WorldWideScience

Sample records for sub-alpine great lakes

  1. Great Lakes: Great Gardening.

    Science.gov (United States)

    New York Sea Grant Inst., Albany, NY.

    This folder contains 12 fact sheets designed to improve the quality of gardens near the Great Lakes. The titles are: (1) "Your Garden and the Great Lakes"; (2) "Organic Gardening"; (3) "Fruit and Vegetable Gardening"; (4) "Composting Yard Wastes"; (5) "Herbicides and Water Quality"; (6)…

  2. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  3. Diphyllobothrium latum (Cestoda: Diphyllobothriidea in perch (Perca fluviatilis in three sub-alpine lakes: influence of biotic and abiotic factors on prevalence

    Directory of Open Access Journals (Sweden)

    Orlando PETRINI

    2009-08-01

    Full Text Available In recent years, human diphyllobothriosis has staged a comeback in Swiss, French and Italian sub-alpine regions. The main putative infective source of the causative agent (the tapeworm Diphyllobothrium latum in these areas is perch (Perca fluviatilis. Therefore, the occurrence of D. latum in this fish species was investigated between 2005 and 2008 in the sub-alpine lakes Maggiore, Lugano and Geneva. Prevalence in fish of Lake Maggiore was 14% (n = 880. In Lake Geneva, 5.1% fillets (n = 532 were infected, whereas perch from Lake Lugano were free from the parasite. These results are discussed in relation to previous studies. Data on fish size and weight indicate that infection of perch by D. latum is independent of age and sex. Abiotic factors considered critical for D. latum life cycle (water temperature and oxygen concentration characterize the three basins and were related to their infestation frequencies. The presence of this parasite was most likely favoured by warmer, well oxygenated waters. Previous studies indicate that the lake’s trophic state (i.e. content of total phosphorus influenced the availability of the first intermediate hosts (copepods of some pseudophyllideans. In our study, no correlation was observed between the amount of phosphorus and the number of copepods in populations of zooplankton. Nevertheless, the trophic states of the three lakes seemed to affect the degree of infection in fish. In conclusion, at least in sub-alpine lakes, abiotic factors such as water temperature, oxygenation and trophic state seem to have an influence on maintaining or preventing perch infection with D. latum.

  4. Great Minds? Great Lakes!

    Science.gov (United States)

    Environmental Protection Agency, Chicago, IL. Great Lakes National Program Office.

    This booklet introduces an environmental curriculum for use in a variety of elementary subjects. The lesson plans provide an integrated approach to incorporating Great Lakes environmental issues into the subjects of history, social studies, and environmental sciences. Each of these sections contains background information, discussion points, and a…

  5. Great Lakes Science Center

    Data.gov (United States)

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  6. Great Lakes Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lakes Michigan, Erie, Saint Clair, Ontario and Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and...

  7. The Great Lakes

    Science.gov (United States)

    The Great Lakes form the largest surface freshwater system on Earth. The U.S. and Canada work together to restore and protect the environment in the Great Lakes Basin. Top issues include contaminated sediments, water quality and invasive species.

  8. Great Lakes Literacy Principles

    Science.gov (United States)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  9. Great Salt Lake, Utah

    Science.gov (United States)

    Stephens, Doyle W.; Gardner, Joe F.

    1999-01-01

    This document is intended as a source of general information and facts about Great Salt Lake, Utah. This U.S. Geological Survey information sheet answers frequently asked questions about Great Salt Lake. Topics include: History, salinity, brine shrimp, brine flies, migratory birds, and recreation. Great Salt Lake, the shrunken remnant of prehistoric Lake Bonneville, has no outlet. Dissolved salts accumulate in the lake by evaporation. Salinity south of the causeway has ranged from 6 percent to 27 percent over a period of 22 years (2 to 7 times saltier than the ocean). The high salinity supports a mineral industry that extracts about 2 million tons of salt from the lake each year. The aquatic ecosystem consists of more than 30 species of organisms. Harvest of its best-known species, the brine shrimp, annually supplies millions of pounds of food for the aquaculture industry worldwide. The lake is used extensively by millions of migratory and nesting birds and is a place of solitude for people. All this occurs in a lake that is located at the bottom of a 35,000-square-mile drainage basin that has a human population of more than 1.5 million.

  10. Great Lakes Energy Institute

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J. Iwan [Case Western Reserve Univ., Cleveland, OH (United States)

    2012-11-18

    The vision of the Great Lakes Energy Institute is to enable the transition to advanced, sustainable energy generation, storage, distribution and utilization through coordinated research, development, and education. The Institute will place emphasis on translating leading edge research into next generation energy technology. The Institute’s research thrusts focus on coordinated research in decentralized power generation devices (e.g. fuel cells, wind turbines, solar photovoltaic devices), management of electrical power transmission and distribution, energy storage, and energy efficiency.

  11. Great Lakes Environmental Database (GLENDA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Great Lakes Environmental Database (GLENDA) houses environmental data on a wide variety of constituents in water, biota, sediment, and air in the Great Lakes area.

  12. Great Lakes Initiative (GLI) Clearinghouse

    Science.gov (United States)

    The Great Lakes Initiative Toxicity Clearinghouse is a central location for information on criteria, toxicity data, exposure parameters and other supporting documents used in developing water quality standards in the Great Lakes watershed.

  13. Michigan: The Great Lakes State

    Science.gov (United States)

    McKay, Sandra Lee; La Luzerne-Oi, Sally

    2009-01-01

    Although Michigan is often called the "Wolverine State," its more common nickname is the "Great Lakes State." This name comes from the fact that Michigan is the only state in the United States that borders four of the five Great Lakes. Also referred to as the "Water Wonderland," Michigan has 11,000 additional lakes,…

  14. Great Lakes Ice Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Charts show ice extent and concentration three times weekly during the ice season, for all lakes except Ontario, from the 1973/74 ice season through the 2001/2002...

  15. Great Lakes Initiative (GLI) Clearinghouse

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Great Lakes Initiative Toxicity Data Clearinghouse is a central location for information on criteria, toxicity data, exposure parameters and other supporting...

  16. Early Holocene Great Salt Lake

    Science.gov (United States)

    Oviatt, Charles G.; Madsen, David B.; Miller, David; Thompson, Robert S.; McGeehin, John P.

    2015-01-01

    Shorelines and surficial deposits (including buried forest-floor mats and organic-rich wetland sediments) show that Great Salt Lake did not rise higher than modern lake levels during the earliest Holocene (11.5–10.2 cal ka BP; 10–9 14C ka BP). During that period, finely laminated, organic-rich muds (sapropel) containing brine-shrimp cysts and pellets and interbedded sodium-sulfate salts were deposited on the lake floor. Sapropel deposition was probably caused by stratification of the water column — a freshwater cap possibly was formed by groundwater, which had been stored in upland aquifers during the immediately preceding late-Pleistocene deep-lake cycle (Lake Bonneville), and was actively discharging on the basin floor. A climate characterized by low precipitation and runoff, combined with local areas of groundwater discharge in piedmont settings, could explain the apparent conflict between evidence for a shallow lake (a dry climate) and previously published interpretations for a moist climate in the Great Salt Lake basin of the eastern Great Basin.

  17. 33 CFR 125.08 - Great Lakes.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Great Lakes. 125.08 Section 125... VESSELS § 125.08 Great Lakes. The term Great Lakes as used in the regulations in this subchapter shall include the Great Lakes and their connecting and tributary waters. ...

  18. Great Lakes management: Ecological factors

    Science.gov (United States)

    Sonzogni, W. C.; Robertson, A.; Beeton, A. M.

    1983-11-01

    Although attempts to improve the quality of the Great Lakes generally focus on chemical pollution, other factors are important and should be considered Ecological factors, such as invasion of the lakes by foreign species, habitat changes, overfishing, and random variations in organism populations, are especially influential. Lack of appreciation of the significance of ecological factors stems partly from the inappropriate application of the concept of eutrophication to the Great Lakes. Emphasis on ecological factors is not intended to diminish the seriousness of pollution, but rather to point out that more cost-effective management, as well as more realistic expectations of management efforts by the public, should result from an ecosystem management approach in which ecological factors are carefully considered.

  19. Monitoring Change in Great Salt Lake

    Science.gov (United States)

    Naftz, David; Angeroth, Cory; Freeman, Michael; Rowland, Ryan; Carling, Gregory

    2013-08-01

    Great Salt Lake is the largest hypersaline lake in the Western Hemisphere and the fourth largest terminal lake in the world (Figure 1). The open water and adjacent wetlands of the Great Salt Lake ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere [Aldrich and Paul, 2002]. In addition, the area is of important economic value: Brine shrimp (Artemia franciscana) residing in Great Salt Lake support an aquaculture shrimp cyst industry with annual revenues as high as $60 million.

  20. Some Lake Level Control Alternatives for the Great Salt Lake

    OpenAIRE

    Allen, Marvin E.; Christensen, Ronald K.; Riley, J. Paul

    1983-01-01

    Fluctuations of the level of the Great Salt Lake cause large changes in both surface area and shoreline. Developments adjacent to the lake have been damaged by both high and low lake levels; and unless measures are implemented to regulate lake level fluctuations or otherwise to protect these developments, damages will continue. Various possible managment alternatives for mitigating potential damages from lake leve...

  1. Great Lakes Education Booklet, 1990-1991.

    Science.gov (United States)

    Michigan State Dept. of Natural Resources, Lansing.

    This booklet integrates science, history, and environmental education to help students acquire a basic understanding of the importance of the Great Lakes located in the United States. The packet also contains a Great Lakes Basin resource map and a sand dune poster. These materials introduce students to a brief history of the lakes, the diversity…

  2. Monitoring change in Great Salt Lake

    Science.gov (United States)

    Naftz, David L.; Angeroth, Cory E.; Freeman, Michael L.; Rowland, Ryan C.; Carling, Gregory

    2013-01-01

    Despite the ecological and economic importance of Great Salt Lake, only limited water quality monitoring has occurred historically. To change this, new monitoring stations and networks—gauges of lake level height and rate of inflow, moored buoys, and multiple lake-bottom sensors—will provide important information that can be used to make informed decisions regarding future management of the Great Salt Lake ecosystem.

  3. Great Lakes Restoration Initiative Great Lakes Mussel Watch(2009-2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Following the inception of the Great Lakes Restoration Initiative (GLRI) to address the significant environmental issues plaguing the Great Lakes region, the...

  4. Pacific salmonines in the Great Lakes Basin

    Science.gov (United States)

    Claramunt, Randall M.; Madenjian, Charles P.; Clapp, David; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    Pacific salmon (genus Oncorhynchus) are a valuable resource, both within their native range in the North Pacific rim and in the Great Lakes basin. Understanding their value from a biological and economic perspective in the Great Lakes, however, requires an understanding of changes in the ecosystem and of management actions that have been taken to promote system stability, integrity, and sustainable fisheries. Pacific salmonine introductions to the Great Lakes are comprised mainly of Chinook salmon, coho salmon, and steelhead and have accounted for 421, 177, and 247 million fish, respectively, stocked during 1966-2007. Stocking of Pacific salmonines has been effective in substantially reducing exotic prey fish abundances in several of the Great Lakes (e.g., lakes Michigan, Huron, and Ontario). The goal of our evaluation was to highlight differences in management strategies and perspectives across the basin, and to evaluate policies for Pacific salmonine management in the Great Lakes. Currently, a potential conflict exists between Pacific salmonine management and native fish rehabilitation goals because of the desire to sustain recreational fisheries and to develop self-sustaining populations of stocked Pacific salmonines in the Great Lakes. We provide evidence that suggests Pacific salmonines have not only become naturalized to the food webs of the Great Lakes, but that their populations (specifically Chinook salmon) may be fluctuating in concert with specific prey (i.e., alewives) whose populations are changing relative to environmental conditions and ecosystem disturbances. Remaining questions, however, are whether or not “natural” fluctuations in predator and prey provide enough “stability” in the Great Lakes food webs, and even more importantly, would a choice by managers to attempt to reduce the severity of predator-prey oscillations be antagonistic to native fish restoration efforts. We argue that, on each of the Great Lakes, managers are pursuing

  5. 75 FR 6354 - NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes Restoration...

    Science.gov (United States)

    2010-02-09

    ... National Oceanic and Atmospheric Administration RIN 0648-ZC10 NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes Restoration Initiative; Correction AGENCY: National Marine Fisheries... notice published in the Federal Register on January 19, 2010. That notice announced the NOAA Great Lakes...

  6. Great Lakes Water Quality Agreement (GLWQA)

    Science.gov (United States)

    The Great Lakes Water Quality Agreement between the U.S. and Canada addresses critical environmental health issues in the Great Lakes region. It's a model of binational cooperation to protect water quality. It was first signed in 1972 and amended in 2012.

  7. 76 FR 24505 - Great Lakes Pilotage Advisory Committee

    Science.gov (United States)

    2011-05-02

    ... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Great Lakes Pilotage Advisory... Great Lakes pilot registration, operating requirements, training policies, and pilotage rates and other...

  8. Great Lakes Commercial Fishing Catch 1929-2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Since 1971 the Great Lakes Science Center (GLSC), formerly known as the National Fishery Center-Great Lakes (National Biological Service), the Great Lakes Fishery...

  9. Great Lakes CoastWatch Node

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CoastWatch is a nationwide National Oceanic and Atmospheric Administration (NOAA) program within which the Great Lakes Environmental Research Laboratory (GLERL)...

  10. Sanctuaries for lake trout in the Great Lakes

    Science.gov (United States)

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  11. Ecosystem services in the Great Lakes

    Science.gov (United States)

    Steinman, Alan D.; Cardinale, Bradley J; Munns Jr, Wayne R; Ogdahl, Mary E.; Allan, David J; Angadi, Ted; Bartlett, Sarah; Brauman, Kate; Byappanahalli, Muruleedhara; Doss, Matt; Dupont, Diane; Johns, Annie; Kashian, Donna; Lupi, Frank; McIntyre, Peter B.; Miller, Todd; Moore, Michael P.; Muenich, Rebecca Logsdon; Poudel, Rajendra; Price, James; Provencher, Bill; Rea, Anne; Read, Jennifer; Renzetti, Steven; Sohngen, Brent; Washburn, Erica

    2017-01-01

    A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided misguided resource management decisions in the past that resulted in negative legacies inherited by future generations. Given the interest in ecosystem services and lack of a coherent approach to addressing this topic in the Great Lakes, a summit was convened involving 28 experts working on various aspects of ecosystem services in the Great Lakes. The invited attendees spanned a variety of social and natural sciences. Given the unique status of the Great Lakes as the world's largest collective repository of surface freshwater, and the numerous stressors threatening this valuable resource, timing was propitious to examine ecosystem services. Several themes and recommendations emerged from the summit. There was general consensus that: 1) a comprehensive inventory of ecosystem services throughout the Great Lakes is a desirable goal but would require considerable resources; 2) more spatially and temporally intensive data are needed to overcome our data gaps, but the arrangement of data networks and observatories must be well-coordinated; 3) trade-offs must be considered as part of ecosystem services analyses; and 4) formation of a Great Lakes Institute for Ecosystem Services, to provide a hub for research, meetings, and training is desirable. Several challenges also emerged during the summit, which are discussed.

  12. Integrating Climate Change into Great Lakes Protection

    Science.gov (United States)

    Hedman, S.

    2012-12-01

    Climate change is now recognized as one of the greatest threats to the Great Lakes. Projected climate change impacts to the Great Lakes include increases in surface water and air temperature; decreases in ice cover; shorter winters, early spring, and longer summers; increased frequency of intense storms; more precipitation falling as rain in the winter; less snowfall; and variations in water levels, among other effects. Changing climate conditions may compromise efforts to protect and restore the Great Lakes ecosystem and may lead to irrevocable impacts on the physical, chemical, and biological integrity of the Great Lakes. Examples of such potential impacts include the transformation of coastal wetlands into terrestrial ecosystems; reduced fisheries; increased beach erosion; change in forest species composition as species migrate northward; potential increase in toxic substance concentrations; potential increases in the frequency and extent of algal blooms; degraded water quality; and a potential increase in invasive species. The Great Lakes Restoration Initiative, signed into law by President Obama in 2010, represents the commitment of the federal government to protect, restore, and maintain the Great Lakes ecosystem. The GLRI Action Plan, issued in February 2010, identifies five focus areas: - Toxic Substances and Areas of Concern - Invasive Species - Nearshore Health and Nonpoint Source Pollution - Habitat and Wildlife Protection and Restoration - Accountability, Education, Monitoring, Evaluation, Communication, and Partnerships The Action Plan recognizes that the projected impacts of climate change on the Great Lakes have implications across all focus areas and encourages incorporation of climate change considerations into GLRI projects and programs as appropriate. Under the GLRI, EPA has funded climate change-related work by states, tribes, federal agencies, academics and NGOs through competitive grants, state and tribal capacity grants, and Interagency

  13. Energy and water in the Great Lakes.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  14. Early Holocene Great Salt Lake, USA

    Science.gov (United States)

    Oviatt, Charles G.; Madsen, David B.; Miller, David M.; Thompson, Robert S.; McGeehin, John P.

    2015-07-01

    Shorelines and surficial deposits (including buried forest-floor mats and organic-rich wetland sediments) show that Great Salt Lake did not rise higher than modern lake levels during the earliest Holocene (11.5-10.2 cal ka BP; 10-9 14C ka BP). During that period, finely laminated, organic-rich muds (sapropel) containing brine-shrimp cysts and pellets and interbedded sodium-sulfate salts were deposited on the lake floor. Sapropel deposition was probably caused by stratification of the water column - a freshwater cap possibly was formed by groundwater, which had been stored in upland aquifers during the immediately preceding late-Pleistocene deep-lake cycle (Lake Bonneville), and was actively discharging on the basin floor. A climate characterized by low precipitation and runoff, combined with local areas of groundwater discharge in piedmont settings, could explain the apparent conflict between evidence for a shallow lake (a dry climate) and previously published interpretations for a moist climate in the Great Salt Lake basin of the eastern Great Basin.

  15. Great Lakes Shipping. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    Science.gov (United States)

    Fortner, Rosanne W., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The theme of this book is Great Lakes shipping. Students learn about the connections between the…

  16. In quest of Great Lakes ice age vertebrates

    National Research Council Canada - National Science Library

    Holman, J. Alan

    2001-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 The Pleistocene in the Great Lakes Region . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Where to Find Vertebrate Fossils...

  17. 78 FR 38725 - Great Lakes Pilotage Advisory Committee

    Science.gov (United States)

    2013-06-27

    ... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Great Lakes Pilotage Advisory... Guard on matters relating to Great Lakes pilotage, including review of proposed Great Lakes pilotage...

  18. Native Great Lakes wolves were not restored.

    Science.gov (United States)

    Leonard, Jennifer A; Wayne, Robert K

    2008-02-23

    Wolves from the Great Lakes area were historically decimated due to habitat loss and predator control programmes. Under the protection of the US Endangered Species Act, the population has rebounded to approximately 3000 individuals. We show that the pre-recovery population was dominated by mitochondrial DNA haplotypes from an endemic American wolf referred to here as the Great Lakes wolf. In contrast, the recent population is admixed, and probably derives also from the grey wolf (Canis lupus) of Old World origin and the coyote (Canis latrans). Consequently, the pre-recovery population has not been restored, casting doubt on delisting actions.

  19. Ecosystem services in the Great Lakes

    Science.gov (United States)

    A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided ...

  20. Global Change in the Great Lakes: Scenarios.

    Science.gov (United States)

    Garrison, Barbara K., Ed.; Rosser, Arrye R., Ed.

    The Ohio Sea Grant Education Program has produced this series of publications designed to help people understand how global change may affect the Great Lakes region. The possible implications of global change for this region of the world are explained in the hope that policymakers and individuals will be more inclined to make responsible decisions…

  1. Incidental oligotrophication of North American Great Lakes.

    Science.gov (United States)

    Evans, Mary Anne; Fahnenstiel, Gary; Scavia, Donald

    2011-04-15

    Phytoplankton production is an important factor in determining both ecosystem stability and the provision of ecosystem goods and services. The expansive and economically important North American Great Lakes are subjected to multiple stressors and understanding their responses to those stresses is important for understanding system-wide ecological controls. Here we show gradual increases in spring silica concentration (an indicator of decreasing growth of the dominant diatoms) in all basins of Lakes Michigan and Huron (USA and Canadian waters) between 1983 and 2008. These changes indicate the lakes have undergone gradual oligotrophication coincident with and anticipated by nutrient management implementation. Slow declines in seasonal drawdown of silica (proxy for seasonal phytoplankton production) also occurred, until recent years, when lake-wide responses were punctuated by abrupt decreases, putting them in the range of oligotrophic Lake Superior. The timing of these dramatic production drops is coincident with expansion of populations of invasive dreissenid mussels, particularly quagga mussels, in each basin. The combined effect of nutrient mitigation and invasive species expansion demonstrates the challenges facing large-scale ecosystems and suggest the need for new management regimes for large ecosystems.

  2. Microseisms from the Great Salt Lake

    Science.gov (United States)

    Goddard, K. J.; Koper, K. D.; Burlacu, V.

    2014-12-01

    Dept. of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA We performed frequency-dependent polarization and power analysis on continuous ambient seismic energy recorded by broadband seismic stations that were part of the Utah Regional Seismic Network (UU) for the years of 2001-2013. The number of broadband seismometers increased from 10 to 28 in this time period. As expected, at all 28 stations the single and double frequency peaks caused by microseisms were observed in the range of 3-20 s. At four of the stations located around the Great Salt Lake (BGU, HVU, NOQ, and SPU) an additional noise peak was intermittently observed in the period range of 0.8-1.2 s. This noise peak was strongest at SPU, a station located on the tip of a peninsula jutting into the lake from the north, and weakest at NOQ, a station located a few kilometers south of the lake in the Oquirrh Mountains. The noise peaks occur in both daytime and nighttime, and have durations lasting from a couple of hours to multiple days. They occur more frequently in the spring, summer, and fall, and less commonly in the winter. The occurrences of noise peaks in the summer show a day night pattern and seem to reach a peak during the night. The time dependence of this 1-s seismic noise was compared to records of wind speed measured at 1-hr intervals from nearby meteorological stations run by the NWS, and to lake level gage height measurements made by the USGS. Correlations with wind speed and lake level were done for every month of the year in 2013. Results showed that the correlations with wind varied throughout the year from a high of 0.49 in November to a low of 0.20 in the month of January. The correlation with lake level also varied throughout the year and the strongest correlation was found in the month of December with a correlation of 0.43. While these correlation values are statistically significant, neither wind nor lake level can completely explain the seismic observations

  3. Meteotsunamis in the Laurentian Great Lakes

    Science.gov (United States)

    Bechle, Adam J.; Wu, Chin H.; Kristovich, David A. R.; Anderson, Eric J.; Schwab, David J.; Rabinovich, Alexander B.

    2016-01-01

    The generation mechanism of meteotsunamis, which are meteorologically induced water waves with spatial/temporal characteristics and behavior similar to seismic tsunamis, is poorly understood. We quantify meteotsunamis in terms of seasonality, causes, and occurrence frequency through the analysis of long-term water level records in the Laurentian Great Lakes. The majority of the observed meteotsunamis happen from late-spring to mid-summer and are associated primarily with convective storms. Meteotsunami events of potentially dangerous magnitude (height > 0.3 m) occur an average of 106 times per year throughout the region. These results reveal that meteotsunamis are much more frequent than follow from historic anecdotal reports. Future climate scenarios over the United States show a likely increase in the number of days favorable to severe convective storm formation over the Great Lakes, particularly in the spring season. This would suggest that the convectively associated meteotsunamis in these regions may experience an increase in occurrence frequency or a temporal shift in occurrence to earlier in the warm season. To date, meteotsunamis in the area of the Great Lakes have been an overlooked hazard. PMID:27883066

  4. Beach science in the Great Lakes

    Science.gov (United States)

    Nevers, Meredith B.; Byappanahalli, Murulee N.; Edge, Thomas A.; Whitman, Richard L.

    2014-01-01

    Monitoring beach waters for human health has led to an increase and evolution of science in the Great Lakes, which includes microbiology, limnology, hydrology, meteorology, epidemiology, and metagenomics, among others. In recent years, concerns over the accuracy of water quality standards at protecting human health have led to a significant interest in understanding the risk associated with water contact in both freshwater and marine environments. Historically, surface waters have been monitored for fecal indicator bacteria (fecal coliforms, Escherichia coli, enterococci), but shortcomings of the analytical test (lengthy assay) have resulted in a re-focusing of scientific efforts to improve public health protection. Research has led to the discovery of widespread populations of fecal indicator bacteria present in natural habitats such as soils, beach sand, and stranded algae. Microbial source tracking has been used to identify the source of these bacteria and subsequently assess their impact on human health. As a result of many findings, attempts have been made to improve monitoring efficiency and efficacy with the use of empirical predictive models and molecular rapid tests. All along, beach managers have actively incorporated new findings into their monitoring programs. With the abundance of research conducted and information gained over the last 25 years, “Beach Science” has emerged, and the Great Lakes have been a focal point for much of the ground-breaking work. Here, we review the accumulated research on microbiological water quality of Great Lakes beaches and provide a historic context to the collaborative efforts that have advanced this emerging science.

  5. Great Lakes Research Vessel Operations 1958-2016

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Great Lakes Research Vessel Operations data release is taken from the Research Vessel Catch (RVCAT) database curated at the Great Lakes Science Center (GLSC)....

  6. Great Lakes maritime education program for K-12 teachers.

    Science.gov (United States)

    2011-02-01

    Michigan Technological University has led an educational/outreach effort for the Great Lake Maritime Research Institute since 2006. : Despite Michigan Techs relative isolation and long distance from most locations in the Great Lakes Basin, every s...

  7. 46 CFR 46.05-20 - Great Lakes voyage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Great Lakes voyage. 46.05-20 Section 46.05-20 Shipping... VESSELS Definitions Used in This Part § 46.05-20 Great Lakes voyage. A Great Lakes voyage is any voyage from a United States port or place on the Great Lakes to another United States port or place on the...

  8. 46 CFR 42.05-40 - Great Lakes.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Great Lakes. 42.05-40 Section 42.05-40 Shipping COAST... Definition of Terms Used in This Subchapter § 42.05-40 Great Lakes. (a) This term means the Great Lakes of North America. (b) As used in this part, the term solely navigating the Great Lakes includes any special...

  9. The Great Lakes. An Environmental Atlas and Resource Book.

    Science.gov (United States)

    Botts, Lee; Krushelnicki, Bruce

    This atlas was developed jointly by the Canadian and American governments, and is intended to provide an ecosystem approach to the understanding of the Great Lakes Basin. Chapter one provides an introduction to both the natural and cultural aspects of the Great Lakes. Chapter two, "Natural Processes in the Great Lakes," describes such…

  10. 77 FR 24729 - Great Lakes Pilotage Advisory Committee

    Science.gov (United States)

    2012-04-25

    ... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Great Lakes Pilotage Advisory... recommendations to the Secretary of Homeland Security and the Coast Guard on matters relating to Great Lakes...

  11. 78 FR 49544 - Great Lakes Pilotage Advisory Committee; Vacancies

    Science.gov (United States)

    2013-08-14

    ... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee; Vacancies AGENCY: Coast Guard, DHS. ACTION: Request for applications. SUMMARY: The Coast Guard seeks applications for membership on the Great Lakes... of Homeland Security and the Coast Guard on matters relating to Great Lakes pilotage, including...

  12. 76 FR 62085 - Great Lakes Pilotage Advisory Committee

    Science.gov (United States)

    2011-10-06

    ... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee... the Federal Register of October 4, 2011, a notice announcing a Great Lakes Pilotage Advisory Committee... authority of the Great Lakes Pilotage program. If you have been adversely affected by the one-day delay in...

  13. 76 FR 61370 - Great Lakes Pilotage Advisory Committee

    Science.gov (United States)

    2011-10-04

    ... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Great Lakes Pilotage Advisory... Homeland Security and the Coast Guard on matters relating to Great Lakes pilotage, including review of...

  14. 46 CFR 90.10-13 - Great Lakes.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Great Lakes. 90.10-13 Section 90.10-13 Shipping COAST... Definition of Terms Used in This Subchapter § 90.10-13 Great Lakes. Under this designation shall be included all vessels navigating the Great Lakes. ...

  15. 46 CFR 151.03-29 - Great Lakes.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Great Lakes. 151.03-29 Section 151.03-29 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-29 Great Lakes. A designation for all vessels in Great Lakes service. ...

  16. 78 FR 5474 - Great Lakes Pilotage Advisory Committee

    Science.gov (United States)

    2013-01-25

    ... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Committee Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Great Lakes Pilotage Advisory... recommendations to the Secretary of Homeland Security and the Coast Guard on matters relating to Great Lakes...

  17. 75 FR 8728 - Great Lakes Pilotage Advisory Committee

    Science.gov (United States)

    2010-02-25

    ... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee AGENCY: Coast Guard, DHS. ACTION: Notice of meeting. SUMMARY: The Great Lakes Pilotage Advisory Committee (GLPAC) will meet at Coast Guard Marine... range of issues related to pilotage on the Great Lakes, including the rules and regulations that govern...

  18. 77 FR 33228 - Great Lakes Pilotage Advisory Committee; Vacancies

    Science.gov (United States)

    2012-06-05

    ... SECURITY Coast Guard Great Lakes Pilotage Advisory Committee; Vacancies AGENCY: Coast Guard, DHS. ACTION: Request for applicants. SUMMARY: The Coast Guard seeks applications for membership on the Great Lakes... of Homeland Security and the Coast Guard on matters relating to Great Lakes pilotage, including...

  19. 46 CFR 188.10-31 - Great Lakes.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Great Lakes. 188.10-31 Section 188.10-31 Shipping COAST... Definition of Terms Used in This Subchapter § 188.10-31 Great Lakes. Under this designation shall be included all vessels navigating the Great Lakes. ...

  20. CHECKLIST OF DIATOMS FROM THE LAURENTIAN GREAT LAKES

    Science.gov (United States)

    An updated diatom (Bacillariophyta) checklist for the Great Lakes has been completed (J. Great Lakes Res. 1999) and supplants the preliminary checklist (J. Great Lakes Res. 1978). The present list is effectively a 20-year update. The updated list is based upon: 1) the 1978 checkl...

  1. ROV dives under Great Lakes ice

    Science.gov (United States)

    Bolsenga, S.J.; Gannon, John E.; Kennedy, Gregory; Norton, D.C.; Herdendorf, Charles E.

    1989-01-01

    Observations of the underside of ice have a wide variety of applications. Severe under-ice roughness can affect ice movements, rough under-ice surfaces can scour the bottom disturbing biota and man-made structures such as pipelines, and the flow rate of rivers is often affected by under-ice roughness. A few reported observations of the underside of an ice cover have been made, usually by cutting a large block of ice and overturning it, by extensive boring, or by remote sensing. Such operations are extremely labor-intensive and, in some cases, prone to inaccuracies. Remotely operated vehicles (ROV) can partially solve these problems. In this note, we describe the use, performance in a hostile environment, and results of a study in which a ROV was deployed under the ice in Lake Erie (North American Great Lakes).

  2. Drainage water phosphorus losses in the great lakes basin

    Science.gov (United States)

    The great lakes are one of the most important fresh water resources on the planet. While forestry is a primary land use throughout much of the great lakes basin, there are portions of the basin, such as much of the land that drains directly to Lake Erie, that are primarily agricultural. The primary ...

  3. Radionuclides in the Great Lakes basin.

    Science.gov (United States)

    Ahier, B A; Tracy, B L

    1995-12-01

    The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2

  4. Genetic evaluation of a Great Lakes lake trout hatchery program

    Science.gov (United States)

    Page, K.S.; Scribner, K.T.; Bast, D.; Holey, M.E.; Burnham-Curtis, M. K.

    2005-01-01

    Efforts over several decades to restore lake trout Salvelinus namaycush in U.S. waters of the upper Great Lakes have emphasized the stocking of juveniles from each of six hatchery broodstocks. Retention of genetic diversity across all offspring life history stages throughout the hatchery system has been an important component of the restoration hatchery and stocking program. Different stages of the lake trout hatchery program were examined to determine how effective hatchery practices have been in minimizing the loss of genetic diversity in broodstock adults and in progeny stocked. Microsatellite loci were used to estimate allele frequencies, measures of genetic diversity, and relatedness for wild source populations, hatchery broodstocks, and juveniles. We also estimated the effective number of breeders for each broodstock. Hatchery records were used to track destinations of fertilized eggs from all spawning dates to determine whether adult contributions to stocking programs were proportional to reproductive effort. Overall, management goals of maintaining genetic diversity were met across all stages of the hatchery program; however, we identified key areas where changes in mating regimes and in the distribution of fertilized gametes and juveniles could be improved. Estimates of effective breeding population size (Nb) were 9-41% of the total number of adults spawned. Low estimates of Nb were primarily attributed to spawning practices, including the pooling of gametes from multiple males and females and the reuse of males. Nonrandom selection and distribution of fertilized eggs before stocking accentuated declines in effective breeding population size and increased levels of relatedness of juveniles distributed to different rearing facilities and stocking locales. Adoption of guidelines that decrease adult reproductive variance and promote more equitable reproductive contributions of broodstock adults to juveniles would further enhance management goals of

  5. 33 CFR 100.901 - Great Lakes annual marine events.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Great Lakes annual marine events... REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.901 Great Lakes annual marine events. Permanent special local regulations are hereby established for the marine events listed in Table 1. These...

  6. Great Salt Lake basins study unit

    Science.gov (United States)

    Waddell, Kidd M.; Baskin, Robert L.

    1994-01-01

    In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment (NAWQA) Program.The long-term goals of the NAWQA Program are to describe the status and trends in the quality of a large, representative part of the Nation’s surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors that affect the quality of these resources. In meeting these goals, the program will produce a wealth of water-quality information that will be useful to policy makers and managers at Federal, State, and local levels.A major design feature of the NAWQA Program will enable water-quality information at different areal scales to be integrated. A major component of the program is study-unit investigations, which ae the principal building blocks of the program upon which national-level assessment activities will be based. The 60 study-unit investigations that make up the program are hydrologic systems that include principal river basins and aquifer systems throughout the Nation. These study units cover areas from less than 1.000 to greater than 60,000 mi2 and incorporate from about 60 to 70 percent of the Nation’s water use and population served by public water supply. In 1993, assessment activities began in the Great Salt Lake Basins NAWQA study unit.

  7. Artificial reefs and reef restoration in the Laurentian Great Lakes

    Science.gov (United States)

    McLean, Matthew W.; Roseman, Edward; Pritt, Jeremy J.; Kennedy, Gregory W.; Manny, Bruce A.

    2015-01-01

    We reviewed the published literature to provide an inventory of Laurentian Great Lakes artificial reef projects and their purposes. We also sought to characterize physical and biological monitoring for artificial reef projects in the Great Lakes and determine the success of artificial reefs in meeting project objectives. We found records of 6 artificial reefs in Lake Erie, 8 in Lake Michigan, 3 in Lakes Huron and Ontario, and 2 in Lake Superior. We found 9 reefs in Great Lakes connecting channels and 6 reefs in Great Lakes tributaries. Objectives of artificial reef creation have included reducing impacts of currents and waves, providing safe harbors, improving sport-fishing opportunities, and enhancing/restoring fish spawning habitats. Most reefs in the lakes themselves were incidental (not created purposely for fish habitat) or built to improve local sport fishing, whereas reefs in tributaries and connecting channels were more frequently built to benefit fish spawning. Levels of assessment of reef performance varied; but long-term monitoring was uncommon as was assessment of physical attributes. Artificial reefs were often successful at attracting recreational species and spawning fish; however, population-level benefits of artificial reefs are unclear. Stressors such as sedimentation and bio-fouling can limit the effectiveness of artificial reefs as spawning enhancement tools. Our investigation underscores the need to develop standard protocols for monitoring the biological and physical attributes of artificial structures. Further, long-term monitoring is needed to assess the benefits of artificial reefs to fish populations and inform future artificial reef projects.

  8. Dreissenid mussels from the Great Lakes contain elevated thiaminase activity

    Science.gov (United States)

    Tillitt, D.E.; Riley, S.C.; Evans, A.N.; Nichols, S.J.; Zajicek, J.L.; Rinchard, J.; Richter, C.A.; Krueger, C.C.

    2009-01-01

    We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5-100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900??pmol g- 1??min- 1 and activities in quagga mussels ranged from 19,500 to 223,800??pmol g- 1??min- 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.

  9. 75 FR 362 - Agency Information Collection Activities; Proposed Collection; Comment Request; Great Lakes...

    Science.gov (United States)

    2010-01-05

    ... Information Collection Activities; Proposed Collection; Comment Request; Great Lakes Accountability System...-line instructions for submitting comments. Mail: Great Lakes Accountability System, Attn: Rita Cestaric, EPA, Great Lakes National Program Office, 77 W. Jackson St., Chicago, Illinois 60604. Hand Delivery...

  10. The phytoplankton of Great Bitter Lake, Egypt, including the impacts ...

    African Journals Online (AJOL)

    A year-long survey of the phytoplankton and nutrients in Great Bitter Lake indicates that this is a severely eutrophic lake. Chlorophyll levels were consistently high (> 30µg/l), especially in summer (>90µg/l). The phytoplankton community comprised mostly diatoms and blue-green algae, although dinoflagellates and green ...

  11. Great Lakes Research Vessel Operations 1958-2016: Trawl

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — All trawl data represented here expand upon vessel operations (OP table) data, all of which are collected by the United States Geological Survey, Great Lakes Science...

  12. Great Lakes Research Vessel Operations 1958-2016: Mysis

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — All mysis data represented here expand upon vessel operations (OP table) data, all of which are collected by the United States Geological Survey, Great Lakes Science...

  13. Great Lakes Research Vessel Operations 1958-2016: Mensuration

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — All mensuration data represented here expand upon vessel operations (OP table) data, all of which are collected by the United States Geological Survey, Great Lakes...

  14. Great Lakes Research Vessel Operations 1958-2016: Gillnet

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — All gillnet data represented here expand upon vessel operations (OP table) data, all of which are collected by the United States Geological Survey, Great Lakes...

  15. Great Lakes Environmentalists Push for Zero Chemical Pollution.

    Science.gov (United States)

    Heylin, Michael

    1991-01-01

    Described are the efforts of a coalition of several environmental organizations to influence federal legislation regarding water pollution in the Great Lakes region. Statements from regional legislators are included. (CW)

  16. Great Lakes Research Vessel Operations 1958-2016: Reference

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The RVCAT database contains data that have been collected on various vessel operations on the Great Lakes and select connecting waterways. This section of Reference...

  17. Spiders of the Great Dismal Swamp: Lake Drummond 1977

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report outlines the results of a study of spiders that was conducted along the shores of Lake Drummond, in the Great Dismal Swamp. The purpose of the study was...

  18. GLERL Great Lakes Ice Thickness Data Base, 1966-1979

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the winters of 1965/66 through 1976/77, NOAA/Great Lakes Environmental Research Laboratory (GLERL) collected weekly ice thickness and stratigraphy data at up...

  19. Great Lakes Research Vessel Operations 1958-2016: OP

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data have been collected on various vessel operations on the Great Lakes and select connecting waterways. This vessel operations data set is part of and...

  20. Great Lakes Research Vessel Operations 1958-2016: Benthos Ponar

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — All benthos data represented here expand upon vessel operations (OP table) data, all of which are collected by the United States Geological Survey, Great Lakes...

  1. 2010 Great Lakes Restoration Initiative Bathymetric Lidar: Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data contained in this file contain hydrographic and topographic data collected by the Fugro LADS Mk II system along the Lake Superior coast of Minnessota,...

  2. Production of magnesium from Great Salt Lake, Utah USA

    OpenAIRE

    Tripp, Thomas G.

    2009-01-01

    Magnesium metal has been commercially produced from the waters of Great Salt Lake since 1972. Worldwide use of magnesium has markedly increased over the last twenty years due to its unique properties of low density and high strength. Great Salt Lake is a valuable resource for the recovery of magnesium minerals due to its chemical composition, natural geography/climate and proximity to transportation and markets. US Magnesium LLC and its predecessors have overcome various technical challenges ...

  3. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    Science.gov (United States)

    Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.

    2013-01-01

    At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.

  4. Great Salt Lake Past and Present: Elevation and Salinity Changes to Utah's Great Salt Lake from Railroad Causeway Alterations

    OpenAIRE

    White, James S.

    2015-01-01

    In 1959, Union Pacific Railroad constructed a rock-filled causeway bisecting Utah’s Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide culverts installed during original construction, an 88 meter breach opening installed in 1984, and the semi porous boulder and gravel causeway material. The south arm receives nearly all streamflows entering Great Salt Lake and a salinity gradient between the two arms developed over time...

  5. Risks and Benefits of Consumption of Great Lakes Fish

    Science.gov (United States)

    Bhavsar, Satyendra P.; Bowerman, William; Boysen, Eric; Clark, Milton; Diamond, Miriam; Mergler, Donna; Pantazopoulos, Peter; Schantz, Susan; Carpenter, David O.

    2011-01-01

    Background: Beneficial effects of fish consumption on early cognitive development and cardiovascular health have been attributed to the omega-3 fatty acids in fish and fish oils, but toxic chemicals in fish may adversely affect these health outcomes. Risk–benefit assessments of fish consumption have frequently focused on methylmercury and omega-3 fatty acids, not persistent pollutants such as polychlorinated biphenyls, and none have evaluated Great Lakes fish consumption. Objectives: The risks and benefits of fish consumption have been established primarily for marine fish. Here, we examine whether sufficient data are available to evaluate the risks and benefits of eating freshwater fish from the Great Lakes. Methods: We used a scoping review to integrate information from multiple state, provincial, and federal agency sources regarding the contaminants and omega-3 fatty acids in Great Lakes fish and fish consumers, consumption rates and fish consumption advisories, and health effects of contaminants and omega-3 fatty acids. Data synthesis: Great Lakes fish contain persistent contaminants—many of which have documented adverse health effects —that accumulate in humans consuming them. In contrast, data are sparse on omega-3 fatty acids in the fish and their consumers. Moreover, few studies have documented the social and cultural benefits of Great Lakes fish consumption, particularly for subsistence fishers and native communities. At this time, federal and state/provincial governments provide fish consumption advisories based solely on risk. Conclusions: Our knowledge of Great Lakes fish has critical gaps, particularly regarding the benefits of consumption. A risk–benefit analysis requires more information than is currently available on the concentration of omega-3 fatty acids in Great Lakes fish and their absorption by fish eaters in addition to more information on the social, cultural, and health consequences of changes in the amount of fish consumed. PMID

  6. 33 CFR 334.820 - Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill.

    Science.gov (United States)

    2010-07-01

    ... area, U.S. Naval Training Center, Great Lakes, Ill. 334.820 Section 334.820 Navigation and Navigable... REGULATIONS § 334.820 Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill. (a) The area. An area extending in a north and south direction from the Great Lakes, Illinois, south...

  7. Thiamine concentrations in lake whitefish eggs from the upper Great Lakes are related to maternal diet

    Science.gov (United States)

    Riley, S.C.; Rinchard, J.; Ebener, M.P.; Tillitt, D.E.; Munkittrick, K.R.; Parrott, J.L.; Allen, J.D.

    2011-01-01

    Thiamine deficiency is responsible for reproductive impairment in several species of salmonines in the Great lakes, and is thought to be caused by the consumption of prey containing thiaminase, a thiamine-degrading enzyme. Because thiaminase levels are extremely high in dreissenid mussels, fish that prey on them may be susceptible to thiamine deficiency. We determined thiamine concentrations in lake whitefish Coregonus clupeaformis eggs from the upper Laurentian Great Lakes to assess the potential for thiamine deficiency and to determine if thiamine concentrations in lake whitefish eggs were related to maternal diet. Mean thiamine concentrations in lake whitefish eggs were highest in Lake Huron, intermediate in Lake Superior, and lowest in Lake Michigan. Some fish had thiamine concentrations below putative thresholds for lethal and sublethal effects in salmonines, suggesting that some larval lake whitefish may currently be at risk of at least sublethal effects of low thiamine concentrations, although thiamine thresholds are unknown for lake whitefish. Egg thiamine concentrations in lake whitefish eggs were statistically significantly related to isotopic carbon signatures, suggesting that egg thiamine levels were related to maternal diet, but low egg thiamine concentrations did not appear to be associated with a diet of dreissenids. Egg thiamine concentrations were not statistically significantly related to multifunction oxidase induction, suggesting that lower egg thiamine concentrations in lake whitefish were not related to contaminant exposure.

  8. 40 CFR Appendix B to Part 132 - Great Lakes Water Quality Initiative

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Great Lakes Water Quality Initiative B... WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. B Appendix B to Part 132—Great Lakes Water Quality Initiative Methodology for Deriving Bioaccumulation Factors Great Lakes States and Tribes...

  9. 46 CFR 380.11 - Designation of American Great Lakes Vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Designation of American Great Lakes Vessels. 380.11... Application for Designation of Vessels as American Great Lakes Vessels § 380.11 Designation of American Great Lakes Vessels. The Secretary shall designate a vessel as an American Great Lakes vessel if— (a) The...

  10. Reaching Regional and Local Learners via a Great Lakes MOOC

    Science.gov (United States)

    Mooney, M. E.; Ackerman, S. A.

    2015-12-01

    The Cooperative Institute of Meteorological Satellite Studies (CIMSS) took a regional approach to climate change education in a 4-week MOOC (Massive Open On-line Course) on the Changing Weather and Climate in the Great Lakes Region launched in February 2015. Featuring a different season each week, this Great Lakes MOOC includes lectures about seasonal weather conditions, observed changes, and societal impacts of regional climate change, as well as actions with co-benefits to slow future climate change. To better connect with learners, CIMSS facilitated 21 discussion groups at public libraries around Wisconsin each week. Participants discussed climate change impacts in their communities as well as strategies to mitigate climate change. Not surprisingly, initial survey results show library participants were more committed, engaged, climate literate, and community minded. This session will share lessons learned and survey results from the Great Lakes MOOC which remains open and accessible on Coursera through February 2016 at https://www.coursera.org/course/greatlakesclimate.

  11. Microplastics in 29 Great Lakes tributaries (2014-15)

    Science.gov (United States)

    Baldwin, Austin K.; Corsi, Steven; Mason, Sherri A.

    2016-01-01

    This dataset describes the quantity and morphology of floating microplastics in 29 Great Lakes tributaries in 6 states. Samples were collected in spring 2014 – spring 2015. Each tributary was sampled three to four times, capturing low-flow and runoff-event conditions. Sampling and analysis methods are described in the .xml metadata file.These data are interpreted in a journal article: Baldwin, A.K., Corsi, S.R., and Mason, S.A., 2016, Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology: Environmental Science and Technology, v. 50, no. 19, p. 10377–10385, doi:10.1021/acs.est.6b02917.

  12. First evidence of microplastics in the African Great Lakes

    DEFF Research Database (Denmark)

    Biginagwa, Fares John; Mayoma, Bahati Sosthenes; Shashoua, Yvonne

    2016-01-01

    Microplastic contamination in the African Great Lakes is currently unreported, and compared to other regions of the world little is known about the occurrence of microplastics in African waters and their fauna. The present study was conducted in the Mwanza region of Tanzania, located......-FTIR) spectroscopy. A variety of polymer types were identified with likely sources being urban waste and consumer use. Although further research is required to fully assess the impact of plastic pollution in this region, our study is the first to report the presence of microplastics in Africa's Great Lakes...

  13. Draft Mercury Aquatic Wildlife Benchmarks for Great Salt Lake ...

    Science.gov (United States)

    This document describes the EPA Region 8's rationale for selecting aquatic wildlife dietary and tissue mercury benchmarks for use in interpreting available data collected from the Great Salt Lake and surrounding wetlands. EPA Region 8 has conducted a literature review to update and refine the aquatic wildlife dietary and tissue benchmarks for mercury that may be used for data assessment until water quality criteria can be derived. The document describes how aquatic wildlife dietary and tissue benchmarks for mercury have been compiled for existing literature sources and the approach for how they will be used to evaluate whether the Great Salt Lake and surrounding wetlands meet its designated use for aquatic wildlife.

  14. Quantitative interpretation of Great Lakes remote sensing data

    Science.gov (United States)

    Shook, D. F.; Salzman, J.; Svehla, R. A.; Gedney, R. T.

    1980-01-01

    The paper discusses the quantitative interpretation of Great Lakes remote sensing water quality data. Remote sensing using color information must take into account (1) the existence of many different organic and inorganic species throughout the Great Lakes, (2) the occurrence of a mixture of species in most locations, and (3) spatial variations in types and concentration of species. The radiative transfer model provides a potential method for an orderly analysis of remote sensing data and a physical basis for developing quantitative algorithms. Predictions and field measurements of volume reflectances are presented which show the advantage of using a radiative transfer model. Spectral absorptance and backscattering coefficients for two inorganic sediments are reported.

  15. Projecting Future Water Levels of the Laurentian Great Lakes

    Science.gov (United States)

    Bennington, V.; Notaro, M.; Holman, K.

    2013-12-01

    The Laurentian Great Lakes are the largest freshwater system on Earth, containing 84% of North America's freshwater. The lakes are a valuable economic and recreational resource, valued at over 62 billion in annual wages and supporting a 7 billion fishery. Shipping, recreation, and coastal property values are significantly impacted by water level variability, with large economic consequences. Great Lakes water levels fluctuate both seasonally and long-term, responding to natural and anthropogenic climate changes. Due to the integrated nature of water levels, a prolonged small change in any one of the net basin supply components: over-lake precipitation, watershed runoff, or evaporation from the lake surface, may result in important trends in water levels. We utilize the Abdus Salam International Centre for Theoretical Physics's Regional Climate Model Version 4.5.6 to dynamically downscale three global global climate models that represent a spread of potential future climate change for the region to determine whether the climate models suggest a robust response of the Laurentian Great Lakes to anthropogenic climate change. The Model for Interdisciplinary Research on Climate Version 5 (MIROC5), the National Centre for Meteorological Research Earth system model (CNRM-CM5), and the Community Climate System Model Version 4 (CCSM4) project different regional temperature increases and precipitation change over the next century and are used as lateral boundary conditions. We simulate the historical (1980-2000) and late-century periods (2080-2100). Upon model evaluation we will present dynamically downscaled projections of net basin supply changes for each of the Laurentian Great Lakes.

