin; Ghassemi, Kevin A

    2011-11-14

    Confocal laser endomicroscopy is a novel imaging technology, which allows real-time visualization and interpretation of microscopic details in live tissues. Although several potential uses have been identified for this technology, no data are available regarding its real-world uses. We report the results of an email-based survey of experts in North America regarding their use of the technology.

  11. DTAF: an efficient probe to study cyanobacterial-plant interaction using confocal laser scanning microscopy (CLSM)

    NARCIS (Netherlands)

    Ahmed, M.; Stal, L.J.; Hasnain, S.

    2011-01-01

    A variety of microscopic techniques have been utilized to study cyanobacterial associations with plant roots, but confocal laser scanning microscopy (CLSM) is the least used due to the unavailability of a suitable fluorescent dye. Commonly used lectins have problems with their binding ability with

  12. DTAF: an efficient probe to study cyanobacterial-plant interaction using confocal laser scanning microscopy (CLSM).

    NARCIS (Netherlands)

    Ahmed, M.; Stal, L.J.; Hasnain, S.

    2011-01-01

    A variety of microscopic techniques have been utilized to study cyanobacterial associations with plant roots, but confocal laser scanning microscopy (CLSM) is the least used due to the unavailability of a suitable fluorescent dye. Commonly used lectins have problems with their binding ability with

  13. A method for analysis of lipid vesicle domain structure from confocal image data

    DEFF Research Database (Denmark)

    Husen, Peter Rasmussen; Fidorra, Matthias; Hartel, Steffen

    2012-01-01

    confocal imaging stacks. The technique involves projection of volumetric image data onto a triangulated surface mesh representation of the membrane, correction of photoselection effects and global motion of the vesicle during image acquisition and segmentation of the surface into domains using histograms....... The analysis allows for investigation of the morphology and size distribution of domains on the surface....

  14. In-vivo immunofluorescence confocal microscopy of herpes simplex virus type 1 keratitis

    Science.gov (United States)

    Kaufman, Stephen C.; Laird, Jeffery A.; Beuerman, Roger W.

    1996-05-01

    The white-light confocal microscope offers an in vivo, cellular-level resolution view of the cornea. This instrument has proven to be a valuable research and diagnostic tool for the study of infectious keratitis. In this study, we investigate the direct visualization of herpes simplex virus type 1 (HSV-1)-infected corneal epithelium, with in vivo confocal microscopy, using HSV-1 immunofluorescent antibodies. New Zealand white rabbits were infected with McKrae strain of HSV-1 in one eye; the other eye of each rabbit was used as an uninfected control. Four days later, the rabbits were anesthetized and a cellulose sponge was applied to each cornea, and a drop of direct HSV fluorescein-tagged antibody was placed on each sponge every 3 to 5 minutes for 1 hour. Fluorescence confocal microscopy was then performed. The HSV-infected corneas showed broad regions of hyperfluorescent epithelial cells. The uninfected corneas revealed no background fluorescence. Thus, using the confocal microscope with a fluorescent cube, we were able to visualize HSV-infected corneal epithelial cells tagged with a direct fluorescent antibody. This process may prove to be a useful clinical tool for the in vivo diagnosis of HSV keratitis.

  15. In vivo confocal Raman microspectroscopy of the skin: Noninvasive determination of molecular concentration profiles

    NARCIS (Netherlands)

    P.J. Caspers (Peter); G.W. Lucassen (Gerald); E.A. Carter (Elizabeth); H.A. Bruining (Hajo); G.J. Puppels (Gerwin)

    2001-01-01

    textabstractConfocal Raman spectroscopy is introduced as a noninvasive in vivo optical method to measure molecular concentration profiles in the skin. It is shown how it can be applied to determine the water concentration in the stratum corneum as a function of distance to the skin surface, with a

  16. An FFT-based Method for Attenuation Correction in Fluorescence Confocal Microscopy

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.; Bakker, M.

    1993-01-01

    A problem in three-dimensional imaging by a confocal scanning laser microscope (CSLM) in the (epi)fluorescence mode is the darkening of the deeper layers due to absorption and scattering of both the excitation and the fluorescence light. In this paper we propose a new method to correct for these

  17. An FFT-based method for attenuation correction in fluorescence confocal microscopy

    NARCIS (Netherlands)

    J.B.T.M. Roerdink (Jos); M. Bakker (Miente)

    1993-01-01

    htmlabstractA problem in three-dimensional imaging by a confocal scanning laser microscope (CSLM) in the (epi)fluorescence mode is the darkening of the deeper layers due to absorption and scattering of both the excitation and the fluorescence light. In this paper we propose a new method to correct

  18. Imaging inclusion complex formation in starch granules using confocal laser scanning microscopy

    NARCIS (Netherlands)

    Manca, Marianna; Woortman, Albert J. J.; Loos, Katja; Loi, Maria A.

    The tendency of amylose to form inclusion complexes with guest molecules has been an object of wide interest due to its fundamental role in food processing. Here we investigated the features of starch granules from several botanical sources using confocal laser scanning microscopy (CLSM) and

  19. Quantitative Live-Cell Confocal Imaging of 3D Spheroids in a High-Throughput Format.

    Science.gov (United States)

    Leary, Elizabeth; Rhee, Claire; Wilks, Benjamin T; Morgan, Jeffrey R

    2018-02-01

    Accurately predicting the human response to new compounds is critical to a wide variety of industries. Standard screening pipelines (including both in vitro and in vivo models) often lack predictive power. Three-dimensional (3D) culture systems of human cells, a more physiologically relevant platform, could provide a high-throughput, automated means to test the efficacy and/or toxicity of novel substances. However, the challenge of obtaining high-magnification, confocal z stacks of 3D spheroids and understanding their respective quantitative limitations must be overcome first. To address this challenge, we developed a method to form spheroids of reproducible size at precise spatial locations across a 96-well plate. Spheroids of variable radii were labeled with four different fluorescent dyes and imaged with a high-throughput confocal microscope. 3D renderings of the spheroid had a complex bowl-like appearance. We systematically analyzed these confocal z stacks to determine the depth of imaging and the effect of spheroid size and dyes on quantitation. Furthermore, we have shown that this loss of fluorescence can be addressed through the use of ratio imaging. Overall, understanding both the limitations of confocal imaging and the tools to correct for these limits is critical for developing accurate quantitative assays using 3D spheroids.

  20. Design and Performance of a Multi-Point Scan Confocal Microendoscope

    Directory of Open Access Journals (Sweden)

    Matthew D. Risi

    2014-11-01

    Full Text Available Confocal fluorescence microendoscopy provides high-resolution cellular-level imaging via a minimally invasive procedure, but requires fast scanning to achieve real-time imaging in vivo. Ideal confocal imaging performance is obtained with a point scanning system, but the scan rates required for in vivo biomedical imaging can be difficult to achieve. By scanning a line of illumination in one direction in conjunction with a stationary confocal slit aperture, very high image acquisition speeds can be achieved, but at the cost of a reduction in image quality. Here, the design, implementation, and experimental verification of a custom multi-point aperture modification to a line-scanning multi-spectral confocal microendoscope is presented. This new design improves the axial resolution of a line-scan system while maintaining high imaging rates. In addition, compared to the line-scanning configuration, previously reported simulations predicted that the multi-point aperture geometry greatly reduces the effects of tissue scatter on image quality. Experimental results confirming this prediction are presented.

  1. Confocal microscope is able to detect calcium metabolic in neuronal infection by toxoplasma gondii

    Science.gov (United States)

    Sensusiati, A. D.; Priya, T. K. S.; Dachlan, Y. P.

    2017-05-01

    Calcium metabolism plays a very important role in neurons infected by Toxoplasma. Detection of change of calcium metabolism of neuron infected by Toxoplasma and Toxoplasma requires the calculation both quantitative and qualitative method. Confocal microscope has the ability to capture the wave of the fluorescent emission of the fluorescent dyes used in the measurement of cell calcium. The purpose of this study was to prove the difference in calcium changes between infected and uninfected neurons using confocal microscopy. Neuronal culture of human-skin-derived neural stem cell were divided into 6 groups, consisting 3 uninfected groups and 3 infected groups. Among the 3 groups were 2 hours, 24 hours and 48 hours. The neuron Toxoplasma gondii ratio was 1:5. Observation of intracellular calcium of neuron and tachyzoite, evidence of necrosis, apoptosis and the expression of Hsp 70 of neuron were examined by confocal microscope. The normality of the data was analysed by Kolmogorov-Smirnov Test, differentiation test was checked by t2 Test, and ANOVAs, for correlation test was done by Pearson Correlation Test. The calcium intensity of cytosolic neuron and T. gondii was significantly different from control groups (p<0.05). There was also significant correlation between calcium intensity with the evidence of necrosis and Hsp70 expression at 2 hours after infection. Apoptosis and necrosis were simultaneously shown with calcium contribution in this study. Confocal microscopy can be used to measure calcium changes in infected and uninfected neurons both in quantitatively and qualitatively.

  2. Confocal laser induced fluorescence with comparable spatial localization to the conventional method

    Science.gov (United States)

    Thompson, Derek S.; Henriquez, Miguel F.; Scime, Earl E.; Good, Timothy N.

    2017-10-01

    We present measurements of ion velocity distributions obtained by laser induced fluorescence (LIF) using a single viewport in an argon plasma. A patent pending design, which we refer to as the confocal fluorescence telescope, combines large objective lenses with a large central obscuration and a spatial filter to achieve high spatial localization along the laser injection direction. Models of the injection and collection optics of the two assemblies are used to provide a theoretical estimate of the spatial localization of the confocal arrangement, which is taken to be the full width at half maximum of the spatial optical response. The new design achieves approximately 1.4 mm localization at a focal length of 148.7 mm, improving on previously published designs by an order of magnitude and approaching the localization achieved by the conventional method. The confocal method, however, does so without requiring a pair of separated, perpendicular optical paths. The confocal technique therefore eases the two window access requirement of the conventional method, extending the application of LIF to experiments where conventional LIF measurements have been impossible or difficult, or where multiple viewports are scarce.

  3. Confocal Raman-spectroscopy: analytical approach to solid dispersions and mapping of drugs.

    Science.gov (United States)

    Breitenbach, J; Schrof, W; Neumann, J

    1999-07-01

    To compare the physical state of a drug in a liquid with a polymeric matrix. Solid solutions of ibuprofen in polyvinylpyrrolidone were obtained from the hot melt extrusion technique. In order to investigate the physicochemical stability, content, and homogeneity of the formulation, the tablets produced by a subsequent calendering step were examined using confocal Raman spectroscopy. In addition, a dimeric vinylpyrrolidone was synthesized and used to compare the physical state of embedding in a polymeric matrix with a physical solution of the active in a solvent, i.e. the dimeric vinylpyrrolidone. The spatial resolution of confocal Raman spectroscopy was used to image the drug distribution in the final form. Confocal Raman spectroscopy has been successfully used to determine the state of ibuprofen in a solid matrix showing equivalence to a physical solution. Moreover, the physicochemical stability of the formulation under stress conditions and content, as well as homogeneity of drug distribution in the formulation matrix, has been examined with the same method, proving the efficiency of the approach. Confocal Raman spectroscopy offers a new approach for the analytical assessment of solid dispersions both covering the physical state as well as the distribution of the drug via its spatial resolution. Moreover, it is a promising tool for observing changes in a formulation due to physicochemical processes, e.g. recrystallisation and at the same time for locating the area where changes occur. Therefore, it may contribute to standard analytical methods to evaluate content and homogeneity.

  4. Double-confocal resonator for X-ray generation via intracavity Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, M. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    There has been a growing interest in developing compact X-ray sources through Thomson scattering of a laser beam by a relativistic electron beam. For higher X-ray flux it is desirable to have the scattering to occur inside an optical resonator where the laser power is higher. In this paper I propose a double-confocal resonator design optimized for head-on Thomson scattering inside an FEL oscillator and analyze its performance taking into account the diffraction and FEL gain. A double confocal resonator is equivalent to two confocal resonators in series. Such a resonator has several advantages: it couples electron beam through and X-ray out of the cavity with holes on cavity mirrors, thus allowing the system to be compact; it supports the FEL mode with minimal diffraction loss through the holes; it provides a laser focus in the forward direction for a better mode overlap with the electron beam; and it provides a focus at the same location in the backward direction for higher Thomson scattering efficiency; in addition, the mode size at the focal point and hence the Rayleigh range can be adjusted simply through intracavity apertures; furthermore, it gives a large mode size at the mirrors to reduce power loading. Simulations as well as analytical results will be presented. Also other configurations of intracavity Thomson scattering where the double-confocal resonator could be useful will be discussed.

  5. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  6. Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology

    NARCIS (Netherlands)

    Kassies, R.; van der Werf, Kees; Lenferink, Aufrid T.M.; Hunter, C.N.; Olsen, J.D.; Subramaniam, Vinod; Otto, Cornelis

    2005-01-01

    We present a custom-designed atomic force fluorescence microscope (AFFM), which can perform simultaneous optical and topographic measurements with single molecule sensitivity throughout the whole visible to near-infrared spectral region. Integration of atomic force microscopy (AFM) and confocal

  7. Imaging inflammation in mouse colon using a rapid stage-scanning confocal fluorescence microscope.

    Science.gov (United States)

    Saldua, Meagan A; Olsovsky, Cory A; Callaway, Evelyn S; Chapkin, Robert S; Maitland, Kristen C

    2012-01-01

    Large area confocal microscopy may provide fast, high-resolution image acquisition for evaluation of tissue in pre-clinical studies with reduced tissue processing in comparison to histology. We present a rapid beam and stage-scanning confocal fluorescence microscope to image cellular and tissue features along the length of the entire excised mouse colon. The beam is scanned at 8,333 lines/sec by a polygon scanning mirror while the specimen is scanned in the orthogonal axis by a motorized translation stage with a maximum speed of 7 mm/sec. A single 1 × 60 mm(2) field of view image spanning the length of the mouse colon is acquired in 10 s. Z-projection images generated from axial image stacks allow high resolution imaging of the surface of non-flat specimens. In contrast to the uniform size, shape, and distribution of colon crypts in confocal images of normal colon, confocal images of chronic bowel inflammation exhibit heterogeneous tissue structure with localized severe crypt distortion.

  8. Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy

    NARCIS (Netherlands)

    Selig, B.; Vermeer, K.A.; Rieger, B.; Hillenaar, T.; Hendriks, C.L.L.

    2015-01-01

    Background Manual and semi-automatic analyses of images, acquired in vivo by confocal microscopy, are often used to determine the quality of corneal endothelium in the human eye. These procedures are highly time consuming. Here, we present two fully automatic methods to analyze and quantify corneal

  9. Dynamic experimentation on the confocal laser scanning microscope : application to soft-solid, composite food materials

    NARCIS (Netherlands)

    Plucknett, K.P.; Pomfret, S.J.; Normand, V.; Ferdinando, D.; Veerman, C.; Frith, W.J.; Norton, I.T.

    2001-01-01

    Confocal laser scanning microscopy (CLSM) is used to follow the dynamic structural evolution of several phase-separated mixed biopolymer gel composites. Two protein/polysaccharide mixed gel systems were examined: gelatin/maltodextrin and gelatin/agarose. These materials exhibit 'emulsion-like'

  10. FFT-Based Methods for Nonlinear Image Restoration in Confocal Microscopy

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1994-01-01

    Recently we developed a new method for attenuation correction in 3D imaging by a confocal scanning laser microscope (CSLM) in the (epi)fluorescence mode. The fundamental element in our approach consisted of multiplying the measured fluorescent intensity by a correction factor involving a convolution

  11. In Vivo Human Skin Penetration Study of Sunscreens by Confocal Raman Spectroscopy.

    Science.gov (United States)

    Tippavajhala, Vamshi Krishna; de Oliveira Mendes, Thiago; Martin, Airton Abrahão

    2017-10-05

    This research work mainly deals with the application of confocal Raman spectroscopic technique to study in vivo human skin penetration of sunscreen products, as there are a lot of controversies associated with their skin penetration. Healthy human volunteers were tested for penetration of two commercial sunscreen products into their volar forearm skin for a period of 2 h. Measurements were taken before and after application of these sunscreen products. All the confocal Raman spectra were pre-processed and then subjected to multivariate two-dimensional principal component analysis and classical least squares analysis to determine the skin penetration of these sunscreens in comparison to the "sunscreen product spectrum" which was considered as the control. Score plots of principal component analysis of confocal Raman spectra indicated clear separation between the spectra before and after application of sunscreen products. Loading plots showed the maximum differences in the spectral region from 1590 to 1626 cm(-1) where the characteristic peak of the pure sunscreen products was observed. Classical least squares analysis has shown a significant penetration to a depth of 10 μm in the volar forearm skin of healthy human volunteers for both these sunscreen products. The results confirm that the penetration of these tested sunscreen products was restricted to stratum corneum and also prove that confocal Raman spectroscopy is a simple, fast, nondestructive, and noninvasive semi-quantitative analytical technique for these studies.

  12. Effects of photon reabsorption phenomena in confocal micro-photoluminescence measurements in crystalline silicon

    Science.gov (United States)

    Roigé, A.; Alvarez, J.; Jaffré, A.; Desrues, T.; Muñoz, D.; Martín, I.; Alcubilla, R.; Kleider, J.-P.

    2017-02-01

    Confocal micro-photoluminescence (PL) spectroscopy has become a powerful characterization technique for studying novel photovoltaic (PV) materials and structures at the micrometer level. In this work, we present a comprehensive study about the effects and implications of photon reabsorption phenomena on confocal micro-PL measurements in crystalline silicon (c-Si), the workhorse material of the PV industry. First, supported by theoretical calculations, we show that the level of reabsorption is intrinsically linked to the selected experimental parameters, i.e., focusing lens, pinhole aperture, and excitation wavelength, as they define the spatial extension of the confocal detection volume, and therefore, the effective photon traveling distance before collection. Second, we also show that certain sample properties such as the reflectance and/or the surface recombination velocity can also have a relevant impact on reabsorption. Due to the direct relationship between the reabsorption level and the spectral line shape of the resulting PL emission signal, reabsorption phenomena play a paramount role in certain types of micro-PL measurements. This is demonstrated by means of two practical and current examples studied using confocal PL, namely, the estimation of doping densities in c-Si and the study of back-surface and/or back-contacted Si devices such as interdigitated back contact solar cells, where reabsorption processes should be taken into account for the proper interpretation and quantification of the obtained PL data.

  13. Selective Bioparticle Retention and Characterization in a Chip-Integrated Confocal Ultrasonic Cavity

    DEFF Research Database (Denmark)

    Svennebring, J.; Manneberg, O.; Skafte-Pedersen, Peder

    2009-01-01

    We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field at the c...

  14. Confocal Microscopy and Flow Cytometry System Performance: Assessment of QA Parameters that affect data Quanitification

    Science.gov (United States)

    Flow and image cytometers can provide useful quantitative fluorescence data. We have devised QA tests to be used on both a flow cytometer and a confocal microscope to assure that the data is accurate, reproducible and precise. Flow Cytometry: We have provided two simple perform...

  15. Simulation with Python on transverse modes of the symmetric confocal resonator

    Science.gov (United States)

    Wang, Qing Hua; Qi, Jing; Ji, Yun Jing; Song, Yang; Li, Zhenhua

    2017-08-01

    Python is a popular open-source programming language that can be used to simulate various optical phenomena. We have developed a suite of programs to help teach the course of laser principle. The complicated transverse modes of the symmetric confocal resonator can be visualized in personal computers, which is significant to help the students understand the pattern distribution of laser resonator.

  16. Confocal signal evaluation algorithms for surface metrology: uncertainty and numerical efficiency.

    Science.gov (United States)

    Rahlves, Maik; Roth, Bernhard; Reithmeier, Eduard

    2017-07-20

    Confocal microscopy is one of the dominating measurement techniques in surface metrology, with an enhanced lateral resolution compared to alternative optical methods. However, the axial resolution in confocal microscopy is strongly dependent on the accuracy of signal evaluation algorithms, which are limited by random noise. Here, we discuss the influence of various noise sources on confocal intensity signal evaluating algorithms, including center-of-mass, parabolic least-square fit, and cross-correlation-based methods. We derive results in closed form for the uncertainty in height evaluation on surface microstructures, also accounting for the number of axially measured intensity values and a threshold that is commonly applied before signal evaluation. The validity of our results is verified by numerical Monte Carlo simulations. In addition, we implemented all three algorithms and analyzed their numerical efficiency. Our results can serve as guidance for a suitable choice of measurement parameters in confocal surface topography measurement, and thus lead to a shorter measurement time in practical applications.

  17. Various confocal scan features of cysts and trophozoites in cases with Acanthamoeba keratitis.

    Science.gov (United States)

    Rezaei Kanavi, Mozhgan; Naghshgar, Nima; Javadi, Mohammad Ali; Sadat Hashemi, Marzieh

    2012-01-01

    To describe the various confocal scan features of cysts and trophozoites in patients with Acanthamoeba keratitis and to specify the associated findings. In a retrospective study of cases between June 2005 and June 2010, we reviewed all the recorded confocal scan images of patients given a high index in regards to clinical suspicion of Acanthamoeba keratitis, in order to specify the various morphometric and morphologic features of Acanthamoeba cysts and trophozoites and to characterize the associated findings in such cases. Confocal scan images of 170 eyes from 170 patients were reviewed. Bilayered, target-shaped, coffee-bean and rod-shaped appearances of the cysts were observed in 100%, 82.9%, 36.4%, and 17.5% of cases, respectively. Single file arrangement of the cysts was noticed in 22 cases. The mean size of the cysts was 18.9 µm (range 10-39.6). In all cases, trophozoites were observed as pear-shaped or irregularly wedge-shaped structures, some surrounded by a brilliant halo and some exhibiting fine pseudopodia-like extensions, with mean size of 30.2 µm (range 19.2-55.6). Keratoneuritis and the anterior stromal honeycomb pattern were seen in 28.2% and 5.9% of cases, respectively. To our knowledge, this is the largest case-series study on confocal scan features of Acanthamoeba cysts and trophozoites in cases with clinical diagnosis of Acanthamoeba keratitis specifying the morphologic and morphometric criteria of this infectious organism and the associated findings.

  18. Single-Molecule Confocal FRET Microscopy to Dissect Conformational Changes in the Catalytic Cycle of DNA Topoisomerases.

    Science.gov (United States)

    Hartmann, S; Weidlich, D; Klostermeier, D

    2016-01-01

    Molecular machines undergo large-scale conformational changes during their catalytic cycles that are linked to their biological functions. DNA topoisomerases are molecular machines that interconvert different DNA topoisomers and resolve torsional stress that is introduced during cellular processes that involve local DNA unwinding. DNA gyrase catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. During its catalytic cycle, gyrase undergoes large-scale conformational changes that drive the supercoiling reaction. These conformational changes can be followed by single-molecule Förster resonance energy transfer (FRET). Here, we use DNA gyrase from Bacillus subtilis as an illustrative example to present strategies for the investigation of conformational dynamics of multisubunit complexes. We provide a brief introduction into single-molecule FRET and confocal microscopy, with a focus on practical considerations in sample preparation and data analysis. Different strategies in the preparation of donor-acceptor-labeled molecules suitable for single-molecule FRET experiments are outlined. The insight into the mechanism of DNA supercoiling by gyrase gained from single-molecule FRET experiment is summarized. The general strategies described here can also be applied to investigate conformational changes and their link to biological function of other multisubunit molecular machines. © 2016 Elsevier Inc. All rights reserved.

  19. In vivo confocal microscopy for the oral cavity: Current state of the field and future potential.

    Science.gov (United States)

    Maher, N G; Collgros, H; Uribe, P; Ch'ng, S; Rajadhyaksha, M; Guitera, P

    2016-03-01

    Confocal microscopy (CM) has been shown to correlate with oral mucosal histopathology in vivo. The purposes of this review are to summarize what we know so far about in vivo CM applications for oral mucosal pathologies, to highlight some current developments with CM devices relevant for oral applications, and to formulate where in vivo CM could hold further application for oral mucosal diagnosis and management. Ovid Medline® and/or Google® searches were performed using the terms 'microscopy, confocal', 'mouth neoplasms', 'mouth mucosa', 'leukoplakia, oral', 'oral lichen planus', 'gingiva', 'cheilitis', 'taste', 'inflammatory oral confocal', 'mucosal confocal' and 'confocal squamous cell oral'. In summary, inclusion criteria were in vivo use of any type of CM for the human oral mucosa and studies on normal or pathological oral mucosa. Experimental studies attempting to identify proteins of interest and microorganisms were excluded. In total 25 relevant articles were found, covering 8 main topics, including normal oral mucosal features (n=15), oral dysplasia or neoplasia (n=7), inflamed oral mucosa (n=3), taste impairment (n=3), oral autoimmune conditions (n=2), pigmented oral pathology/melanoma (n=1), delayed type hypersensitivity (n=1), and cheilitis glandularis (n=1). The evidence for using in vivo CM in these conditions is poor, as it is limited to mainly small descriptive studies. Current device developments for oral CM include improved probe design. The authors propose that future applications for in vivo oral CM may include burning mouth syndrome, intra-operative mapping for cancer surgery, and monitoring and targeted biopsies within field cancerization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Confocal Raman microscopy for in depth analysis in the field of cultural heritage

    Science.gov (United States)

    Lorenzetti, G.; Striova, J.; Zoppi, A.; Castellucci, E. M.

    2011-05-01

    In the field of cultural heritage, the main concern when a sample is analyzed is its safeguard, and this means that non-destructive techniques are required. In this work, we show how confocal Raman microscopy (CRM) may be successfully applied in the study of works of art as a valuable alternative to other well established techniques. CRM with a metallurgical objective was tested for the in depth study of thin samples that are of interest in the field of cultural heritage. The sensitivity of the instrumentation was first evaluated by analyzing single layers of pure polyethylene terephthalate (PET) films having a thickness of 12, 25, and 50 μm, respectively, and a multilayer sample of polypropylene (PP) and polyethylene (PE). Subsequently, the technique was applied to the analysis of historical dyed cotton yarns in order to check whether it was possible to achieve a better discrimination of the fibres' signals for an easier identification. A substantial improvement of the signal to noise ratio was found in the confocal arrangement with respect to the non-confocal one, suggesting the use of this technique for this kind of analysis in the field of cultural heritage. Furthermore, Raman spectroscopy in confocal configuration was exploited in the evaluation of cleaning performed on the mural painting specimens, treated with acrylic resin (Paraloid B72). Confocal Raman experiments were performed before and after laser cleaning (at different conditions) in order to monitor the presence and to approximate the polymer thickness: the method proved to be a valid comparative tool in assessment of cleaning efficiencies.

  1. In vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Kobayashi A

    2014-02-01

    Full Text Available Akira Kobayashi, Tomomi Higashide, Hideaki Yokogawa, Natsuko Yamazaki, Toshinori Masaki, Kazuhisa Sugiyama Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan Objective: To report the in vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta (OI with special attention to the abnormality of Bowman's layer and sub-Bowman's fibrous structures (K-structures. Patients and methods: Two patients (67-year-old male and his 26-year-old son with OI type I were included in this study. Slit lamp biomicroscopic and in vivo laser confocal microscopic examinations were performed for both patients. Central corneal thickness and central endothelial cell density were also measured. Results: Although the corneas looked clear with normal endothelial density for both eyes in both patients, they were quite thin (386 µm oculus dexter (OD (the right eye and 384 µm oculus sinister (OS (the left eye in the father and 430 µm OD and 425 µm OS in the son. In both patients, slit lamp biomicroscopic and in vivo laser confocal microscopic examination showed similar results. Anterior corneal mosaics produced by rubbing the eyelid under fluorescein were completely absent in both eyes. In vivo laser confocal microscopy revealed an absent or atrophic Bowman's layer; a trace of a presumed Bowman's layer and/or basement membrane was barely visible with high intensity. Additionally, K-structures were completely absent in both eyes. Conclusion: The absence of K-structures and fluorescein anterior corneal mosaics strongly suggested an abnormality of Bowman's layer in these OI patients. Keywords: osteogenesis imperfecta, K-structure, confocal microscopy, Bowman's layer

  2. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (pspectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  3. Confocal Microscopy of Unfixed Breast Needle Core Biopsies: A Comparison to Fixed and Stained Sections

    Science.gov (United States)

    2009-01-01

    Background Needle core biopsy, often in conjunction with ultrasonic or stereotactic guided techniques, is frequently used to diagnose breast carcinoma in women. Confocal scanning laser microscopy (CSLM) is a technology that provides real-time digital images of tissues with cellular resolution. This paper reports the progress in developing techniques to rapidly screen needle core breast biopsy and surgical specimens at the point of care. CSLM requires minimal tissue processing and has the potential to reduce the time from excision to diagnosis. Following imaging, specimens can still be submitted for standard histopathological preparation. Methods Needle core breast specimens from 49 patients were imaged at the time of biopsy. These lesions had been characterized under the Breast Imaging Reporting And Data System (BI-RADS) as category 3, 4 or 5. The core biopsies were imaged with the CSLM before fixation. Samples were treated with 5% citric acid and glycerin USP to enhance nuclear visibility in the reflectance confocal images. Immediately following imaging, the specimens were fixed in buffered formalin and submitted for histological processing and pathological diagnosis. CSLM images were then compared to the standard histology. Results The pathologic diagnoses by standard histology were 7 invasive ductal carcinomas, 2 invasive lobular carcinomas, 3 ductal carcinomas in-situ (CIS), 21 fibrocystic changes/proliferative conditions, 9 fibroadenomas, and 5 other/benign; two were excluded due to imaging difficulties. Morphologic and cellular features of benign and cancerous lesions were identified in the confocal images and were comparable to standard histologic sections of the same tissue. Conclusion CSLM is a technique with the potential to screen needle core biopsy specimens in real-time. The confocal images contained sufficient information to identify stromal reactions such as fibrosis and cellular proliferations such as intra-ductal and infiltrating carcinoma, and

  4. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    Full Text Available Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  5. Interfacial shape and contact-angle measurement of transparent samples with confocal interference microscopy.

    Science.gov (United States)

    Fischer, D G; Ovryn, B

    2000-04-01

    A model has been developed that predicts the effective optical path through a thick, refractive specimen on a reflective substrate, as measured with a scanning confocal interference microscope equipped with a high-numerical-aperture objective. Assuming that the effective pinhole of the confocal microscope has an infinitesimal diameter, only one ray in the illumination bundle (the magic ray) contributes to the differential optical path length (OPL). A pinhole with finite diameter, however, allows rays within a small angular cone centered on the magic ray to contribute to the OPL. The model was incorporated into an iterative algorithm that allows the measured phase to be corrected for refractive errors by use of an a priori estimate of the sample profile. The algorithm was validated with a reflected-light microscope equipped with a phase-shifting laser-feedback interferometer to measure the interface shape and the 68 degrees contact angle of a silicone-oil drop on a coated silicon wafer.

  6. Dental pulp stem cells (DPSCs) differentiation study by confocal Raman microscopy

    Science.gov (United States)

    Salehi, H.; Collart-Dutilleul, P.-Y.; Gergely, C.; Cuisinier, F. J. G.

    2014-03-01

    Regenerative medicine brings a huge application for Mesenchymal stem cells such as Dental Pulp Stem Cells (DPSCs). Confocal Raman microscopy, a non-invasive, label free , real time and high spatial resolution imaging technique is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800-3000 cm-1 region (C-H stretching) and 960 cm-1 peak (phosphate PO4 3-) were collected. In Dental Pulp Stem Cells 21st day differentiated in buffer solution, phosphate peaks ν1 PO4 3- (first vibrational mode) at 960cm-1 and ν2 PO4 3- at 430cm-1 and ν4 PO4 3- at 585cm-1 are obviously present. Confocal Raman microscopy enables the detection of cell differentiation and it can be used to investigate clinical stem cell research.

  7. Confocal Raman microscopy to monitor extracellular matrix during dental pulp stem cells differentiation

    Science.gov (United States)

    Salehi, Hamideh; Collart-Dutilleul, Pierre-Yves; Gergely, Csilla; Cuisinier, Frédéric J. G.

    2015-07-01

    Regenerative medicine brings promising applications for mesenchymal stem cells, such as dental pulp stem cells (DPSCs). Confocal Raman microscopy, a noninvasive technique, is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800 to 3000 cm-1 region (C-H stretching) and the 960 cm-1 peak (ν1 PO43-) were collected (to image cells and phosphate, respectively), and the ratio of two peaks 1660 over 1690 cm-1 (amide I bands) to measure the collagen cross-linking has been calculated. Raman spectra of DPSCs after 21 days differentiation reveal several phosphate peaks: ν1 (first stretching mode) at 960 cm-1, ν2 at 430 cm-1, and ν4 at 585 cm-1 and collagen cross-linking can also be calculated. Confocal Raman microscopy enables monitoring osteogenic differentiation in vitro and can be a credible tool for clinical stem cell based research.

  8. Fibered Confocal Fluorescence Microscopy for the Noninvasive Imaging of Langerhans Cells in Macaques

    Directory of Open Access Journals (Sweden)

    Biliana Todorova

    2017-01-01

    Full Text Available Purpose. We developed a new approach to visualize skin Langerhans cells by in vivo fluorescence imaging in nonhuman primates. Procedures. Macaques were intradermally injected with a monoclonal, fluorescently labeled antibody against HLA-DR molecule and were imaged for up to 5 days by fibered confocal microscopy (FCFM. Results. The network of skin Langerhans cells was visualized by in vivo fibered confocal fluorescence microscopy. Quantification of Langerhans cells revealed no changes to cell density with time. Ex vivo experiments confirmed that injected fluorescent HLA-DR antibody specifically targeted Langerhans cells in the epidermis. Conclusions. This study demonstrates the feasibility of single-cell, in vivo imaging as a noninvasive technique to track Langerhans cells in nontransgenic animals.

  9. 3-D Multispectral Monitoring of Living-Cell Signaling Using Confocal-Imaging and FPGA Processing

    Energy Technology Data Exchange (ETDEWEB)

    Resat, Marianne S.; Solinsky, James C.; Wiley, H S.; Perrine, Kenneth A.; Seim, Thomas A.; Budge, Scott E.

    2004-05-24

    Online control of living cell signal propagation experiments is being facilitated with field programmable gate array (FPGA) processing. The technology approach captures confocal fluorescence microscopy imagery in a manner that real-time, live-cell chemical signaling can be monitored during an experiment for extended time periods. The experiments obtain quantitative, spatial characteristics of the cell chemistry from the imagery through analysis, following a localized perturbation stimulus. The construction of a high-speed, confocal microscope provides simultaneous, two color image acquisition, at speeds of up to 30 fps, allowing near-real-time fluorescent resonance energy transfer and subsequent ratiometric, chemical sigaling analysis. FPGA provides real-time image processing hardware for obsering adjustments of the microscope settings as the images are received, using real-time image registration and fusion algorithms displayed through a user interface.

  10. Reconstruction of confocal micro-X-ray fluorescence spectroscopy depth scans obtained with a laboratory setup.

    Science.gov (United States)

    Mantouvalou, Ioanna; Wolff, Timo; Seim, Christian; Stoytschew, Valentin; Malzer, Wolfgang; Kanngiesser, Birgit

    2014-10-07

    Depth profiling with confocal micro-X-ray fluorescence spectroscopy (confocal micro-XRF) is a nondestructive analytical method for obtaining elemental depth profiles in the micrometer region. Up until now, the quantitative reconstruction of thicknesses and elemental concentration of stratified samples has been only possible with monochromatic, thus, synchrotron radiation. In this work, we present a new calibration and reconstruction procedure, which renders quantification in the laboratory feasible. The proposed model uses the approximation of an effective spot size of the optic in the excitation channel and relies on the calibration of the transmission of this lens beforehand. Calibration issues are discussed and validation measurements on thick multielement reference material and a stratified system are presented.