  16. EPA Awards 15 Great Lakes Restoration Initiative Grants Totaling Over $8 Million to Combat Invasive Species

    Science.gov (United States)

    15-OPA124 CHICAGO -- The U.S. Environmental Protection Agency today announced the award of 15 Great Lakes Restoration Initiative grants totaling more than $8 million for projects to combat invasive species in the Great Lakes basin. These Great

  17. Evaluating Great Lakes bald eagle nesting habitat with Bayesian inference

    Science.gov (United States)

    Teryl G. Grubb; William W. Bowerman; Allen J. Bath; John P. Giesy; D. V. Chip Weseloh

    2003-01-01

    Bayesian inference facilitated structured interpretation of a nonreplicated, experience-based survey of potential nesting habitat for bald eagles (Haliaeetus leucocephalus) along the five Great Lakes shorelines. We developed a pattern recognition (PATREC) model of our aerial search image with six habitat attributes: (a) tree cover, (b) proximity and...

  18. Conceptual Model for Selenium Cycling in the Great Salt Lake

    Science.gov (United States)

    Johnson, W. P.; Conover, M. R.; Wurtsbaugh, W. A.; Adams, J.

    2006-12-01

    The conceptual model for Selenium cycling in the Great Salt Lake was developed to guide investigations in support of determining an open water selenium standard for the Great Salt Lake. The motivation to determine this particular selenium standard derives from public concern for a plan to allow disposal of reverse osmosis (RO) concentrate in the GSL, which would contain elevated concentrations of major and trace elements, including selenium. The development of an open water standard for selenium requires a working knowledge of the biological significance of existing selenium concentrations in the Great Salt Lake, as well as a working understanding of the likely changes of these concentrations over time given existing and proposed loads to the system. This working knowledge" is being represented in a conceptual model that accounts for selenium in various stocks" in the system (e.g. water, sediment, biota) and the flow" of selenium between stocks (e.g., precipitation and settling, volatilization, bioconcentration). It illustrates the critical pathway of selenium in the Great Salt Lake from water, to microorganisms, to brine shrimp and brine flies, to birds, and to their eggs. It also addresses the complexity of the GSL system: a) Spatially diverse, being comprised by four distinct bays and two layers, with major differences in salinity among their waters. b) Temporally dynamic, due to seasonal and inter-annual variations in runoff. The conceptual model is presently descriptive, but will serve as the basis for a semi-quantitative model that will be fed by data accumulated during subsequent investigations.

  19. Volatile Selenium Flux in the Great Salt Lake

    Science.gov (United States)

    Diaz, X.; Johnson, W. P.

    2006-12-01

    Volatilization of selenium has been proven to be the major source of selenium vapor from oceans and estuaries and it may be the major mechanism of permanent selenium removal from the Great Salt Lake (other than brine shrimp harvest). However, the volatilization flux of selenium from the Great Salt Lake has not been previously measured due to challenges of analysis in this hyper-saline environment. This work presents results from recent field studies examining the spatial distribution of volatile selenium (geographical and with depth) in the South Arm (main body) of the Great Salt Lake. The analyses involved collection of volatile selenium in a cryo-focusing trap system via sparging with helium. The cryo-trapped volatile selenium was digested with nitric acid and analyzed by ICP-MS. The results show concentrations of volatile selenium that are much greater than values reported for marine estuaries and oceans. Volatile selenium flux to the atmosphere was determined using mass transport equations corrected to simulate the highly saline environment of the South Arm of the Great Salt Lake.

  20. Sustainable Peace and Development in the Great Lakes Region ...

    African Journals Online (AJOL)

    The focus for this paper is to recall some of possible areas of socio-economic areas that can be reinforced under cooperation between Rwanda, Burundi, and the Democratic Republic of Congo (DRC) for sustainable peace; leading to sustainable development in the Great Lakes region, Africa. It has been revealed that ...

  1. Great Lakes Nearshore Assessment: What Would Goldilocks Do?

    Science.gov (United States)

    Concerns with the nearshore water quality of the Great Lakes, such as excessive eutrophication and harmful algal blooms, called for establishing a nearshore monitoring program to gain a better understanding of the watershed-nearshore link. This is challenging, as sporadic runoff ...

  2. Predicting exotic earthworm distribution in the northern Great Lakes region

    Science.gov (United States)

    Lindsey M. Shartell; Erik A. Lilleskov; Andrew J. Storer

    2013-01-01

    Identifying influences of earthworm invasion and distribution in the northern Great Lakes is an important step in predicting the potential extent and impact of earthworms across the region. The occurrence of earthworm signs, indicating presence in general, and middens, indicating presence of Lumbricus terrestris exclusively, in the Huron Mountains...

  3. Understanding Obstacles to Peace in the Great Lakes Region ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Africa's Great Lakes region is home to violent and prolonged conflicts that cause a lot of suffering and block socioeconomic progress. Several initiatives are underway to bring peace to the region. But, most of these focus on specific countries and have not taken into account the interrelated and overlapping nature of the ...

  4. Ship-borne nonindigenous species diminish Great Lakes ecosystem services

    NARCIS (Netherlands)

    Rothlisberger, J.D.; Finnoff, D.C.; Cooke, R.M.; Lodge, D.M.

    2012-01-01

    We used structured expert judgment and economic analysis to quantify annual impacts on ecosystem services in the Great Lakes, North America of nonindigenous aquatic species introduced by ocean-going ships. For the US waters, median damages aggregated across multiple ecosystem services were $138

  5. Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes

    Science.gov (United States)

    Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.

    2014-12-01

    The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.

  6. Plans and progress for building a Great Lakes fauna DNA ...

    Science.gov (United States)

    DNA reference libraries provide researchers with an important tool for assessing regional biodiversity by allowing unknown genetic sequences to be assigned identities, while also providing a means for taxonomists to validate identifications. Expanding the representation of Great Lakes species in such reference libraries is an explicit component of research at EPA’s Mid-Continent Ecology Division. Our DNA reference library building efforts began in 2012 with the goal of providing barcodes for at least 5 specimens of each native and nonindigenous fish and aquatic invertebrate species currently present in the Great Lakes. The approach is to pull taxonomically validated specimen for sequencing from EPA led sampling efforts of adult/juvenile fish, larval fish, benthic macroinvertebrates, and zooplankton; while also soliciting aid from state and federal agencies for tissue from “shopping list” organisms. The barcodes we generate are made available through the publicly accessible BOLD (Barcode of Life) database, and help inform a planned Great Lakes biodiversity inventory. To date, our submissions to BOLD are limited to fishes; of the 88 fish species listed as being present within Lake Superior, roughly half were successfully barcoded, while only 22 species met the desired quota of 5 barcoded specimens per species. As we continue to generate genomic information from our collections and the taxonomic representations become more complete, we will continue to

  7. The Younger Dryas phase of Great Salt Lake, Utah, USA

    Science.gov (United States)

    Oviatt, Charles G.; Miller, D.M.; McGeehin, J.P.; Zachary, C.; Mahan, S.

    2005-01-01

    Field investigations at the Public Shooting Grounds (a wildlife-management area on the northeastern shore of Great Salt Lake) and radiocarbon dating show that the Great Salt Lake rose to the Gilbert shoreline sometime between 12.9 and 11.2 cal ka. We interpret a ripple-laminated sand unit exposed at the Public Shooting Grounds, and dated to this time interval, as the nearshore sediments of Great Salt Lake deposited during the formation of the Gilbert shoreline. The ripple-laminated sand is overlain by channel-fill deposits that overlap in age (11.9-11.2 cal ka) with the sand, and by wetland deposits (11.1 to 10.5 cal ka). Consistent accelerator mass spectrometry radiocarbon ages were obtained from samples of plant fragments, including those of emergent aquatic plants, but mollusk shells from spring and marsh deposits yielded anomalously old ages, probably because of a variable radiocarbon reservoir effect. The Bonneville basin was effectively wet during at least part of the Younger Dryas global-cooling interval, however, conflicting results from some Great Basin locations and proxy records indicate that the regional effects of Younger Dryas cooling are still not well understood. ?? 2005 Elsevier B.V. All rights reserved.

  8. Western Coal/Great Lakes Alternative export-coal conference

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This conference dealt with using the Great Lakes/St. Lawrence Seaway as an alternative to the East and Gulf Coasts for the exporting of coal to Europe and the potential for a piece of the European market for the subbituminous coals of Montana and Wyoming. The topics discussed included: government policies on coal exports; the coal reserves of Montana; cost of rail transport from Western mines to Lake Superior; the planning, design, and operation of the Superior Midwest Energy Terminal at Superior, Wisconsin; direct transfer of coal from self-unloading lakers to large ocean vessels; concept of total transportation from mines to users; disadvantage of a nine month season on the Great Lakes; costs of maritime transport of coal through the Great Lakes to Europe; facilities at the ice-free, deep water port at Sept Iles; the use of Western coals from an environmental and economic viewpoint; the properties of Western coal and factors affecting its use; the feasibility of a slurry pipeline from the Powder River Basin to Lake Superior; a systems analysis of the complete hydraulic transport of coal from the mine to users in Europe; the performance of the COJA mill-burner for the combustion of superfine coal; demand for steam coal in Western Europe; and the effect the New Source Performance Standards will have on the production and use of Western coal. A separate abstract was prepared for each of the 19 papers for the Energy Data Base (EDB); 17 will appear in Energy Research Abstracts (ERA) and 11 in Energy Abstracts for Policy Analysis (EAPA). (CKK)

  9. Wind energy resource atlas. Volume 3. Great Lakes Region

    Energy Technology Data Exchange (ETDEWEB)

    Paton, D.L.; Bass, A.; Smith, D.G.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    The Great Lakes Region atlas assimilates six collections of wind resource data, one for the region and one for each of the five states that compose the Great Lakes region: Illinois, Indiana, Michigan, Ohio, Wisconsin. At the state level, features of the climate, topography, and wind resource are discussed in greater detail than in the regional discussion and the data locations on which the assessment is based are mapped. Variations over several time scales in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and of hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  10. Educators' Guide to Great Lakes Materials: Books, Films, Maps and Pamphlets for Classroom Use.

    Science.gov (United States)

    Johnson, Pam

    This annotated bibliography presents Great Lakes information for grades six through nine classroom use. It is meant to facilitate and encourage Great Lakes study, particularly of Lakes Michigan and Superior. Material is presented on history, science, lake management, environmental concerns, and recreational use. Included are both fiction and…

  11. Shipboard Sewage Treatment System for Great Lakes Vessels

    Science.gov (United States)

    1979-09-01

    17 i~i SHIP ACOURSTICS7MENI 1 DEPARTMENT ’ ,.iARY SYST E t’. : . . .. . .. I. _________UNCLASSIFIED SECURITY CLASSIPICATION~ OF THIS PAGE ( Whell Data...Great Lakes, this includes United States, Canadian, and state waters, as well as local jurisdictions. 5. Physical Characteristics. A shipboard STS...is. capable of imparting a dissolved oxygen residual to water and remov- ing color, taste, and odor as well as reducing BOD, COD, and TSS. The greatest

  12. Great Lakes maritime education program for K-12 teachers, year 2.

    Science.gov (United States)

    2012-02-01

    Michigan Technological University has led an educational/outreach effort for the Great Lake Maritime Research Institute since 2006. : Despite Michigan Techs relative isolation and long distance from most locations in the Great Lakes Basin, every s...

  13. GLERL Great Lakes Air Temperature/Degree Day Climatology, 1897-1983

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily maximum and minimum temperatures for 25 stations around the Great Lakes, 1897 to 1983, were given to NSIDC by the NOAA Great Lakes Environmental Research...

  14. Ciscoes (Coregonus, subgenus Leucichthys) of the Laurentian Great Lakes and Lake Nipigon

    Science.gov (United States)

    Eshenroder, Randy L.; Vecsei, Paul; Gorman, Owen T.; Yule, Daniel; Pratt, Thomas C.; Mandrak, Nicholas E.; Bunnell, David B.; Muir, Andrew M.

    2016-01-01

    This study of the ciscoes (Coregonus, subgenus Leucichthys) of the Great Lakes and Lake Nipigon represents a furtherance through 2015 of field research initiated by Walter Koelz in 1917 and continued by Stanford Smith in the mid-1900s—a period spanning nearly a century. Like Koelz’s study, this work contains information on taxonomy, geographical distribution, ecology, and status of species (here considered forms). Of the seven currently recognized forms (C. artedi, C. hoyi, C. johannae, C. kiyi, C. nigripinnis, C. reighardi, and C. zenithicus) described by Koelz as major in his 1929 monograph, two (C. johannae and C. reighardi) are extinct. In addition, C. alpenae, described by Koelz but subsequently synonymized with C. zenithicus, although extinct, is recognized as valid making a total of eight major forms. Six of these forms, all but C. artedi and C. hoyi, have been lost from Lake Michigan, and seven have been lost from Lake Huron, leaving in Lake Huron only C. artedi and an introgressed deepwater form that we term a hybrid swarm. C. artedi appears, like its sister form C. alpenae, to have been lost from Lake Erie. Only C. artedi remains extant in Lake Ontario, its three sister forms (C. hoyi, C. kiyi, and C. reighardi) having disappeared long ago.Lakes Superior and Nipigon have retained their original species flocks consisting of four forms each: C. artedi, C. hoyi, and C. zenithicus in both lakes; C. kiyi in Lake Superior; and C. nigripinnis in Lake Nipigon. Morphological deviations from the morphotypes described by Koelz have been modest in contemporary samples. Overall, C. kiyi and C. artedi were the most morphologically stable forms while C. hoyi, C. nigripinnis, and C. zenithicus were the least stable. Although contemporary populations of C. artedi from Lakes Michigan and Huron are highly diverged from the morphotypes described by Koelz, the contemporary samples were of undescribed deep-bodied forms unlikely to have been sampled by Koelz because of

  15. Taking Teachers from the River to the Coast: a COSEE Great Lakes and Lake Superior NERR Collaboration

    Science.gov (United States)

    The Center for Ocean Sciences Education Excellence (COSEE) Great Lakes Shipboard and Shoreline Science Workshop provides 15 formal and informal educators of G5-10 an opportunity to spend a week aboard the US EPA’s 180’ R/V Lake Guardian working side-by-side with Great Lakes scien...

  16. Lake breezes in the southern Great Lakes region and their influence during BAQS-Met 2007

    Directory of Open Access Journals (Sweden)

    D. M. L. Sills

    2011-08-01

    Full Text Available Meteorological observations from the BAQS-Met field experiment during the summer months of 2007 were integrated and manually analyzed in order to identify and characterize lake breezes in the southern Great Lakes region of North America, and assess their potential impact on air quality. Lake breezes occurred frequently, with one or more lake breezes identified on 90 % of study days. They affected all parts of the study region, including southwestern Ontario and nearby portions of southeast Lower Michigan and northern Ohio, with lake-breeze fronts occasionally penetrating from 100 km to over 200 km inland. Occurrence rates and penetration distances were found to be higher than previously reported in the literature. This comprehensive depiction of observed lake breezes allows an improved understanding of their influence on the transport, dispersion, and production of pollutants in this region.

    The observational analyses were compared with output from subsequent runs of a high-resolution numerical weather prediction model. The model accurately predicted lake breeze occurrence and type in a variety of synoptic wind regimes, but selected cases showed substantial differences in the detailed timing and location of lake-breeze fronts, and with the initiation of deep moist convection. Knowledge of such strengths and weaknesses aids in the interpretation of results from air quality models driven by this meteorological model.

  17. Lake Morphometry for NHD Lakes in Great Lakes Region 4 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  18. 77 FR 47582 - Great Lakes Pilotage Rates-2013 Annual Review and Adjust; Correction

    Science.gov (United States)

    2012-08-09

    ... SECURITY Coast Guard 46 CFR Part 401 RIN 1625-AB89 Great Lakes Pilotage Rates--2013 Annual Review and..., 2012 (77 FR 45539) proposing rate adjustments for pilotage services on the Great Lakes. The charge rate... email Mr. Todd Haviland, Management & Program Analyst, Office of Great Lakes Pilotage, Commandant (CG...

  19. 77 FR 11752 - 2012 Rates for Pilotage on the Great Lakes

    Science.gov (United States)

    2012-02-28

    ... SECURITY Coast Guard 46 CFR Part 401 RIN 1625-AB70 2012 Rates for Pilotage on the Great Lakes AGENCY: Coast... the Great Lakes, which were last amended in February 2011. The adjustments establish new base rates.... Todd Haviland, Management & Program Analyst, Office of Great Lakes Pilotage, Commandant (CG-5522...

  20. 76 FR 47095 - 2012 Rates for Pilotage on the Great Lakes

    Science.gov (United States)

    2011-08-04

    ... SECURITY Coast Guard 46 CFR Part 401 RIN 1625-AB70 2012 Rates for Pilotage on the Great Lakes AGENCY: Coast... rates for pilotage services on the Great Lakes, which were last amended in February 2011. The proposed.... Todd Haviland, Management & Program Analyst, Office of Great Lakes Pilotage, Commandant (CG-5522...

  1. 76 FR 50713 - 2012 Rates for Pilotage on the Great Lakes

    Science.gov (United States)

    2011-08-16

    ... SECURITY Coast Guard 46 CFR Part 401 RIN 1625-AB70 2012 Rates for Pilotage on the Great Lakes AGENCY: Coast... pilotage on the Great Lakes. This correction provides four rows that were missing from Table 36 in the..., Office of Great Lakes Pilotage, Commandant (CG-5522), Coast Guard; telephone 202-372-2037, e- mail Todd.A...

  2. 46 CFR 195.07-5 - Ocean, coastwise, or Great Lakes service.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ocean, coastwise, or Great Lakes service. 195.07-5 Section 195.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service shall...

  3. 46 CFR 77.07-5 - Ocean, coastwise, or Great Lakes service.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Ocean, coastwise, or Great Lakes service. 77.07-5 Section 77.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS VESSEL..., or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service shall be fitted with...

  4. 78 FR 13521 - Great Lakes Pilotage Rates-2013 Annual Review and Adjustment

    Science.gov (United States)

    2013-02-28

    ... SECURITY Coast Guard 46 CFR Part 401 RIN 1625-AB89 Great Lakes Pilotage Rates--2013 Annual Review and... pilotage services on the Great Lakes, which were last amended in February 2012. The adjustments establish.... Todd Haviland, Director, Great Lakes Pilotage, Commandant (CG-WWM-2), Coast Guard; telephone 202-372...

  5. 46 CFR 117.206 - Survival craft-vessels operating on Great Lakes routes.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Survival craft-vessels operating on Great Lakes routes...—vessels operating on Great Lakes routes. (a) Except as allowed by paragraph (b) of this section, each vessel certificated to operate on a Great Lakes route must be provided with the survival craft required...

  6. 46 CFR 96.07-5 - Ocean, coastwise, or Great Lakes service.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ocean, coastwise, or Great Lakes service. 96.07-5 Section 96.07-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS... Ocean, coastwise, or Great Lakes service. (a) Vessels in ocean, coastwise, or Great Lakes service...

  7. 46 CFR 180.206 - Survival craft-vessels operating on Great Lakes routes.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft-vessels operating on Great Lakes routes... Craft § 180.206 Survival craft—vessels operating on Great Lakes routes. (a) Except as allowed by paragraph (b) of this section, each vessel certificated to operate on a Great Lakes route must be provided...

  8. 46 CFR 46.10-40 - Nonsubmergence subdivision load line (Great Lakes).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Nonsubmergence subdivision load line (Great Lakes). 46.10-40 Section 46.10-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES... (Great Lakes). (a) Passenger vessels on the Great Lakes of 150 gross tons or over shall not submerge the...

  9. 78 FR 11670 - Eastern Great Lakes Area Maritime Security Committee; Vacancies

    Science.gov (United States)

    2013-02-19

    ... SECURITY Coast Guard Eastern Great Lakes Area Maritime Security Committee; Vacancies AGENCY: Coast Guard... the Area Maritime Security Committee, Eastern Great Lakes, and its five regional subcommittees...). AMSC, Eastern Great Lakes Purpose The AMSCs shall assist the Captain of the Port in the development...

  10. 78 FR 58986 - Dry Cargo Residue Discharges in the Great Lakes

    Science.gov (United States)

    2013-09-25

    ... SECURITY Coast Guard 33 CFR Part 151 RIN 1625-AA89 Dry Cargo Residue Discharges in the Great Lakes AGENCY... the Great Lakes. The Coast Guard requests public comment on the FEIS. DATES: Comments and related... associated with a proposed final rule to regulate discharges of dry cargo residue in the Great Lakes. In...

  11. 76 FR 8765 - Eastern Great Lakes Area Maritime Security Committee; Vacancies

    Science.gov (United States)

    2011-02-15

    ... SECURITY Coast Guard Eastern Great Lakes Area Maritime Security Committee; Vacancies AGENCY: Coast Guard... the Area Maritime Security Committee (AMSC), Eastern Great Lakes, and its five regional sub-committees... Eastern Great Lakes and its sub-committees, is controlled by 33 CFR 103.305. Accordingly, members may be...

  12. 77 FR 45539 - Great Lakes Pilotage Rates-2013 Annual Review and Adjustment

    Science.gov (United States)

    2012-08-01

    ...-0409] RIN 1625-AB89 Great Lakes Pilotage Rates--2013 Annual Review and Adjustment AGENCY: Coast Guard... pilotage services on the Great Lakes, which were last amended in February 2012. The proposed adjustments... Haviland, Management & Program Analyst, Office of Great Lakes Pilotage, Commandant (CG-WWM-2), Coast Guard...

  13. 76 FR 79167 - Notice for the Great Lakes and Mississippi River Interbasin Study (GLMRIS)

    Science.gov (United States)

    2011-12-21

    ... ANS transfer between the Great Lakes and Mississippi River basins through aquatic pathways. USACE is... applied to prevent ANS transfer between the Great Lakes and Mississippi River basins through aquatic... Department of the Army Corps of Engineers Notice for the Great Lakes and Mississippi River Interbasin Study...

  14. Ash, Asterionella, and Anglers: A Paleolimnological Approach to Understanding Anthropogenic and Volcanogenic Disturbances in a Small Sub-Alpine Watershed

    Science.gov (United States)

    Howard, K. L.; Noble, P. J.

    2014-12-01

    This poster summarizes geochemical, biological, hydrological, and watershed data that characterize Manzanita Lake, a small sub-alpine catchment in Lassen Volcanic National Park, CA. The future objective is to use characteristics of this system to interpret variations in diatom and sediment composition dating back to the 1914 Mt. Lassen eruption from a recently recovered lake core. Manzanita Lake is a small (0.18 km2) lake with a ~30 km2 watershed area situated on the northwest flank of Mt. Lassen, one of the most active Cascade volcanoes, and is a valuable recreational spot for anglers and visitors. Hydraulic residence time is short; roughly 119 days, and is derived from lake volume (1.0 X 106m3) and estimates of stream inflow (~6 ft3/sec) and outflow (~3 ft3/sec) that were made from May 2014 sampling data. Limnological sampling in 2012-2014 suggests that Manzanita Lake exhibits stable thermal stratification in the summer months, which is unusual given the shallow depth (~10m), but possibly supported by the morphometry of the lake basin and inputs of cold snowmelt from the flank of Lassen Peak. The lake is a moderately conductive (100-114 μS), mesotrophic system with secchi depths ranging from 8m to the bottom (~10m). Total phosphorus (TP) ranges from 15-25 ppb and dissolved inorganic nitrogen (DIN) from 2-15 ppb, with ammonium in the epilimnion being the largest contributor. A high concentration of silica (Si) in surface water inputs (34 mg/L) to Manzanita Lake likely reflects the rhyodacitic bedrock geology and large drainage ratio (164) of the watershed. Variations in Si concentration in the lake seem to be coupled with diatom production. During the sampling period Manzanita Lake is has been dominated by diatom blooms throughout the summer and fall months. There is a seasonal succession in the diatom species present, with abundant Asterionella formosa in the spring, transitioning to abundant Fragilaria crotonensis in the summer months, to a mixed dominance of

  15. Air pollution and environmental justice in the Great Lakes region

    Science.gov (United States)

    Comer, Bryan

    While it is true that air quality has steadily improved in the Great Lakes region, air pollution remains at unhealthy concentrations in many areas. Research suggests that vulnerable and susceptible groups in society -- e.g., minorities, the poor, children, and poorly educated -- are often disproportionately impacted by exposure to environmental hazards, including air pollution. This dissertation explores the relationship between exposure to ambient air pollution (interpolated concentrations of fine particulate matter, PM2.5) and sociodemographic factors (race, housing value, housing status, education, age, and population density) at the Census block-group level in the Great Lakes region of the United States. A relatively novel approach to quantitative environmental justice analysis, geographically weighted regression (GWR), is compared with a simplified approach: ordinary least squares (OLS) regression. While OLS creates one global model to describe the relationship between air pollution exposure and sociodemographic factors, GWR creates many local models (one at each Census block group) that account for local variations in this relationship by allowing the value of regression coefficients to vary over space, overcoming OLS's assumption of homogeneity and spatial independence. Results suggest that GWR can elucidate patterns of potential environmental injustices that OLS models may miss. In fact, GWR results show that the relationship between exposure to ambient air pollution and sociodemographic characteristics is non-stationary and can vary geographically and temporally throughout the Great Lakes region. This suggests that regulators may need to address environmental justice issues at the neighborhood level, while understanding that the severity of environmental injustices can change throughout the year.

  16. Great Salt Lake Microbial Communities: The Foundation of a Terminal Lake Ecosystem

    Science.gov (United States)

    Baxter, B. K.; Acord, M.; Riddle, M. R.; Avery, B.

    2006-12-01

    Great Salt Lake (GSL) is a natural hypersaline ecosystem and a terminal lake of substantial size. The dramatic fluctuation in water levels and salinity creates an ecological backdrop selective for organisms with a high degree of adaptability. At the macro level, the biodiversity of the GSL ecosystem is simple, due to the limitations of an extreme saline environment: Birds eat the two invertebrates of the lake, and the invertebrates eat phytoplankton. However, analysis of the microbial level reveals an enormous diversity of species interacting with one another and the ecosystem as a whole. Our cultivation, biochemical tests, microscopy and DNA sequencing yielded data on dozens of isolates. These data demonstrate novel species, and possibly genera, living in the lake. In addition, we have discovered viruses (bacteriophage) that prey on the microorganisms. Preliminary data on bacteria dwelling in the gut of the brine shrimp, Artemia franciscana, link these prokaryotic organisms to the food chain for the first time. All of these results taken together open the door for the discussion of the significance of the microbial level of terminal lake ecosystem, particularly in light of lake water contamination and bioremediation possibilities.

  17. Ecotoxicology of organochlorine chemicals in birds of the Great Lakes

    Science.gov (United States)

    Tillitt, Donald E.; Giesy, John P.

    2013-01-01

    Silent Spring was fulfilled in the United States with passage of environmental legislation such as the Clean Water Act, the Federal Insecticide, Fungicide, and Rodenticide Act, and the Toxic Substance Control Act in the 1970s. Carson's writings, television interviews, and testimony before Congress alerted a nation and the world to the unintended effects of persistent, bioaccumulative chemicals on populations of fish, wildlife, and possibly humans. Her writings in the popular press brought attention to scientific findings that declines in populations of a variety of birds were directly linked to the widespread use of dichlorodiphenyltrichloroethane (DDT) in agriculture, public health, and horticulture. By the 1970s, DDT and other persistent organic pollutants (POPs) were being banned or phased out, and the intent of these regulatory acts became apparent in a number of locations across the United States, including the Great Lakes. Concentrations of DDT and its major product of transformation, dichlorodiphenylchloroethane (DDE), were decreasing in top predators, such as bald eagles (Haliaeetus leucocephalus), osprey (Pandion haliaetus), colonial waterbirds, and other fish-eating wildlife. Eggshell thinning and the associated mortality of bird embryos caused by DDE had decreased in the Great Lakes and elsewhere by the early 1980s.

  18. Results of a nine year study (1972-80) of the sport fishing exploitation of lake trout (Salvelinus namaycush) on Great Slave and Great Bear lakes, NWT: the nature of the resource and management options

    National Research Council Canada - National Science Library

    Yaremchuk, G.C

    1986-01-01

    Data from creel census, tagging and experimental gillnetting at sport fishing lodges on Great Slave and Great Bear lakes are examined in order to ascertain the status of lake trout stocks in the lakes...

  19. Impacts of Tributaries on Optical Properties and Singlet Oxygen Concentrations in the Great Lakes

    Science.gov (United States)

    The Great Lakes have over 100 tributaries that contribute natural organic matter and othernatural photosensitizers to nearshore sites on the lakes. Absorption of sunlight by thesesensitizers results in indirect (sensitized) photoreactions of the widespread chemical andbiological ...

  20. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes. ...

  1. Glial cell biology in the Great Lakes region.

    Science.gov (United States)

    Feinstein, Douglas L; Skoff, Robert P

    2016-03-31

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration.

  2. 33 CFR 334.830 - Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill.

    Science.gov (United States)

    2010-07-01

    ... adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill... section shall be enforced by the Commander, U.S. Naval Training Center, Great Lakes, Illinois, and such...

  3. Ecological assessment of Great Lota Lake (Turkey) on the base of ...

    African Journals Online (AJOL)

    The diatoms are very important component for aquatic ecosystems. Turkey has a rich lake potential and many of the lakes have high level of endemism. For this reason, the Great Lota Lake was investigated between October 2000 and October 2001 in sampling periods of approximately per 15 days from one station. Totally ...

  4. The Lake Drummond Cypress Tree Great Dismal Swamp

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a report that outlines a correlation between the number of rings of a Cypress tree on Lake Drummond and lake levels. The author researched information dating...

  5. Meteotsunamis in the Great Lakes and Investigation into the May 27, 2012 Event on Lake Erie

    Science.gov (United States)

    Anderson, E. J.; Bechle, A.; Wu, C. H.; Schwab, D. J.; Mann, G.

    2016-02-01

    Meteotsunami events have been documented in several countries around the world in the coastal ocean, semi-enclosed basins, and in the Great Lakes. In particular, investigations in the Great Lakes have raised the issue of dangers posed by enclosed basins due to the reflection and interaction of meteotsunami waves, in which the destructive waves can arrive several hours after the atmospheric disturbance has passed. This disassociation in time and space between the atmospheric disturbance and resultant meteotsunami wave can pose a significant threat to the public. In a recent event on May 27, 2012, atmospheric conditions gave rise to two convective systems that generated a series of waves in the meteotsunami band on Lake Erie. The resulting waves swept three swimmers a half-mile offshore, inundated a marina, and may have led to a capsized boat along the southern shoreline. Examination of the observed conditions shows that these events occurred at a time between the arrivals of these two storm systems when atmospheric conditions were relatively calm but water level displacements were at their greatest. In this work, we attempt to explain the processes that led to these conditions through a combination of atmospheric and hydrodynamic modeling and an analysis of the observed radial velocities associated with the meteotsunami-inducing front. Results from a high-resolution atmospheric model and hydrodynamic model reveal that the formation of these destructive waves resulted from a combination of wave reflection, focusing, and edge waves that impacted the southern shore of Lake Erie. This event illustrates the unique danger posed by temporal lags between the inducing atmospheric conditions and resulting dangerous nearshore wave conditions.

  6. The Great Lake Erie: A Reference Text for Educators and Communicators.

    Science.gov (United States)

    Fortner, Rosanne W., Ed.; Mayer, Victor J., Ed.

    This volume of 16 chapters by 15 contributing authors was conceived as a means of drawing together a body of basic information about the Great Lakes that is up to date, based on sound research, and interpreted by experts in the scientific, historical, environmental and political value of the Great Lakes to North America and the world. Chapters…

  7. Hydrologic, land cover and seasonal patterns of waterborne pathogens in great lakes tributaries

    Science.gov (United States)

    Great Lakes tributaries deliver waterborne pathogens from a host of sources. To examine the hydrologic, land cover, and seasonal variability of waterborne pathogens, protozoa (2), pathogenic bacteria (4) and human (8) and bovine (8) viruses from eight rivers were monitored in the Great Lakes watersh...

  8. 3 CFR - National Policy for the Oceans, Our Coasts, and the Great Lakes

    Science.gov (United States)

    2010-01-01

    ... and Agencies The oceans, our coasts, and the Great Lakes provide jobs, food, energy resources... transportation, economy, and trade, as well as the global mobility of our Armed Forces and the maintenance of... Great Lakes ecosystems and resources, enhances the sustainability of ocean and coastal economies...

  9. 77 FR 58204 - International Joint Commission Invites Public Comment on Upper Great Lakes Report via...

    Science.gov (United States)

    2012-09-19

    ... International Joint Commission Invites Public Comment on Upper Great Lakes Report via Teleconference and Extends Public Comment Period The International Joint Commission (IJC) announced that it is holding a teleconference to invite public comment on the final report of its International Upper Great Lakes Study Board...

  10. TRADABLE RISK PERMITS TO PREVENT FUTURE INTRODUCTIONS OF ALIEN INVASIVE SPECIES INTO THE GREAT LAKES

    OpenAIRE

    Horan, Richard D.; Lupi, Frank

    2003-01-01

    Alien invasive species contribute to biodiversity loss and cause billions of dollars of economic damage in the Great Lakes. We examine the design and efficiency of a tradeable permit system for biological pollution due to alien species that invade the Great Lakes through the ballast water of commercial ships.

  11. The use of ERTS-1 imagery in air pollution and mesometeorological studies around the Great Lakes

    Science.gov (United States)

    Lyons, W. A.; Northouse, R. A.

    1974-01-01

    ERTS-1 images continue to be highly useful in studies of: (1) long range transport of air pollutants over the Great Lakes; (2) the mesoscale atmospheric dynamics associated with episodic levels of photochemical smog along the western shore of Lake Michigan; and (3) inadvertant weather modification by large industrial complexes. Also unusual wave patterns in fogs and low stratus over the Great Lakes are being detected for the first time due to the satellites high resolution.

  12. Summary appraisals of the Nation's ground-water resources; Great Lakes region

    Science.gov (United States)

    Weist, William G.

    1978-01-01

    The Great Lakes Regions, as a whole, has abundant supplies of water. Nearly 805,000 billion cubic feet of water is contained in the Great Lakes. An additional 35,000 billion cubic feet of potable ground water is available from storage in the region. Estimated ground-water discharge to the streams and lakes of the region is 26 billion gallons per day.

  13. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes?

    OpenAIRE

    Peng Lin; Laodong Guo

    2016-01-01

    The Laurentian Great Lakes have experienced unprecedented ecological and environmental changes, especially after the introduction of invasive quagga mussel (Dreissena rostriformis bugensis). While impacts on ecological functions have been widely recognized, the response of carbon dynamics to invasive species remains largely unknown. We report new CO2 data showing significant increases in pCO2 (up to 800??atm in Lake Michigan) and CO2 emission fluxes in most of the Great Lakes compared to thos...

  14. Feasibility study of a Great Lakes bioenergy system.

    Science.gov (United States)

    Hacatoglu, Kevork; McLellan, P James; Layzell, David B

    2011-01-01

    A bioenergy production and delivery system built around the Great Lakes St. Lawrence Seaway (GLSLS) transportation corridor was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of the GLSLS and associated railway lines was estimated to be capable of producing at least 30 Mt(dry) yr(-1) of lignocellulosic biomass with minimal adverse impacts on food and fibre production. This was estimated to be sufficient to displace all of the coal-fired electricity in Ontario plus more than 620 million L of green diesel (equivalent to 5.3% of diesel consumption in GLSLS provinces). Lifecycle greenhouse gas emissions were 88% and 76% lower than coal-fired power and conventional diesel, respectively. Production costs of $120 MWh(-1) for power and up to $30 GJ(-1) ($1.1 L(-1)) for green diesel were higher than current market prices, but a value for low-carbon energy would narrow the price differential. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Genetic population structure of muskellunge in the Great Lakes

    Science.gov (United States)

    Kapuscinski, Kevin L.; Sloss, Brian L.; Farrell, John M.

    2013-01-01

    We quantified genetic relationships among Muskellunge Esox masquinongy from 15 locations in the Great Lakes to determine the extent and distribution of measurable population structure and to identify appropriate spatial scales for fishery management and genetic conservation. We hypothesized that Muskellunge from each area represented genetically distinct populations, which would be evident from analyses of genotype data. A total of 691 Muskellunge were sampled (n = 10–127/site) and genetic data were collected at 13 microsatellite loci. Results from a suite of analyses (including pairwise genetic differentiation, Bayesian admixture prediction, analysis of molecular variance, and tests of isolation by distance) indicated the presence of nine distinct genetic groups, including two that were approximately 50 km apart. Geographic proximity and low habitat complexity seemed to facilitate genetic similarity among areas, whereas Muskellunge from areas of greater habitat heterogeneity exhibited high differentiation. Muskellunge from most areas contained private alleles, and mean within-area genetic variation was similar to that reported for other freshwater fishes. Management programs aimed at conserving the broader diversity and long-term sustainability of Muskellunge could benefit by considering the genetically distinct groups as independent fisheries, and individual spawning and nursery habitats could subsequently be protected to conserve the evolutionary potential of Muskellunge.

  16. Geographic setting influences Great Lakes beach microbiological water quality

    Science.gov (United States)

    Haack, Sheridan K.; Fogarty, Lisa R.; Stelzer, Erin A.; Fuller, Lori M.; Brennan, Angela K.; Isaacs, Natasha M.; Johnson, Heather E.

    2013-01-01

    Understanding of factors that influence Escherichia coli (EC) and enterococci (ENT) concentrations, pathogen occurrence, and microbial sources at Great Lakes beaches comes largely from individual beach studies. Using 12 representative beaches, we tested enrichment cultures from 273 beach water and 22 tributary samples for EC, ENT, and genes indicating the bacterial pathogens Shiga-toxin producing E. coli (STEC), Shigella spp., Salmonella spp, Campylobacter jejuni/coli, and methicillin-resistant Staphylococcus aureus, and 108–145 samples for Bacteroides human, ruminant, and gull source-marker genes. EC/ENT temporal patterns, general Bacteroides concentration, and pathogen types and occurrence were regionally consistent (up to 40 km), but beach catchment variables (drains/creeks, impervious surface, urban land cover) influenced exceedances of EC/ENT standards and detections of Salmonella and STEC. Pathogen detections were more numerous when the EC/ENT Beach Action Value (but not when the Geometric Mean and Statistical Threshold Value) was exceeded. EC, ENT, and pathogens were not necessarily influenced by the same variables. Multiple Bacteroides sources, varying by date, occurred at every beach. Study of multiple beaches in different geographic settings provided new insights on the contrasting influences of regional and local variables, and a broader-scale perspective, on significance of EC/ENT exceedances, bacterial sources, and pathogen occurrence.

  17. Coastal groundwater/surface-water interactions: a Great Lakes case study

    Science.gov (United States)

    Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2006-01-01

    Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.

  18. Modeling five Great Lakes ice-circulation system using an unstructured-grid coupled model

    Science.gov (United States)

    Wang, J.

    2016-02-01

    An unstructured Finite Volume Coastal Ocean Model was modified by replacing the Euler forward scheme with the centered differencing scheme, and applied to all five Great Lakes simultaneously to simulate circulation and thermal structure from 1993 to 2008. Model results are compared to available observations of currents and temperature and previous modeling work. Maps of climatological circulation for all the five Great lakes were presented. Winter currents show a two-gyre type circulation Lakes Ontario and Erie and one large-scale cyclonic circulation in Lakes Michigan, Huron, and Superior. During the summer, a cyclonic circulation remains in Lakes Superior; a primarily cyclonic circulation dominates the upper and central Lake Huron; Lake Ontario turns to have a single cyclonic circulation, while circulation in the central basin of Lake Erie remains two-gyre type; Lake Michigan has a cyclonic gyre in the north and an anti-cyclonic one in the south. The temperature profile during the summer is well simulated when a surface wind-wave mixing scheme is included in the model. Main features of the seasonal evolution of water temperature, such as reverse stratification during the winter, the spring and autumn overturn, the thermal bar, and the stratification during summer are well reproduced. The lakes exhibit significant annual and interannual variations in current speed and temperature. The model successfully reproduced seasonal cycle of lake ice cover, the lake-wide mean surface temperature and lake circulation.

  19. Brine Shrimp Ecology In The Great Salt Lake, Utah

    OpenAIRE

    Wurtsbaugh, Wayne A.

    1995-01-01

    Hypersaline lakes are noted for their simple communities which facilitate understanding ecological interactions (Williams et al. 1990; Wurtsbaugh 1992; Jellison and Melack 1988). Nevertheless, we still cannot easily predict how environmental changes will effect the population dynamics in these lakes, at least in part because even these simple ecosystems may be more complex than we .realize. Many hypersaline lakes are dominated by the brine shrimp Artemia spp. The production of brine shrimp is...

  20. How Do Changes to the Railroad Causeway in Utah's Great Salt Lake Affect Water and Salt Flow?: e0144111

    National Research Council Canada - National Science Library

    James S White; Sarah E Null; David G Tarboton

    2015-01-01

      Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah's Great Salt Lake...

  1. The Oligochaeta (Annelida, Clitellata) of the St. Lawrence Great Lakes region: An update

    Science.gov (United States)

    Spencer, Douglas R.; Hudson, Patrick L.

    2003-01-01

    An updated oligochaete species list for the Great Lakes region is provided. The list was developed through the reexamination of the taxa reported in a previous report in 1980, addition of new taxa or records collected from the region since 1980, and an update of taxonomy commensurate with systematic and nomenclatural changes over the intervening years since the last review. The authors found 74 papers mentioning Great Lakes oligochaete species. The majority of these papers were published in the 1980s. The literature review and additional collections resulted in 15 species being added to the previous list. Nine taxa were removed from the previous list due to misidentification, synonymies, level of identification, or inability to confirm the identity. Based on this review, 101 species of Oligochaeta are now known from the St. Lawrence Great Lakes watershed. Of these, 95 species are known from the St. Lawrence Great Lakes proper, with an additional 6 species recorded from the inland waters of the watershed. The greatest diversity of oligochaete species was found in the inland waters of the region (81) followed by Lake Huron (72), Lake Ontario (65), Lake Erie (64), Lake Superior (63), Lake Michigan (62), St. Marys River (60), Niagara River (49), Saginaw Bay (44), St. Clair River (37), Lake St. Clair (36), St. Lawrence River (27), and the Detroit River (21). Three species are suspected of being introduced, Branchiura sowerbyi, Gianius aquaedulcisand Ripistes parasita, and two are believed to be endemic, Thalassodrilus hallae andTeneridrilus flexus.

  2. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes?

    Science.gov (United States)

    Lin, Peng; Guo, Laodong

    2016-01-01

    The Laurentian Great Lakes have experienced unprecedented ecological and environmental changes, especially after the introduction of invasive quagga mussel (Dreissena rostriformis bugensis). While impacts on ecological functions have been widely recognized, the response of carbon dynamics to invasive species remains largely unknown. We report new CO2 data showing significant increases in pCO2 (up to 800 μatm in Lake Michigan) and CO2 emission fluxes in most of the Great Lakes compared to those prior to or during the early stage of the colonization of invasive quagga mussels. The increased CO2 supersaturation is most prominent in Lakes Huron and Michigan, followed by Lakes Ontario and Erie, but no evident change was observed in Lake Superior. This trend mirrors the infestation extent of invasive quagga mussels in the Great Lakes and is consistent with the decline in primary production and increase in water clarity observed pre- and post-Dreissena introduction, revealing a close linkage between invasive species and carbon dynamics. The Great Lakes have become a significant CO2 source to the atmosphere, emitting >7.7 ± 1.0 Tg-C annually, which is higher than the organic carbon burial rate in global inland-seas and attesting to the significant role of the Laurentian Great Lakes in regional/global CO2 budget and cycling. PMID:27996017

  3. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes?

    Science.gov (United States)

    Lin, Peng; Guo, Laodong

    2016-12-01

    The Laurentian Great Lakes have experienced unprecedented ecological and environmental changes, especially after the introduction of invasive quagga mussel (Dreissena rostriformis bugensis). While impacts on ecological functions have been widely recognized, the response of carbon dynamics to invasive species remains largely unknown. We report new CO2 data showing significant increases in pCO2 (up to 800 μatm in Lake Michigan) and CO2 emission fluxes in most of the Great Lakes compared to those prior to or during the early stage of the colonization of invasive quagga mussels. The increased CO2 supersaturation is most prominent in Lakes Huron and Michigan, followed by Lakes Ontario and Erie, but no evident change was observed in Lake Superior. This trend mirrors the infestation extent of invasive quagga mussels in the Great Lakes and is consistent with the decline in primary production and increase in water clarity observed pre- and post-Dreissena introduction, revealing a close linkage between invasive species and carbon dynamics. The Great Lakes have become a significant CO2 source to the atmosphere, emitting >7.7 ± 1.0 Tg-C annually, which is higher than the organic carbon burial rate in global inland-seas and attesting to the significant role of the Laurentian Great Lakes in regional/global CO2 budget and cycling.

  4. Dynamical Downscaling over the Great Lakes Basin of North America using the WRF Regional Climate Model: The impact of the Great Lakes system on regional greenhouse warming

    Science.gov (United States)

    Gula, J.; Peltier, W. R.

    2011-12-01

    In this study we investigate the regional climate changes to be expected over the Great Lakes Basin of North America during the next century. Large freshwater systems, such as the Great Lakes, play a key role in determining the climate of their basins and adjacent regions by air mass modification through the exchange of heat and moisture with the atmosphere. Even systems as extensive as the Great Lakes are unresolved in coarse resolution global climate simulations but may be accurately captured in finer-mesh regional simulations by dynamical downscaling. Historical (1979-2001) and future (2050-2060 and 2090-2100) conditions are simulated using the Weather Research and Forecasting model (WRF) forced by CCSM3 global simulations. Our analyses are based upon the IPCC SRES A2 and A1B emissions scenarios. A two-step nesting procedure is employed for the purpose of downscaling, in which the first nested WRF model is of North American continental scale at 30 km resolution, whereas the innermost domain at 10 km resolution covers the Great Lakes Basin and the Canadian Province of Ontario. The differences in extreme temperature and precipitation events delivered by the different scales of simulation are discussed. As the WRF model does not currently have an explicit lake component, lake ice and lake surface temperature need to be prescribed in the model. A first set of simulations is performed using climatological 1979-2001) data for lake ice and lake surface temperature. A second set is performed using outputs from the freshwater lake model "FLake" (Mironov, D. V., 2008, COSMO Technical Report, No. 11, Deutscher Wetterdienst, Offenbach am Main, Germany) forced by atmospheric fields from the global simulations. A third set is performed using an interactive coupling of the lake model FLake with the regional model WRF. Changes in surface temperatures and ice cover, and especially ice-out dates, for the Great Lakes under future atmospheric conditions are discussed. The trends in

  5. Wolves in the Great Lakes region: a phylogeographic puzzle.

    Science.gov (United States)

    Randi, Ettore

    2010-10-01

    Empirical studies demonstrate that natural hybridization in animals is more common than thought so far (Mallet 2005), particularly among species that originated recently through cycles of population contraction-expansion arising from climate changes over the last glacial period, the Pleistocene. In addition, the post-glacial global growth of human populations has fostered anthropogenic hybridization events, mediated by habitat changes, the persecution of large predators and the introduction of alien species (Allendorf et al. 2001). The Canis lineage shows cases of both natural and anthropogenic hybridization, exacerbating the controversy about the number of species that should be formally validated in the taxonomic lists, the evolutionary role of genetic introgression and the ways to manage hybrids with invading wild or domesticated populations. The study by Wheeldon et al. (2010), published in this issue of Molecular Ecology, adds a new piece to the intricate puzzle of evolution and taxonomy of Canis in North America. They show that sympatric wolves (C. lupus) and coyotes (C. latrans) are not (extensively) hybridizing in the western North American Great Lakes region (GLR). Widespread hybridization between coyotes and a genetically distinct, but closely related, wolf-like population (the eastern wolf) occurred in the northeastern regions of North America. In Wheeldon et al.'s (2010) opinion, these data should prove definitely that two different species of wolf (the western gray wolf C. lupus and the eastern wolf C. lycaon) and their hybrids are distributed across the GLR. © 2010 Blackwell Publishing Ltd.

  6. Mechanisms driving recruitment variability in fish: comparisons between the Laurentian Great Lakes and marine systems

    Science.gov (United States)

    Pritt, Jeremy J.; Roseman, Edward F.; O'Brien, Timothy P.

    2014-01-01

    In his seminal work, Hjort (in Fluctuations in the great fisheries of Northern Europe. Conseil Parmanent International Pour L'Exploration De La Mar. Rapports et Proces-Verbaux, 20: 1–228, 1914) observed that fish population levels fluctuated widely, year-class strength was set early in life, and egg production by adults could not alone explain variability in year-class strength. These observations laid the foundation for hypotheses on mechanisms driving recruitment variability in marine systems. More recently, researchers have sought to explain year-class strength of important fish in the Laurentian Great Lakes and some of the hypotheses developed for marine fisheries have been transferred to Great Lakes fish. We conducted a literature review to determine the applicability of marine recruitment hypotheses to Great Lakes fish. We found that temperature, interspecific interactions, and spawner effects (abundance, age, and condition of adults) were the most important factors in explaining recruitment variability in Great Lakes fish, whereas relatively fewer studies identified bottom-up trophodynamic factors or hydrodynamic factors as important. Next, we compared recruitment between Great Lakes and Baltic Sea fish populations and found no statistical difference in factors driving recruitment between the two systems, indicating that recruitment hypotheses may often be transferable between Great Lakes and marine systems. Many recruitment hypotheses developed for marine fish have yet to be applied to Great Lakes fish. We suggest that future research on recruitment in the Great Lakes should focus on forecasting the effects of climate change and invasive species. Further, because the Great Lakes are smaller and more enclosed than marine systems, and have abundant fishery-independent data, they are excellent candidates for future hypothesis testing on recruitment in fish.