  11. Confocal scanning laser evaluation of repeated Q-switched laser exposure and possible retinal NFL damage

    Science.gov (United States)

    Zwick, Harry; Gagliano, Donald A.; Zuclich, Joseph A.; Stuck, Bruce E.; Lund, David J.; Glickman, Randolph D.

    1995-05-01

    Repeated extended source Q-switched exposure centered on the macula has been shown to produce a Bullseye maculopathy. This paper provides a confocal scanning laser ophthalmoscopic evaluation with regard to the retinal nerve fiber layer (NFL) and deeper choroidal vascular network. Confocal imaging revealed that the punctate annular appearance of this lesion in the deeper retinal layers is associated with retinal nerve fiber bundle disruptions and small gaps in the retinal NFL. No choroidal dysfunction was noticed with Indocyanine green angiography. It is hypothesized that retinal NFL damage occurs either through disruption of retinal pigment epithelial cell layer support to the NFL or through direct exposure to high spatial peak powers within the extended source beam profile, causing direct microthermal injury to the NFL. The apparent sparring of the fovea reflects central retinal morphology rather than a lack of retinal damage to the fovea.

  12. A multi-axis confocal rheoscope for studying shear flow of structured fluids

    KAUST Repository

    Lin, Neil Y. C.

    2014-03-01

    We present a new design for a confocal rheoscope that enables uniform uniaxial or biaxial shear. The design consists of two precisely positioned parallel plates with a gap that can be adjusted down to 2 ±0.1 μm, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material three-dimensional structure. We illustrate the importance of the instrument capabilities by discussing the applications of this instrument in current and future research topics in colloidal suspensions. © 2014 AIP Publishing LLC.

  13. [Confocal microscopy as an early relapse marker after keratoplasty due to Fusarium solani keratitis].

    Science.gov (United States)

    Daas, L; Bischoff-Jung, M; Viestenz, A; Seitz, B; Viestenz, A

    2017-01-01

    In the case of therapy-resistant keratitis an infection with Fusarium solani should be taken into consideration as a rare but very severe eye disease. In the majority of cases Fusarium solani keratitis will result in a protracted clinical course despite aggressive medicinal and surgical interventions. We describe the case of a referred patient after intensive topical, intracameral and systemic antibacterial and antimycotic therapy as well as surgical treatment with emergency keratoplasty à chaud because of Fusarium solani keratitis. The patient presented to our department with persistent discomfort for further therapeutic interventions. Using confocal microscopy we were able to demonstrate the presence of fungal hyphae in the host cornea and the graft, which was important for making further surgical decisions. Furthermore, this emphasizes the role of confocal microscopy as an early relapse marker during the clinical monitoring.

  14. A 0.4-THz Second Harmonic Gyrotron with Quasi-Optical Confocal Cavity

    Science.gov (United States)

    Guan, Xiaotong; Fu, Wenjie; Yan, Yang

    2017-12-01

    Mode density is very relevant for harmonic gyrotron cavity. Theoretical investigations suggest that quasi-optical confocal waveguide performs low mode density and good mode-selective character. By selecting the appropriate mode and optimizing the cavity parameters, the quasi-optical confocal cavity is suitable for high-harmonic terahertz gyrotron without mode competition. In order to verify the theoretical analysis, a 0.4-THz second harmonic gyrotron has been designed and experimented. Driven by a 40-kV, 4.75-A electron beam and 7.51-T magnetic field, the gyrotron prototype could generate 6.44 kW of output power at 395.35 GHz, which corresponds to an electron efficiency of 3.4%. There is no mode competition between the second harmonic and fundamental observed in the experiments.

  15. Confocal Laser Endomicroscopy in the Study of Colonic Mucosa in IBD Patients: A Review

    Directory of Open Access Journals (Sweden)

    Francesca Salvatori

    2012-01-01

    Full Text Available Confocal laser endomicroscopy (CLE is one of several novel methods that provide real-time, high-resolution imaging at a micronscale via endoscopes. CLE and related technologies are often termed “virtual biopsy” as they simulate the images seen in traditional histology. Recently, the use of CLE was reported in the study of colonic mucosa in patients with inflammatory bowel diseases and in particular in patients affected by ulcerative colitis. CLE has the potential to have an important role in management of IBD patients as it can be used to assess the grading of colitis and in detection of microscopic colitis in endoscopically silent segments. Moreover, CLE can be used in surveillance programs especially in high-risk patients. This report aims to evaluate the current data on the application of confocal endomicroscopy in clinical gastroenterology and particularly in the study of colonic mucosa in UC patients.

  16. Non-mydriatic confocal retinal imaging using a digital light projector.

    Science.gov (United States)

    Muller, Matthew S; Green, Jason J; Baskaran, Karthikeyan; Ingling, Allen W; Clendenon, Jeffrey L; Gast, Thomas J; Elsner, Ann E

    2015-02-07

    A digital light projector is implemented as an integrated illumination source and scanning element in a confocal non-mydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). To simulate scanning, a series of illumination lines are rapidly projected on the retina. The backscattered light is imaged onto a 2-dimensional rolling shutter CMOS sensor. By temporally and spatially overlapping the illumination lines with the rolling shutter, confocal imaging is achieved. This approach enables a low cost, flexible, and robust design with a small footprint. The 3(rd) generation DLO technical design is presented, using a DLP LightCrafter 4500 and USB3.0 CMOS sensor. Specific improvements over previous work include the use of yellow illumination, filtered from the broad green LED spectrum, to obtain strong blood absorption and high contrast images while reducing pupil constriction and patient discomfort.

  17. A Video Rate Confocal Laser Beam Scanning Light Microscope Using An Image Dissector

    Science.gov (United States)

    Goldstein, Seth R.; Hubin, Thomas; Rosenthal, Scott; Washburn, Clayton

    1989-12-01

    A video rate confocal reflected light microscope with no moving parts has been developed. Return light from an acousto-optically raster scanned laser beam is imaged from the microscope stage onto the photocathode of an Image Dissector Tube (IDT). Confocal operation is achieved by appropriately raster scanning with the IDT x and y deflection coils so as to continuously "sample" that portion of the photocathode that is being instantaneously illuminated by the return image of the scanning laser spot. Optimum IDT scan parameters and geometric distortion correction parameters are determined under computer control within seconds and are then continuously applied to insure system alignment. The system is operational and reflected light images from a variety of objects have been obtained. The operating principle can be extended to fluorescence and transmission microscopy.

  18. Confocal scanning electroluminescence spectro-microscope for multidimensional light-emitting property analysis

    Science.gov (United States)

    Hong, S.; Onushkin, G.; Park, J. S.; Kim, B. K.; Lee, D.-Y.; Fomin, A.; Ko, K.; Kim, J. W.

    2007-02-01

    We report new type of micro-EL instrument and its applications for light emitting devices. Our new micro-EL, so-called confocal scanning electroluminescence sprctro-microscope (CSESM) has not only fast image acquisition time but also high image resolution. The newly developed CSESM is combined with confocal laser scanning photoluminescence micsoscope, i.e. micro-PL. Therefore, micro-EL distribution can be directly matched with micro-PL and mechanical chip structure of LED. It is fruitful for providing a fast and non-destructive method to analyze the homogeneity of LEDs in its completely proceeded form. Using this apparatus, we study local intensity and wavelength distribution of electroluminescence for InGaN/GaN blue LED chip. Our results represent that local fluctuations of electroluminescence intensity and wavelength position are closely connected with the fluctuation of local current density, i.e. current spreading features on LED chips.

  19. A confocal rheoscope to study bulk or thin-film material under uniaxial or biaxial shear

    CERN Document Server

    Lin, Neil Y C; Cheng, Xiang; Leahy, Brian; Cohen, Itai

    2016-01-01

    We present a new design of a confocal rheoscope that enables us to precisely impose a uniform uniaxial or biaxial shear. The design consists of two precisely-positioned parallel plates. Our design allows us to adjust the gap between the plates to be as small as 2$\\pm$0.1 $\\mu$m, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material 3D structure. We illustrate the importance of the instrument capabilities by discussing the applications of this instrument in current and future research topics in colloidal suspensions.

  20. A simple way to identify non-viable cells within living plant tissue using confocal microscopy

    Directory of Open Access Journals (Sweden)

    Truernit Elisabeth

    2008-06-01

    Full Text Available Abstract Background Plant cell death is a normal process during plant development. Mutant plants may exhibit misregulation of this process, which can lead to severe growth defects. Simple ways of visualising cell death in living plant tissues can aid the study of plant development and physiology. Results Spectral variants of the fluorescent SYTOX dyes were tested for their usefulness for the detection of non-viable cells within plant embryos and roots using confocal laser-scanning microscopy. The dyes were selective for non-viable cells and showed very little background staining in living cells. Simultaneous detection of SYTOX dye and fluorescent protein (e.g. GFP fluorescence was possible. Conclusion The fluorescent SYTOX dyes are useful for an easy and quick first assay of plant cell viability in living plant samples using fluorescence and confocal laser-scanning microscopy.

  1. The use of reflectance confocal microscopy for monitoring response to therapy of skin malignancies

    OpenAIRE

    Ulrich, Martina; Lange-Asschenfeldt, Susanne; Gonzalez, Salvador

    2012-01-01

    Summary Reflectance confocal microscopy (RCM) is a new non-invasive imaging technique that enables visualizing cells and structures in living skin in real-time with resolution close to that of histological analysis. RCM has been successfully implemented in the assessment of benign and malignant lesions. Most importantly, it also enables monitoring dynamic changes in the skin over time and in response to different therapies, e.g., imiquimod, photodynamic therapy, and others. Given the often tr...

  2. Evaluation of Yogurt Microstructure Using Confocal Laser Scanning Microscopy and Image Analysis

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Ghita, Ovidiu; Whelan, Paul F.

    2015-01-01

    The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermented...... to image texture description. Here, CSLM images from a yogurt fermentation study are investigated, where production factors including fat content, protein content, heat treatment, and incubation temperature are varied. The descriptors are evaluated through nearest neighbor classification, variance analysis...

  3. CONFOCAL MICROSCOPY STUDY OF BIOLOGICAL PECULIARITIES OF SCAFFOLD MADE FROM RECOMBINANT SPIDER SILK

    Directory of Open Access Journals (Sweden)

    O. L. Pustovalova

    2009-01-01

    Full Text Available We studied the viability and dynamic of cell distribution during long-term cultivation of broblasts 3T3 in spider silk spidroin 1-based scaffold. Laser scanning confocal microscopy is shown to have advantages for visualization of cells situated on the external and internal surfaces of scaffold. Fibroblasts maintain high proliferative ability and viability during long term cultivation. Spidroin 1-based scaffold are the perspective materials for bioengineering. 

  4. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    OpenAIRE

    Sun, Tianxi; MacDonald, C.A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens.

  5. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics.

    Science.gov (United States)

    Sun, Tianxi; Macdonald, C A

    2013-02-07

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens.

  6. Quantitative of pesticide residue on the surface of navel orange by confocal microscopy Raman spectrometer

    OpenAIRE

    Yande Liu; Bingbing He

    2015-01-01

    The potential of Confocal micro-Raman spectroscopy in the quantitative analysis of pesticide (Chlorpyrifos, Omethoate) residues on orange surface is investigated in this work. Quantitative analysis models were established by partial least squares (PLS) using different preprocessing methods (Smoothing, First derivative, MSC, Baseline) for pesticide residues. For pesticide residues, the higher correlation coefficients (r) is 0.972 and 0.943, the root mean square error of prediction (RMSEP) is 2...

  7. In-situ imaging of interlayer nanodeformation with improved differential confocal microscopy

    Science.gov (United States)

    Li, Z.; Gao, S.; Herrmann, K.

    2008-04-01

    Nanoindentation testing has proved to be an effective tool to determine the mechanical properties of small volumes of materials applied in various micro-systems, including hardness, indentation modulus, creep and so on. Nowadays, with the help of advanced numerical methods, especially the finite element analysis (FEA) technique, further mechanical properties of the material under test (e.g. tensile strength, etc.) can be interpreted from the typical indentation curve. However, the reliability and accuracy of these analytical models have to be well tested. Recently, the deformed topography of the interlayer surface within the tip-film-substrate system has been proposed to be the reference for the evaluation of FEA and other mathematic models for indentation testing. Here an in-situ interlayer deformation imaging system based on differential confocal microscopy is therefore developed, which has the capability to measure in-situ the real-time topography deformation within a layered specimen during nanoindentation testing. By means of linear regression and interpolation of the linear region of the standard confocal microscopy, differential confocal microscopy (DCM) can achieve a very high resolution for topography measurements. However, the actual capability and measurement uncertainty of DCM would be subject to those common-mode error sources like surface heterogeneity, intensity fluctuation of the light source, etc. In this paper an improved DCM is proposed, which introduces an additional point detector to the conventional DCM, creating dual confocal signals with slight relative axial shifting. The real topography of the surface under test can then be easily deconvoluted from the dual differential signals, whilst the common-mode errors within the measurement are eliminated. A prototype was developed and applied for measuring a step-height composed of two different materials and for in-situ inspection of the interlayer deformation during nanoindentation testing

  8. AN AUTOMATIC FEATURE BASED MODEL FOR CELL SEGMENTATION FROM CONFOCAL MICROSCOPY VOLUMES

    OpenAIRE

    Delibaltov, Diana; Ghosh, Pratim; Veeman, Michael; Smith, William; Manjunath, B.S.

    2011-01-01

    We present a model for the automated segmentation of cells from confocal microscopy volumes of biological samples. The segmentation task for these images is exceptionally challenging due to weak boundaries and varying intensity during the imaging process. To tackle this, a two step pruning process based on the Fast Marching Method is first applied to obtain an over-segmented image. This is followed by a merging step based on an effective feature representation. The algorithm is applied on two...

  9. In vivo confocal microscopy in dermatology: from research to clinical application

    Science.gov (United States)

    Ulrich, Martina; Lange-Asschenfeldt, Susanne

    2013-06-01

    Confocal laser scanning microscopy (CLSM) represents an emerging technique for the noninvasive histomorphological analysis of skin in vivo and has shown its applicability for dermatological research as well as its value as an adjunct tool in the clinical management of skin cancer patients. Herein, we aim to give an overview on the current clinical indications for CLSM in dermatology and also highlight the diverse applications of CLSM in dermatological research.

  10. In vivo Confocal Microscopy Report after Lasik with Sequential Accelerated Corneal Collagen Cross-Linking Treatment

    Directory of Open Access Journals (Sweden)

    Cosimo Mazzotta

    2014-04-01

    Full Text Available We report the first pilot qualitative confocal microscopic analysis of a laser in situ keratomileusis (Lasik treatment combined with sequential high-fluence accelerated corneal collagen cross-linking, denominated Lasik XTra, by means of HRT II laser scanning in vivo confocal microscopy after a 6-month follow-up. After obtaining approval from the Siena University Hospital Institutional Review Board, a 33-year-old female patient underwent a Lasik XTra procedure in her left eye. Confocal analysis demonstrated induced slight corneal microstructural changes by the interaction between UV-A, riboflavin and corneal stromal collagen, beyond the interface to a depth of 160 µm, without adverse events at the interface and endothelial levels. This application may be considered a prophylactic biomechanical treatment, stiffening the intermediate corneal stroma to prevent corneal ectasia and stabilizing the clinical results of refractive surgery. According to our preliminary experiences, this combined approach may be useful in higher-risk Lasik patients for hyperopic treatments, high myopia and lower corneal thicknesses.

  11. High resolution 3D confocal microscope imaging of volcanic ash particles.

    Science.gov (United States)

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM10s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development of confocal 3D micro-XRF spectrometer with dual Cr-Mo excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kouichi Tsuji [Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 (Japan); PRESTO-JST - Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Kazuhiko Nakano [Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 (Japan)

    2007-05-15

    A new 3D micro-XRF instrument based on a confocal setup using two independent poly-capillary x-ray lenses and two x-ray sources (Cr and Mo targets) was developed. A full poly-capillary x-ray lens was attached to each x-ray tube. Another half poly-capillary lens was attached to a silicon drift x-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The depth resolutions that were evaluated by use of a 10-{mu}m thick Au foil were approximately 90 {mu}m for the x-ray energy of Au L{alpha}. The effects of the dual Cr-Mo x-ray beam excitation were investigated. It was confirmed that the XRF intensity of light elements was increased by applying the Cr-target x-ray tube in a confocal configuration. In the proposed confocal configuration, 3D elemental mapping of the major elements of an amaranth seed was performed nondestructively at ambient air pressure. Each element of the seed showed different mapping images in the different depth layers. (authors)

  13. The application of dermal papillary rings in dermatology by in vivo confocal laser scanning microscopy

    Science.gov (United States)

    Xiang, W. Z.; Xu, A. E.; Xu, J.; Bi, Z. G.; Shang, Y. B.; Ren, Q. S.

    2010-08-01

    Confocal laser scanning microscopy (CLSM) allows noninvasive visualization of human skin in vivo, without needing to fix or section the tissue. Melanocytes and pigmented keratinocytes at the level of the basal layer form bright dermal papillary rings which are readily amenable to identify in confocal images. Our purpose was to explore the role of dermal papillary rings in assessment of lesion location, the diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. Seventy-one patients were imaged with the VivaScope 1500 reflectance confocal microscope provided by Lucid, Inc. The results indicate that dermal papillary rings can assess the location of lesion; the application of dermal papillary rings can provide diagnostic support and differential diagnosis for vitiligo, nevus depigmentosus, tinea versicolor, halo nevus, common nevi, and assess the therapeutic efficacy of NBUVB phototherapy plus topical 0.1 percent tacrolimus ointment for vitiligo. In conclusion, our findings indicate that the dermal papillary rings play an important role in the assessment the location of lesion, diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. CLSM may be a promising tool for noninvasive examination in dermatology. However, larger studies are needed to expand the application of dermal papillary rings in dermatology.

  14. [Confocal laser endomicroscopy principles and performing algorithm in gastric mucosa examination].

    Science.gov (United States)

    Pirogov, S S; Sokolov, V V; Karpova, E S; Pavlov, P V; Volchenko, N N; Kaprin, A D

    2014-01-01

    Accuracy of endoscopic examination in early gastric cancer and precancerous conditions diagnostics for many years depended only on quality of biopsy. That's why, risk of overlooking gastric focal carcinoma, particularly-- multiple, was relatively high. Last couple of years new endoscopic method--confocal laser endomicroscopy (CLE) was released for commercial use. This approach provides real-time information about morphology of gastric mucosa during endoscopic examination. CLE is a variation of confocal microscopy--morphologic technique, providing examination of thick specimens or live tissue. CLE system is a single-channel fluorescence microscope, used in endoscopy, where confocal probe incorporated into endoscope or mounted into accessory channel. For proper results of CLE intravenous administration of fluorescence agent is needed. In our study in P.A. Herzen Moscow Cancer Research Institute we have used 10% fluorescein sodium, due to acriflavine use is prohibited in Russian Federation. In 157 patients with suspected early gastric cancer mean time of CLE was 24 ± 3.5 min. In all cases descriptive images were acquired. Mean amount of endomicrosocpic images in one patient was as high as 162 ± 8.3.

  15. Optimization of confocal laser induced fluorescence for long focal length applications

    Science.gov (United States)

    Jemiolo, Andrew J.; Henriquez, Miguel F.; Thompson, Derek S.; Scime, Earl E.

    2017-10-01

    Laser induced fluorescence (LIF) is a non-perturbative diagnostic for measuring ion and neutral particle velocities and temperatures in a plasma. The conventional method for single-photon LIF requires intersecting optical paths for light injection and collection. The multiple vacuum windows needed for such measurements are unavailable in many plasma experiments. Confocal LIF eliminates the need for perpendicular intersecting optical paths by using concentric injection and collection paths through a single window. One of the main challenges with using confocal LIF is achieving high resolution measurements at the longer focal lengths needed for many plasma experiments. We present confocal LIF measurements in HELIX, a helicon plasma experiment at West Virginia University, demonstrating spatial resolution dependence on focal length and spatial filtering. By combining aberration mitigating optics with spatial filtering, our results show high resolution measurements at focal lengths of 0.5 m, long enough to access the interiors of many laboratory plasma experiments. This work was supported by U.S. National Science Foundation Grant No. PHY-1360278.

  16. In vivo Confocal Microscopy in Differentiating Ipilimumab-Induced Anterior Uveitis from Metastatic Uveal Melanoma

    Directory of Open Access Journals (Sweden)

    Hayyam Kiratli

    2016-09-01

    Full Text Available This report aims to describe the facilitating role of in vivo confocal microscopy in differentiating inflammatory cells from a metastatic process in a patient with uveal melanoma and multiple systemic metastases who developed anterior uveitis while under ipilimumab treatment. A 43-year-old woman developed systemic metastases 11 months after treatment of amelanotic choroidal melanoma in her right eye with 30 Gy fractionated stereotactic radiotherapy. She first received temozolomide and then 4 cycles of ipilimumab 3 mg/kg/day. After the third cycle, severe anterior uveitis with coarse pigment clumps on the lens was seen in the left eye. Her left visual acuity declined from 20/20 to 20/80. Confocal microscopy revealed globular keratic precipitates with hyperreflective inclusions and endothelial blebs all suggestive of granulomatous uveitis. The uveitic reaction subsided after a 3-week course of topical corticosteroids, and her visual acuity was 20/20 again. Although uveal melanoma metastatic to the intraocular structures of the fellow eye is exceedingly rare and metastasis masquerading uveitis without any identifiable uveal lesion is even more unusual, it was still mandatory to rule out this distant possibility in our particular patient who already had widespread systemic metastases. Confocal microscopy was a useful complementary tool by identifying the inflammatory features of the keratic precipitates.

  17. Masked illumination scheme for a galvanometer scanning high-speed confocal fluorescence microscope.

    Science.gov (United States)

    Kim, Dong Uk; Moon, Sucbei; Song, Hoseong; Kwon, Hyuk-Sang; Kim, Dug Young

    2011-01-01

    High-speed beam scanning and data acquisition in a laser scanning confocal microscope system are normally implemented with a resonant galvanometer scanner and a frame grabber. However, the nonlinear scanning speed of a resonant galvanometer can generate nonuniform photobleaching in a fluorescence sample as well as image distortion near the edges of a galvanometer scanned fluorescence image. Besides, incompatibility of signal format between a frame grabber and a point detector can lead to digitization error during data acquisition. In this article, we introduce a masked illumination scheme which can effectively decrease drawbacks in fluorescence images taken by a laser scanning confocal microscope with a resonant galvanometer and a frame grabber. We have demonstrated that the difference of photobleaching between the center and the edge of a fluorescence image can be reduced from 26 to 5% in our confocal laser scanning microscope with a square illumination mask. Another advantage of our masked illumination scheme is that the zero level or the lowest input level of an analog signal in a frame grabber can be accurately set by the dark area of a mask in our masked illumination scheme. We have experimentally demonstrated the advantages of our masked illumination method in detail. Copyright © 2011 Wiley Periodicals, Inc.

  18. In vivo confocal microscopy in the normal corneas of cats, dogs and birds.

    Science.gov (United States)

    Kafarnik, Christiane; Fritsche, Jens; Reese, Sven

    2007-01-01

    To evaluate the applicability of in vivo confocal microscopy (IVCM) in veterinary ophthalmology and analyze the morphology of living, healthy cornea. ANIMALS EXAMINED: Thirty-seven dogs, 34 cats and five birds. Various corneal sublayers were visualized in the central region using an in vivo confocal corneal microscope (HRTII/RCM). An investigation method was developed and adapted for use on animals with varying skull forms and eye positions. Real-time images of the epithelial cells, the corneal stroma and the endothelial layer were obtained. The corneal stromal nerve trunks and the subepithelial and basal epithelial nerve plexus were visualized. In dogs, full corneal thickness (FCT) was 585 +/- 79 microm (mean +/- SD) and endothelial cell density (ECD) 3175 +/- 776 cells/mm(2) (mean +/- SD). In cats, FCT was 592 +/- 80 microm and ECD 2846 +/- 403 cells/mm(2). There were no significant differences between canine and feline FCT and ECD and no morphologic differences could be seen between dogs and cats. The bird images revealed a number of structural differences. Noninvasive IVCM allows accurate detection of corneal sublayers, corneal pachymetry, endothelial cell density and corneal innervation in various animal species. For clinical usage, patients must be under general anesthesia. The confocal images provided anatomic reference images of various healthy corneal structures in dogs, cats and birds.

  19. Corneal collagen cross-linking: a confocal, electron, and light microscopy study of eye bank corneas.

    Science.gov (United States)

    Dhaliwal, Jasmeet S; Kaufman, Stephen C

    2009-01-01

    The purpose of this study was to evaluate morphological changes induced by corneal collagen cross-linking in a human ex vivo cornea, using confocal, electron, and light microscopy. The central epithelium was partially removed from ex vivo human corneal buttons. Riboflavin 0.1% solution was applied before ultraviolet A light treatment and then for every 2 minutes for 30 minutes while the corneas were exposed to ultraviolet A light at a wavelength of 370 nm and intensity of 3 mW/cm(2). Each cornea was evaluated using confocal, electron, and light microscopy. Confocal microscopy demonstrated normal-appearing corneas on their initial pretreatment examination, with reduced stromal detail. After treatment, a superficial layer of highly reflective spherical structures (4-10 microm) was observed. Many of these hyperreflective structures appeared up to a depth of 300 microm. The remainder of the corneal stroma and endothelium appeared normal. Electron microscopy showed keratocyte apoptotic changes to a depth of 300 microm. No observable pathologic changes were seen on histology. Based on clinical studies, corneal cross-linking is a promising treatment that appears to be safe and to halt ectatic corneal disease progression. Initial European studies used animal models to extrapolate human protocols. In conjunction with clinical studies, we believe that human ex vivo corneal studies provide a means to evaluate the structural and morphological changes associated with this procedure, within human corneas, in a manner that cannot be accomplished in vivo.

  20. A Review on the Use of Confocal Laser Endomicroscopy in the Bile Duct

    Directory of Open Access Journals (Sweden)

    Ioana Smith

    2012-01-01

    Full Text Available Background. Current methods to diagnose malignant biliary strictures are of low sensitivity. Probe-based confocal laser endomicroscopy (pCLE is a new approach that can be used to evaluate in vivo histopathology of the GI tract. This paper is of studies evidencing pCLE’s application in the diagnosis of indeterminate biliary strictures. Methods. This paper examined peer-reviewed studies conducted between January 2000 and November 2011. A PubMed search for relevant articles was performed using the following keywords:“pCLE”, “confocal”, “endomicroscopy”, “probe-based confocal laser endomicroscopy”, “and “bile duct”. Further individual review was done to assess the screened articles’ relevance to the topic. Results. After individual review, 6 studies were included; with a cumulative sample size of 165, with 75 subjects identified as having a malignancy. These studies included tertiary care centers in Germany, France, and USA, including one multicenter trial. 3 studies assessed pCLE’s specificity (range 67%–88% ,sensitivity (range 83%–98, and accuracy (range 81%–86%. Conclusion. Confocal endomicroscopy is a novel and promising modality for the biliary tree. Further studies need to be conducted both to establish its usefulness for the diagnosis of indeterminate biliary strictures and to understand the histological meaning of the imaging patterns that are observed.

  1. In Vivo Confocal Microscopy and Anterior Segment Optic Coherence Tomography Findings in Ocular Ochronosis

    Directory of Open Access Journals (Sweden)

    Elif Demirkilinc Biler

    2015-01-01

    Full Text Available Purpose. To report clinical and in vivo confocal microscopy (IVCM findings of two patients with ocular ochronosis secondary due to alkaptonuria. Materials and Methods. Complete ophthalmologic examinations, including IVCM (HRT II/Rostock Cornea Module, Heidelberg, Germany, anterior segment optical coherence tomography (AS-OCT (Topcon 3D spectral-domain OCT 2000, Topcon Medical Systems, Paramus, NJ, USA, corneal topography (Pentacam, OCULUS Optikgeräte GmbH, Wetzlar, Germany, and anterior segment photography, were performed. Results. Biomicroscopic examination showed bilateral darkly pigmented lesions of the nasal and temporal conjunctiva and episclera in both patients. In vivo confocal microscopy of the lesions revealed prominent degenerative changes, including vacuoles and fragmentation of collagen fibers in the affected conjunctival lamina propria and episclera. Hyperreflective pigment granules in different shapes were demonstrated in the substantia propria beneath the basement membrane. AS-OCT of Case 1 demonstrated hyporeflective areas. Fundus examination was within normal limits in both patients, except tilted optic discs with peripapillary atrophy in one of the patients. Corneal topography, thickness, and macular OCT were normal bilaterally in both cases. Conclusion. The degenerative and anatomic changes due to ochronotic pigment deposition in alkaptonuria can be demonstrated in detail with IVCM and AS-OCT. Confocal microscopic analysis in ocular ochronosis may serve as a useful adjunct in diagnosis and monitoring of the disease progression.

  2. Progress report towards a digital mirror device based confocal microscopic system

    Science.gov (United States)

    Yi, Dingrong; Lin, Shunhua; Huang, Simian; Xie, Shaochuan

    2013-12-01

    It is widely believed that by using a digital mirror device (DMD) as the spatial light modulator (SLM) of a programmable array microcopy (PAM), it is possible to achieve a cost-effective alternative to expensive confocal imaging devices. During the past decade, the design of such a DMD based PAM instrument has been frequently reported to enhance resolution and contrast, convincing images with improved quality are rare to be seen. The concrete implementation of a DMD based PAM instrument needs to successfully resolve multiple issues such as the adverse effects caused by the tilt angle of the micro-mirrors from the base board, the registration between a micro mirror of the DMD and the image pixel of the photo-detector and so on. In this paper, we report the design of a middle body consisting of a DMD as an independent attachment to a conventional microscope to convert the latter into a confocal imaging system, in a similar way as a filter turret that is placed below the head and the objectives of a regular microscopy to convert it into a fluorescent microscopy. Images of real objects with improved contrast are provided to demonstrate the effectiveness of using a DMD as SLM to improve the contrast of a PAM instrument. Such a PAM instrument has many advantages compared to conventional laser-scanning confocal systems including lower costs and higher imaging speeds. In addition, it allows convenient dynamic adjustments between imaging quality and imaging speed.

  3. Next generation of optical diagnostics for bladder cancer using probe-based confocal laser endomicroscopy

    Science.gov (United States)

    Liu, Jen-Jane; Chang, Timothy C.; Pan, Ying; Hsiao, Shelly T.; Mach, Kathleen E.; Jensen, Kristin C.; Liao, Joseph C.

    2012-02-01

    Real-time imaging with confocal laser endomicroscopy (CLE) probes that fit in standard endoscopes has emerged as a clinically feasible technology for optical biopsy of bladder cancer. Confocal images of normal, inflammatory, and neoplastic urothelium obtained with intravesical fluorescein can be differentiated by morphologic characteristics. We compiled a confocal atlas of the urinary tract using these diagnostic criteria to be used in a prospective diagnostic accuracy study. Patients scheduled to undergo transurethral resection of bladder tumor underwent white light cystoscopy (WLC), followed by CLE, and histologic confirmation of resected tissue. Areas that appeared normal by WLC were imaged and biopsied as controls. We imaged and prospectively analyzed 135 areas in 57 patients. We show that CLE improves the diagnostic accuracy of WLC for diagnosing benign tissue, low and high grade cancer. Interobserver studies showed a moderate level of agreement by urologists and nonclinical researchers. Despite morphologic differences between inflammation and cancer, real-time differentiation can still be challenging. Identification of bladder cancer-specific contrast agents could provide molecular specificity to CLE. By using fluorescently-labeled antibodies or peptides that bind to proteins expressed in bladder cancer, we have identified putative molecular contrast agents for targeted imaging with CLE. We describe one candidate agent - anti-CD47 - that was instilled into bladder specimens. The tumor and normal urothelium were imaged with CLE, with increased fluorescent signal demonstrated in areas of tumor compared to normal areas. Thus, cancer-specificity can be achieved using molecular contrast agents ex vivo in conjunction with CLE.

  4. Non-invasive in vivo visualization of enamel defects by reflectance confocal microscopy (RCM).

    Science.gov (United States)

    Contaldo, Maria; Di Stasio, Dario; Santoro, Rossella; Laino, Luigi; Perillo, Letizia; Petruzzi, Massimo; Lauritano, Dorina; Serpico, Rosario; Lucchese, Alberta

    2015-05-01

    The enamel defects (EDs) may present with a variety of clinical manifestations with increasing severity from the sole appearance of pale discoloration to remarkable structural alterations. EDs are responsible for higher caries receptivity. In vivo reflectance confocal microscopy (RCM) allows to image in vivo at microscopic resolution of the dental surface, thus avoiding the tooth extraction and the sample preparation because of its ability to optically scan living tissues along their depth. Aim of this study is the in vivo assessment at microscopic resolution of dental surfaces affected by EDs without resorting to invasive methods such as teeth extractions, to define histological findings occurring in chromatic and/or structural EDs. For the purpose, 15 children, referring at the Dental Clinic of the Second University of Naples, affected by several degrees of EDs, were enrolled and underwent in vivo RCM imaging to microscopically define the ED confocal features using a commercially available hand-held reflectance confocal microscope with neither injuries nor discomfort. Totally, 29 teeth were imaged. Results demonstrated images good in quality and the capability to detect EDs such as unevenness, grooves, and lack of mineralization according to their clinical degree of disarray. The present in vivo microscopic study on EDs allowed to highlight structural changes in dental enamel at microscopic resolution in real-time and in a non-invasive way, with no need for extraction or processing the samples. Further experiments could define the responsiveness to remineralizing procedures as therapeutic treatments.

  5. A Clinical and Confocal Microscopic Comparison of Transepithelial PRK and LASEK for Myopia

    Directory of Open Access Journals (Sweden)

    Safak Korkmaz

    2014-01-01

    Full Text Available Purpose. To compare the clinical and confocal microscopic results of transepithelial PRK versus LASEK for correction of myopia. Materials and Methods. Twelve patients with myopia received transepithelial PRK in one eye and LASEK in the other. In transepithelial PRK-treated eyes, the corneal epithelium was removed with 40 microns of excimer laser ablation and in LASEK-treated eyes with 25-second application of 18% ethanol. Time to epithelial healing, ocular discomfort, uncorrected and best corrected visual acuities, manifest refraction, haze, greyscale value, and keratocyte apoptosis in confocal microscopy were recorded. Results. The mean time to epithelial healing was significantly longer after LASEK (4.00 ± 0.43 versus 3.17 ± 0.6 days. On day 1, ocular discomfort was significantly higher after transepithelial PRK. The grade of haze, keratocyte apoptosis, and greyscale value in confocal microscopy were significantly higher in transepithelial PRK-treated eyes at 1 month. All transepithelial PRK- and LASEK-treated eyes achieved 20/25 or better UCVA and were within ±1.00 D of emmetropia at final visits. Conclusions. Both transepithelial PRK and LASEK offer effective correction of myopia at 1 year. However, LASEK appeared to induce less discomfort and less intense wound healing in the early postoperative period.

  6. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue

    Science.gov (United States)

    Yoshitake, Tadayuki; Giacomelli, Michael G.; Cahill, Lucas C.; Schmolze, Daniel B.; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Connolly, James L.; Fujimoto, James G.

    2016-12-01

    Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue.

  7. Confocal Laser Endomicroscopy in Neurosurgery: A New Technique with Much Potential

    Directory of Open Access Journals (Sweden)

    David Breuskin

    2013-01-01

    Full Text Available Technical innovations in brain tumour diagnostic and therapy have led to significant improvements of patient outcome and recurrence free interval. The use of technical devices such as surgical microscopes as well as neuronavigational systems have helped localising tumours as much as fluorescent agents, such as 5-aminolaevulinic acid, have helped visualizing pathologically altered tissue. Nonetheless, intraoperative instantaneous frozen sections and histological diagnosis remain the only method of gaining certainty of the nature of the resected tissue. This technique is time consuming and does not provide close-to-real-time information. In gastroenterology, confocal endoscopy closed the gap between tissue resection and histological examination, providing an almost real-time histological diagnosis. The potential of this technique using a confocal laser endoscope EndoMAG1 by Karl Storz Company was evaluated by our group on pig brains, tumour tissue cell cultures, and fresh human tumour specimen. Here, the authors report for the first time on the results of applying this new technique and provide first confocal endoscopic images of various brain and tumour structures. In all, the technique harbours a very promising potential to provide almost real-time intraoperative diagnosis, but further studies are needed to provide evidence for the technique’s potential.

  8. Ocular Surface Alterations in the Context of Corneal In Vivo Confocal Microscopic Characteristics in Patients With Fibromyalgia.

    Science.gov (United States)

    Erkan Turan, Kadriye; Kocabeyoglu, Sibel; Unal-Cevik, Isin; Bezci, Figen; Akinci, Aysen; Irkec, Murat

    2018-02-01

    To quantify the morphology of corneal basal epithelium and subbasal nerves and to evaluate the ocular surface alterations in patients with fibromyalgia (FM). Patients with FM (n = 34) and healthy controls (n = 42) were enrolled. All participants underwent ocular surface tests in the following order: corneal sensitivity, tear film breakup time, lissamine green staining, Schirmer test, and the Ocular Surface Disease Index questionnaire. Basal epithelial cells and subbasal nerves were evaluated using in vivo confocal microscopy (IVCM). Demographic characteristics, Visual Analog Scale for Pain (VAS), American College of Rheumatology 1990, the Widespread Pain Index (WPI), and the Symptom Impact Questionnaire (SIQR) scores of patients with FM were obtained. Corneal sensitivity was 0.4 g/mm (fiber length: 6.0 cm) in all eyes. Patients with FM had a higher Ocular Surface Disease Index (42.2 ± 18.9 vs. 1.2 ± 1.7, P FM compared with those of the controls (P FM should be evaluated in terms of ocular surface diseases. IVCM may be used in FM to assess small fiber neuropathy.

  9. Ellipsoid Segmentation Model for Analyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular Spheroids

    Science.gov (United States)

    Barbier, Michaël; Jaensch, Steffen; Cornelissen, Frans; Vidic, Suzana; Gjerde, Kjersti; de Hoogt, Ronald; Graeser, Ralph; Gustin, Emmanuel; Chong, Yolanda T.

    2016-01-01

    In oncology, two-dimensional in-vitro culture models are the standard test beds for the discovery and development of cancer treatments, but in the last decades, evidence emerged that such models have low predictive value for clinical efficacy. Therefore they are increasingly complemented by more physiologically relevant 3D models, such as spheroid micro-tumor cultures. If suitable fluorescent labels are applied, confocal 3D image stacks can characterize the structure of such volumetric cultures and, for example, cell proliferation. However, several issues hamper accurate analysis. In particular, signal attenuation within the tissue of the spheroids prevents the acquisition of a complete image for spheroids over 100 micrometers in diameter. And quantitative analysis of large 3D image data sets is challenging, creating a need for methods which can be applied to large-scale experiments and account for impeding factors. We present a robust, computationally inexpensive 2.5D method for the segmentation of spheroid cultures and for counting proliferating cells within them. The spheroids are assumed to be approximately ellipsoid in shape. They are identified from information present in the Maximum Intensity Projection (MIP) and the corresponding height view, also known as Z-buffer. It alerts the user when potential bias-introducing factors cannot be compensated for and includes a compensation for signal attenuation. PMID:27303813

  10. In vivo confocal microscopy of pre-Descemet corneal dystrophy associated with X-linked ichthyosis: a case report.

    Science.gov (United States)

    Shi, Hui; Qi, Xiao-Feng; Liu, Tao-Tao; Hao, Qian; Li, Xiao-Hong; Liang, Ling-Ling; Wang, Yi-Miao; Cui, Zhi-Hua

    2017-03-16

    Pre-Descemet corneal dystrophy (PDCD) is characterized by the presence of numerous, tiny, polymorphic opacities immediately anterior to Descemet membrane, which is a rare form of corneal stromal dystrophy and hard to be diagnosed. In vivo confocal microscopy (IVCM) is a useful tool to examine the minimal lesions of the cornea at the cellular level. In this article, we report a rare case of PDCD associated with X-linked ichthyosis and evaluate IVCM findings. We present a 34-year-old male Chinese patient with PDCD associated with X-linked ichthyosis. Slit-lamp biomicroscopy showed the presence of tiny and pleomorphic opacities in the posterior stroma immediately anterior to Descemet membrane bilaterally. IVCM revealed regular distributed hyperreflective particles inside the enlarged and activated keratocytes in the posterior stroma. Hyperreflective particles were also observed dispersedly outside the keratocytes in the anterior stroma. Dermatological examination revealed that the skin over the patient's entire body was dry and coarse, with thickening and scaling of the skin in the extensor side of the extremities. PCR results demonstrated that all ten exons and part flanking sequences of STS gene failed to produce any amplicons in the patient. IVCM is useful for analyzing the living corneal structural changes in rare corneal dystrophies. We first reported the IVCM characteristics of PDCD associated with X-linked ichthyosis, which was caused by a deletion of the steroid sulfatase (STS) gene, confirmed by gene analysis.

  11. Is the Stella™ 5L system an effective cold sterilization technique for needle-based confocal miniprobes?

    Science.gov (United States)

    Wang, Cai-Xia; Chen, Yuan-Yuan; Yang, Feng; Yang, Fan; Guo, Jin-Tao; Sun, Siyu; Fan, Ling

    2017-01-01

    Needle-based confocal laser endomicroscopy (nCLE) under endoscopic ultrasound guidance is a newly developed imaging technique for pancreatic lesions and lymph nodes, enabling a subcellular level of resolution. The confocal miniprobe is an invasive instrument designed to be reused up to 10 times. Therefore, a method that ensures the complete elimination of microbial contaminants on the device is necessary. We studied the bactericidal efficacy of the Stella™ system, which purports to achieve this objective. The surfaces of three nCLE miniprobes were contaminated with suspensions of Bacillus atrophaeus (ATCC9372). One probe was randomly selected to count the bacterial load on the surface. The other two probes were manually cleaned and rinsed. One probe was randomly selected to count bacteria on the surface, and the other probe was sterilized using the Stella™ 5L endoscopic sterilization system before obtaining the bacterial count. The process was repeated for 20 cycles to evaluate the microbicidal efficacy of the Stella™ 5L endoscopic sterilization system. These miniprobes were immersed in the Stella Fuse disinfectant for 72 h. After the 72 h of immersion, the weight loss of probes was determined using a high precision electronic scale to examine corrosion following disinfection. The change in image quality was evaluated by an endoscopist. From an initial contamination level of 4.48 × 106 ± 1.57 × 106 cfu/mL on the surface of the probes, the bacterial count was reduced to 4.25 × 102 ± 1.95 × 102 cfu/mL after manual cleaning (including enzyme washing), and no microorganisms were recovered after 20 cycles with the Stella™ 5L system. The probe weights before and after 72 h of immersion were 45.769 (45.768-45.771) g and 45.762 (45.752-45.768) g, respectively. No change in image quality was observed. This study shows that the Stella™ 5L system is capable of the complete elimination of microorganism contamination in a short period and avoids the toxicity of

  12. Confocal Raman microspectroscopy of stratum corneum: a pre-clinical validation study.

    Science.gov (United States)

    Wu, J; Polefka, T G

    2008-02-01

    Skin moisturization is not only important for maintaining skin functional properties but also has great impact on the skin's aesthetic properties. The top layer of the skin, the stratum corneum (SC), plays a key role in protecting and preventing against external aggressions as well as in regulating water flux in and out. Confocal Raman microspectroscopy is the first commercially available technique that provides a non-invasive, in vivo method to determine depth profiles of water concentration in the skin, however, in this case it was applied in an in vitro setting. As the first phase of validating the usefulness of confocal Raman microspectroscopy, we used porcine skin as a surrogate for human skin. Water concentration profiles were obtained using confocal Raman microspectroscopy from isolated pigskin SC and compared with that using the Karl Fischer titration method. The two methods correlated very well with a regression coefficient of 1.07 as well as a correlation coefficient, R(2) = 0.989, which demonstrated the consistency and accuracy of confocal Raman microspectroscopy for water concentration determination. To evaluate the instrument's response to different skin care/cleansing products, a wide range of products were tested to compare their skin moisturization ability. Among those tested were a lotion, commercial soap bar, syndet bar, traditional non-emollient shower gel (water, Sodium Laureth Ether Sulfate (SLES), cocamidopropyl betaine system) and emollient containing shower gel (water, sunflower oil, SLES, cocamidopropyl betaine, glycerin, petrolatum). The results were consistent with what was expected. The water content on skin treated with (A) lotion was significantly higher than the non-treated control; (B) syndet bar-treated skin had a significantly higher water content than soap-based bar-treated sites; (C) non-emollient shower gel washed sites were more moisturized than soap-based bar-treated samples; and (D) emollient shower gel-treated skin was

  13. Multispectral confocal microscopy images and artificial neural nets to monitor the photosensitizer uptake and degradation in Candida albicans cells

    Science.gov (United States)

    Romano, Renan A.; Pratavieira, Sebastião.; da Silva, Ana P.; Kurachi, Cristina; Guimarães, Francisco E. G.

    2017-07-01

    This study clearly demonstrates that multispectral confocal microscopy images analyzed by artificial neural networks provides a powerful tool to real-time monitoring photosensitizer uptake, as well as photochemical transformations occurred.

  14. Coin-shaped epithelial lesions following an acute attack of erythema multiforme minor with confocal microscopy findings

    OpenAIRE

    Babu Kalpana; Murthy Vinay; Akki Veeresh; Prabhakaran Venkatesh; Murthy K

    2010-01-01

    We report an interesting ocular finding of bilateral multiple coin-shaped epithelial lesions along with the confocal microscopy findings in a patient following an acute attack of erythema multiforme (EM) minor. A 30-year-old male presented with a history of watering and irritation in both eyes of three days duration. He was diagnosed to have EM minor and was on oral acyclovir. Slit-lamp examination revealed multiple coin-shaped epithelial lesions. Confocal microscopy showed a corresponding co...

  15. Confocal fluorescence microscopy for rapid evaluation of invasive tumor cellularity of inflammatory breast carcinoma core needle biopsies.

    Science.gov (United States)

    Dobbs, Jessica; Krishnamurthy, Savitri; Kyrish, Matthew; Benveniste, Ana Paula; Yang, Wei; Richards-Kortum, Rebecca

    2015-01-01

    Tissue sampling is a problematic issue for inflammatory breast carcinoma, and immediate evaluation following core needle biopsy is needed to evaluate specimen adequacy. We sought to determine if confocal fluorescence microscopy provides sufficient resolution to evaluate specimen adequacy by comparing invasive tumor cellularity estimated from standard histologic images to invasive tumor cellularity estimated from confocal images of breast core needle biopsy specimens. Grayscale confocal fluorescence images of breast core needle biopsy specimens were acquired following proflavine application. A breast-dedicated pathologist evaluated invasive tumor cellularity in histologic images with hematoxylin and eosin staining and in grayscale and false-colored confocal images of cores. Agreement between cellularity estimates was quantified using a kappa coefficient. 23 cores from 23 patients with suspected inflammatory breast carcinoma were imaged. Confocal images were acquired in an average of less than 2 min per core. Invasive tumor cellularity estimated from histologic and grayscale confocal images showed moderate agreement by kappa coefficient: κ = 0.48 ± 0.09 (p fluorescence microscopy can be performed immediately following specimen acquisition and could indicate the need for additional biopsies at the initial visit.

  16. An unsupervised machine learning method for delineating stratum corneum in reflectance confocal microscopy stacks of human skin in vivo

    Science.gov (United States)

    Bozkurt, Alican; Kose, Kivanc; Fox, Christi A.; Dy, Jennifer; Brooks, Dana H.; Rajadhyaksha, Milind

    2016-02-01

    Study of the stratum corneum (SC) in human skin is important for research in barrier structure and function, drug delivery, and water permeability of skin. The optical sectioning and high resolution of reflectance confocal microscopy (RCM) allows visual examination of SC non-invasively. Here, we present an unsupervised segmentation algorithm that can automatically delineate thickness of the SC in RCM images of human skin in-vivo. We mimic clinicians visual process by applying complex wavelet transform over non-overlapping local regions of size 16 x 16 μm called tiles, and analyze the textural changes in between consecutive tiles in axial (depth) direction. We use dual-tree complex wavelet transform to represent textural structures in each tile. This transform is almost shift-invariant, and directionally selective, which makes it highly efficient in texture representation. Using DT-CWT, we decompose each tile into 6 directional sub-bands with orientations in +/-15, 45, and 75 degrees and a low-pass band, which is the decimated version of the input. We apply 3 scales of decomposition by recursively transforming the low-pass bands and obtain 18 bands of different directionality at different scales. We then calculate mean and variance of each band resulting in a feature vector of 36 entries. Feature vectors obtained for each stack of tiles in axial direction are then clustered using spectral clustering in order to detect the textural changes in depth direction. Testing on a set of 15 RCM stacks produced a mean error of 5.45+/-1.32 μm, compared to the "ground truth" segmentation provided by a clinical expert reader.

  17. Data on characterization of nano- and micro-structures resulting from glycine betaine surfactant/kappa-carrageenan interactions by Laser Scanning Confocal Microscopy and Transmission Electron Microscopy.

    Science.gov (United States)

    Gaillard, Cédric; Wang, Yunhui; Covis, Rudy; Vives, Thomas; Benoit, Maud; Benvegnu, Thierry

    2016-12-01

    This article contains data on the Laser Scanning Confocal Microscopy (LSCM) and Transmission Electron Microscopy (TEM) images related to multi-scaled self-assemblies resulting from 'green' cationic glycine betaine surfactant/anionic kappa-carrageenan interactions. These data gave clear evidence of the evolution of the micron-, nano-sized structures obtained at two surfactant/polymer molar ratios (3.5 and 0.8) and after the dilution of the aqueous dispersions with factors of 5 and 10 times. This data article is related to the research article entitled, "Monitoring the architecture of anionic ĸ-carrageenan/cationic glycine betaine amide surfactant assemblies by dilution: A multiscale approach" (Gaillard et al., 2017) [1].

  18. Fluorescence intensity and bright spot analyses using a confocal microscope for photodynamic diagnosis of brain tumors.

    Science.gov (United States)

    Yoneyama, Takeshi; Watanabe, Tetsuyo; Kagawa, Hiroyuki; Hayashi, Yutaka; Nakada, Mitsutoshi

    2017-03-01

    In photodynamic diagnosis using 5-aminolevulinic acid (5-ALA), discrimination between the tumor and normal tissue is very important for a precise resection. However, it is difficult to distinguish between infiltrating tumor and normal regions in the boundary area. In this study, fluorescent intensity and bright spot analyses using a confocal microscope is proposed for the precise discrimination between infiltrating tumor and normal regions. From the 5-ALA-resected brain tumor tissue, the red fluorescent and marginal regions were sliced for observation under a confocal microscope. Hematoxylin and eosin (H&E) staining were performed on serial slices of the same tissue. According to the pathological inspection of the H&E slides, the tumor and infiltrating and normal regions on confocal microscopy images were investigated. From the fluorescent intensity of the image pixels, a histogram of pixel number with the same fluorescent intensity was obtained. The fluorescent bright spot sizes and total number were compared between the marginal and normal regions. The fluorescence intensity distribution and average intensity in the tumor were different from those in the normal region. The probability of a difference from the dark enhanced the difference between the tumor and the normal region. The bright spot size and number in the infiltrating tumor were different from those in the normal region. Fluorescence intensity analysis is useful to distinguish a tumor region, and a bright spot analysis is useful to distinguish between infiltrating tumor and normal regions. These methods will be important for the precise resection or photodynamic therapy of brain tumors. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications.

    Science.gov (United States)

    Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James; Khmaladze, Alexander

    2016-11-01

    Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts.

  20. Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications

    Science.gov (United States)

    Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James

    2016-01-01

    Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts. PMID:27758134

  1. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.

    Directory of Open Access Journals (Sweden)

    Chao Huang

    Full Text Available Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000. We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81 and nodal tissue (n = 81. In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively. Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease.

  2. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.

    Science.gov (United States)

    Huang, Chao; Sachse, Frank B; Hitchcock, Robert W; Kaza, Aditya K

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease.

  3. Microstructural evaluation by confocal and electron microscopy in thrombi developed in central venous catheters.

    Science.gov (United States)

    Lucas, Thabata Coaglio; Silva, Eliata Ester da; Souza, Danilo Olzon Dionysio; Santos, Amanda Rodrigues Dos; Lara, Maristela Oliveira

    2017-08-28

    Evaluating thrombi microstructure developed in central venous catheters using confocal and electron microscopy. An experimental, descriptive study carrying out a microstructural evaluation of venous thrombi developed in central venous catheters using Scanning Electron Microscopy and Confocal Laser Scanning Microscopy. A total of 78 venous catheters were collected over a period of three months. Different fibrin structures were distinguished: fibrin plates, fibrin network, and fibrin fibers. It was observed that the thrombus had thick fibrin plates adhered to the catheter wall openings in both a catheter with three days of permanence as well as in a catheter with 20 days of insertion in the patient. However, a greater amount of erythrocytes and fibrin fibers were found in the central region of the thrombus. This study contributes to improving health care and can have a positive impact on clinical practice, as easy adherence of platelets and fibrins to the catheter wall demonstrated in this study makes it possible to adopt thrombus prevention strategies such as therapy discontinuation for an extended period, blood reflux by a catheter, slow infusion rate and hypercoagulo pathyclinical conditions. Avaliar a microestrutura por microscopia confocal e eletrônica em trombos desenvolvidos em cateteres venosos centrais. Pesquisa experimental, descritiva, em que foi feita uma avaliação microestrutural de trombos venosos desenvolvidos em cateteres venosos centrais por Microscopia Eletrônica de Varredura e Microscopia Confocal de Varredura a Laser. Foram coletados 78 cateteres venosos centrais num período de três meses. Distinguiram-se diferentes estruturas de fibrina: a placa de fibrina, a rede de fibrina e as fibras de fibrina. Observou-se que tanto em um cateter com três dias de permanência quanto em um cateter com 20 dias inserido no paciente o trombo apresentou placas de fibrina espessas aderidas às paredes dos orifícios dos cateteres. Na região central do

  4. Confocal FLIM of genetically encoded FRET sensors for quantitative Ca2+ imaging.

    Science.gov (United States)

    Sauer, Benjamin; Tian, Qinghai; Lipp, Peter; Kaestner, Lars

    2014-12-01

    Fluorescence lifetime imaging (FLIM) is a powerful imaging mode that can be combined with confocal imaging. Changes in the fluorescence decay time of a donor in an intramolecular Förster resonance energy transfer (FRET)-based biosensor provide intrinsic quantitative data. Here, we describe a protocol using both the Ca(2+) sensor TN-XL, which uses troponin C, as the Ca(2+)-sensing unit, and the FLIM technology based on time-correlated single-photon counting. © 2014 Cold Spring Harbor Laboratory Press.

  5. Histopathologic and Immunohistochemical Correlates of Confocal Descriptors in Pigmented Facial Macules on Photodamaged Skin.

    Science.gov (United States)

    Gómez-Martín, Ignacio; Moreno, Sara; Andrades-López, Evelyn; Hernández-Muñoz, Inma; Gallardo, Fernando; Barranco, Carlos; Pujol, Ramon M; Segura, Sonia

    2017-08-01

    Pigmented facial macules on photodamaged skin are a clinical, dermoscopic, and histopathologic challenge. To clinically and dermoscopically characterize, by means of reflectance confocal microscopy (RCM), ambiguous pigmented facial macules and establish a correlation between RCM, histopathologic, and immunohistochemical findings. A prospective study of ambiguous pigmented facial macules on photodamaged skin was conducted in a tertiary referral center for dermatology between January 1, 2009, and December 31, 2015. Sixty-one patients with 63 ambiguous pigmented facial macules and 12 control photodamaged facial areas were included in the study. Melanocyte density in 1-mm basal layers was determined in skin biopsy specimens from all lesions stained with hematoxylin-eosin and immunohistochemical markers (melan-A, microphthalmia-associated transcription factor, and SRY-related HMG-box gene 10). Dermoscopic, RCM images, and histopathologic preparations were systematically evaluated for the presence of lentigo maligna (LM) criteria. Confocal evaluation was blinded to clinical and dermoscopic diagnosis. Sensitivity and specificity of RCM for LM diagnosis and κ value to establish correlations between dermoscopy, RCM, and histopathology were performed. Sensitivity and specificity of RCM for LM diagnosis. Of the 61 patients included in the study, 31 (51%) were women; mean (SD) age was 71.8 (13.1) years. Twenty-four of the 63 (38%) lesions were diagnosed as LM or LM melanoma (LMM) and 39 (62%) as benign pigmented lesions. Reflectance confocal microscopy enhanced the diagnosis of pigmented facial macules with 91.7% sensitivity and 86.8% specificity. Multivariate analysis showed 2 dermoscopic and 2 confocal features associated with LM or LMM: (1) asymmetric follicular pigmentation and targetlike structures, and (2) round, large pagetoid cells and follicular localization of atypical cells, respectively. Continuous proliferation of atypical melanocytes was found in 21 (88%) LM or

  6. Single Fluorescent Molecule Confocal Microscopy: A New Tool for Molecular Biology Research and Biosensor Development

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, C.; Huser, T.; Campos, C.; Yan, M.; Lane, S.; Balhorn, R.

    2000-03-09

    Our original proposal was presented to the LDRD committee on February 18, 1999. The revised proposal that followed incorporated changes that addressed the issues, concerns, and suggestions put forth by the committee members both during the presentation and in subsequent discussions we've had with individual committee members. The goal of the proposal was to establish an SMD confocal microscopy capability and technology base at LLNL. Here we report on our progress during the 6-month period for which funding was available.

  7. Fluorescence spectroscopy and confocal microscopy of the mycotoxin citrinin in condensed phase and hydrogel films.

    Science.gov (United States)

    Lauer, Milena H; Gehlen, Marcelo H; de Jesus, Karen; Berlinck, Roberto G S

    2014-05-01

    The emission spectra, quantum yields and fluorescence lifetimes of citrinin in organic solvents and hydrogel films have been determined. Citrinin shows complex fluorescence decays due to the presence of two tautomers in solution and interconversion from excited-state double proton transfer (ESDPT) process. The fluorescence decay times associated with the two tautomers have values near 1 and 5 ns depending on the medium. In hydrogel films of agarose and alginate, fluorescence imaging showed that citrinin is not homogeneously dispersed and highly emissive micrometer spots may be formed. Fluorescence spectrum and decay analysis are used to recognize the presence of citrinin in hydrogel films using confocal fluorescence microscopy and spectroscopy.

  8. Cellular pattern recognition towards discrimination of normal skin from melanoma in non-invasive confocal imaging

    Science.gov (United States)

    Swerdlin, Amy; Simpson, Eric; Jacques, Steven; Gareau, Daniel S.

    2012-03-01

    Cellular histopathological melanoma screening is critical but expensive/invasive. Confocal screening is cheap/noninvasive but data interpretation remains difficult. Human terminology for biological features is insufficient to fully exploit the diagnostic value, so we propose automated quantitative morphometry. Normal diagnostic traits include a regularly organized spinous keratinocyte matrix on an underlying smooth basal keritinocyte layer. Computational identification of dark nuclei in spinous keratinocytes and bright pigmented basal keratinocytes yields two distinct regions: basal and super-basal. These independent algorithms usually yield complementary regions but occasionally overlap or leave gaps. Improved microanatomical discrimination will yield a better diagnostic map to evaluate morphology for cancer detection.

  9. Applications of confocal laser scanning microscopy in research into organic semiconductor thin films

    DEFF Research Database (Denmark)

    Schiek, Manuela; Balzer, Frank

    2014-01-01

    At the center of opto-electronic devices are thin layers of organic semiconductors, which need to be sandwiched between planar electrodes. With the growing demand for opto-electronic devices now and in the future, new electrode materials are needed to meet the requirements of organic semiconductors....... Control of these interfaces directly impacts on the performance and here we show with basic growth studies of model compounds on dielectric and graphitic surfaces, the formation of distinctly textured films. Silver-nanowire meshes are presented as an alternative transparent electrode material. Confocal...

  10. Combination of Small Molecule Microarray and Confocal Microscopy Techniques for Live Cell Staining Fluorescent Dye Discovery

    Directory of Open Access Journals (Sweden)

    Attila Bokros

    2013-08-01

    Full Text Available Discovering new fluorochromes is significantly advanced by high-throughput screening (HTS methods. In the present study a combination of small molecule microarray (SMM prescreening and confocal laser scanning microscopy (CLSM was developed in order to discover novel cell staining fluorescent dyes. Compounds with high native fluorescence were selected from a 14,585-member library and further tested on living cells under the microscope. Eleven compartment-specific, cell-permeable (or plasma membrane-targeted fluorochromes were identified. Their cytotoxicity was tested and found that between 1–10 micromolar range, they were non-toxic even during long-term incubations.

  11. Amiodarone-induced multiorgan toxicity with ocular findings on confocal microscopy.

    Science.gov (United States)

    Turk, Ugur; Turk, Bengu Gerceker; Yılmaz, Suzan Guven; Tuncer, Esref; Alioğlu, Emin; Dereli, Tugrul

    2015-01-01

    Amiodarone is an antiarrhythmic medication that can adversely effect various organs including lungs, thyroid gland, liver, eyes, skin, and nerves. The risk of adverse effects increases with high doses and prolonged use. We report a 54-year-old female who presented with multiorgan toxicity after 8 months of low dose (200 mg/day) amiodarone treatment. The findings of confocal microscopy due to amiodarone-induced keratopathy are described. Amiodarone may cause multiorgan toxicity even at lower doses and for shorter treatment periods.

  12. Conversion of biocytin labelled cells and structures for the confocal laser-scanning method.

    Science.gov (United States)

    Hilbig, H; Müller, A

    1997-05-23

    The method for converting biocytin preparations of brain sections fills a gap in the application of confocal laser-scanning microscopy. Both neuronal and non-neuronal structures are converted. The background remains free of staining. The protocol can be applied to old and already existing biocytin-(diaminobenzidine)-nickel preparations which are then made accessible to evaluation with the laser-scanning microscope by the substitution of nickel with silver-gold. Sodium thiosulphate is used to remove the unbound silver. The reflection image of the laser-scanning microscopy provides more information than the transmission image.

  13. Stacking illumination of a confocal reflector light emitting diode automobile headlamp with an asymmetric triangular prism.

    Science.gov (United States)

    Chen, Hsi-Chao; Zhou, Jia-Hao; Zhou, Yang

    2017-02-01

    A confocal reflector lamp with an asymmetric triangular prism was designed for a stacking illumination of a light emitting diode (LED) automobile headlamp fitting ECE R112 asymmetrical regulation. The optical system includes three 1st elliptic reflectors, three 2nd parabolic reflectors, and one asymmetric triangular prism. Three elliptic and parabolic reflectors were assembled with three confocal reflector modules; two modules projected the cut-off line of a 0° angle, and the other module projected the cut-off line of a 15° angle using of an asymmetric triangular prism. The ray tracing, optical simulation, and mockup experiment results exhibited that the illumination distribution met the regulation of ECE R112 class B, and the ideal efficiency could reach 96.8% in theory. The tolerance analysis showed the efficiency remained above 98% under the error values of ±0.2  mm of the position of the LED light source, and the y direction of the up-down movement was more sensitive than the x and z directions. The measurement results of the mockup sample safety factor were all larger than 1.15 and supported the regulation of the ECE R112 Class B.

  14. Residual Endodontic Filling Material after Post Space Preparation: A Confocal Microscopic Study.

    Science.gov (United States)

    Teoh, Yu-Yao; Walsh, Laurence J

    2017-11-21

    This laboratory study assessed removability of endodontic alkaline cements and resin sealers using coronal cross-sectional slices of roots with single canals. Materials were labelled with 0.1% (w/w) sodium fluorescein prior to mixing so that confocal microscopy could be used to quantify material remaining on the walls of post spaces, to assess cleanliness. Roots of extracted teeth were prepared using rotary NiTi instruments then obturated using lateral condensation with gutta percha and epoxy resin sealers (AH-Plus™ or Zirmix™), or were filled by injecting mineral trioxide aggregate (MTA) cement (GC Nex™ MTA or MTAmix™) or a hard-setting calcium hydroxide cement (Supercal™). Brown (#3) ParaPost™ drills were used at 600 rpm with a torque setting of 3 N cm-1 for 2 min to remove 5 mm of the root filling. Roots were embedded and coronal slices examined by confocal microscopy, with the perimeter of the drill channel divided into clean, unclean and non-accessible regions. The choice of material affects cleanliness, with MTA being the most difficult and calcium hydroxide cement the easiest to remove. With epoxy resin-based sealers, almost half of the accessible canal walls remained coated with remnants of sealer after post space preparation.

  15. Automated detection of malignant features in confocal microscopy on superficial spreading melanoma versus nevi

    Science.gov (United States)

    Gareau, Dan; Hennessy, Ricky; Wan, Eric; Pellacani, Giovanni; Jacques, Steven L.

    2010-11-01

    In-vivo reflectance confocal microscopy (RCM) shows promise for the early detection of superficial spreading melanoma (SSM). RCM of SSM shows pagetoid melanocytes (PMs) in the epidermis and disarray at the dermal-epidermal junction (DEJ), which are automatically quantified with a computer algorithm that locates depth of the most superficial pigmented surface [DSPS(x,y)] containing PMs in the epidermis and pigmented basal cells near the DEJ. The algorithm uses 200 noninvasive confocal optical sections that image the superficial 200 μm of ten skin sites: five unequivocal SSMs and five nevi. The pattern recognition algorithm automatically identifies PMs in all five SSMs and finds none in the nevi. A large mean gradient ψ (roughness) between laterally adjacent points on DSPS(x,y) identifies DEJ disruption in SSM ψ = 11.7 +/- 3.7 [-] for n = 5 SSMs versus a small ψ = 5.5 +/- 1.0 [-] for n = 5 nevi (significance, p = 0.0035). Quantitative endpoint metrics for malignant characteristics make digital RCM data an attractive diagnostic asset for pathologists, augmenting studies thus far, which have relied largely on visual assessment.

  16. Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope.

    Science.gov (United States)

    Dodes Traian, Martín M; González Flecha, F Luis; Levi, Valeria

    2012-03-01

    Lateral organization of biological membranes is frequently studied using fluorescence microscopy. One of the most widely used probes for these studies is 2-dimethylamino-6-lauroylnaphthalene (laurdan). The fluorescence of this probe is sensitive to the environment polarity, and thus laurdan reports the local penetration of water when inserted in membranes. Unfortunately, this probe can only be used under two-photon excitation due to its low photostability. This is a very important limitation, because there are not too many laboratories with capability for two-photon microscopy. In this work, we explored the performance of 6-dodecanoyl-2-[N-methyl-N-(carboxymethyl)amino]naphthalene (C-laurdan), a carboxyl-modified version of laurdan, for imaging biological membranes using a conventional confocal microscopy setup. We acquired generalized polarization (GP) images of C-laurdan inserted in giant unillamelar vesicles composed of binary mixtures of lipids and verified that the probe allows observing the coexistence of different phases. We also tested the performance of the probe for measurement with living cells and registered GP images of melanophore cells labeled with C-laurdan in which we could observe highly ordered regions such as filopodia. These findings show that C-laurdan can be successfully employed for studies of membrane lateral organization using a conventional confocal microscope and can open the possibility of studying a wide variety of membrane-related processes.

  17. Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope[S

    Science.gov (United States)

    Dodes Traian, Martín M.; Flecha, F. Luis González; Levi, Valeria

    2012-01-01

    Lateral organization of biological membranes is frequently studied using fluorescence microscopy. One of the most widely used probes for these studies is 2-dimethylamino-6-lauroylnaphthalene (laurdan). The fluorescence of this probe is sensitive to the environment polarity, and thus laurdan reports the local penetration of water when inserted in membranes. Unfortunately, this probe can only be used under two-photon excitation due to its low photostability. This is a very important limitation, because there are not too many laboratories with capability for two-photon microscopy. In this work, we explored the performance of 6-dodecanoyl-2-[N-methyl-N-(carboxymethyl)amino]naphthalene (C-laurdan), a carboxyl-modified version of laurdan, for imaging biological membranes using a conventional confocal microscopy setup. We acquired generalized polarization (GP) images of C-laurdan inserted in giant unillamelar vesicles composed of binary mixtures of lipids and verified that the probe allows observing the coexistence of different phases. We also tested the performance of the probe for measurement with living cells and registered GP images of melanophore cells labeled with C-laurdan in which we could observe highly ordered regions such as filopodia. These findings show that C-laurdan can be successfully employed for studies of membrane lateral organization using a conventional confocal microscope and can open the possibility of studying a wide variety of membrane-related processes. PMID:22184757

  18. Confocal Raman mapping of collagen cross-link and crystallinity of human dentin-enamel junction

    Science.gov (United States)

    Slimani, Amel; Nouioua, Fares; Desoutter, Alban; Levallois, Bernard; Cuisinier, Frédéric J. G.; Tassery, Hervé; Terrer, Elodie; Salehi, Hamideh

    2017-08-01

    The separation zone between enamel and dentin [dentin-enamel junction (DEJ)] with different properties in biomechanical composition has an important role in preventing crack propagation from enamel to dentin. The understanding of the chemical structure (inorganic and organic components), physical properties, and chemical composition of the human DEJ could benefit biomimetic materials in dentistry. Spatial distribution of calcium phosphate crystallinity and the collagen crosslinks near DEJ were studied using confocal Raman microscopy and calculated by different methods. To obtain collagen crosslinking, the ratio of two peaks 1660 cm-1 over 1690 cm-1 (amide I bands) is calculated. For crystallinity, the inverse full-width at half maximum of phosphate peak at 960 cm-1, and the ratio of two Raman peaks of phosphate at 960/950 cm-1 is provided. In conclusion, the study of chemical and physical properties of DEJ provides many benefits in the biomaterial field to improve the synthesis of dental materials in respect to the natural properties of human teeth. Confocal Raman microscopy as a powerful tool provides the molecular structure to identify the changes along DEJ and can be expanded for other mineralized tissues.

  19. Visualization and quantification of GPCR trafficking in mammalian cells by confocal microscopy.

    Science.gov (United States)

    Nooh, Mohammed M; Bahouth, Suleiman W

    2017-01-01

    G protein-coupled receptors (GPCRs) are recognized as one of the most fruitful group of therapeutic targets, accounting for more than 40% of all approved pharmaceuticals on the market. Therefore, the search for selective agents that affect GPCR function is of major interest to the pharmaceutical industry. This chapter describes methods for measuring agonist-promoted GPCR trafficking, which involves the internalization of the GPCR and its subsequent recycling back to the plasma membrane or retention and eventual degradation. These pathways will be analyzed by confocal cellular imaging, using the β 1 -adrenergic receptor (β 1 -AR) as a primary model. A major problem encountered in studying GPCR trafficking is the unavailability of antibodies that would recognize the native receptor in cells or tissues. Therefore, wild-type, point mutants, and β 1 -AR chimeras are generated as epitope-tagged proteins, which are stably- or transiently expressed in mammalian cells. GPCR are labeled with a fluorophore-conjugated antibody directed against the N-terminal epitope tag. The trafficking of the fluorophore-tagged GPCR between divergent trafficking pathways that result in retention and eventual degradation or recycling and reinsertion into the plasma membrane can be followed by confocal immunofluorescence microscopy techniques outlined in this review. © 2017 Elsevier Inc. All rights reserved.