  7. Winter 1994 Weather and Ice Conditions for the Laurentian Great Lakes.

    Science.gov (United States)

    Assel, Raymond A.; Janowiak, John E.; Young, Sharolyn; Boyce, Daron

    1996-01-01

    The Laurentian Great Lakes developed their most extensive ice cover in over a decade during winter 1994 [December-February 1993/94 (DJF 94)]. Extensive midlake ice formation started the second half of January, about 2 weeks earlier than normal. Seasonal maximal ice extent occurred in early February, again about 2 weeks earlier than normal. Winter 1994 maximum (normal) ice coverages on the Great Lakes are Lake Superior 96% (75%), Lake Michigan 78% (45%), Lake Huron 95% (68%), Lake Erie 97% (90%), and Lake Ontario 67% (24%). Relative to the prior 31 winters (1963-93), the extent of seasonal maximal ice cover for winter 1994 for the Great Lakes taken as a unit is exceeded by only one other winter (1979); however, other winters for individual Great Lakes had similar maximal ice covers.Anomalously strong anticyclonic circulation over the central North Pacific (extending to the North Pole) and an abnormally strong polar vortex centered over northern Hudson Bay combined to produce a circulation pattern that brought frequent air masses of Arctic and polar origin to the eastern third of North America. New records were set for minimum temperatures on 19 January 1994 at many locations in the Great Lakes region. A winter severity index consisting of the average November-February air temperatures averaged over four sites on the perimeter of the Great Lakes (Duluth, Minnesota; Sault Ste. Marie, Michigan; Detroit, Michigan; and Buffalo, New York) indicates that winter 1994 was the 21st coldest since 1779. The unseasonably cold air temperatures produced much-above-normal ice cover over the Great Lakes and created problems for lake shipping. Numerous fatalities and injuries were attributed to the winter weather, which included several ice and snow storms. The much-below-normal air temperatures resulted in enhanced lake-effect snowfall along downwind lake shores, particularly during early to midwinter, prior to extensive ice formation in deeper lake areas. The low air temperatures

  8. Climate change projections for lake whitefish (Coregonus clupeaformis) recruitment in the 1836 Treaty Waters of the Upper Great Lakes

    Science.gov (United States)

    Lynch, Abigail J.; Taylor, William W.; Beard, T. Douglas; Lofgren, Brent M.

    2015-01-01

    Lake whitefish (Coregonus clupeaformis) is an ecologically, culturally, and economically important species in the Laurentian Great Lakes. Lake whitefish have been a staple food source for thousands of years and, since 1980, have supported the most economically valuable (annual catch value ≈ US$16.6 million) and productive (annual harvest ≈ 7 million kg) commercial fishery in the upper Great Lakes (Lakes Huron, Michigan, and Superior). Climate changes, specifically changes in temperature, wind, and ice cover, are expected to impact the ecology, production dynamics, and value of this fishery because the success of recruitment to the fishery has been linked with these climatic variables. We used linear regression to determine the relationship between fall and spring air temperature indices, fall wind speed, winter ice cover, and lake whitefish recruitment in 13 management units located in the 1836 Treaty Waters of the Upper Great Lakes ceded by the Ottawa and Chippewa nations, a culturally and commercially important region for the lake whitefish fishery. In eight of the 13 management units evaluated, models including one or more climate variables (temperature, wind, ice cover) explained significantly more variation in recruitment than models with only the stock–recruitment relationship, using corrected Akaike's Information Criterion comparisons (ΔAICc > 3). Isolating the climate–recruitment relationship and projecting recruitment with the Coupled Hydrosphere-Atmosphere Research Model (CHARM) indicated the potential for increased lake whitefish recruitment in the majority of the 1836 Treaty Waters management units. These results can inform adaptive management strategies by providing anticipated implications of climate on lake whitefish recruitment.

  9. Historical and contemporary trophic niche partitioning among Laurentian Great Lakes coregonines.

    Science.gov (United States)

    Schmidt, Stephanie N; Harvey, Chris J; Vander Zanden, M Jake

    2011-04-01

    Anthropogenic activities have significantly altered freshwater fish communities. Extirpations of deepwater coregonines (Coregonus spp.), a diverse group of fish species, have left vast areas of the Laurentian Great Lakes devoid of a deepwater fish community. Currently, fisheries managers are considering restoring populations by reintroducing deepwater coregonines from Lake Superior and Lake Nipigon. However, little is known about the historical ecology of deepwater coregonines, and species characterization has proved difficult. We used stable isotope analysis of museum-preserved and contemporary specimens to investigate if (1) coregonine species historically occupied distinct niches and (2) the pattern of trophic niche partitioning has changed over the last century. Across all lakes, individual species occupied distinct trophic niches, confirming that these species were ecologically distinct. Understanding trophic niche partitioning helps resolve uncertainty about distinctness of species within and across lakes and may provide a better ecological basis for rehabilitation of Great Lakes food webs and ecosystems.

  10. Influence of groundwater-lake interactions on the subsurface mobility of arsenic at beaches of the Great Lakes

    Science.gov (United States)

    Robinson, C. E.; Lee, J.; Malott, S.; Guo, D.

    2013-12-01

    The role of groundwater-lake interactions in the cycling of trace elements is not well understood in the Great Lakes environment. This paper presents field measurements and numerical modeling that provide insight into the geochemical conditions and groundwater flows controlling the accumulation and mobility of arsenic in permeable nearshore aquifers and its potential discharge to the Great Lakes. Field data were collected via shore-normal monitoring transects installed at beach sites on Lake Erie and Lake Ontario. Detailed pore water chemistry analyses revealed elevated arsenic (up to 0.056 mg/L) 1 - 2 m below the shoreline at all beach sites. The groundwater discharge flux was also highest at the shoreline at all sites. The distributions of species in the aqueous and sedimentary phases suggest that arsenic mobility is strongly linked with iron redox cycling. A layer of iron (hydr)oxides was present at the sediment-water interface near the shoreline and this layer may be accumulating arsenic and preventing its release to nearshore waters. Numerical modeling combined with field measurements indicate that wave-induced recirculation across the aquifer-lake interface can be significant and this recirculation may set up the redox gradient that causes iron (hydr)oxides to precipitate below the shoreline. Although widespread across multiple beach sites, the source of arsenic remains unknown. If naturally occurring, however, the accumulation of arsenic in beach aquifers may have important implications for arsenic cycling in the Great Lakes particularly as changing lake hydraulic conditions may lead to the release and subsequent discharge of arsenic to nearshore waters. The interacting nearshore geochemical and hydrological processes examined are pertinent to quantifying the flux of other chemicals (e.g., nitrate, ammonium, phosphorous) to the Great Lakes via the groundwater pathway.

  11. Great Lakes restoration success through science: U.S. Geological Survey accomplishments 2010 through 2013

    Science.gov (United States)

    ,

    2014-01-01

    The Great Lakes (Superior, Michigan, Huron, Erie, and Ontario) are the largest group of freshwater lakes on Earth and serve as an important source of drinking water, transportation, power, and recreational opportunities for the United States and Canada. They also support an abundant commercial and recreational fishery, are crucial for agriculture, and are essential to the economic vitality of the region. The Great Lakes support a wealth of biological diversity, including over 200 globally rare plants and animals and more than 40 species that are found nowhere else in the world. However, more than a century of environmental degradation has taken a substantial toll on the Great Lakes. To stimulate and promote the goal of a healthy Great Lakes region, President Obama and Congress created the Great Lakes Restoration Initiative (GLRI) in 2009. The GLRI is an interagency collaboration that seeks to address the most significant environmental problems in the Great Lakes ecosystem. The GLRI is composed of five focus areas that address these issues: Cleaning up toxic substances and Areas of Concern,

  12. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    Science.gov (United States)

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  13. 76 FR 8353 - Notice of Information for Additional NEPA Public Scoping Meetings for the Great Lakes and...

    Science.gov (United States)

    2011-02-14

    ... for the Great Lakes and Mississippi River Interbasin Study (``GLMRIS'') AGENCY: Department of the Army... the Great Lakes and Mississippi River basins through aquatic pathways. DATES: USACE will be accepting... between the Great Lakes and Mississippi River basins; and (2) other aquatic pathways between these basins...

  14. 8 CFR 252.3 - Great Lakes vessels and tugboats arriving in the United States from Canada; special procedures.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Great Lakes vessels and tugboats arriving... DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS LANDING OF ALIEN CREWMEN § 252.3 Great Lakes vessels... and tugboats. An immigration examination shall not be required of any crewman aboard a Great Lakes...

  15. 77 FR 38043 - Great Lakes Hydro America, LLC; Notice of Application Accepted for Filing and Soliciting Comments...

    Science.gov (United States)

    2012-06-26

    ... Energy Regulatory Commission Great Lakes Hydro America, LLC; Notice of Application Accepted for Filing.... Applicant: Great Lakes Hydro America, LLC. e. Name of Project: Penobscot Mills. f. Location: North Twin.... h. Applicant Contact: Kevin Bernier, Manager, Licensing and Compliance, ] Great Lakes Hydro America...

  16. 78 FR 26768 - Great Lakes Hydro America, LLC; Notice of Intent To File License Application, Filing of Pre...

    Science.gov (United States)

    2013-05-08

    ... Energy Regulatory Commission Great Lakes Hydro America, LLC; Notice of Intent To File License Application...-filing Process. b. Project No.: 2520-072. c. Dated Filed: March 1, 2013. d. Submitted By: Great Lakes... designating Great Lakes Hydro America, LLC as the Commission's non-federal representative for carrying out...

  17. 78 FR 16287 - Great Lakes Islands Refuges, MI and WI; Final Comprehensive Conservation Plan and Finding of No...

    Science.gov (United States)

    2013-03-14

    ... Fish and Wildlife Service Great Lakes Islands Refuges, MI and WI; Final Comprehensive Conservation Plan... Island, Huron, and Michigan Islands National Wildlife Refuges (Great Lakes Islands Refuges). In this.../GreatLakesIslands/index.html . A limited number of hard copies and CD-ROMs are available. You may...

  18. Biology and status of the shortnose cisco Coregonus reighardi Koelz in the Laurentian Great Lakes

    Science.gov (United States)

    Webb, Shane A.; Todd, Thomas N.

    1995-01-01

    The shortnose cisco, Coregonus reighardi, a member of the endemic species assemblage of Coregoninae in the Laurentian Great Lakes, was commercially important until overfishing and competition pressures from induced planktivores extirpated the species in Lakes Michigan and Ontario. Spawning shortnose ciscoes have been collected from Lake Huron and Georgian Bay of Lake Huron since 1956, however, no individuals have been collected from these habitats since 1985. Shortnose ciscoes were not collected during surveys of the cisco fishery of Georgian Bay during the summer of 1992 and spring of 1993. The lack of captures in the last eight years coupled with captures of only lone individuals in the last 16 years suggests the species may be extinct in all of the Laurentian system. The life history traits examined for Lake Huron shortnose ciscoes were similar to the conditions recorded for Lake Michigan and Ontario shortnose ciscoes, although Lake Huron fish were smaller.

  19. Diatoms (Bacillariophyceae from the Valley of the Great Lakes in Western Mongolia

    Directory of Open Access Journals (Sweden)

    Mark B. Edlund

    2010-06-01

    Full Text Available T he Valley of the Great Lakes (VOGL in western Mongolia is dominated by two main (Uvs, Khyargas and many minor closed basin lake systems. In 2004 and 2005, we sampled diatom communities from the surfi cial sediment of 64 lakes in the western Mongolian provinces of Uvs, Khovd, Zavkhan, and Bayan-Ulgii. Lakes ranged in water chemistry from fresh to hypersaline, oligotrophic to hypertrophic, and from low elevation VOGL lakes to high elevation lakes in the Altai Mountains. Over 300 diatom species were identifi ed in the sediment samples including a diverse fl ora limited to saline lakes, many widespread taxa, many new reports for the Mongolian diatom fl ora, and several new and possibly endemic species. We also review recent diatom literature from Mongolia including fl oristic surveys, paleo-ecology, and water quality studies.

  20. New insight into the spawning behavior of lake trout, Salvelinus namaycush, from a recovering population in the Laurentian Great Lakes

    Science.gov (United States)

    Binder, Thomas R.; Thompson, Henry T.; Muir, Andrew M.; Riley, Stephen C.; Marsden, J. Ellen; Bronte, Charles R.; Krueger, Charles C.

    2015-01-01

    Spawning behavior of lake trout, Salvelinus namaycush, is poorly understood, relative to stream-dwelling salmonines. Underwater video records of spawning in a recovering population from the Drummond Island Refuge (Lake Huron) represent the first reported direct observations of lake trout spawning in the Laurentian Great Lakes. These observations provide new insight into lake trout spawning behavior and expand the current conceptual model. Lake trout spawning consisted of at least four distinct behaviors: hovering, traveling, sinking, and gamete release. Hovering is a new courtship behavior that has not been previously described. The apparent concentration of hovering near the margin of the spawning grounds suggests that courtship and mate selection might be isolated from the spawning act (i.e., traveling, sinking, and gamete release). Moreover, we interpret jockeying for position displayed by males during traveling as a unique form of male-male competition that likely evolved in concert with the switch from redd-building to itinerant spawning in lake trout. Unlike previous models, which suggested that intra-sexual competition and mate selection do not occur in lake trout, our model includes both and is therefore consistent with evolutionary theory, given that the sex ratio on spawning grounds is skewed heavily towards males. The model presented in this paper is intended as a working hypothesis, and further revision may become necessary as we gain a more complete understanding of lake trout spawning behavior.

  1. Tree-ring reconstruction of the level of Great Salt Lake, USA

    Science.gov (United States)

    R. Justin DeRose; Shih-Yu Wang; Brendan M. Buckley; Matthew F. Bekker

    2014-01-01

    Utah's Great Salt Lake (GSL) is a closed-basin remnant of the larger Pleistocene-age Lake Bonneville. The modern instrumental record of the GSL-level (i.e. elevation) change is strongly modulated by Pacific Ocean coupled ocean/atmospheric oscillations at low frequency, and therefore reflects the decadalscale wet/dry cycles that characterize the region. A within-...

  2. 2010 Great Lakes Human Health Fish Tissue Study Fish Tissue Data Dictionary

    Science.gov (United States)

    The Office of Science and Technology (OST) is providing the fish tissue results from the 2010 Great Lakes Human Health Fish Tissue Study (GLHHFTS). This document includes the “data dictionary” for Mercury, PFC, PBDE and PCBs.

  3. Materials for Public Listening Session - Stakeholder Input on Public Notice for CSOs in the Great Lakes

    Science.gov (United States)

    Materials for the Public Listening Session on September 14, 2016, to obtain information from the public to help inform development of a new regulation establishing requirements for public notification of CSO discharges in the Great Lakes.

  4. Great Lakes Surface Ice Reports from U.S. Coast Guard

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data consist of ice observations from U.S. Coast Guard vessels operating on the Great Lakes, and from Coast Guard shore stations reported via teletype messages and...

  5. 2016 RFA for Great Lakes Long-Term Biology Monitoring Program: Phytoplankton Component

    Science.gov (United States)

    This Request for Applications solicits applications from eligible entities for a cooperative agreement to be awarded for a project to continue the long-term monitoring of phytoplankton in the open waters of the Great Lakes.

  6. Zebra Mussels as Biomonitoring for Organic Contaminants in the Lower Great Lakes

    National Research Council Canada - National Science Library

    Comba, Michael E; Metcalfe-Smith, J. L; Kaiser, Klaus L. E

    1996-01-01

    The purpose of this study was to contribute to the growing data base on the distributions and levels of orgnaic contaminants in zebra mussels throughout the Great Lakes and to address several issues...

  7. Environmental Sensitivity Index (ESI) Atlas: Great Lakes, 1995-1998 (NODC Accession 0013820)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) maps in .PDF format for the following Great Lakes and associated waterways: north, east, and west...

  8. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    Science.gov (United States)

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  9. An Electronic Atlas of Great Lakes Ice Cover, Winters 1973-2002

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is distributed by the National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research Laboratory (GLERL). The atlas contains...

  10. Patterns in Habitat and Fish Assemblages within Great Lakes Coastal Wetlands and Implications for Sampling Design

    Science.gov (United States)

    Discerning fish - habitat associations at a variety of spatial scales is relevant to evaluating stressor responses and assessment protocols in Great Lakes coastal wetlands. NMDS ordination of electrofishing catch-per-effort data identified an overriding influence of geography an...

  11. Linkages between benthic macroinvertebrate assemblages and landscape stressors in the US Great Lakes

    Science.gov (United States)

    We used multiple linear regression analysis to investigate relationships between benthic macroinvertebrate assemblages in the nearshore region of the Laurentian Great Lakes and landscape characteristics in adjacent watersheds. Benthic invertebrate data were obtained from the 201...

  12. Land-use proxies for aquatic species invasions in the Laurentian Great Lakes

    Science.gov (United States)

    Aquatic invasive species adversely impact ecosystems, human health, and the economy of the Laurentian Great Lakes region. Targeted preventative and eradication efforts in response to early detection of invasive species can be both cost advantageous and effective. But where should...

  13. Regional impacts of ultrafine particle emissions from the surface of the Great Lakes

    Directory of Open Access Journals (Sweden)

    S. H. Chung

    2011-12-01

    Full Text Available Quantifying the impacts of aerosols on climate requires a detailed knowledge of both the anthropogenic and the natural contributions to the aerosol population. Recent work has suggested a previously unrecognized natural source of ultrafine particles resulting from breaking waves at the surface of large freshwater lakes. This work is the first modeling study to investigate the potential for this newly discovered source to affect the aerosol number concentrations on regional scales. Using the WRF-Chem modeling framework, the impacts of wind-driven aerosol production from the surface of the Great Lakes were studied for a July 2004 test case. Simulations were performed for a base case with no lake surface emissions, a case with lake surface emissions included, and a default case wherein large freshwater lakes emit marine particles as if they were oceans. Results indicate that the lake surface emissions can enhance the surface-level aerosol number concentration by ~20% over the remote northern Great Lakes and by ~5% over other parts of the Great Lakes. These results were highly sensitive to the new particle formation (i.e., nucleation parameterization within WRF-Chem; when the new particle formation process was deactivated, surface-layer enhancements from the lake emissions increased to as much as 200%. The results reported here have significant uncertainties associated with the lake emission parameterization and the way ultrafine particles are modeled within WRF-Chem. Nevertheless, the magnitudes of the impacts found in this study suggest that further study to quantify the emissions of ultrafine particles from the surface of the Great Lakes is merited.

  14. Human-mediated and natural dispersal of an invasive fish in the eastern Great Lakes.

    Science.gov (United States)

    Johansson, Mattias L; Dufour, Bradley A; Wellband, Kyle W; Corkum, Lynda D; MacIsaac, Hugh J; Heath, Daniel D

    2018-01-10

    The globally invasive Round Goby (Neogobius melanostomus) was introduced to the Great Lakes around 1990, spreading widely and becoming the dominant benthic fish in many areas. The speed and scope of this invasion is remarkable and calls into question conventional secondary spread models and scenarios. We utilized nine microsatellites to identify large-scale genetic structure in Round Goby populations in the eastern Great Lakes, and assessed the role of colonization vs. secondary transport and dispersal in developing this structure. We identified three clusters, corresponding with Lake Huron, eastern Lake Erie, and western Lake Erie plus eastern Lake Ontario, along with three highly divergent populations. Bottleneck analysis identified founder effects in two divergent populations. Regression analyses of isolation by distance and allelic richness vs. distance from the initial invasion site were consistent with limited migration. However, some populations in eastern Lake Erie and Lake Ontario showed anomalously low genetic distance from the original site of colonization, consistent with secondary transport of large numbers of individuals via ballast water. We conclude that genetic structure of Round Goby in the Great Lakes principally resulted from long-distance secondary transport via ballast water with additional movement of individual via bait buckets and natural dispersal. The success of Round Gobies represents an interesting model for colonization characterization; however, those same attributes present significant challenges for conservation and fisheries management. Current management likely prevents many new species from arriving in the Great Lakes, but fails to address the transport of species within the lakes after they arrive; this is an issue of clear and pressing importance.

  15. Application of theory and research in fishery management of the Laurentian Great Lakes

    Science.gov (United States)

    Smith, Stanford H.

    1973-01-01

    The Great Lakes have a high potential for the conduct of research and useful application of research findings, but the history of the Great Lakes indicates that extensive research and intensive management have failed to prevent deterioration of the fisheries. At times the research was not done before a loss occurred, or did not provide the information needed to solve a problem, or was not interpreted to indicate a need for corrective action.

  16. The Great Lakes, a 35th year anniversary; time to look forward

    OpenAIRE

    Krantzberg, Gail

    2008-01-01

    The year 2007 marks the 35th Anniversary of the Canada-US Great Lakes Water Quality Agreement (GLWQA). On April 15, 1972, Prime Minister Pierre Trudeau and President Richard Nixon signed the GLWQA. This Agreement expresses the commitment of Canada and the United States to restore and maintain the chemical, physical and biological integrity of the waters of the Great Lakes Basin Ecosystem. The GLWQA has had substantial influence on the cleanup and restoration of the region. The progress made s...

  17. A simulation study of atmospheric mercury and its deposition in the Great Lakes

    Science.gov (United States)

    Grant, Shanique L.; Kim, Myoungwoo; Lin, Peng; Crist, Kevin C.; Ghosh, Saikat; Kotamarthi, V. Rao

    2014-09-01

    The Great Lakes eco-region is one of the largest sources of fresh water in North America; however it is chronically exposed to heavy metal loadings such as mercury. In this study a comprehensive model evaluation was conducted to determine mercury loadings to the Great Lakes. The study also evaluated the relative impact of anthropogenic mercury emissions from China, regional and global sources on deposition to the Great Lakes. For the 2005 study period, CMAQ 4.7.1 model estimated a total of 6.4 ± 0.5 metric tons of mercury deposited in the Great Lakes. The total deposition breakdown showed a net loading for Lake Superior of 1906 ± 246 kg/year which is the highest of all the lakes. Lake Michigan followed with 1645 ± 203 kg/year and 1511 ± 107 kg/year in Lake Huron. The lowest total deposition was seen in Lakes Erie and Ontario amassing annual totals of 837 ± 107 kg and 506 ± 63 kg, respectively. Wet and dry deposition of mercury were both significant pathways and exhibited strong seasonal variability with higher deposition occurring in the warmer months (June-November) and the lowest in winter. Wet deposition of RGM significantly influenced the deposition proportions accounting for roughly 90% of all mercury deposited. Of the three emission sources (global background, integrated planning management (IPM) and Chinese), global background concentrations represented the maximum impact to deposition loading in the Great Lakes, except for Lake Erie and parts of Lake Michigan. There was minimal seasonality for the global background, but differences in percentage contribution between dry (28-97%) and wet deposition (43-98%) was predicted. The contributions were seen mainly in the northern sections of the Great Lakes further away from IPM point sources. These findings suggest strong localized impact of IPM sources on the southernmost lakes. Deposition as a result of emissions from China exhibited seasonality in both wet and dry deposition and showed significant

  18. A simulation study of atmospheric mercury and its deposition in the Great Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Shanique L.; Kim, Myoungwoo; Lin, Peng; Crist, Kevin C.; Ghosh, Saikat; Kotamarthi, V. Rao

    2014-09-01

    The Great Lakes eco-region is one of the largest sources of fresh water in North America; however it is chronically exposed to heavy metal loadings such as mercury. In this study a comprehensive model evaluation was conducted to determine mercury loadings to the Great Lakes. The study also evaluated the relative impact of anthropogenic mercury emissions from China, regional and global sources on deposition to the Great Lakes. For the 2005 study period, CMAQ 4.7.1 model estimated a total of 6.4 ± 0.5 metric tons of mercury deposited in the Great Lakes. The total deposition breakdown showed a net loading for Lake Superior of 1906 ± 246 kg/year which is the highest of all the lakes. Lake Michigan followed with 1645 ± 203 kg/year and 1511 ± 107 kg/year in Lake Huron. The lowest total deposition was seen in Lakes Erie and Ontario amassing annual totals of 837 ± 107 kg and 506 ± 63 kg, respectively. Wet and dry deposition of mercury were both significant pathways and exhibited strong seasonal variability with higher deposition occurring in the warmer months (June–November) and the lowest in winter. Wet deposition of RGM significantly influenced the deposition proportions accounting for roughly 90% of all mercury deposited. Of the three emission sources (global background, integrated planning management (IPM) and Chinese), global background concentrations represented the maximum impact to deposition loading in the Great Lakes, except for Lake Erie and parts of Lake Michigan. There was minimal seasonality for the global background, but differences in percentage contribution between dry (28–97%) and wet deposition (43–98%) was predicted. The contributions were seen mainly in the northern sections of the Great Lakes further away from IPM point sources. These findings suggest strong localized impact of IPM sources on the southernmost lakes. Deposition as a result of emissions from China exhibited seasonality in both wet and dry deposition and showed significant

  19. MODEL VERSION CONTROL FOR GREAT LAKES MODELS ON UNIX SYSTEMS

    Science.gov (United States)

    Scientific results of the Lake Michigan Mass Balance Project were provided where atrazine was measured and modeled. The presentation also provided the model version control system which has been used for models at Grosse Ile for approximately a decade and contains various version...

  20. Aerosol Emissions from Great Lakes Harmful Algal Blooms

    Energy Technology Data Exchange (ETDEWEB)

    May, Nathaniel W. [Department; Olson, Nicole E. [Department; Panas, Mark [Department; Axson, Jessica L. [Department; Tirella, Peter S. [Department; Kirpes, Rachel M. [Department; Craig, Rebecca L. [Department; Gunsch, Matthew J. [Department; China, Swarup [William; Laskin, Alexander [William; Ault, Andrew P. [Department; Department; Pratt, Kerri A. [Department; Department

    2017-12-20

    In freshwater lakes, harmful algal blooms (HABs) of Cyanobacteria (blue-green algae) produce toxins that impact human health. However, little is known about the chemical species present in lake spray aerosol (LSA) produced from wave-breaking in freshwater HABs. In this study, a laboratory LSA generator produced aerosols from freshwater samples collected from Lake Michigan and Lake Erie during HAB and non-bloom conditions. Particles were analyzed for size and chemical composition by single particle mass spectrometry, electron microscopy, and fluorescence microscopy, with three distinct types of LSA identified with varying levels of organic carbon and biological material associated with calcium salts. LSA autofluorescence increases with blue-green algae concentration, showing that organic molecules of biological origin are incorporated in LSA from HABs. The number fraction of LSA with biological mass spectral markers also increases with particle diameter (greater than 0.5 μm), showing that HABs have size-dependent impacts on aerosol composition. The highest number fraction of LSA enriched in organic carbon were observed in particles less than 0.5 μm in diameter. Understanding the transfer of organic and biogenic material from freshwater to the atmosphere via LSA particles is crucial for determining health and climate effects due to HABs.

  1. Asynchrony in the inter-annual recruitment of lake whitefish Coregonus clupeaformis in the Great Lakes region

    Science.gov (United States)

    Zischke, Mitchell T.; Bunnell, David B.; Troy, Cary D.; Berglund, Eric K.; Caroffino, David C.; Ebener, Mark P.; He, Ji X.; Sitar, Shawn P.; Hook, Tomas O.

    2017-01-01

    Spatially separated fish populations may display synchrony in annual recruitment if the factors that drive recruitment success, particularly abiotic factors such as temperature, are synchronised across broad spatial scales. We examined inter-annual variation in recruitment among lake whitefish (Coregonus clupeaformis) populations in lakes Huron, Michigan and Superior using fishery-dependent and -independent data from 1971 to 2014. Relative year-class strength (RYCS) was calculated from catch-curve residuals for each year class across multiple sampling years. Pairwise comparison of RYCS among datasets revealed no significant associations either within or between lakes, suggesting that recruitment of lake whitefish is spatially asynchronous. There was no consistent correlation between pairwise agreement and the distance between datasets, and models to estimate the spatial scale of recruitment synchrony did not fit well to these data. This suggests that inter-annual recruitment variation of lake whitefish is asynchronous across broad spatial scales in the Great Lakes. While our method primarily evaluated year-to-year recruitment variation, it is plausible that recruitment of lake whitefish varies at coarser temporal scales (e.g. decadal). Nonetheless, our findings differ from research on some other Coregonus species and suggest that local biotic or density-dependent factors may contribute strongly to lake whitefish recruitment rather than inter-annual variability in broad-scale abiotic factors.

  2. Assessment of suitable habitat for Phragmites australis (common reed) in the Great Lakes coastal zone

    Science.gov (United States)

    Carlson Mazur, Martha L.; Kowalski, Kurt P.; Galbraith, David

    2014-01-01

    In the Laurentian Great Lakes, the invasive form of Phragmites australis (common reed) poses a threat to highly productive coastal wetlands and shorelines by forming impenetrable stands that outcompete native plants. Large, dominant stands can derail efforts to restore wetland ecosystems degraded by other stressors. To be proactive, landscape-level management of Phragmites requires information on the current spatial distribution of the species and a characterization of areas suitable for future colonization. Using a recent basin-scale map of this invasive plant’s distribution in the U.S. coastal zone of the Great Lakes, environmental data (e.g., soils, nutrients, disturbance, climate, topography), and climate predictions, we performed analyses of current and predicted suitable coastal habitat using boosted regression trees, a type of species distribution modeling. We also investigated differential influences of environmental variables in the upper lakes (Lakes Superior, Michigan, and Huron) and lower lakes (Lakes St. Clair, Erie, and Ontario). Basin-wide results showed that the coastal areas most vulnerable to Phragmites expansion were in close proximity to developed lands and had minimal topographic relief, poorly drained soils, and dense road networks. Elevated nutrients and proximity to agriculture also influenced the distribution of Phragmites. Climate predictions indicated an increase in suitable habitat in coastal Lakes Huron and Michigan in particular. The results of this study, combined with a publicly available online decision support tool, will enable resource managers and restoration practitioners to target and prioritize Phragmites control efforts in the Great Lakes coastal zone.

  3. Pluvial lakes in the Great Basin of the western United States: a view from the outcrop

    Science.gov (United States)

    Reheis, Marith C.; Adams, Kenneth D.; Oviatt, Charles G.; Bacon, Steven N.

    2014-01-01

    Paleo-lakes in the western United States provide geomorphic and hydrologic records of climate and drainage-basin change at multiple time scales extending back to the Miocene. Recent reviews and studies of paleo-lake records have focused on interpretations of proxies in lake sediment cores from the northern and central parts of the Great Basin. In this review, emphasis is placed on equally important studies of lake history during the past ∼30 years that were derived from outcrop exposures and geomorphology, in some cases combined with cores. Outcrop and core records have different strengths and weaknesses that must be recognized and exploited in the interpretation of paleohydrology and paleoclimate. Outcrops and landforms can yield direct evidence of lake level, facies changes that record details of lake-level fluctuations, and geologic events such as catastrophic floods, drainage-basin changes, and isostatic rebound. Cores can potentially yield continuous records when sampled in stable parts of lake basins and can provide proxies for changes in lake level, water temperature and chemistry, and ecological conditions in the surrounding landscape. However, proxies such as stable isotopes may be influenced by several competing factors the relative effects of which may be difficult to assess, and interpretations may be confounded by geologic events within the drainage basin that were unrecorded or not recognized in a core. The best evidence for documenting absolute lake-level changes lies within the shore, nearshore, and deltaic sediments that were deposited across piedmonts and at the mouths of streams as lake level rose and fell. We review the different shorezone environments and resulting deposits used in such reconstructions and discuss potential estimation errors. Lake-level studies based on deposits and landforms have provided paleohydrologic records ranging from general changes during the past million years to centennial-scale details of fluctuations during the

  4. Projecting Future Water Availability in the Great Lakes Megalopolis: Reconstructing Lake Michigan-Huron Lake Level and Regional Hydroclimate Using Tree Rings

    Science.gov (United States)

    Schmidt, K. R.

    2014-12-01

    The ability to accurately predict water availability in the cities surrounding Lake Michigan-Huron becomes particularly difficult when the uncertain effects of climate change, such as changes in precipitation patterns and evaporation rates, are considered. Lake level reconstructions provide useful model inputs to better predict this availability. Annual tree-ring widths have been successfully utilized in reconstructions of lake levels in the Great Lakes region via the creation of proxy datasets of temperature and precipitation that are then input into a multilinear regression model to reconstruct annual average lake level. Here, the combination of this approach with analysis of instrumental records of precipitation and stream flow input allows for a more comprehensive understanding of regional hydroclimate and improved projection of future water resource availability. Annual tree-ring widths of cores collected from four old-growth forests near southern Lake Michigan were combined with over 30 archived tree-ring width chronologies from the Great Lakes region and used to create proxy datasets of temperature and precipitation. A multilinear regression model related these proxy variables to Lake Michigan-Huron lake level and stream flow of the Saint Clair River, which flows into Lake Michigan-Huron, for the period of available instrumental record (1860-present). When possible, the available tree-ring widths were used to reconstruct these variables for years prior to the instrumental record. Timing and severity of rainfall events were also analyzed to identify spatial and temporal patterns and their variability over time. The combination of updated tree-ring width chronologies, chronologies from newly sampled sites, and instrumental records of various indicators of water availability provides novel and valuable insight into the future lake level of Lake Michigan-Huron.

  5. Analysis of the variability of ice phenology on Great Bear Lake and Great Slave Lake, 2002-2009, from AMSR-E measurements

    Science.gov (United States)

    Kang, K.; Duguay, C. R.; Howell, S.

    2009-12-01

    Lake ice cover is a significant component of the Canadian terrestrial cryosphere. It is both a sensitive indicator of climate conditions and it plays a significant role in the energy and water balance of northern regions. Knowledge about the temporal and spatial variability of ice phenology (ice-on/ice-off dates and ice duration) is critical for improving our understanding of surface-atmosphere interactions at high latitudes within the context of a changing climate. Remote sensing in the most viable tool for obtaining frequent observations of ice cover conditions over large lakes and across large areas of the North. Obtaining ice phenological parameters with optical satellite sensors such as MODIS and AVHRR is difficult, especially during the freeze-up period due to polar darkness and extensive cloud cover. However, passive microwave satellite remote sensing can provide regular and weather-independent information on ice phenology over large northern lakes such Great Bear Lake (GBL) and Great Slave Lake (GSL), Northwest Territories, Canada. In this paper, the temporal evolution of brightness temperature at 18.7, 23.5, and 36.5 GHz from AMSR-E passive microwave measurements is analyzed to determine freeze-onset/melt-onset, ice-on/ice-off, and ice cover duration on GBL and GSL. In order to examine the interannual variability in ice cover on the two lakes, the polarization difference and horizontal polarized brightness temperature at various frequencies are explored to derive ice phenological parameters for ice seasons 2002-2003 to 2008-2009. Preliminary results show a difference of approximately two to four weeks in ice-on/ice-off dates between cold and warm winters. Passive microwave is shown to be an effective means for monitoring lake ice phenology and could, in part, replace the lost ground-based observational ice network for GBL and GSL.

  6. Paenibacillus thiaminolyticus is not the cause of thiamine deficiency impeding lake trout (Salvelinus namaycush) recruitment in the Great Lakes

    Science.gov (United States)

    Richter, Catherine A.; Evans, Allison N.; Wright-Osment, Maureen K.; Zajicek, James L.; Heppell, Scott A.; Riley, Stephen C.; Krueger, Charles C.; Tillitt, Donald E.

    2012-01-01

    Thiamine (vitamin B1) deficiency is a global concern affecting wildlife, livestock, and humans. In Great Lakes salmonines, thiamine deficiency causes embryo mortality and is an impediment to restoration of native lake trout (Salvelinus namaycush) stocks. Thiamine deficiency in fish may result from a diet of prey with high levels of thiaminase I. The discoveries that the bacterial species Paenibacillus thiaminolyticus produces thiaminase I, is found in viscera of thiaminase-containing prey fish, and causes mortality when fed to lake trout in the laboratory provided circumstantial evidence implicating P. thiaminolyticus. This study quantified the contribution of P. thiaminolyticus to the total thiaminase I activity in multiple trophic levels of Great Lakes food webs. Unexpectedly, no relationship between thiaminase activity and either the amount of P. thiaminolyticus thiaminase I protein or the abundance of P. thiaminolyticus cells was found. These results demonstrate that P. thiaminolyticus is not the primary source of thiaminase activity affecting Great Lakes salmonines and calls into question the long-standing assumption that P. thiaminolyticus is the source of thiaminase in other wild and domestic animals.

  7. Phylogenies of microcystin-producing cyanobacteria in the lower Laurentian Great Lakes suggest extensive genetic connectivity.

    Directory of Open Access Journals (Sweden)

    Timothy W Davis

    Full Text Available Lake St. Clair is the smallest lake in the Laurentian Great Lakes system. MODIS satellite imagery suggests that high algal biomass events have occurred annually along the southern shore during late summer. In this study, we evaluated these events and tested the hypothesis that summer bloom material derived from Lake St. Clair may enter Lake Erie via the Detroit River and represent an overlooked source of potentially toxic Microcystis biomass to the western basin of Lake Erie. We conducted a seasonally and spatially resolved study carried out in the summer of 2013. Our goals were to: 1 track the development of the 2013 summer south-east shore bloom 2 conduct a spatial survey to characterize the extent of toxicity, taxonomic diversity of the total phytoplankton population and the phylogenetic diversity of potential MC-producing cyanobacteria (Microcystis, Planktothrix and Anabaena during a high biomass event, and 3 compare the strains of potential MC-producers in Lake St. Clair with strains from Lake Erie and Lake Ontario. Our results demonstrated a clear predominance of cyanobacteria during a late August bloom event, primarily dominated by Microcystis, which we traced along the Lake St. Clair coastline downstream to the Detroit River's outflow at Lake Erie. Microcystin levels exceeded the Province of Ontario Drinking Water Quality Standard (1.5 µg L(-1 for safe drinking water at most sites, reaching up to five times this level in some areas. Microcystis was the predominant microcystin producer, and all toxic Microcystis strains found in Lake St. Clair were genetically similar to toxic Microcystis strains found in lakes Erie and Ontario. These findings suggest extensive genetic connectivity among the three systems.

  8. Remote Sensing as a Tool to Track Algal Blooms in the Great Salt Lake, Utah, USA

    Science.gov (United States)

    Bradt, S. R.; Wurtsbaugh, W. A.; Naftz, D.; Moore, T.; Haney, J.

    2006-12-01

    The Great Salt Lake is a large hypersaline, terminal water body in northern Utah, USA. The lake has both a significant economic importance to the local community as a source of brine shrimp and mineral resources, as well as, an ecological importance to large numbers of migratory waterfowl. Due to nutrient input from sewage treatment plants, sections of the Great Salt Lake are subjected to highly eutrophic conditions. One of the main tributaries, Farmington Bay, experiences massive blooms of cyanobacteria which can reach concentrations in excess of 300 mg l-1 in the bay. Effects of these blooms can be observed stretching into the rest of the lake. The detrimental outcomes of the blooms include unsightly scums, foul odor and the danger of cyanobacterial toxins. While the blooms have an obvious effect on Farmington Bay, it is quite possible that the cyanobacteria impact a much wider area of the lake as currents move eutrophic water masses. Of particular interest is the reaction of brine shrimp to the plumes of cyanobacteria-rich water leaving Farmington Bay. We are employing remote sensing as a tool to map the distribution of algae throughout the lake and produce lake-wide maps of water quality on a regular basis. On-lake reflectance measurements have been coupled with MODIS satellite imagery to produce a time series of maps illustrating changes in algal distribution. The successes and shortcomings of our remote sensing technique will be a central topic of this presentation.

  9. Investigating the Great Lakes Environment, Unit One: The Sea Lamprey Story.

    Science.gov (United States)

    Lin, Leslie; And Others

    Presented are 11 middle school activities dealing with the sea lamprey and its impact upon the Great Lakes. Included are background information, lesson outlines, references, masters for student worksheets, a wall map, game boards, and two filmstrip-tape units. Using these materials students can learn ecological concepts and some Great Lakes…

  10. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Directory of Open Access Journals (Sweden)

    Mark D. Cohen

    2016-07-01

    Full Text Available Abstract Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0 were generally within ∼10% of measurements in the Great Lakes region. The model overestimated non-Hg(0 concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition, while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%. The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations for Lake Erie and 11% (range 6–13% for Lake Superior. These results illustrate the importance of atmospheric

  11. Thiamine status of rainbow smelt (Osmerus mordax) eggs in the Great Lakes, USA

    Science.gov (United States)

    Chalupnicki, Marc A.; Ketola, H. George; Zehfus, Micheal H.; Crosswait, Jonathan R.; Rinchard, Jacques

    2012-01-01

    During spring 2006–2009, eggs were collected for analysis of total thiamine from gravid rainbow smelt (Osmerus mordax) captured in each of the Great Lakes and two other waters as references for comparison. Mean standard length (mm ± standard error) of gravid females significantly differed between sample waters, with the Atlantic Ocean population being the longest (189 ± 12.3 mm) and Lake Michigan population the shortest (122 ± 0.3 mm). Mean thiamine concentrations (nmol/g ± standard error) for single-year samples for Lake Huron, Lake Michigan, and Little Clear Pond (New York) were 9.9 ± 0.8, 3.9 ± 0.7, and 8.1 ± 2.3 nmol/g, respectively. Thiamine concentrations for multiple-year samples ranged from 1.1 to 15.6 for Lake Ontario, from 2.6 to 3.3 for Lake Erie, from 5.0 to 9.9 for Lake Superior, and from 10.9 to 13.3 for the Atlantic Ocean (Fore River). Although highly variable within populations and across years, thiamine concentrations in most spawning adults appeared to be adequate in all the waters for the years sampled except for 2006 and 2009 in Lake Ontario and 2009 in Lake Erie.

  12. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847-1987

    Science.gov (United States)

    Stephens, D.W.

    1990-01-01

    Great Salt Lake is the fourth largest terminal lake in the world, with an area of about 6000 square kilometers at its historic high elevation. Since its historic low elevation of 1277.52 meters in 1963, the lake has risen to a new historic high elevation of 1283.77 meters in 1986-1987, a net increase of about 6.25 meters. About 60 percent of this increase, 3.72 meters, has occurred since 1982 in response to greater than average precipitation and less than average evaporation. Variations in salinity have resulted in changes in the composition of the aquatic biological community which consists of bacteria, protozoa, brine shrimp and brine flies. These changes were particularly evident following the completion of a causeway in 1959 which divided the lake. Subsequent salinities in the north part of the lake have ranged from 16 to 29 percent and in the south part from 6 to 28 percent. Accompanying the rise in lake elevation from 1982 to 1987 have been large decreases in salinity of both parts of the lake. This has resulted in changes in the biota from obligate halophiles, such as Dunaliella salina and D. viridis, to opportunistic forms such as a blue-green alga (Nodularia spumigena). The distribution and abundance of brine shrimp (Artemia salina) in the lake also have followed closely the salinity. In 1986, when the salinity of the south part of the lake was about 6 percent, a population of brackish-water killifish (Lucania parva) was observed along the shore near inflow from a spring. ?? 1990 Kluwer Academic Publishers.

  13. Shallow Water Offshore Wind Optimization for the Great Lakes (DE-FOA-0000415) Final Report: A Conceptual Design for Wind Energy in the Great Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Wissemann, Chris [Freshwater Wind I, LLC, Youngstown, OH (United States); White, Stanley M [Stanley White Engineering LLC, Noank, CT (United States)

    2014-02-28

    The primary objective of the project was to develop a innovative Gravity Base Foundation (GBF) concepts, including fabrication yards, launching systems and installation equipment, for a 500MW utility scale project in the Great Lakes (Lake Erie). The goal was to lower the LCOE by 25%. The project was the first to investigate an offshore wind project in the Great Lakes and it has furthered the body of knowledge for foundations and installation methods within Lake Erie. The project collected historical geotechnical information for Lake Erie and also used recently obtained data from the LEEDCo Icebreaker Project (FOA DE-EE0005989) geotechnical program to develop the conceptual designs. Using these data-sets, the project developed design wind and wave conditions from actual buoy data in order to develop a concept that would de-risk a project using a GBF. These wind and wave conditions were then utilized to create reference designs for various foundations specific to installation in Lake Erie. A project partner on the project (Weeks Marine) provided input for construction and costing the GBF fabrication and installation. By having a marine contractor with experience with large marine projects as part of the team provides credibility to the LCOE developed by NREL. NREL then utilized the design and construction costing information as part of the LCOE model. The report summarizes the findings of the project; Developed a cost model and “baseline” LCOE; Documented Site Conditions within Lake Erie; Developed Fabrication, Installation and Foundations Innovative Concept Designs; Evaluated LCOE Impact of Innovations; Developed Assembly line “Rail System” for GBF Construction and Staging; Developed Transit-Inspired Foundation Designs which incorporated: Semi-Floating Transit with Supplemental Pontoons Barge mounted Winch System; Developed GBF with “Penetration Skirt”; Developed Integrated GBF with Turbine Tower; Developed Turbine, Plant Layout and O&M Strategies. The

  14. Morphometric variation among spawning cisco aggregations in the Laurentian Great Lakes: are historic forms still present?

    Science.gov (United States)

    Yule, Daniel L.; Moore, Seth A.; Ebener, Mark P.; Claramunt, Randall M.; Pratt, Thomas C.; Salawater, Lorrie L.; Connerton, Michael J.

    2013-01-01

    Cisco (Coregonus artedi Leseur, formerly lake herring Leucichthys artedi Leseur) populations in each of the Laurentian Great Lakes collapsed between the late 1920s and early 1960s following a multitude of stressors, and never recovered in Lakes Michigan, Erie and Ontario. Prior to their collapse, Koelz (1929) studied Leucichthys spp. in the Great Lakes basin and provided a description of their diversity. Three cisco morphotypes were described; a ‘slim terete’morphotype (L. artedi artedi), a ‘deep compressed’ morphotype (L. artedi albus), and a deep-bodied form resembling tullibee in western Canadian lakes (L. artedi manitoulinus). Based on body measurements of 159 individuals (Koelz 1929), we used discriminant function analysis (DFA) to discriminate historic morphotypes. Shapes of historic morphotypes were found to vary significantly (Pillai’s trace = 1.16, P cisco. Important discriminating measurements included body depth, eye diameter, and dorsal fin base and height. Between October-November of 2007-2011, we sampled cisco from 16 Great Lakes sites collecting digital photographs of over 1, 700 individuals. We applied the DFA model to their body measurements and classified each individual to a morphotype. Contemporary cisco from Lakes Superior, Ontario and Michigan were predominantly classified as artedi, while the most common classifications from northern Lake Huron were albus and manitoulinus. Finding historic morphotypes is encouraging because it suggests that the morphological variation present prior to their collapse still exists. We conclude that contemporary cisco having shapes matching the missing historic morphotypes in the lower lakes warrant special consideration as potential donor populations in reestablishment efforts.

  15. Great lakes eutrophication: the effect of point source control of total phosphorus.

    Science.gov (United States)

    Chapra, S C; Robertson, A

    1977-06-24

    A mathematical model of the Great Lakes total phosphorus budgets indicates that a 1 milligram per liter effluent restriction for point sources would result in significant improvement in the trophic status of most of the system. However, because large areas of their drainage basins are devoted to agriculture or are urbanized, western Lake Erie, lower Green Bay, and Saginaw Bay may require non-point source controls to effect significant improvements in their trophic status.

  16. The effects of restricted circulation on the salt balance of Great Salt Lake, Utah

    Science.gov (United States)

    Waddell, K.M.; Bolke, E.L.

    1973-01-01

    During the 1970-1972 water years a net load of dissolved solids of 0.26 billion tons moved from the south to north part of Great Salt Lake, Utah, through the causeway of the Southern Pacific Transportation Co. The load loss from the south part during the 1972 water year was only 0.01 billion tons, thus indicating that the salt balance between the two parts of the lake was near equilibrium for inflow conditions such as those of 1972.

  17. Distribution and Modeled Transport of Plastic Pollution in the Great Lakes, the World's Largest Freshwater Resource

    Directory of Open Access Journals (Sweden)

    Rachel N. Cable

    2017-07-01

    Full Text Available Most plastic pollution originates on land. As such, freshwater bodies serve as conduits for the transport of plastic litter to the ocean. Understanding the concentrations and fluxes of plastic litter in freshwater ecosystems is critical to our understanding of the global plastic litter budget and underpins the success of future management strategies. We conducted a replicated field survey of surface plastic concentrations in four lakes in the North American Great Lakes system, the largest contiguous freshwater system on the planet. We then modeled plastic transport to resolve spatial and temporal variability of plastic distribution in one of the Great Lakes, Lake Erie. Triplicate surface samples were collected at 38 stations in mid-summer of 2014. Plastic particles >106 μm in size were quantified. Concentrations were highest near populated urban areas and their water infrastructure. In the highest concentration trawl, nearly 2 million fragments km−2 were found in the Detroit River—dwarfing previous reports of Great Lakes plastic abundances by over 4-fold. Yet, the accuracy of single trawl counts was challenged: within-station plastic abundances varied 0- to 3-fold between replicate trawls. In the smallest size class (106–1,000 μm, false positive rates of 12–24% were determined analytically for plastic vs. non-plastic, while false negative rates averaged ~18%. Though predicted to form in summer by the existing Lake Erie circulation model, our transport model did not predict a permanent surface “Lake Erie Garbage Patch” in its central basin—a trend supported by field survey data. Rather, general eastward transport with recirculation in the major basins was predicted. Further, modeled plastic residence times were drastically influenced by plastic buoyancy. Neutrally buoyant plastics—those with the same density as the ambient water—were flushed several times slower than plastics floating at the water's surface and exceeded the

  18. Evaluation of the Navy Plaque Control Program, at Great Lakes.

    Science.gov (United States)

    1980-02-01

    I 0 Individual clinicians who practice plaque control with their patients receive great reward and sense of accomplishment when dental caries is...Navy Dental Corps (43). The program requirements included plaque control instruction given through individual or small group sessions. The sessions... plaque removal techniques; demonstration of sulcular methods of tooth cleansing with the toothbrush ; and instruction in the use of plaque disclosing

  19. DNA barcoding as a tool for Great Lakes biological assessment

    Science.gov (United States)

    Enumerating organisms found in water samples in support of biodiversity and biological condition assessment is a mainstay of aquatic ecology, yet can require considerable resources and expertise. DNA-based identification of mixed-organism samples offers the potential to greatly ...