  20. Adaptive and Background-Aware GAL4 Expression Enhancement of Co-registered Confocal Microscopy Images.

    Science.gov (United States)

    Trapp, Martin; Schulze, Florian; Novikov, Alexey A; Tirian, Laszlo; J Dickson, Barry; Bühler, Katja

    2016-04-01

    GAL4 gene expression imaging using confocal microscopy is a common and powerful technique used to study the nervous system of a model organism such as Drosophila melanogaster. Recent research projects focused on high throughput screenings of thousands of different driver lines, resulting in large image databases. The amount of data generated makes manual assessment tedious or even impossible. The first and most important step in any automatic image processing and data extraction pipeline is to enhance areas with relevant signal. However, data acquired via high throughput imaging tends to be less then ideal for this task, often showing high amounts of background signal. Furthermore, neuronal structures and in particular thin and elongated projections with a weak staining signal are easily lost. In this paper we present a method for enhancing the relevant signal by utilizing a Hessian-based filter to augment thin and weak tube-like structures in the image. To get optimal results, we present a novel adaptive background-aware enhancement filter parametrized with the local background intensity, which is estimated based on a common background model. We also integrate recent research on adaptive image enhancement into our approach, allowing us to propose an effective solution for known problems present in confocal microscopy images. We provide an evaluation based on annotated image data and compare our results against current state-of-the-art algorithms. The results show that our algorithm clearly outperforms the existing solutions.

  1. Integrated confocal Raman probe combined with a free-form reflector based lab-on-chip

    Science.gov (United States)

    Liu, Qing; Barbieri, Giancarlo; Thienpont, Hugo; Ottevaere, Heidi

    2017-08-01

    Raman spectroscopy is a powerful tool for analytical measurements in many applications. Traditional Raman spectroscopic analyses require bulky equipment, considerable time of signal acquisition and manual sampling of substances under test. In this paper, we take a step from bulky and manual consuming laboratory testing towards lab-on-chip (LOC) analyses. We miniaturize the Raman spectroscopic system by combining a free-form reflector based polymer LOC with a customized Raman probe. By using the confocal detection principle, we aim to enhance the detection of the Raman signals from the substance of interest due to the suppression of the background Raman signal from the polymer of the chip. Next to the LOC we miniaturize the external optical components, surrounding the reflector embedding optofluidic chip, and assemble these in a Raman probe. We evaluate the misalignment tolerance of internal optics (LOC) and external optics (Raman probe) by non-sequential ray tracing which shows that off-axis misalignment is around ±400μm and the maximum working distance of our Raman probe is 71mm. Using this probe, the system could be implemented as a portable reader unit containing the external optics, in which a low-cost, robust and mass manufacturable microfluidic LOC containing a freeform reflector is inserted, to enable confocal Raman spectroscopy measurements.

  2. Design of an affordable fluorescence confocal laser scanning microscope for medical diagnostics

    Science.gov (United States)

    Bechtel, Christin; Knobbe, Jens; Grüger, Heinrich; Lakner, Hubert

    2012-12-01

    Confocal fluorescence microscopes are a promising imaging tool in medical diagnostics due to their capability to selectively survey cross-sections of individual layers from `thick' samples. Non-invasive depth resolved investigation of neoplastic skin disorders is one example among other applications. However these microscopes are at present uncommon in medical practice. This is due to their main application area in research. The instruments dealt with here are generally complex, stationary units and are accordingly cost-intensive. It is for this reason, that we have designed a robust and portable MEMS based confocal fluorescence microscope with a field of view of 0.6mm x 0.6mm. This has been made possible by the integration of a 2D micro scanner mirror developed at Fraunhofer IPMS. A variable acquisition depth of cross-sectional images of the fluorescence specimen is enabled by an integrated z-shifter. With the use of commercially available optics an optical demonstrator set up has been realized. To characterize and to demonstrate the ability of this system test measurements were performed. The resolution of the microscope is better than 228 lp/mm determined by 1951 USAF resolution test target. Images of various biological samples are presented and optical sectioning capabilities are shown. A comparison of the measured with the predicted system performance will be given.

  3. Internal features of graphite in cast irons. Confocal microscopy: useful tool for graphite growth imaging.

    Science.gov (United States)

    Llorca-Isern, N; Tartera, J; Espanol, M; Marsal, M; Bertran, G; Castel, S

    2002-01-01

    Spherulitic crystallisation is a mode of growth of crystals from the melt. Considerable attention has been given to spheroidal graphite formation, providing detailed information about the internal microstructure of the spherulites in spheroidal (SG irons) and compacted graphite irons (CG irons) (Stefanescu, D., 1990. Cast Irons. ASM Handbook, 10th ed., vol. 1). Nevertheless, the mechanisms responsible for this mode of crystallisation are not fully understood. This study deals with the inoculation mechanisms, with particular emphasis on the study of the inclusions for the heterogeneous nucleation of graphite. It is shown that the graphite nuclei are sulfide products of the nodularizing treatment. It has been observed that when rare-earth treatment is applied, the central nucleus consists of a core and an envelope from which the graphite grows. Confocal Scanning Laser Microscopy (CSLM), in reflection mode, was used to study the internal features of the spheroidal graphite growth. Confocal reflection imaging, which has a capacity for optical sectioning of the sample, provides high-resolution images of surface and subsurface regions of interest contained within a semi-transparent sample. Furthermore, three-dimensional reconstruction of these optical sections can provide insight into the mechanism of graphite growth mechanism interpretation. With CSLM the radial growth of graphite was seen. Other techniques, such as TEM, SEM-EDS, WDS, AES and SAM were also used to corroborate the results.

  4. Confocal microscopic evidence of increased Langerhans cell activity after corneal metal foreign body removal.

    Science.gov (United States)

    Resch, M D; Imre, L; Tapaszto, B; Nemeth, J

    2008-01-01

    The purpose of the study was to examine the corneal inflammatory reaction and Langerhans cells with confocal microscopy after metal foreign body removal. Corneal metal foreign body was removed from 9 eyes of 9 consecutive patients 12.1+/-13.6 (4 to 72) hours after superficial angle grinder injury. Both eyes were examined with the Heidelberg Retina Tomograph II (HRT II) Rostock Cornea Module. Morphology and density of epithelium, nerves, metal deposits, keratocytes, endothelium, and Langerhans cells were compared to the uninjured fellow eyes (controls). Irregularity and partially missing superficial epithelium was found in all cases. Around the area of injury prolonged basal and wing epithelial cells were found in all eyes. The basal epithelium density is lower than in the control eye (p=0.043). Density of Langerhans cells (68.1+/-24.2/mm2) was increased in the epithelium, compared to controls (35.2+/-21.8/mm2, p=0.012). Keratocyte and endothelium densities were not different from that of controls. Some keratocytes showed signs of activation and the inhomogeneous background reflectivity revealed extracellular matrix alterations. Inflammatory reaction was observed up to260 micronm depth. The metal foreign body particles had high reflectivity and irregular edge. In vivo confocal microscopy provided additional information to biomicroscopic signs such as epithelial damage and inflammation. It showed the effects of metal foreign bodies in the cornea: nerve damage and Langerhans cell density increase. Langerhans cells seem to play an important role in the inflammatory response after corneal foreign body injuries.

  5. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Esam M.A. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)], E-mail: h.g.m.edwards@bradford.ac.uk; Hargreaves, Michael D.; Scowen, Ian J. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)

    2008-05-12

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 {mu}m. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material.

  6. Confocal laser scanning microscopic investigation of ultrasonic, sonic, and rotary sealer placement techniques

    Science.gov (United States)

    Nikhil, Vineeta; Singh, Renuka

    2013-01-01

    Background: Sealers are used to attain an impervious seal between the core material and root canal walls. Aim: To compare the depth and percentage of sealer penetration with three different placement techniques using confocal laser scanning microscopy as the evaluative tool. Materials and Methods: Root canals of 30 single-rooted teeth were prepared to a size of F3 and AH plus sealer with Rhodamine B was applied with Ultlrasonic file (Gr-1), lentulospiral (Gr-2), and Endoactivator (Gr-3). Canals were obturated with gutta-percha. The roots were sectioned at the 3 and 6-mm levels from the apical foramen and were examined on a confocal microscope. Results: A statistical significant differences among Gr-1, Gr-2, and Gr-3 were found at the 3 and 6-mm level (P < 0.05; ANOVA-Tukey tests) for the depth and percentage of sealer penetration except for Gr-1 and Gr-2 at 3-mm level. Gr-1 showed maximum mean depth of penetration (810 μm) and maximum mean percentage of sealer penetration (64.5) while Gr-3 showed minimum mean depth of penetration (112.7 μm) and minimum mean percentage of sealer penetration (26.7). Conclusion: Depth and percentage of penetration of sealer is influenced by the type of placement technique and by the root canal level with penetration decreasing apically. PMID:23956528

  7. Comparison of Three Different Sealer Placement Techniques: An In vitro Confocal Laser Microscopic Study

    Science.gov (United States)

    Dash, Avoy Kumar; Farista, Shanin; Dash, Abhilasha; Bendre, Ajinkya; Farista, Sana

    2017-01-01

    Introduction: Three-dimensional obturation of the root canal system is the final objective of root canal therapy. Greater penetration of sealer in root dentine lesser will be the voids at the dentine–sealer interface. Hence, analysis of the dentin/sealer interface allows the determination of a filling technique which could obturate the root canals with least gaps and voids. Therefore, the aim of this study is to compare the depth and percentage of sealer penetration into root dentin using three different root canal sealer placement techniques under confocal laser scanning microscope. Materials and Methods: Thirty single-rooted teeth were selected and prepared. Adseal sealer (Meta Biomed, South Korea) was mixed with Rhodamine B dye and applied using lentulo spiral (Dentsply Maillefer, USA) as Group 1, bidirectional spiral (EZ-Fill– EDS, USA) as Group 2, and ultrasonic endodontic tip (Sonofile– Dentsply Tulsa, USA) as Group 3. Canals were then obturated with gutta-percha. The roots were sectioned at the 3 and 6-mm levels from the apical foramen and examined under confocal laser microscope. Results: Maximum mean depth and percentage of sealer penetration were observed for Group 1 and minimum for Group 3. Furthermore, statistical significant differences among Group 1 and Group 3 were found at 6-mm level and among Group 2 and Group 3 were found at 3-mm level (P ultrasonics. PMID:28839420

  8. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy.

    Science.gov (United States)

    Ali, Esam M A; Edwards, Howell G M; Hargreaves, Michael D; Scowen, Ian J

    2008-05-12

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 microm. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material.

  9. Adipocyte size and cellular expression of caveolar proteins analyzed by confocal microscopy

    DEFF Research Database (Denmark)

    Hulstrøm, Veronica; Prats Gavalda, Clara; Vinten, Jørgen

    2013-01-01

    Caveolae are abundant in adipocytes and are involved in the regulation of lipid accumulation, which is the main volume determinant of these cells. We have developed and applied a confocal microscopic technique for measuring individual cellular expression of the caveolar proteins cavin-1 and caveo......Caveolae are abundant in adipocytes and are involved in the regulation of lipid accumulation, which is the main volume determinant of these cells. We have developed and applied a confocal microscopic technique for measuring individual cellular expression of the caveolar proteins cavin-1...... and caveolin-1 along with the size of individual adipocytes. The technique was applied on collagenase isolated adipocytes from ad libitum fed Sprague-Dawley rats of different age (4-26 wk) and weight (103-629 g). We found that cellular expression of caveolar proteins was variable (SD of log expression...... in the range from 0.25 to 0.65). Regression analysis of protein expression on adipocyte size revealed that the expression of the caveolar proteins cavin-1 and caveolin-1 on adipocytes from individual rats was tightly related to adipocyte cell surface area (mean coefficient of regression was 0.83 for cavin...

  10. Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy.

    Science.gov (United States)

    Alam, Uazman; Jeziorska, Maria; Petropoulos, Ioannis N; Asghar, Omar; Fadavi, Hassan; Ponirakis, Georgios; Marshall, Andrew; Tavakoli, Mitra; Boulton, Andrew J M; Efron, Nathan; Malik, Rayaz A

    2017-01-01

    Corneal confocal microscopy (CCM) is a rapid, non-invasive, reproducible technique that quantifies small nerve fibres. We have compared the diagnostic capability of CCM against a range of established measures of nerve damage in patients with diabetic neuropathy. In this cross sectional study, thirty subjects with Type 1 diabetes without neuropathy (T1DM), thirty one T1DM subjects with neuropathy (DSPN) and twenty seven non-diabetic healthy control subjects underwent detailed assessment of neuropathic symptoms and neurologic deficits, quantitative sensory testing (QST), electrophysiology, skin biopsy and corneal confocal microscopy (CCM). Subjects with DSPN were older (C vs T1DM vs DSPN: 41.0±14.9 vs 38.8±12.5 vs 53.3±11.9, P = 0.0002), had a longer duration of diabetes (Pdiabetic neuropathy with clinical signs and symptoms of neuropathy and greater neuropathy deficits quantified by QST, electrophysiology, intra-epidermal nerve fibre density and CCM. Corneal nerve fibre density (CNFD) (Spearman's Rho = 0.60 Pdiabetic neuropathy the sensitivity for CNFD was 0.77 and specificity was 0.79 with an area under the ROC curve of 0.81. IENFD had a diagnostic sensitivity of 0.61, specificity of 0.80 and area under the ROC curve of 0.73. CCM is a valid accurate non-invasive method to identify small nerve fibre pathology and is able to diagnose DPN.

  11. Automated Tracing and Segmentation Tool for Migrating Neurons in 4D Confocal Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Karakaya, Mahmut [ORNL; Kerekes, Ryan A [ORNL; Solecki, Dr. David [St. Jude Children' s Research Hospital

    2013-01-01

    Accurate tracing and segmentation of subcellular components of migrating neurons in confocal image sequences are prerequisite steps in many neurobiology studies to understand the biological machinery behind the movement of developing neurons. In this paper, we present an automated tracking, tracing, and segmentation tool for soma, leading, and trailing process of migrating neurons in time-lapse image stacks acquired with a confocal fluorescence microscope. In our approach, we first localize each neuron in the maximum intensity projection of the first frame using manual labeling of the soma and end points of the leading and trailing process. By using each soma position at the first frame, we automatically track the somas in rest of the frames. Then, leading and trailing process are traced in each frame from the soma center to the labeled end tip of the process by using fast marching algorithm. Finally, the soma, leading and trailing processes of each neuron are segmented by using the soma center and traces as seed points, and their boundaries are separated from each other. Based on qualitative results, we demonstrate the capability to automatically track, trace, and segment the soma, leading, and trailing processes of a migrating neuron with minimal user input.

  12. Two-photon fluorescence and confocal reflected light imaging of thick tissue structures

    Science.gov (United States)

    Kim, Ki H.; So, Peter T. C.; Kochevar, Irene E.; Masters, Barry R.; Gratton, Enrico

    1998-04-01

    The technology of two-photon excitation has opened a window of opportunity for developing non-invasive medical diagnostic tools capable of monitoring thick tissue biochemical states. Using cellular endogenous chromophores, (beta) -nicotinamide- adenine dinucleotide phosphate [NAD(P)H], the cellular metabolic rates in living human skin were determined. Although important functional information can be obtained from the fluorescence spectroscopy of endogenous chromophores, these chromophores are rather poor contrast enhancing agent for mapping cellular morphology. First, most endogenous chromophores are confined to the cellular cytoplasm which prevents the visualization of other cellular organelles. Second, there is significant variability in the distribution and the quantum yield of endogenous chromophores which depends on tissue biochemistry but prevents consistent comparison of cellular morphology. On the other hand, the deep tissue cellular morphology has been imaged with excellent resolution using reflected light confocal microscopy. In reflected light microscopy, the image contrast originates from the index of refraction differences of the cellular structures. The organelle boundaries with significant index differences such as the plasma membrane and the nucleus envelope can be consistently visualized. A combination of morphological and functional information is required for a thorough tissue study. This presentation describes the development of a new microscope which is capable of simultaneously collecting both two-photon fluorescence and confocal reflected light signals. Promising biomedical applications include the non-invasive diagnosis of skin cancer and the study of wound healing.

  13. Atomic force microscopy analysis and confocal Raman microimaging of coated pellets.

    Science.gov (United States)

    Ringqvist, Ann; Taylor, Lynne S; Ekelund, Katarina; Ragnarsson, Gert; Engström, Sven; Axelsson, Anders

    2003-11-28

    Polymer-coated pellets with different coating thicknesses have been studied regarding coating morphology and drug release properties with atomic force microscopy (AFM) and confocal Raman microscopy. The results were compared with those from scanning electron microscopy (SEM) and drug release profiles, which have been measured previously for these systems and found to vary depending on coating thickness. Results from AFM studies indicated that these pellets differ in the amount of crystalline material on the surface of the coating. The amount was found to be highest on the pellet with the thinnest coating. Confocal Raman microscopy studies confirmed that the active component (remoxipride hydrochloride monohydrate) is present at or close to the surface and that the amount is higher for the thinnest coating. AFM studies in aqueous media showed that the crystalline material on the surface was almost instantaneously dissolved and released into the liquid. AFM has proven to be a powerful tool in the study of the surface of dry formulations and in the study of the controlled release mechanism of a pharmaceutical in a liquid cell. The method can be combined with Raman, giving the added possibility to identify the chemical composition in selected small areas of the coating surface.

  14. Biomimetic Coating on Porous Alumina for Tissue Engineering: Characterisation by Cell Culture and Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Elizabeth Kolos

    2015-06-01

    Full Text Available In this study porous alumina samples were prepared and then coated using the biomimetic coating technique using a five times Simulated Body Fluid (5.0SBF as the growth solution. A coating was achieved after pre-treatment with concentrated acid. From elemental analysis, the coating contained calcium and phosphorous, but also sodium and chlorine. Halite was identified by XRD, a sodium chloride phase. Sintering was done to remove the halite phase. Once halite was burnt off, the calcium phosphate crystals were not covered with halite and, therefore, the apatite phases can be clearly observed. Cell culturing showed sufficient cell attachment to the less porous alumina, Sample B, that has more calcium phosphate growth, while the porous alumina, Sample A, with minimal calcium phosphate growth attained very little cell attachment. This is likely due to the contribution that calcium phosphate plays in the attachment of bone-like cells to a bioinert ceramic such as alumina. These results were repeated on both SEM and confocal microscopy analysis. Confocal microscopy was a novel characterisation approach which gave useful information and was a visual aid.

  15. Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network.

    Science.gov (United States)

    Alves da Rocha, Roney; Paiva, Igor Moura; Anjos, Virgílio; Furtado, Marco Antônio Moreira; Bell, Maria José Valenzuela

    2015-06-01

    In this work, we assessed the use of confocal Raman microscopy and artificial neural network as a practical method to assess and quantify adulteration of fluid milk by addition of whey. Milk samples with added whey (from 0 to 100%) were prepared, simulating different levels of fraudulent adulteration. All analyses were carried out by direct inspection at the light microscope after depositing drops from each sample on a microscope slide and drying them at room temperature. No pre- or posttreatment (e.g., sample preparation or spectral correction) was required in the analyses. Quantitative determination of adulteration was performed through a feed-forward artificial neural network (ANN). Different ANN configurations were evaluated based on their coefficient of determination (R2) and root mean square error values, which were criteria for selecting the best predictor model. In the selected model, we observed that data from both training and validation subsets presented R2>99.99%, indicating that the combination of confocal Raman microscopy and ANN is a rapid, simple, and efficient method to quantify milk adulteration by whey. Because sample preparation and postprocessing of spectra were not required, the method has potential applications in health surveillance and food quality monitoring. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy.

    Science.gov (United States)

    Selig, Bettina; Vermeer, Koenraad A; Rieger, Bernd; Hillenaar, Toine; Luengo Hendriks, Cris L

    2015-04-26

    Manual and semi-automatic analyses of images, acquired in vivo by confocal microscopy, are often used to determine the quality of corneal endothelium in the human eye. These procedures are highly time consuming. Here, we present two fully automatic methods to analyze and quantify corneal endothelium imaged by in vivo white light slit-scanning confocal microscopy. In the first approach, endothelial cell density is estimated with the help of spatial frequency analysis. We evaluate published methods, and propose a new, parameter-free method. In the second approach, based on the stochastic watershed, cells are automatically segmented and the result is used to estimate cell density, polymegathism (cell size variability) and pleomorphism (cell shape variation). We show how to determine optimal values for the three parameters of this algorithm, and compare its results to a semi-automatic delineation by a trained observer. The frequency analysis method proposed here is more precise than any published method. The segmentation method outperforms the fully automatic method in the NAVIS software (Nidek Technologies Srl, Padova, Italy), which significantly overestimates the number of cells for cell densities below approximately 1200 mm(-2), as well as previously published methods. The methods presented here provide a significant improvement over the state of the art, and make in vivo, automated assessment of corneal endothelium more accessible. The segmentation method proposed paves the way to many possible new morphometric parameters, which can quickly and precisely be determined from the segmented image.

  17. Probe-based confocal laser endomicroscopy in head and neck malignancies: early preclinical experience

    Science.gov (United States)

    Englhard, Anna; Girschick, Susanne; Mack, Brigitte; Volgger, Veronika; Gires, Oliver; Conderman, Christian; Stepp, Herbert; Betz, Christian Stephan

    2013-06-01

    Background: Malignancies of the upper aerodigestive tract (UADT) are conventionally diagnosed by white light endoscopy, biopsy and histopathology. Probe-based Confocal Laser Endomicroscopy (pCLE) is a novel non-invasive technique which offers in vivo surface and sub-surface imaging of tissue. It produces pictures of cellular architecture comparable to histology without the need for biopsy. It has already been successfully used in different clinical subspecialties to help in the diagnosis and treatment planning of inflammatory and neoplastic diseases. PCLE needs to be used in combination with specific or non-specific contrast agents. In this study we evaluated the potential use of pCLE in combination with non-specific and specific contrast agents to distinguish between healthy mucosa and invasive carcinoma. Methods: Tissue samples from healthy mucosa and squamous cell carcinoma of the head and neck were taken during surgery. After topical application of three different contrast agents, samples were examined using different pCLE-probes and a Confocal Laser Scanning Microscope (CLSM). Images were then compared to the corresponding histological slides and cryosections. Results: Initial results show that pCLE in combination with fluorophores allows visualization of cellular and structural components. Imaging of different layers was possible using three distinct pCLEprobes. Conclusion: pCLE is a promising non-invasive technique that may be a useful adjunct in the evaluation, diagnosis and treatment planning of head and neck malignancies.

  18. EVIDÊNCIAS CIENTIFICAS SOBRE O USO DA ESPECTROSCOPIA RAMAN CONFOCAL IN VIVO NA PELE HUMANA

    Directory of Open Access Journals (Sweden)

    Aline Campos Pereira

    2017-04-01

    Full Text Available A Espectroscopia Raman Confocal (ERC é uma técnica totalmente não invasiva, eficaz na caracterização em tempo real dos arranjos químicos dos tecidos biológicos vivos. Com isso, o objetivo desse trabalho é destacar as pesquisas com uso da ERC. Foram selecionados e analisados das bases de dados: PubMed e Web of Science: 18 artigos científicos. Foram apresentados em dois quadros, obedecendo a ordem: nome dos autores, ano, revista, número de participantes, região espectral, tipo de sistema Raman Confocal, tipo e potência dos lasers. Todos os artigos reportados neste trabalham ressaltam que a ERC trata se de uma ferramenta valiosa, a qual fornece dados confiáveis. Conclui-se que existem poucos estudos científicos utilizando a ERC na pele humana, principalmente in vivo, apesar de fornecer informações em diferentes profundidades e obter dados com uma metodologia totalmente invasiva.

  19. In vivo three-dimensional reconstruction of the cornea from confocal microscopy images.

    Science.gov (United States)

    Scarpa, Fabio; Fiorin, Diego; Ruggeri, Alfredo

    2007-01-01

    Confocal microscopy can provide sequences of images from all cornea layers in a rapid, in vivo and non invasive way. These images are useful to extract important clinical information on cornea state of health. We address the problem of obtaining a 3-dimensional (3D) reconstruction of the cornea starting from a confocal microscope sequence, from endothelium to epithelium. A registration procedure, based on normalized correlation, is applied to each image, because eye movements normally occur during acquisition of the sequence and shifts in x-y plane take place in the sequence of images. Information on shifts along x and y directions comes from registration process, shift along z direction comes from the instrument itself. A 2D image stack is reconstructed by taking into account shifts along x, y, and z directions. If data are missing, we reconstruct them by taking lines from adjacent images and interpolating them. After reconstruction, it is possible to display and analyze corneal structures in the 3D volume and obtain slices in the x, y, or z direction.

  20. Effect of hygroscopic expansion of resin filling on interfacial gap and sealing: a confocal microscopy study.

    Science.gov (United States)

    Rosales-Leal, Juan I; Castillo-Salmerón, Ramón Del; Molino-Serrano, María A; González-Moreira, Humberto; Cabrerizo-Vílchez, Miguel A

    2013-10-01

    To measure dimensional changes due to hygroscopic expansion and their effect on interface gaps and sealing in four light-cured restorative materials using an original confocal microscopic methodology. The materials tested were an ormocer (Admira [Voco]), a compomer (Dyract AP [Dentsply]), a hybrid composite (Spectrum [Dentsply]), and a nanohybrid composite (Esthet·X [Dentsply]). Water sorption was evaluated by weighing material disks after immersion. Hygroscopic expansion was measured from volumetric variations of material fillings in cylindrical cavities in dentin slices; the interfacial gap size was obtained from the same cavities using a novel confocal microscopic method. Microleakage was evaluated in cavities prepared in extracted third molars. Measurements followed water immersion for 24 h, 1 week, 4 weeks, and 8 weeks. A factorial ANOVA, the Student Newman Keuls test for post-hoc comparisons, the Student's t-test, and the Pearson test were used for the statistical analysis (p hygroscopic expansion, and sealing. Hygroscopic expansion reduced post-polymerization interfacial gaps and improved cavity sealing. Dyract AP and Admira showed the highest water sorption, hygroscopic expansion, and gap size reduction. 1. The proposed methodology is valid to measure hygroscopic expansion and interfacial gap. 2. Water sorption and hygroscopic expansion are positively correlated, and hygroscopic expansion, gap size, and sealing are also positively correlated. 3. The adhesive influences the interfacial gap size and its variation after hygroscopic expansion. 4. Hygroscopic expansion reduces the interfacial gaps generated by polymerization shrinkage and improves cavity sealing.

  1. Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy.

    Science.gov (United States)

    Cardinale, Massimiliano

    2014-01-01

    No plant or cryptogam exists in nature without microorganisms associated with its tissues. Plants as microbial hosts are puzzles of different microhabitats, each of them colonized by specifically adapted microbiomes. The interactions with such microorganisms have drastic effects on the host fitness. Since the last 20 years, the combination of microscopic tools and molecular approaches contributed to new insights into microbe-host interactions. Particularly, confocal laser scanning microscopy (CLSM) facilitated the exploration of microbial habitats and allowed the observation of host-associated microorganisms in situ with an unprecedented accuracy. Here I present an overview of the progresses made in the study of the interactions between microorganisms and plants or plant-like organisms, focusing on the role of CLSM for the understanding of their significance. I critically discuss risks of misinterpretation when procedures of CLSM are not properly optimized. I also review approaches for quantitative and statistical analyses of CLSM images, the combination with other molecular and microscopic methods, and suggest the re-evaluation of natural autofluorescence. In this review, technical aspects were coupled with scientific outcomes, to facilitate the readers in identifying possible CLSM applications in their research or to expand their existing potential. The scope of this review is to highlight the importance of confocal microscopy in the study of plant-microbe interactions and also to be an inspiration for integrating microscopy with molecular techniques in future researches of microbial ecology.

  2. Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy

    Directory of Open Access Journals (Sweden)

    Massimiliano eCardinale

    2014-03-01

    Full Text Available No plant or cryptogam exists in nature without microorganisms associated with its tissues. Plants as microbial hosts are puzzles of different microhabitats, each of them colonized by specifically adapted microbiomes. The interactions with such microorganisms have drastic effects on the host fitness. Since the last 20 years, the combination of microscopic tools and molecular approaches contributed to new insights into microbe-host interactions. Particularly, confocal laser scanning microscopy (CLSM facilitated the exploration of microbial habitats and allowed the observation of host-associated microorganisms in situ with an unprecedented accuracy. Here I present an overview of the progresses made in the study of the interactions between microorganisms and plants or plant-like organisms, focusing on the role of CLSM for the understanding of their significance. I critically discuss risks of misinterpretation when procedures of CLSM are not properly optimized. I also review approaches for quantitative and statistical analyses of CLSM images, the combination with other molecular and microscopic methods, and suggest the re-evaluation of natural autofluorescence. In this review, technical aspects were coupled with scientific outcomes, to facilitate the readers in identifying possible CLSM applications in their research or to expand their existing potential. The scope of this review is to highlight the importance of confocal microscopy in the study of plant-microbe interactions and also to be an inspiration for integrating microscopy with molecular techniques in future researches of microbial ecology.

  3. Confocal laser endomicroscopy for the differential diagnosis of ulcerative colitis and Crohn's disease: a pilot study.

    Science.gov (United States)

    Tontini, Gian Eugenio; Mudter, Jonas; Vieth, Michael; Atreya, Raja; Günther, Claudia; Zopf, Yurdagül; Wildner, Dane; Kiesslich, Ralf; Vecchi, Maurizio; Neurath, Markus F; Neumann, Helmut

    2015-05-01

    The differential diagnosis of ulcerative colitis from Crohn's disease is of pivotal importance for the management of inflammatory bowel diseases, as both entities involve specific therapeutic management strategies. Confocal laser endomicroscopy (CLE) allows on-demand, in vivo characterization of architectural and cellular details during endoscopy. The aim of this study was to assess the efficacy of CLE to differentiate between ulcerative colitis and Crohn's disease. This was a prospective study involving consecutive patients with a well-established diagnosis of ulcerative colitis or Crohn's disease who underwent colonoscopy with fluorescein-aided confocal imaging. Overall, 79 patients were included (40 Crohn's disease, 39 ulcerative colitis). CLE findings in patients with Crohn's disease, showed significantly more discontinuous inflammation (87.5 % vs. 5.1 %), focal cryptitis (75.0 % vs. 12.8 %), and discontinuous crypt architectural abnormality (87.5 % vs. 10.3 %) than in ulcerative colitis (P Crohn's disease), decreased crypt density (79.5 % vs. 22.5 %), and frankly irregular surface (89.7 % vs. 17.5 %; P Crohn's disease. However, because of the limited penetration depth of CLE, submucosal details or granulomas were not visible. The new scoring system may allow in vivo diagnosis of ulcerative colitis or Crohn's disease. Trial registered at ClinicalTrials.gov: NCT 02238665. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Three-photon fluorescence imaging of melanin with a dual-wedge confocal scanning system

    Science.gov (United States)

    Mega, Yair; Kerimo, Joseph; Robinson, Joseph; Vakili, Ali; Johnson, Nicolette; DiMarzio, Charles

    2012-03-01

    Confocal microscopy can be used as a practical tool in non-invasive applications in medical diagnostics and evaluation. In particular, it is being used for the early detection of skin cancer to identify pathological cellular components and, potentially, replace conventional biopsies. The detection of melanin and its spatial location and distribution plays a crucial role in the detection and evaluation of skin cancer. Our previous work has shown that the visible emission from melanin is strong and can be easily observed with a near-infrared CW laser using low power. This is due to a unique step-wise, (SW) three-photon excitation of melanin. This paper shows that the same SW, 3-photon fluorescence can also be achieved with an inexpensive, continuous-wave laser using a dual-prism scanning system. This demonstrates that the technology could be integrated into a portable confocal microscope for clinical applications. The results presented here are in agreement with images obtained with the larger and more expensive femtosecond laser system used earlier.

  5. QUANTIFICATION OF BIOFILMS IN MULTI-SPECTRAL DIGITAL1 VOLUMES FROM CONFOCAL LASER-SCANNING MICROSCOPES

    Directory of Open Access Journals (Sweden)

    Karsten Rodenacker

    2011-05-01

    Full Text Available Populations of bacteria in sludge flocs and biofilm marked by fluorescence marked with fluorescent probes are digitised with a confocal laser scanning microscope. These data are used to analyse the microbial community structure, to obtain information on the localisation of specific bacterial groups and to examine gene expression. This information is urgently required for an in-depth understanding of the function and, more generally, the microbial ecology of biofilms. Methods derived from quantitative image analysis are applied to digitised data from confocal laser scanning microscopes to obtain quantitative descriptions of volumetric, topological (and topographical properties of different compartments of the components under research. In addition to free-moving flocs, also biofilms attached to a substratum in an experimental environment are analysed. Growth form as well as interaction of components are quantitatively described. Classical measurements of volume and intensity (shape, distribution and distance dependent interaction measurements using methods from mathematical morphology are performed. Mainly image (volume processing methods are outlined. Segmented volumes are globally and individually (in terms of 3Dconnected components measured and used for distance mapping transform as well as for estimation of geodesic distances from the substrate. All transformations are applied on the 3D data set. Resulting distance distributions are quantified and related to information on the identity and activity of the probe-identified bacteria.

  6. Detection and imaging of lipids ofScenedesmus obliquusbased on confocal Raman microspectroscopy.

    Science.gov (United States)

    Shao, Yongni; Fang, Hui; Zhou, Hong; Wang, Qi; Zhu, Yiming; He, Yong

    2017-01-01

    In this study, confocal Raman microspectroscopy was used to detect lipids in microalgae rapidly and non-destructively. Microalgae cells were cultured under nitrogen deficiency. The accumulation of lipids in Scenedesmus obliquus was observed by Nile red staining, and the total amount of lipids accumulated in the cells was measured by gravimetric method. The signals from different microalgae cells were collected by confocal Raman microspectroscopy to establish a prediction model of intracellular lipid content, and surface scanning signals for drawing pseudo color images of lipids distribution. The images can show the location of pyrenoid and lipid accumulation in cells. Analyze Raman spectrum data and build PCA-LDA model using four different bands (full bands, pigments, lipids, and mixed features). Models of full bands or pigment characteristic bands were capable of identifying S. obliquus cells under different nitrogen stress culture time. The prediction accuracy of model of lipid characteristic bands is relatively low. The correlation between the fatty acid content measured by the gravimetric method and the integral Raman intensity of the oil characteristic peak (1445 cm -1 ) measured by Raman spectroscopy was analyzed. There was significant correlation ( R 2  = 0.83), which means that Raman spectroscopy is applicable to semi-quantitative detection of microalgal lipid content.