  20. Renegotiating the Great Lakes Water Quality Agreement: The Process for a Sustainable Outcome

    Directory of Open Access Journals (Sweden)

    Gail Krantzberg

    2009-06-01

    Full Text Available This is a defining moment for the Great Lakes St Lawrence region, with the opportunity to renovate the regime for ecosystem improvement, protection and sustainability. The binational Great Lakes Water Quality Agreement was first signed in 1972. The outcome of a 2007 review of the Agreement by government and citizens, resulted in a broad call for and revisions to the Agreement, so that it can once again serve as a visionary document driving binational cooperation to address long-standing, new and emerging Great Lakes environmental issues in the 21st century. A prescription for renegotiating the Agreement to generate a revitalized and sustainable future mandates that science inform contemporary public policy, third Party Mediation presses for and coordinates a deliberate negotiation, and inclusive discourse and public engagement be integral through the process.

  1. 46 CFR 30.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes-TB/OC.

    Science.gov (United States)

    2010-10-01

    ... Great Lakes Routes—TB/OC. (a) Vessels inspected and certificated for ocean or unlimited coastwise routes... on any inland route, including the Great Lakes. ... 46 Shipping 1 2010-10-01 2010-10-01 false Ocean or unlimited coastwise vessels on inland and Great...

  2. 46 CFR 167.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Science.gov (United States)

    2010-10-01

    ... vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited... are concerned on any inland route, including the Great Lakes. ... 46 Shipping 7 2010-10-01 2010-10-01 false Ocean or unlimited coastwise vessels on inland and Great...

  3. 46 CFR 90.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Science.gov (United States)

    2010-10-01

    ... vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited... are concerned on any inland routes, including the Great Lakes. ... 46 Shipping 4 2010-10-01 2010-10-01 false Ocean or unlimited coastwise vessels on inland and Great...

  4. 46 CFR 70.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes.

    Science.gov (United States)

    2010-10-01

    ... and Great Lakes Routes. (a) Vessels inspected and certificated for ocean or unlimited coastwise routes... on any inland route, including the Great Lakes. (b) ... 46 Shipping 3 2010-10-01 2010-10-01 false Ocean or unlimited coastwise vessels on inland and Great...

  5. 46 CFR 1.03-50 - Appeals from decisions or actions of the Director, Great Lakes Pilotage.

    Science.gov (United States)

    2010-10-01

    ... Appeal § 1.03-50 Appeals from decisions or actions of the Director, Great Lakes Pilotage. Any person directly affected by a decision or action of the Director, Great Lakes Pilotage, may make a formal appeal... 46 Shipping 1 2010-10-01 2010-10-01 false Appeals from decisions or actions of the Director, Great...

  6. 46 CFR 188.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Science.gov (United States)

    2010-10-01

    ... inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited coastwise... concerned on any inland routes, including the Great Lakes. ... 46 Shipping 7 2010-10-01 2010-10-01 false Ocean or unlimited coastwise vessels on inland and Great...

  7. Ecological risk assessment of Grass Carp (Ctenopharyngodon idella) for the Great Lakes Basin

    Science.gov (United States)

    Kolar, Cynthia S.; Cudmore, Becky

    2017-01-01

    Grass Carp (Ctenopharyngodon idella) is an herbivorous, freshwater fish that was first introduced in the United States in the early 1960s for use in biological control of aquatic vegetation. It has since escaped and dispersed through the Mississippi River basin towards the Great Lakes. To characterize the risk of Grass Carp to the Great Lakes basin, a binational ecological risk assessment of Grass Carp was conducted.This risk assessment covered both triploid (sterile) and diploid (fertile) Grass Carp and assessed the likelihood of arrival, survival, establishment, and spread, and the magnitude of the ecological consequences within 5, 10, 20 and 50 years from 2014 (i.e., the baseline year) to the connected Great Lakes basin (defined as the Great Lakes basin and its tributaries to the first impassable barrier; risk was assessed based on current climate conditions and at the individual lake scale but does not address a finer geographical scale (e.g., bay or sub-region).For triploid Grass Carp, the probability of occurrence (likelihood of arrival, survival, and spread) was assessed, and for diploid Grass Carp the probability of introduction (likelihood of arrival, survival, establishment and spread) was assessed.

  8. Probabilistic projections of regional climatic changes over the Great Lakes Basin

    Science.gov (United States)

    Wang, Xiuquan; Huang, Guohe; Baetz, Brian W.; Zhao, Shan

    2017-10-01

    As the largest surface fresh water system on earth, the Great Lakes is facing the threat of climate change. Understanding how the hydrologic cycle in the Great Lakes region would be affected by human-induced global warming is important for developing informed adaptation strategies. In this study, high-resolution regional climate ensemble simulations based upon the PRECIS modeling system are conducted to project future climatic changes over the Great Lakes Basin. The results show that the Great Lakes Basin is very likely to experience a continuous warming-up throughout the 21st century. Particularly, mean air temperatures will rise by 2.6 °C in the forthcoming decades (i.e., 2030s), 3.8 °C in the middle of the century (i.e., 2050s), and 5.6 °C to the end of the century (i.e., 2080s), respectively. The warming air temperatures are very likely to result in more precipitation over the entire basin. The annual total precipitation over the Great Lakes Basin is projected to increase by 8.9% in the 2030s and 12.2% in the 2050s, while the magnitude of precipitation increase would decline to 7.1% in the 2080s. The slow-down of the precipitation increase from the 2050s to the 2080s indicates a shift from the aggressive increase of precipitation before and in the middle of this century to the eventual decrease by the end of this century, suggesting that a nonlinear response relationship between precipitation and temperature may exist in the Great Lakes Basin and such a relationship is also likely to vary in response to global warming.

  9. 2008 USACE Great Lakes Topo/Bathy Lidar: Lake Huron, Michigan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These files contain topographic and bathymetric lidar data collected by the Compact Hydrographic Airborne Rapid Total Survey (CHARTS) system along the Lake Huron...

  10. Age-Corrected Trends and Toxic Equivalence of PCDD/F and CP-PCBs in Lake Trout and Walleye from the Great Lakes: 2004-2014.

    Science.gov (United States)

    Pagano, James J; Garner, Andrew J; McGoldrick, Daryl J; Crimmins, Bernard S; Hopke, Philip K; Milligan, Michael S; Holsen, Thomas M

    2018-01-16

    Our research reports polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and coplanar polychlorinated biphenyls (CP-PCBs) concentrations and age-corrected trends for lake trout and walleye in the Great Lakes over the 2004-2014 period. We determined that age-contaminant corrections are required to accurately report contaminant trends due to significant lake trout age structure changes. The age-trend model (ATM) described here uses a lake-specific age-contaminant regression to mitigate the effect of a fluctuating lake trout age structure to directly improve the log-linear regression model. ATM results indicate that half-life (t1/2) and percent decreases for PCDD/Fs, CP-PCBs, and toxic equivalence (TEQ) (average -56 to 70%) were fairly uniform and consistent across the Great Lakes over the 2004-2014 period. The vast majority of TEQ associated with all Great Lakes lake trout and walleye samples is due to the nonortho CP-PCBs (average = 79%) as compared with PCDD/Fs (average = 21%). On average, CP-PCB_126 individually accounted for over 95% of the total CP-PCB TEQ. A retrospective analysis (1977-2014) of 2378-TCDF and 2378-TCDD raw concentrations in Lake Ontario lake trout revealed decreases of 94% and 96%, respectively. Tissue residue guidelines for wildlife protection based on lake trout and walleye total TEQ were uniformly exceeded in all the Great Lakes.

  11. State-of-the-art techniques for inventory of Great Lakes aquatic habitats and resources

    Science.gov (United States)

    Edsall, Thomas A.; Brock, R.H.; Bukata, R.P.; Dawson, J.J.; Horvath, F.J.; Busch, W.-Dieter N.; Sly, Peter G.

    1992-01-01

    This section of the Classification and Inventory of Great Lakes Aquatic Habitat report was prepared as a series of individually authored contributions that describe, in various levels of detail, state-of-the-art techniques that can be used alone or in combination to inventory aquatic habitats and resources in the Laurentian Great Lakes system. No attempt was made to review and evaluate techniques that are used routinely in limnological and fisheries surveys and inventories because it was felt that users of this document would be familiar with them.

  12. Satellite winds as a tool for offshore wind resource assessment: The Great Lakes Wind Atlas

    DEFF Research Database (Denmark)

    Doubrawa, Paula; Barthelmie, Rebecca Jane; Pryor, Sara C.

    2015-01-01

    This work presents a new observational wind atlas for the Great Lakes, and proposes a methodology to combine in situ and satellite wind observations for offshore wind resource assessment. Efficient wind energy projects rely on accurate wind resource estimates, which are complex to obtain offshore...... the North American Regional Reanalysis. Generalized wind climates are obtained for each buoy and coastal site with the wind model WAsP, and combined into a single wind speed estimate for the Great Lakes region. The method of classes is used to account for the temporal sparseness in the SAR data set...

  13. Mercury in the Air, Water and Biota at the Great Salt Lake (Utah, USA)

    Science.gov (United States)

    Peterson, C.; Gustin, M. S.

    2008-12-01

    The Great Salt Lake, Utah (USA), is the fourth largest terminal lake on Earth and a stop-over location for 35 million birds on the Pacific Flyway. Recently, the Utah Department of Health and Utah Division of Wildlife Resources issued tissue mercury (Hg) consumption advisories for several species of birds that consume the lake's brine shrimp. Sources of Hg to the lake are the watershed and the atmosphere, and we hypothesized that the chemistry of the air above the Great Salt Lake would facilitate atmospheric deposition of Hg to the water. Because little information was available on Hg at the Great Salt Lake, and to begin to test this hypothesis, we measured atmospheric elemental (Hg0) and reactive gaseous mercury (RGM) concentrations as well as Hg concentrations in water and brine shrimp five times over a year. Surrogate surfaces and a dry deposition model were applied to estimate the amount of Hg that could be input to the lake surface. We found that atmospheric Hg0 and RGM concentrations were comparable to global ambient background values and those measured in rural areas (respectively). Both Hg0 and RGM exhibited regular diel variability, and no consistent seasonal periods of depleted or elevated values were observed. Based on these findings, local factors are thought to be important in generating elevated RGM concentrations that could be deposited to the lake. Model estimated deposition velocities for RGM to the lake ranged from 0.9 to 3.0 cm sec-1, with an estimated 19 kg of Hg deposited annually. Total Hg and methyl Hg concentrations in surface waters of the lake were consistent throughout the year (3.8 ± 0.8 ng L- 1 and 0.93 ± 0.59 ng L-1, respectively) and not significantly elevated relative to natural waters; however, the percent methyl Hg to total Hg was high (25 to 50%). Brine shrimp Hg concentrations were 384 ppb and had a statistically significant increase from early summer to fall. Based on modeled dry deposition and estimated wet deposition, the

  14. Evaluation of potential impacts on Great Lakes water resources based on climate scenarios of two GCMs

    Science.gov (United States)

    Lofgren, B.M.; Quinn, F.H.; Clites, A.H.; Assel, R.A.; Eberhardt, A.J.; Luukkonen, C.L.

    2002-01-01

    The results of general circulation model predictions of the effects of climate change from the Canadian Centre for Climate Modeling and Analysis (model CGCM1) and the United Kingdom Meteorological Office's Hadley Centre (model HadCM2) have been used to derive potential impacts on the water resources of the Great Lakes basin. These impacts can influence the levels of the Great Lakes and the volumes of channel flow among them, thus affecting their value for interests such as riparians, shippers, recreational boaters, and natural ecosystems. On one hand, a hydrological modeling suite using input data from the CGCM1 predicts large drops in lake levels, up to a maximum of 1.38 m on Lakes Michigan and Huron by 2090. This is due to a combination of a decrease in precipitation and an increase in air temperature that leads to an increase in evaporation. On the other hand, using input from HadCM2, rises in lake levels are predicted, up to a maximum of 0.35 m on Lakes Michigan and Huron by 2090, due to increased precipitation and a reduced increase in air temperature. An interest satisfaction model shows sharp decreases in the satisfaction of the interests of commercial navigation, recreational boating, riparians, and hydropower due to lake level decreases. Most interest satisfaction scores are also reduced by lake level increases. Drastic reductions in ice cover also result from the temperature increases such that under the CGCM1 predictions, most of Lake Erie has 96% of its winters ice-free by 2090. Assessment is also made of impacts on the groundwater-dependent region of Lansing, Michigan.

  15. The influence of changing climate on the ecology and management of selected Laurentian Great Lakes fisheries.

    Science.gov (United States)

    Lynch, A J; Taylor, W W; Smith, K D

    2010-11-01

    The Laurentian Great Lakes Basin provides an ecological system to evaluate the potential effect of climate change on dynamics of fish populations and the management of their fisheries. This review describes the physical and biological mechanisms by which fish populations will be affected by changes in timing and duration of ice cover, precipitation events and temperature regimes associated with projected climate change in the Great Lakes Basin with a principal focus on the fish communities in shallower regions of the basin. Lake whitefish Coregonus clupeaformis, walleye Sander vitreus and smallmouth bass Micropterus dolomieu were examined to assess the potential effects of climate change on guilds of Great Lakes cold, cool and warm-water fishes, respectively. Overall, the projections for these fishes are for the increased thermally suitable habitat within the lakes, though in different regions than they currently inhabit. Colder-water fishes will seek refuge further north and deeper in the water column and warmer-water fishes will fill the vacated habitat space in the warmer regions of the lakes. While these projections can be modified by a number of other habitat elements (e.g. anoxia, ice cover, dispersal ability and trophic productivity), it is clear that climate-change drivers will challenge the nature, flexibility and public perception of current fisheries management programmes. Fisheries agencies should develop decision support tools to provide a systematic method for incorporating ecological responses to climate change and moderating public interests to ensure a sustainable future for Great Lakes fishes and fisheries. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.

  16. Targeted grazing for the restoration of sub-alpine shrub-encroached grasslands

    Directory of Open Access Journals (Sweden)

    Massimiliano Probo

    2016-12-01

    Full Text Available The decline of agro-pastoral activities has led to a widespread tree and shrub-encroachment of former semi-natural meso-eutrophic grasslands in many European mountain regions. Temporary night camp areas (TNCA and mineral mix supplements for targeted cattle were arranged over shrub-encroached areas to restore grassland vegetation within the Val Troncea Natural Park (Italy. From 2011 to 2015, their effects on vegetation structure and pastoral value of forage were assessed along permanent transects. Four years after treatments, both practices were effective in reducing the shrub cover and increasing the cover and average height of the herbaceous layer, but changes were more remarkable within TNCA. Moreover, the arrangement of TNCA decreased the cover of nanophanerophytes and increased the cover of graminoids and high quality species, as well as the overall forage pastoral value. In conclusion, TNCA were the most effective pastoral practice to contrast shrub-encroachment and increase herbage mass and forage quality of sub-alpine grasslands.

  17. Perceptions of collaboration: A comparison of educators and scientists for COSEE Great Lakes

    Science.gov (United States)

    Kim, Chankook

    The Great Lakes region of North America, holding 20% of the world's fresh water and home to ¼ of the U.S. population, can provide its 13 million K-12 learners with a relevant context for science learning, unique opportunities for exploring local environmental issues, and connections to global issues. By linking Great Lakes research scientists with educators, students, and the public, the COSEE (Centers for Ocean Sciences Education Excellence) Great Lakes pursues its goal of enhancing science and environmental literacy of both adults and students. This doctoral research had a three-fold purpose in the COSEE Great Lakes context. First, this study aimed to characterize the population of Great Lakes scientists and K-12 teachers in the Great Lakes region targeted as potential audiences for activities of COSEE Great Lakes. Second, this study aimed to identify factors that may affect educational collaboration between teachers and scientists. Third, this study was conducted as a part of an ongoing process of evaluating overall COSEE program outcomes related to increasing educational collaborations. This dissertation consists of three research reports on professional development and interprofessional collaboration of K-12 teachers and scientists. The first report in Chapter 2 investigates primary and secondary teachers' views of collaboration with scientists and incorporates the findings of teacher surveys into discussions about professional development programs for educators. From 180 schools randomly selected in the eight Great Lakes States, 194 primary and secondary educators responded to a mailed survey. Through the survey responses, the educators reported that while they have positive attitudes toward their collaboration with scientists, their professional preparation has not equipped them with enough understanding of the process of science and the professions of scientists. Regression analysis shows that five predictor variables account for a majority of the variance

  18. Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes

    Science.gov (United States)

    Mezek, Tadej; Sverko, Ed; Ruddy, Martina D.; Zaruk, Donna; Capretta, Alfredo; Hebert, Craig E.; Fisk, Aaron T.; McGoldrick, Daryl J.; Newton, Teresa J.; Sutton, Trent M.; Koops, Marten A.; Muir, Andrew M.; Johnson, Timothy B.; Ebener, Mark P.; Arts, Michael T.

    2011-01-01

    Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton–zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies.

  19. Microcystin concentrations and genetic diversity of Microcystis in the lower Great Lakes.

    Science.gov (United States)

    Dyble, Julianne; Fahnenstiel, Gary L; Litaker, R Wayne; Millie, David F; Tester, Patricia A

    2008-08-01

    The resurgence of Microcystis blooms in the lower Great Lakes region is of great concern to public and ecosystem health due to the potential for these colonial cyanobacteria to produce hepatotoxic microcystins. A survey of Microcystis cell densities and microcystin concentrations during August 2004 showed particularly high concentrations of both cells and toxin in the nearshore regions of Saginaw Bay (Lake Huron) and western Lake Erie, often exceeding the World Health Organization's recommended drinking water limit of 1 microg L(-1). The dominant congener of microcystin in both basins was microcystin-LR (MC-LR), whereas the second most abundant congeners, accounting for up to 20-25% of the total microcystin concentrations, were MC-LA in Saginaw Bay and MC-RR in western Lake Erie. Multiplex PCR assays of Microcystis colonies isolated from these two regions showed that a much greater percentage of the Microcystis colonies from Saginaw Bay carried the mcyB gene necessary for microcystin production, in comparison with those from western Lake Erie. The mcyB genotypes sequenced separated into two distinct phylogenetic clusters, with Microcystis originating from Lake Erie predominantly in one branch and from Saginaw Bay present in both branches. These results indicate that the genetic composition of the bloom could impact the concentrations and congeners of microcystin produced and that the cell count methods currently being used to gauge public health threats posed by Microcystis blooms may not sufficiently assess actual bloom toxicity.

  20. On the representation of heavy lake-effect snow events for the Laurentian Great Lakes region in a Regional Climate Model

    Science.gov (United States)

    Huziy, Oleksandr; Sushama, Laxmi; Duguay, Claude; Baijnath, Janine

    2017-04-01

    Lakes are important components of the climate system and can affect regional climate by modulating surface albedo, surface energy and moisture budgets. Therefore, they should be realistically represented in climate models. Many climate models are currently representing lakes interactively using 1D models. However, for large lakes such as the Laurentian Great Lakes, 3D models are required, as it is important to simulate the circulation patterns which can impact lake temperature as well as ice freeze/melt onset dates and fractional coverage, and by extent lake-effect snow as suggested by recent studies. The aim of this study is to compare lake-effect snow simulated by a regional climate model (CRCM5: Canadian Regional Climate Model, Version 5) with 1D and 3D models for the Great Lakes. In this investigation, two CRCM5 simulations at 10 km horizontal resolution are performed and analysed over the Great Lakes region for the 1979-2012 period. The first simulation (CRCM5_HL), where the Great Lakes are handled by a 1D lake model (Hostetler), is used as a base to represent the configuration of recent regional climate modelling studies. The second simulation (CRCM5_NEMO), where the Great Lakes are simulated by a 3D ocean model (NEMO), is used to assess the impact of representing circulation in large lakes. Preliminary results indicate improved 2-m air temperature directly over the Great Lakes in summer and lower ice cover for CRCM5_NEMO. Both the summer 2-m air temperature and lake ice cover are overestimated in CRCM5_HL. The lower ice cover in turn leads to greater snowfall generated during heavy lake-effect snow events in the case of CRCM5_NEMO. The impacts on lake-atmosphere interactions in the Laurentian Great Lakes region will be discussed by comparing turbulent heat and moisture fluxes as well as lake ice cover. Finally, some results and challenges on diagnosing heavy lake-effect snowfall from regional climate model simulations and observational datasets will be

  1. Textural variation within Great Salt Lake algal mounds: Chapter 8.5 in Stromatolites

    Science.gov (United States)

    1976-01-01

    This chapter discusses textural variation within the Great Salt Lake algal mounds. Great Salt Lake algal mounds contain: (1) a framework of non-skeletal, algally induced aragonite precipitates; (2) internal sediment; and (3) inorganic cement. These three elements create a variety of laminated, poorly laminated, and unlaminated internal textures. Interior framework precipitates bear little resemblance to the present living film of the mound surface. Internal texture of the mounds is believed to be largely relict and to have resulted from precipitation by algae different than those presently living at the surface. The most probable cause of local extinction of the algal flora is change in brine salinity. Precipitated blue-green algal structures in ancient rocks may indicate other than normal marine salinity and near shore sedimentation. Extreme variation of internal texture reflects extreme environmental variability typical of closed basin lakes. Recognition of mounds similar to those in the Great Salt Lake can be a first step toward recognition of ancient hyper-saline lake deposits, if such an interpretation is substantiated by consideration of the entire depositional milieu of precipitated algal mounds.

  2. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    Science.gov (United States)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake

  3. Added value from 576 years of tree-ring records in the prediction of the Great Salt Lake level

    Science.gov (United States)

    Robert R. Gillies; Oi-Yu Chung; S.-Y. Simon Wang; R. Justin DeRose; Yan Sun

    2015-01-01

    Predicting lake level fluctuations of the Great Salt Lake (GSL) in Utah - the largest terminal salt-water lake in the Western Hemisphere - is critical from many perspectives. The GSL integrates both climate and hydrological variations within the region and is particularly sensitive to low-frequency climate cycles. Since most hydroclimate variable records cover...

  4. Microbial Composition and Preliminary Age of Ooids from the Great Salt Lake, Utah

    Science.gov (United States)

    Piazza, O.; Corsetti, F. A.; Stamps, B. W.; Stevenson, B. S.; Bardsley, A.; Hammond, D. E.; Nunn, H. S.; Berelson, W.; Spear, J. R.

    2016-12-01

    Ooids (laminated coated grains) are common in the geologic record in lacustrine and marine systems. Traditionally interpreted as abiogenic precipitates, recent work suggests that microbial metabolism/byproducts may enhance the calcium carbonate precipitation of some ooids. Thus, the processes that govern ooid formation remain enigmatic, making it difficult to assess their significance as biosigntatures and environmental indicators in modern/ancient environments. The Great Salt Lake, Utah, provides a unique environment to assess the microbial community and growth rate of aragonitic ooids. Ooids collected near Antelope Island were first sieved into coarse, medium, and fine size fractions. One aliquot of each fraction was left untreated and another was washed with ethanol to remove the biomass/biofilm from the exterior. The microbial communities of each aliquot and the surrounding lake water were compared using small subunit rRNA gene sequencing. Since 50% of the ooids studied contain nuclei that were fecal pellets from the Great Salt Lake Artemia (brine shrimp), Artemia pellets were also collected and sequenced to compare to the ooids and the lake water. 228Ra/226Ra of ooids and lake water was measured to evaluate ooid age. Preliminary 228Ra/226Ra results indicate that ooid growth has occurred in the last few decades. Alphaproteobacteria, Deltaproteobacteria, Planctomycetes, and Bacteriodetes were the most abundant bacterial taxa present within ooid samples. In contrast, the lake water was significantly different in composition, dominated by the halophilic Halobacteria (Euryarchaeota). Both the treated and untreated ooids had a microbial community that more closely resembled the composition of the Artemia fecal pellets than the Great Salt Lake water. We conclude that 1) preliminary dating using a novel chronometer suggests very recent ooid formation, and 2) nuclei composition may skew the results when investigating ooid microbial communities.

  5. 33 CFR 165.901 - Great Lakes-regulated navigation areas.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Great Lakes-regulated navigation... Specific Regulated Navigation Areas and Limited Access Areas Ninth Coast Guard District § 165.901 Great... a line from Gray's Reef Light (LL-2006) at 45°46′00″ N, 85°09′12″ W; to White Shoals Light (LL-2003...

  6. Food Habits of Wintering Waterfowl on the Great Salt Lake, Utah

    OpenAIRE

    Vest, Josh L.; Conover, Michael R.

    2010-01-01

    Two invertebrates, brine shrimp (Artemia franciscana) and brine flies (Ephydridac), occur in great densities in the Great Salt Lake (GSL) but it is unknown whether ducks forage extensively on them during winter or rely on freshwater food. Common Goldeneye (Bucephala clangula), Northern Shoveler (Anas clypeala) and Green-winged Teal (Anas crecca) were collected from the GSL during winters 2004–05 and 2005–06 to evaluate their food habits. Brine shrimp and brine flies comprised more than 70% of...

  7. Integrated Migratory Bird Planning in the Lower Great Lakes/St. Lawrence Plain Bird Conservation Region

    Science.gov (United States)

    Chuck Hayes; Andrew Milliken; Randy Dettmers; Kevin Loftus; Brigitte Collins; Isabelle Ringuet

    2005-01-01

    The Atlantic Coast and Eastern Habitat Joint Ventures hosted two international planning workshops to begin the process of integrating bird conservation strategies under the North American Bird Conservation Initiative in the Lower Great Lakes/St. Lawrence Plain Bird Conservation Region. The workshops identified priority species and habitats, delineated focus areas,...

  8. Bark beetles and fungal associates colonizing white spruce in the Great Lakes region.

    Science.gov (United States)

    Kirsten E. Haberkern; Barbara L. Illman; Kenneth F. Raffa

    2002-01-01

    We examined the major bark beetles and associated fungi colonizing subcortical tissues of white spruce (Picea glauca (Moench) Voss) in the Great Lakes region. Trees were felled at one northwestern Wisconsin site in a preliminary study in 1997 and at 10 sites throughout northern Wisconsin, Minnesota, and Michigan in 1998. Fungal isolations were made from beetles...

  9. Development of a GIS interface for WEPP Model application to Great Lakes forested watersheds

    Science.gov (United States)

    J. R. Frankenberger; S. Dun; D. C. Flanagan; J. Q. Wu; W. J. Elliot

    2011-01-01

    This presentation will highlight efforts on development of a new online WEPP GIS interface, targeted toward application in forested regions bordering the Great Lakes. The key components and algorithms of the online GIS system will be outlined. The general procedures used to provide input to the WEPP model and to display model output will be demonstrated.

  10. A survey of potential bald eagle nesting habitat along the Great Lakes shoreline

    Science.gov (United States)

    William W. Bowerman; Teryl G. Grubb; Allen J. Bath; John P. Giesy; D.V. Chip Weseloh

    2005-01-01

    We used fixed-wing aircraft to survey the entire shoreline and connecting channels of the five Great Lakes to determine potential nesting habitat for bald eagles (Haliaeetus leucocephalus) during 1992. Habitat was classified as either good, marginal, or unsuitable, based on six habitat attributes: (a) tree cover, (b) proximity and (c) type/amount...

  11. PHYTOPLANKTON PIGMENT ANALYSIS BY HPLC FOR ASSESSING COMMUNITY COMPOSITION IN THE LAURENTIAN GREAT LAKES

    Science.gov (United States)

    A technique to rapidly assess phytoplankton dynamics is being evaluated for its utility in the Great Lakes. Comparison to traditional microscopic techniques and to more recent in-situ FluoroProbe technology will allow us to determine if HPLC pigment analysis can provide unique a...

  12. Great Lake beach-goer behavior during a retrospectively detected bloom of cyanobacteria

    Science.gov (United States)

    Cyanobacteria blooms pose a potential health risk to beachgoers. We conducted a prospective study of weekend beachgoers at a public Great Lake site during July – September 2003. We recorded each person’s health status and activity during their beach visit. We measured...

  13. Evaluation of a rural demonstration program to increase seat belt use in the Great Lakes Region.

    Science.gov (United States)

    2009-03-01

    Six States in the Great Lakes Region (Region 5) participated in a Rural Demonstration Program to increase seat belt : use in rural areas and among high-risk occupants, such as young males and occupants of pickup trucks. These : efforts, which include...

  14. Isolation and characterization of Flavobacterium columnare strains infecting fishes inhabiting the Laurentian Great Lakes basin

    Science.gov (United States)

    Flavobacterium columnare, the etiological agent of columnaris disease, causes significant losses in fish worldwide. In this study, F. columnare infection prevalence was assessed in representative Great Lakes fish species. Over 2,000 wild, feral, and hatchery-propagated salmonids, percids, centrarc...

  15. On farm conservation of Musa diversity in the great lakes region of ...

    African Journals Online (AJOL)

    Banana (Musa spp.) cultivar diversity in the Great Lakes region of East Africa has been on the decline for the last several decades. A number of abiotic, biotic and socio-economic factors are thought to be responsible for this decline. In spite of low variation with respect to stress resistance, a number of farmers have ...

  16. Grand narratives of the Great Lakes Region of Africa and their ...

    African Journals Online (AJOL)

    The strategy of this paper is to draw attention to the influence of narrative and group identities to the current conflicts of the Great Lakes Region. It argues that past memories, passed over to the present generation through community narratives, have contributed to the current crisis. Narratives have been a driving force in ...

  17. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    NARCIS (Netherlands)

    Cohen, Mark D.; Draxler, Roland R.; Artz, Richard S.; Blanchard, Pierrette; Gustin, Mae Sexauer; Han, Young Ji; Holsen, Thomas M.; Jaffe, Daniel A.; Kelley, Paul; Lei, Hang; Loughner, Christopher P.; Luke, Winston T.; Lyman, Seth N.; Niemi, David; Pacyna, Jozef M.; Pilote, Martin; Poissant, Laurier; Ratte, Dominique; Ren, Xinrong; Steenhuisen, Frits; Steffen, Alexandra; Tordon, Rob; Wilson, Simon J.

    2016-01-01

    Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition

  18. Logging the Great Lakes Indian Reservations: The Case of the Bad River Band of Ojibwe

    Science.gov (United States)

    Steen-Adams, Michelle M.; Langston, Nancy E.; Mladenoff, David J.

    2010-01-01

    The harvest of the Great Lakes primary forest stands (ca. 1860-1925) transformed the region's ecological, cultural, and political landscapes. Although logging affected both Indian and white communities, the Ojibwe experienced the lumber era in ways that differed from many of their white neighbors. When the 125,000-acre Bad River Reservation was…

  19. 78 FR 44014 - Safety Zones; Tall Ship Safety Zones; War of 1812 Bicentennial Commemoration, Great Lakes

    Science.gov (United States)

    2013-07-23

    ... the Great Lakes, each zone will be relatively small and only enforced in any one particular geographic... representative. For these reasons, restrictions on vessel movement within any particular geographic area of the... you think that your business, organization, or governmental jurisdiction qualifies as a small entity...

  20. 78 FR 25410 - Safety Zone; Tall Ship Safety Zones; War of 1812 Bicentennial Commemoration, Great Lakes

    Science.gov (United States)

    2013-05-01

    ... geographic area for a minimal time. This is because the safety zones will follow the tall ships through the... particular geographic area of the Great Lakes are expected to be minimal, and therefore, the Coast Guard... for the reasons discussed in the Regulatory Planning and Review section above. If you think that your...

  1. Monitoring Agricultural Cropping Patterns across the Laurentian Great Lakes Basin Using MODIS-NDVI Data

    Science.gov (United States)

    The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). Th...

  2. Mapping Cropland and Major Crop Types Across the Great Lakes Basin Using MODIS-NDVI Data

    Science.gov (United States)

    This research evaluated the potential for using the MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250-m time-series data to develop a cropland mapping capability throughout the 480 000 km2 Great Lakes Basin (GLB). Cropland mapping was conducted usi...

  3. Assessing the Accuracy of MODIS-NDVI Derived Land-Cover Across the Great Lakes Basin

    Science.gov (United States)

    This research describes the accuracy assessment process for a land-cover dataset developed for the Great Lakes Basin (GLB). This land-cover dataset was developed from the 2007 MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250 m time-series data. Tr...

  4. 75 FR 43021 - Stewardship of the Ocean, Our Coasts, and the Great Lakes

    Science.gov (United States)

    2010-07-22

    ... maritime heritage, including our social, cultural, recreational, and historical values; (vii) exercise... in ocean, coastal, and Great Lakes waters; and (x) foster a public understanding of the value of the... Administration, the Director of National Intelligence, the Director of the National Science Foundation, and the...

  5. Seventy Years of Forest Change in the Northern Great Lakes Region, USA

    Science.gov (United States)

    Lisa A. Schulte; Thomas R. Crow; Dave Cleland

    2003-01-01

    The rates and magnitudes of forest change have important social and economic implications. We address facets of change associated with 20th century recovery of the U.S. Lake States (Michigan, Wisconsin, and Minnesota) forests from the Great Cutover, and discuss ecological and socioeconomic implications for future forest resources.

  6. Regulations and policies that limit the growth of the U.S. Great Lakes cruising market.

    Science.gov (United States)

    2011-10-01

    The worldwide cruise industry has seen remarkable growth since the 1990s. The cruise market on the Great Lakes has lagged the worldwide growth and compared to historical records, has fallen far short of its full potential. This paper reviews the hist...

  7. Ecological assessment of Great Lota Lake (Turkey) on the base of ...

    African Journals Online (AJOL)

    Home

    Ecological assessment of Great Lota Lake (Turkey) on the base of diatom communities. Rıdvan Erdal Sivaci1, Sophia Barinova2, Cüneyt Nadir Solak3 and Kadir Çobanoglu4. 1Department of Biology, Art and Science Faculty, Adiyaman University, Adiyaman 02000, Turkey. 2The Laboratory of Biodiversity and Ecology, the ...

  8. National Water-Quality Assessment Program: Great Salt Lake basins study unit

    Science.gov (United States)

    Waddell, Kidd M.

    1999-01-01

    The Great Salt Lake Basins NAWQA study will increase the scientific understanding of the factors that influence surface- and ground-water quality. This information will benefit water-resources managers that need, but often lack, the data required to implement effective water-quality management actions and evaluate long-term changes in water quality.

  9. 40 CFR Appendix F to Part 132 - Great Lakes Water Quality Initiative Implementation Procedures

    Science.gov (United States)

    2010-07-01

    ... use of this methodology may be found in the Great Lakes Water Quality Initiative Technical Support... the structure of the aquatic food web and the disequilibrium constant, are different at the site than... to be met without violating State or Tribal water conservation requirements; c. Human-caused...

  10. 77 FR 51552 - The Great Lakes Islands National Wildlife Refuges in Michigan and Wisconsin

    Science.gov (United States)

    2012-08-24

    ... Maintain Natural Integrity--The current management direction of the Great Lakes Islands NWRs would be... (Preferred Alternative): Enhanced Management To Promote Natural Integrity and Public Stewardship--This option... including your address, phone number, email address, or other personal identifying information in your...

  11. Great Lakes and St. Lawrence Seaway Navigation Season Extension. Volume 6. Appendixes H - L

    Science.gov (United States)

    1979-08-01

    heartland -- a 19-state economic hinterland aren tion for Great Lakes shipping. These circumstances in- which generates some 41% of the nation’s personal...ferry serious jams required icebreaker passage through the service due to ice backup as prviously experienced. jaim area in an attempt to break up the

  12. Surface compaction estimates and soil sensitivity in Aspen stands of the Great Lakes States

    Science.gov (United States)

    Aaron Steber; Ken Brooks; Charles H. Perry; Randy Kolka

    2007-01-01

    Aspen forests in the Great Lakes States support much of the regional timber industry. Management-induced soil compaction is a concern because it affects forest health and productivity and soil erosion. Soil compaction increases bulk density and soil strength and can also decrease air and water movement into and through the soil profile. Currently, most inventories, and...

  13. The Dynamics of American Indian Diplomacy in the Great Lakes Region

    Science.gov (United States)

    Ramirez-Shkwegnaabi, Benjamin

    2003-01-01

    Throughout the nineteenth century Anishinaabeg leaders from the Great Lakes met in treaty councils with U.S. commissioners. Trained for years as astute listeners and eloquent speakers, these diplomats put their skills to the test as they negotiated with their non-Indian counterparts, whose primary responsibility was to serve the interests of the…

  14. Beach-goer behavior during a retrospectively detected algal bloom at a Great Lakes beach

    Science.gov (United States)

    Algal blooms occur among nutrient rich, warm surface waters and may adversely impact recreational beaches. During July – September 2003, a prospective study of beachgoers was conducted on weekends at a public beach on a Great Lake in the United States. We measured each beac...

  15. Progress towards design elements for a Great Lakes-wide aquatic invasive species early detection network

    Science.gov (United States)

    Great Lakes coastal systems are vulnerable to introduction of a wide variety of non-indigenous species (NIS), and the desire to effectively respond to future invaders is prompting efforts towards establishing a broad early-detection network. Such a network requires statistically...

  16. Progress towards an AIS early detection monitoring network for the Great Lakes

    Science.gov (United States)

    As an invasion prone location, the lower St. Louis River system (SLR) has been a case study for ongoing research to develop the framework for a practical Great Lakes monitoring network for early detection of aquatic invasive species (AIS). Early detection, however, necessitates f...

  17. A Spatially Explicit Method for Prioritizing AIS Surveillance Site Selection in the Laurentian Great Lakes

    Science.gov (United States)

    Choosing where to sample for aquatic invasive species (AIS) is a daunting challenge in the Laurentian Great Lakes. Management resources are finite hence it is important that monitoring efforts concentrate on those sites with the highest risk of introduction based on transparent c...

  18. Landscape-scale modeling of water quality in Lake Superior and Lake Michigan watersheds: How useful are forest-based indicators? Journal of Great Lakes Research

    Science.gov (United States)

    Titus S. Seilheimer; Patrick L. Zimmerman; Kirk M. Stueve; Charles H. Perry

    2013-01-01

    The Great Lakes watersheds have an important influence on the water quality of the nearshore environment, therefore, watershed characteristics can be used to predict what will be observed in the streams. We used novel landscape information describing the forest cover change, along with forest census data and established land cover data to predict total phosphorus and...

  19. Application of LANDSAT to the Surveillance of Lake Eutrophication in the Great Lakes Basin. Final Report.

    Science.gov (United States)

    Rogers, Robert H.

    This document reviews the process by which the cost benefits of using LANDSAT on an operational basis in the surveillance of lake eutrophication was established. The program identified the information needs of users conducting on-going water quality programs, transformed these needs into remote sensing requirements, produced LANDSAT maps and data…

  20. 77 FR 73646 - Essar Steel Minnesota, LLC v. Great Lakes Gas Transmission Limited Partnership; Notice of Complaint

    Science.gov (United States)

    2012-12-11

    ...] Essar Steel Minnesota, LLC v. Great Lakes Gas Transmission Limited Partnership; Notice of Complaint Take... Act, 15 U.S.C. 717(a), Essar Steel Minnesota, LLC (Complainant) filed a formal complaint against Great...

  1. Influences on Bythotrephes longimanus life-history characteristics in the Great Lakes

    Science.gov (United States)

    Pothoven, Steven A.; Vanderploeg, Henry A.; Warner, David M.; Schaeffer, Jeffrey S.; Ludsin, Stuart A.; Claramunt, Randall M.; Nalepa, Thomas F.

    2012-01-01

    We compared Bythotrephes population demographics and dynamics to predator (planktivorous fish) and prey (small-bodied crustacean zooplankton) densities at a site sampled through the growing season in Lakes Michigan, Huron, and Erie. Although seasonal average densities of Bythotrephes were similar across lakes (222/m2 Erie, 247/m2 Huron, 162/m2 Michigan), temporal trends in abundance differed among lakes. In central Lake Erie where Bythotrephes' prey assemblage was dominated by small individuals (60%), where planktivorous fish densities were high (14,317/ha), and where a shallow water column limited availability of a deepwater refuge, the Bythotrephes population was characterized by a small mean body size, large broods with small neonates, allocation of length increases mainly to the spine rather than to the body, and a late summer population decline. By contrast, in Lake Michigan where Bythotrephes' prey assemblage was dominated by large individuals (72%) and planktivorous fish densities were lower (5052/ha), the Bythotrephes population was characterized by a large mean body size (i.e., 37–55% higher than in Erie), small broods with large neonates, nearly all growth in body length occurring between instars 1 and 2, and population persistence into fall. Life-history characteristics in Lake Huron tended to be intermediate to those found in Lakes Michigan and Erie, reflecting lower overall prey and predator densities (1224/ha) relative to the other lakes. Because plasticity in life history can affect interactions with other species, our findings point to the need to understand life-history variation among Great Lakes populations to improve our ability to model the dynamics of these ecosystems.

  2. Assessing the Impacts of Climate Change on Tourism-Dependent Communities in the Great Lakes

    Science.gov (United States)

    Chin, N.; Day, J.; Sydnor, S.; Cherkauer, K. A.

    2013-12-01

    Tourism is an essential element of the Laurentian Great Lakes economy as well as one of the sectors expected to be affected most by climate change, particularly through extreme weather events. While studies looking at climate change impacts on the Great Lakes tourism, specifically, are limited, the results of other studies suggest that both summer tourism activities, such as beach-going, and winter tourism activities, such as skiing and snowboarding, could feel the effects of a changing climate. The purpose of this study was to determine how existing data and models might be used to predict the potential impacts of climate change on tourism-dependent communities at the local scale. Future climate projections and variable infiltration capacity (VIC) model simulations based on historical climate data were used to quantify trends in environmental metrics with a potential influence on tourism for several tourism-dependent Great Lakes communities. The results of this research show that the potential impacts of climate change vary at the local scale and could require different adaptation strategies for different communities and for different sectors of the tourism industry. For example, communities in the northern parts of the Great Lakes may find benefit in a greater diversification of their tourism industries, given that warming temperatures could be beneficial for summer tourism activities, while communities in the southern parts of the Great Lakes may have to find other ways to cope with climate conditions that are less conducive to summer tourism activities. Stakeholder input could also help inform the process of producing scientific information that is useful to policymakers when it comes to tourism sector-related decision making.

  3. Alien invasive species and biological pollution of the Great Lakes Basin ecosystem[Great Lakes Water Quality Board : Report to the International Joint Commission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    The displacement of important native species in the Great Lakes is a result of an invasion by a succession of non indigenous aquatic species. These invasion also resulted in interference with the proper human water uses and cost billions of dollars. The problem was considered serious enough that the International Joint Commission asked the Great Lakes Water Quality Board in 1999 to review the regulations in place and make recommendations, if necessary, for the implementation of additional measures that could be considered to keep control over the introduction of alien invasive species. Escapes from aquaria, aquaculture, research and educational facilities, canal and diversion water flows, and release of live bait are all sources of this invasion. The effectiveness of alternative technologies to control the invasion was to be examined by the Board. Other efforts taking place to address the situation in the basin are being complemented by the publication of this report. It is considered that the most important source of alien invasive species (AIS) to the Great Lakes is the discharge of ballast water from shipping vessels coming from outside the United States and Canada. A major concern is the role played by vessels reporting no ballast on board (NOBOB) upon entering the basin. A number of recommendations were made concerning: (1) implementation and enforcement of the ballast water discharge standards agreed upon by both countries, (2) the evaluation of the effectiveness of alternative technologies to achieve ballast water discharge standards over the long term, combined with the use of chemical treatment while the evaluation is being performed, (3) the implementation of optimal management practices to control sediments in shipping vessels, (4) modifications to the design of shipping vessels, and (5) the monitoring and contingency plans in the event of a repeat scenario in the future. Composed of an equal number representatives from the United States and Canada, at

  4. Cyanobacterial Toxins of the Laurentian Great Lakes, Their Toxicological Effects, and Numerical Limits in Drinking Water.

    Science.gov (United States)

    Miller, Todd R; Beversdorf, Lucas J; Weirich, Chelsea A; Bartlett, Sarah L

    2017-06-02

    Cyanobacteria are ubiquitous phototrophic bacteria that inhabit diverse environments across the planet. Seasonally, they dominate many eutrophic lakes impacted by excess nitrogen (N) and phosphorus (P) forming dense accumulations of biomass known as cyanobacterial harmful algal blooms or cyanoHABs. Their dominance in eutrophic lakes is attributed to a variety of unique adaptations including N and P concentrating mechanisms, N₂ fixation, colony formation that inhibits predation, vertical movement via gas vesicles, and the production of toxic or otherwise bioactive molecules. While some of these molecules have been explored for their medicinal benefits, others are potent toxins harmful to humans, animals, and other wildlife known as cyanotoxins. In humans these cyanotoxins affect various tissues, including the liver, central and peripheral nervous system, kidneys, and reproductive organs among others. They induce acute effects at low doses in the parts-per-billion range and some are tumor promoters linked to chronic diseases such as liver and colorectal cancer. The occurrence of cyanoHABs and cyanotoxins in lakes presents challenges for maintaining safe recreational aquatic environments and the production of potable drinking water. CyanoHABs are a growing problem in the North American (Laurentian) Great Lakes basin. This review summarizes information on the occurrence of cyanoHABs in the Great Lakes, toxicological effects of cyanotoxins, and appropriate numerical limits on cyanotoxins in finished drinking water.

  5. Molecular characterization of the Great Lakes viral hemorrhagic septicemia virus (VHSV isolate from USA

    Directory of Open Access Journals (Sweden)

    Vakharia Vikram N

    2009-10-01

    Full Text Available Abstract Background Viral hemorrhagic septicemia virus (VHSV is a highly contagious viral disease of fresh and saltwater fish worldwide. VHSV caused several large scale fish kills in the Great Lakes area and has been found in 28 different host species. The emergence of VHS in the Great Lakes began with the isolation of VHSV from a diseased muskellunge (Esox masquinongy caught from Lake St. Clair in 2003. VHSV is a member of the genus Novirhabdovirus, within the family Rhabdoviridae. It has a linear single-stranded, negative-sense RNA genome of approximately 11 kbp, with six genes. VHSV replicates in the cytoplasm and produces six monocistronic mRNAs. The gene order of VHSV is 3'-N-P-M-G-NV-L-5'. This study describes molecular characterization of the Great Lakes VHSV strain (MI03GL, and its phylogenetic relationships with selected European and North American isolates. Results The complete genomic sequences of VHSV-MI03GL strain was determined from cloned cDNA of six overlapping fragments, obtained by RT-PCR amplification of genomic RNA. The complete genome sequence of MI03GL comprises 11,184 nucleotides (GenBank GQ385941 with the gene order of 3'-N-P-M-G-NV-L-5'. These genes are separated by conserved gene junctions, with di-nucleotide gene spacers. The first 4 nucleotides at the termini of the VHSV genome are complementary and identical to other novirhadoviruses genomic termini. Sequence homology and phylogenetic analysis show that the Great Lakes virus is closely related to the Japanese strains JF00Ehi1 (96% and KRRV9822 (95%. Among other novirhabdoviruses, VHSV shares highest sequence homology (62% with snakehead rhabdovirus. Conclusion Phylogenetic tree obtained by comparing 48 glycoprotein gene sequences of different VHSV strains demonstrate that the Great Lakes VHSV is closely related to the North American and Japanese genotype IVa, but forms a distinct genotype IVb, which is clearly different from the three European genotypes. Molecular

  6. 46 CFR 11.450 - Tonnage limitations and qualifying requirements for endorsements as master or mate of Great Lakes...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Tonnage limitations and qualifying requirements for endorsements as master or mate of Great Lakes and inland vessels of not more than 200 gross tons. 11.450... and qualifying requirements for endorsements as master or mate of Great Lakes and inland vessels of...

  7. Midwest-Great Lakes SER Chapter: Who we are, what we do, and what we will do

    Science.gov (United States)

    Midwestern United States consists of 12 states and six of them (Minnesota, Wisconsin, Illinois, Indiana, Michigan, and Ohio) contact Great Lakes. This subregion defines the boundaries of the Midwest-Great Lakes (MWGL) Chapter of the Society for Ecological Restoration (SER). This region has a diversi...

  8. The Professional Reading Habits of Senior Housing Officers at ACUHO-I Member Institutions in the Great Lakes Region

    Science.gov (United States)

    O'Dell, Kyle

    2009-01-01

    This study examined the professional reading habits of Senior Housing Officers (SHOs) at ACUHO-I member institutions in the Great Lakes region, which encompasses the states of Ohio, Michigan, Illinois, and Indiana. The findings were based on data from the survey responses of SHOs at 71 colleges and universities across the Great Lakes region of the…

  9. 33 CFR 151.2043 - Equivalent Reporting Methods for vessels other than those entering the Great Lakes or Hudson...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Equivalent Reporting Methods for vessels other than those entering the Great Lakes or Hudson River after operating outside the EEZ or... entering the Great Lakes or Hudson River after operating outside the EEZ or Canadian equivalent. (a) For...

  10. Great cormorant (Phalacrocorax carbo predation on pikeperch (Sander lucioperca L. in shallow eutrophic lakes in Poland

    Directory of Open Access Journals (Sweden)

    Traczuk Piotr

    2017-06-01

    Full Text Available Increases in the population abundance of the piscivorous great cormorant (Phalacrocorax carbo has led to conflicts with fisheries. Cormorants are blamed for decreased fish catches in many lakes in Poland. The aim of this paper is to describe to role of pikeperch (Sander lucioperca in the diet of cormorants nesting in a colony on the island in Lake Warnołty. Since the breeding colony is located in the vicinity of Lake OEniardwy, the largest lake in Poland, the cormorants use the resources in this lake. In 2009-2016, 18,432 regurgitated fish were collected, of which 593 were pikeperch. The share of pikeperch among fish collected in 2009-2012 did not exceed 2%, but from 2013 this increased substantially to maximum of 38.2% in 2015. The smallest pikeperch had a standard length of 8.4 cm, and the largest 42.5 cm. Pikeperch mean length differed by year, and the length distribution was close to normal. The sizes of the regurgitated pikeperch indicate that cormorants prey almost exclusively on juvenile specimens. The results of the present study indicate that cormorant predation has a significant impact on pikeperch populations in lakes in the vicinity of the colony, and the great cormorants are possibly a significant factor in the effectiveness of pikeperch management. When planning for the management of fish populations in lakes subjected to cormorant predation pressure, it should be borne in mind that predation by this piscivorous bird species impacts the abundance and size-age structure of fish populations.

  11. Historical causes of change in Great Lakes fish stocks and the implications for ecosystem rehabilitation

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, J.R.M.; Stoddart, S. [Department of Fisheries and Oceans, Sault Ste. Marie, ON (Canada). Great Lakes Lab. for Fisheries and Aquatic Sciences; Steedman, R.J. [Ontario Ministry of Natural Resources, Thunder Bay, ON (Canada). Northwestern Ontario Forest Technology Development Unit

    1996-11-01

    The changes to the Great Lakes commercial fish harvest over the period of 1879-1990 were reviewed. The objective was to provide a historical context for habitat modification strategies designed to benefit fisheries and achieve ecosystem rehabilitation goals. The fishery and aquatic ecosystem responses to human activity were reviewed and the evidence for cause and effect associations were analyzed. It was noted that there was little consensus in the scientific literature as to causative stressors for the changes in Great Lakes fish stocks. However, it is generally agreed that fish population management has been greatly influenced by the introduction of invading and exotic species and endemic processes such as climate and disease. While recent rehabilitation efforts are welcome, the current scale is unlikely to provide substantial gains to community or ecosystem function, but could bring about local improvements in small fish populations. 81 refs., 4 figs.

  12. Stakeholder views of management and decision support tools to integrate climate change into Great Lakes Lake Whitefish management

    Science.gov (United States)

    Lynch, Abigail J.; Taylor, William W.; McCright, Aaron M.

    2016-01-01

    Decision support tools can aid decision making by systematically incorporating information, accounting for uncertainties, and facilitating evaluation between alternatives. Without user buy-in, however, decision support tools can fail to influence decision-making processes. We surveyed fishery researchers, managers, and fishers affiliated with the Lake Whitefish Coregonus clupeaformis fishery in the 1836 Treaty Waters of Lakes Huron, Michigan, and Superior to assess opinions of current and future management needs to identify barriers to, and opportunities for, developing a decision support tool based on Lake Whitefish recruitment projections with climate change. Approximately 64% of 39 respondents were satisfied with current management, and nearly 85% agreed that science was well integrated into management programs. Though decision support tools can facilitate science integration into management, respondents suggest that they face significant implementation barriers, including lack of political will to change management and perceived uncertainty in decision support outputs. Recommendations from this survey can inform development of decision support tools for fishery management in the Great Lakes and other regions.

  13. Policies and practices of beach monitoring in the Great Lakes, USA: a critical review

    Science.gov (United States)

    Nevers, Meredith B.; Whitman, Richard L.

    2010-01-01

    Beaches throughout the Great Lakes are monitored for fecal indicator bacteria (typically Escherichia coli) in order to protect the public from potential sewage contamination. Currently, there is no universal standard for sample collection and analysis or results interpretation. Monitoring policies are developed by individual beach management jurisdictions, and applications are highly variable across and within lakes, states, and provinces. Extensive research has demonstrated that sampling decisions for time, depth, number of replicates, frequency of sampling, and laboratory analysis all influence the results outcome, as well as calculations of the mean and interpretation of the results in policy decisions. Additional shortcomings to current monitoring approaches include appropriateness and reliability of currently used indicator bacteria and the overall goal of these monitoring programs. Current research is attempting to circumvent these complex issues by developing new tools and methods for beach monitoring. In this review, we highlight the variety of sampling routines used across the Great Lakes and the extensive body of research that challenges comparisons among beaches. We also assess the future of Great Lakes monitoring and the advantages and disadvantages of establishing standards that are evenly applied across all beaches.

  14. Inventory and transport of plastic debris in the Laurentian Great Lakes.

    Science.gov (United States)

    Hoffman, Matthew J; Hittinger, Eric

    2017-02-15

    Plastic pollution in the world's oceans has received much attention, but there has been increasing concern about the high concentrations of plastic debris in the Laurentian Great Lakes. Using census data and methodologies used to study ocean debris we derive a first estimate of 9887 metric tonnes per year of plastic debris entering the Great Lakes. These estimates are translated into population-dependent particle inputs which are advected using currents from a hydrodynamic model to map the spatial distribution of plastic debris in the Great Lakes. Model results compare favorably with previously published sampling data. The samples are used to calibrate the model to derive surface microplastic mass estimates of 0.0211 metric tonnes in Lake Superior, 1.44 metric tonnes in Huron, and 4.41 metric tonnes in Erie. These results have many applications, including informing cleanup efforts, helping target pollution prevention, and understanding the inter-state or international flows of plastic pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The effect of the United States Great Lakes on the maintenance of derecho-producing mesoscale convective systems.

    Science.gov (United States)

    Bentley, M.; Sparks, J.; Graham, R.

    2003-04-01

    The primary aim of this research is to investigate the influence of the United States Great Lakes on the intensity of mesoscale convective systems (MCSs). One of the greatest nowcast challenges during the warm season is anticipating the impact of the Great Lakes on severe convection, particularly MCSs capable of producing damaging widespread windstorms known as derechos. Since a major derecho activity corridor lies over the Great Lakes region, it is important to understand the effects of the Lakes on the intensity and propagation of severe wind producing MCSs. Specific objectives of the research include: 1) The development of a short-term climatology of MCS events that have impacted the Great Lakes region over the past seven years; 2) An analysis of radar, satellite, surface (including buoy and lighthouse observations), and lake surface temperature data to determine the environmental conditions impacting the evolution of MCSs passing over a Great Lake; 3) An examination of MCS initiation times and seasonal frequencies of occurrence to delineate temporal consistencies in MCS evolution due to changing lake surface temperatures; and 4) The development of conceptual and forecast models to help anticipate MCS intensity and morphology as these systems interact with the Great Lakes environment.

  16. Potential Effects of Climate Changes on Aquatic Systems: Laurentian Great Lakes and Precambrian Shield Region

    Science.gov (United States)

    Magnuson, J. J.; Webster, K. E.; Assel, R. A.; Bowser, C. J.; Dillon, P. J.; Eaton, J. G.; Evans, H. E.; Fee, E. J.; Hall, R. I.; Mortsch, L. R.; Schindler, D. W.; Quinn, F. H.

    1997-06-01

    The region studied includes the Laurentian Great Lakes and a diversity of smaller glacial lakes, streams and wetlands south of permanent permafrost and towards the southern extent of Wisconsin glaciation. We emphasize lakes and quantitative implications. The region is warmer and wetter than it has been over most of the last 12000 years. Since 1911 observed air temperatures have increased by about 0·11°C per decade in spring and 0·06°C in winter; annual precipitation has increased by about 2·1% per decade. Ice thaw phenologies since the 1850s indicate a late winter warming of about 2·5°C. In future scenarios for a doubled CO2 climate, air temperature increases in summer and winter and precipitation decreases (summer) in western Ontario but increases (winter) in western Ontario, northern Minnesota, Wisconsin and Michigan. Such changes in climate have altered and would further alter hydrological and other physical features of lakes. Warmer climates, i.e. 2 × CO2 climates, would lower net basin water supplies, stream flows and water levels owing to increased evaporation in excess of precipitation. Water levels have been responsive to drought and future scenarios for the Great Lakes simulate levels 0·2 to 2·5 m lower. Human adaptation to such changes is expensive. Warmer climates would decrease the spatial extent of ice cover on the Great Lakes; small lakes, especially to the south, would no longer freeze over every year. Temperature simulations for stratified lakes are 1-7°C warmer for surface waters, and 6°C cooler to 8°C warmer for deep waters. Thermocline depth would change (4 m shallower to 3·5 m deeper) with warmer climates alone; deepening owing to increases in light penetration would occur with reduced input of dissolved organic carbon (DOC) from dryer catchments. Dissolved oxygen would decrease below the thermocline. These physical changes would in turn affect the phytoplankton, zooplankton, benthos and fishes. Annual phytoplankton production may

  17. Sapropels in the Great Salt Lake basin: Indicators of massive groundwater-discharge events

    Science.gov (United States)

    Oviatt, C. G.

    2012-12-01

    Two stratigraphic intervals of finely laminated, organic-rich muds (referred to as sapropels), which in places are interbedded with mirabilite (Na2SO4 10H2O) and/or halite (NaCl), are present in cores of sediments from the floor of Great Salt Lake, UT (GSL). The muds vary in thickness, including the interbedded salt, from less than 0.5 m to over 10 m (in the case of the younger sapropel in the north arm of GSL). They contain brine-shrimp cysts and well-defined laminations less than 1 mm thick. Immediately after recovery in cores, the muds are pure black, but they oxidize to brown colors after a few days of exposure to the atmosphere. Organic-carbon contents in the younger sapropel are 3-5 %, and nitrogen percentages range from about 0.2 to 0.4. The sapropels are overlain by muds deposited in shallow hypersaline lakes, and overlie sediments of deep, freshwater lakes. Independent evidence from radiocarbon ages and shoreline chronology indicates that the upper sapropel was deposited while the lake was shallow (less than 25 m deep; average maximum depth of modern GSL is ~10 m; maximum depth of Lake Bonneville is >300 m). The age of the upper sapropel is about 10-11.5 cal ka, and it was deposited immediately following the regression of Lake Bonneville, which filled the basin during marine oxygen-isotope stage 2. The older sapropel directly overlies sediments of a deep lake that is likely correlative with oxygen-isotope stage 6. A hypothesis to explain sapropel deposition is that groundwater that had been stored in mountain aquifers during the high-lake periods was discharged onto the basin floor where it ran into the lake and formed a freshwater cap on the saline water; organic matter that settled to the bottom of the lake from the surface exhausted dissolved oxygen and accumulated on the bottom of the stratified lake. The ages of spring and wetland deposits at numerous localities around the basin are consistent with this hypothesis. This hypothetical cause for sapropel

  18. Evaluation of water quality projects in the Lake Tahoe basin.

    Science.gov (United States)

    Schuster, S; Grismer, M E

    2004-01-01

    Lake Tahoe is a large sub alpine lake located in the Sierra Nevada Range in the states of California and Nevada. The Lake Tahoe watershed is relatively small (800 km(20) and is made up of soils with a very low nutrient content and when combined with the Lake's enormous volume (156 km(3)) produces water of unparalleled clarity. However, urbanization around the Lake during the past 50 yr has greatly increased nutrient flux into the Lake resulting in increased algae production and rapidly declining water clarity. Lake transition from nitrogen limiting to phosphorous limiting during the last 30 yr suggests the onset of cultural eutrophication of Lake Tahoe. Protecting Lake Tahoe's water quality has become a major public concern and much time, effort, and money has been, and will be, spent on this undertaking. The effectiveness of remedial actions is the subject of some debate. Local regulatory agencies have mandated implementation of best management practices (BMPs) to mitigate the effects of development, sometimes at great additional expense for developers and homeowners who question their effectiveness. Conclusive studies on the BMP effectiveness are also expensive and can be difficult to accomplish such that very few such studies have been completed. However, several project evaluations have been completed and more are underway. Such study usually demonstrates support of the project's effectiveness in decreasing nutrient flux to Lake Tahoe. Here, we review the existing state of knowledge of nutrient loading to the Lake and to highlight the need for further evaluative investigations of BMPs in order to improve their performance in present and future regulatory actions.

  19. Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America

    Science.gov (United States)

    Collingsworth, Paris D.; Bunnell, David B.; Murray, Michael W.; Kao, Yu-Chun; Feiner, Zachary S.; Claramunt, Randall M.; Lofgren, Brent M.; Höök, Tomas O.; Ludsin, Stuart A.

    2017-01-01

    The Laurentian Great Lakes of North America provide valuable ecosystem services, including fisheries, to the surrounding population. Given the prevalence of other anthropogenic stressors that have historically affected the fisheries of the Great Lakes (e.g., eutrophication, invasive species, overfishing), climate change is often viewed as a long-term stressor and, subsequently, may not always be prioritized by managers and researchers. However, climate change has the potential to negatively affect fish and fisheries in the Great Lakes through its influence on habitat. In this paper, we (1) summarize projected changes in climate and fish habitat in the Great Lakes; (2) summarize fish responses to climate change in the Great Lakes; (3) describe key interactions between climate change and other stressors relevant to Great Lakes fish, and (4) summarize how climate change can be incorporated into fisheries management. In general, fish habitat is projected to be characterized by warmer temperatures throughout the water column, less ice cover, longer periods of stratification, and more frequent and widespread periods of bottom hypoxia in productive areas of the Great Lakes. Based solely on thermal habitat, fish populations theoretically could experience prolonged optimal growth environment within a changing climate, however, models that assess physical habitat influences at specific life stages convey a more complex picture. Looking at specific interactions with other stressors, climate change may exacerbate the negative impacts of both eutrophication and invasive species for fish habitat in the Great Lakes. Although expanding monitoring and research to consider climate change interactions with currently studied stressors, may offer managers the best opportunity to keep the valuable Great Lakes fisheries sustainable, this expansion is globally applicable for large lake ecosystem dealing with multiple stressors in the face of continued human-driven changes.

  20. Late Cenozoic lacustrine and climatic environments at Tule Lake, northern Great Basin, USA

    Science.gov (United States)

    Platt, Bradbury J.

    1992-01-01

    Cores of lake sediment to a depth of 334 m in the town of Tulelake, Siskiyou County, northern California, document the late Cenozoic paleolimnologic and paleoclimatic history of the northwestern edge of the Great Basin. The cores have been dated by radiometric, tephrochronologic and paleomagnetic analyses. Lacustrine diatoms are abundant throughout the record and document a nearly continuous paleolimnologic history of the Tule Lake basin for the last 3 Myr. During most of this time, this basin (Tule Lake) was a relatively deep, extensive lake. Except for a drier (and cooler?) interval recorded by Fragilaria species about 2.4 Ma, the Pliocene is characterized by a dominance of planktonic Aulacoseira solida implying a warm monomictic lake under a climatic regime of low seasonality. Much of the Pleistocene is dominated by Stephanodiscus and Fragilaria species suggesting a cooler, often drier, and highly variable climate. Benthic diatoms typical of alkaline-enriched saline waters commonly appear after 1.0 Ma, and tephrochronology indicates slow deposition and possible hiatuses between about 0.6 and 0.2 Ma. The chronology of even-numbered oxygen isotope stages approximately matches fluctuations in the abundance of Fragilaria since 800 ka indicating that glacial periods were expressed as drier environments at Tule Lake. Glacial and interglacial environments since 150 ka were distinct from, and more variable than, those occurring earlier. The last full glacial period was very dry, but shortly thereafter Tule Lake became a deep, cool lacustrine system indicating a substantial increase in precipitation. Aulacoseira ambigua characterized the latest glacial and Holocene record of Tule Lake. Its distribution indicates that warmer and wetter climates began about 15 ka in this part of the Great Basin. Diatom concentration fluctuates at 41 000 year intervals between 3.0 and 2.5 Ma and at approximately 100 000 year intervals after 1.0 Ma. In the late Pliocene and early Pleistocene

  1. Biostrome communities and mercury and selenium bioaccumulation in the Great Salt Lake (Utah, USA).

    Science.gov (United States)

    Wurtsbaugh, Wayne A; Gardberg, Jodi; Izdepski, Caleb

    2011-09-15

    The Great Salt Lake has a salinity near 150 g/L and is habitat for over 200 species of migratory birds. The diet of many of these birds is dependent on the food web of carbonaceous biostromes (stromatolites) that cover 260 km(2) of the lake's littoral zone. We investigated the biostrome community to understand their production processes and to assess whether they are a potential vector for bioconcentration of high mercury and selenium levels in the lake. The periphyton community of the biostromes was >99% colonial cyanobacteria. Periphyton chlorophyll levels averaged 900 mg m(-2) or nine times that of the lake's phytoplankton. Lake-wide estimates of chlorophyll suggest that their production is about 30% of that of the phytoplankton. Brine fly (Ephydra gracilis) larval densities on the biostromes increased from 7000 m(-2) in June to 20000m(-2) in December. Pupation and adult emergence halted in October and larvae of various instars overwintered at temperatures fly larvae, pupae, and adults were, respectively, 152, 189, 379 and 659 ηg g(-1) dry weight, suggesting that bioconcentration is only moderate in the short food web and through fly developmental stages. However, common goldeneye ducks (Bucephala clangula) that feed primarily on brine fly larvae at the Great Salt Lake had concentrations near 8000 ηg Hg g(-1) dry weight in muscle tissue. Data from a previous study indicated that selenium concentrations in periphyton, brine fly larvae and goldeneye liver tissue were high (1700, 1200 and 24,000 ηg g(-1), respectively) and Hg:Se molar ratios were birds and humans that consume them. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Trace elements in sub-alpine forest soils on the eastern edge of the Tibetan Plateau, China

    Science.gov (United States)

    Wang, Xiaodan; Cheng, Genwei; Zhong, Xianghao; Li, Mai-He

    2009-08-01

    Industrial development has increased fast in China during the last decades. This has led to a range of environmental problems. Deposition of trace elements to forest ecosystems via the atmosphere is one potential problem. In this paper, we report the results from a pilot study where the trace element levels of the sub-alpine forest soils on the eastern edge of the Tibetan Plateau have been measured. Possible relationships between soil properties and trace element concentrations have also been investigated. The obtained concentrations (mg kg-1) were boron (B) 48.06-53.70, molybdenum (Mo) 1.53-2.26, zinc (Zn) 68.18-79.53, copper (Cu) 36.81-42.44, selenium (Se) 0.33-0.49, cadmium (Cd) 0.16-0.29, lead (Pb) 25.80-30.71, chromium (Cr) 96.10-110.08, nickel (Ni) 30.16-45.60, mercury (Hg) 0.05-0.11, and arsenic (As) 3.09-4.17. With a few exceptions, the element concentration can be characterized as low in the investigated sub-alpine forest soils. No clear differences in trace element levels were found between topsoil and subsoil samples, indicating that the atmospheric deposition of trace element has been low. The soil parent material plays a key role to determine trace element levels. Soil properties, including pHw, organic carbon (OC), clay fraction, cation-exchange capacity (CEC), total iron (Fe), and total aluminum (Al) concentrations were related to trace element concentration using correlation analysis. Total Fe and Al showed the strongest relationships with concentrations of most trace elements in the sub-alpine forest soils. PCA analyses indicated that a significant increase in the number of cars with the fast development of local tourism may result in higher Pb concentration in the future.

  3. Acute bioassays and hazard evaluation of representative contaminants detected in Great Lakes fish

    Science.gov (United States)

    Passino, Dora R. May; Smith, Stephen B.

    1987-01-01

    We have provided a hazard ranking for 19 classes of compounds representing many of the nearly 500 organic compounds identified by gas chromatography-mass spectrometry in lake trout (Salvelinus namaycush) and walleye (Stizostedion vitreum vitreum) from the Great Lakes and Lake St. Clair. We initially made a provisional hazard ranking based on available published and unpublished information on aquatic toxicity, bioaccumulation, occurrence and sources. Acute toxicity tests with Daphnia pulex at 17A°C in reconstituted hard water were performed with 30 compounds representative of the 19 classes that were highest in the provisional ranking. The resulting toxicity data, along with information on the compounds' occurrence in Great Lakes fish and their sources, were ranked and weighted and then used in calculating the revised hazard ranking. The 10 most hazardous classes, in descending order, are as follows (values shown are mean 48-h EC50s, in μ/ml): arene halides (e.g., polychlorinated biphenyls, DDT), 0.0011; phthalate esters, 0.133; chlorinated camphenes (toxaphene), 0.0082; polyaromatic hydrocarbons (PAHs; e.g., dimethylnaphthalene) and reduced derivatives, 1.01; chlorinated fused polycyclics (e.g., trans-nonachlor), 0.022; nitrogen-containing compounds (e.g., O-methylhydroxyl-amine), 1.35; alkyl halides (e.g., (bromomethyl)cyclohexene), 10.1; cyclic alkanes (e.g., cyclododecane), 20.9; silicon-containing compounds (e.g., dimethyldiethoxy silane), 1.25; and heterocyclic nitrogen compounds (e.g., nicotine), 2.48. We recommend that chronic bioassays be conducted with fish and invertebrates to determine the sublethal effects of the following classes of compounds, for which few toxicity data are available: PAHs, heterocyclic nitrogen compounds, other nitrogen-containing compounds, alkyl halides, cyclic alkanes and silicon-containing compounds. Information from these types of studies will aid researchers in determining the possible causal role these contaminants play in

  4. First direct confirmation of grass carp spawning in a Great Lakes tributary

    Science.gov (United States)

    Embke, Holly S.; Kocovsky, Patrick M.; Richter, Catherine A.; Pritt, Jeremy J.; Christine M. Mayer,; Qian, Song

    2016-01-01

    Grass carp (Ctenopharyngodon idella), an invasive species of Asian carp, has been stocked for many decades in the United States for vegetation control. Adult individuals have been found in all of the Great Lakes except Lake Superior, but no self-sustaining populations have yet been identified in Great Lakes tributaries. In 2012, a commercial fisherman caught four juvenile diploid grass carp in the Sandusky River, a major tributary to Lake Erie. Otolith microchemistry and the capture location of these fish permitted the conclusion that they were most likely produced in the Sandusky River. Due to this finding, we sampled ichthyoplankton using paired bongo net tows and larval light traps during June–August of 2014 and 2015 to determine if grass carp are spawning in the Sandusky River. From the samples collected in 2015, we identified and staged eight eggs that were morphologically consistent with grass carp. Five eggs were confirmed as grass carp using quantitative Polymerase Chain Reaction for a grass carp-specific marker, while the remaining three were retained for future analysis. Our finding confirms that grass carp are naturally spawning in this Great Lakes tributary. All eggs were collected during high-flow events, either on the day of peak flow or 1–2 days following peak flow, supporting an earlier suggestion that high flow conditions favor grass carp spawning. The next principal goal is to identify the spawning and hatch location(s) for the Sandusky River. Predicting locations and conditions where grass carp spawning is most probable may aid targeted management efforts.

  5. The Origin of Basin of Great Lakes in Western Mongolia: Glaciated Super Valley, Not Super Flooding

    Science.gov (United States)

    Khukhuudei, Ulambadrakh; Otgonbayar, Orolzodmaa

    2015-04-01

    Research for morphology, its origin of the Basin of Great Lakes in Western Mongolia, is few and far between, particularly, any in recent years. The origin of the morphology of the basin presents a new study, combining previous study materials, their results and interpreting the digital photos. Also the main bases of theory is Pleistocene Last Glacial Maximum distribution. Many scholars have proven that global glaciation covered many areas of the Northern Hemisphere during the Pleistocene era. This global glaciation occurred in the northwest part of Mongolia to Mongolian Altay, Khangay and Khuvsgul mountain range. At the same time, the present appearance of basin that developed inheriting since the Mesozoic era, forms by global glaciation. The morphology of Basin of Great Lakes is super trough or glaciated super valley. At current day, "knock and lochan" topography (scoured region) and rock drumlins lie in the central part of the basin. Huge meltwater from this glaciation formed Shargasub-basin as a super kettle hole by erosion and overflowed water from it formed pluvial basins or big lakes in the Lake Valley.

  6. Managing the financial risk of low water levels in Great Lakes with index-based contracts

    Science.gov (United States)

    Meyer, E.; Characklis, G. W.; Brown, C. M.; Moody, P.

    2014-12-01

    Low water levels in the Great Lakes have recently had significant financial impacts on the region's commercial shipping, responsible for transporting millions of dollars' worth of bulk goods each year. Low lake levels can significantly affect shipping firms, as cargo capacity is a function of draft, or the distance between water level and the ship's bottom. Draft increases with weight, and lower lake levels force ships to reduce cargo to prevent running aground in shallow harbors, directly impacting the finances of shipping companies. Risk transfer instruments may provide adaptable, yet unexplored, alternatives for managing these financial risks, at significantly less expense than more traditional solutions (e.g., dredging). Index-based financial instruments can be particularly attractive as contract payouts are directly linked to well-defined transparent metrics (e.g., lake levels), eliminating the need for subjective adjustors, as well as concerns over moral hazard. In developing such instruments, a major challenge is identifying an index that is well correlated with financial losses, and thus a contract that reliably pays out when losses are experienced (low basis risk). In this work, a relationship between lake levels and shipping revenues is developed, and actuarial analyses of the frequency and magnitude of revenue losses is completed using this relationship and synthetic water level data. This analysis is used to develop several types of index-based contracts. A standardized suite of binary contracts is developed, with each indexed to lake levels and priced according to predefined thresholds. These are combined to form portfolios with different objectives (e.g. options, collars), with optimal portfolio structure and length of coverage determined by limiting basis risk and contract cost, using simulations over the historic dataset. Results suggest that portfolios of these binary contracts can substantially reduce the risk of financial losses during periods of

  7. Evaluating financial risk management strategies under climate change for hydropower producers on the Great Lakes

    Science.gov (United States)

    Meyer, Eliot S.; Characklis, Gregory W.; Brown, Casey

    2017-03-01

    Hydropower on the Great Lakes makes up a substantial fraction of regional electricity generation capacity. Hydropower producers on the Niagara River (flowing between lakes Erie and Ontario) operate as run-of-river, and changing lake levels alter interlake flows reducing both generation and revenues. Index-based insurance contracts, wherein contract payouts are linked to lake levels, offer a tool for mitigating this risk. As a potentially useful tool, pricing of financial insurance is typically based on historical behavior of the index. However, uncertainty with respect to the impacts of climate change on lake level behavior and how this might translate to increased (or decreased) risk for those selling or buying the insurance remains unexplored. Portfolios of binary index-insurance contracts are developed for hydropower producers on the Niagara River, and their performance is evaluated under a range of climate scenarios. Climate Informed Decision Analysis is used to inform the sensitivity of these portfolios to potential shifts in long-term, climatological variations in water level behavior. Under historical conditions, hydropower producers can use portfolios costing 0.5% of mean revenues to increase their minimum revenue threshold by approximately 18%. However, a one standard deviation decrease in the 50 year mean water level potentially doubles the frequency with which these portfolios would underperform from the perspective of a potential insurer. Trade-offs between portfolio cost and the frequency of underperformance are investigated over a range of climate futures.

  8. Are great Cascadia earthquakes recorded in the sedimentary records from small forearc lakes?

    Directory of Open Access Journals (Sweden)

    A. E. Morey

    2013-10-01

    Full Text Available Here we investigate sedimentary records from four small inland lakes located in the southern Cascadia forearc region for evidence of earthquakes. Three of these lakes are in the Klamath Mountains near the Oregon–California border, and one is in the central Oregon Coast range. The sedimentary sequences recovered from these lakes are composed of normal lake sediment interbedded with disturbance event layers. The thickest of these layers are graded, and appear to be turbidites or linked debrites (turbidites with a basal debris-flow deposit, suggesting rapid deposition. Variations in particle size and organic content of these layers are reflected in the density and magnetic susceptibility data. The frequency and timing of these events, based on radiocarbon ages from detrital organics, is similar to the offshore seismogenic turbidite record from trench and slope basin cores along the Cascadia margin. Stratigraphic correlation of these anomalous deposits based on radiocarbon ages, down-core density, and magnetic susceptibility data between lake and offshore records suggest synchronous triggering. The areal extent and multiple depositional environments over which these events appear to correlate suggest that these deposits were most likely caused by shaking during great Cascadia earthquakes.

  9. Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes

    Science.gov (United States)

    Domagalski, J.L.; Orem, W.H.; Eugster, H.P.

    1989-01-01

    Samples of Recent sediments, representing up to 1000 years of accumulation, were collected from three closed basin lakes (Mono Lake, CA, Walker Lake, NV, and Great Salt Lake, UT) to assess the effects of brine composition on the accumulation of total organic carbon, the concentration of dissolved organic carbon, humic acid structure and diagenesis, and trace metal complexation. The Great Salt Lake water column is a stratified Na-Mg-Cl-SO4 brine with low alkalinity. Algal debris is entrained in the high density (1.132-1.190 g/cc) bottom brines, and in this region maximum organic matter decomposition occurs by anaerobic processes, with sulfate ion as the terminal electron acceptor. Organic matter, below 5 cm of the sediment-water interface, degrades at a very slow rate in spite of very high pore-fluid sulfate levels. The organic carbon concentration stabilizes at 1.1 wt%. Mono Lake is an alkaline (Na-CO3-Cl-SO4) system. The water column is stratified, but the bottom brines are of lower density relative to the Great Salt Lake, and sedimentation of algal debris is rapid. Depletion of pore-fluid sulfate, near l m of core, results in a much higher accumulation of organic carbon, approximately 6 wt%. Walker Lake is also an alkaline system. The water column is not stratified, and decomposition of organic matter occurs by aerobic processes at the sediment-water interface and by anaerobic processes below. Total organic carbon and dissolved organic carbon concentrations in Walker Lake sediments vary with location and depth due to changes in input and pore-fluid sulfate concentrations. Nuclear magnetic resonance studies (13C) of humic substances and dissolved organic carbon provide information on the source of the Recent sedimentary organic carbon (aquatic vs. terrestrial), its relative state of decomposition, and its chemical structure. The spectra suggest an algal origin with little terrestrial signature at all three lakes. This is indicated by the ratio of aliphatic to

  10. Chronic toxicity of arsenic to the Great Salt Lake brine shrimp, Artemia franciscana.

    Science.gov (United States)

    Brix, Kevin V; Cardwell, Rick D; Adams, William J

    2003-02-01

    We determined the chronic toxicity of arsenic (sodium arsenate) to the Great Salt Lake brine shrimp, Artemia franciscana. Chronic toxicity was determined by measuring the adverse effects of arsenic on brine shrimp growth, survival, and reproduction under intermittent flow-through conditions. The study commenced with shrimp growth rather than an arsenic effect. This study represents one of the few full life cycle toxicity tests conducted with brine shrimp.

  11. Modeling detection probability to improve marsh bird surveys in southern Canada and the Great Lakes states

    Directory of Open Access Journals (Sweden)

    Douglas C. Tozer

    2016-12-01

    Full Text Available Marsh birds are notoriously elusive, with variation in detection probability across species, regions, seasons, and different times of day and weather. Therefore, it is important to develop regional field survey protocols that maximize detections, but that also produce data for estimating and analytically adjusting for remaining differences in detections. We aimed to improve regional field survey protocols by estimating detection probability of eight elusive marsh bird species throughout two regions that have ongoing marsh bird monitoring programs: the southern Canadian Prairies (Prairie region and the southern portion of the Great Lakes basin and parts of southern Québec (Great Lakes-St. Lawrence region. We accomplished our goal using generalized binomial N-mixture models and data from ~22,300 marsh bird surveys conducted between 2008 and 2014 by Bird Studies Canada's Prairie, Great Lakes, and Québec Marsh Monitoring Programs. Across all species, on average, detection probability was highest in the Great Lakes-St. Lawrence region from the beginning of May until mid-June, and then fell throughout the remainder of the season until the end of June; was lowest in the Prairie region in mid-May and then increased throughout the remainder of the season until the end of June; was highest during darkness compared with light; and did not vary significantly according to temperature (range: 0-30°C, cloud cover (0%-100%, or wind (0-20 kph, or during morning versus evening. We used our results to formulate improved marsh bird survey protocols for each region. Our analysis and recommendations are useful and contribute to conservation of wetland birds at various scales from local single-species studies to the continental North American Marsh Bird Monitoring Program.

  12. The use of environmental DNA in invasive species surveillance of the Great Lakes commercial bait trade.

    Science.gov (United States)

    Nathan, Lucas R; Jerde, Christopher L; Budny, Michelle L; Mahon, Andrew R

    2015-04-01

    Over 180 non-native species have been introduced in the Laurentian Great Lakes region, many posing threats to native species and ecosystem functioning. One potential pathway for introductions is the commercial bait trade; unknowing or unconcerned anglers commonly release unused bait into aquatic systems. Previous surveillance efforts of this pathway relied on visual inspection of bait stocks in retail shops, which can be time and cost prohibitive and requires a trained individual that can rapidly and accurately identify cryptic species. Environmental DNA (eDNA) surveillance, a molecular tool that has been used for surveillance in aquatic environments, can be used to efficiently detect species at low abundances. We collected and analyzed 576 eDNA samples from 525 retail bait shops throughout the Laurentian Great Lake states. We used eDNA techniques to screen samples for multiple aquatic invasive species (AIS) that could be transported in the bait trade, including bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix), round goby (Neogobius melanostomus), tubenose goby (Proterorhinus marmoratus), Eurasian rudd (Scardinius erythrophthalmus), and goldfish (Carassius auratus). Twenty-seven samples were positive for at least one target species (4.7% of samples), and all target species were found at least once, except bighead carp. Despite current regulations, the bait trade remains a potential pathway for invasive species introductions in the Great Lakes region. Alterations to existing management strategies regarding the collection, transportation, and use of live bait are warranted, including new and updated regulations, to prevent future introductions of invasive species in the Great Lakes via the bait trade. © 2014 Society for Conservation Biology.

  13. Economic Incentives for Controlling Trade-Related Biological Invasions in the Great Lakes

    OpenAIRE

    Lupi, Frank; Horan, Richard D.

    2005-01-01

    Ballast water from commercial ships engaged in international trade has been implicated as the primary invasion pathway in over 60 percent of new introductions of invasive alien species (IAS) in the Great Lakes since 1960. Recent policies have recognized that IAS are a form of biological pollution and have become focused on preventing new introductions. Given that emissions-based incentives are infeasible for the case of biological emissions, we investigate the cost-effectiveness of various pe...

  14. How Do Changes to the Railroad Causeway in Utah's Great Salt Lake Affect Water and Salt Flow?

    Directory of Open Access Journals (Sweden)

    James S White

    Full Text Available Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah's Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey's Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses.

  15. How Do Changes to the Railroad Causeway in Utah's Great Salt Lake Affect Water and Salt Flow?

    Science.gov (United States)

    White, James S; Null, Sarah E; Tarboton, David G

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah's Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey's Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses.

  16. Trend and climate signals in seasonal air concentration of organochlorine pesticides over the Great Lakes

    Science.gov (United States)

    Gao, Hong; Ma, Jianmin; Cao, Zuohao; Dove, Alice; Zhang, Lisheng

    2010-08-01

    Following worldwide bans or restrictions, the atmospheric level of many organochlorine pesticides (OCPs) over the Great Lakes exhibited a decreasing trend since the 1980s in various environmental compartments. Atmospheric conditions also influence variation and trend of OCPs. In the present study a nonparametric Mann-Kendall test with an additional process to remove the effect of temporal (serial) correlation was used to detect the temporal trend of OCPs in the atmosphere over the Great Lakes region and to examine the statistical significance of the trends. Using extended time series of measured air concentrations over the Great Lakes region from the Integrated Atmospheric Deposition Network, this study also revisits relationships between seasonal mean air concentration of OCPs and major climate variabilities in the Northern Hemisphere. To effectively extract climate signals from the temporal trend of air concentrations, we detrended air concentrations through removing their linear trend, which is driven largely by their respective half-lives in the atmosphere. The interannual variations of the extended time series show a good association with interannual climate variability, notably, the North Atlantic Oscillation (NAO) and the El Niño-Southern Oscillation. This study demonstrates that the stronger climate signals can be extracted from the detrended time series of air concentrations of some legacy OCPs. The detrended concentration time series also help to interpret, in addition to the connection with interannual variation of the NAO, the links between atmospheric concentrations of OCPs and decadal or interdecadal climate change.

  17. Spatially-explicit modelling of nutrient loading to the landscape in the Great Lakes Basin

    Science.gov (United States)

    Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Hyndman, D. W.

    2016-12-01

    Loading of nitrogen and phosphorus to the landscape has resulted in dangerous algal blooms, contaminated drinking water, and decreased biodiversity. Here, we developed a GIS model to estimate spatially explicit nutrient loading across the Great Lakes Basin. The model expands on previous work in the lower peninsula of Michigan by Luscz et al. (2015). Inputs to the model include point source loads to streams along with five non-point source landscape loads: atmospheric deposition, chemical agricultural fertilizer, chemical non-agricultural fertilizer, manure application, and septic tanks. Scaling up from Michigan to the eight U.S. states and two Canadian provinces in the Great Lakes Basin provided unique challenges. In the case of the septic tank inputs, we compiled a multistate database of drinking water wells for use in an automated Python script to delineate wastewater treatment plant service areas and to estimate placement of septic tanks appropriately within the landscape. Using a model with individual nutrient inputs showed that even within a single land use class, there is high variability in loading rates. This variability suggests that simply prescribing loading estimates based on land use class is insufficient. Modelling high resolution and source specific landscape nutrient loading will be valuable to target strategies to decrease excessive anthropogenic nutrient loading in the Great Lakes Basin.

  18. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence

    Science.gov (United States)

    Elliott, Sarah M.; Brigham, Mark E.; Lee, Kathy E.; Banda, Jo A.; Choy, Steven J.; Gefell, Daniel J.; Minarik, Thomas A.; Moore, Jeremy N.; Jorgenson, Zachary G.

    2017-01-01

    Human activities introduce a variety of chemicals to the Laurentian Great Lakes including pesticides, pharmaceuticals, flame retardants, plasticizers, and solvents (collectively referred to as contaminants of emerging concern or CECs) potentially threatening the vitality of these valuable ecosystems. We conducted a basin-wide study to identify the presence of CECs and other chemicals of interest in 12 U.S. tributaries to the Laurentian Great Lakes during 2013 and 2014. A total of 292 surface-water and 80 sediment samples were collected and analyzed for approximately 200 chemicals. A total of 32 and 28 chemicals were detected in at least 30% of water and sediment samples, respectively. Concentrations ranged from 0.0284 (indole) to 72.2 (cholesterol) μg/L in water and 1.75 (diphenhydramine) to 20,800 μg/kg (fluoranthene) in sediment. Cluster analyses revealed chemicals that frequently co-occurred such as pharmaceuticals and flame retardants at sites receiving similar inputs such as wastewater treatment plant effluent. Comparison of environmental concentrations to water and sediment-quality benchmarks revealed that polycyclic aromatic hydrocarbon concentrations often exceeded benchmarks in both water and sediment. Additionally, bis(2-ethylhexyl) phthalate and dichlorvos concentrations exceeded water-quality benchmarks in several rivers. Results from this study can be used to understand organism exposure, prioritize river basins for future management efforts, and guide detailed assessments of factors influencing transport and fate of CECs in the Great Lakes Basin.

  19. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence.

    Directory of Open Access Journals (Sweden)

    Sarah M Elliott

    Full Text Available Human activities introduce a variety of chemicals to the Laurentian Great Lakes including pesticides, pharmaceuticals, flame retardants, plasticizers, and solvents (collectively referred to as contaminants of emerging concern or CECs potentially threatening the vitality of these valuable ecosystems. We conducted a basin-wide study to identify the presence of CECs and other chemicals of interest in 12 U.S. tributaries to the Laurentian Great Lakes during 2013 and 2014. A total of 292 surface-water and 80 sediment samples were collected and analyzed for approximately 200 chemicals. A total of 32 and 28 chemicals were detected in at least 30% of water and sediment samples, respectively. Concentrations ranged from 0.0284 (indole to 72.2 (cholesterol μg/L in water and 1.75 (diphenhydramine to 20,800 μg/kg (fluoranthene in sediment. Cluster analyses revealed chemicals that frequently co-occurred such as pharmaceuticals and flame retardants at sites receiving similar inputs such as wastewater treatment plant effluent. Comparison of environmental concentrations to water and sediment-quality benchmarks revealed that polycyclic aromatic hydrocarbon concentrations often exceeded benchmarks in both water and sediment. Additionally, bis(2-ethylhexyl phthalate and dichlorvos concentrations exceeded water-quality benchmarks in several rivers. Results from this study can be used to understand organism exposure, prioritize river basins for future management efforts, and guide detailed assessments of factors influencing transport and fate of CECs in the Great Lakes Basin.

  20. A needs assessment for climate change education in the Great Lakes region

    Science.gov (United States)

    Rutherford, S.; Schneider, L. B.; Walters, H.

    2011-12-01

    The National Science Foundation funded Great Lakes Climate Change Science and Education Systemic Network project is implementing a two year planning effort to create innovative education programs to benefit the public, formal and informal educators, scientists, and journalists in the region. The current partners include Eastern Michigan University, NOAA's Great Lakes Environmental Research Lab, University of Michigan, Michigan State University, Knight Center for Environmental Journalism, Ashland University, Ann Arbor Hands-On Museum, and the College of Exploration. To create a network we are planning to bring together different stakeholders to write two white papers, one from the scientists' perspective and the other from the educators'(both formal and informal) perspective. The current partners' key personnel have produced a list of possible people/institutions to include in a stakeholder survey. Some of the key personnel developed their databases from scratch. Some used listserves, and others tried a snowball email. To identify the best strategy that will inform these various stakeholders and the public regarding the science of climate change in the Great Lakes Region, a survey was developed for each of the different stakeholders. The survey is divided into three parts: 1) questions which convey some understanding of climate science and climate change 2) demographic questions, and finally 3) questions that pertain to the professional concerns or perspectives of the various stakeholders. This survey is being used to provide the project team with a "needs assessment" from the interested members of those stakeholders. The results from this process will be summarized.

  1. Using scenarios to assess possible future impacts of invasive species in the Laurentian Great Lakes

    Science.gov (United States)

    Lauber, T. Bruce; Stedman, Richard C.; Connelly, Nancy A; Rudstam, Lars G.; Ready, Richard C; Poe, Gregory L; Bunnell, David B.; Hook, Tomas O.; Koops, Marten A.; Ludsin, Stuart A.; Rutherford, Edward S; Wittmann, Marion E.

    2016-01-01

    The expected impacts of invasive species are key considerations in selecting policy responses to potential invasions. But predicting the impacts of invasive species is daunting, particularly in large systems threatened by multiple invasive species, such as North America’s Laurentian Great Lakes. We developed and evaluated a scenario-building process that relied on an expert panel to assess possible future impacts of aquatic invasive species on recreational fishing in the Great Lakes. To maximize its usefulness to policy makers, this process was designed to be implemented relatively rapidly and consider a range of species. The expert panel developed plausible, internally-consistent invasion scenarios for 5 aquatic invasive species, along with subjective probabilities of those scenarios. We describe these scenarios and evaluate this approach for assessing future invasive species impacts. The panel held diverse opinions about the likelihood of the scenarios, and only one scenario with impacts on sportfish species was considered likely by most of the experts. These outcomes are consistent with the literature on scenario building, which advocates for developing a range of plausible scenarios in decision making because the uncertainty of future conditions makes the likelihood of any particular scenario low. We believe that this scenario-building approach could contribute to policy decisions about whether and how to address the possible impacts of invasive species. In this case, scenarios could allow policy makers to narrow the range of possible impacts on Great Lakes fisheries they consider and help set a research agenda for further refining invasive species predictions.

  2. Developing fish trophic interaction indicators of climate change for the Great Lakes

    Science.gov (United States)

    Kraus, Richard T.; Knight, Carey T.; Gorman, Ann Marie; Kocovsky, Patrick M.; Weidel, Brian C.; Rogers, Mark W.

    2016-01-01

    This project addressed regional climate change effects on aquatic food webs in the Great Lakes. We sought insights by examining Lake Erie as a representative system with a high level of anthropogenic impacts, strong nutrient gradients, seasonal hypoxia, and spatial overlap of cold- and cool-water fish guilds. In Lake Erie and in large embayments throughout the Great Lakes basin, this situation is a concern for fishery managers, as climate change may exacerbate hypoxia and reduce habitat volume for some species. We examined fish community composition, fine-scale distribution, prey availability, diets, and biochemical tracers for dominant fishes from study areas with medium-high nutrient levels (mesotrophic, Fairport study area), and low nutrient levels (oligotrophic, Erie study area). This multi-year database (2011-2013) provides the ability to contrast years with wide variation in rainfall, winter ice-cover, and thermal stratification. In addition, multiple indicators of dietary and distributional responses to environmental variability will allow resource managers to select the most informative approach for addressing specific climate change questions. Our results support the incorporation of some relatively simple and cost-efficient approaches into existing agency monitoring programs to track the near-term condition status of fish and fish community composition by functional groupings. Other metrics appear better suited for understanding longer-term changes, and may take more resources to implement on an ongoing basis. Although we hypothesized that dietary overlap and similarity in selected species would be sharply different during thermal stratification and hypoxic episodes, we found little evidence of this. Instead, to our surprise, this study found that fish tended to aggregate at the edges of hypoxia, highlighting potential spatial changes in catch efficiency of the fishery. This work has had several positive impacts on a wide range of resource management and

  3. Modeling species invasions in Ecopath with Ecosim: an evaluation using Laurentian Great Lakes models

    Science.gov (United States)

    Langseth, Brian J.; Rogers, Mark; Zhang, Hongyan

    2012-01-01

    Invasive species affect the structure and processes of ecosystems they invade. Invasive species have been particularly relevant to the Laurentian Great Lakes, where they have played a part in both historical and recent changes to Great Lakes food webs and the fisheries supported therein. There is increased interest in understanding the effects of ecosystem changes on fisheries within the Great Lakes, and ecosystem models provide an essential tool from which this understanding can take place. A commonly used model for exploring fisheries management questions within an ecosystem context is the Ecopath with Ecosim (EwE) modeling software. Incorporating invasive species into EwE models is a challenging process, and descriptions and comparisons of methods for modeling species invasions are lacking. We compared four methods for incorporating invasive species into EwE models for both Lake Huron and Lake Michigan based on the ability of each to reproduce patterns in observed data time series. The methods differed in whether invasive species biomass was forced in the model, the initial level of invasive species biomass at the beginning of time dynamic simulations, and the approach to cause invasive species biomass to increase at the time of invasion. The overall process of species invasion could be reproduced by all methods, but fits to observed time series varied among the methods and models considered. We recommend forcing invasive species biomass when model objectives are to understand ecosystem impacts in the past and when time series of invasive species biomass are available. Among methods where invasive species time series were not forced, mediating the strength of predator–prey interactions performed best for the Lake Huron model, but worse for the Lake Michigan model. Starting invasive species biomass at high values and then artificially removing biomass until the time of invasion performed well for both models, but was more complex than starting invasive species

  4. Midwest FreightView and the Great Lakes Maritime Information Delivery System : a resource for the regional analysis of intermodal freight flows.

    Science.gov (United States)

    2011-03-01

    Midwest FreightView and the Great Lakes Maritime Information Delivery System is a comprehensive data repository and information : clearinghouse in support of Great Lakes maritime commerce. This multifunctional resource integrated in a geographic info...

  5. Groundwater science relevant to the Great Lakes Water Quality Agreement: A status report

    Science.gov (United States)

    Grannemann, Norman G.; Van Stempvoort, Dale

    2016-01-01

    When the Great Lakes Water Quality Agreement (GLWQA) was signed in 1972 by the Governments of Canada and the United States (the “Parties”) (Environment Canada, 2013a), groundwater was not recognized as important to the water quality of the Lakes. At that time, groundwater and surface water were still considered as two separate systems, with almost no appreciation for their interaction. When the GLWQA was revised in 1978 (US Environmental Protection Agency (USEPA), 2012), groundwater contamination, such as that reported at legacy industrial sites such as those at Love Canal near the Niagara River, was squarely in the news. Consequently, the potential impacts of contaminated groundwater from such sites on Great Lakes water quality became a concern (Beck, 1979), and Annex 16 was added to the agreement, to address “pollution from contaminated groundwater” (Francis, 1989). However, no formal process for reporting under this annex was provided. The GLWQA Protocol in 1987 modified Annex 16 and called for progress reports beginning in 1988 (USEPA, 1988). The Protocol in 2012 provided a new Annex 8 to address groundwater more holistically (Environment 2 Canada, 2013b). Annex 8 (Environment Canada, 2013b) commits the Parties to coordinate groundwater science and management actions; as a first step, to “publish a report on the relevant and available groundwater science” by February 2015 (this report); and to “identify priorities for science activities and actions for groundwater management, protection, and remediation…” The broader mandate of Annex 8 is to (1) “identify groundwater impacts on the chemical, physical and biological integrity of the Waters of the Great Lakes;” (2) “analyze contaminants, including nutrients in groundwater, derived from both point and non-point sources impacting the Waters of the Great Lakes;” (3) “assess information gaps and science needs related to groundwater to protect the quality of the Waters of the Great Lakes

  6. Holocene climate in the western Great Lakes national parks and lakeshores: Implications for future climate change

    Science.gov (United States)

    Davis, Margaret; Douglas, Christine; Cole, K.L.; Winkler, Marge; Flaknes, Robyn

    2000-01-01

    We reconstruct Holocene climate history (last 10,000 years) for each of the U.S. National Park Service units in the western Great Lakes region in order to evaluate their sensitivity to global warming. Annual precipitation, annual temperature, and July and January temperatures were reconstructed by comparing fossil pollen in lake sediment with pollen in surface samples, assuming that ancient climates were similar to modern climate near analogous surface samples. In the early Holocene, most of the parks experienced colder winters, warmer summers, and lower precipitation than today. An exception is Voyageurs National Park in northern Minnesota where, by 8000 years ago, January temperatures were higher than today. The combination of high mean annual temperature and lower precipitation at Voyageurs resulted in a dry period between 8000 and 5000 years ago, similar to the Prairie Period in regions to the south and west. A mid-Holocene warm-dry period also occurred at other northern and central parks but was much less strongly developed. In southern parks there was no clear evidence of a mid-Holocene warm-dry period. These differences suggest that global model predictions of a warm, dry climate in the northern Great Plains under doubled atmospheric CO2 may be more applicable to Voyageurs than to the other parks. The contrast in reconstructed temperatures at Voyageurs and Isle Royale indicates that the ameliorating effect of the Great Lakes on temperatures has been in effect throughout the Holocene and presumably will continue in the future, thus reducing the potential for species loss caused by future temperature extremes. Increased numbers of mesic trees at all of the parks in the late Holocene reflect increasing annual precipitation. This trend toward more mesic conditions began 6000 years ago in the south and 4000 years ago in the north and increased sharply in recent millennia at parks located today in lake-effect snow belts. This suggests that lake-effect snowfall is

  7. Detecting and Mapping Invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR imagery

    Science.gov (United States)

    Bourgeau-chavez, L. L.; Scarbrough, K.; Jenkins, L. K.; Riordan, K.; Powell, R. B.; Brooks, C.; Kowalski, K.; Carlson Mazur, M.; Huberty, B.