  7. Confocal Raman spectroscopy to trace lipstick with their smudges on different surfaces.

    Science.gov (United States)

    López-López, Maria; Özbek, Nil; García-Ruiz, Carmen

    2014-06-01

    Lipsticks are very popular cosmetic products that can be transferred by contact to different surfaces, being important forensic evidence with an intricate analysis if they are found in a crime scene. This study evaluates the use of confocal Raman microscopy at 780 nm excitation wavelength for the nondestructive identification of 49 lipsticks of different brands and colors, overcoming the lipstick fluorescence problem reported by previous works using other laser wavelengths. Although the lipsticks samples showed some fluorescence, this effect was not so intense to completely overwhelm the Raman spectra. Lipsticks smudges on twelve different surfaces commonly stained with these samples were also analyzed. In the case of the surfaces, some of them provided several bands to the smudge spectra compromising the identification of the lipstick. For these samples spectral subtraction of the interfering bands from the surface was performed. Finally, five different red lipsticks with very similar color were measured on different surfaces to evaluate the lipstick traceability with their smudges even on interfering surfaces. Although previous spectral subtraction was needed in some cases, all the smudged were linked to their corresponding lipsticks even when they are smeared on the interfering surfaces. As a consequence, confocal Raman microscopy using the 780 nm excitation laser is presented as a nondestructive powerful tool for the identification of these tricky samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Impression Cytology in Eyes with Clinical and Confocal Scan Features of Acanthamoeba Keratitis

    Directory of Open Access Journals (Sweden)

    Mozhgan Rezaei Kanavi

    2013-01-01

    Full Text Available Purpose: To report impression cytology findings in specimens obtained from eyes with clinical and confocal microscopic features of Acanthamoeba keratitis (AK. Methods: In this interventional case series, impression cytology was obtained from corneas of patients with clinical and confocal microscopic features indicative of AK. Specimens were stained with Periodic acid-Schiff/Papanicolaou (PAS/PAP and examined for the presence of PAS-reactive Acanthamoeba cysts and/or hyperchromatic pear-shaped trophozoites. All specimens were then decolorized and re-stained with calcofluor white (CFW for the presence of chemofluorescent cysts. Results: Fifty-six eyes of 50 patients with mean age of 25.5±9.3 (range, 17 to 78 years were evaluated. Forty-one (82% cases were female and 51 (91.1% eyes had history of contact lens wear. PAS-reactive Acanthamoeba cysts and/or hyperchromatic pear-shaped trophozoites were identified in 53 eyes (94.6%, 2 of which demonstrated only trophozoitelike structures. CFW staining was able to reveal the presence of chemofluorescent cysts in all 51 specimens (91.1% in which cysts had been demonstrated with PAS/PAP staining. Trophozoites were not detected with CFW due to background staining of the cellulose acetate strip used for impression cytology. Conclusion: Corneal impression cytology, stained with PAS/PAP or with CFW, successfully detects Acanthamoeba and can be employed for early noninvasive diagnosis of AK.

  9. Impression cytology in eyes with clinical and confocal scan features of acanthamoeba keratitis.

    Science.gov (United States)

    Rezaei Kanavi, Mozhgan; Hosseini, Bagher; Javadi, Fatemeh; Rakhshani, Nasser; Javadi, Mohammad-Ali

    2013-07-01

    To report impression cytology findings in specimens obtained from eyes with clinical and confocal microscopic features of Acanthamoeba keratitis (AK). In this interventional case series, impression cytology was obtained from corneas of patients with clinical and confocal microscopic features indicative of AK. Specimens were stained with Periodic acid-Schiff/Papanicolaou (PAS/PAP) and examined for the presence of PAS-reactive Acanthamoeba cysts and/or hyperchromatic pear-shaped trophozoites. All specimens were then decolorized and re-stained with calcofluor white (CFW) for the presence of chemofluorescent cysts. Fifty-six eyes of 50 patients with mean age of 25.5±9.3 (range, 17 to 78) years were evaluated. Forty-one (82%) cases were female and 51 (91.1%) eyes had history of contact lens wear. PAS-reactive Acanthamoeba cysts and/or hyperchromatic pear-shaped trophozoites were identified in 53 eyes (94.6%), 2 of which demonstrated only trophozoite- like structures. CFW staining was able to reveal the presence of chemofluorescent cysts in all 51 specimens (91.1%) in which cysts had been demonstrated with PAS/PAP staining. Trophozoites were not detected with CFW due to background staining of the cellulose acetate strip used for impression cytology. Corneal impression cytology, stained with PAS/PAP or with CFW, successfully detects Acanthamoeba and can be employed for early noninvasive diagnosis of AK.

  10. In vivo ocular imaging of the cornea of the normal female laboratory beagle using confocal microscopy.

    Science.gov (United States)

    Strom, Ann R; Cortés, Dennis E; Thomasy, Sara M; Kass, Philip H; Mannis, Mark J; Murphy, Christopher J

    2016-01-01

    To obtain normative data for the normal laboratory beagle cornea using high-resolution in vivo confocal microscopy (IVCM). Sixteen eyes of eight healthy young female intact beagles. The central cornea was imaged using IVCM. Mixed effects linear regression was used for statistical analysis. in vivo confocal microscopy allowed detailed visualization and quantification of epithelial cells (superficial epithelial cell diameter: 43.25 ± 6.64 μm, basal cell diameter: 4.43 ± 0.67 μm), and nerve fibers (subepithelial nerve fiber diameter: 2.38 ± 0.69 μm, anterior stromal nerve fiber diameter: 16.93 ± 4.55 μm). Keratocyte density (anterior stroma 993.38 ± 134.24 cells/mm(2) , posterior stroma 789.38 ± 87.13 cells/mm(2) ) and endothelial cell density (2815.18 ± 212.59 cells/mm(2) ) were also measured. High-resolution IVCM provides detailed noninvasive evaluation of the cornea in the normal laboratory beagle. © 2015 American College of Veterinary Ophthalmologists.

  11. Multi-confocal Fluorescence Correlation Spectroscopy : experimental demonstration and potential applications for living cell measurements

    CERN Document Server

    Galland, Rémi; Kloster, Meike; Herbomel, Gaetan; Destaing, Olivier; Balland, Martial; Souchier, Catherine; Usson, Yves; Derouard, Jacques; Wang, Irène; Delon, Antoine; 10.2741/e263

    2011-01-01

    We report, for the first time, a multi-confocal Fluorescence Correlation Spectroscopy (mFCS) technique which allows parallel measurements at different locations, by combining a Spatial Light Modulator (SLM), with an Electron Multiplying-CCD camera (EM-CCD). The SLM is used to produce a series of laser spots, while the pixels of the EM-CCD play the roles of virtual pinholes. The phase map addressed to the SLM is calculated by using the spherical wave approximation and makes it possible to produce several diffraction limited laser spots, either aligned or spread over the field of view. To attain fast enough imaging rates, the camera has been used in different acquisition modes, the fastest of which leads to a time resolution of 100 $\\mu$s. We qualified the experimental set-up by using solutions of sulforhodamine G in glycerol and demonstrated that the observation volumes are similar to that of a standard confocal set-up. To demonstrate that our mFCS method is suitable for intracellular studies, experiments have...

  12. Effects of acids used in the microabrasion technique: Microhardness and confocal microscopy analysis.

    Science.gov (United States)

    Pini, Núbia-Inocencya-Pavesi; Lima, Débora-Alves-Nunes-Leite; Ambrosano, Gláucia-Maria-Bovi; da Silva, Wander-José; Aguiar, Flávio-Henrique-Baggio; Lovadino, José-Roberto

    2015-10-01

    This study evaluated the effects of the acids used in the microabrasion on enamel. Seventy enamel/dentine blocks (25 mm2) of bovine incisors were divided into 7 groups (n=10). Experimental groups were treated by active/passive application of 35% H3PO4 (E1/E2) or 6.6% HCl (E3/E4). Control groups were treated by microabrasion with H3PO4+pumice (C5), HCl+silica (C6), or no treatment (C7). The superficial (SMH) and cross-sectional (CSMH; depths of 10, 25, 50, and 75 µm) microhardness of enamel were analyzed. Morphology was evaluated by confocal laser-scanning microscopy (CLSM). Data were analyzed by analysis of variance (Proc Mixed), Tukey, and Dunnet tests (α=5%). Active application (E1 and E3) resulted in higher microhardness than passive application (E2 and E4), with no difference between acids. For most groups, the CSMH decreased as the depth increased. All experimental groups and negative controls (C5 and C6) showed significantly reduced CSMH values compared to the control. A significantly higher mean CSMH result was obtained with the active application of H3PO4 (E1) compared to HCl (E3). Passive application did not result in CSMH differences between acids. CLSM revealed the conditioning pattern for each group. Although the acids displayed an erosive action, use of microabrasive mixture led to less damage to the enamel layers. Enamel microabrasion, enamel microhardness, confocal laser scanning microscopy.

  13. Video-mosaicking of in vivo reflectance confocal microscopy images for noninvasive examination of skin lesion (Conference Presentation)

    Science.gov (United States)

    Kose, Kivanc; Gou, Mengran; Yelamos, Oriol; Cordova, Miguel A.; Rossi, Anthony; Nehal, Kishwer S.; Camps, Octavia I.; Dy, Jennifer G.; Brooks, Dana H.; Rajadhyaksha, Milind

    2017-02-01

    In this report we describe a computer vision based pipeline to convert in-vivo reflectance confocal microscopy (RCM) videos collected with a handheld system into large field of view (FOV) mosaics. For many applications such as imaging of hard to access lesions, intraoperative assessment of MOHS margins, or delineation of lesion margins beyond clinical borders, raster scan based mosaicing techniques have clinically significant limitations. In such cases, clinicians often capture RCM videos by freely moving a handheld microscope over the area of interest, but the resulting videos lose large-scale spatial relationships. Videomosaicking is a standard computational imaging technique to register, and stitch together consecutive frames of videos into large FOV high resolution mosaics. However, mosaicing RCM videos collected in-vivo has unique challenges: (i) tissue may deform or warp due to physical contact with the microscope objective lens, (ii) discontinuities or "jumps" between consecutive images and motion blur artifacts may occur, due to manual operation of the microscope, and (iii) optical sectioning and resolution may vary between consecutive images due to scattering and aberrations induced by changes in imaging depth and tissue morphology. We addressed these challenges by adapting or developing new algorithmic methods for videomosaicking, specifically by modeling non-rigid deformations, followed by automatically detecting discontinuities (cut locations) and, finally, applying a data-driven image stitching approach that fully preserves resolution and tissue morphologic detail without imposing arbitrary pre-defined boundaries. We will present example mosaics obtained by clinical imaging of both melanoma and non-melanoma skin cancers. The ability to combine freehand mosaicing for handheld microscopes with preserved cellular resolution will have high impact application in diverse clinical settings, including low-resource healthcare systems.

  14. De novo melanoma and melanoma arising from pre-existing nevus: in vivo morphologic differences as evaluated by confocal microscopy.

    Science.gov (United States)

    Longo, Caterina; Rito, Cintia; Beretti, Francesca; Cesinaro, Anna Maria; Piñeiro-Maceira, Juan; Seidenari, Stefania; Pellacani, Giovanni

    2011-09-01

    Although in the majority of melanomas there is no evidence of pre-existing melanocytic nevus, it is believed that malignant transformation may sometimes occur within a benign precursor. We sought to describe the morphologic features of de novo melanoma and melanoma arising from nevi by means of in vivo confocal microscopy, and to correlate them with their corresponding histopathologic features. A total of 113 consecutive, histopathologically proven melanoma cases, 33 arising from a nevus and 80 occurring de novo, were imaged by confocal microscopy and retrospectively evaluated. Cyto-architectural features preferentially expressed in melanomas arising from nevi and in de novo melanomas were defined. By confocal microscopy, abrupt transition, localized distribution of junctional atypical cells, and the presence of dense dermal nests were the most helpful criteria for categorizing a melanoma as arising from a nevus. Melanomas arising from common and congenital nevi were predominantly composed of roundish, monomorphous cells, whereas melanomas arising either de novo or from dysplastic nevi were characterized by markedly pleomorphic cells. The study is retrospective. Confocal microscopy is effective in identifying melanoma even when a nevus is simultaneously present, confirming the clinical usefulness of this methodology. Moreover, distinctive features were observed in de novo melanomas and melanomas arising from nevi, permitting accurate distinction between the two groups. Finally, differences in cell morphology, easily detectable by confocal microscopy, seemed to characterize different melanoma types. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  15. The potential role of in vivo reflectance confocal microscopy for evaluating oral cavity lesions: a systematic review.

    Science.gov (United States)

    Lucchese, Alberta; Gentile, Enrica; Romano, Antonio; Maio, Claudio; Laino, Luigi; Serpico, Rosario

    2016-11-01

    Since the early 2000s, several studies have examined the application of reflectance confocal microscopy (RCM) to the oral cavity. This review gives an overview of the literature on reflectance confocal microscopy analysis of the oral cavity in vivo and identifies flaws in the studies, providing guidance to improve reflectance confocal microscopy applications and inform the design of future studies. The PubMed, ISI, Scopus, and Cochrane Library databases were searched for publications on RCM using the terms 'reflectance confocal microscopy' in combination with 'mouth' and other terms related to the topic of interest. The search gave 617 results. Seventeen studies were included in our final analysis. We decided to organize the selected articles according to four topics: healthy mucosa, autoimmune diseases, cancer and precancerous lesions, and hard dental tissues. Although reflectance confocal microscopy is promising for diagnosing and monitoring oral pathology, it has shortcomings and there are still too few publications on this topic. Further studies are needed to increase the quantity and quality of the results, to translate research into clinical practice. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Dynamic behavior of binary component ion-exchange displacement chromatography of proteins visualized by confocal laser scanning microscopy.

    Science.gov (United States)

    Shi, Qing-Hong; Shi, Zhi-Cong; Sun, Yan

    2012-09-28

    Confocal laser scanning microscopy (CLSM) was introduced to visualize particle-scale binary component protein displacement behavior in Q Sepharose HP column. To this end, displacement chromatography of two intrinsic fluorescent proteins, enhanced green fluorescent protein (eGFP) and red fluorescent protein (RFP), were developed using sodium saccharin (NaSac) as a displacer. The results indicated that RFP as well as eGFP could be effectively displaced in the single-component experiments by 50 mmol/L NaSac at 120 and 140 mmol/L NaCl whereas a fully developed displacement train with eGFP and RFP was only observed at 120 mmol/L NaCl in binary component displacement. At 140 mmol/L NaCl, there was a serious overlapping of the zones of the two proteins, indicating the importance of induced-salt effect on the formation of an isotachic displacement train. CLSM provided particle-scale evidence that induced-salt effect occurred likewise in the interior of an adsorbent and was synchronous to the introduction of the displacer. CLSM results at 140 mmol/L NaCl also demonstrated that both the proteins had the same fading rate at 50 mmol/L NaSac in the initial stage, suggesting the same displacement ability of NaSac to both the proteins. In the final stage, the fading rate of RFP in the adsorbent became slow, particularly at lower displacer concentrations. In the binary component displacement, the two proteins exhibited distinct fading rates as compared to the single component displacement and the remarkable lagging of the fading rate was observed in protein displacements. It suggested that the co-adsorbed proteins had significant influence on the formation of an isotachic train and the displacement chromatography of the proteins. Therefore, this research provided particle-scale insight into the dynamic behavior and complexity in the displacement of proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Evaluation of breast tissue with confocal strip-mosaicking microscopy: a test approach emulating pathology-like examination

    Science.gov (United States)

    Abeytunge, Sanjee; Larson, Bjorg; Peterson, Gary; Morrow, Monica; Rajadhyaksha, Milind; Murray, Melissa P.

    2017-03-01

    Confocal microscopy is an emerging technology for rapid imaging of freshly excised tissue without the need for frozen- or fixed-section processing. Initial studies have described imaging of breast tissue using fluorescence confocal microscopy with small regions of interest, typically 750×750 μm2. We present exploration with a microscope, termed confocal strip-mosaicking microscope (CSM microscope), which images an area of 2×2 cm2 of tissue with cellular-level resolution in 10 min of excision. Using the CSM microscope, we imaged 34 fresh, human, large breast tissue specimens from 18 patients, blindly analyzed by a board-certified pathologist and subsequently correlated with the corresponding standard fixed histopathology. Invasive tumors and benign tissue were clearly identified in CSM strip-mosaic images. Thirty specimens were concordant for image-to-histopathology correlation while four were discordant.

  18. Real-time line-scanning reflectance confocal endoscope to enhance sectioning and reduce speckle for intraoral imaging

    Science.gov (United States)

    Glazowski, Christopher; Abeytunge, Sanjeewa; Rajadhyaksha, Milind

    2012-02-01

    The line-scanning confocal microscope is simpler than a point-scanning confocal microscope and allows for a smaller and lower cost footprint, making it attractive for endoscopic clinical use. The optical configuration affects image fidelity. Here, we present a benchtop version of an endoscopic line-scanning confocal microscope for intraoral imaging, with a divided pupil and optimal detection configuration (magnification, pixel-to-resolution ratio) to enhance image fidelity. Improved sectioning performance and reduction of "speckle" noise are demonstrated. A topology for use of a deformable MEMs mirror-based optical axial focus control for imaging in depth is presented. Preliminary images of human oral mucosa in vivo demonstrate feasibility for clinical application.

  19. Serial Sectioning Of Cells In Three Dimensions With Confocal Scanning Laser Fluorescence Microscopy (Fl-CSLM): Microtomoscopy

    Science.gov (United States)

    Stelzer, Ernst H.; Stricker, Reiner; Pick, Reinhard; Storz, Clemens; Wijnaendts-Van-Resandt, Roelof W.

    1988-06-01

    The discrimination of out of focus contributions in fluorescence microscopy possible in a confocal setup will establish itself as a supplement to conventional fluorescence microscopy. The improvement of the contrast compared with conventional fluorescence microscopy depends mainly on the density of the fluorescing material and the thickness of the sample. The term thickness, that which microscopists refer to as the size of the specimen along the optical axis, will gain a new quality since a confocal fluorescence microscope may reveal totally different features when recording data in planes that are 0.3μm apart. Differences that have in the past been neglected suddenly become important. The following article will outline important features in the application of confocal fluorescence microscopy in the biological sciences, point out its limitatk'ns, and draw attention to expected developments.

  20. MEMS-BASED 3D CONFOCAL SCANNING MICROENDOSCOPE USING MEMS SCANNERS FOR BOTH LATERAL AND AXIAL SCAN.

    Science.gov (United States)

    Liu, Lin; Wang, Erkang; Zhang, Xiaoyang; Liang, Wenxuan; Li, Xingde; Xie, Huikai

    2014-08-15

    A fiber-optic 3D confocal scanning microendoscope employing MEMS scanners for both lateral and axial scan was designed and constructed. The MEMS 3D scan engine achieved a lateral scan range of over ± 26° with a 2D MEMS scanning micromirror and a depth scan of over 400 μm with a 1D MEMS tunable microlens. The lateral resolution and axial resolution of this system were experimentally measured as 1.0 μm and 7.0 μm, respectively. 2D and 3D confocal reflectance images of micro-patterns, micro-particles, onion skins and acute rat brain tissue were obtained by this MEMS-based 3D confocal scanning microendoscope.

  1. In vivo confocal microscopy: corneal changes of hydrogel contact lens wearers.

    Science.gov (United States)

    Yagmur, Meltem; Okay, Okan; Sizmaz, Selcuk; Unal, Ilker; Yar, Kemal

    2011-10-01

    To evaluate the corneal findings in hydrogel contact lens wearers by in vivo confocal scanning microscopy. One hundred and forty-two eyes of 71 myopic contact lens wearers (group 1) and 142 eyes of 71 non-contact lens wearers (group 2), whose age, gender and refractive error matched, were enrolled in order to detect the corneal changes by in vivo confocal microscopy through the central cornea. The average age was 25.5 ± 5.7 (16-52) and 25.6 ± 5.6 (17-49) in groups 1 and 2, respectively. The mean duration of contact lens wear was 43.9 ± 15.3 (6-240) months. Anterior keratocyte density was 667.5 ± 128.3 cells/mm(2) in group 1 and 821.4 ± 136.7 cells/mm(2) in group 2 (P = 0.001). Posterior keratocyte densities of groups 1 and 2 were 540.2 ± 87.6 cells/mm(2) and 628.2 ± 72.4 cells/mm(2), respectively (P lenses with a mean Dk/t ratio of 26.5 × 10(-9) ± 5.9 (8.9-32 × 10(-9)). Stromal microdots occurred with contact lenses with a mean Dk/t ratio of 13.2 × 10(-9) ± 17.5 × 10(-9) (8.9-20 × 10(-9)). In vivo examination of the cornea with confocal microscopy revealed a number of changes. These changes can be attributed both to the mechanical and the hypoxic effects of soft contact lenses. In soft contact lenses with a high Dk/t ratio, these changes would be less frequent.

  2. Deep lamellar keratoplasty by intracorneal dissection: a prospective clinical and confocal microscopic study.

    Science.gov (United States)

    Marchini, Giorgio; Mastropasqua, Leonardo; Pedrotti, Emilio; Nubile, Mario; Ciancaglini, Marco; Sbabo, Arianna

    2006-08-01

    To evaluate the clinical findings, visual outcomes, and confocal microscopic corneal features of a surgical technique for manual deep lamellar keratoplasty (DLKP) with intentional sparing of the most posterior stroma. Noncomparative, prospective, 12-month interventional study. Forty-six eyes of 45 patients who had corneal pathologic features without endothelial abnormalities and requiring corneal graft were treated by DLKP by manual stromal delamination. They were examined clinically after surgery and using in vivo confocal microscopy at 2 weeks and 1, 3, 6, and 12 months. The surgical technique consisted of an intracorneal deep manual stromal dissection through a 4-mm limbal incision at 50 mum from Descemet's membrane (DM). After trephination, an endothelial free graft was sutured. Topographic parameters, interface depth and reflectivity, and anterior and postinterface keratocyte density; visual acuity was correlated with these parameters. Two eyes had rupture of the DM. Two eyes that had delayed epithelial healing because of graft override with stromal inflammation underwent a second surgery (penetrating keratoplasty). Mean uncorrected logarithm of the minimum angle of resolution (logMAR) uncorrected visual acuity and logMAR best-corrected visual acuity (BCVA) improved from preoperative values (1.342+/-0.239 and 0.923+/-0.226, respectively) to 0.421+/-0.122 and 0.104+/-0.068, respectively, at 12 months. Mean topographic astigmatism was 3.09+/-1.30 diopters (D) at 3 months after suture adjustment, and 2.87+/-0.92 D at 12 months after suture removal. Average interface depth was 64.2+/-6.7 microm at 15 days and showed no significant changes up to 12 months. Mean interface reflectivity was highest at 15 days (95.5+/-15.7 light reflectance units [LRU]) and showed a progressive decrease over time of 55.3+/-8.7 LRU at 12 months. A significant negative correlation was observed between BCVA and topographic astigmatism up to 1 month and between BCVA and interface

  3. An essential role for dendritic cells in vernal keratoconjunctivitis: analysis by laser scanning confocal microscopy.

    Science.gov (United States)

    Liu, M; Gao, H; Wang, T; Wang, S; Li, S; Shi, W

    2014-03-01

    CD4+ T helper type 2 cells play a central role in the pathogenesis of vernal keratoconjunctivitis (VKC), and antigen-presenting cells are required for the cell activation. In this study, we aimed to survey the density, distribution, and morphology of dendritic cells (DCs) in patients with VKC by in vivo confocal microscopy. Thirty-five patients (mean, 12.4 ± 5.3 years) affected by VKC were included. All patients were treated with 0.1% fluorometholone eye drops and 0.5% cyclosporine A eye drops. The density and morphological and distributional characteristics of DCs in each right eye were evaluated by in vivo confocal microscopy before treatment and at 1, 3, and 6 months after treatment. Thirty-five age-matched normal subjects (mean, 16.5 ± 1.8 years) were studied as controls. There was significant difference in age between the VKC group and the control group (F = 18.17, P < 0.05). Compared with normal eyes, increased numbers of DCs were found in patients with VKC, with mean cell densities of 244.09 ± 59.76 cells/mm(2) at the bulbar conjunctiva, 574.53 ± 87.34 cells/mm(2) at the limbus, and 403.32 ± 106.59 cells/mm(2) at the peripheral cornea before treatment. These DCs exhibited a typical dendritic shape. At 3 months after treatment, the DC density at the conjunctiva decreased significantly (P < 0.05), approximating that in the controls. At 3 and 6 months, the DC densities at the limbus and peripheral cornea also decreased significantly (P < 0.05), but were still statistically higher than those in the controls. These DCs, with small dendritic processes or irregular shapes, were observed to gradually locate at the epithelial basal membrane and subbasal nerve plexus. In vivo confocal microscopy appears to be a valuable tool in evaluating the dynamic change of DCs at the conjunctiva and cornea. DCs play an essential role in VKC and therefore may constitute a target for therapeutic intervention for VKC. © 2013 John Wiley & Sons Ltd.

  4. Experimental setup for energy-filtered scanning confocal electron microscopy (EFSCEM) in a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P; Behan, G; Kirkland, A I; Nellist, P D, E-mail: peng.wang@materials.ox.ac.u [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2010-07-01

    Scanning confocal electron microscopy (SCEM) is a new imaging mode in electron microscopy. Spherical aberration corrected electron microscope instruments fitted with two aberration correctors can be used in this mode which provides improved depth resolution and selectivity compared to optical sectioning in a conventional scanning transmission geometry. In this article, we consider a confocal optical configuration for SCEM using inelastically scattered electrons. We lay out the necessary steps for achieving this new operational mode in a double aberration-corrected instrument with uncorrected chromatic aberration and present preliminary experimental results in such mode.

  5. Coin-shaped epithelial lesions following an acute attack of erythema multiforme minor with confocal microscopy findings.

    Science.gov (United States)

    Babu, Kalpana; Murthy, Vinay R; Akki, Veeresh P; Prabhakaran, Venkatesh C; Murthy, K R

    2010-01-01

    We report an interesting ocular finding of bilateral multiple coin-shaped epithelial lesions along with the confocal microscopy findings in a patient following an acute attack of erythema multiforme (EM) minor. A 30-year-old male presented with a history of watering and irritation in both eyes of three days duration. He was diagnosed to have EM minor and was on oral acyclovir. Slit-lamp examination revealed multiple coin-shaped epithelial lesions. Confocal microscopy showed a corresponding conglomerate of hyper-reflective epithelial lesions. The corneal lesions resolved over six weeks with oral steroids and acyclovir. An immunological mechanism is suspected.

  6. Coin-shaped epithelial lesions following an acute attack of erythema multiforme minor with confocal microscopy findings

    Directory of Open Access Journals (Sweden)

    Babu Kalpana

    2010-01-01

    Full Text Available We report an interesting ocular finding of bilateral multiple coin-shaped epithelial lesions along with the confocal microscopy findings in a patient following an acute attack of erythema multiforme (EM minor. A 30-year-old male presented with a history of watering and irritation in both eyes of three days duration. He was diagnosed to have EM minor and was on oral acyclovir. Slit-lamp examination revealed multiple coin-shaped epithelial lesions. Confocal microscopy showed a corresponding conglomerate of hyper-reflective epithelial lesions. The corneal lesions resolved over six weeks with oral steroids and acyclovir. An immunological mechanism is suspected.

  7. The use of reflectance confocal microscopy for monitoring response to therapy of skin malignancies.

    Science.gov (United States)

    Ulrich, Martina; Lange-Asschenfeldt, Susanne; Gonzalez, Salvador

    2012-04-01

    Reflectance confocal microscopy (RCM) is a new non-invasive imaging technique that enables visualizing cells and structures in living skin in real-time with resolution close to that of histological analysis. RCM has been successfully implemented in the assessment of benign and malignant lesions. Most importantly, it also enables monitoring dynamic changes in the skin over time and in response to different therapies, e.g., imiquimod, photodynamic therapy, and others. Given the often traumatic nature of skin cancer that affects both the physiology and the psychology of the patients, it is crucial to have methods that enable monitoring the response to treatment but that minimize the distress and discomfort associated with such process. This article provides a very brief overview of the fundamentals of RCM and then focuses on its recent employment as a monitoring tool in skin cancer and other pathologies that may require frequent follow-up.

  8. Reflectance Confocal Microscopy: A Promising Tool to Identify Malignancy in Melanocytic Lesions Exhibiting a Dermoscopic Island.

    Science.gov (United States)

    Elosua-González, M; Gamo-Villegas, R; Floristán-Muruzábal, U; Pinedo-Moraleda, F; López-Estebaranz, J L

    2017-11-22

    The dermoscopic island is described as a well-defined area in a melanocytic lesion, with a different dermoscopic pattern from the rest of the lesion. It is predictive of melanoma, particularly when the pattern of the island is atypical. We present the reflectance confocal microscopy (RCM) findings in 3 lesions with dermoscopic islands: nevus-associated melanoma, melanocytic nevus, and in situ melanoma. The nevus-associated melanoma and in situ melanoma presented cellular atypia (atypical cells in isolation or forming nests) and architectural distortion on RCM. The nevus presented an island sign with a typical globular pattern with dense nests and no atypia on RCM. The island sign is mainly associated with in situ and nevus-associated melanomas. RCM offers good cellular resolution to the depth of the reticular dermis and is useful for diagnosing of melanomas presenting a dermoscopic island. Copyright © 2017 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Live Cell Refractometry Using Hilbert Phase Microscopy and Confocal Reflectance Microscopy†

    Science.gov (United States)

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ. PMID:19803506

  10. Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy.

    Science.gov (United States)

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S

    2009-11-26

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ.

  11. Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer

    Science.gov (United States)

    Jabbour, Joey M.; Cheng, Shuna; Malik, Bilal H.; Cuenca, Rodrigo; Jo, Javier A.; Wright, John; Cheng, Yi-Shing Lisa; Maitland, Kristen C.

    2013-04-01

    Optical imaging techniques using a variety of contrast mechanisms are under evaluation for early detection of epithelial precancer; however, tradeoffs in field of view (FOV) and resolution may limit their application. Therefore, we present a multiscale multimodal optical imaging system combining macroscopic biochemical imaging of fluorescence lifetime imaging (FLIM) with subcellular morphologic imaging of reflectance confocal microscopy (RCM). The FLIM module images a 16×16 mm2 tissue area with 62.5 μm lateral and 320 ps temporal resolution to guide cellular imaging of suspicious regions. Subsequently, coregistered RCM images are acquired at 7 Hz with 400 μm diameter FOV, mucosa, and a hamster cheek pouch model of oral carcinogenesis. While FLIM is sensitive to biochemical and macroscopic architectural changes in tissue, RCM provides images of cell nuclear morphology, all key indicators of precancer progression.

  12. Laser confocal microscope noise evaluation on injection compression moulded (ICM) transparent polymer Fresnel lenses

    DEFF Research Database (Denmark)

    Loaldi, D.; Calaon, Matteo; Quagliotti, Danilo

    The evaluation of an adequate and robust measuring strategy, for roughness assessment of polymer Fresnel lenses is put under assessment. An ‘on-sample’ measurement noise, is evaluated using a laser confocal microscope (OLYMPUS © Lext). Secondly, the lowest-noise roughness measuring procedure......, on an injection compression moulded (ICM) Fresnel lens, is defined. A set of two different objectives is considered, i.e. a standard series (SO), against a long working distance one (LWD); two different magnifications objectives, 50x and 100x and the use or not of a dark environment. The noise evaluation...... are measuring working distance, objective magnification and room lighting. The result confirms a strong difference of noise, using the considered objectives. The most interesting result is that the performance of SO 50x objective is better than LWD 100x....

  13. Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope

    Science.gov (United States)

    de Jonge, Niels [Oak Ridge, TN

    2010-08-17

    A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.

  14. In vivo reflectance-mode confocal microscopy in clinical dermatology and cosmetology.

    Science.gov (United States)

    González, S; Gilaberte-Calzada, Y

    2008-02-01

    In vivo reflectance confocal microscopy (RCM) is a non-invasive imaging tool that allows real-time visualization of cells and structures in living skin with near histological resolution. RCM has been used for the assessment of benign and malignant lesions, showing great potential for applications in basic skin research and clinical dermatology. RCM also reveals dynamic changes in the skin over time and in response to specific stimuli, like ultraviolet exposure, which makes it a promising tool in cosmetology, as it allows repetitive sampling without biopsy collection, causing no further damage to the areas under investigation. This review summarizes the latest advances in RCM, and its applications in the characterization of both normal and pathological skin.

  15. Imaging of whole tumor cut sections using a novel scanning beam confocal fluorescence MACROscope

    Science.gov (United States)

    Constantinou, Paul; Vukovic, Vojislav; Haugland, Hans K.; Nicklee, Trudey; Hedley, David W.; Wilson, Brian C.

    2001-07-01

    Hypoxia caused by inadequate structure and function of the tumor vasculature has been found to negatively determine the prognosis of cancer patients. Hence, understanding the biological basis of tumor hypoxia is of significant clinical interest. To study solid tumor microenvironments in sufficient detail, large areas (several mm in diameter) need to be imaged at micrometers resolutions. We have used a novel confocal scanning laser MACROscopeTM (CSLM) capable of acquiring images over fields of view up to 2 cm X 2 cm. To demonstrate its performance, frozen sections from a cervical carcinoma xenograft were triple labeled for tissue hypoxia, blood vessels and hypoxia-inducible transcription factor 1 alpha (HIF-1(alpha) ), imaged using the CSLM and compared to images obtained using a standard epifluorescence microscope imaging system. The results indicate that the CSLM is a useful instrument for imaging tissue-based fluorescence at resolutions comparable to standard low-power microscope objectives.

  16. Confocal Raman spectroscopy of island nuclei formed at the initial stage of quartz glass crystallization

    Science.gov (United States)

    Pankin, D. V.; Zolotarev, V. M.; Colas, M.; Cornette, J.; Evdokimova, M. G.

    2016-12-01

    Island nuclei formed on a polished quartz-glass surface upon heating to 1100°C have been investigated by confocal Raman spectroscopy. The structural and chemical composition of islands is shown to be a central nucleus, a shell around the nucleus, and a thin peripheral ring closing this shell. The formation and growth of individual regions of an island nucleus are found to occur in several stages. The shell around the nucleus is mainly formed by α-SiO2 and α-cristobalite nanoparticles with a size ≥40 nm, whereas the α-SiO2 nanoparticles in the nucleus and peripheral ring are 2-15 nm in size.

  17. Confocal microscopy movies of fibrin clots during ultrasound-accelerated thrombolysis

    Science.gov (United States)

    Everbach, E. Carr; Chernysh, Irina N.; Weisel, John W.

    2005-04-01

    Blood clots made of human purified fibrin (white clots) were insonified with 1 MHz pulsed ultrasound during observation by fluorescence confocal microscopy. A deconvolution microscope allowed extremely thin sheets (0.2 μm) of fibrin to be viewed at a resolution of 0.2 μm per pixel, and the clot microstructure visualized. Acoustic pressure amplitudes from 0.1 to 0.8 MPa (peak-to-peak) were inferred using the image blur of 0.6-μm-diameter polystyrene spheres coated with FITC fluorecent label present in the clots. Acoustic pulse widths of 1 ms and pulse repetition frequencies of 125 Hz reduced clot heating to less than 3°C during each 30-minute exposure. Still 100 μm by 100 μm images were recorded every 10 seconds during pauses in insonificaiton, to produce time-lapse movies that are compared with movies made during sham ultrasound exposures.