    2011-12-01

    Phragmites australis is a non-native invasive plant that can form dense monocultures, causing negative impacts on coastal Great Lakes wetlands by reducing ecosystem services including habitat and therefore, biological diversity. Through Great Lakes Restoration Initiative funding, ALOS PALSAR imagery is being used to map the invasive plant as it occurs in monoculture stands of the U.S. coastal Great Lakes wetlands. These invasive Phragmites maps are being used as part of a USGS Great Lakes Science Center (GLSC) and US Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) program to identify major environmental drivers of invasive Phragmites distribution, to assess areas vulnerable to new invasion, and to provide this information to regional stakeholders through a decision support tool. The invasive Phragmites map is the first U.S. basin-wide map to be produced on the distribution of this species. Methods include maximum likelihood classification of multi-season ALOS PALSAR HH and HV polarization data. PALSAR is an L-band (23 cm wavelength) imaging radar sensor which is sensitive to differences in plant biomass and inundation patterns, allowing for the extraction of these tall (up to 15 m), high-density, high-biomass Phragmites wetland stands. To improve discrimination of Phragmites australis, the three date (spring, summer, fall) dataset is being used, which takes advantage of phenological changes in vegetation and inundation patterns over the seasons. Field collections of training and randomly selected validation data were conducted in spring summer and fall of 2010-11 to aid in the mapping and for accuracy assessment. The minimum mapping unit is 1/2 acre and thus all field sites were sampled at 1/2 acre units. All map products and field validation data will be complete by December 2011. Maps are being completed on a Lake basin basis. The first final map product was delivered for Lake Erie coastal wetlands to 10 km inland, with an overall map accuracy

  8. Stimulating a Great Lakes coastal wetland seed bank using portable cofferdams: implications for habitat rehabilitation

    Science.gov (United States)

    Kowalski, K.P.; Wilcox, D.A.; Wiley, M.J.

    2009-01-01

    Coastal wetland seed banks exposed by low lake levels or through management actions fuel the reestablishment of emergent plant assemblages (i.e., wetland habitat) critical to Great Lakes aquatic biota. This project explored the effectiveness of using portable, water-filled cofferdams as a management tool to promote the natural growth of emergent vegetation from the seed bank in a Lake Erie coastal wetland. A series of dams stretching approximately 450??m was installed temporarily to isolate hydrologically a 10-ha corner of the Crane Creek wetland complex from Lake Erie. The test area was dewatered in 2004 to mimic a low-water year, and vegetation sampling characterized the wetland seed bank response at low, middle, and high elevations in areas open to and protected from bird and mammal herbivory. The nearly two-month drawdown stimulated a rapid seed-bank-driven response by 45 plant taxa. Herbivory had little effect on plant species richness, regardless of the location along an elevation gradient. Inundation contributed to the replacement of immature emergent plant species with submersed aquatic species after the dams failed and were removed prematurely. This study revealed a number of important issues that must be considered for effective long-term implementation of portable cofferdam technology to stimulate wetland seed banks, including duration of dewatering, product size, source of clean water, replacement of damaged dams, and regular maintenance. This technology is a potentially important tool in the arsenal used by resource managers seeking to rehabilitate the functions and values of Great Lakes coastal wetland habitats.

  9. A multi-proxy record of volume in the Great Salt Lake over the Holocene

    Science.gov (United States)

    Nielson, K. E.; Bowen, G. J.; Toney, J. L.; Tarozo, R.; Huang, Y.; Bowen, B.

    2010-12-01

    Continental paleoclimate records for the Holocene are essential for understanding the influence of climate modes on terrestrial settings. Terminal lakes, like the Great Salt Lake, UT (GSL) are particularly well suited for examining changes in water balance in response to large scale climate change. We present records of lipid abundance and hydrogen isotope data; hydrogen and oxygen isotope variability in brine shrimp cysts; carbonate oxygen and carbon isotopes; and variability in mineralogy from reflectance spectrometry in a core spanning 9 to 2 ka bp from the GSL. The isotopic value of lake waters are inferred from the cyst isotope records. The oxygen isotopic composition of cysts decreases slowly by about 2 ‰ from the beginning of the record (approx. 9 ka bp) to about 6 ka, and is highly variable after about 4.5 ka bp. This gradual isotopic decrease suggests increased water input into the GSL up to the Mid-Holocene and more variable inputs after. Some portion of the decrease is likely attributable to a reestablishment of equilibrium with local precipitation sources following the rapid evaporation of Lake Bonneville at the end of the Pleistocene. Carbonate oxygen and carbon isotope ratios co-vary before 5.5 ka and after 4.5 ka, and are anti-correlated between, suggesting a major restructuring of the hydrologic regime in the Mid-Holocene. Distributions of lipid and n

  10. SATELLITE OBSERVED WATER QUALITY CHANGES IN THE LAURENTIAN GREAT LAKES DUE TO INVASIVE SPECIES, ANTHROPOGENIC FORCING, AND CLIMATE CHANGE

    Directory of Open Access Journals (Sweden)

    R. A. Shuchman

    2017-11-01

    Full Text Available Long time series of ocean and land color satellite data can be used to measure Laurentian Great Lakes water quality parameters including chlorophyll, suspended minerals, harmful algal blooms (HABs, photic zone and primary productivity on weekly, monthly and annual observational intervals. The observed changes in these water quality parameters over time are a direct result of the introduction of invasive species such as the Dreissena mussels as well as anthropogenic forcing and climate change. Time series of the above mentioned water quality parameters have been generated based on a range of satellite sensors, starting with Landsat in the 1970s and continuing to the present with MODIS and VIIRS. These time series have documented the effect the mussels have had on increased water clarity by decreasing the chlorophyll concentrations. Primary productivity has declined in the lakes due to the decrease in algae. The increased water clarity due to the mussels has also led to an increase in submerged aquatic vegetation. Comparing water quality metrics in Lake Superior to the lower lakes is insightful because Lake Superior is the largest and most northern of the five Great Lakes and to date has not been affected by the invasive mussels and can thus be considered a control. In contrast, Lake Erie, the most southern and shallow of the Laurentian Great Lakes, is heavily influenced by agricultural practices (i.e., nutrient runoff and climate change, which directly influence the annual extent of HABs in the Western Basin of that lake.

  11. Decadal Trends and Common Dynamics of the Bio-Optical and Thermal Characteristics of the African Great Lakes

    Science.gov (United States)

    Loiselle, Steven; Cózar, Andrés; Adgo, Enyew; Ballatore, Thomas; Chavula, Geoffrey; Descy, Jean Pierre; Harper, David M.; Kansiime, Frank; Kimirei, Ismael; Langenberg, Victor; Ma, Ronghua; Sarmento, Hugo; Odada, Eric

    2014-01-01

    The Great Lakes of East Africa are among the world’s most important freshwater ecosystems. Despite their importance in providing vital resources and ecosystem services, the impact of regional and global environmental drivers on this lacustrine system remains only partially understood. We make a systematic comparison of the dynamics of the bio-optical and thermal properties of thirteen of the largest African lakes between 2002 and 2011. Lake surface temperatures had a positive trend in all Great Lakes outside the latitude of 0° to 8° south, while the dynamics of those lakes within this latitude range were highly sensitive to global inter-annual climate drivers (i.e. El Niño Southern Oscillation). Lake surface temperature dynamics in nearly all lakes were found to be sensitive to the latitudinal position of the Inter Tropical Convergence Zone. Phytoplankton dynamics varied considerably between lakes, with increasing and decreasing trends. Intra-lake differences in both surface temperature and phytoplankton dynamics occurred for many of the larger lakes. This inter-comparison of bio-optical and thermal dynamics provides new insights into the response of these ecosystems to global and regional drivers. PMID:24699528

  12. Decadal trends and common dynamics of the bio-optical and thermal characteristics of the African Great Lakes.

    Directory of Open Access Journals (Sweden)

    Steven Loiselle

    Full Text Available The Great Lakes of East Africa are among the world's most important freshwater ecosystems. Despite their importance in providing vital resources and ecosystem services, the impact of regional and global environmental drivers on this lacustrine system remains only partially understood. We make a systematic comparison of the dynamics of the bio-optical and thermal properties of thirteen of the largest African lakes between 2002 and 2011. Lake surface temperatures had a positive trend in all Great Lakes outside the latitude of 0° to 8° south, while the dynamics of those lakes within this latitude range were highly sensitive to global inter-annual climate drivers (i.e. El Niño Southern Oscillation. Lake surface temperature dynamics in nearly all lakes were found to be sensitive to the latitudinal position of the Inter Tropical Convergence Zone. Phytoplankton dynamics varied considerably between lakes, with increasing and decreasing trends. Intra-lake differences in both surface temperature and phytoplankton dynamics occurred for many of the larger lakes. This inter-comparison of bio-optical and thermal dynamics provides new insights into the response of these ecosystems to global and regional drivers.

  13. Coral Research Data from NOAA's Undersea Research Center, North Atlantic and Great Lakes Region, NOAA's Undersea Research Program (NURP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's Undersea Research Center for the NOAA's Undersea Research Center for the North Atlantic and Great Lakes region (NAGL) explores and studies the waters off the...

  14. Pheno-anomalies of sub-alpine Vaccinium heaths in response to climatic variations

    Science.gov (United States)

    Puppi, Giovanna; Monti, Alessandra; Bonafede, Fausto; Vignodelli, Michele; Zanotti, Anna Letizia

    2014-05-01

    reduction in seed production and could have therefore be disadvantaged in turn-over. This hypothesis is consistent with the results on vegetation changes: in fact, the comparison of the actual vegetation with the historical observations in the same sites, shows a reduction of herb (Hemicryptophytes) diversity and cover in time. It is noteworthy that many of the declining species flower in the driest and hottest weeks of the year. In a climate-warming scenario, the low extension of these sub-alpine islands of the Apennines leads to a high extinction risk of the most sensible species. So, the monitoring of this vulnerable vegetation type seems necessary in order to detect the current trends and should be continued in the future. Puppi and Speranza 1980, Arch. Bot. Biogeogr. Ital. 56(3/4) Puppi et al. 1994, Fitosociologia 26: 63-79

  15. Great Lakes O shore Wind Project: Utility and Regional Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Sajadi, Amirhossein [Case Western Reserve Univ., Cleveland, OH (United States); Loparo, Kenneth A. [Case Western Reserve Univ., Cleveland, OH (United States); D' Aquila, Robert [General Electric (GE), Albany, NY (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States); Waligorski, Joseph G. [FirstEnergy, Akron, OH (United States); Baker, Scott [PJM Interconnection, Audubon, PA (United States)

    2016-06-30

    This project aims to identify transmission system upgrades needed to facilitate offshore wind projects as well as operational impacts of offshore generation on operation of the regional transmission system in the Great Lakes region. A simulation model of the US Eastern Interconnection was used as the test system as a case study for investigating the impact of the integration of a 1000MW offshore wind farm operating in Lake Erie into FirstEnergy/PJM service territory. The findings of this research provide recommendations on offshore wind integration scenarios, the locations of points of interconnection, wind profile modeling and simulation, and computational methods to quantify performance, along with operating changes and equipment upgrades needed to mitigate system performance issues introduced by an offshore wind project.

  16. Halotolerant extremophile bacteria from the Great Salt Lake for recycling pollutants in microbial fuel cells

    Science.gov (United States)

    Grattieri, Matteo; Suvira, Milomir; Hasan, Kamrul; Minteer, Shelley D.

    2017-07-01

    The treatment of hypersaline wastewater (approximately 5% of the wastewater worldwide) cannot be performed by classical biological techniques. Herein the halotolerant extremophile bacteria obtained from the Great Salt Lake (Utah) were explored in single chamber microbial fuel cells with Pt-free cathodes for more than 18 days. The bacteria samples collected in two different locations of the lake (Stansbury Bay and Antelope Island) showed different electrochemical performances. The maximum achieved power output of 36 mW m-2 was from the microbial fuel cell based on the sample originated from Stansbury Bay, at a current density of 820 mA m-2. The performances throughout the long-term operation are discussed and a bioelectrochemical mechanism is proposed.

  17. Use of physiological knowledge to control the invasive sea lamprey (Petromyzon marinus) in the Laurentian Great Lakes

    OpenAIRE

    Siefkes, Michael J.

    2017-01-01

    Abstract Sea lamprey (Petromyzon marinus) control in the Laurentian Great Lakes of North America is an example of using physiological knowledge to successfully control an invasive species and rehabilitate an ecosystem and valuable fishery. The parasitic sea lamprey contributed to the devastating collapse of native fish communities after invading the Great Lakes during the 1800s and early 1900s. Economic tragedy ensued with the loss of the fishery and severe impacts to property values and tour...

  18. Using Structured Expert Judgment to Assess Invasive Species Prevention: Asian Carp and the Mississippi—Great Lakes Hydrologic Connection

    OpenAIRE

    Wittmann, Marion E.; Cooke, Roger M.; Rothlisberger, John D.; Lodge, David M.

    2014-01-01

    Recently, authors have theorized that invasive species prevention is more cost-effective than control in protecting ecosystem services. However, quantification of the effectiveness of prevention is rare because experiments at field scales are expensive or infeasible. We therefore used structured expert judgment to quantify the efficacy of 17 proposed strategies to prevent Asian carp invasion of the Laurentian Great Lakes via the hydrologic connection between the Mississippi and Great Lakes wa...

  19. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: II. Biological consequences of exposure

    Science.gov (United States)

    Thomas, Linnea M.; Jorgenson, Zachary G.; Brigham, Mark E.; Choy, Steven J.; Moore, Jeremy N.; Banda, Jo A.; Gefell, D.J.; Minarik, Thomas A.; Schoenfuss, Heiko L.

    2017-01-01

    The Laurentian Great Lakes contain one fifth of the world’s surface freshwater and have been impacted by human activity since the Industrial Revolution. In addition to legacy contaminants, nitrification and invasive species, this aquatic ecosystem is also the recipient of Contaminants of Emerging Concern (CECs) with poorly understood biological consequences. In the current study, we documented the presence, concentrations, and biological effects of CECs across 27 field sites in six Great Lakes tributaries by examining over 2250 resident and caged sunfish (Lepomis ssp.) for a variety of morphological and physiological endpoints and related these results to CEC occurrence. CEC were ubiquitous across studies sites and their presence and concentrations in water and sediment were highest in effluent dominated rivers and downstream of municipal wastewater treatment plant discharges. However, even putative upstream reference sites were not free of CEC presence and fish at these sites exhibited biological effects consistent with CEC exposure. Only the Fox River exhibited consistent adverse biological effects, including increased relative liver size, greater prominence of hepatocyte vacuoles and increased plasma glucose concentrations. Canonical Redundancy Analysis revealed consistent patterns of biological consequences of CEC exposure across all six tributaries. Increasing plasma glucose concentrations, likely as a result of pollutant-induced metabolic stress, were associated with increased relative liver size and greater prominence of hepatocyte vacuoles. These indicators of pollutant exposure were inversely correlated with indicators of reproductive potential including smaller gonad size and less mature gametes. The current study highlights the need for greater integration of chemical and biological studies and suggests that CECs in the Laurentian Great Lakes Basin may adversely affect the reproductive potential of exposed fish populations.

  20. Potential Economic Impacts from Offshore Wind in the Great Lakes Region (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by DOE's National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts identified by the study for the Great Lakes region.

  1. Measurement and Analysis of Extreme Wave and Ice Actions in the Great Lakes for Offshore Wind Platform Design

    Energy Technology Data Exchange (ETDEWEB)

    England, Tony [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; van Nieuwstadt, Lin [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; De Roo, Roger [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Karr, Dale [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Lozenge, David [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Meadows, Guy [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering

    2016-05-30

    This project, funded by the Department of Energy as DE-EE0005376, successfully measured wind-driven lake ice forces on an offshore structure in Lake Superior through one of the coldest winters in recent history. While offshore regions of the Great Lakes offer promising opportunities for harvesting wind energy, these massive bodies of freshwater also offer extreme and unique challenges. Among these challenges is the need to anticipate forces exerted on offshore structures by lake ice. The parameters of interest include the frequency, extent, and movement of lake ice, parameters that are routinely monitored via satellite, and ice thickness, a parameter that has been monitored at discrete locations over many years and is routinely modeled. Essential relationships for these data to be of use in the design of offshore structures and the primary objective of this project are measurements of maximum forces that lake ice of known thicknesses might exert on an offshore structure.

  2. Review of fish species introduced into the Great Lakes, 1819-1974

    Science.gov (United States)

    Emery, Lee

    1985-01-01

    This review is based on an extensive literature search, combined with updated information obtained from biologists, and unpublished reports from private, state, and federal organizations throughout the Great Lakes basin. The chronological review lists 34 species of fishes in 13 families that were introduced into the basin from 1819 to 1974. The Salmonidae and Cyprinidae are best represented, contributing 14 and 5 of the species, respectively. The list is divided into successful and unsuccessful introductions; each species is briefly described and information about its entry into the basin and present status is given. About half of the introductions have been successful (i.e., the fish have reproduced and created viable, self-sustaining populations). Some of the successful introductions were disastrous in terms of damage inflicted on native populations (e.g., the effect of the sea lamprey, Petromyzon marinus, on populations of lake trout, Salvelinus namaycush, and lake whitefish, Coregonus clupeaformis), but others yielded highly favorable results (e.g., the extraordinary sport fisheries created by introductions of coho salmon, Oncorhynchus kisutch, and chinook salmon, Oncorhynchus tshawytscha).

  3. An Integrated Approach To Offshore Wind Energy Assessment: Great Lakes 3D Wind Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmie, R. J. [Cornell Univ., Ithaca, NY (United States). Sibley School of Mechanical & Aerospace Engineering; Pryor, S. C. [Cornell Univ., Ithaca, NY (United States). Dept. of Earth and Atmospheric Sciences

    2017-09-18

    This grant supported fundamental research into the characterization of flow parameters of relevance to the wind energy industry focused on offshore and the coastal zone. A major focus of the project was application of the latest generation of remote sensing instrumentation and also integration of measurements and numerical modeling to optimize characterization of time-evolving atmospheric flow parameters in 3-D. Our research developed a new data-constrained Wind Atlas for the Great Lakes, and developed new insights into flow parameters in heterogeneous environments. Four experiments were conducted during the project: At a large operating onshore wind farm in May 2012; At the National Renewable Energy Laboratory National Wind Technology Center (NREL NWTC) during February 2013; At the shoreline of Lake Erie in May 2013; and At the Wind Energy Institute of Canada on Prince Edward Island in May 2015. The experiment we conducted in the coastal zone of Lake Erie indicated very complex flow fields and the frequent presence of upward momentum fluxes and resulting distortion of the wind speed profile at turbine relevant heights due to swells in the Great Lakes. Additionally, our data (and modeling) indicate the frequent presence of low level jets at 600 m height over the Lake and occasions when the wind speed profile across the rotor plane may be impacted by this phenomenon. Experimental data and modeling of the fourth experiment on Prince Edward Island showed that at 10-14 m escarpment adjacent to long-overseas fetch the zone of wind speed decrease before the terrain feature and the increase at (and slightly downwind of) the escarpment is ~3–5% at turbine hub-heights. Additionally, our measurements were used to improve methods to compute the uncertainty in lidar-derived flow properties and to optimize lidar-scanning strategies. For example, on the basis of the experimental data we collected plus those from one of our research partners we advanced a new methodology to

  4. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.

    Science.gov (United States)

    Klecka, Gary; Persoon, Carolyn; Currie, Rebecca

    2010-01-01

    This review and statistical analysis was conducted to better understand the nature and significance of environmental exposures in the Great Lakes Basin and watershed to a variety of environmental contaminants. These contaminants of interest included current-use pesticides, pharmaceuticals, organic wastewater contaminants, alkylphenol ethoxylates, perfluorinated surfactants, flame retardants, and chlorinated paraffins. The available literature was critically reviewed and used to develop a database containing 19,611 residue values for 326 substances. In many papers, sampling locations were characterized as being downstream from municipal wastewater discharges, receiving waters for industrial facilities, areas susceptible to agricultural or urban contamination, or harbors and ports. To develop an initial assessment of their potential ecological significance, the contamination levels found were compared with currently available regulatory standards, guidelines, or criteria. This review was prepared for the IJC multi-board work group, and served as background material for an expert consultation, held in March, 2009, in which the significance of the contaminants found was discussed. Moreover, the consultation attempted to identify and assess opportunities for strengthening future actions that will protect the Great Lakes. Based on the findings and conclusions of the expert consultation, it is apparent that a wide variety of chemicals of emerging concern have been detected in environmental media (air, water, sediment, biota) from the Great Lakes Basin, although many are present at only trace levels. Although the presence of these contaminants raises concerns in the public and among the scientific community, the findings must be placed in context. Significant scientific interpretation is required to understand the extent to which these chemicals may pose a threat to the ecosystem and to human health. The ability to detect chemicals in environmental media greatly surpasses

  5. Spatial Pattern of Great Lakes Estuary Processes from Water Quality Sensing and Geostatistical Methods

    Science.gov (United States)

    Xu, W.; Minsker, B. S.; Bailey, B.; Collingsworth, P.

    2014-12-01

    Mixing of river and lake water can alter water temperature, conductivity, and other properties that influence ecological processes in freshwater estuaries of the Great Lakes. This study uses geostatistical methods to rapidly visualize and understand water quality sampling results and enable adaptive sampling to remove anomalies and explore interesting phenomena in more detail. Triaxus, a towed undulating sensor package, was used for collecting various physical and biological water qualities in three estuary areas of Lake Michigan in Summer 2011. Based on the particular sampling pattern, data quality assurance and quality control (QA/QC) processes, including sensor synchronization, upcast and downcast separation, and spatial outlier removal are first applied. An automated kriging interpolation approach that considers trend and anisotropy is then proposed to estimate data on a gridded map for direct visualization. Other methods are explored with the data to gain more insights on water quality processes. Local G statistics serve as a supplementary tool to direct visualization. The method identifies statistically high value zones (hot spots) and low value zones (cold spots) in water chemistry across the estuaries, including locations of water sources and intrusions. In addition, chlorophyll concentration distributions are different among sites. To further understand the interactions and differences between river and lake water, K-means clustering algorithm is used to spatially cluster the water based on temperature and specific conductivity. Statistical analysis indicates that clusters with significant river water can be identified from higher turbidity, specific conductivity, and chlorophyll concentrations. Different ratios between zooplankton biomass and density indicate different zooplankton structure across clusters. All of these methods can contribute to improved near real-time analysis of future sampling activity.

  6. Association of toxin-producing Clostridium botulinum with the macroalga Cladophora in the Great Lakes

    Science.gov (United States)

    Chun, Chan Lan; Ochsner, Urs; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Tepp, William H.; Lin, Guangyun; Johnson, Eric A.; Peller, Julie; Sadowsky, Michael J.

    2013-01-01

    Avian botulism, a paralytic disease of birds, often occurs on a yearly cycle and is increasingly becoming more common in the Great Lakes. Outbreaks are caused by bird ingestion of neurotoxins produced by Clostridium botulinum, a spore-forming, gram-positive, anaerobe. The nuisance, macrophytic, green alga Cladophora (Chlorophyta; mostly Cladophora glomerata L.) is a potential habitat for the growth of C. botulinum. A high incidence of botulism in shoreline birds at Sleeping Bear Dunes National Lakeshore (SLBE) in Lake Michigan coincides with increasingly massive accumulations of Cladophora in nearshore waters. In this study, free-floating algal mats were collected from SLBE and other shorelines of the Great Lakes between June and October 2011. The abundance of C. botulinum in algal mats was quantified and the type of botulism neurotoxin (bont) genes associated with this organism were determined by using most-probable-number PCR (MPN-PCR) and five distinct bont gene-specific primers (A, B, C, E, and F). The MPN-PCR results showed that 16 of 22 (73%) algal mats from the SLBE and 23 of 31(74%) algal mats from other shorelines of the Great Lakes contained the bont type E (bont/E) gene. C. botulinum was present up to 15 000 MPN per gram dried algae based on gene copies of bont/E. In addition, genes for bont/A and bont/B, which are commonly associated with human diseases, were detected in a few algal samples. Moreover, C. botulinum was present as vegetative cells rather than as dormant spores in Cladophora mats. Mouse toxin assays done using supernatants from enrichment of Cladophora containing high densities of C. botulinum (>1000 MPN/g dried algae) showed that Cladophora-borne C. botulinum were toxin-producing species (BoNT/E). Our results indicate that Cladophora provides a habitat for C. botulinum, warranting additional studies to better understand the relationship between this bacterium and the alga, and how this interaction potentially contributes to botulism

  7. Genome sequences of lower Great Lakes Microcystis sp. reveal strain-specific genes that are present and expressed in western Lake Erie blooms.

    Science.gov (United States)

    Meyer, Kevin Anthony; Davis, Timothy W; Watson, Susan B; Denef, Vincent J; Berry, Michelle A; Dick, Gregory J

    2017-01-01

    Blooms of the potentially toxic cyanobacterium Microcystis are increasing worldwide. In the Laurentian Great Lakes they pose major socioeconomic, ecological, and human health threats, particularly in western Lake Erie. However, the interpretation of "omics" data is constrained by the highly variable genome of Microcystis and the small number of reference genome sequences from strains isolated from the Great Lakes. To address this, we sequenced two Microcystis isolates from Lake Erie (Microcystis aeruginosa LE3 and M. wesenbergii LE013-01) and one from upstream Lake St. Clair (M. cf aeruginosa LSC13-02), and compared these data to the genomes of seventeen Microcystis spp. from across the globe as well as one metagenome and seven metatranscriptomes from a 2014 Lake Erie Microcystis bloom. For the publically available strains analyzed, the core genome is ~1900 genes, representing ~11% of total genes in the pan-genome and ~45% of each strain's genome. The flexible genome content was related to Microcystis subclades defined by phylogenetic analysis of both housekeeping genes and total core genes. To our knowledge this is the first evidence that the flexible genome is linked to the core genome of the Microcystis species complex. The majority of strain-specific genes were present and expressed in bloom communities in Lake Erie. Roughly 8% of these genes from the lower Great Lakes are involved in genome plasticity (rapid gain, loss, or rearrangement of genes) and resistance to foreign genetic elements (such as CRISPR-Cas systems). Intriguingly, strain-specific genes from Microcystis cultured from around the world were also present and expressed in the Lake Erie blooms, suggesting that the Microcystis pangenome is truly global. The presence and expression of flexible genes, including strain-specific genes, suggests that strain-level genomic diversity may be important in maintaining Microcystis abundance during bloom events.

  8. Genome sequences of lower Great Lakes Microcystis sp. reveal strain-specific genes that are present and expressed in western Lake Erie blooms.

    Directory of Open Access Journals (Sweden)

    Kevin Anthony Meyer

    Full Text Available Blooms of the potentially toxic cyanobacterium Microcystis are increasing worldwide. In the Laurentian Great Lakes they pose major socioeconomic, ecological, and human health threats, particularly in western Lake Erie. However, the interpretation of "omics" data is constrained by the highly variable genome of Microcystis and the small number of reference genome sequences from strains isolated from the Great Lakes. To address this, we sequenced two Microcystis isolates from Lake Erie (Microcystis aeruginosa LE3 and M. wesenbergii LE013-01 and one from upstream Lake St. Clair (M. cf aeruginosa LSC13-02, and compared these data to the genomes of seventeen Microcystis spp. from across the globe as well as one metagenome and seven metatranscriptomes from a 2014 Lake Erie Microcystis bloom. For the publically available strains analyzed, the core genome is ~1900 genes, representing ~11% of total genes in the pan-genome and ~45% of each strain's genome. The flexible genome content was related to Microcystis subclades defined by phylogenetic analysis of both housekeeping genes and total core genes. To our knowledge this is the first evidence that the flexible genome is linked to the core genome of the Microcystis species complex. The majority of strain-specific genes were present and expressed in bloom communities in Lake Erie. Roughly 8% of these genes from the lower Great Lakes are involved in genome plasticity (rapid gain, loss, or rearrangement of genes and resistance to foreign genetic elements (such as CRISPR-Cas systems. Intriguingly, strain-specific genes from Microcystis cultured from around the world were also present and expressed in the Lake Erie blooms, suggesting that the Microcystis pangenome is truly global. The presence and expression of flexible genes, including strain-specific genes, suggests that strain-level genomic diversity may be important in maintaining Microcystis abundance during bloom events.

  9. The NASA Short-Term Prediction Research and Transition (SPoRT) Center: Opportunities for Collaboration in the Great Lakes Region

    Science.gov (United States)

    Molthan, Andrew L.

    2010-01-01

    The presentation slides include: The SPoRT Center, History and Future of SPoRT, Great Lakes Applications, Great Lakes Forecasting Issues, Applications to the WRF-EMS, Precipitation Science, Lake Effect Precipitation, Sensitivity to Microphysics, Exploring New Schemes, Opportunities for Collaboration, and SPoRT Research and Development.

  10. Forecasting the remaining reservoir capacity in the Laurentian Great Lakes watershed

    Science.gov (United States)

    Alighalehbabakhani, Fatemeh; Miller, Carol J.; Baskaran, Mark; Selegean, James P.; Barkach, John H.; Dahl, Travis; Abkenar, Seyed Mohsen Sadatiyan

    2017-12-01

    Sediment accumulation behind a dam is a significant factor in reservoir operation and watershed management. There are many dams located within the Laurentian Great Lakes watershed whose operations have been adversely affected by excessive reservoir sedimentation. Reservoir sedimentation effects include reduction of flood control capability and limitations to both water supply withdrawals and power generation due to reduced reservoir storage. In this research, the sediment accumulation rates of twelve reservoirs within the Great Lakes watershed were evaluated using the Soil and Water Assessment Tool (SWAT). The estimated sediment accumulation rates by SWAT were compared to estimates relying on radionuclide dating of sediment cores and bathymetric survey methods. Based on the sediment accumulation rate, the remaining reservoir capacity for each study site was estimated. Evaluation of the anthropogenic impacts including land use change and dam construction on the sediment yield were assessed in this research. The regression analysis was done on the current and pre-European settlement sediment yield for the modeled watersheds to predict the current and natural sediment yield in un-modeled watersheds. These eleven watersheds are in the state of Indiana, Michigan, Ohio, New York, and Wisconsin.

  11. Potential distribution of the viral haemorrhagic septicaemia virus in the Great Lakes region

    Science.gov (United States)

    Escobar, Luis E.; Kurath, Gael; Escobar-Dodero, Joaquim; Craft, Meggan E.; Phelps, Nicholas B.D.

    2017-01-01

    Viral haemorrhagic septicaemia virus (VHSV) genotype IVb has been responsible for large-scale fish mortality events in the Great Lakes of North America. Anticipating the areas of potential VHSV occurrence is key to designing epidemiological surveillance and disease prevention strategies in the Great Lakes basin. We explored the environmental features that could shape the distribution of VHSV, based on remote sensing and climate data via ecological niche modelling. Variables included temperature measured during the day and night, precipitation, vegetation, bathymetry, solar radiation and topographic wetness. VHSV occurrences were obtained from available reports of virus confirmation in laboratory facilities. We fit a Maxent model using VHSV-IVb reports and environmental variables under different parameterizations to identify the best model to determine potential VHSV occurrence based on environmental suitability. VHSV reports were generated from both passive and active surveillance. VHSV occurrences were most abundant near shore sites. We were, however, able to capture the environmental signature of VHSV based on the environmental variables employed in our model, allowing us to identify patterns of VHSV potential occurrence. Our findings suggest that VHSV is not at an ecological equilibrium and more areas could be affected, including areas not in close geographic proximity to past VHSV reports.

  12. Mercury exposure and neurochemical impacts in bald eagles across several Great Lakes states.

    Science.gov (United States)

    Rutkiewicz, Jennifer; Nam, Dong-Ha; Cooley, Thomas; Neumann, Kay; Padilla, Irene Bueno; Route, William; Strom, Sean; Basu, Niladri

    2011-10-01

    In this study, we assessed mercury (Hg) exposure in several tissues (brain, liver, and breast and primary feathers) in bald eagles (Haliaeetus leucocephalus) collected from across five Great Lakes states (Iowa, Michigan, Minnesota, Ohio, and Wisconsin) between 2002-2010, and assessed relationships between brain Hg and neurochemical receptors (NMDA and GABA(A)) and enzymes (glutamine synthetase (GS) and glutamic acid decarboxylase (GAD)). Brain total Hg (THg) levels (dry weight basis) averaged 2.80 μg/g (range: 0.2-34.01), and levels were highest in Michigan birds. THg levels in liver (r(p) = 0.805) and breast feathers (r(p) = 0.611) significantly correlated with those in brain. Brain Hg was not associated with binding to the GABA(A) receptor. Brain THg and inorganic Hg (IHg) were significantly positively correlated with GS activity (THg r(p) = 0.190; IHg r(p) = 0.188) and negatively correlated with NMDA receptor levels (THg r(p) = -0245; IHg r(p) = -0.282), and IHg was negatively correlated with GAD activity (r(s) = -0.196). We also report upon Hg demethylation and relationships between Hg and Se in brain and liver. These results suggest that bald eagles in the Great Lakes region are exposed to Hg at levels capable of causing subclinical neurological damage, and that when tissue burdens are related to proposed avian thresholds approximately 14-27% of eagles studied here may be at risk.

  13. Assessing contamination in Great Lakes sediments using benthic invertebrate communities and the sediment quality triad approach

    Science.gov (United States)

    Canfield, Timothy J.; Dwyer, F. James; Fairchild, James F.; Haverland, Pamela S.; Ingersoll, Christopher G.; Kemble, Nile E.; Mount, David R.; La Point, Thomas W.; Burton, G. Allen; Swift, M. C.

    1996-01-01

    Sediments in many Great Lakes harbors and tributary rivers are contaminated. As part of the USEPA's Assessment and Remediation of Contaminated Sediment (ARCS) program, a number of studies were conducted to determine the nature and extent of sediment contamination in Great Lakes Areas of Concern (AOC). This paper describes the composition of benthic invertebrate communities in contaminated sediments and is one in a series of papers describing studies conducted to evaluate sediment toxicity from three AOC's (Buffalo River, NY; Indiana Harbor, IN; Saginaw River, MI), as part of the ARCS Program. Oligochaeta (worms) and Chironomidae (midge) comprised over 90% of the benthic invertebrate numbers in samples collected from depositional areas. Worms and midge consisted of taxa identified as primarily contaminant tolerant organisms. Structural deformities of mouthparts in midge larvae were pronounced in many of the samples. Good concurrence was evident between measures of laboratory toxicity, sediment contaminant concentration, and benthic invertebrate community composition in extremely contaminated samples. However, in moderately contaminated samples, less concordance was observed between the benthos community composition and either laboratory toxicity test results or sediment contaminant concentration. Laboratory sediment toxicity tests may better identify chemical contamination in sediments than many commonly used measures of benthic invertebrate community composition. Benthic measures may also reflect other factors such as habitat alteration. Evaluation of non-contaminant factors are needed to better interpret the response of benthic invertebrates to sediment contamination.

  14. Are habitat rehabilitation initiatives uncoupled from aquatic resource management objectives in the Great Lakes?

    Energy Technology Data Exchange (ETDEWEB)

    Hartig, J.H. [International Joint Commission, Ottawa, ON (Canada); Kelso, J.R.M. [Department of Fisheries and Oceans, Sault Ste. Marie, ON (Canada). Great Lakes Lab. for Fisheries and Aquatic Sciences; Wooley, C. [Fish and Wildlife Service, Ann Arbor, MI (United States). Great Lakes Fishery Lab.; 9698005CA; 9500215US

    1996-11-01

    The status and prospects of aquatic habitat rehabilitation and conservation efforts in the Great Lakes area, were evaluated. Many programs exist to enhance habitats in the Great Lakes basin ecosystem, but there appeared to be a lack of connection between rehabilitation initiatives, resource management objectives and the scientific method. It was found that many of the programs did not have strong monitoring and assessment components. It was suggested that at minimum, a simple conceptual model for the relationship between physical habitat and ecosystem structure and function was needed. Some of the recommendation which could strengthen the scientific basis for habitat management included (1) placing a high priority on habitat objectives and quantitative fish community to help evaluate and select appropriate habitat rehabilitation techniques, (2) increasing research and pre- and post-project assessment efforts to determine cause and effect relationships, and (3) pooling all available data on habitat rehabilitation effectiveness to make full use of all available technologies. 22 refs., 3 tabs., 2 figs.

  15. Sea lamprey (Petromyzon marinus) parasite-host interactions in the Great Lakes

    Science.gov (United States)

    Bence, James R.; Bergstedt, Roger A.; Christie, Gavin C.; Cochran, Phillip A.; Ebener, Mark P.; Koonce, Joseph F.; Rutter, Michael A.; Swink, William D.

    2003-01-01

    Prediction of how host mortality responds to efforts to control sea lampreys (Petromyzon marinus) is central to the integrated management strategy for sea lamprey (IMSL) in the Great Lakes. A parasite-host submodel is used as part of this strategy, and this includes a type-2 multi-species functional response, a developmental response, but no numerical response. General patterns of host species and size selection are consistent with the model assumptions, but some observations appear to diverge. For example, some patterns in sea lamprey marking on hosts suggest increases in selectivity for less preferred hosts and lower host survival when preferred hosts are scarce. Nevertheless, many of the IMSL assumptions may be adequate under conditions targeted by fish community objectives. Of great concern is the possibility that the survival of young parasites (parasitic-phase sea lampreys) varies substantially among lakes or over time. Joint analysis of abundance estimates for parasites being produced in streams and returning spawners could address this. Data on sea lamprey marks is a critical source of information on sea lamprey activity and potential effects. Theory connecting observed marks to sea lamprey feeding activity and host mortality is reviewed. Uncertainties regarding healing and attachment times, the probability of hosts surviving attacks, and problems in consistent classification of marks have led to widely divergent estimates of damages caused by sea lamprey. Laboratory and field studies are recommended to provide a firmer linkage between host blood loss, host mortality, and observed marks on surviving hosts, so as to improve estimates of damage.

  16. Evaluating an invasive species policy: ballast water exchange in the Great Lakes.

    Science.gov (United States)

    Costello, Christopher; Drake, John M; Lodge, David M

    2007-04-01

    Improvements in environmental policy require an accurate diagnosis of the shortcomings of existing policy. We develop a model for assessing the efficacy of policy instruments aimed at reducing the introduction of nonindigenous species. The model identifies and accounts for several features of the nonindigenous species introduction-detection process that complicate interpretations of monitoring data. Specifically, the model includes explicit attention to the pathway of introduction, a probabilistic description of species detection, and the possibility of attenuation of species introductions over time. We apply this theoretical model to the case of mid-ocean ballast water exchange, which was implemented by the United States in 1990 for the North American Great Lakes. Contrary to other authors who take the recent increase in discoveries of nonindigeneous species (NIS) in the Great Lakes as evidence that ballast water exchange is ineffective, we find that the observed detection record could just as plausibly be explained by a lag of a few years between introduction and detection, even if ballast water exchange was 100% effective. Model results suggest that, under current monitoring regimes, several more years of data would be required to make a conclusive evaluation of ballast water exchange. Better estimation of the lag time between introduction and detection, and a shortening of that lag time with better monitoring, would allow more precise and timely evaluation of the efficacy of ballast water exchange and other policy instruments.

  17. Organic contaminants in Great Lakes tributaries: Prevalence and potential aquatic toxicity

    Science.gov (United States)

    Baldwin, Austin K.; Corsi, Steven R.; De Cicco, Laura A.; Lenaker, Peter L.; Lutz, Michelle A; Sullivan, Daniel J.; Richards, Kevin D.

    2016-01-01

    Organic compounds used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewer overflows, among other sources. Concentrations of these organic waste compounds (OWCs) in some Great Lakes tributaries indicate a high potential for adverse impacts on aquatic organisms. During 2010–13, 709 water samples were collected at 57 tributaries, together representing approximately 41% of the total inflow to the lakes. Samples were collected during runoff and low-flow conditions and analyzed for 69 OWCs, including herbicides, insecticides, polycyclic aromatic hydrocarbons, plasticizers, antioxidants, detergent metabolites, fire retardants, non-prescription human drugs, flavors/fragrances, and dyes. Urban-related land cover characteristics were the most important explanatory variables of concentrations of many OWCs. Compared to samples from nonurban watersheds ( 15% urban land cover) had nearly four times the number of detected compounds and four times the total sample concentration, on average. Concentration differences between runoff and low-flow conditions were not observed, but seasonal differences were observed in atrazine, metolachlor, DEET, and HHCB concentrations. Water quality benchmarks for individual OWCs were exceeded at 20 sites, and at 7 sites benchmarks were exceeded by a factor of 10 or more. The compounds with the most frequent water quality benchmark exceedances were the PAHs benzo[a]pyrene, pyrene, fluoranthene, and anthracene, the detergent metabolite 4-nonylphenol, and the herbicide atrazine. Computed estradiol equivalency quotients (EEQs) using only nonsteroidal endocrine-active compounds indicated medium to high risk of estrogenic effects (intersex or vitellogenin induction) at 10 sites. EEQs at 3 sites were comparable to values reported in effluent. This multifaceted study is the largest, most comprehensive assessment of the

  18. Nonnative Pacific salmon alter hot spots of sediment nitrification in Great Lakes tributaries

    Science.gov (United States)

    Levi, Peter S.; Tank, Jennifer L.

    2013-06-01

    Biogeochemical transformations may represent an important pathway influencing the fate of nutrient subsidies in stream ecosystems. Pacific salmon (Oncorhynchus spp.) provide an ammonium (NH4+) subsidy to streams during their annual spawning runs, which may be transformed to nitrate (NO3-) via sediment nitrification. Increases in either forms of dissolved inorganic nitrogen may have ecosystem effects both at the reach and watershed scales, including the fertilization of algal biofilms and elevated export of nutrients to downstream ecosystems. In the nonnative range of salmon, where spawning runs are a relatively new phenomenon, few studies have explored the effect of introduced salmon on ecosystem processes. To assess the effect of nonnative salmon on dissolved inorganic nitrogen dynamics in Great Lakes tributaries, we quantified sediment nitrification in five streams before, during, and after the spawning run in 2009. Overall, sediment nitrification rates were higher in the channel thalweg (mean ± SE = 1.9 ± 0.1 mg N/gAFDM/d) compared to channel margins (mean ± SE = 0.9 ± 0.1 mg N/gAFDM/d). In the two streams with the largest salmon runs, nitrification was highest in the channel thalweg prior to salmon, but margin sediments had higher nitrification during the run. Among all streams, variation in nitrification rates was habitat specific, predicted by exchangeable NH4+ in sediments from the thalweg and predicted by salmon biomass for sediments in the channel margin. Nonnative salmon provide a pulsed source of inorganic nitrogen to Great Lakes tributaries, yet dissimilatory biogeochemical transformations such as nitrification may alter the form of the NH4+ subsidy and potentially influence downstream lakes via export of both NH4+ and NO3-.

  19. Mercury levels in herring gulls and fish: 42 years of spatio-temporal trends in the Great Lakes.

    Science.gov (United States)

    Blukacz-Richards, E Agnes; Visha, Ariola; Graham, Matthew L; McGoldrick, Daryl L; de Solla, Shane R; Moore, David J; Arhonditsis, George B

    2017-04-01

    Total mercury levels in aquatic birds and fish communities have been monitored across the Canadian Great Lakes by Environment and Climate Change Canada (ECCC) for the past 42 years (1974-2015). These data (22 sites) were used to examine spatio-temporal variability of mercury levels in herring gull (Larus argentatus) eggs, lake trout (Salvelinus namaycush), walleye (Sander vitreus), and rainbow smelt (Osmerus mordax). Trends were quantified with dynamic linear models, which provided time-variant rates of change of mercury concentrations. Lipid content (in both fish and eggs) and length in fish were used as covariates in all models. For the first three decades, mercury levels in gull eggs and fish declined at all stations. In the 2000s, trends for herring gull eggs reversed at two sites in Lake Erie and two sites in Lake Ontario. Similar trend reversals in the 2000s were observed for lake trout in Lake Superior and at a single station in Lake Ontario. Mercury levels in lake trout continued to slowly decline at all of the remaining stations, except for Lake Huron, where the levels remained stable. A post-hoc Bayesian regression analysis suggests strong trophic interactions between herring gulls and rainbow smelt in Lake Superior and Lake Ontario, but also pinpoints the likelihood of a trophic decoupling in Lake Huron and Lake Erie. Continued monitoring of mercury levels in herring gulls and fish is required to consolidate these trophic shifts and further evaluate their broader implications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. Population synchrony of a native fish across three Laurentian Great Lakes: evaluating the effects of dispersal and climate.

    Science.gov (United States)

    Bunnell, David B; Adams, Jean V; Gorman, Owen T; Madenjian, Charles P; Riley, Stephen C; Roseman, Edward F; Schaeffer, Jeffrey S

    2010-03-01

    Climate and dispersal are the two most commonly cited mechanisms to explain spatial synchrony among time series of animal populations, and climate is typically most important for fishes. Using data from 1978-2006, we quantified the spatial synchrony in recruitment and population catch-per-unit-effort (CPUE) for bloater (Coregonus hoyi) populations across lakes Superior, Michigan, and Huron. In this natural field experiment, climate was highly synchronous across lakes but the likelihood of dispersal between lakes differed. When data from all lakes were pooled, modified correlograms revealed spatial synchrony to occur up to 800 km for long-term (data not detrended) trends and up to 600 km for short-term (data detrended by the annual rate of change) trends. This large spatial synchrony more than doubles the scale previously observed in freshwater fish populations, and exceeds the scale found in most marine or estuarine populations. When analyzing the data separately for within- and between-lake pairs, spatial synchrony was always observed within lakes, up to 400 or 600 km. Conversely, between-lake synchrony did not occur among short-term trends, and for long-term trends, the scale of synchrony was highly variable. For recruit CPUE, synchrony occurred up to 600 km between both lakes Michigan and Huron (where dispersal was most likely) and lakes Michigan and Superior (where dispersal was least likely), but failed to occur between lakes Huron and Superior (where dispersal likelihood was intermediate). When considering the scale of putative bloater dispersal and genetic information from previous studies, we concluded that dispersal was likely underlying within-lake synchrony but climate was more likely underlying between-lake synchrony. The broad scale of synchrony in Great Lakes bloater populations increases their probability of extirpation, a timely message for fishery managers given current low levels of bloater abundance.

  1. Direct groundwater discharge and vulnerability to hidden nutrient loads along the Great Lakes coast of the United States

    Science.gov (United States)

    Knights, Deon; Parks, Kevin C.; Sawyer, Audrey H.; David, Cédric H.; Browning, Trevor N.; Danner, Kelsey M.; Wallace, Corey D.

    2017-11-01

    Direct groundwater discharge delivers nutrients from land and lakebed sediments to the Great Lakes, which impacts lake water quality. Broad spatial distributions of discharging groundwater are often difficult to measure directly. We present high resolution estimates of direct groundwater discharge across 43% of the Great Lakes coastline based on a water budget approach that uses hydroclimatic models and high-resolution hydrographic data available within the United States. We also integrate land use data to identify coastal areas vulnerable to high groundwater-borne nutrient loads. Estimated rates of direct groundwater discharge along the Great Lakes coast are highly variable, but generally are greatest for Lake Erie and Lake Michigan. Almost one-third of Lake Erie's United States coastline is vulnerable to groundwater sources of nutrients. To assess uncertainties and limitations in our vulnerability analysis, a vulnerable site along Lake Erie was selected for detailed field measurements of direct groundwater discharge rates and nutrient fluxes. Measured discharge rates were significantly lower than water budget-based estimates (354 ± 25 m3 y-1 m-1 compared to 588 ± 181 m3 y-1 m-1). Dissolved phosphorous concentrations in the lakebed were elevated compared to onshore groundwater, while nitrate concentrations were lower, indicative of a highly reactive sediment-water interface. Some of the measured phosphorus may be locally sourced from desorption of legacy P or mineralization of organic matter in the lakebed, which our vulnerability framework does not include. Much of the land-derived nitrogen may be transformed along groundwater flow paths prior to discharge. While model-based estimates of direct groundwater discharge and vulnerability to nutrient loading are important for managing Great Lakes water quality, direct field observations remain essential for quantifying fluxes.