  18. In-situ detection of single particles of explosive on clothing with confocal Raman microscopy.

    Science.gov (United States)

    Ali, Esam M A; Edwards, Howell G M; Scowen, Ian J

    2009-05-15

    Confocal Raman microscopy is shown to detect picogram quantities of explosives in-situ on undyed natural and synthetic fibres, and coloured textile specimens leaving potentially evidential materials unaltered. Raman spectra were obtained from pentaerythritol tetranitrate (PETN), trinitrotoluene (TNT), and ammonium nitrate particles trapped between the fibres of the specimens. Despite the presence of spectral bands arising from the natural and synthetic polymers and dyed textiles, the explosive substances could be identified by their characteristic Raman bands. Furthermore, Raman spectra were obtained from explosives particles trapped between highly fluorescent clothing fibres. Raman spectra were collected from explosives particles with maximum dimensions in the range 5-10 microm. Spectra of the explosives on dyed and undyed clothing substrates were readily obtained in-situ within 90 s and without sample preparation.

  19. Magnetically Triggered Release From Giant Unilamellar Vesicles: Visualization By Means Of Confocal Microscopy

    KAUST Repository

    Nappini, Silvia

    2011-04-07

    Magnetically triggered release from magnetic giant unilamellar vesicles (GUVs) loaded with Alexa fluorescent dye was studied by means of confocal laser scanning microscopy (CLSM) under a low-frequency alternating magnetic field (LF-AMF). Core/shell cobalt ferrite nanoparticles coated with rhodamine B isothiocyanate (MP@SiO 2(RITC)) were prepared and adsorbed on the GUV membrane. The MP@SiO 2(RITC) location and distribution on giant lipid vesicles were determined by 3D-CLSM projections, and their effect on the release properties and GUV permeability under a LF-AMF was investigated by CLSM time-resolved experiments. We show that the mechanism of release of the fluorescent dye during the LF-AMF exposure is induced by magnetic nanoparticle energy and mechanical vibration, which promote the perturbation of the GUV membrane without its collapse. © 2011 American Chemical Society.

  20. Computer Aided Diagnosis for Confocal Laser Endomicroscopy in Advanced Colorectal Adenocarcinoma

    DEFF Research Database (Denmark)

    Ştefănescu, Daniela; Streba, Costin; Cârţână, Elena Tatiana

    2016-01-01

    INTRODUCTION: Confocal laser endomicroscopy (CLE) is becoming a popular method for optical biopsy of digestive mucosa for both diagnostic and therapeutic procedures. Computer aided diagnosis of CLE images, using image processing and fractal analysis can be used to quantify the histological......-free endomicroscopy images, obtained during CLE examinations from normal mucosa (356 images) and tumor regions (679 images). The images were processed using a computer aided diagnosis (CAD) medical imaging system in order to obtain an automatic diagnosis. The CAD application includes image reading and processing.......14, validation: 17.42, testing: 15.48. The diagnosis accuracy error was 15.5%. CONCLUSIONS: Computed aided diagnosis via fractal analysis of glandular structures can complement the traditional histological and minimally invasive imaging methods. A larger dataset from colorectal and other pathologies should...

  1. Imaging phospholipid conformational disorder and packing in giant multilamellar liposome by confocal Raman microspectroscopy

    Science.gov (United States)

    Noothalapati, Hemanth; Iwasaki, Keita; Yoshimoto, Chikako; Yoshikiyo, Keisuke; Nishikawa, Tomoe; Ando, Masahiro; Hamaguchi, Hiro-o.; Yamamoto, Tatsuyuki

    2017-12-01

    Liposomes are closed phospholipid bilayer systems that have profound applications in fundamental cell biology, pharmaceutics and medicine. Depending on the composition (pure or mixture of phospholipids, presence of cholesterol) and preparation protocol, intra- and inter-chain molecular interactions vary leading to changes in the quality (order and packing) of liposomes. So far it is not possible to image conformational disorders and packing densities within a liposome in a straightforward manner. In this study, we utilized confocal Raman microspectroscopy to visualize structural disorders and packing efficiency within a giant multilamellar liposome model by focusing mainly on three regions in the vibrational spectrum (Csbnd C stretching, Csbnd H deformation and Csbnd H stretching). We estimated properties such as trans/gauche isomers and lateral packing probability. Interestingly, our Raman imaging studies revealed gel phase rich domains and heterogeneous lateral packing within the giant multilamellar liposome.

  2. Mode-mismatched confocal thermal-lens microscope with collimated probe beam

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Humberto, E-mail: hcabrera@ictp.it [SPIE-ICTP Anchor Research Laboratory, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste (Italy); Centro Multidisciplinartio de Ciencias, Instituto Venezolano de Investigaciones Científicas (IVIC), Mérida 5101 (Venezuela, Bolivarian Republic of); Korte, Dorota; Franko, Mladen [Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica (Slovenia)

    2015-05-15

    We report a thermal lens microscope (TLM) based on an optimized mode-mismatched configuration. It takes advantage of the coaxial counter propagating tightly focused excitation and collimated probe beams, instead of both focused at the sample, as it is in currently known TLM setups. A simple mathematical model that takes into account the main features of the instrument is presented. The confocal detection scheme and the introduction of highly collimated probe beam allow enhancing the versatility, limit of detection (LOD), and sensitivity of the instrument. The theory is experimentally verified measuring ethanol’s absorption coefficient at 532.8 nm. Additionally, the presented technique is applied for detection of ultra-trace amounts of Cr(III) in liquid solution. The achieved LOD is 1.3 ppb, which represents 20-fold enhancement compared to transmission mode spectrometric techniques and a 7.5-fold improvement compared to previously reported methods for Cr(III) based on thermal lens effect.

  3. Laser confocal microscope for analysis of 3013 inner container closure weld region

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rodriguez, M. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-26

    As part of the protocol to investigate the corrosion in the inner container closure weld region (ICCWR) a laser confocal microscope (LCM) was used to perform close visual examination of the surface and measurements of corrosion features on the surface. However, initial analysis of selected destructively evaluated (DE) containers using the LCM revealed several challenges for acquiring, processing and interpreting the data. These challenges include topography of the ICCWR sample, surface features, and the amount of surface area for collecting data at high magnification conditions. In FY17, the LCM parameters were investigated to identify the appropriate parameter values for data acquisition and identification of regions of interest. Using these parameter values, selected DE containers were analyzed to determine the extent of the ICCWR to be examined.

  4. Identification of different bacterial species in biofilms using confocal Raman microscopy

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2010-11-01

    Confocal Raman microspectroscopy is used to discriminate between different species of bacteria grown in biofilms. Tests are performed using two bacterial species, Streptococcus sanguinis and Streptococcus mutans, which are major components of oral plaque and of particular interest due to their association with healthy and cariogenic plaque, respectively. Dehydrated biofilms of these species are studied as a simplified model of dental plaque. A prediction model based on principal component analysis and logistic regression is calibrated using pure biofilms of each species and validated on pure biofilms grown months later, achieving 96% accuracy in prospective classification. When biofilms of the two species are partially mixed together, Raman-based identifications are achieved within ~2 μm of the boundaries between species with 97% accuracy. This combination of spatial resolution and predication accuracy should be suitable for forming images of species distributions within intact two-species biofilms.

  5. Local order in a supercooled colloidal fluid observed by confocal microscopy

    CERN Document Server

    Gasser, U; Weitz, D A

    2003-01-01

    The local order in a supercooled monodisperse colloidal fluid is studied by direct imaging of the particles with a laser scanning confocal microscope. The local structure is analysed with a bond order parameter method, which allows one to discern simple structures that are relevant in this system. As expected for samples that crystallize eventually, a large fraction of the particles are found to sit in surroundings with dominant face-centred cubic or hexagonally close-packed character. Evidence for local structures that contain fragments of icosahedra is found, and, moreover, the icosahedral character increases with volume fraction phi, which indicates that it might play an important role at volume fractions near the glass transition.

  6. Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field.

    Science.gov (United States)

    Sladkov, Maksym; Bakker, M P; Chaubal, A U; Reuter, D; Wieck, A D; van der Wal, C H

    2011-04-01

    We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aimed at application in quantum optical experiments with electron spins in semiconductors and the design has been optimized for driving with and detection of optical fields with well-defined polarizations. This was implemented with optical access via a polarization maintaining fiber together with Voigt geometry at the cold finger, which circumvents Faraday rotations in the optical components in high magnetic fields. Our unit is versatile for use in experiments that measure photoluminescence, reflection, or transmission, as we demonstrate with a quantum optical experiment with an ensemble of donor-bound electrons in a thin GaAs film. © 2011 American Institute of Physics

  7. Aerogel Track Morphology: Measurement, Three Dimensional Reconstruction and Particle Location using Confocal Laser Scanning Microscopy

    Science.gov (United States)

    Kearsley, A. T.; Ball, A. D.; Wozniakiewicz, P. A.; Graham, G. A.; Burchell, M. J.; Cole, M. J.; Horz, F.; See, T. H.

    2007-01-01

    The Stardust spacecraft returned the first undoubted samples of cometary dust, with many grains embedded in the silica aerogel collector . Although many tracks contain one or more large terminal particles of a wide range of mineral compositions , there is also abundant material along the track walls. To help interpret the full particle size, structure and mass, both experimental simulation of impact by shots and numerical modeling of the impact process have been attempted. However, all approaches require accurate and precise measurement of impact track size parameters such as length, width and volume of specific portions. To make such measurements is not easy, especially if extensive aerogel fracturing and discoloration has occurred. In this paper we describe the application and limitations of laser confocal imagery for determination of aerogel track parameters, and for the location of particle remains.

  8. Confocal line scanning of a Bessel beam for fast 3D imaging.

    Science.gov (United States)

    Zhang, P; Phipps, M E; Goodwin, P M; Werner, J H

    2014-06-15

    We have developed a light-sheet illumination microscope that can perform fast 3D imaging of transparent biological samples with inexpensive visible lasers and a single galvo mirror (GM). The light-sheet is created by raster scanning a Bessel beam with a GM, with this same GM also being used to rescan the fluorescence across a chip of a camera to construct an image in real time. A slit is used to reject out-of-focus fluorescence such that the image formed in real time has minimal contribution from the sidelobes of the Bessel beam. Compared with two-photon Bessel beam excitation or other confocal line-scanning approaches, our method is of lower cost, is simpler, and does not require calibration and synchronization of multiple GMs. We demonstrated the optical sectioning and out-of-focus background rejection capabilities of this microscope by imaging fluorescently labeled actin filaments in fixed 3T3 cells.

  9. Surface determination of 3D confocal Raman microscopy imaging of the skin

    Science.gov (United States)

    Schleusener, J.; Carrer, V.; Patzelt, A.; Lademann, J.; Darvin, M. E.

    2017-12-01

    A surface determination method for the application of 3D confocal Raman microscopy on inhomogeneous skin sections has been presented, which is based on depth profiles of the keratin contribution of the acquired Raman spectra. The method was compared to two similar auto-focusing methods that are based on the intensity of the reflected excitation light and Raman spectra, respectively. The measurements were performed on hair follicles containing skin sections of porcine ears ex vivo. The surface determination on such samples is especially challenging due to their different molecular composition and surface inhomogeneity. An advantage of this method is molecular sensitivity, whereby only the surface of the sample will be detected and not the substrate of the microscope slide, in the case of disruptions during the processing of samples. A disadvantage of the method is the increased overall acquisition time if only the surface spectra are to be applied for 2D mapping.

  10. The Signal Detection and Control Circuit Design for Confocal Auto-Focus System

    Directory of Open Access Journals (Sweden)

    Yin Liu

    2016-01-01

    Full Text Available Based on the demands of Confocal Auto-Focus system, the implementation method of signal measurement circuit and control circuit is given. Using the high performance instrumental amplifier AD620BN, low noise precision FET Op amplifier AD795JRZ and ultralow offset voltage Op amplifier OP07EP, a signal measurement circuit used to converse the two differential light intensity signal to electric signal is designed. And a control circuit which takes MCU MSP430F149 as core processes the former signal and generate a control signal driving the platform for auto-focusing. The experimental results proved the feasibility and correctness of circuits. And the system meets the design requirement.

  11. Fluorescence confocal laser scanning microscopy for in vivo imaging of epidermal reactions to two experimental irritants

    DEFF Research Database (Denmark)

    Suihko, C.; Serup, J.

    2008-01-01

    Background: Fibre-optic fluorescence confocal laser scanning microscopy (CLSM) is a novel non-invasive technique for in vivo imaging of skin. The cellular structure of the epidermis can be studied. A fluorophore, e.g. fluorescein sodium, is introduced by an intradermal injection or applied...... dermatitis reactions caused by established model irritants, e.g. sodium lauryl sulphate (SLS) and pelargonic acid (PA). Methods: Twelve healthy individuals volunteered. The flexor aspect of the right and the left forearm was exposed to SLS in water and PA in isopropanol and occluded under Finn Chambers...... for 24 h. The reactions were rated clinically and, following epicutaneous and intra-dermal application of fluorescein sodium, studied by fluorescence CLSM, magnification x 1000. Results: Both irritants disturbed the epidermal intercellular borders, which became blurred, thickened and variably altered...

  12. Electric field and energy of a point electric charge between confocal hyperbolaidal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ley-Koo, E. [Universidad Nacional Autonoma de Mexico, Mexico, D. F. (Mexico)

    2001-06-01

    The electric potential and intensity field, as well as the energy of a point electric charge between confocal hyperboloidal electrodes is evaluated as a superposition of prolate spheroidal harmonics using the Green-function technique. This study is motivated by the need to model the electric field between the tip and the sample in a scanning tunnelling microscope, and it can also be applied to a conductor-insulator-conductor junction. [Spanish] Los campos de potencial y de intensidad electrica, asi como la energia de una carga electrica puntual entre electrodos hiperboloidales confocales se evaluan como superposiciones de armonicos esferoidales prolatos usando la tecnica de la funcion de Green. Este estudio ha sido motivado por la necesidad de modelar el campo electrico entre la punta y la muestra de un microscopio de tunelamiento y barrido, y se puede aplicar tambien a una union de conductor-aislante-conductor.

  13. Trypan blue as a fluorochrome for confocal laser scanning microscopy of arbuscular mycorrhizae in three mangroves.

    Science.gov (United States)

    Kumar, T; Majumdar, A; Das, P; Sarafis, V; Ghose, M

    2008-06-01

    Roots of three mangroves, Acanthus ilicifolius, Ceriops tagal and Excoecaria agallocha, collected from forests of the Sundarbans of India were stained with trypan blue to observe arbuscular mycorrhizal colonization. Spores of arbuscular mycorrhizal fungi isolated from rhizospheric soil, collected together with the root samples, also were stained for testing the suitability of the dye as a fluorochrome. Confocal laser scanning microscopy images were constructed. A. ilicifolius and E. agallocha exhibited "Arum" type colonization with highly branched arbuscules, whereas C. tagal showed "Paris" type association with clumped and collapsed arbuscules. We demonstrated that trypan blue is a suitable fluorochrome for staining arbuscular mycorrhizal fungal spores, fungal hyphae, arbuscules and vesicles, which presumably have a considerable amount of surface chitin. It appears that as the integration of chitin into the fungal cell wall changes, its accessibility to trypan blue dye also changes.

  14. Characterization and identification of gastric hyperplastic polyps and adenomas by confocal laser endomicroscopy.

    Science.gov (United States)

    Li, Wen-Bo; Zuo, Xiu-Li; Zuo, Fang; Gu, Xiao-Meng; Yu, Tao; Zhao, You-An; Zhang, Ting-Guo; Zhang, Jian-Ping; Li, Yan-Qing

    2010-03-01

    Management of gastric polyps depends on their histologic composition. A real-time in vivo histologic diagnosis would be valuable to an "on table" management decision. Confocal laser endomicroscopy (CLE), a new diagnostic tool, allows real-time in vivo histologic evaluations of gastrointestinal lesions. This study aimed to assess the feasibility and practicability of using CLE to identify and differentiate gastric hyperplastic polyps and adenomas. A total of 66 patients with previously diagnosed polyps were recruited for this study between January 2007 and August 2008 at Qilu Hospital, Shandong University, China. The CLE imaging of hyperplastic polyps and adenomas was performed, and the CLE diagnosis was compared with the gold standard of histopathologic diagnosis. Imaging by CLE was successfully performed for 60 lesions of gastric hyperplastic polyps and 27 lesions of gastric adenomas. Compared with the surrounding background mucosa, gastric hyperplastic polyps and adenomas showed typical distinct appearances, respectively, by CLE. The overall accuracy of the in vivo CLE diagnosis of gastric hyperplastic polyps and adenomas during ongoing endoscopy was 90% (95% confidence interval [CI], 83-96%), and the overall accuracy of differentiating gastric hyperplastic polyps and adenomas by CLE was 97% (95% CI, 90-99%) after endoscopy. Intraobserver agreement was perfect (kappa = 0.92; 95% CI, 0.82-0.99), and interobserver agreement was also good (kappa = 0.83, 95% CI, 0.70-0.96). This study characterized confocal images of gastric hyperplastic polyps and adenomas as well as the high accuracy of differentiating hyperplastic polyps and adenomas using CLE.

  15. Corneal confocal microscopy and dry eye findings in contact lens discomfort patients.

    Science.gov (United States)

    Dogan, Aysun Sanal; Gurdal, Canan; Arslan, Nese

    2017-08-16

    To evaluate the corneal confocal microscopy and dry eye findings in patients with contact lens discomfort. The study included 3 groups of participants: Contact lens wearers using silicone hydrogel soft contact lenses who are symptomatic (CLD, n=15) or asymptomatic (ACL, n=11) and non-wearers as controls (n=14). Duration of contact lens wear, Ocular Surface Disease Index (OSDI) questionnaire responses, fluorescein tear break-uptime (FBUT), and corneal confocal microscopy findings were recorded. Mean age was 25.7±8.2 years and male/female ratio was 7/33. Demographic findings were similar regarding the groups. CLD patients had a longer lens use history than ACL (median 5 vs 2 years, p<0.001). OSDI scores were higher in CLD group than ACL or controls (p<0.001, p=0.002). FBUT was significantly lowest in CLD group, compared to controls and ACL (p<0.001, p=0.039). FBUT was also lower in ACL patients compared to controls (p=0.036). There was no difference between basal epithelium cell counts between all 3 groups. Anterior stromal activated keratocyte numbers were similar between contact lens using groups but was lower in controls (p=0.005). However, dendritiform cells in the sub-basal nerve layer were higher in CLD group compared to controls but similar to ACL (p<0.001, p=0.058). Graded sub-basal nerve tortuosity was more prominent in CLD group than the ACL (p=0.014). Patients with CLD had been wearing contact lenses for longer than those without symptoms. OSDI and FBUT scores were worse in CLD patients. In contact lens discomfort patients, there were increased dendritiform cells, indicating intensified inflammatory status of the cornea. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  16. AII amacrine cells limit scotopic acuity in central macaque retina: A confocal analysis of calretinin labeling.

    Science.gov (United States)

    Mills, S L; Massey, S C

    1999-08-16

    We have used calretinin antibodies to label selectively the mosaic of AII amacrine cells in the macaque retina. Confocal analysis of double-labeled material indicated that AII dendrites spiral down around descending rod bipolar axons before enveloping the synaptic terminals. Processes from a previously observed dopaminergic plexus in the inner nuclear layer were observed to contact the somata of calretinin-positive AII somata. Intracellular neurobiotin injection revealed that AII amacrine cells are tracer coupled to other AII amacrine cells and to some unidentified cone bipolar cells. An analysis of the retinal distribution of macaque AII amacrine cells, including an area in and around the fovea, showed a peak density of approximately 5,000 cells/mm(2) at an eccentricity of 1.5 mm. Staining of AII amacrine cells in central retina with antibodies to calretinin was confirmed by confocal microscopy. These results indicate that calretinin antibodies can be used to label the AII amacrine cell population selectively and that primate AII amacrine cells share many of the features of previously described mammalian AII amacrine cells. The peak AII cell density closely matched the peak sampling rate of scotopic visual acuity. Calculations suggest that, in central macaque retina, where midget ganglion cells are more numerous, AII amacrine cells form the limit of scotopic visual acuity (Wässle et al. [1995] J. Comp. Neurol. 361:537-551). As the ganglion cell density falls rapidly away from the fovea, there is a cross-over point at around 15 degrees eccentricity that matches the inflection point in a psychophysically derived plot of scotopic visual acuity versus eccentricity (Lennie and Fairchild [1994] Vision Res. 34:477-482). The correspondence between the anatomic and psychophysical data supports our interpretation that the anatomic sampling rate of AII amacrine cells limits central scotopic acuity. Copyright 1999 Wiley-Liss, Inc.

  17. Confocal reflectance quantitative phase microscope system for cellular membranes dynamics study (Conference Presentation)

    Science.gov (United States)

    Singh, Vijay Raj; Yaqoob, Zahid; So, Peter T. C.

    2017-02-01

    Quantitative phase microscopy (QPM) techniques developed so far primarily belongs to high speed transmitted light based systems that has enough sensitivity to resolve membrane fluctuations and dynamics, but has no depth resolution. Therefore, most biomechanics studies using QPM today is confined to simple cells, such as RBCs, without internal organelles. An important instrument that will greatly extend the biomedical applications of QPM is to develop next generation microscope with 3D capability and sufficient temporal resolution to study biomechanics of complex eukaryotic cells including the mechanics of their internal compartments. For eukaryotic cells, the depth sectioning capability is critical and should be sufficient to distinguish nucleic membrane fluctuations from plasma membrane fluctuations. Further, this microscope must provide high temporal resolution since typical eukaryotes membranes are substantially stiffer than RBCs. A confocal reflectance quantitative phase microscope is presented based on multi-pinhole scanning, with the capabilities of higher temporal resolution and sensitivity for nucleic and plasma membranes of eukaryotic cells. System hardware is developed based on an array of confocal pinhole generated by using the `ON' state of subset of micro-mirrors of digital micro-mirror device (DMD, from Texas Instruments) and high-speed raster scanning provides 14ms imaging speed in wide-field mode. A common path interferometer is integrated at the imaging arm for detection of specimens' quantitative phase information. Theoretical investigation of quantitative phase reconstructed from system is investigated and application of system is presented for dimensional fluctuations measurements of both cellular plasma and nucleic membranes of embryonic stem cells.

  18. Upgrade of a Scanning Confocal Microscope to a Single-Beam Path STED Microscope.

    Directory of Open Access Journals (Sweden)

    André Klauss

    Full Text Available By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as "easy-STED", achieving lateral resolution < λ/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate that creates the STED-doughnut light distribution in the focal plane, while leaving the excitation beam unaltered when implemented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent beads as reference were achieved with the wavelength combination of 635 nm excitation and 766 nm depletion. To evaluate the STED performance in biological systems, we compared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by labeling F-actin filaments in vitro as well as through immunofluorescence recordings of microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvolution approach and showed that images obtained from time-gated pulsed STED microscopy may benefit concerning the signal-to-background ratio, from the joint deconvolution of sub-images with different spatial information which were extracted from offline time gating.

  19. Modeling of Fibrin Gels Based on Confocal Microscopy and Light-Scattering Data

    Science.gov (United States)

    Magatti, Davide; Molteni, Matteo; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-01-01

    Fibrin gels are biological networks that play a fundamental role in blood coagulation and other patho/physiological processes, such as thrombosis and cancer. Electron and confocal microscopies show a collection of fibers that are relatively monodisperse in diameter, not uniformly distributed, and connected at nodal points with a branching order of ∼3–4. Although in the confocal images the hydrated fibers appear to be quite straight (mass fractal dimension Dm = 1), for the overall system 1gels made of cylindrical sticks of diameter d, density ρ, and average length 〈L〉, joined at randomly distributed nodal points. The resulting 3D network strikingly resembles real fibrin gels and can be sketched as an assembly of densely packed fractal blobs, i.e., regions of size ξ, where the fiber concentration is higher than average. The blobs are placed at a distance ξ0 between their centers of mass so that they are overlapped by a factor η = ξ/ξ0 and have Dm ∼1.2–1.6. The in silico gels’ structure is quantitatively analyzed by its 3D spatial correlation function g3D(r) and corresponding power spectrum I(q) = FFT3D[g3D(r)], from which ρ, d, Dm, η, and ξ0 can be extracted. In particular, ξ0 provides an excellent estimate of the gel mesh size. The in silico gels’ I(q) compares quite well with real gels’ elastic light-scattering measurements. We then derived an analytical form factor for accurately fitting the scattering data, which allowed us to directly recover the gels’ structural parameters. PMID:23473498

  20. Visualization of exocytosis during sea urchin egg fertilization using confocal microscopy.

    Science.gov (United States)

    Terasaki, M

    1995-06-01

    A Ca2+ wave at fertilization triggers cortical granule exocytosis in sea urchin eggs. New methods for visualizing exocytosis of individual cortical granules were developed using fluorescent probes and confocal microscopy. Electron microscopy previously provided evidence that cortical granule exocytosis results in the formation of long-lived depressions in the cell surface. Fluorescent dextran or ovalbumin in the sea water seemed to label these depressions and appeared by confocal microscopy as disks. FM 1-43, a water-soluble fluorescent dye which labels membranes in contact with the sea water, seemed to label the membrane of these depressions and appeared as rings. In double-labeling experiments, the disk and ring labeling by the two types of fluorescent dyes were coincident to within 0.5 second. The fluorescent labeling is coincident with the disappearance of cortical granules by transmitted light microscopy, demonstrating that the labeling corresponds to cortical granule exocytosis. Fluorescent labeling was simultaneous with an expansion of the space occupied by the cortical granule, and labeling by the fluorescent dextran was found to take 0.1-0.2 second. These results are consistent with, and reinforce the previous electron microscopic evidence for, long-lived depressions formed by exocytosis; in addition, the new methods provide new ways to investigate cortical granule exocytosis in living eggs. The fluorescence labeling methods were used with the Ca2+ indicator Ca Green-dextran to test if Ca2+ and cortical granule exocytosis are closely related spatially and temporally. In any given region of the cortex, Ca2+ increased relatively slowly.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Reliability of confocal microscopy spectral imaging systems: use of multispectral beads.

    Science.gov (United States)

    Zucker, Robert M; Rigby, Paul; Clements, Ian; Salmon, Wendy; Chua, Michael

    2007-03-01

    There is a need for a standardized, impartial calibration, and validation protocol on confocal spectral imaging (CSI) microscope systems. To achieve this goal, it is necessary to have testing tools to provide a reproducible way to evaluate instrument performance. We evaluated fluorescent spectral beads (FocalCheck) from Molecular Probes/Invitrogen that consist of four pairs with emissions between 500 and 725 nm and a europium macrocycle quantum dye bead. These bead tools compliment our previously published protocol for testing spectral imaging systems that used an inexpensive multi-ion discharge lamp (MIDL) that contains Hg(+), Ar(+), and inorganic fluorophores that emits distinct, stable spectral features. We acquired the spectra of the FocalCheck beads on a Zeiss 510 Meta, a Leica TCS-SP1, a Leica SP2 AOBS, an Olympus FV 1000, and a Nikon C1Si confocal systems and a PARISS microscopic spectral system and of the europium beads on the Leica TCS-SP1 and PARISS spectral imaging systems. A lack of performance with some equipment between 650 and 750 nm was identified using the far red pair of the FocalCheck beads. The position of the slider in front of PMT 2 that reflects light into PMT 1 and PMT 3 affected the measurement of all bead intensities. Unmixing algorithms were used to separate beads with different fluorochromes and separate two fluorochromes on the same bead. The FocalCheck multi-spectral beads yielded similar profiles on four CSI systems and a PARISS spectral system. The utilization of the spectral FocalCheck beads is helpful to evaluate proper spectral performance, especially in the far red region. Europium beads provide a very narrow spectrum that can help to identify machines that have spectral problems. The dyes located on individual beads or mixed together in ring-core configuration can be used as test particles to demonstrate spectral unmixing with various algorithms.

  2. Detection of advanced glycation end products (AGEs) on human skin by in vivo confocal Raman spectroscopy

    Science.gov (United States)

    Martin, A. A.; Pereira, L.; Ali, S. M.; Pizzol, C. D.; Tellez, C. A.; Favero, P. P.; Santos, L.; da Silva, V. V.; Praes, C. E. O.

    2016-03-01

    The aging process involves the reduction in the production of the major components of skin tissue. During intrinsic aging and photoaging processes, in dermis of human skin, fibroblasts become senescent and have decreased activity, which produce low levels of collagen. Moreover, there is accumulation of advanced glycation end products (AGEs). AGEs have incidence in the progression of age-related diseases, principally in diabetes mellitus and in Alzheimer's diseases. AGEs causes intracellular damage and/or apoptosis leading to an increase of the free radicals, generating a crosslink with skin proteins and oxidative stress. The aim of this study is to detect AGEs markers on human skin by in vivo Confocal Raman spectroscopy. Spectra were obtained by using a Rivers Diagnostic System, 785 nm laser excitation and a CCD detector from the skin surface down to 120 μm depth. We analyzed the confocal Raman spectra of the skin dermis of 30 women volunteers divided into 3 groups: 10 volunteers with diabetes mellitus type II, 65-80 years old (DEW); 10 young healthy women, 20-33 years old (HYW); and 10 elderly healthy women, 65-80 years old (HEW). Pentosidine and glucosepane were the principally identified AGEs in the hydroxyproline and proline Raman spectral region (1000-800 cm-1), in the 1.260-1.320 cm-1 region assignable to alpha-helical amide III modes, and in the Amide I region. Pentosidine and glucosepane calculated vibrational spectra were performed through Density Functional Theory using the B3LYP functional with 3-21G basis set. Difference between the Raman spectra of diabetic elderly women and healthy young women, and between healthy elderly women and healthy young women were also obtained with the purpose of identifying AGEs Raman bands markers. AGEs peaks and collagen changes have been identified and used to quantify the glycation process in human skin.

  3. Confocal microscopy and electrophysiological study of single patient corneal endothelium cell cultures

    Science.gov (United States)

    Tatini, Francesca; Rossi, Francesca; Coppi, Elisabetta; Magni, Giada; Fusco, Irene; Menabuoni, Luca; Pedata, Felicita; Pugliese, Anna Maria; Pini, Roberto

    2016-04-01

    The characterization of the ion channels in corneal endothelial cells and the elucidation of their involvement in corneal pathologies would lead to the identification of new molecular target for pharmacological treatments and to the clarification of corneal physiology. The corneal endothelium is an amitotic cell monolayer with a major role in preserving corneal transparency and in regulating the water and solute flux across the posterior surface of the cornea. Although endothelial cells are non-excitable, they express a range of ion channels, such as voltage-dependent Na+ channels and K+ channels, L-type Ca2 channels and many others. Interestingly, purinergic receptors have been linked to a variety of conditions within the eye but their presence in the endothelium and their role in its pathophysiology is still uncertain. In this study, we were able to extract endothelial cells from single human corneas, thus obtaining primary cultures that represent the peculiarity of each donor. Corneas were from tissues not suitable for transplant in patients. We characterized the endothelial cells by confocal microscopy, both within the intact cornea and in the primary endothelial cells cultures. We also studied the functional role of the purinergic system (adenosine, ATP and their receptors) by means of electrophysiological recordings. The experiments were performed by patch clamp recordings and confocal time-lapse microscopy and our results indicate that the application of purinergic compounds modulates the amplitude of outward currents in the isolated endothelial cells. These findings may lead to the proposal of new therapies for endothelium-related corneal diseases.

  4. Automated method for tracing leading and trailing processes of migrating neurons in confocal image sequences

    Science.gov (United States)

    Kerekes, Ryan A.; Gleason, Shaun S.; Trivedi, Niraj; Solecki, David J.

    2010-03-01

    Segmentation, tracking, and tracing of neurons in video imagery are important steps in many neuronal migration studies and can be inaccurate and time-consuming when performed manually. In this paper, we present an automated method for tracing the leading and trailing processes of migrating neurons in time-lapse image stacks acquired with a confocal fluorescence microscope. In our approach, we first locate and track the soma of the cell of interest by smoothing each frame and tracking the local maxima through the sequence. We then trace the leading process in each frame by starting at the center of the soma and stepping repeatedly in the most likely direction of the leading process. This direction is found at each step by examining second derivatives of fluorescent intensity along curves of constant radius around the current point. Tracing terminates after a fixed number of steps or when fluorescent intensity drops below a fixed threshold. We evolve the resulting trace to form an improved trace that more closely follows the approximate centerline of the leading process. We apply a similar algorithm to the trailing process of the cell by starting the trace in the opposite direction. We demonstrate our algorithm on two time-lapse confocal video sequences of migrating cerebellar granule neurons (CGNs). We show that the automated traces closely approximate ground truth traces to within 1 or 2 pixels on average. Additionally, we compute line intensity profiles of fluorescence along the automated traces and quantitatively demonstrate their similarity to manually generated profiles in terms of fluorescence peak locations.

  5. Confocal microscopic observations of stromal keratocytes in soft and rigid contact lens wearers.

    Science.gov (United States)

    Ohta, Kiyohiko; Shimamura, Ichiro; Shiraishi, Atsushi; Ohashi, Yuichi

    2012-01-01

    To determine the density of corneal stromal cells in wearers of soft contact lenses (SCLs) and rigid gas-permeable (RGP) contact lenses (CLs). The keratocyte density (KD) was measured at different depths of the stroma by confocal microscopy. In study 1, 32 wearers of rigid gas-permeable (RGP) lenses and 30 wearers of SCLs were studied. Forty volunteers with no history of CL wear were studied as controls. In study 2, 16 volunteers with no history of CL wear were divided into 2 groups; 7 subjects wore RGP lenses (oxygen transmissibility, Dk/L, 35) and 9 subjects wore SCLs (Dk/L, 34). All subjects were asked to wear the CLs daily for 6 months. In study 1, the KDs in the anterior stroma (AST) and the posterior stroma (PST) of the cornea were significantly lower in the RGP lens group than in the control group. The KD in the SCL group was significantly lower at all depths of the cornea than that of the control group. In study 2, the KD in the AST of the RGP lens group was significantly lower after 1 month of CL wear. The KD in the AST and PST of the SCL group was decreased significantly at 1 month, and all layers were decreased by 10% to 20% 6 months after wearing CLs. At 5 weeks after discontinuation of SCL wear, the KD in all layers was not significantly different from that at the baseline. The change in the KD was greater in CL wearers than in volunteers with no history of CL wear and also greater in SCL wearers than in RGP lens wearers. Analysis of the KD by confocal microscopy may be a useful method for evaluating the effect of CL wear.

  6. Large area mapping of excised breast tissue by fluorescence confocal strip scanning: a preliminary feasibility study

    Science.gov (United States)

    Larson, Bjorg A.; Abeytunge, Sanjee; Murray, Melissa; Rajadhyaksha, Milind

    2013-03-01

    Lumpectomy, in conjunction with radiation and chemotherapy drugs, together comprise breast-conserving treatment as an alternative to total mastectomy for patients with breast tumors. The tumor is removed in surgery and sent for pathology processing to assess the margins, a process that takes at minimum several hours, and generally days. If the margins are not clear of tumor, the patient must undergo a second surgery to remove residual tumor. This re-excision rate varies by institution, but can be as high as 60%. Currently, no intraoperative microscopic technique is used routinely to examine tumor margins in breast tissue. A new technique for rapidly scanning large areas of tissue has been developed, called confocal strip scanning, which provides high resolution and seamless mosaics over large areas of intact tissue, with nuclear and cellular resolution and optical sectioning of about 2 microns. Up to 3.5 x 3.5 cm2 of tissue is imaged in 13 minutes at current stage speeds. This technique is demonstrated in freshly excised breast tissue, using a mobile confocal microscope stationed in our pathology laboratory. Twenty-five lumpectomy and mastectomy cases were used as a testing ground for reflectance and fluorescence contrast modes, resolution requirements and tissue fixturing configurations. It was concluded that fluorescent imaging provides the needed contrast to distinguish ducts and lobules from surrounding stromal tissue. Therefore the system was configured with 488 nm illumination, with acridine orange fluorescent dye for nuclear contrast, with the aim of building an image library of malignant and benign breast pathologies.

  7. Raman confocal microscopy and AFM combined studies of cancerous cells treated with Paclitaxel

    Science.gov (United States)

    Derely, L.; Collart Dutilleul, P.-Y.; Michotte de Welle, Sylvain; Szabo, V.; Gergely, C.; Cuisinier, F. J. G.

    2011-03-01

    Paclitaxel interferes with the normal function of microtubule breakdown, induces apoptosis in cancer cells and sequesters free tubulin. As this drug acts also on other cell mechanisms it is important to monitor its accumulation in the cell compartments. The intracellular spreading of the drug was followed using a WITEC 300R confocal Raman microscope equipped with a CCD camera. Hence Atomic force microscopy (an MFP3D- Asylum Research AFM) in imaging and force mode was used to determine the morphological and mechanical modifications induced on living cells. These studies were performed on living epithelial MCF-7 breast cancer cells. Paclitaxel was added to cell culture media for 3, 6 and 9 hours. Among the specific paclitaxel Raman bands we selected the one at 1670 cm-1 because it is not superposed by the spectrum of the cells. Confocal Raman images are formed by monitoring this band, the NH2 and the PO4 band. Paclitaxel slightly accumulates in the nucleus forming patches. The drug is also concentrated in the vicinity of the cell membrane and in an area close to the nucleus where proteins accumulate. Our AFM images reveal that the treated cancerous MCF-7 cells keep the same size as the non treated ones, but their shape becomes more oval. Cell's elasticity is also modified: a difference of 2 kPa in the Young Modulus characterizes the treated MCF-7 mammary cancerous cell. Our observations demonstrate that paclitaxel acts not only on microtubules but accumulates also in other cell compartments (nucleus) where microtubules are absent.

  8. [A Clinical Case Report Including In Vivo Laser Confocal Microscopic Findings of Keratitis Complicated with Takayasu's Arteritis].

    Science.gov (United States)

    Matsumoto, Yukihiro; Yasuoka, Hidekata; Ichihashi, Yoshiyuki; Kawakita, Tetsuya; Shimmura, Shigeto; Tsubota, Kazuo

    2016-02-01

    We present a clinical case report including in vivo laser confocal microscopic findings of keratitis complicated with Takayasu's arteritis (aortitis syndrome). A 47-year-old woman was referred to the outpatient clinic of ophthalmology with blurred vision in her both eyes at the onset of Takayasu's arteritis. Since multifocal infiltrates in the stromal corneas with injection were observed with slit-lamp biomicroscope in the both eyes, the diagnosis was keratitis. A large amount of cells infiltrating the stromal cornea and activated keratocytes were also observed with in vivo laser confocal microscope in the both eyes. Systemic and local steroidal agents were initiated, which resolved the keratitis, and the active lesions turned into mild corneal scars. In vivo laser confocal microscopy showed no infiltrating cells in the stromal cornea of both eyes. No recurrence has been observed since. A rare case of keratitis complicated with Takayasu's arteritis is reported. An immune response to the stromal cornea as the etiology of the keratitis may be indicated by in vivo laser confocal microscopy.

  9. Handheld confocal laser endomicroscopic imaging utilizing tumor-specific fluorescent labeling to identify experimental glioma cells in vivo.

    Science.gov (United States)

    Martirosyan, Nikolay L; Georges, Joseph; Kalani, M Yashar S; Nakaji, Peter; Spetzler, Robert F; Feuerstein, Burt G; Preul, Mark C

    2016-01-01

    We have reported that handheld confocal laser endomicroscopy (CLE) can be used with various nonspecific fluorescent dyes to improve the microscopic identification of brain tumor and its boundaries. Here, we show that CLE can be used experimentally with tumor-specific fluorescent labeling to define glioma margins in vivo. Thirteen rats underwent craniectomy and in vivo imaging 21 days after implantation with green fluorescent protein (GFP)-labeled U251 (n = 7) cells or epidermal growth factor receptor (EGFR) overexpressing F98 cells (n = 6). Fluorescein isothiocyanate (FITC) conjugated EGFR fluorescent antibody (FITC-EGFR) was applied for contrast in F98 tumors. Confocal images of normal brain, obvious tumor, and peritumoral zones were collected using the CLE system. Bench-top confocal microscopy and hematoxylin and eosin-stained sections were correlated with CLE images. GFP and FITC-EGFR fluorescence of glioma cells were detected by in vivo visible-wavelength fluorescence CLE. CLE of GFP-labeled tumors revealed bright individual satellite tumor cells within peritumoral tissue, a definitive tumor border, and subcellular structures. Imaging with FITC-EGFR labeling provided weaker contrast in F98-EGFR tumors but was able to delineate tumor cells. Imaging with both methods in various tumor regions correlated with standard confocal imaging and clinical histology. These data suggest that in vivo CLE of selectively tagged neoplasms could allow specific interactive identification of tumoral areas. Imaging of GFP and FITC-EGFR provides real-time histologic information precisely related to the site of microscopic imaging of tumor.

  10. The effect of compression on clinical diagnosis of glaucoma based on non-analyzed confocal scanning laser ophthalmoscopy images

    NARCIS (Netherlands)

    Abramoff, M.D.

    2006-01-01

    Knowledge of the effect of compression of ophthalmic images on diagnostic reading is essential for effective tele-ophthalmology applications. It was therefore with great anticipation that I read the article “The Effect of Compression on Clinical Diagnosis of Glaucoma Based on Non-analyzed Confocal

  11. Fast evaluation of 69 basal cell carcinomas with ex vivo fluorescence confocal microscopy: criteria description, histopathological correlation, and interobserver agreement.

    Science.gov (United States)

    Bennàssar, Antoni; Carrera, Cristina; Puig, Susana; Vilalta, Antoni; Malvehy, Josep

    2013-07-01

    Fluorescence confocal microscopy (FCM) represents a first step toward a rapid "bedside pathology" in the Mohs surgery setting and in other fields of general pathology. To describe and validate FCM criteria for the main basal cell carcinoma (BCC) subtypes and to demonstrate the overall agreement with classic pathologic analysis of hematoxylin-eosin-stained samples. DESIGN A total of 69 BCCs from 66 patients were prospectively imaged using ex vivo FCM. Confocal mosaics were evaluated in real time and compared with classic pathologic analysis. Department of Dermatology, Hospital Clínic of Barcelona, Barcelona, Spain, between November 2010 and July 2011. Patients with BCC attending the Mohs Surgery Unit. Presence or absence of BCC and histological subtype (superficial, nodular, and infiltrating) in the confocal mosaics. Eight criteria for BCC were described, evaluated, and validated. Although there were minor differences among BCC subtypes, the most BCC-defining criteria were peripheral palisading, clefting, nuclear pleomorphism, and presence of stroma. These criteria were validated with independent observers (κ values >0.7 [corrected] for most criteria). We herein propose, describe, and validate FCM criteria for BCC diagnosis. Fluorescence confocal microscopy is an attractive alternative to histopathologic analysis of frozen sections during Mohs surgery because large areas of freshly excised tissue can be assessed in real time without the need for tissue processing while minimizing labor and costs.

  12. Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP

    NARCIS (Netherlands)

    Müller, L.N.; de Brouwer, J.F.C.; Almeida, J.S.; Stal, L.J.; Xavier, J.B.

    2006-01-01

    Background Confocal laser scanning microscopy (CLSM) is the method of choice to study interfacial biofilms and acquires time-resolved three-dimensional data of the biofilm structure. CLSM can be used in a multi-channel modus where the different channels map individual biofilm components. This

  13. Microradiography and confocal laser scanning microscopy applied to enamel lesions formed in vivo with and without fluoride varnish treatment

    NARCIS (Netherlands)

    Ogaard, B; Duschner, H; Ruben, J; Arends, J

    The aim of the present investigation was to combine 2 techniques suitable for lesion characterization: quantitative microradiography (TMR) and confocal laser scanning microscopy (CLSM) on in vivo induced lesions with and without a fluoride varnish (Duraphat(R)) treatment. Orthodontic bands were

  14. Confocal histopathology of irritant contact dermatitis in vivo and the impact of skin color (black vs white)

    NARCIS (Netherlands)

    Hicks, Shari P.; Swindells, Kirsty J.; Middelkamp-Hup, Maritza A.; Sifakis, Martine A.; González, Ernesto; González, Salvador

    2003-01-01

    BACKGROUND: The pathogenesis of irritant contact dermatitis and its modulation according to skin color is not well understood. Reflectance confocal microscopy (RCM) enables high-resolution, real-time, in-vivo imaging of human skin. OBJECTIVE: The goal of our study was to use RCM to determine whether

  15. Selenium Preferentially Accumulates in the Eye Lens Following Embryonic Exposure: A Confocal X-ray Fluorescence Imaging Study

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sanjukta; Thomas, Jith; Sylvain, Nicole J.; Ponomarenko, Olena; Gordon, Robert A.; Heald, Steve M.; Janz, David M.; Krone, Patrick H.; Coulthard, Ian; George, Graham N.; Pickering, Ingrid J.

    2015-02-17

    Maternal transfer of elevated selenium (Se) to offspring is an important route of Se exposure for fish in the natural environment. However, there is a lack of information on the tissue specific spatial distribution and speciation of Se in the early developmental stages of fish, which provide important information about Se toxicokinetics. The effect of maternal transfer of Se was studied by feeding adult zebrafish a Se-elevated or a control diet followed by collection of larvae from both groups. Novel confocal synchrotron-based techniques were used to investigate Se within intact preserved larvae. Confocal X-ray fluorescence imaging was used to compare Se distributions within specific planes of an intact larva from each of the two groups. The elevated Se treatment showed substantially higher Se levels than the control; Se preferentially accumulated to highest levels in the eye lens, with lower levels in the retina, yolk and other tissues. Confocal X-ray absorption spectroscopy was used to determine that the speciation of Se within the eye lens of the intact larva was a selenomethionine-like species. Preferential accumulation of Se in the eye lens may suggest a direct cause-and-effect relationship between exposure to elevated Se and Se-induced ocular impairments reported previously. This study illustrates the effectiveness of confocal X-ray fluorescence methods for investigating trace element distribution and speciation in intact biological specimens

  16. Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy

    NARCIS (Netherlands)

    Banzhaf, Christina A.; Wind, Bas S.; Mogensen, Mette; Meesters, Arne A.; Paasch, Uwe; Wolkerstorfer, Albert; Haedersdal, Merete

    2016-01-01

    Optical coherence tomography (OCT) and reflectance confocal microscopy (RCM) offer high-resolution optical imaging of the skin, which may provide benefit in the context of laser-assisted drug delivery. We aimed to characterize postoperative healing of ablative fractional laser (AFXL)-induced

  17. 'En face' ex vivo reflectance confocal microscopy to help the surgery of basal cell carcinoma of the eyelid.

    Science.gov (United States)

    Espinasse, Marine; Cinotti, Elisa; Grivet, Damien; Labeille, Bruno; Prade, Virginie; Douchet, Catherine; Cambazard, Frédéric; Thuret, Gilles; Gain, Philippe; Perrot, Jean Luc

    2017-07-01

    Ex vivo confocal microscopy is a recent imaging technique for the perioperative control of skin tumour margins. Up to date, it has been used in the fluorescence mode and with vertical sections of the specimen margins. The aim of this study was to evaluate its use in the reflectance mode and with a horizontal ('en face') scanning of the surgical specimen in a series of basal cell carcinoma of the eyelid. Prospective consecutive cohort study was performed at the University Hospital of Saint-Etienne, France. Forty-one patients with 42 basal cell carcinoma of the eyelid participated in this study. Basal cell carcinomas were excised with a 2-mm-wide clinically safe margin. The surgical specimens were analysed under ex vivo confocal microscopy in the reflectance mode and with an en face scanning in order to control at a microscopic level if the margins were free from tumour invasion. Histopathogical examination was later performed in order to compare the results. Sensitivity and specificity of ex vivo confocal microscopy for the presence of tumour-free margins. Ex vivo confocal microscopy results were consistent with histopathology in all cases (tumour-free margins in 40 out of 42 samples; sensitivity and specificity of 100%). Ex vivo confocal microscopy in the reflectance mode with an 'en face' scanning can control tumour margins of eyelid basal cell carcinomas and optimize their surgical management. This procedure has the advantage on the fluorescent mode of not needing any contrast agent to examine the samples. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  18. [The ocular surface of severe alkali burns patients on confocal microscopy].

    Science.gov (United States)

    Zhu, Wen-qing; Xu, Jian-jiang; Sun, Xing-huai; Qiu, Ting; Hong, Jia-xu; Wang, Yan; Wang, Wen-tao

    2010-01-01

    To analyze the morphology on the ocular surface of severe alkali burns patients by in vivo laser scanning confocal microscopy. This research was a retrospective observation case series. From February to November 2008 in Eye Ear Nose and Throat Hospital of Fudan University, 39 alkali burns patients who classified as III or IV according to Roper-Hall classification were enrolled in this study. They were divided into four groups according to the course of disease: A (less than 3 months), B (3 - 6 months), C (6 - 12 months) and D (over 12 months). In vivo laser scanning confocal microscopic examinations were performed on the injured cornea, the limbus and the bulbar conjunctiva and the images were recorded. The morphology of the injured cornea, the limbus and the bulbar conjunctiva was analyzed and the densities of the inflammatory cells and dendritic cells in the limbus were calculated. One-way analysis of variance was used to compare the means of the inflammatory cells and dendritic cells. Subsequently the data between two groups were analyzed by least significant difference. The corneal epitheliums of the patients in Group A manifested large irregular features with hyperreflective cytoplasm and hyporeflective nuclei, sometimes losing cell features. There were numerous small hyperreflective inflammatory cells in groups beneath the superficial epitheliums. Shallow corneal stroma was edema, and it was hard to discriminate the morphology of the stromal cells. Deep stromal cells were in the activated state. The images of the endothelial layer were unclear. In Group B and Group C, there were the same manifestation of the superficial epitheliums as the group A and it disappeared in Group D. The inflammatory cells beneath the superficial epitheliums reduced and some residual basal epitheliums and hyperreflective conjunctiva-like epitheliums were visible in Group B and Group C. In Group D, there were small oval tight-arranged cells with punctiform hyperreflective nuclei

  19. Implementation of Accurate and Fast DNA Cytometry by Confocal Microscopy in 3D

    Directory of Open Access Journals (Sweden)

    Lennert S. Ploeger

    2005-01-01

    Full Text Available Background: DNA cytometry is a powerful method for measuring genomic instability. Standard approaches that measure DNA content of isolated cells may induce selection bias and do not allow interpretation of genomic instability in the context of the tissue. Confocal Laser Scanning Microscopy (CLSM provides the opportunity to perform 3D DNA content measurements on intact cells in thick histological sections. Because the technique is technically challenging and time consuming, only a small number of usually manually selected nuclei were analyzed in different studies, not allowing wide clinical evaluation. The aim of this study was to describe the conditions for accurate and fast 3D CLSM cytometry with a minimum of user interaction to arrive at sufficient throughput for pilot clinical applications. Methods: Nuclear DNA was stained in 14 μm thick tissue sections of normal liver and adrenal stained with either YOYO-1 iodide or TO-PRO-3 iodide. Different pre-treatment strategies were evaluated: boiling in citrate buffer (pH 6.0 followed by RNase application for 1 or 18 hours, or hydrolysis. The image stacks obtained with CLSM at microscope magnifications of ×40 or ×100 were analyzed off-line using in-house developed software for semi-automated 3D fluorescence quantitation. To avoid sectioned nuclei, the top and bottom of the stacks were identified from ZX and YZ projections. As a measure of histogram quality, the coefficient of variation (CV of the diploid peak was assessed. Results: The lowest CV (10.3% was achieved with a protocol without boiling, with 1 hour RNase treatment and TO-PRO-3 iodide staining, and a final image recording at ×60 or ×100 magnifications. A sample size of 300 nuclei was generally achievable. By filtering the set of automatically segmented nuclei based on volume, size and shape, followed by interactive removal of the few remaining faulty objects, a single measurement was completely analyzed in approximately 3 hours

  20. Normative values for corneal nerve morphology assessed using corneal confocal microscopy: a multinational normative data set.

    Science.gov (United States)

    Tavakoli, Mitra; Ferdousi, Maryam; Petropoulos, Ioannis N; Morris, Julie; Pritchard, Nicola; Zhivov, Andrey; Ziegler, Dan; Pacaud, Danièle; Romanchuk, Kenneth; Perkins, Bruce A; Lovblom, Leif E; Bril, Vera; Singleton, J Robinson; Smith, Gordon; Boulton, Andrew J M; Efron, Nathan; Malik, Rayaz A

    2015-05-01

    Corneal confocal microscopy is a novel diagnostic technique for the detection of nerve damage and repair in a range of peripheral neuropathies, in particular diabetic neuropathy. Normative reference values are required to enable clinical translation and wider use of this technique. We have therefore undertaken a multicenter collaboration to provide worldwide age-adjusted normative values of corneal nerve fiber parameters. A total of 1,965 corneal nerve images from 343 healthy volunteers were pooled from six clinical academic centers. All subjects underwent examination with the Heidelberg Retina Tomograph corneal confocal microscope. Images of the central corneal subbasal nerve plexus were acquired by each center using a standard protocol and analyzed by three trained examiners using manual tracing and semiautomated software (CCMetrics). Age trends were established using simple linear regression, and normative corneal nerve fiber density (CNFD), corneal nerve fiber branch density (CNBD), corneal nerve fiber length (CNFL), and corneal nerve fiber tortuosity (CNFT) reference values were calculated using quantile regression analysis. There was a significant linear age-dependent decrease in CNFD (-0.164 no./mm(2) per year for men, P < 0.01, and -0.161 no./mm(2) per year for women, P < 0.01). There was no change with age in CNBD (0.192 no./mm(2) per year for men, P = 0.26, and -0.050 no./mm(2) per year for women, P = 0.78). CNFL decreased in men (-0.045 mm/mm(2) per year, P = 0.07) and women (-0.060 mm/mm(2) per year, P = 0.02). CNFT increased with age in men (0.044 per year, P < 0.01) and women (0.046 per year, P < 0.01). Height, weight, and BMI did not influence the 5th percentile normative values for any corneal nerve parameter. This study provides robust worldwide normative reference values for corneal nerve parameters to be used in research and clinical practice in the study of diabetic and other peripheral neuropathies. © 2015 by the American Diabetes Association

  1. Ca(2+ release events in cardiac myocytes up close: insights from fast confocal imaging.

    Directory of Open Access Journals (Sweden)

    Vyacheslav M Shkryl

    Full Text Available The spatio-temporal properties of Ca(2+ transients during excitation-contraction coupling and elementary Ca(2+ release events (Ca(2+ sparks were studied in atrial and ventricular myocytes with ultra-fast confocal microscopy using a Zeiss LSM 5 LIVE system that allows sampling rates of up to 60 kHz. Ca(2+ sparks which originated from subsarcolemmal junctional sarcoplasmic reticulum (j-SR release sites in atrial myocytes were anisotropic and elongated in the longitudinal direction of the cell. Ca(2+ sparks in atrial cells originating from non-junctional SR and in ventricular myocytes were symmetrical. Ca(2+ spark recording in line scan mode at 40,000 lines/s uncovered step-like increases of [Ca(2+]i. 2-D imaging of Ca(2+ transients revealed an asynchronous activation of release sites and allowed the sequential recording of Ca(2+ entry through surface membrane Ca(2+ channels and subsequent activation of Ca(2+-induced Ca(2+ release. With a latency of 2.5 ms after application of an electrical stimulus, Ca(2+ entry could be detected that was followed by SR Ca(2+ release after an additional 3 ms delay. Maximum Ca(2+ release was observed 4 ms after the beginning of release. The timing of Ca(2+ entry and release was confirmed by simultaneous [Ca(2+]i and membrane current measurements using the whole cell voltage-clamp technique. In atrial cells activation of discrete individual release sites of the j-SR led to spatially restricted Ca(2+ release events that fused into a peripheral ring of elevated [Ca(2+]i that subsequently propagated in a wave-like fashion towards the center of the cell. In ventricular myocytes asynchronous Ca(2+ release signals from discrete sites with no preferential subcellular location preceded the whole-cell Ca(2+ transient. In summary, ultra-fast confocal imaging allows investigation of Ca(2+ signals with a time resolution similar to patch clamp technique, however in a less invasive fashion.

  2. Influences of edges and steep slopes in 3D interference and confocal microscopy

    Science.gov (United States)

    Xie, Weichang; Hagemeier, Sebastian; Woidt, Carsten; Hillmer, Harmut; Lehmann, Peter

    2016-04-01

    Optical measurement techniques are widely applied in high-resolution contour, topography and roughness measurement. In this context vertical scanning white-light interferometers and confocal microscopes have become mature instruments over the last decades. The accuracy of measurement results is highly related not only to the type and physical properties of the measuring instruments, but also to the measurement object itself. This contribution focuses on measurement effects occurring at edges and height steps using white-light interferometers of different numerical apertures. If the edge is perfectly perpendicular, batwing effects appear at height steps. These batwings show maximum height if the height-to-wavelength-ratio (HWR) is about one forth or three forth, and they disappear if the HWR value is about an integer multiple of one half. The wavelength that is relevant in this context is the effective wavelength, i.e. the center wavelength of the illuminating light multiplied by a correction factor known as the numerical aperture correction. However, in practice the edges are usually not perfectly perpendicular. In this case, the measurement results depend also on the derivative of the surface height function and they may differ from theory and the prediction according to the HWR value. Measurements of such steps show systematical effects depending on the lateral resolution of the instrument. In this context, a Linnik interferometer with a magnification of 100x and NA = 0.9 is used to characterize the three dimensional topography of more or less rectangular calibration specimens and quasi-perpendicular structures produced by the nanoimprint technology. The Linnik interferometer is equipped with LED light sources emitting at different wavelengths, so that the HWR value can be changed. This is possible since the high NA objective lenses show a rather limited depth of focus such that the temporal coherence gating may be replaced by focal gating in this particular

  3. Ca(2+) release events in cardiac myocytes up close: insights from fast confocal imaging.

    Science.gov (United States)

    Shkryl, Vyacheslav M; Blatter, Lothar A

    2013-01-01

    The spatio-temporal properties of Ca(2+) transients during excitation-contraction coupling and elementary Ca(2+) release events (Ca(2+) sparks) were studied in atrial and ventricular myocytes with ultra-fast confocal microscopy using a Zeiss LSM 5 LIVE system that allows sampling rates of up to 60 kHz. Ca(2+) sparks which originated from subsarcolemmal junctional sarcoplasmic reticulum (j-SR) release sites in atrial myocytes were anisotropic and elongated in the longitudinal direction of the cell. Ca(2+) sparks in atrial cells originating from non-junctional SR and in ventricular myocytes were symmetrical. Ca(2+) spark recording in line scan mode at 40,000 lines/s uncovered step-like increases of [Ca(2+)]i. 2-D imaging of Ca(2+) transients revealed an asynchronous activation of release sites and allowed the sequential recording of Ca(2+) entry through surface membrane Ca(2+) channels and subsequent activation of Ca(2+)-induced Ca(2+) release. With a latency of 2.5 ms after application of an electrical stimulus, Ca(2+) entry could be detected that was followed by SR Ca(2+) release after an additional 3 ms delay. Maximum Ca(2+) release was observed 4 ms after the beginning of release. The timing of Ca(2+) entry and release was confirmed by simultaneous [Ca(2+)]i and membrane current measurements using the whole cell voltage-clamp technique. In atrial cells activation of discrete individual release sites of the j-SR led to spatially restricted Ca(2+) release events that fused into a peripheral ring of elevated [Ca(2+)]i that subsequently propagated in a wave-like fashion towards the center of the cell. In ventricular myocytes asynchronous Ca(2+) release signals from discrete sites with no preferential subcellular location preceded the whole-cell Ca(2+) transient. In summary, ultra-fast confocal imaging allows investigation of Ca(2+) signals with a time resolution similar to patch clamp technique, however in a less invasive fashion.

  4. In Vivo Reflectance Confocal Microscopy for the Diagnosis of Melanoma and Melanotic Macules of the Lip.

    Science.gov (United States)

    Uribe, Pablo; Collgros, Helena; Scolyer, Richard A; Menzies, Scott W; Guitera, Pascale

    2017-09-01

    Benign melanotic macules (MAC) are the most frequent cause of lip pigmentation and sometimes difficult to differentiate from lip melanoma (MEL). To report in vivo reflectance confocal microscopy (RCM) features of normal lips of different phototypes and to identify features that assist in distinguishing MEL from MAC using dermoscopy and RCM. For this retrospective observational study, 2 groups of patients from 2 tertiary referral centers for melanoma (Sydney Melanoma Diagnostic Centre and Melanoma Institute Australia) were recruited between June 2007 and January 2015. Group 1 included patients with normal lips and different phototypes, and Group 2 consisted of patients with MAC and MEL; RCM and dermoscopy were used for lips analysis. Overall, 92 RCM features were correlated with clinical history, dermoscopic images, and histopathology in all patients with MEL and 5 patients with MAC. Images from the vermillion and/or mucosal part of the lip were recorded from 10 patients with clinically normal lips (mean [SD] age, 34.5 [6.1] years), 16 patients with MAC (mean [SD] age, 49.6 [17.9] years), and 5 patients with 6 cases of MEL (1 patient had a recurrent lesion; mean [SD] age, 56.2 [15.5] years). In normal lips, the draped pattern-a previously described MAC RCM feature-was identified in all cases. In MEL, the following findings were frequent and significantly different from MAC: epidermal disarray; pagetoid infiltration of dendritic and/or round cells; a nonspecific architectural pattern at the dermoepidermal junction (DEJ); nonhomogenously distributed papillae; continuous (lentiginous) proliferation of cells with marked atypia at the DEJ, especially in interpapillary spaces; a higher number of dendritic cells (especially roundish); and atypical round cells at the DEJ. The cellular body area of dendritic cells was about the double in MEL compared with MAC. An RCM lip algorithm was developed that provided 100% sensitivity and 88% specificity for the diagnosis of MEL of

  5. Simultaneous pH measurement in endocytic and cytosolic compartments in living cells using confocal microscopy.

    Science.gov (United States)

    Lucien, Fabrice; Harper, Kelly; Pelletier, Pierre-Paul; Volkov, Leonid; Dubois, Claire M

    2014-04-28

    Intracellular pH is tightly regulated and differences in pH between the cytoplasm and organelles have been reported(1). Regulation of cellular pH is crucial for homeostatic control of physiological processes that include: protein, DNA and RNA synthesis, vesicular trafficking, cell growth and cell division. Alterations in cellular pH homeostasis can lead to detrimental functional changes and promote progression of various diseases(2). Various methods are available for measuring intracellular pH but very few of these allow simultaneous measurement of pH in the cytoplasm and in organelles. Here, we describe in detail a rapid and accurate method for the simultaneous measurement of cytoplasmic and organellar pH by using confocal microscopy on living cells(3). This goal is achieved with the use of two pH-sensing ratiometric dyes that possess selective cellular compartment partitioning. For instance, SNARF-1 is compartmentalized inside the cytoplasm whereas HPTS is compartmentalized inside endosomal/lysosomal organelles. Although HPTS is commonly used as a cytoplasmic pH indicator, this dye can specifically label vesicles along the endosomal-lysosomal pathway after being taken up by pinocytosis(3,4). Using these pH-sensing probes, it is possible to simultaneously measure pH within the endocytic and cytoplasmic compartments. The optimal excitation wavelength of HPTS varies depending on the pH while for SNARF-1, it is the optimal emission wavelength that varies. Following loading with SNARF-1 and HPTS, cells are cultured in different pH-calibrated solutions to construct a pH standard curve for each probe. Cell imaging by confocal microscopy allows elimination of artifacts and background noise. Because of the spectral properties of HPTS, this probe is better suited for measurement of the mildly acidic endosomal compartment or to demonstrate alkalinization of the endosomal/lysosomal organelles. This method simplifies data analysis, improves accuracy of pH measurements and can

  6. Microscopia confocal en cirugía refractiva corneal: ¿útil o imprescindible?

    Directory of Open Access Journals (Sweden)

    Eduardo Rojas Álvarez

    Full Text Available Introducción: el estudio morfométrico de la córnea con posterioridad a la cirugía refractiva corneal con Láser Excímer, se ha convertido, en los últimos años, en tema de investigación recurrente a nivel internacional, con vistas a obtener resultados in vivo del tejido corneal y por tanto, evaluar estas novedosas tecnologías. Objetivo: describir las aplicaciones de la microscopia confocal de la córnea en cirugía refractiva con Láser Excímer. Método: se realizó un estudio exploratorio del tema, teniendo en cuenta las publicaciones de los últimos 5 años de los autores más representativos, así como las revistas de mayor impacto de la especialidad. Se utilizó la plataforma Infomed, específicamente la Biblioteca Virtual de Salud (Ebsco,Hinari, PERii, SciELO Cuba, SciELO regional, PLoS Medicine, Pubmed Central, Biomed Central, DOAJ, Free Medical Journals. La información fue resumida para la elaboración del informe final. Resultados: se han obtenido en diferentes estudios valores de densidad corneal por subcapas, grosores corneales, características de células y nervios corneales, evolución en el tiempo de estos cambios y relaciones estadísticas entre variables morfométricas. Conclusiones: el oftalmólogo dedicado a cirugía refractiva corneal debe dominar e incorporar a su práctica cotidiana la microscopia confocal corneal como una herramienta pre y posoperatoria que ya se ha hecho imprescindible en vistas a elevar la seguridad de este tipo de tratamiento. No todo está dicho, la línea investigativa del tema apunta a un mayor desarrollo en los años venideros que tiene como atenuante la poca accesibilidad a este proceder en otros países por su elevado costo.

  7. Scaling Behavior of Delayed Demixing, Rheology, and Microstructure of Emulsions Flocculated by Depletion and Bridging

    NARCIS (Netherlands)

    Blijdenstein, T.B.J.; Linden, van der E.; Vliet, van T.; Aken, van G.A.

    2004-01-01

    Abstract: This paper describes an experimental comparison of microstructure, rheology, and demixing of bridging- and depletion-flocculated oil-in-water emulsions. Confocal scanning laser microscopy imaging showed that bridging-flocculated emulsions were heterogeneous over larger length scales than

  8. 3D optical sectioning with a new hyperspectral confocal fluorescence imaging system.

    Energy Technology Data Exchange (ETDEWEB)

    Nieman, Linda T.; Sinclair, Michael B.; Davidson, George S.; Van Benthem, Mark Hilary; Haaland, David Michael; Timlin, Jerilyn Ann; Sasaki, Darryl Yoshio; Bachand, George David; Jones, Howland D. T.

    2007-02-01

    A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria.

  9. Automated Segmentation of Skin Strata in Reflectance Confocal Microscopy Depth Stacks.

    Science.gov (United States)

    Hames, Samuel C; Ardigò, Marco; Soyer, H Peter; Bradley, Andrew P; Prow, Tarl W

    2016-01-01

    Reflectance confocal microscopy (RCM) is a powerful tool for in-vivo examination of a variety of skin diseases. However, current use of RCM depends on qualitative examination by a human expert to look for specific features in the different strata of the skin. Developing approaches to quantify features in RCM imagery requires an automated understanding of what anatomical strata is present in a given en-face section. This work presents an automated approach using a bag of features approach to represent en-face sections and a logistic regression classifier to classify sections into one of four classes (stratum corneum, viable epidermis, dermal-epidermal junction and papillary dermis). This approach was developed and tested using a dataset of 308 depth stacks from 54 volunteers in two age groups (20-30 and 50-70 years of age). The classification accuracy on the test set was 85.6%. The mean absolute error in determining the interface depth for each of the stratum corneum/viable epidermis, viable epidermis/dermal-epidermal junction and dermal-epidermal junction/papillary dermis interfaces were 3.1 μm, 6.0 μm and 5.5 μm respectively. The probabilities predicted by the classifier in the test set showed that the classifier learned an effective model of the anatomy of human skin.

  10. Meta-analysis of confocal laser endomicroscopy for the diagnosis of gastric neoplasia and adenocarcinoma.

    Science.gov (United States)

    Qian, Wei; Bai, Tao; Wang, Huan; Zhang, Lei; Song, Jun; Hou, Xiao Hua

    2016-06-01

    Confocal laser endomicroscopy (CLE) is a recently developed technique used to diagnose gastrointestinal diseases. The current meta-analysis aimed to systematically assess the ability of CLE to diagnose neoplasia and gastric adenocarcinoma. A comprehensive literature search was performed using PubMed, Embase and the Cochrane Library for endomicroscopy, gastric neoplasia and gastric adenocarcinoma. Sensitivity and specificity data on the diagnosis of neoplasia and gastric adenocarcinoma were pooled. A summary receiver operating characteristic (sROC) curve was performed and the area under the curve was calculated. In all, 13 studies were included in the current study. The pooled sensitivity and specificity assessing CLE as a method to diagnose gastric neoplasia were 0.81 and 0.98, respectively. For the diagnosis of gastric adenocarcinoma, the pooled sensitivity and specificity were 0.89 and 0.99, respectively. The pooled sensitivity and specificity were 0.82 and 0.95 when differentiating high-grade intraepithelial neoplasia from low-grade intraepithelial neoplasia. Additionally, the pooled sensitivity and specificity were 0.87 and 0.96, respectively, when distinguishing undifferentiated gastric adenocarcinoma from differentiated gastric adenocarcinoma. CLE has a high sensitivity and specificity for diagnosing gastric intraepithelial neoplasia and gastric adenocarcinoma; therefore, it could be considered an alternative to the endoscopic method used to diagnose gastric intraepithelial neoplasia and gastric adenocarcinoma. © 2016 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  11. Confocal microscopy for astrocyte in vivo imaging: Recycle and reuse in microscopy

    Science.gov (United States)

    Pérez-Alvarez, Alberto; Araque, Alfonso; Martín, Eduardo D.

    2013-01-01

    In vivo imaging is one of the ultimate and fundamental approaches for the study of the brain. Two-photon laser scanning microscopy (2PLSM) constitutes the state-of-the-art technique in current neuroscience to address questions regarding brain cell structure, development and function, blood flow regulation and metabolism. This technique evolved from laser scanning confocal microscopy (LSCM), which impacted the field with a major improvement in image resolution of live tissues in the 1980s compared to widefield microscopy. While nowadays some of the unparalleled features of 2PLSM make it the tool of choice for brain studies in vivo, such as the possibility to image deep within a tissue, LSCM can still be useful in this matter. Here we discuss the validity and limitations of LSCM and provide a guide to perform high-resolution in vivo imaging of the brain of live rodents with minimal mechanical disruption employing LSCM. We describe the surgical procedure and experimental setup that allowed us to record intracellular calcium variations in astrocytes evoked by sensory stimulation, and to monitor intact neuronal dendritic spines and astrocytic processes as well as blood vessel dynamics. Therefore, in spite of certain limitations that need to be carefully considered, LSCM constitutes a useful, convenient, and affordable tool for brain studies in vivo. PMID:23658537

  12. Modeling enzymatic hydrolysis of lignocellulosic substrates using fluorescent confocal microscopy II: pretreated biomass.