  2. Mercury and selenium contamination in waterbird eggs and risk to avian reproduction at Great Salt Lake, Utah

    Science.gov (United States)

    Ackerman, Joshua T.; Herzog, Mark P.; Hartman, Christopher A.; Isanhart, John P.; Herring, Garth; Vaughn, Sharon; Cavitt, John F.; Eagles-Smith, Collin A.; Browers, Howard; Cline, Chris; Vest, Josh

    2015-01-01

    The wetlands of the Great Salt Lake ecosystem are recognized regionally, nationally, and hemispherically for their importance as breeding, wintering, and migratory habitat for diverse groups of waterbirds. Bear River Migratory Bird Refuge is the largest freshwater component of the Great Salt Lake ecosystem and provides critical breeding habitat for more than 60 bird species. However, the Great Salt Lake ecosystem also has a history of both mercury and selenium contamination, and this pollution could reduce the health and reproductive success of waterbirds. The overall objective of this study was to evaluate the risk of mercury and selenium contamination to birds breeding within Great Salt Lake, especially at Bear River Migratory Bird Refuge, and to identify the waterbird species and areas at greatest risk to contamination. We sampled eggs from 33 species of birds breeding within wetlands of Great Salt Lake during 2010 ̶ 2012 and focused on American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster’s terns (Sterna forsteri), white-faced ibis (Plegadis chihi), and marsh wrens (Cistothorus palustris) for additional studies of the effects of contaminants on reproduction.

  3. Rating impacts in a multi-stressor world: a quantitative assessment of 50 stressors affecting the Great Lakes.

    Science.gov (United States)

    Smith, Sigrid D P; Mcintyre, Peter B; Halpern, Benjamin S; Cooke, Roger M; Marino, Adrienne L; Boyer, Gregory L; Buchsbaum, Andy; Burton, G A; Campbell, Linda M; Ciborowski, Jan J H; Doran, Patrick J; Infante, Dana M; Johnson, Lucinda B; Read, Jennifer G; Rose, Joan B; Rutherford, Edward S; Steinman, Alan D; Allan, J David

    2015-04-01

    Ecosystems often experience multiple environmental stressors simultaneously that can differ widely in their pathways and strengths of impact. Differences in the relative impact of environmental stressors can guide restoration and management prioritization, but few studies have empirically assessed a comprehensive suite of stressors acting on a given ecosystem. To fill this gap in the Laurentian Great Lakes, where considerable restoration investments are currently underway, we used expert elicitation via a detailed online survey to develop ratings of the relative impacts of 50 potential stressors. Highlighting the multiplicity of stressors in this system, experts assessed all 50 stressors as having some impact on ecosystem condition, but ratings differed greatly among stressors. Individual stressors related to invasive and nuisance species (e.g., dreissenid mussels and ballast invasion risk) and climate change were assessed as having the greatest potential impacts. These results mark a shift away from the longstanding emphasis on nonpoint phosphorus and persistent bioaccumulative toxic substances in the Great Lakes. Differences in impact ratings among lakes and ecosystem zones were weak, and experts exhibited surprisingly high levels of agreement on the relative impacts of most stressors. Our results provide a basin-wide, quantitative summary of expert opinion on the present-day influence of all major Great Lakes stressors. The resulting ratings can facilitate prioritizing stressors to achieve management objectives in a given location, as well as providing a baseline for future stressor impact assessments in the Great Lakes and elsewhere.

  4. Modeling of temporal patterns and sources of atmospherically transported and deposited pesticides in ecosystems of concern: A case study of toxaphene in the Great Lakes

    Science.gov (United States)

    Li, Rong; Jin, Jiming

    2013-10-01

    have adverse effects on human health and the environment and can be transported through the atmosphere from application sites and deposited to sensitive ecosystems. This study applies a comprehensive multimedia regional pesticide fate and chemical transport modeling system that we developed to investigate the atmospheric transport and deposition of toxaphene to the Great Lakes. Simulated results predict a significant amount of toxaphene (~350 kg) being transported through the atmosphere and deposited into the Great Lakes in the simulation year. Results also show that U.S. residues and global background are major sources to toxaphene deposition into the Great Lakes and atmospheric concentrations in the region. While the U.S. residues are the dominant source in warm months, the background dominates during winter months. In addition, different sources have different influences on the individual Great Lakes due to their proximity and relative geographical positions to the sources; U.S. residues are the dominant source to Lakes Ontario, Erie, Huron, and Michigan, but they are a much less important source to Lake Superior. These results shed light on the mystery that observed toxaphene concentrations in Great Lakes' lake trout and smelt declined between 1982 and 1992 in four of the Great Lakes except Lake Superior. While monthly total depositions to Lakes Ontario, Erie, Huron, and Michigan have clear seasonal variability with much greater values in April, May, and June, monthly total depositions to Lake Superior are more uniformly distributed over the year with comparatively greater levels in cold months.

  5. Spatial, Temporal, and Matrix Variability of Clostridium botulinum Type E Toxin Gene Distribution at Great Lakes Beaches

    Science.gov (United States)

    Oster, Ryan J.; Haack, Sheridan K.; Fogarty, Lisa R.; Tucker, Taaja R.; Riley, Stephen C.

    2015-01-01

    Clostridium botulinum type E toxin is responsible for extensive mortality of birds and fish in the Great Lakes. The C. botulinum bontE gene that produces the type E toxin was amplified with quantitative PCR from 150 sloughed algal samples (primarily Cladophora species) collected during summer 2012 from 10 Great Lakes beaches in five states; concurrently, 74 sediment and 37 water samples from four sites were also analyzed. The bontE gene concentration in algae was significantly higher than in water and sediment (P Lake Front beaches (Lake Michigan) and Bay City State Recreation Area beach on Saginaw Bay (Lake Huron), where 77, 100, and 83% of these algal samples contained the bontE gene, respectively. The highest concentration of bontE was detected at Bay City (1.98 × 105 gene copies/ml of algae or 5.21 × 106 g [dry weight]). This study revealed that the bontE gene is abundant in the Great Lakes but that it has spatial, temporal, and matrix variability. Further, embayed beaches, low wave height, low wind velocity, and greater average water temperature enhance the bontE occurrence. PMID:25888178

  6. Comparison of Radiocarbon Ages for Multiproxy Paleoclimate Reconstruction of the Great Salt Lake, Utah

    Science.gov (United States)

    Nielson, K. E.; Bowen, G. J.; Eglinton, T. I.

    2008-12-01

    Multiproxy paleoclimate reconstructions from high sedimentation-rate systems offer promising opportunities to deconvolve multiple aspects climate system response to past forcing. However, the time-equivalence of proxies must be established before such reconstructions can be usefully interpreted. Differences in source ages, transport pathways, and surface residence times for substrates may lead to differences in lag times between proxy formation and deposition, compromising comparative analysis of data from multiple proxies. We used multi-substrate radiocarbon dating to investigate the potential for multi-proxy reconstruction of Holocene changes in the volume of the Great Salt Lake (GSL), Utah, based on the stable isotope composition of organic and inorganic substrates in lake sediment cores. Among potential substrates for this work are normal alkanes of vascular higher plant and algal origin, fossil cysts of lake-dwelling brine shrimp (Artemia), and micritic aragonite. Radiocarbon ages for all organic substrates (alkanes, cysts) sampled at any given core depth are concordant within analytical uncertainty and are similar to ages determined on land-plant debris and filamentous algae isolated from the sediment. Inorganic carbonate, in contrast, is depleted in 14C compare to the organic proxies, giving ages that were apparently 2000 to 3000 years older, likely due to winnowing and re-deposition of carbonate at the core site. These results suggest that the maximum temporal resolution achievable through analysis of mineral substrates is on the order of several millennia. Although the limited precision of the radiocarbon analysis precludes precise determination of the maximum potential resolution of organic-proxy based climate reconstructions, the relatively high sedimentation rates (50--150 cm/kyr) and age-equivalence of the substrates analyzed implies that sub- centennial scale resolution should be achievable throughout much of the Holocene portion of the GSL

  7. Evidence that sea lampreys (Petromyzon marinus) complete their life cycle within a tributary of the Laurentian Great Lakes by parasitizing fishes in inland lakes

    Science.gov (United States)

    Johnson, Nicholas; Twohey, Michael B.; Miehls, Scott M.; Cwalinski, Tim A; Godby, Neal A; Lochet, Aude; Slade, Jeffrey W.; Jubar, Aaron K.; Siefkes, Michael J.

    2016-01-01

    The sea lamprey (Petromyzon marinus) invaded the upper Laurentian Great Lakes and feeds on valued fish. The Cheboygan River, Michigan, USA, is a large sea lamprey producing tributary to Lake Huron and despite having a renovated dam 2 km from the river mouth that presumably blocks sea lamprey spawning migrations, the watershed upstream of the dam remains infested with larval sea lamprey. A navigational lock near the dam has been hypothesized as the means of escapement of adult sea lampreys from Lake Huron and source of the upper river population (H1). However, an alternative hypothesis (H2) is that some sea lampreys complete their life cycle upstream of the dam, without entering Lake Huron. To evaluate the alternative hypothesis, we gathered angler reports of lamprey wounds on game fishes upstream of the dam, and captured adult sea lampreys downstream and upstream of the dam to contrast abundance, run timing, size, and statolith microchemistry. Results indicate that a small population of adult sea lampreys (n life cycle upstream of the dam during 2013 and 2014. This is the most comprehensive evidence that sea lampreys complete their life history within a tributary of the upper Great Lakes, and indicates that similar landlocked populations could occur in other watersheds. Because the adult sea lamprey population upstream of the dam is small, complete elimination of the already low adult escapement from Lake Huron might allow multiple control tactics such as lampricides, trapping, and sterile male release to eradicate the population.

  8. Using Scenario Development to Encourage Tourism Business Resilience in the Great Lakes

    Science.gov (United States)

    Chin, N.; Day, J.; Sydnor, S.; Cherkauer, K. A.

    2015-12-01

    Tourism is an economic sector anticipated to be greatly affected by climate change, but the potential impacts of climate change on tourism have rarely been examined in detail in existing research. Past research has shown, however, that the small and medium businesses that dominate the tourism sector could be greatly impacted by climate change. We have presented global climate and hydrologic model research results to pre-selected coastal tourism business owners in the Great Lakes region to determine the best methods for delivering user-friendly future climate scenarios, given that existing research suggests that climate change adaptive behaviors and resilience increase with information (message) clarity. Model output analyses completed for this work have focused on temperature, precipitation, and extreme weather events due to their economic impact on tourism activities. We have also experimented with the development and use of infographics because of their ability to present information quickly and clearly. Initial findings of this work will be presented as well as lessons learned from stakeholder interactions. Two main results include that (1) extreme weather events may have more meaning to tourism business owners than general trends in climate and (2) long-term planning for climate is extremely difficult for tourism business owners because they operate on a much shorter planning timeline than those generally used for climate change analyses.

  9. Interspecific interactions, habitat use, and management of double-crested cormorants (Phalacrocorax auritus) in the Laurentian Great Lakes: An introduction

    Science.gov (United States)

    Stapanian, Martin A.

    2002-01-01

    The collection of seven papers in this journal issue represents a subset of the presentations from a special session at the 44th Annual Conference of the International Association for Great Lakes Research. The session, 'Management of the Double-crested Cormorant in the Laurentian Great Lakes Region,' was held on 12 June 2001 and contained 18 presentations. Topics included cormorant-fish interactions, effects of cormorant nesting on colonies of other waterbirds, cormorant population dynamics, habitat use by foraging cormorants, evaluation of management techniques, and policy and conflict assessment on cormorant-related issues. The collection is organized into four basic topics: management of populations, effects of cormorants on other colonial waterbirds, foraging habitats of cormorants, and effects of cormorants on fisheries. A primary objective of this collection is to provide information and useful tools for managing cormorants in the Great Lakes.

  10. Contaminants of emerging concern presence and adverse effects infish: A case study in the Laurentian Great Lakes

    Science.gov (United States)

    Jorgenson, Zachary G.; Thomas, Linnea M.; Elliott, Sarah M.; Cavallin, Jenna E.; Randolph, Eric C.; Choy, Steven J.; Alvarez, David; Banda, Jo A.; Gefell, Daniel J.; Lee, Kathy E.; Furlong, Edward T.; Schoenfuss, Heiko L.

    2018-01-01

    The Laurentian Great Lakes are a valuable natural resource that is affected by contaminants of emerging concern (CECs), including sex steroid hormones, personal care products, pharmaceuticals, industrial chemicals, and new generation pesticides. However, little is known about the fate and biological effects of CECs in tributaries to the Great Lakes. In the current study, 16 sites on three rivers in the Great Lakes basin (Fox, Cuyahoga, and Raquette Rivers) were assessed for CEC presence using polar organic chemical integrative samplers (POCIS) and grab water samplers. Biological activity was assessed through a combination of in vitro bioassays (focused on estrogenic activity) and in vivo assays with larval fathead minnows. In addition, resident sunfish, largemouth bass, and white suckers were assessed for changes in

  11. Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology

    Science.gov (United States)

    Baldwin, Austin K.; Corsi, Steven; Mason, Sherri A.

    2016-01-01

    Plastic debris is a growing contaminant of concern in freshwater environments, yet sources, transport, and fate remain unclear. This study characterized the quantity and morphology of floating micro- and macroplastics in 29 Great Lakes tributaries in six states under different land covers, wastewater effluent contributions, population densities, and hydrologic conditions. Tributaries were sampled three or four times each using a 333 μm mesh neuston net. Plastic particles were sorted by size, counted, and categorized as fibers/lines, pellets/beads, foams, films, and fragments. Plastics were found in all 107 samples, with a maximum concentration of 32 particles/m3 and a median of 1.9 particles/m3. Ninety-eight percent of sampled plastic particles were less than 4.75 mm in diameter and therefore considered microplastics. Fragments, films, foams, and pellets/beads were positively correlated with urban-related watershed attributes and were found at greater concentrations during runoff-event conditions. Fibers, the most frequently detected particle type, were not associated with urban-related watershed attributes, wastewater effluent contribution, or hydrologic condition. Results from this study add to the body of information currently available on microplastics in different environmental compartments, including unique contributions to quantify their occurrence and variability in rivers with a wide variety of different land-use characteristics while highlighting differences between surface samples from rivers compared with lakes.

  12. Plastic Debris in 29 Great Lakes Tributaries: Relations to Watershed Attributes and Hydrology.

    Science.gov (United States)

    Baldwin, Austin K; Corsi, Steven R; Mason, Sherri A

    2016-10-04

    Plastic debris is a growing contaminant of concern in freshwater environments, yet sources, transport, and fate remain unclear. This study characterized the quantity and morphology of floating micro- and macroplastics in 29 Great Lakes tributaries in six states under different land covers, wastewater effluent contributions, population densities, and hydrologic conditions. Tributaries were sampled three or four times each using a 333 μm mesh neuston net. Plastic particles were sorted by size, counted, and categorized as fibers/lines, pellets/beads, foams, films, and fragments. Plastics were found in all 107 samples, with a maximum concentration of 32 particles/m 3 and a median of 1.9 particles/m 3 . Ninety-eight percent of sampled plastic particles were less than 4.75 mm in diameter and therefore considered microplastics. Fragments, films, foams, and pellets/beads were positively correlated with urban-related watershed attributes and were found at greater concentrations during runoff-event conditions. Fibers, the most frequently detected particle type, were not associated with urban-related watershed attributes, wastewater effluent contribution, or hydrologic condition. Results from this study add to the body of information currently available on microplastics in different environmental compartments, including unique contributions to quantify their occurrence and variability in rivers with a wide variety of different land-use characteristics while highlighting differences between surface samples from rivers compared with lakes.

  13. Estimating selenium removal by sedimentation from the Great Salt Lake, Utah

    Science.gov (United States)

    Oliver, W.; Fuller, C.; Naftz, D.L.; Johnson, W.P.; Diaz, X.

    2009-01-01

    The mass of Se deposited annually to sediment in the Great Salt Lake (GSL) was estimated to determine the significance of sedimentation as a permanent Se removal mechanism. Lake sediment cores were used to qualitatively delineate sedimentation regions (very high to very low), estimate mass accumulation rates (MARs) and determine sediment Se concentrations. Sedimentation regions were defined by comparison of isopach contours of Holocene sediment thicknesses to linear sedimentation rates determined via analysis of 210Pb, 226Ra, 7Be and 137Cs activity in 20 short cores (10 cm). These MARs in the upper 1-2 cm of each long core ranged from 0.019 to 0.105 gsed/cm2/a. Surface sediment Se concentrations in the upper 1 or 2 cm of each long core ranged from 0.79 to 2.47 mg/kg. Representative MARs and Se concentrations were used to develop mean annual Se removal by sedimentation in the corresponding sedimentation region. The spatially integrated Se sedimentation rate was estimated to be 624 kg/a within a range of uncertainty between 285 and 960 kg/a. Comparison to annual Se loading and other potential removal processes suggests burial by sedimentation is not the primary removal process for Se from the GSL. ?? 2009 Elsevier Ltd.

  14. Microplastic pollution in the surface waters of the Laurentian Great Lakes.

    Science.gov (United States)

    Eriksen, Marcus; Mason, Sherri; Wilson, Stiv; Box, Carolyn; Zellers, Ann; Edwards, William; Farley, Hannah; Amato, Stephen

    2013-12-15

    Neuston samples were collected at 21 stations during an ~700 nautical mile (~1300 km) expedition in July 2012 in the Laurentian Great Lakes of the United States using a 333 μm mesh manta trawl and analyzed for plastic debris. Although the average abundance was approximately 43,000 microplastic particles/km², station 20, downstream from two major cities, contained over 466,000 particles/km², greater than all other stations combined. SEM analysis determined nearly 20% of particles less than 1 mm, which were initially identified as microplastic by visual observation, were aluminum silicate from coal ash. Many microplastic particles were multi-colored spheres, which were compared to, and are suspected to be, microbeads from consumer products containing microplastic particles of similar size, shape, texture and composition. The presence of microplastics and coal ash in these surface samples, which were most abundant where lake currents converge, are likely from nearby urban effluent and coal burning power plants.

  15. AN ECOLOGICAL REVIEW OF CLADOPHORA GLOMERATA (CHLOROPHYTA) IN THE LAURENTIAN GREAT LAKES(1).

    Science.gov (United States)

    Higgins, Scott N; Malkin, Sairah Y; Todd Howell, E; Guildford, Stephanie J; Campbell, Linda; Hiriart-Baer, Veronique; Hecky, Robert E

    2008-08-01

    Cladophora glomerata (L.) Kütz. is, potentially, the most widely distributed macroalga throughout the world's freshwater ecosystems. C. glomerata has been described throughout North America, Europe, the Atlantic Islands, the Caribbean Islands, Asia, Africa, Australia and New Zealand, and the Pacific Islands. Cladophora blooms were a common feature of the lower North American Great Lakes (Erie, Michigan, Ontario) from the 1950s through the early 1980s and were largely eradicated through the implementation of a multibillion-dollar phosphorus (P) abatement program. The return of widespread blooms in these lakes since the mid-1990s, however, was not associated with increases in P loading. Instead, current evidence indicates that the resurgence in blooms was directly related to ecosystem level changes in substratum availability, water clarity, and P recycling associated with the establishment of dense colonies of invasive dreissenid mussels. These results support the hypothesis that dreissenid mussel invasions may induce dramatic shifts in energy and nutrient flow from pelagic zones to the benthic zone. © 2008 Phycological Society of America.

  16. Housing Archetype Analysis for Home Energy-Efficient Retrofit in the Great Lakes Region

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. -K. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Mrozowski, T. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Harrell-Seyburn, A. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Ehrlich, N. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Hembroff, L. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Lieburn, B. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Mazor, M. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); McIntyre, A. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Mutton, C. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Parsons, G. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Syal, M. G. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States); Wilkinson, R. [Cost Effective Energy Retrofit (CEER) Team, Midland, MI (United States)

    2014-09-01

    This project report details activities and results of the "Market Characterization" project undertaken by the Cost Effective Energy Retrofit (CEER) team targeted toward the DOE goal of achieving 30%-50% reduction in existing building energy use. CEER consists of members from the Dow Chemical Company, Michigan State University, Ferris State University, and Habitat for Humanity Kent County. The purpose of this market characterization project was to identify housing archetypes which are dominant within the Great Lakes region and therefore offer significant potential for energy-efficient retrofit research and implementation due to the substantial number of homes possessing similar characteristics. Understanding the characteristics of housing groups referred to as "archetypes" by vintage, style, and construction characteristics can allow research teams to focus their retrofit research and develop prescriptive solutions for those structure types which are prevalent and offer high potential uptake within a region or market.

  17. ATLAS Great Lakes Tier-2 Computing and Muon Calibration Center Commissioning

    CERN Document Server

    INSPIRE-00106342

    2009-01-01

    Large-scale computing in ATLAS is based on a grid-linked system of tiered computing centers. The ATLAS Great Lakes Tier-2 came online in September 2006 and now is commissioning with full capacity to provide significant computing power and services to the USATLAS community. Our Tier-2 Center also host the Michigan Muon Calibration Center which is responsible for daily calibrations of the ATLAS Monitored Drift Tubes for ATLAS endcap muon system. During the first LHC beam period in 2008 and following ATLAS global cosmic ray data taking period, the Calibration Center received a large data stream from the muon detector to derive the drift tube timing offsets and time-to-space functions with a turn-around time of 24 hours. We will present the Calibration Center commissioning status and our plan for the first LHC beam collisions in 2009.

  18. Achieving the Great Lakes Initiative mercury limits in oil refinery effluent.

    Science.gov (United States)

    Urgun-Demirtas, Meltem; Gillenwater, Patricia; Negri, M Cristina; Lin, YuPo; Snyder, Seth; Doctor, Richard; Pierce, Linda; Alvarado, Jorge

    2013-01-01

    To meet the stringent Great Lakes Initiative (GLI) wastewater discharge mercury (Hg) limit of 1.3 ppt (ng/L), mercury removal technologies need to be identified and investigated. The goals of this study were to (1) identify and assess available wastewater treatment technologies for mercury removal from an oil refinery wastewater; and (2) conduct bench-scale tests to provide comparable, transparent, and uniform results to assess their performance at low mercury concentrations. The study found that many tested technologies were able to achieve the GLI mercury target concentration at the bench-scale, albeit with different efficiencies and engineering implications. These results demonstrate that at this scale there is no fundamental physical or chemical barrier to achieving oil refinery wastewater, which might be applicable to other types of mercury-containing wastewater.

  19. Report of the International Board of Inquiry for the Great Lakes Fisheries

    Science.gov (United States)

    Gallagher, Hubert R.; Huntsman, A.G.; Taylor, D.J.; Van Oosten, John

    1943-01-01

    This is the report of the International Board of Inquiry relative to the preservation and development of the Great Lakes fisheries as provided by an exchange of notes between Canada and the United States on February 29, 1940. The report aims to present in a very brief manner the background of the establishment of the Board, its program, and the fishery problems that confronted it with particular reference to the international point of view. These problems relate to the following subjects: statistics, the take of fish, fluctuations in the take, development and decline of particular fisheries, extinction and introduction of species, migration and local stock of fish, variety and changes in water conditions, fishing gear, overfishing, sport fishing versus food fish, fish culture and investigations. There is also a supplemental report prepared by the United States members of the Board (see Contribution #101).

  20. In their own words: Success stories from The Great Lakes Native American Research Center for Health.

    Science.gov (United States)

    Dellinger, Matthew; Jackson, Brian; Poupart, Amy

    2016-01-01

    In 2009, the Great Lakes Native American Research Center for Health (GLNARCH) set out to generate a promotional video that highlights the successes of the program. Ten GLNARCH interns were interviewed and filmed for participation in the promotional video using a documentary production style. During the editing and transcription process, interviewer responses were noted for relevance to theoretical frameworks--specifically, tribal critical race theory, mentoring, and cultural compatibility--which guided GLNARCH program design. Quotations were transcribed to illustrate these themes. Though the interviews were not intended as a formal qualitative analysis, powerful narratives that are relevant to participatory research emerged. The emergence of narratives that align with relevant theoretical frameworks suggests a novel methodology for a culturally responsive, participatory reporting system.

  1. Mysis diluviana and Hemimysis anomala: reviewing the roles of a native and invasive mysid in the Laurentian Great Lakes region

    Science.gov (United States)

    Walsh, Maureen G.; Boscarino, Brent T.; Marty, Jérôme; Johannsson, Ora E.

    2012-01-01

    Mysis diluviana and Hemimysis anomala are the only two species of mysid shrimps in the order Mysidacea that are present in the Laurentian Great Lakes of North America. M. diluviana has inhabited the deep, cold waters of this region since Pleistocene-era glacial retreat and is widely considered to have a central role in the functioning of offshore food webs in systems they inhabit. More recently, the Great Lakes were invaded by the Ponto-Caspian native Hemimysis, a species that inhabits warmer water and shallower depths relative to M. diluviana. Hemimysis has rapidly expanded throughout the Great Lakes region and has become integrated into nearshore food webs as both food for planktivorous fish and predators and competitors of zooplankton. This special issue is composed of 14 papers that represent the most recent advances in our understanding of the ecological importance of both species of mysids to lake and river ecosystems in the Great Lakes region of North America. Topics discussed in this special issue will inform future research in all systems influenced by mysid ecology.

  2. The Pollution of the Oceans and Great Lakes by Persistent Organic Pollutants

    Science.gov (United States)

    Lohmann, R.; Muir, D.

    2012-12-01

    The presence of man-made organic chemicals across the Great Lakes and Oceans is widespread. Especially in the northern hemisphere, legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls or DDT can be detected almost everywhere. Despite their ban several decades ago, concentrations are only declining slowly in the atmosphere, while time trends are not available for the waters of the world. While concentrations are often low (picogram per liter range), their bioaccumulation still causes adverse effects in top predators, including humans. Our results for legacy POPs highlight that oceans and the Great Lakes are by now re-releasing these compounds back to the atmosphere. More recently banned POPs include brominated flame retardants and perfluorinated compounds. Atmospheric concentrations are slowly declining, while their impacts on the aquatic environment will be felt for decades to come. Due to the paucity of aqueous data on POPs, we called for a global effort to monitor key POPs using passive samplers (AQUA-GAPS). Our recent cruise results show perfluorinated compounds to be present in all ocean basins, suggesting that they will remain for good. As of yet unknown are the presence and effects of additional hundreds to thousands industrial chemicals that are suspected of being persistent, bioaccumulative and toxic. Several of these have been identified as compounds of potential concern, but few have been investigated in the oceans. The solution to the pollution of POPs will have to rely on better chemical screening prior to high-volume production. The recent REACH legislation by the EU is a step in the right direction, but will not prevent the on-going release of man-made chemicals over the next few decades, many of which are already in use and will continue to be released over time.

  3. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches

    Science.gov (United States)

    Oster, Ryan J.; Wijesinghe, Rasanthi U.; Fogarty, Lisa Reynolds; Haack, Sheridan K.; Fogarty, Lisa R.; Tucker, Taaja R.; Riley, Stephen

    2014-01-01

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.

  4. Virulence and biodegradation potential of dynamic microbial communities associated with decaying Cladophora in Great Lakes

    Science.gov (United States)

    Chun, Chan Lan; Peller, Julie R.; Shively, Dawn; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Staley, Christopher; Zhang, Qian; Ishii, Satoshi; Sadowsky, Michael J.

    2017-01-01

    Cladophora mats that accumulate and decompose along shorelines of the Great Lakes create potential threats to the health of humans and wildlife. The decaying algae create a low oxygen and redox potential environment favoring growth and persistence of anaerobic microbial populations, including Clostridium botulinum, the causal agent of botulism in humans, birds, and other wildlife. In addition to the diverse population of microbes, a dynamic chemical environment is generated, which involves production of numerous organic and inorganic substances, many of which are believed to be toxic to the sand and aquatic biotic communities. In this study, we used 16S-rDNA-based-amplicon sequencing and microfluidic-based quantitative PCR approaches to characterize the bacterial community structure and the abundances of human pathogens associated with Cladophora at different stages (up to 90 days) of algal decay in laboratory microcosms. Oxygen levels were largely depleted after a few hours of incubation. As Cladophora decayed, the algal microbial biodiversity decreased within 24 h, and the mat transitioned from an aerobic to anaerobic environment. There were increasing abundances of enteric and pathogenic bacteria during decomposition of Cladophora, including Acinetobacter, Enterobacter, Kluyvera, Cedecea, and others. In contrast, there were no or very few sequences (< 0.07%) assigned to such groups in fresh Cladophora samples. Principal coordinate analysis indicated that the bacterial community structure was dynamic and changed significantly with decay time. Knowledge of microbial communities and chemical composition of decaying algal mats is critical to our further understanding of the role that Cladophora plays in a beach ecosystem's structure and function, including the algal role in trophic interactions. Based on these findings, public and environmental health concerns should be considered when decaying Cladophora mats accumulate Great Lakes shorelines.

  5. Occurrence and distribution of fecal indicator bacteria and gene markers of pathogenic bacteria in Great Lakes tributaries, March-October 2011

    Science.gov (United States)

    Brennan, Angela K.; Johnson, Heather E.; Totten, Alexander R.; Duris, Joseph W.

    2015-01-01

    From March through October 2011, the U.S. Geological Survey (USGS), conducted a study to determine the frequency of occurrence of pathogen gene markers and densities of fecal indicator bacteria (FIB) in 22 tributaries to the Great Lakes. This project was funded as part of the Great Lakes Restoration Initiative (GLRI) and included sampling at 22 locations throughout 6 states that border the Great Lakes.

  6. Unraveling the complex local-scale flows influencing ozone patterns in the southern Great Lakes of North America

    Directory of Open Access Journals (Sweden)

    I. Levy

    2010-11-01

    Full Text Available This study examines the complexity of various processes influencing summertime ozone levels in the southern Great Lakes region of North America. Results from the Border Air Quality and Meteorology (BAQS-Met field campaign in the summer of 2007 are examined with respect to land-lake differences and local meteorology using a large array of ground-based measurements, aircraft data, and simulation results from a high resolution (2.5 km regional air-quality model, AURAMS.

    Analyses of average ozone mixing ratio from the entire BAQS-Met intensive campaign period support previous findings that ozone levels are higher over the southern Great Lakes than over the adjacent land. However, there is great heterogeneity in the spatial distribution of surface ozone over the lakes, particularly over Lake Erie during the day, with higher levels located over the southwestern end of the lake. Model results suggest that some of these increased ozone levels are due to local emission sources in large nearby urban centers. While an ozone reservoir layer is predicted by the AURAMS model over Lake Erie at night, the land-lake differences in ozone mixing ratios are most pronounced during the night in a shallow inversion layer of about 200 m above the surface. After sunrise, these differences have a limited effect on the total mass of ozone over the lakes and land during the day, though they do cause elevated ozone levels in the lake-breeze air in some locations.

    The model also predicts a mean vertical circulation during the day with an updraft over Detroit-Windsor and downdraft over Lake St. Clair, which transports ozone up to 1500 m above ground and results in high ozone over the lake.

    Oscillations in ground-level ozone mixing ratios were observed on several nights and at several ground monitoring sites, with amplitudes of up to 40 ppbv and time periods of 15–40 min. Several possible mechanisms for these oscillations are discussed, but a

  7. Climate inferences between paleontological, geochemical, and geophysical proxies in Late Pleistocene lacustrine sediments from Summer Lake, Oregon, western Great Basin

    Science.gov (United States)

    Heaton, Eric; Thompson, Greg; Negrini, Rob; Wigand, Peter

    2016-04-01

    Paleontological, geochemical, and geophysical data from western Great Basin pluvial Summer Lake, Oregon have established a high resolution paleoclimate record during the late Pleistocene Mono Lake Excursion (~34.75 ka), Dansgaard-Oeschger interstadials 6-8, and the end of Heinrich Even 4 (~38 ka). Proxies of grain-size, magnetic susceptibility, carbon/nitrogen ratio, ostracode analysis and palynology from a depocenter core show new results with improved age control regarding high amplitude, high frequency changes in lake level, lake temperature, and regional precipitation and temperature which correspond directly with colder/warmer and respectively drier/wetter climates as documented with Northern Atlantic Greenland ice core data. Results from geophysical and geochemical analysis, and the presence of ostracode Cytherissa lacustris consistently demonstrate the correspondence of low lake conditions and colder water temperatures during Dansgaard-Oeschger stadials and the Mono Lake Excursion. The opposite holds true during interstadials. Smaller grain size, increases in carbon/nitrogen ratio and consistent absence of C. lacustris suggest periods of increased discharge into the lake, increased lake level, and warmer water temperatures. Warmer/wetter climate conditions are confirmed during interstadials 7 and 8 from pollen analysis. Existence of Atriplex, Rosaceae, Chrysothamnus and Ambrosia, and pollen ratios of Juniperus/Dip Pinus and (Rosaceae+Atriplex+Poaceae+Chrysothamnus+Ambrosia)/(Pinus+Picea+T. mertensiana+Sarcobatus) suggest warmer/wetter semi-arid woodland conditions during interstadials 7 and 8. This contrasts with absences in these pollens and pollen ratios indicating colder/drier continental montane woodland conditions during stadials and the Mono Lake Excursion. Increases in Juniper/Dip Pinus ratio suggest a warmer/wetter climate during interstadial 6 however additional proxies do not demonstrate comparative warmer/wetter climate, deeper lake level or

  8. Chlorinated hydrocarbon concentrations in plasma of the Lake Erie water snake (Nerodia sipedon insularum) and northern water snake (Nerodia sipedon sipedon) from the Great Lakes basin in 1998.

    Science.gov (United States)

    Bishop, C A; Rouse, J D

    2000-11-01

    From the Great Lakes basin, concentrations of 59 congener-specific polychlorinated biphenyls (PCBs) and 14 organochlorine pesticides were measured in blood plasma of northern water snake (Nerodia sipedon sipedon) and Lake Erie water snake (Nerodia sipedon insularum), which is endangered in Canada. In 1998, four male adult Lake Erie water snakes were sampled from Pelee Island, western Lake Erie; four male northern water snakes were sampled at Little Lake, about 20 km north of Parry Sound in central Ontario; and four adult gravid female northern water snakes were sampled from Garden Island, eastern Lake Ontario. The blood plasma was pooled by site for a total of three samples analyzed. The Pelee Island sample from male Lake Erie water snakes contained less than half the lipid concentration (0.349%) than samples from the other sites, but it was the most contaminated with PCBs, even on a wet weight basis. Summed concentration of individual PCBs in the Pelee Island sample was 167 ng/g (wet weight), which was 14-fold higher than the next most contaminated sample, which was from Little Lake. The plasma sample from Little Lake contained 12 ng/g (WW) and was four times more contaminated with PCBs than the sample from female snakes from Garden Island, Lake Ontario. Organochlorine pesticide concentrations in plasma were relatively similar among sites. None of the pesticides was found above trace concentrations (0.1-0.9 ng/g) except pp'-DDE, which occurred at 2-5 ng/g among sites. PCB congener patterns in the Lake Erie water snakes were compared to PCB patterns in plasma of common snapping turtle (Chelydra serpentina serpentina) from Lake Ontario, herring gull eggs (Larus argentatus) from western Lake Erie, and mudpuppy eggs (Necturus maculosus) from the Detroit River. The PCB patterns in water snake and herring gull sample were most similar, followed by the pattern in snapping turtle plasma. The presence of more lower-chlorinated chlorobiphenyls in the mudpuppy eggs relative

  9. Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help

    Science.gov (United States)

    Jones, Michael L.; Shuter, Brian J.; Zhao, Yingming; Stockwell, Jason D.

    2006-01-01

    Future changes to climate in the Great Lakes may have important consequences for fisheries. Evidence suggests that Great Lakes air and water temperatures have risen and the duration of ice cover has lessened during the past century. Global circulation models (GCMs) suggest future warming and increases in precipitation in the region. We present new evidence that water temperatures have risen in Lake Erie, particularly during summer and winter in the period 1965–2000. GCM forecasts coupled with physical models suggest lower annual runoff, less ice cover, and lower lake levels in the future, but the certainty of these forecasts is low. Assessment of the likely effects of climate change on fish stocks will require an integrative approach that considers several components of habitat rather than water temperature alone. We recommend using mechanistic models that couple habitat conditions to population demographics to explore integrated effects of climate-caused habitat change and illustrate this approach with a model for Lake Erie walleye (Sander vitreum). We show that the combined effect on walleye populations of plausible changes in temperature, river hydrology, lake levels, and light penetration can be quite different from that which would be expected based on consideration of only a single factor.

  10. Delivered costs of Western coal shipped on the Great Lakes versus Eastern coal for Eastern Great Lakes hinterland utility plants. With appendices on relative cost impacts of coal scrubbing and on other Western coal transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, K.M.

    1979-02-01

    This report analyzes the present and projected delivered cost competitiveness of Great Lakes shipped, low sulfur Western coal with low and high sulfur Eastern coal at Eastern Great Lakes hinterland utility plants. Its findings are based upon detailed data acquired from appropriate transportation firms and four eastern utility companies which use or have studied using the appropriate coal types. Two appendices provide: (1) a tentative, preliminary analysis of this competition with additional costs required by likely EPA scrubbing (sulfur removal) requirements, and (2) background information on other Western coal transport systems. Briefly, the findings of this report are that if Western coal is shipped via the Great Lakes to utility plants in the eastern Great Lakes hinterlands (i.e., inland from ports up to 200 miles): currently, based upon delivered costs only, it cannot compete with any type of Eastern coal; by 1989, with favorable interim Western versus Eastern cost escalation rate advantages on minemouth coal and transportation costs, Western coal delivered costs can begin competing with those of Eastern low sulfur, but not high sulfur coal; by 1999, with favorable relative cost escalation rate advantages, Western coal's delivered costs can become substantially less expensive than Eastern low sulfur coal's, and just begin to be competitive with Eastern high sulfur coal's; extremely high Eastern rail costs due to port area system characteristics are the main cost factor driving Western coal delivered costs to uneconomic levels.

  11. Inputs and internal cycling of nitrogen to a causeway influenced, hypersaline lake, Great Salt Lake, Utah, USA

    Science.gov (United States)

    Naftz, David L.

    2017-01-01

    Nitrogen inputs to Great Salt Lake (GSL), located in the western USA, were quantified relative to the resident nitrogen mass in order to better determine numeric nutrient criteria that may be considered at some point in the future. Total dissolved nitrogen inputs from four surface-water sources entering GSL were modeled during the 5-year study period (2010–2014) and ranged from 1.90 × 106 to 5.56 × 106 kg/year. The railroad causeway breach was a significant conduit for the export of dissolved nitrogen from Gilbert to Gunnison Bay, and in 2011 and 2012, net losses of total nitrogen mass from Gilbert Bay via the Causeway breach were 9.59 × 105 and 1.51 × 106 kg. Atmospheric deposition (wet + dry) was a significant source of nitrogen to Gilbert Bay, exceeding the dissolved nitrogen load contributed via the Farmington Bay causeway surface-water input by >100,000 kg during 2 years of the study. Closure of two railroad causeway culverts in 2012 and 2013 likely initiated a decreasing trend in the volume of the higher density Deep Brine Layer and associated declines in total dissolved nitrogen mass contained in this layer. The large dissolved nitrogen pool in Gilbert Bay relative to the amount of nitrogen contributed by surface-water inflow sources is consistent with the terminal nature of GSL and the predominance of internal nutrient cycling. The opening of the new railroad causeway breach in 2016 will likely facilitate more efficient bidirectional flow between Gilbert and Gunnison Bays, resulting in potentially substantial changes in nutrient pools within GSL.

  12. Effects of habitat fragmentation on the use of nest site resources by great tits in Thousand Island Lake, Zhejiang Province

    OpenAIRE

    Meng Zhang; Jiji Sun; Yanping Wang; Pingping Jiang; Ping Ding; Gaofu Xu

    2010-01-01

    To investigate the effects of habitat fragmentation on the use of nest site resources by a secondary cavity-nesting bird species, the great tit (Parus major), we placed 443 artificial nest boxes on 21 islands in Thousand Island Lake from February to August 2008. Among the nest boxes 72 (16.3%) were used by great tits. We analyzed the relationships between island area, island isolation, predator activity, vegetation cover and nest box orientation and the use of nest boxes by great tits. Great ...

  13. Physical Monitoring of Flow Into and Within Great Salt Lake, Utah

    Science.gov (United States)

    Kenney, T. A.; Naftz, D. L.; Perschon, W. C.

    2006-12-01

    Great Salt Lake (GSL) is the hydrologic terminus for the eastern part of the Great Basin. As the largest inland waterbody in the Western United States, GSL plays a critical ecologic role for many migratory bird species. In terms of harvest quantity and quality, the brine shrimp (Artemia) fishery of GSL is among the strongest in the world. The characteristic of GSL as a hydrologic sink amplifies anthropogenic activities throughout the basin, most specifically activities that occur along its eastern and southern shores, the urban corridor of the Wasatch Front. In 1959 GSL was divided into north and south parts by a rock-fill railroad causeway. Since then, an extreme density gradient between the north and south part exists as a result of limited conveyance of water from the south part where more than 95 percent of the total freshwater input occurs (Loving, and others, 2000). To date, little is known about the loading and cycling of various chemical constituents associated with human activities including nutrients, selenium, and mercury. Hydroacoustic technology, specifically acoustic Doppler technology, is currently being used to obtain a better physical understanding of GSL. Since 1999, stratified bi-directional discharge has been measured at the causeway breach with an acoustic Doppler current profiler. From these measurements, net flow components to the north and south have been used to assess the movement of water and salt through the causeway. Low hydraulic gradients and variable backwater conditions at the two largest inflows to GSL required the deployment of in-situ acoustic Doppler velocity meters to accurately compute continuous discharge, critical for constituent loading analyses. These discharge records, computed using the index velocity method, show sensitivity to large wind events that can lead to a complete reversal of flow. Velocity profiles acquired during two multi-day water-quality synoptic sampling runs with acoustic Doppler current profilers have

  14. Can migration mitigate the effects of ecosystem change? Patterns of dispersal, energy acquisition and allocation in Great Lakes lake whitefish (Coregonus clupeaformis)

    Science.gov (United States)

    Rennie, Michael D.; Ebener, Mark P.; Wagner, Tyler

    2012-01-01

    Migration can be a behavioural response to poor or declining home range habitat quality and can occur when the costs of migration are overcome by the benefi ts of encountering higher-quality resources elsewhere. Despite dramatic ecosystem-level changes in the benthic food web of the Laurentian Great Lakes since the colonization of dreissenid mussels, coincident changes in condition and growth rates among benthivorous lake whitefi sh populations have been variable. We hypothesized that this variation could be in part mitigated by differences in migratory habits among populations, where increased migration distance can result in an increased probability of encountering high-quality habitat (relative to the home range). Results from four Great Lakes populations support this hypothesis; relative growth rates increased regularly with migration distance. The population with the largest average migration distance also had the least reduction in size-at-age during a period of signifi cant ecosystem change and among the highest estimated consumption and activity rates. In comparison, the population with the greatest declines in size-at-age was among the least mobile, demonstrating only moderate rates of consumption and activity. The least mobile population of lake whitefi sh was supported by a remnant Diporeia population and has experienced only moderate temporal growth declines. Our study provides evidence for the potential role of migration in mitigating the effects of ecosystem change on lake whitefi sh populations.

  15. Modeling the Dynamics of the Great Salt Lake as an Integrator of Regional Hydrologic and Climate Processes?

    Science.gov (United States)

    Mohammed, I. N.; Tarboton, D. G.

    2005-12-01

    The Great Salt Lake (GSL), Utah, is the fourth largest, perennial, terminal lake in the world. The Great Salt Lake (GSL) level fluctuates due to the balance between inflows and outflows. These fluctuations are of interest whether they are high (flooding hazards) or low (economic impacts). Inflows are due to streamflow, primarily from the Bear River (54%), Weber River (18%) and Jordan/Provo River (28%) systems. Inflows also include precipitation directly on the lake and groundwater both from the East and West sides. The only outflow is evaporation that is controlled by the climate and area of the lake that changes with level. The GSL reached historic high levels above 1284 m in 1873 and 1986. A historic low at 1278 m occurred in 1963. These fluctuations represent the integrated effect of climate and hydrologic processes as well as the dynamic interaction between lake volume, area and salinity that impact evaporation from the lake. The topographic area-volume relationship in the GSL plays a role in the system dynamics because area is a control on the evaporation outflux. This paper examines the relationships between Basin climate (precipitation and temperature), Inflows to the lake (primarily streamflow) and outflows (evaporation). The role played by the topographic elevation-area-volume relationship on lake dynamics and the correspondence between modes in volume and area distributions and peaks in the area-volume derivative was examined. We derived, using a steady state approximation, the relationship between distributions of lake volume and lake area and the area-volume derivative from the topography/bathymetry. This analysis showed that both the topography/bathymetry and multimodality in the area distribution are required to explain the observed multimodality in the volume distribution. We also separated lake volume changes into increases in the spring (due to spring runoff) and declines in the fall (due to evaporation) and then related these volume changes to

  16. Out of the Tropics: The Pacific, Great Basin Lakes, and Late Pleistocene Water Cycle in the Western United States

    Science.gov (United States)

    Lyle, Mitchell; Heusser, Linda; Ravelo, Christina; Yamamoto, Masanobu; Barron, John; Diffenbaugh, Noah S.; Herbert, Timothy; Andreasen, Dyke

    2012-09-01

    The water cycle in the western United States changed dramatically over glacial cycles. In the past 20,000 years, higher precipitation caused desert lakes to form which have since dried out. Higher glacial precipitation has been hypothesized to result from a southward shift of Pacific winter storm tracks. We compared Pacific Ocean data to lake levels from the interior west and found that Great Basin lake high stands are older than coastal wet periods at the same latitude. Westerly storms were not the source of high precipitation. Instead, air masses from the tropical Pacific were transported northward, bringing more precipitation into the Great Basin when coastal California was still dry. The changing climate during the deglaciation altered precipitation source regions and strongly affected the regional water cycle.

  17. Out of the tropics: the Pacific, Great Basin lakes, and late Pleistocene water cycle in the western United States.

    Science.gov (United States)

    Lyle, Mitchell; Heusser, Linda; Ravelo, Christina; Yamamoto, Masanobu; Barron, John; Diffenbaugh, Noah S; Herbert, Timothy; Andreasen, Dyke

    2012-09-28

    The water cycle in the western United States changed dramatically over glacial cycles. In the past 20,000 years, higher precipitation caused desert lakes to form which have since dried out. Higher glacial precipitation has been hypothesized to result from a southward shift of Pacific winter storm tracks. We compared Pacific Ocean data to lake levels from the interior west and found that Great Basin lake high stands are older than coastal wet periods at the same latitude. Westerly storms were not the source of high precipitation. Instead, air masses from the tropical Pacific were transported northward, bringing more precipitation into the Great Basin when coastal California was still dry. The changing climate during the deglaciation altered precipitation source regions and strongly affected the regional water cycle.

  18. Weather and eared grebe winter migration near the Great Salt Lake, Utah.

    Science.gov (United States)

    Williams, Augusta A; Laird, Neil F

    2017-10-18

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s -1 and a westerly, cross-flight wind of 5.0 m s -1 while having an average flight speed at cruising altitude of 16.9 m s -1 , or 61 km h -1 . In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  19. Weather and eared grebe winter migration near the Great Salt Lake, Utah

    Science.gov (United States)

    Williams, Augusta A.; Laird, Neil F.

    2017-10-01

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s-1 and a westerly, cross-flight wind of 5.0 m s-1 while having an average flight speed at cruising altitude of 16.9 m s-1, or 61 km h-1. In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  20. Nutrient status in soil of Ski runs in the sub-alpine belt of Uludag Mountain, Bursa, Turkey.

    Science.gov (United States)

    Guleryuz, Gurcan; Kirmizi, Serap; Arslan, Hulya

    2010-01-01

    Large areas of land are disturbed in sensitive bio-diverse mountain environments by Skiruns. Restoration of vegetation on such disturbed mountain sites may be hampered by soil degradation but the severity and nature of the constraints is not well understood. This study was designed to compare the water holding and nutritional status of soil in three Ski runs which had different construction dates and disturbance levels, and the adjacent undisturbed site in the Abies bommuelleriana forest community in the sub-alpine belt of Uludag Mountain (Bithynian Olympus). The values of soil parameters were depressed in proportion to the disturbance level. Water holding capacity (WHC), total nitrogen (N), organic carbon (C) and calcium (Ca2+), magnesium (Mg2+) and potassium (K+) contents (mg kg(-1) dry weight) of soils in the Ski run which had the highest disturbance level were lower than that of the undisturbed adjacent sites. However the results indicated that the soil parameters were less degraded when secondary vegetation was growing on the disturbed areas.

  1. Investigation on the geographical distribution and life form of plant species in sub alpine zone Karsanak region, Shahrekord

    Directory of Open Access Journals (Sweden)

    Jahanbakhsh Pairanj

    2011-09-01

    Full Text Available This study was carried out in rangelands of Karsanak, Chaharmahal and Bakhtiari province, which is regarded as one of the rich rangelands. Phytogeographically, this region is located in Irano-Turanian (zone of sub alpine. Endemic and rare plants were identified and geographical distribution and life form of identified plant species were investigated as well. Overall, 100 species from 17 families were identified from which 20 percent of identified species was endemic element of Irano-Turanian region. Results indicated that 75.7 percent of identified plants belonged to the Irano-Turanian and only 3 and 2 percent belonged to Euro-Siberian and Mediterranean regions respectively. The reason of high percentage of Irano-Turanian elements is probably the long distance of this region from other regions. Similarities of Irano-Turanian and Mediterranean were included 6.1 percent of identified plants and Irano-Turanian and Euro-Siberian included 2 percent. Results of life forms showed hemichryptophytes including 60 percent of life forms which indicate the cold and mountainous weather.

  2. Applying the collective impact approach to address non-native species: A case study of the Great Lakes Phragmites Collaborative

    Science.gov (United States)

    Braun, H. B.; Kowalski, Kurt P.; Hollins, K.