    Science.gov (United States)

    Luterbacher, Jeremy S; Moran-Mirabal, Jose M; Burkholder, Eric W; Walker, Larry P

    2015-01-01

    In this study, we extend imaging and modeling work that was done in Part I of this report for a pure cellulose substrate (filter paper) to more industrially relevant substrates (untreated and pretreated hardwood and switchgrass). Using confocal fluorescence microscopy, we are able to track both the structure of the biomass particle via its autofluorescence, and bound enzyme from a commercial cellulase cocktail supplemented with a small fraction of fluorescently labeled Trichoderma reseii Cel7A. Imaging was performed throughout hydrolysis at temperatures relevant to industrial processing (50°C). Enzyme bound predominantly to areas with low autofluorescence, where structure loss and lignin removal had occurred during pretreatment; this confirms the importance of these processes for successful hydrolysis. The overall shape of both untreated and pretreated hardwood and switchgrass particles showed little change during enzymatic hydrolysis beyond a drop in autofluorescence intensity. The permanence of shape along with a relatively constant bound enzyme signal throughout hydrolysis was similar to observations previously made for filter paper, and was consistent with a modeling geometry of a hollowing out cylinder with widening pores represented as infinite slits. Modeling estimates of available surface areas for pretreated biomass were consistent with previously reported experimental results. © 2014 Wiley Periodicals, Inc.

  13. Three-dimensional imaging of plant cuticle architecture using confocal scanning laser microscopy.

    Science.gov (United States)

    Buda, Gregory J; Isaacson, Tal; Matas, Antonio J; Paolillo, Dominick J; Rose, Jocelyn K C

    2009-10-01

    Full appreciation of the roles of the plant cuticle in numerous aspects of physiology and development requires a comprehensive understanding of its biosynthesis and deposition; however, much is still not known about cuticle structure, trafficking and assembly. To date, assessment of cuticle organization has been dominated by 2D imaging, using histochemical stains in conjunction with light and fluorescence microscopy. This strategy, while providing valuable information, has limitations because it attempts to describe a complex 3D structure in 2D. An imaging technique that could accurately resolve 3D architecture would provide valuable additions to the growing body of information on cuticle molecular biology and biochemistry. We present a novel application of 3D confocal scanning laser microscopy for visualizing the architecture, deposition patterns and micro-structure of plant cuticles, using the fluorescent stain auramine O. We demonstrate the utility of this technique by contrasting the fruit cuticle of wild-type tomato (Solanum lycopersicum cv. M82) with those of cutin-deficient mutants. We also introduce 3D cuticle modeling based on reconstruction of serial optical sections, and describe its use in identification of several previously unreported features of the tomato fruit cuticle.

  14. Prognostic significance of vascularity in cutaneous melanoma: pilot study using in vivo confocal scanning laser microscopy.

    Science.gov (United States)

    Humphrey, Shannon; Walsh, Noreen M; Delaney, Laura; Propperova, Iva; Langley, Richard G B

    2006-01-01

    Tumor vascularity may be of strong prognostic significance in cutaneous melanoma. We are the first to use a novel, noninvasive, in vivo confocal scanning laser microscope (CSLM) to evaluate vascularity in cutaneous melanoma. Our purpose was to apply a CSLM to assess vascularity in melanoma and to evaluate the prognostic significance of these findings. Patients with a suspicious pigmented lesion were prospectively recruited to undergo CSLM prior to skin biopsy, and those diagnosed with melanoma were included in this study. A blinded observer graded tumor vascularity from still digital CSLM images. The CSLM vascularity grading was correlated to tumor thickness and ulceration as a proxy for clinical prognosis. Sixty-six patients and 67 lesions underwent imaging with CSLM. Eleven patients were diagnosed with melanoma, including six in situ and five invasive melanomas. Prominent vascularity was observed in all advanced melanomas. There was an overall increase in mean tumor thickness between the absent (x = 0.315 mm) to prominent (x = 1.51 mm) categories. In this pilot study, vascularity was readily detected in cutaneous melanomas using CSLM. Prominent vascularity was observed in patients with advanced cutaneous melanomas. Our preliminary results are encouraging and indicate potential for the use of CSLM to assess vascularity in cutaneous melanoma, with potential prognostic and therapeutic implications.

  15. High prevalence of gastric intestinal metaplasia detected by confocal laser endomicroscopy in Zambian adults.

    Science.gov (United States)

    Kayamba, Violet; Shibemba, Aaron; Zyambo, Kanekwa; Heimburger, Douglas C; Morgan, Douglas R; Kelly, Paul

    2017-01-01

    Confocal laser endomicroscopy (CLE) may increase the detection of gastric premalignant lesions, and facilitate targeted biopsies for histology. The study aim was to analyse premalignant lesions in Zambian adults using CLE. Using CLE and histology we analysed the antral mucosa for gastric premalignant lesions in asymptomatic adults living with HIV and in HIV seronegative adults. Fasting gastric pH and the presence of Helicobacter pylori (H. pylori) were also evaluated. We enrolled 84 HIV seropositive participants (median age 43 years; 55 (65%) female), of whom 32 (38%) were anti-retroviral therapy (ART)-naïve. Also enrolled were 22 HIV seronegative controls (median age 39 years, 12 (55%) females). Hypochlorhydria was found in 48 (57%) HIV positive and 8 (38%) HIV negative controls (P = 0.14). Detection of gastric intestinal metaplasia (GIM) was higher (P = 0.007) using CLE (49, 54%) than histology (9, 9%) and, using CLE, GIM was similar between HIV positive (41, 60%) and negative groups (8, 36%; P = 0.08). Gastric luminal fluorescein leakage was significantly associated with the presence of GIM [OR 8.2; 95% CI 2.5-31, P<0.001]. CLE is useful for the detection of GIM, and luminal fluorescein leakage may represent a novel CLE marker for GIM. GIM is common in Zambian adults, and is highly prevalent irrespective of HIV infection or use of ART.

  16. High prevalence of gastric intestinal metaplasia detected by confocal laser endomicroscopy in Zambian adults.

    Directory of Open Access Journals (Sweden)

    Violet Kayamba

    Full Text Available Confocal laser endomicroscopy (CLE may increase the detection of gastric premalignant lesions, and facilitate targeted biopsies for histology. The study aim was to analyse premalignant lesions in Zambian adults using CLE.Using CLE and histology we analysed the antral mucosa for gastric premalignant lesions in asymptomatic adults living with HIV and in HIV seronegative adults. Fasting gastric pH and the presence of Helicobacter pylori (H. pylori were also evaluated.We enrolled 84 HIV seropositive participants (median age 43 years; 55 (65% female, of whom 32 (38% were anti-retroviral therapy (ART-naïve. Also enrolled were 22 HIV seronegative controls (median age 39 years, 12 (55% females. Hypochlorhydria was found in 48 (57% HIV positive and 8 (38% HIV negative controls (P = 0.14. Detection of gastric intestinal metaplasia (GIM was higher (P = 0.007 using CLE (49, 54% than histology (9, 9% and, using CLE, GIM was similar between HIV positive (41, 60% and negative groups (8, 36%; P = 0.08. Gastric luminal fluorescein leakage was significantly associated with the presence of GIM [OR 8.2; 95% CI 2.5-31, P<0.001].CLE is useful for the detection of GIM, and luminal fluorescein leakage may represent a novel CLE marker for GIM. GIM is common in Zambian adults, and is highly prevalent irrespective of HIV infection or use of ART.

  17. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    Science.gov (United States)

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  18. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope

    Science.gov (United States)

    Dubra, Alfredo; Sulai, Yusufu; Norris, Jennifer L.; Cooper, Robert F.; Dubis, Adam M.; Williams, David R.; Carroll, Joseph

    2011-01-01

    The rod photoreceptors are implicated in a number of devastating retinal diseases. However, routine imaging of these cells has remained elusive, even with the advent of adaptive optics imaging. Here, we present the first in vivo images of the contiguous rod photoreceptor mosaic in nine healthy human subjects. The images were collected with three different confocal adaptive optics scanning ophthalmoscopes at two different institutions, using 680 and 775 nm superluminescent diodes for illumination. Estimates of photoreceptor density and rod:cone ratios in the 5°–15° retinal eccentricity range are consistent with histological findings, confirming our ability to resolve the rod mosaic by averaging multiple registered images, without the need for additional image processing. In one subject, we were able to identify the emergence of the first rods at approximately 190 μm from the foveal center, in agreement with previous histological studies. The rod and cone photoreceptor mosaics appear in focus at different retinal depths, with the rod mosaic best focus (i.e., brightest and sharpest) being at least 10 μm shallower than the cones at retinal eccentricities larger than 8°. This study represents an important step in bringing high-resolution imaging to bear on the study of rod disorders. PMID:21750765

  19. Studies of the microstructure of polymer-modified bitumen emulsions using confocal laser scanning microscopy.

    Science.gov (United States)

    Forbes, A; Haverkamp, R G; Robertson, T; Bryant, J; Bearsley, S

    2001-12-01

    Polymer-modified bitumen emulsions present a safer and more environmentally friendly binder for enhancing the properties of roads. Cationic bitumen emulsion binders containing polymer latex were investigated using confocal laser scanning microscopy. The latex was incorporated into the bitumen emulsion by using four different addition methods and all emulsions were processed with a conventional colloid mill. The emulsion binder films were studied after evaporation of the emulsion aqueous phase. We show how the microstructure and distribution of the polymer varies within the bitumen binder depending on latex addition method, and that the microstructure of the binder remains intact when exposed to elevated temperature. It was found that a distinctly fine dispersion of polymer results when the polymer is blended into the bitumen before the emulsifying process (a monophase emulsion). In contrast, bi-phase emulsion binders produced by either post-adding the latex to the bitumen emulsion, or by adding the latex into the emulsifier solution phase before processing, or by comilling the latex with the bitumen, water and emulsifier all resulted in a network formation of bitumen particles surrounded by a continuous polymer film. The use of emulsified binders appears to result in a more evenly distributed polymer network compared to the use of hot polymer-modified binders, and they therefore have greater potential for consistent binder cohesion strength, stone retention and therefore improved pavement performance.

  20. Progress in reflectance confocal microscopy for imaging oral tissues in vivo

    Science.gov (United States)

    Peterson, Gary; Zanoni, Daniella K.; Migliacci, Jocelyn; Cordova, Miguel; Rajadhyaksha, Milind; Patel, Snehal

    2016-02-01

    We report progress in development and feasibility testing of reflectance confocal microscopy (RCM) for imaging in the oral cavity of humans. We adapted a small rigid relay telescope (120mm long x 14mm diameter) and a small water immersion objective lens (12mm diameter, NA 0.7) to a commercial handheld RCM scanner (Vivascope 3000, Caliber ID, Rochester NY). This scanner is designed for imaging skin but we adapted the front end (the objective lens and the stepper motor that axially translates) for intra-oral use. This adaption required a new approach to address the loss of the automated stepper motor for acquisition of images in depth. A helical spring-like cap (with a coverslip to contact tissue) was designed for approximately 150 um of travel. Additionally other methods for focusing optics were designed and evaluated. The relay telescope optics is being tested in a clinical setting. With the capture of video and "video-mosaicing", extended areas can be imaged. The feasibility of imaging oral tissues was initially investigated in volunteers. RCM imaging in buccal mucosa in vivo shows nuclear and cellular detail in the epithelium and epithelial junction, and connective tissue and blood flow in the underlying lamina propria. Similar detail, including filiform and fungiform papillae, can be seen on the tongue in vivo. Clinical testing during head and neck surgery is now in progress and patients are being imaged for both normal tissue and cancerous margins in lip and tongue mucosa.

  1. The Effect of Autologous Platelet Lysate Eye Drops: An In Vivo Confocal Microscopy Study

    Directory of Open Access Journals (Sweden)

    Antonio M. Fea

    2016-01-01

    Full Text Available Purpose. To determine the effectiveness of autologous platelet lysate (APL eye drops in patients with primary Sjögren syndrome (SS dry eye, refractory to standard therapy, in comparison with patients treated with artificial tears. We focused on the effect of APL on cornea morphology with the in vivo confocal microscopy (IVCM. Methods. Patients were assigned to two groups: group A used autologous platelet lysate QID, and group B used preservative-free artificial tears QID, for 90 days. Ophthalmological assessments included ocular surface disease index (OSDI, best corrected visual acuity (BCVA, Schirmer test, fluorescein score, and breakup time (BUT. A subgroup of patients in group A underwent IVCM: corneal basal epithelium, subbasal nerves, Langerhans cells, anterior stroma activated keratocytes, and reflectivity were evaluated. Results. 60 eyes of 30 patients were enrolled; in group A (n=20 patients mean OSDI, fluorescein score, and BUT showed significant improvement compared with group B (n=10 patients. The IVCM showed a significant increase in basal epithelium cells density and subbasal nerve plexus density and number and a decrease in Langerhans cells density (p<0.05. Conclusion. APL was found effective in the treatment of SS dry eye. IVCM seems to be a useful tool to visualize cornea morphologic modifications.

  2. The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials

    Directory of Open Access Journals (Sweden)

    Martisek Dalibor

    2017-12-01

    Full Text Available The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.

  3. In vivo Raman Confocal Spectroscopy in the Investigation of the Skin Barrier.

    Science.gov (United States)

    Darlenski, Razvigor; Fluhr, Joachim W

    2016-01-01

    The epidermal barrier, predominantly attributed to the stratum corneum (SC), is the outermost part of our body that comprises multiple defensive functions against exogenous attacks and the loss of body substances, e.g. water. A novel investigative method, in vivo Raman confocal spectroscopy (RCS), is employed to study the composition of the epidermal barrier and compounds penetrating the epidermis both in a space-resolved manner. By using this method, a semiquantitative analysis of skin barrier constituents can be evaluated, namely SC lipids, natural moisturizing factor components and sweat constituents. The technique enables to examine epidermal barrier impairment in experimental settings as well as the penetration of exogenous substances into the epidermis, e.g. retinol. RCS can reveal microcompositional changes in the skin barrier as a function of age. We also review the use of RCS in studying antioxidant defense components. This chapter discusses the application of in vivo RCS in the investigation of the epidermal barrier. © 2016 S. Karger AG, Basel.

  4. Confocal Raman microscopy supported by optical clearing treatment of the skin—influence on collagen hydration

    Science.gov (United States)

    Sdobnov, Anton Yu; Tuchin, Valery V.; Lademann, Juergen; E Darvin, Maxim

    2017-07-01

    Confocal Raman microscopy (CRM) is employed to study the skin physiology, drug permeation and skin disease monitoring. In order to increase the depth of investigations, the effect of optical clearing was observed on porcine ear skin ex vivo. The optical clearing agents (OCAs) glycerol and iohexol (Omnipaque™) were applied to the porcine ear skin and investigated by CRM after 30 and 60 min of treatment. The extent of optical clearing by utilizing concentrations of 70% glycerol and 100% Omnipaque™ was evaluated. The intensity of the skin-related Raman peaks significantly increased starting from the depth 160 µm for Omnipaque™ and 40 µm for glycerol (p  ⩽  0.05) after 60 min of treatment. The OCAs’ influence on the collagen hydration in the deep-located dermis was investigated. Both OCAs induce skin dehydration, but the effect of glycerol treatment (30 min and 60 min) is stronger. The obtained results demonstrate that with increasing the treatment time, both glycerol and Omnipaque™ solutions improve the optical clearing of porcine skin making the deep-located dermal regions able for investigations. At the used concentrations and time intervals, glycerol is more effective than Omnipaque™. However, Omnipaque™ is more promising than glycerol for future in vivo applications as it is an already approved pharmaceutic substance without any known impact on the skin structure.

  5. Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin

    Science.gov (United States)

    Archid, Rami; Patzelt, Alexa; Lange-Asschenfeldt, Bernhard; Ahmad, Sufian S.; Ulrich, Martina; Stockfleth, Eggert; Philipp, Sandra; Sterry, Wolfram; Lademann, Juergen

    2012-10-01

    An important and most likely active role in the pathogenesis of psoriasis has been attributed to changes in cutaneous blood vessels. The purpose of this study was to use confocal laser-scanning microscopy (CLSM) to investigate dermal capillaries in psoriatic and normal skin. The structures of the capillary loops in 5 healthy participants were compared with those in affected skin of 13 psoriasis patients. The diameters of the capillaries and papillae were measured for each group with CLSM. All investigated psoriasis patients showed elongated, widened, and tortuous microvessels in the papillary dermis, whereas all healthy controls showed a single capillary loop in each dermal papilla. The capillaries of the papillary loop and the dermal papilla were significantly enlarged in the psoriatic skin lesions (diameters 24.39±2.34 and 146.46±28.52 μm, respectively) in comparison to healthy skin (diameters 9.53±1.8 and 69.48±17.16 μm, respectively) (P<0.001). CLSM appears to represent a promising noninvasive technique for evaluating dermal capillaries in patients with psoriasis. The diameter of the vessels could be seen as a well-quantifiable indicator for the state of psoriatic skin. CLSM could be useful for therapeutic monitoring to delay possible recurrences.

  6. Validating Intravascular Imaging with Serial Optical Coherence Tomography and Confocal Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Pier-Luc Tardif

    2016-12-01

    Full Text Available Atherosclerotic cardiovascular diseases are characterized by the formation of a plaque in the arterial wall. Intravascular ultrasound (IVUS provides high-resolution images allowing delineation of atherosclerotic plaques. When combined with near infrared fluorescence (NIRF, the plaque can also be studied at a molecular level with a large variety of biomarkers. In this work, we present a system enabling automated volumetric histology imaging of excised aortas that can spatially correlate results with combined IVUS/NIRF imaging of lipid-rich atheroma in cholesterol-fed rabbits. Pullbacks in the rabbit aortas were performed with a dual modality IVUS/NIRF catheter developed by our group. Ex vivo three-dimensional (3D histology was performed combining optical coherence tomography (OCT and confocal fluorescence microscopy, providing high-resolution anatomical and molecular information, respectively, to validate in vivo findings. The microscope was combined with a serial slicer allowing for the imaging of the whole vessel automatically. Colocalization of in vivo and ex vivo results is demonstrated. Slices can then be recovered to be tested in conventional histology.

  7. Skeletal remodeling dynamics: New approaches with imaging instrumentation. [Laser confocal microscopy:a2

    Energy Technology Data Exchange (ETDEWEB)

    Parks, N.J.; Pinkerton, K.E.; Seibert, J.A.; Pool, R.R.

    1991-01-01

    This report of progress and future objectives timetable is based on an included schematic of goals and objectives and the project abstract which is included as Appendix 1. Five matters are summarized in the order of (1) novel methods of calcified bone confocal microscopy and reconstruction image analysis of decalcified beagle and human cortical bone serial sections, (2) macroscopic cross-correlation of beagle and human cortical and cancellous bone fractions with CT analysis, (3) guidance to the most radiobiologically important skeletal regions of interest with the just completed {sup 90}Sr bone tumor map from life time beagle studies, (4) deposition patterns of radioactive agents that participate in apatite crystal nucleation processes in bone and leave radiation-excited electrons trapped in bone mineral, and (5) the budget period timetable. The discovery that beta particles from {sup 166}Ho (T{sub {1/2}} =26 hr, {beta}{sub max} = 1.8 MeV) phosphonic acid bone agents leave detectable, long-lived, electron paramagnetic resonance signals in bone is included in Appendix 2 as a joint report.

  8. Evaluation of human serum of severe rheumatoid arthritis by confocal Raman spectroscopy

    Science.gov (United States)

    Carvalho, C. S.; Raniero, L.; Santo, A. M. E.; Pinheiro, M. M.; Andrade, L. E. C.; Cardoso, M. A. G.; Junior, J. S.; Martin, A. A.

    2010-02-01

    Rheumatoid Arthritis is a systemic chronic inflammatory disease, recurrent and systemic, initiated by autoantibodies and maintained by inflammatory mechanisms cellular applicants. The evaluation of this disease to promote early diagnosis, need an associations of many tools, such as clinical, physical examination and thorough medical history. However, there is no satisfactory consensus due to its complexity. In the present work, confocal Raman spectroscopy was used to evaluate the biochemical composition of human serum of 40 volunteers, 24 patients with rheumatoid arthritis presenting clinical signs and symptoms, and 16 healthy donors. The technique of latex agglutination for the polystyrene covered with human immunoglobulin G and PCR (protein c-reactive) was performed for confirmation of possible false-negative results within the groups, facilitating the statistical interpretation and validation of the technique. This study aimed to verify the changes for the characteristics Raman peaks of biomolecules such as immunoglobulins amides and protein. The results were highly significant with a good separation between groups mentioned. The discriminant analysis was performed through the principal components and correctly identified 92% of the donors. Based on these results, we observed the behavior of arthritis autoimmune, evident in certain spectral regions that characterize the serological differences between the groups.

  9. Comparison of two confocal micro-XRF spectrometers with different design aspects.

    Science.gov (United States)

    Smolek, S; Nakazawa, T; Tabe, A; Nakano, K; Tsuji, K; Streli, C; Wobrauschek, P

    2014-03-01

    Two different confocal micro X-ray fluorescence spectrometers have been developed and installed at Osaka City University and the Vienna University of Technology Atominstitut. The Osaka City University system is a high resolution spectrometer operating in air. The Vienna University of Technology Atominstitut spectrometer has a lower spatial resolution but is optimized for light element detection and operates under vacuum condition. The performance of both spectrometers was compared. In order to characterize the spatial resolution, a set of nine specially prepared single element thin film reference samples (500 nm in thickness, Al, Ti, Cr, Fe Ni, Cu, Zr, Mo, and Au) was used. Lower limits of detection were determined using the National Institute of Standards and Technology standard reference material glass standard 1412. A paint layer sample (cultural heritage application) and paint on automotive steel samples were analyzed with both instruments. The depth profile information was acquired by scanning the sample perpendicular to the surface. © 2013 The Authors. X-Ray Spectrometry published by John Wiley & Sons, Ltd.

  10. Confocal microscopy evaluation of the effect of irrigants on Enterococcus faecalis biofilm: An in vitro study.

    Science.gov (United States)

    Flach, Nicole; Böttcher, Daiana Elisabeth; Parolo, Clarissa Cavalcanti Fatturi; Firmino, Luciana Bitello; Malt, Marisa; Lammers, Marcelo Lazzaron; Grecca, Fabiana Soares

    2016-01-01

    The purpose of this study was to evaluate in vitro the effectiveness of two endodontic irrigants and their association against Enterococcus faecalis (E. faecalis) by confocal laser scanning microscope (CLSM). Twenty-four bovine incisors were inoculated in a monoculture of E. faecalis for 21 days. After this period, the teeth were divided into three test groups (n = 5) according to the chemical used. Group 1: 2.5% sodium hypochlorite (NaOCl), group 2: 2% chlorhexidine gel (CHX), group 3: 2.5% NaOCl + 2% CHX gel, and two control groups (n = 3): negative control group (NCG)-sterile and without root canals preparation and positive control group (PCG)-saline. Then, the samples were stained with SYTO9 and propidium iodide and subjected to analysis by CLSM. Bacterial viability was quantitatively analyzed by the proportions of dead and live bacteria in the biofilm remnants. Statistical analysis was performed by the One-way ANOVA test (p = 0.05). No statistical differences were observed to bacterial viability. According to CLSM analysis, none of the tested substances could completely eliminate E. faecalis from the root canal space. Until now, there are no irrigant solutions able to completely eliminate E. faecalis from the root canal. In this regard, the search for irrigants able to intensify the antimicrobial action is of paramount importance. © Wiley Periodicals, Inc.

  11. Evaluation of the presence of Enterococcus Faecalis in root cementum: A confocal laser scanning microscope analysis.

    Science.gov (United States)

    Halkai, Rahul; Hegde, Mithra N; Halkai, Kiran

    2014-03-01

    The aim of this study is to address the cause of persistent infection of root cementum by Enterococcus faecalis. A sample of 60 human single-rooted teeth were divided into three groups. Group I (control group) had no access opening and one-third of the apical root cementum was sealed using varnish. Group II had no preparation of teeth samples. In group III, apical root cementum was exposed to organic acid and roughened using diamond point to mimic apical resorption. After access opening in groups II and III, all teeth samples were sterilized using gamma irradiation (25 kGy). E. faecalis broth was placed in the root canal and apical one-third of the tooth was immersed in the broth for 8 weeks with alternate day refreshment followed by biomechanical preparation, obturation and coronal seal. Apical one-third of all teeth samples were again immersed in the broth for 8 weeks with alternate day refreshment to mimic secondary infection. The samples were observed under a confocal microscope after splitting the teeth into two halves. E. faecalis penetrated 160 μm deep into the root cementum in group III samples and only showed adhesion in group II samples. Penetration and survival of E. faecalis deep inside the cementum in extreme conditions could be the reason for persistent infection.

  12. Antibacterial Efficacy of Pastes Against E Faecalis in Primary Root Dentin: A Confocal Microscope Study.

    Science.gov (United States)

    Verma, R; Sharma, D S; Pathak, A K

    2015-01-01

    Management of abscessed primary teeth often present endodontic failure owing to questioned efficiency of dressings or obturating pastes to eliminate Enterococcus faecalis, a resistant bacterium, residing in depth of dentinal tubules. The present study evaluates the antimicrobial efficacy of two antibacterial and two obturating pastes in dentinal tubules of primary teeth infected with Enterococcus faecalis using viability stain and confocal laser scanning microscope (CLSM). Total 28 samples were prepared.Four groups with 6 samples each were made according to antibacterial pastes i.e. 1% or 2%Chlorhexidine (CHX) + calcium hydroxide (CH), CH + iodoform (Metapex) and Zinc Oxide Eugenol (ZOE). Dentinal tubules from the root canal side were infected with E. faecalis by centrifugation of the bacterial suspension. Two specimens from each group were subjected to 1, 7 and 15 days antibacterial pastes exposure. Viability staining followed by CLSM were used to quantitatively analyze the dead cell count directly inside dentin. Univariate analysis showed that all medicaments were significantly effective (p ZOE(15)> Metapex(15)> 2%CHX+CH(15)> 2%CHX+CH(7)> 2%CHX+CH(1)> 1%CHX+CH(7)> 2%CHX+CH(15)> Metapex(1)> ZOE(1)> ZOE(7). All medicaments were effective against E. faecalis in dentine of primary teeth and their efficacy increased with longer contact with 1%CHX+CH being most effective at day 15. Inclusion of 1% CHX in dressings or obturating pastes might minimize the endodontic relapse and maximize the tooth retention in functional state in pediatric dentistry.

  13. Confocal spectroscopic imaging measurements of depth dependent hydration dynamics in human skin in-vivo

    Science.gov (United States)

    Behm, P.; Hashemi, M.; Hoppe, S.; Wessel, S.; Hagens, R.; Jaspers, S.; Wenck, H.; Rübhausen, M.

    2017-11-01

    We present confocal spectroscopic imaging measurements applied to in-vivo studies to determine the depth dependent hydration profiles of human skin. The observed spectroscopic signal covers the spectral range from 810 nm to 2100 nm allowing to probe relevant absorption signals that can be associated with e.g. lipid and water-absorption bands. We employ a spectrally sensitive autofocus mechanism that allows an ultrafast focusing of the measurement spot on the skin and subsequently probes the evolution of the absorption bands as a function of depth. We determine the change of the water concentration in m%. The water concentration follows a sigmoidal behavior with an increase of the water content of about 70% within 5 μm in a depth of about 14 μm. We have applied our technique to study the hydration dynamics of skin before and after treatment with different concentrations of glycerol indicating that an increase of the glycerol concentration leads to an enhanced water concentration in the stratum corneum. Moreover, in contrast to traditional corneometry we have found that the application of Aluminium Chlorohydrate has no impact to the hydration of skin.

  14. Investigation of domain walls in PPLN by confocal raman microscopy and PCA analysis

    Science.gov (United States)

    Shur, Vladimir Ya.; Zelenovskiy, Pavel; Bourson, Patrice

    2017-07-01

    Confocal Raman microscopy (CRM) is a powerful tool for investigation of ferroelectric domains. Mechanical stresses and electric fields existed in the vicinity of neutral and charged domain walls modify frequency, intensity and width of spectral lines [1], thus allowing to visualize micro- and nanodomain structures both at the surface and in the bulk of the crystal [2,3]. Stresses and fields are naturally coupled in ferroelectrics due to inverse piezoelectric effect and hardly can be separated in Raman spectra. PCA is a powerful statistical method for analysis of large data matrix providing a set of orthogonal variables, called principal components (PCs). PCA is widely used for classification of experimental data, for example, in crystallization experiments, for detection of small amounts of components in solid mixtures etc. [4,5]. In Raman spectroscopy PCA was applied for analysis of phase transitions and provided critical pressure with good accuracy [6]. In the present work we for the first time applied Principal Component Analysis (PCA) method for analysis of Raman spectra measured in periodically poled lithium niobate (PPLN). We found that principal components demonstrate different sensitivity to mechanical stresses and electric fields in the vicinity of the domain walls. This allowed us to separately visualize spatial distribution of fields and electric fields at the surface and in the bulk of PPLN.

  15. Fluorescence and confocal imaging of mammalian cells using conjugated oligoelectrolytes with phenylenevinylene core

    Energy Technology Data Exchange (ETDEWEB)

    Milczarek, Justyna; Pawlowska, Roza; Zurawinski, Remigiusz; Lukasik, Beata; Garner, Logan E.; Chworos, Arkadiusz

    2017-05-01

    Over the last few years, considerable efforts are taken, in order to find a molecular fluorescent probe fulfilling their applicability requirements. Due to a good optical properties and affinity to biological structures conjugated oligoelectrolytes (COEs) can be considered as a promising dyes for application in fluorescence-based bioimaging. In this work, we synthetized COEs with phenylenevinylene core (PV-COEs) and applied as fluorescent membranous-specific probes. Cytotoxicity effects of each COE were probed on cancerous and non-cancerous cell types and little to no toxicity effects were observed at the high range of concentrations. The intensity of cell fluorescence following the COE staining was determined by the photoluminescence analysis and fluorescence activated cell sorting method (FACS). Intercalation of tested COEs into mammalian cell membranes was revealed by fluorescent and confocal microscopy colocalization with commercial dyes specific for cellular structures including mitochondria, Golgi apparatus and endoplasmic reticulum. The phenylenevinylene conjugated oligoelectrolytes have been found to be suitable for fluorescent bioimaging of mammalian cells and membrane-rich organelles. Due to their water solubility coupled with spontaneous intercalation into cells, favorable photophysical features, ease of cell staining, low cytotoxicity and selectivity for membranous structures, PV-COEs can be applied as markers for fluorescence imaging of a variety of cell types.

  16. Confocal imaging of xenobiotic transport across the blood-brain barrier.

    Science.gov (United States)

    Miller, David S

    2003-11-01

    The brain capillary endothelium is a formidable barrier to entry of foreign chemicals into the central nervous system (CNS). For the most part it poorly distinguishes between therapeutics and neurotoxins and thus the blood-brain barrier both protects the brain from toxic chemicals and limits our ability to treat a variety of CNS disorders. Two elements underlie the barrier function of the brain capillary endothelium: 1). a physical barrier comprised of tight junctions, which form an effective seal to intercellular diffusion, and the cells themselves, which exhibit a low rate of endocytosis, and 2). a metabolic/active barrier, comprised of specific membrane transporters expressed by the endothelial cells. We have recently developed an experimental system based on confocal microscopy to study mechanisms of transport in freshly isolated brain capillaries. Here I review studies demonstrating a major role for the ATP-driven, xenobiotic export pump, p-glycoprotein, in barrier function and recent experiments showing that transient inhibition of pump function can have substantial benefit for chemotherapy in an animal model of brain cancer. Copyright 2003 Wiley-Liss, Inc.

  17. Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope.

    Science.gov (United States)

    Qiu, Zhen; Liu, Zhongyao; Duan, Xiyu; Khondee, Supang; Joshi, Bishnu; Mandella, Michael J; Oldham, Kenn; Kurabayashi, Katsuo; Wang, Thomas D

    2013-02-01

    We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0-400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument.

  18. Evaluation of Yogurt Microstructure Using Confocal Laser Scanning Microscopy and Image Analysis.

    Science.gov (United States)

    Skytte, Jacob L; Ghita, Ovidiu; Whelan, Paul F; Andersen, Ulf; Møller, Flemming; Dahl, Anders B; Larsen, Rasmus

    2015-06-01

    The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermented dairy products. When studying such networks, hundreds of images can be obtained, and here image analysis methods are essential for using the images in statistical analysis. Previously, methods including gray level co-occurrence matrix analysis and fractal analysis have been used with success. However, a range of other image texture characterization methods exists. These methods describe an image by a frequency distribution of predefined image features (denoted textons). Our contribution is an investigation of the choice of image analysis methods by performing a comparative study of 7 major approaches to image texture description. Here, CSLM images from a yogurt fermentation study are investigated, where production factors including fat content, protein content, heat treatment, and incubation temperature are varied. The descriptors are evaluated through nearest neighbor classification, variance analysis, and cluster analysis. Our investigation suggests that the texton-based descriptors provide a fuller description of the images compared to gray-level co-occurrence matrix descriptors and fractal analysis, while still being as applicable and in some cases as easy to tune. © 2015 Institute of Food Technologists®

  19. A confocal microscopy-based atlas of tissue architecture in the tapeworm Hymenolepis diminuta.

    Science.gov (United States)

    Rozario, Tania; Newmark, Phillip A

    2015-11-01

    Tapeworms are pervasive and globally distributed parasites that infect millions of humans and livestock every year, and are the causative agents of two of the 17 neglected tropical diseases prioritized by the World Health Organization. Studies of tapeworm biology and pathology are often encumbered by the complex life cycles of disease-relevant tapeworm species that infect hosts such as foxes, dogs, cattle, pigs, and humans. Thus, studies of laboratory models can help overcome the practical, ethical, and cost-related difficulties faced by tapeworm parasitologists. The rat intestinal tapeworm Hymenolepis diminuta is easily reared in the laboratory and has the potential to enable modern molecular-based experiments that will greatly contribute to our understanding of multiple aspects of tapeworm biology, such as growth and reproduction. As part of our efforts to develop molecular tools for experiments on H. diminuta, we have characterized a battery of lectins, antibodies, and common stains that label different tapeworm tissues and organ structures. Using confocal microscopy, we have assembled an "atlas" of H. diminuta organ architecture that will be a useful resource for helminthologists. The methodologies we describe will facilitate characterization of loss-of-function perturbations using H. diminuta. This toolkit will enable a greater understanding of fundamental tapeworm biology that may elucidate new therapeutic targets toward the eradication of these parasites. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. In vivo confocal microscopic evaluation of corneal wound healing after femtosecond laser-assisted keratoplasty.

    Science.gov (United States)

    Shtein, Roni M; Kelley, Kurt H; Musch, David C; Sugar, Alan; Mian, Shahzad I

    2012-01-01

    To evaluate corneal wound healing after femtosecond laser-assisted keratoplasty (FLAK) using in vivo confocal microscopy (IVCM). Prospective, interventional, consecutive case series of 17 eyes after mushroom-shaped FLAK. IVCM was performed preoperatively and at 1, 3, 6, and 12 months postoperatively to assess wound healing. Mean keratocyte activation grade increased from preoperative levels to 1 month postoperatively in both the central (0.41 ± 0.62 to 1.73 ± 1.03) and peripheral (0.47 ± 0.52 to 1.57 ± 1.09) cornea, then gradually decreased through 12 months. Dendritic cells increased from preoperatively to 1 month postoperatively in both the central (0.71 ± 0.83 to 1.33 ± 0.98) and peripheral (0.79 ± 0.70 to 1.42 ± 0.90) cornea, then gradually decreased until 6 months postoperatively. Stromal reinnervation was 1 month postoperatively in 8 patients (50%). By 12 months, sub-epithelial nerves were observed centrally in 5 patients (45.5%). IVCM after FLAK shows an initial increase in keratocyte activation and dendritic cells that decrease over time. Corneal reinnervation is seen as early as 1 month postoperatively. Copyright 2012, SLACK Incorporated.