    2016-01-01

    To address the invasion of non-native Phragmites in the Great Lakes, researchers at the U.S. Geological Survey—Great Lakes Science Center partnered with the Great Lakes Commission in 2012 to establish the Great Lakes Phragmites Collaborative (GLPC). The GLPC is a regional-scale partnership established to improve collaboration among stakeholders and increase the effectiveness of non-native Phragmites management and research. Rather than forming a traditional partnership with a narrowly defined goal, the GLPC follows the principles of collective impact to engage stakeholders, guide progress, and align resources to address this complex, regional challenge. In this paper, the concept and tenets of collective impact are described, the GLPC is offered as a model for other natural resource-focused collective impact efforts, and steps for establishing collaboratives are presented. Capitalizing on the interactive collective impact approach, the GLPC is moving toward a broadly accepted common agenda around which agencies and individuals will be able to better align their actions and generate measureable progress in the regional campaign to protect healthy, diverse ecosystems from damage caused by non-native Phragmites.

  3. Site index comparisons for forest species in the Upper Great Lakes area of the United States and Canada

    Science.gov (United States)

    Willard H. Carmean; Jerold T. Hahn; Ronald E. McRoberts; D. Kaisershot

    2013-01-01

    This report summarizes six studies that compare site index relations between 24 hardwood and conifer species in the Upper Great Lakes area of the United States and Canada. These six studies have many regression models and graphs for comparing site index between forest species thus providing tools for estimating site index for alternative tree species based on direct...

  4. About viral hemorrhagic septicemia (VHS) virus. Potential threat of Great Lakes VHS virus in Western United States

    Science.gov (United States)

    Bartholomew, Jerri L; Kurath, Gael; Emmenegger, Evi

    2011-01-01

    Viral hemorrhagic septicemia (VHS) is a disease caused by a virus (VHSV). There are different strains of the virus that can infect marine and freshwater fish species, and the different strains may affect species differently. VHSV has recently invaded the Great Lakes, resulting in many large-scale fish die-offs and new regulatory restrictions for aquaculture throughout the region.

  5. An Overview of Interdisciplinary Research at Notre Dame Addressing "Grand Challenges" in the Midwest and Great Lakes Region

    Science.gov (United States)

    Hamlet, A. F.; Bolster, D.; Tank, J. L.; Hellmann, J.; Christopher, S. F.; Sharma, A.; Chiu, C. M.

    2014-12-01

    The Midwest and Great Lakes region face a number of "Grand Challenges" associated with climate, land use, agriculture, and water resources infrastructure. These include sustainability of agricultural systems and related impacts to food security and the regional economy; sustainability of Great Lakes water levels; changing storm statistics and impacts to stormwater management and flooding; water quality in rivers and downstream receiving water bodies related to non-point source pollution on agricultural lands and combined sewer overflows in urban areas; urban impacts related to aging infrastructure and climate change, and ecosystem management and restoration. In the context of water management, groundwater resources are poorly understood in comparison with surface water resources, and regional-scale simulation models are needed to address questions of sustainability both in terms of supply and water quality. Interdisciplinary research at the University of Notre Dame is attempting to address these research challenges via 1) integrated macro-scale groundwater and surface water modeling to address issues related to sustainable water supply, ecosystem restoration, and agricultural impacts; 2) development of high-resolution regional climate models dynamically coupled to the Great Lakes to address urban impacts, changing storm statistics and to quantify precipitation and evaporation over the Great Lakes; 3) and integrated macro-scale hydrology and water quality modeling to assess the large-scale performance of innovative land management BMPs on agricultural land (such as the two-stage ditch, cover crops, and dynamic drainage control) intended to improve water quality.

  6. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes

    Science.gov (United States)

    Suzanne Peyer; John C. Hermanson; Carol Eunmi Lee

    2010-01-01

    The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such...

  7. Analysis of long-term forest bird monitoring data from national forests of the western Great Lakes Region

    Science.gov (United States)

    Gerald J. Niemi; Robert W. Howe; Brian R. Sturtevant; Linda R. Parker; Alexis R. Grinde; Nicholas P. Danz; Mark D. Nelson; Edmund J. Zlonis; Nicholas G. Walton; Erin E. Gnass Giese; Sue M. Lietz

    2016-01-01

    Breeding bird communities in forests of the western Great Lakes region are among the most diverse in North America, but the forest environment in this region has changed dramatically during the past 150 years. To address concerns about loss of biodiversity due to ongoing forest harvesting and to better inform forest planning, researchers have systematically monitored...

  8. Marinimicrobium haloxylanilyticum sp. nov., a new moderately halophilic, polysaccharide-degrading bacterium isolated from Great Salt Lake, Utah

    DEFF Research Database (Denmark)

    Fogh Møller, Mette; Kjeldsen, Kasper Urup; Ingvorsen, Kjeld

    2010-01-01

    A new moderately halophilic, strictly aerobic, Gram-negative bacterium, strain SX15T, was isolated from hypersaline surface sediment of the southern arm of Great Salt Lake (Utah, USA). The strain grew on a number of carbohydrates and carbohydrate polymers such as xylan, starch, carboxymethyl...

  9. 76 FR 12730 - Notice of Issuance of Federal Operating Permit to Great Lakes Gas Transmission Limited Partnership

    Science.gov (United States)

    2011-03-08

    ... authorizes Great Lakes Gas to operate three natural gas-fired turbine/compressors and one natural gas-fired standby electrical generator at Compressor Station 5 (CS 5) in Cloquet, Minnesota. CS 5, which is located.... Additionally, one natural gas-fired standby electrical generator provides electrical power for critical...

  10. Evaluation of Sugar Maple Dieback in the Upper Great Lakes Region and Development of a Forest Health Youth Education Program

    Science.gov (United States)

    Bal, Tara L.

    2013-01-01

    Sugar Maple, "Acer saccharum" Marsh., is one of the most valuable trees in the northern hardwood forests. Severe dieback was recently reported by area foresters in the western Upper Great Lakes Region. Sugar Maple has had a history of dieback over the last 100 years throughout its range and different variables have been identified as…

  11. Climate and climate variability of the wind power resources in the Great Lakes region of the United States

    Science.gov (United States)

    X. Li; S. Zhong; X. Bian; W.E. Heilman

    2010-01-01

    The climate and climate variability of low-level winds over the Great Lakes region of the United States is examined using 30 year (1979-2008) wind records from the recently released North American Regional Reanalysis (NARR), a three-dimensional, high-spatial and temporal resolution, and dynamically consistent climate data set. The analyses focus on spatial distribution...

  12. The Great Lakes School of Turfgrass Science: A Nine-State Online Collaboration to Improve the Turfgrass Short Course

    Science.gov (United States)

    Koch, Paul L.; Soldat, Douglas J.; Horgan, Brian P.; Bauer, Samuel J.; Patton, Aaron J.

    2017-01-01

    Increasing costs and decreasing numbers of university Extension faculty have made it difficult to provide quality turfgrass short course education. In response, faculty from nine institutions collaborated to develop the Great Lakes School of Turfgrass Science. This 12-week online course provides students with unique learning experiences through a…

  13. Distribution of an invasive aquatic pathogen (viral hemorrhagic septicemia virus) in the Great Lakes and its relationship to shipping

    Science.gov (United States)

    Bain, Mark B.; Cornwell, Emily R.; Hope, Kristine M.; Eckerlin, Geofrey E.; Casey, Rufina N.; Groocock, Geoffrey H.; Getchell, Rodman G.; Bowser, Paul R.; Winton, James R.; Batts, William N.; Cangelosi, Allegra; Casey, James W.

    2010-01-01

    Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus found in fish from oceans of the northern hemisphere and freshwaters of Europe. It has caused extensive losses of cultured and wild fish and has become established in the North American Great Lakes. Large die-offs of wild fish in the Great Lakes due to VHSV have alarmed the public and provoked government attention on the introduction and spread of aquatic animal pathogens in freshwaters. We investigated the relations between VHSV dispersion and shipping and boating activity in the Great Lakes by sampling fish and water at sites that were commercial shipping harbors, recreational boating centers, and open shorelines. Fish and water samples were individually analyzed for VHSV using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and cell culture assays. Of 1,221 fish of 17 species, 55 were VHSV positive with highly varied qRT-PCR titers (1 to 5,950,000 N gene copies). The detections of VHSV in fish and water samples were closely associated and the virus was detected in 21 of 30 sites sampled. The occurrence of VHSV was not related to type of site or shipping related invasion hotspots. Our results indicate that VHSV is widely dispersed in the Great Lakes and is both an enzootic and epizootic pathogen. We demonstrate that pathogen distribution information could be developed quickly and is clearly needed for aquatic ecosystem conservation, management of affected populations, and informed regulation of the worldwide trade of aquatic organisms.

  14. 40 CFR Appendix C to Part 132 - Great Lakes Water Quality Initiative Methodologies for Development of Human Health Criteria and...

    Science.gov (United States)

    2010-07-01

    ... Methodologies for Development of Human Health Criteria and Values C Appendix C to Part 132 Protection of... for Development of Human Health Criteria and Values Great Lakes States and Tribes shall adopt... 100,000 using the exposure assumptions specified in the Methodologies for the Development of Human...

  15. The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution

    Science.gov (United States)

    The anthropogenic emission and subsequent deposition of heavy metals including mercury (Hg) and lead (Pb) presents human health and environmental concerns. Although it is known that local and regional sources of these metals contribute to deposition in the Great Lakes region, it ...

  16. Distribution of an invasive aquatic pathogen (viral hemorrhagic septicemia virus in the Great Lakes and its relationship to shipping.

    Directory of Open Access Journals (Sweden)

    Mark B Bain

    Full Text Available Viral hemorrhagic septicemia virus (VHSV is a rhabdovirus found in fish from oceans of the northern hemisphere and freshwaters of Europe. It has caused extensive losses of cultured and wild fish and has become established in the North American Great Lakes. Large die-offs of wild fish in the Great Lakes due to VHSV have alarmed the public and provoked government attention on the introduction and spread of aquatic animal pathogens in freshwaters. We investigated the relations between VHSV dispersion and shipping and boating activity in the Great Lakes by sampling fish and water at sites that were commercial shipping harbors, recreational boating centers, and open shorelines. Fish and water samples were individually analyzed for VHSV using quantitative reverse transcription-polymerase chain reaction (qRT-PCR and cell culture assays. Of 1,221 fish of 17 species, 55 were VHSV positive with highly varied qRT-PCR titers (1 to 5,950,000 N gene copies. The detections of VHSV in fish and water samples were closely associated and the virus was detected in 21 of 30 sites sampled. The occurrence of VHSV was not related to type of site or shipping related invasion hotspots. Our results indicate that VHSV is widely dispersed in the Great Lakes and is both an enzootic and epizootic pathogen. We demonstrate that pathogen distribution information could be developed quickly and is clearly needed for aquatic ecosystem conservation, management of affected populations, and informed regulation of the worldwide trade of aquatic organisms.

  17. Distribution of an invasive aquatic pathogen (viral hemorrhagic septicemia virus) in the Great Lakes and its relationship to shipping.

    Science.gov (United States)

    Bain, Mark B; Cornwell, Emily R; Hope, Kristine M; Eckerlin, Geofrey E; Casey, Rufina N; Groocock, Geoffrey H; Getchell, Rodman G; Bowser, Paul R; Winton, James R; Batts, William N; Cangelosi, Allegra; Casey, James W

    2010-04-13

    Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus found in fish from oceans of the northern hemisphere and freshwaters of Europe. It has caused extensive losses of cultured and wild fish and has become established in the North American Great Lakes. Large die-offs of wild fish in the Great Lakes due to VHSV have alarmed the public and provoked government attention on the introduction and spread of aquatic animal pathogens in freshwaters. We investigated the relations between VHSV dispersion and shipping and boating activity in the Great Lakes by sampling fish and water at sites that were commercial shipping harbors, recreational boating centers, and open shorelines. Fish and water samples were individually analyzed for VHSV using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and cell culture assays. Of 1,221 fish of 17 species, 55 were VHSV positive with highly varied qRT-PCR titers (1 to 5,950,000 N gene copies). The detections of VHSV in fish and water samples were closely associated and the virus was detected in 21 of 30 sites sampled. The occurrence of VHSV was not related to type of site or shipping related invasion hotspots. Our results indicate that VHSV is widely dispersed in the Great Lakes and is both an enzootic and epizootic pathogen. We demonstrate that pathogen distribution information could be developed quickly and is clearly needed for aquatic ecosystem conservation, management of affected populations, and informed regulation of the worldwide trade of aquatic organisms.

  18. Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Afjeh, Abdollah A. [Univ. of Toledo, OH (United States); Windpower, Nautica [Nautica Windpower, Olmsted Falls, OH (United States); Marrone, Joseph [OCC COWI, Vancouver (Canada); Wagner, Thomas [Nautica Windpower, Olmsted Falls, OH (United States)

    2013-08-29

    This project investigated a conceptual 2-bladed rotor wind turbine design and assessed its feasibility for installation in the Great Lakes. The levelized cost of energy was used for this purpose. A location in Lake Erie near the coast of Cleveland, Ohio was selected as the application site. The loading environment was defined using wind and wave data collected at a weather station in Lake Erie near Cleveland. In addition, the probability distributions of the annual significant wave height and wind speed were determined. A model of the dependence of the above two quantities was also developed and used in the study of wind turbine system loads. Loads from ice floes and ridges were also included.The NREL 5 MW 3-bladed rotor wind turbine concept was used as the baseline design. The proposed turbine design employs variable pitch blade control with tip-brakes and a teeter mechanism. The rotor diameter, rated power and the tower dimensions were selected to closely match those of the NREL 5 MW wind turbine.A semi-floating gravity base foundation was designed for this project primarily to adapt to regional logistical constraints to transport and install the gravity base foundation. This foundation consists of, from bottom to top, a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. A compound upward-downward ice cone was selected to secure the foundation from moving because of ice impact.The turbine loads analysis was based on International ElectroTechnical Committee (IEC) Standard 61400-1, Class III winds. The NREL software FAST was the primary computational tool used in this study to determine all design load cases. An initial set of studies of the dynamics of wind turbines using Automatic Dynamic Analysis of Mechanical Systems (ADAMS) demonstrated that FAST and ADAMS load predictions were comparable. Because of its relative simplicity and short run times, FAST was selected for this study. For ice load calculations, a method

  19. Large differences in potential denitrification and sediment microbial communities across the Laurentian great lakes

    Science.gov (United States)

    Lakes can be important sites for removal of reactive nitrogen (N) through denitrification, but spatial heterogeneity in denitrification rates can be high, and our understanding of factors controlling the capacity of lakes to remove excess N is incomplete. In oligotrophic Lake Superior, a century-lon...

  20. A sensor-based energy balance method for the distributed estimation of evaporation over the North American Great Lakes

    Science.gov (United States)

    Fries, K. J.; Kerkez, B.; Gronewold, A.; Lenters, J. D.

    2014-12-01

    We introduce a novel energy balance method to estimate evaporation across large lakes using real-time data from moored buoys and mobile, satellite-tracked drifters. Our work is motivated by the need to improve our understanding of the water balance of the Laurentian Great Lakes basin, a complex hydrologic system that comprises 90% of the United States' and 20% of the world's fresh surface water. Recently, the lakes experienced record-setting water level drops despite above-average precipitation, and given that lake surface area comprises nearly one third of the entire basin, evaporation is suspected to be the primary driver behind the decrease in water levels. There has historically been a need to measure evaporation over the Great Lakes, and recent hydrological phenomena (including not only record low levels, but also extreme changes in ice cover and surface water temperatures) underscore the urgency of addressing that need. Our method tracks the energy fluxes of the lake system - namely net radiation, heat storage and advection, and Bowen ratio. By measuring each of these energy budget terms and combining the results with mass-transfer based estimates, we can calculate real-time evaporation rates on sub-hourly timescales. To mitigate the cost prohibitive nature of large-scale, distributed energy flux measurements, we present a novel approach in which we leverage existing investments in seasonal buoys (which, while providing intensive, high quality data, are costly and sparsely distributed across the surface of the Great Lakes) and then integrate data from less costly satellite-tracked drifter data. The result is an unprecedented, hierarchical sensor and modeling architecture that can be used to derive estimates of evaporation in real-time through cloud-based computing. We discuss recent deployments of sensor-equipped buoys and drifters, which are beginning to provide us with some of the first in situ measurements of overlake evaporation from Earth's largest lake

  1. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA

    Science.gov (United States)

    Hladik, Michelle; Corsi, Steven; Kolpin, Dana W.; Baldwin, Austin K.; Blackwell, Brett R.; Cavallin, Jenna E.

    2018-01-01

    To better characterize the transport of neonicotinoid insecticides to the world's largest freshwater ecosystem, monthly samples (October 2015–September 2016) were collected from 10 major tributaries to the Great Lakes, USA. For the monthly tributary samples, neonicotinoids were detected in every month sampled and five of the six target neonicotinoids were detected. At least one neonicotinoid was detected in 74% of the monthly samples with up to three neonicotinoids detected in an individual sample (10% of all samples). The most frequently detected neonicotinoid was imidacloprid (53%), followed by clothianidin (44%), thiamethoxam (22%), acetamiprid (2%), and dinotefuran (1%). Thiacloprid was not detected in any samples. The maximum concentration for an individual neonicotinoid was 230 ng L−1 and the maximum total neonicotinoids in an individual sample was 400 ng L−1. The median detected individual neonicotinoid concentrations ranged from non-detect to 10 ng L−1. The detections of clothianidin and thiamethoxam significantly increased as the percent of cultivated crops in the basins increased (ρ = 0.73, P = .01; ρ = 0.66, P = .04, respectively). In contrast, imidacloprid detections significantly increased as the percent of the urbanization in the basins increased (ρ = 0.66, P = .03). Neonicotinoid concentrations generally increased in spring through summer coinciding with the planting of neonicotinoid-treated seeds and broadcast applications of neonicotinoids. More spatially intensive samples were collected in an agriculturally dominated basin (8 sites along the Maumee River, Ohio) twice during the spring, 2016 planting season to provide further information on neonicotinoid inputs to the Great Lakes. Three neonicotinoids were ubiquitously detected (clothianidin, imidacloprid, thiamethoxam) in all water samples collected within this basin. Maximum individual neonicotinoid concentrations was 330 ng L−1

  2. Potential for Waterborne and Invertebrate Transmission of West Nile Virus in the Great Salt Lake, Utah.

    Science.gov (United States)

    Lund, Melissa; Shearn-Bochsler, Valerie; Dusek, Robert J; Shivers, Jan; Hofmeister, Erik

    2017-07-15

    In November and December of 2013, a large mortality event involving 15,000 to 20,000 eared grebes ( Podiceps nigricollis ) occurred at the Great Salt Lake (GSL), UT. The onset of the outbreak in grebes was followed by a mortality event in >86 bald eagles ( Haliaeetus leucocephalus ). During the die-off, West Nile virus (WNV) was detected by reverse transcription-PCR (RT-PCR) or viral culture in the carcasses of grebes and eagles submitted to the National Wildlife Health Center. However, no activity of mosquitoes, the primary vectors of WNV, was detected by the State of Utah's WNV monitoring program. The transmission of WNV has rarely been reported during the winter in North America in the absence of known mosquito activity; however, the size of this die-off, the habitat in which it occurred, and the species involved are unique. We experimentally investigated whether WNV could survive in water with a high salt content, as found at the GSL, and whether brine shrimp, the primary food of migrating eared grebes on the GSL, could have played a role in the transmission of WNV to feeding birds. We found that WNV can survive up to 72 h at 4°C in water containing 30 to 150 ppt NaCl, and brine shrimp incubated with WNV in 30 ppt NaCl may adsorb WNV to their cuticle and, through feeding, infect epithelial cells of their gut. Both mechanisms may have potentiated the WNV die-off in migrating eared grebes on the GSL. IMPORTANCE Following a major West Nile virus die-off of eared grebes and bald eagles at the Great Salt Lake (GSL), UT, in November to December 2013, this study assessed the survival of West Nile virus (WNV) in water as saline as that of the GSL and whether brine shrimp, the major food for migrating grebes, could have played a role as a vector for the virus. While mosquitoes are the major vector of WNV, under certain circumstances, transmission may occur through contaminated water and invertebrates as food. Copyright © 2017 American Society for Microbiology.

  3. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA.

    Science.gov (United States)

    Hladik, Michelle L; Corsi, Steven R; Kolpin, Dana W; Baldwin, Austin K; Blackwell, Brett R; Cavallin, Jenna E

    2018-01-18

    To better characterize the transport of neonicotinoid insecticides to the world's largest freshwater ecosystem, monthly samples (October 2015-September 2016) were collected from 10 major tributaries to the Great Lakes, USA. For the monthly tributary samples, neonicotinoids were detected in every month sampled and five of the six target neonicotinoids were detected. At least one neonicotinoid was detected in 74% of the monthly samples with up to three neonicotinoids detected in an individual sample (10% of all samples). The most frequently detected neonicotinoid was imidacloprid (53%), followed by clothianidin (44%), thiamethoxam (22%), acetamiprid (2%), and dinotefuran (1%). Thiacloprid was not detected in any samples. The maximum concentration for an individual neonicotinoid was 230 ng L -1 and the maximum total neonicotinoids in an individual sample was 400 ng L -1 . The median detected individual neonicotinoid concentrations ranged from non-detect to 10 ng L -1 . The detections of clothianidin and thiamethoxam significantly increased as the percent of cultivated crops in the basins increased (ρ = 0.73, P = .01; ρ = 0.66, P = .04, respectively). In contrast, imidacloprid detections significantly increased as the percent of the urbanization in the basins increased (ρ = 0.66, P = .03). Neonicotinoid concentrations generally increased in spring through summer coinciding with the planting of neonicotinoid-treated seeds and broadcast applications of neonicotinoids. More spatially intensive samples were collected in an agriculturally dominated basin (8 sites along the Maumee River, Ohio) twice during the spring, 2016 planting season to provide further information on neonicotinoid inputs to the Great Lakes. Three neonicotinoids were ubiquitously detected (clothianidin, imidacloprid, thiamethoxam) in all water samples collected within this basin. Maximum individual neonicotinoid concentrations was 330 ng L -1 and maximum total

  4. Hydrologic, land cover, and seasonal patterns of waterborne pathogens in Great Lakes tributaries

    Science.gov (United States)

    Lenaker, Peter L.; Corsi, Steven; Borchardt, Mark A.; Spencer, Susan K.; Baldwin, Austin K.; Lutz, Michelle A.

    2017-01-01

    Great Lakes tributaries are known to deliver waterborne pathogens from a host of sources. To examine the hydrologic, land cover, and seasonal patterns of waterborne pathogens (i.e. protozoa (2), pathogenic bacteria (4) human viruses, (8) and bovine viruses (8)) eight rivers were monitored in the Great Lakes Basin over 29 months from February 2011 to June 2013. Sampling locations represented a wide variety of land cover classes from urban to agriculture to forest. A custom automated pathogen sampler was deployed at eight sampling locations which provided unattended, flow-weighted, large-volume (120–1630 L) sampling. Human and bovine viruses and pathogenic bacteria were detected by real-time qPCR in 16%, 14%, and 1.4% of 290 samples collected while protozoa were never detected. The most frequently detected pathogens were: bovine polyomavirus (11%), and human adenovirus C, D, F (9%). Human and bovine viruses were present in 16.9% and 14.8% of runoff-event samples (n = 189) resulting from precipitation and snowmelt, and 13.9% and 12.9% of low-flow samples (n = 101), respectively, indicating multiple delivery mechanisms could be influential. Data indicated human and bovine virus prevalence was different depending on land cover within the watershed. Occurrence, concentration, and flux of human viruses were greatest in samples from the three sampling locations with greater than 25% urban influence than those with less than 25% urban influence. Similarly, occurrence, concentration, and flux of bovine viruses were greatest in samples from the two sampling locations with greater than 50 cattle/km2 than those with less than 50 cattle/km2. In seasonal analysis, human and bovine viruses occurred more frequently in spring and winter seasons than during the fall and summer. Concentration, occurrence, and flux in the context of hydrologic condition, seasonality, and land use must be considered for each watershed individually to develop effective watershed management

  5. Atmospheric Transference of the Toxic Burden of Atmosphere-Surface Exchangeable Pollutants to the Great Lakes Region

    Science.gov (United States)

    Kumar, A.; Perlinger, J. A.; Giang, A.; Zhang, H.; Selin, N. E.; Wu, S.

    2016-12-01

    Toxic pollutants that share certain chemical properties undergo repeated emission and deposition between Earth's surfaces and the atmosphere. Following their emission through anthropogenic activities, they are transported locally, regionally or globally through the atmosphere, are deposited, and impact local ecosystems, in some cases as a result of bioaccumulation in food webs. We call them atmosphere-surface exchangeable pollutants or "ASEPs", wherein this group is comprised of thousands of chemicals. We are studying potential future contamination in the Great Lakes region by modeling scenarios of the future for three compounds/compound classes, mercury, polychlorinated biphenyl compounds, and polycyclic aromatic hydrocarbons. In this presentation we focus on mercury and future scenarios of contamination of the Great Lake region. The atmospheric transport of mercury under specific scenarios will be discussed. The global 3-D chemical transport model GEOS-Chem has been applied to estimate future atmospheric concentrations and deposition rates of mercury in the Great Lakes region for selected future scenarios of emissions and climate. We find that, assuming no changes in climate, annual mean net deposition flux of mercury to the Great Lakes Region may increase by approximately 50% over 2005 levels by 2050, without global or regional policies addressing mercury, air pollution, and climate. In contrast, we project that the combination of global and North American action on mercury could lead to a 21% reduction in deposition from 2005 levels by 2050. US action alone results in a projected 18% reduction over 2005 levels by 2050. We also find that, assuming no changes in anthropogenic emissions, climate change and biomass burning emissions would, respectively, cause annual mean net deposition flux of mercury to the Great Lakes Region to increase by approximately 5% and decrease by approximately 2% over 2000 levels by 2050.

  6. Water Availability and Use Pilot-A multiscale assessment in the U.S. Great Lakes Basin

    Science.gov (United States)

    Reeves, Howard W.

    2011-01-01

    Beginning in 2005, water availability and use were assessed for the U.S. part of the Great Lakes Basin through the Great Lakes Basin Pilot of a U.S. Geological Survey (USGS) national assessment of water availability and use. The goals of a national assessment of water availability and use are to clarify our understanding of water-availability status and trends and improve our ability to forecast the balance between water supply and demand for future economic and environmental uses. This report outlines possible approaches for full-scale implementation of such an assessment. As such, the focus of this study was on collecting, compiling, and analyzing a wide variety of data to define the storage and dynamics of water resources and quantify the human demands on water in the Great Lakes region. The study focused on multiple spatial and temporal scales to highlight not only the abundant regional availability of water but also the potential for local shortages or conflicts over water. Regional studies provided a framework for understanding water resources in the basin. Subregional studies directed attention to varied aspects of the water-resources system that would have been difficult to assess for the whole region because of either data limitations or time limitations for the project. The study of local issues and concerns was motivated by regional discussions that led to recent legislative action between the Great Lakes States and regional cooperation with the Canadian Great Lakes Provinces. The multiscale nature of the study findings challenges water-resource managers and the public to think about regional water resources in an integrated way and to understand how future changes to the system-driven by human uses, climate variability, or land-use change-may be accommodated by informed water-resources management.

  7. Comparative ecology of exotic invaders and ecologically equivalent species of hydrobionths in the Great Lakes of the world: Results of Russia-USA cooperation

    Science.gov (United States)

    Pronin, N.M.; Fleischer, G.W.; Kohl, S. G.; Korsunov, V. M.; Baldanova, D.R.; Bronte, C.R.; Garmayeva, C. H.; Hatcher, C. H.; Hoff, M.H.; Maistrenko, S.G.; Nester, R.; O'Gorman, Robert; Owens, R.W.; Pronina, S.V.; Selgeby, J.H.; Sokolnikov, Yury; Todd, N. T.

    1999-01-01

    This paper presents brief fragments of the results of joint Russia-US research conducted through the cooperative project entitled, 'Comparative ecology of exotic invaders and ecologically equivalent species of hydrobionths in the Great Lakes of the world: Lake Baikal and the Laurentian Great Lakes.' The project was executed under the Agreement on Scientific Cooperation between the Institute of General and Experimental Biology (formerly Buryat Institute of Biology) of the Siberian Branch of the Russian Academy of Sciences and the Great Lakes Science Center of the U.S. Geological Survey.

  8. Late quaternary geomorphology of the Great Salt Lake region, Utah, and other hydrographically closed basins in the western United States: A summary of observations

    Science.gov (United States)

    Currey, Donald R.

    1989-01-01

    Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.

  9. Development of a Site-specific Standard for Selenium in Open Waters of Great Salt Lake, Utah

    Science.gov (United States)

    Moellmer, W. O.; Miller, T.; Ohlendorf, H.; Denbleyker, J.

    2006-12-01

    The Great Salt Lake (GSL) is a unique terminal lake located adjacent to a rapidly growing metropolitan area in the western United States. The open water of the GSL is protected for its current beneficial uses through the application of a narrative criteria clause in the state water quality standards. The Utah Department of Environmental Quality (DEQ) initiated a process in 2004 to develop a site-specific numeric water quality standard for selenium for the open waters of the GSL to balance protection of the GSL's unique ecology and beneficial uses with burgeoning development. The process the DEQ initiated included the formation of a Great Salt Lake Water Quality Steering Committee and a Science Panel to identify the studies required, manage the studies and finally recommend a site-specific standard. Great Salt Lake Water Quality Steering Committee. The DEQ established the GSL Water Quality Steering Committee (Steering Committee) to provide a forum for stakeholders to assist in guiding the process of developing numeric standards for the lake. This group consists of federal and state regulatory agencies, other public entities, conservation organizations, recreation groups, and industrial users of the lake. Great Salt Lake Science Panel. The DEQ established the GSL Science Panel (Science Panel) to advise the DEQ and Steering Committee and provide overall technical direction and review for the program. The Science Panel is composed of 9 members representing federal and state regulatory agencies, industry and academia. The purpose of the panel is to identify data gaps in the literature, design and oversee scientific investigations to fill critical data gaps, and finally recommend a numeric water quality standard to the Steering Committee. Studies Currently Underway. A partnership of researchers—including local and national experts from education and industry—are collaborating with the DEQ, the Steering Committee, and the Science Panel to complete the studies required

  10. Polychlorinated biphenyl concentrations of burbot Lota lota from Great Slave Lake are very low but vary by sex.

    Science.gov (United States)

    Madenjian, C P; Stapanian, M A; Cott, P A; Rediske, R R; O'Keefe, J P

    2014-05-01

    Total polychlorinated biphenyl concentrations (ΣPCBs) in whole fish were determined for 18 ripe female burbot Lota lota and 14 ripe male burbot from Great Slave Lake, a lake with no known point sources of PCBs. In addition, ΣPCBs were determined in both somatic tissue and gonads for a randomly selected subset of 5 females and 5 males. Mean ΣPCBs for females and males were 2.89 and 3.76 ng/g, respectively. Thus, males had 30 % greater ΣPCBs than females. Based on ΣPCB determinations for somatic tissue and gonads, ΣPCBs of females and males would be expected to decrease by 18 % and increase by 6 %, respectively, immediately after spawning due to the release of gametes. Results from a previous study in eastern Lake Erie indicated that males had 28 and 71 % greater ΣPCBs than females from populations of younger (ages 6-13 years) and older (ages 14-17 years) burbot, respectively. Thus, although younger burbot from Lake Erie had approximately 50 times greater ΣPCBs than Great Slave Lake burbot, the relative difference in ΣPCBs between the sexes was remarkably similar across both populations. Our results supported the contention that the widening of the difference in ΣPCBs between the sexes in older burbot from Lake Erie was attributable to a "hot spot" effect operating on older burbot because Lake Erie has received PCB point source loadings. Our results also supported the contention that male fish expend energy at a rate between 15 and 30 % greater than females. Eventually, these results will be useful in developing sex-specific bioenergetics models for fish.

  11. Climatological assessment of spatiotemporal trends in observational monthly snowfall totals and extremes over the Canadian Great Lakes Basin

    Science.gov (United States)

    Baijnath, Janine; Duguay, Claude; Sushama, Laxmi; Huziy, Oleksandr

    2017-04-01

    The Laurentian Great Lakes Basin (GLB) is susceptible to snowfall events that derive from extratropical cyclones and heavy lake effect snowfall (HLES). The former is generated by quasigeostropic forcing from positive temperature or vorticity advection associated with low-pressure centres. HLES is produced by planetary boundary layer (PBL) convection that is initiated as a result of cold and dry continental air mass advecting over relatively warm lakes and generating turbulent moisture and heat fluxes into the PBL. HLES events can have disastrous impacts on local communities such as the November 2014 Buffalo storm that caused 13 fatalities. Albeit the many HLES studies, most are focused on specific case study events with a discernible under examination of climatological HLES trend analyses for the Canadian GLB. The research objectives are to first determine the historical, climatological trends in monthly snowfall totals and to examine potential surface and atmospheric variables driving the resultant changes in HLES. The second aims to analyze the historical extremes in snowfall by assessing the intensity, frequency, and duration of snowfall within the domain of interest. Spatiotemporal snowfall and precipitation trends are computed for the 1982 to 2015 period using Daymet (Version 3) monthly gridded observational datasets from the Oak Ridge National Laboratory. The North American Regional Reanalysis (NARR), NOAA Optimum Interpolation Sea Surface Temperature (OISST), and the Canadian Ice Service (CIS) datasets are also used for evaluating trends in HLES driving variables such as air temperature, lake surface temperature (LST), ice cover concentration, omega, and vertical temperature gradient (VTGlst-850). Climatological trends in monthly snowfall totals show a significant decrease along the Ontario snowbelt of Lake Superior, Lake Huron and Georgian Bay at the 90 percent confidence level. These results are attributed to significant warming in LST, significant

  12. Laurentian Great Lakes Phytoplankton and Their Water Quality Characteristics, Including a Diatom-Based Model for Paleoreconstruction of Phosphorus

    Science.gov (United States)

    Reavie, Euan D.; Heathcote, Adam J.; Shaw Chraïbi, Victoria L.

    2014-01-01

    Recent shifts in water quality and food web characteristics driven by anthropogenic impacts on the Laurentian Great Lakes warranted an examination of pelagic primary producers as tracers of environmental change. The distributions of the 263 common phytoplankton taxa were related to water quality variables to determine taxon-specific responses that may be useful in indicator models. A detailed checklist of taxa and their environmental optima are provided. Multivariate analyses indicated a strong relationship between total phosphorus (TP) and patterns in the diatom assemblages across the Great Lakes. Of the 118 common diatom taxa, 90 (76%) had a directional response along the TP gradient. We further evaluated a diatom-based transfer function for TP based on the weighted-average abundance of taxa, assuming unimodal distributions along the TP gradient. The r2 between observed and inferred TP in the training dataset was 0.79. Substantial spatial and environmental autocorrelation within the training set of samples justified the need for further model validation. A randomization procedure indicated that the actual transfer function consistently performed better than functions based on reshuffled environmental data. Further, TP was minimally confounded by other environmental variables, as indicated by the relatively large amount of unique variance in the diatoms explained by TP. We demonstrated the effectiveness of the transfer function by hindcasting TP concentrations using fossil diatom assemblages in a Lake Superior sediment core. Passive, multivariate analysis of the fossil samples against the training set indicated that phosphorus was a strong determinant of historical diatom assemblages, verifying that the transfer function was suited to reconstruct past TP in Lake Superior. Collectively, these results showed that phytoplankton coefficients for water quality can be robust indicators of Great Lakes pelagic condition. The diatom-based transfer function can be used in

  13. Improvement of Armor Stone Performance for Protection of Great Lakes Coastal Navigation Areas

    Science.gov (United States)

    Zakikhani, M.; Harrelson, D. W.

    2008-12-01

    Evaluating long-term performance and deterioration of armor stones are essential for maritime structures to protect harbors or navigable areas. Armor rocks are impacted by the natural elements such as seasonal weather, and repeated cycles of temperature (e.g., flowing water, wetting and drying, wave action, freeze and thaw, etc.). The rock's behavior in the field may vary greatly from the laboratory test results. The design process for the determination of armor stone sizes is complex and various factors must be considered in order to fully understand how the design parameters have an indirect effect on stone performance. Numerous investigators have studied to develop relationships for the minimum stable weight of a rubble-mound armor unit for given wave conditions. The main objective of this study has been to evaluate major factors affecting the armor stone durability. The effects of scaling on the test results of various samples of rock types used in Great Lakes coastal projects have been investigated. To consider the combined effects of environmental stresses on armor stone, testing have been done to evaluate the performance of stone subjected to both freezing and thawing and wetting and drying. The stone quarries and sites were evaluated and sampled to determine the stone sources, and their surrounding environments. Long-term performance or deterioration of armor stones have been quantitatively monitored and characterized by the changes in dimensions measured. A degradation numerical model has been developed that relates the laboratory test results to the modification of the mass distribution and reduction at the project site. The paper presentation will describe and illustrate the latest results and developed tools for the armor stone evaluations. We will introduce new approaches that may be used to evaluate the quality and durability with reference to breakage and integrity.

  14. Urban anglers in the Great Lakes region: Fish consumption patterns, influences, and responses to advisory messages.

    Science.gov (United States)

    Bruce Lauber, T; Connelly, Nancy A; Niederdeppe, Jeff; Knuth, Barbara A

    2017-07-15

    The U.S. Environmental Protection Agency and many state advisory programs consider urban anglers at high risk of being exposed to contaminants through fish consumption because the urban poor may be dependent on fish they catch for food and lack access to non-contaminated fishing sites. Past research has supported this characterization of urban anglers, but most studies have been site-specific and limited to subsets of urban anglers. We used a mail survey and focus groups to (a) explore how urban anglers living in the Great Lakes region of the United States differed from rural and suburban anglers and (b) characterize their fishing patterns, fish consumption, factors influencing their fish consumption, and response to fish consumption advisory messages. Although we detected some differences between licensed urban, suburban, and rural anglers, their magnitude was not striking. Lower income urban anglers tended to consume less purchased and sport-caught fish than higher income urban anglers and were not at high risk as a group. Nevertheless, focus group data suggested there may be subpopulations of urban anglers, particularly from immigrant populations, that consume higher amounts of potentially contaminated fish. Although urban anglers in general may not require a special approach for communicating fish consumption advice, subpopulations within this group may be best targeted by using community-based programs to communicate fish consumption advice. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Best Practices for Sustainable WInd Energy Development in the Great Lakes Region and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Great Lakes Commission; Victoria Pebbles; John Hummer; Celia Haven

    2011-07-19

    This document offers a menu of 18 different, yet complimentary preferred practices and policies. The best practices cover all phases of the wind energy development process - from the policies that allow for wind development, to the sustainable operation of a wind project, to the best practices for decommissioning a spent turbine - including applications for offshore wind. The practices include those that have been previously tested and proven effective, as well as new practices that were identified by experts in the field as needed for future wind developments. Each best practice includes information about the opportunities and challenges (pros and cons), and offers a case example that illustrates how that best practice is being utilized by a particular jurisdiction or wind project. The practices described in this publication were selected by a diverse group of interests from the Great Lakes Wind Collaborative that included environmental groups, industry, and federal, state and local government regulators. They were identified through a year long process that included a literature review, online survey and interviews with individuals from the public, private and non-profit sectors.

  16. Institutional frameworks to direct development and implementation of great lakes remedial action plans

    Science.gov (United States)

    Hartig, John H.; Law, Neely

    1994-11-01

    Locally designed, institutional frameworks are being used to develop and implement remedial action plans (RAPs) to restore beneficial uses in 43 Great Lakes areas of concern. A 1993 Canada-United States roundtable was convened to learn from case studies and to develop recommendations regarding essential characteristics of RAP institutional frameworks, guidance to ensure linkages to other related plans, and ways of embracing new institutional frameworks from RAP development to implementation. Major roundtable recommendations are: (1) RAP institutional frameworks should be empowered to pursue their mission of restoring uses. Empowerment would be demonstrated by: a watershed focus, inclusive and shared decision-making, clear responsibilities and sufficient authority, creative funding capability, flexibility and continuity in the process, an iterative process of continuous improvement, and commitment to education and outreach. (2) RAP institutional frameworks should be used as mechanisms to coordinate programs at the local level. Such local coordination should be complemented with governmental commitments to intra- and interagency coordination in work plans. (3) RAP institutional frameworks can help build the capacity of governments to achieve their goals. Therefore, governments must adopt long-term, visionary goals and commit to a customer-driven RAP process of continuous improvement.

  17. On-line Education Initiatives to Galvanize Climate Mitigation in the Great Lakes Region

    Science.gov (United States)

    Mooney, M. E.; Ackerman, S. A.

    2014-12-01

    The Cooperative Institute for Meteorological Satellite Studies (CIMSS) is supporting two different on-line education initiatives that teach about climate change while emphasizing informed and effective responses. The first is an on-line introductory level course for undergraduate students (http://c3.ssec.wisc.edu/) offered through the University of Wisconsin-Madison Atmospheric and Oceanic Sciences (AOS) department. Along with a lighter carbon footprint and the convenience of web-based access, students interact via Drupal forums, Google hangouts and twitter. Activities include several pedagogical tools with sustainability-related content and a final project requiring a discussion of regionally relevant mitigation responses to achieve low emission scenarios for assigned locations. The other initiative is a MOOC (massive open online course) focusing on the changing weather and climate in the Great Lakes Region. This 4-week course is set to launch February 23 2015. One of the primary goals of this MOOC will be having participants change four habits, one per week. Each behavior change will provide a personal benefit to participating individuals while also helping to mitigate the collective impacts of climate change. This presentation will share strategies and insights from both projects.

  18. Formation of aragonite cement by nannobacteria in the Great Salt Lake, Utah

    Science.gov (United States)

    Pedone, Vicki A.; Folk, Robert L.

    1996-08-01

    Brine-shrimp egg cases in growth cavities in modern stromatolites in the Great Salt Lake, Utah, are replaced by aragonite and cemented together by aragonite cement. The fabric of the cement changes dramatically as the distance from the egg case increases. The cement within 50 to 70 μm of the egg case exhibits a random fabric of 10 to 20 μm equant crystals. The surface of the cement is covered by bead-like bumps, 0.1 μm in diameter, interpreted as nannobacteria. Overlying the random, “beaded” fabric with a relatively abrupt transition are epitaxial, prismatic aragonite crystals that have smooth crystal surfaces lacking bead-like bodies. The smooth-surfaced prismatic aragonite crystals are interpreted to be “normal” abiotic precipitates, whereas the “beaded” microspar is interpreted to result from biotic processes, where the nannobacteria serve as catalysts for creation of the cement. A population explosion of bacteria occurs as the organic material of egg case rots, which alters the microchemical environment and induces a rapid precipitation of aragonite, enclosing tens of thousands of nannobacteria. As the organic material is destroyed, reproduction of bacteria slows and epitaxial, prismatic aragonite crystals nucleate and grow abiotically on the structureless, “biotic” layer.

  19. Best Practices for Wind Energy Development in the Great Lakes Region

    Energy Technology Data Exchange (ETDEWEB)

    Pebbles, Victoria; Hummer, John; Haven, Celia

    2011-07-19

    This report offers a menu of 18 different, yet complementary, preferred practices and policies. The best practices cover all phases of the wind energy development process - from the policies that allow for wind development, to the sustainable operation of a wind project, to the best practices for decommissioning a spent turbine - including applications for offshore wind. Each best practice describes the opportunities and challenges (pros and cons), and offers a case example that illustrates how that best practice is being utilized by a particular jurisdiction or wind project. The practices described in this publication were selected by a diverse group of interests from the Great Lakes Wind Collaborative that included environmental groups, industry, academia, and federal, state and local government regulators. The practices were identified through a year-long process that included a literature review, online survey and interviews with individuals from the public, private and non-profit sectors. Optimally, a suite of these best practices would be applied in an appropriate combination to fit the conditions of a particular wind project or a set of wind projects within a given locality or region.

  20. Integrating Environmental and Human Health Databases in the Great Lakes Basin: Themes, Challenges and Future Directions

    Directory of Open Access Journals (Sweden)

    Kate L. Bassil

    2015-03-01

    Full Text Available Many government, academic and research institutions collect environmental data that are relevant to understanding the relationship between environmental exposures and human health. Integrating these data with health outcome data presents new challenges that are important to consider to improve our effective use of environmental health information. Our objective was to identify the common themes related to the integration of environmental and health data, and suggest ways to address the challenges and make progress toward more effective use of data already collected, to further our understanding of environmental health associations in the Great Lakes region. Environmental and human health databases were identified and reviewed using literature searches and a series of one-on-one and group expert consultations. Databases identified were predominantly environmental stressors databases, with fewer found for health outcomes and human exposure. Nine themes or factors that impact integration were identified: data availability, accessibility, harmonization, stakeholder collaboration, policy and strategic alignment, resource adequacy, environmental health indicators, and data exchange networks. The use and cost effectiveness of data currently collected could be improved by strategic changes to data collection and access systems to provide better opportunities to identify and study environmental exposures that may impact human health.

  1. Habitat capacity for cougar recolonization in the Upper Great Lakes region.

    Directory of Open Access Journals (Sweden)

    Shawn T O Neil

    Full Text Available BACKGROUND: Recent findings indicate that cougars (Puma concolor are expanding their range into the midwestern United States. Confirmed reports of cougar in Michigan, Minnesota, and Wisconsin have increased dramatically in frequency during the last five years, leading to speculation that cougars may re-establish in the Upper Great Lakes (UGL region, USA. Recent work showed favorable cougar habitat in northeastern Minnesota, suggesting that the northern forested regions of Michigan and Wisconsin may have similar potential. Recolonization of cougars in the UGL states would have important ecological, social, and political impacts that will require effective management. METHODOLOGY/PRINCIPAL FINDINGS: Using Geographic Information Systems (GIS, we extended a cougar habitat model to Michigan and Wisconsin and incorporated primary prey densities to estimate the capacity of the region to support cougars. Results suggest that approximately 39% (>58,000 km2 of the study area could support cougars, and that there is potential for a population of approximately 500 or more animals. An exploratory validation of this habitat model revealed strong association with 58 verified cougar locations occurring in the study area between 2008 and 2013. CONCLUSIONS/SIGNIFICANCE: Spatially explicit information derived from this study could potentially lead to estimation of a viable population, delineation of possible cougar-human conflict areas, and the targeting of site locations for current monitoring. Understanding predator-prey interactions, interspecific competition, and human-wildlife relationships is becoming increasingly critical as top carnivores continue to recolonize the UGL region.

  2. Comparative embryology of five species of lampreys of the upper Great Lakes

    Science.gov (United States)

    Smith, Allen J.; Howell, John H.; Piavis, George W.

    1968-01-01

    The four species of lampreys native to the upper Great Lakes (American brook lamprey, Lampetra lamotteni; chestnut lamprey, Ichthyomyzon castaneus; northern brook lamprey, I. fossor; and silver lamprey, I. unicuspis) were collected in various stages of their life cycle and maintained in the laboratory until sexually mature. Secondary sex characters of the four native species are compared. Several batches of eggs of each species were reared at 18.4A?C and their development was compared to that of the exotic sea lamprey, Petromyzon marinus. The temperature of 18.4A?C was previously determined to be optimum for development of the sea lamprey. The high percentage survival of many batches of eggs of native species to prolarvae indicated that 18.4A?C was near the optimum for them. Survival to the burrowing stage varied considerably among different batches of eggs from the same species; some batches failed to produce prolarvae. The staging characteristics used for the sea lamprey were applicable to the native species, except for the end point of the burrowing stage. Embryos of the native species in each stage of development appeared according to the time sequence established for the sea lamprey.

  3. Computation of precise regional geoid in Great Lakes region using GOCE data and two different approaches

    Science.gov (United States)

    Janák, Juraj; Pitoňák, Martin; Minarechová, Zuzana; Huang, Jianliang

    2014-05-01

    The goal of our contribution is to compare the two regional models of the geoid in a relatively flat area around the Great Lakes - Canada and the USA. The first model is computed with the standard Stokes-Helmert (SH) approach while the second model is compiled as numerical Finite Element Solution (FE) to the geodetic boundary-value problem. The terrestrial data used as an input for both models are the same. The GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) input data are, however, different. The SH model uses the recent GOCE global geopotential model while the FE approach employs the grid of downward continued gravity anomalies derived from the GOCE gravitational gradients. The SH approach is well documented and described in many publications. The FE approach is recent and novelty approach which can be almost independent from the global geopotential model, except from the dependency inherited from the GOCE EGG_TRF2 data product. Moreover the FE approach is able to combine the terrestrial and satellite input data in a natural way. Both models are compared with GNSS-Levelling data to assess the accuracy of both models and efficiency of particular approaches.

  4. 350 Years of Fire-Climate-Human Interactions in a Great Lakes Sandy Outwash Plain

    Directory of Open Access Journals (Sweden)

    Richard P. Guyette

    2016-08-01

    Full Text Available Throughout much of eastern North America, quantitative records of historical fire regimes and interactions with humans are absent. Annual resolution fire scar histories provide data on fire frequency, extent, and severity, but also can be used to understand fire-climate-human interactions. This study used tree-ring dated fire scars from red pines (Pinus resinosa at four sites in the Northern Sands Ecological Landscapes of Wisconsin to quantify the interactions among fire occurrence and seasonality, drought, and humans. New methods for assessing the influence of human ignitions on fire regimes were developed. A temporal and spatial index of wildland fire was significantly correlated (r = 0.48 with drought indices (Palmer Drought Severity Index, PDSI. Fire intervals varied through time with human activities that included early French Jesuit missions, European trade (fur, diseases, war, and land use. Comparisons of historical fire records suggest that annual climate in this region has a broad influence on the occurrence of fire years in the Great Lakes region.

  5. Occurrence of alkylphenolic substances in a Great Lakes coastal marsh, Cootes Paradise, ON, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, T. [National Water Research Institute, Environment Canada, 867 Lakeshore Rd. Burlington, ON, L7R 4A6 (Canada)]. E-mail: tanya.mayer@ec.gc.ca; Bennie, D. [National Water Research Institute, Environment Canada, 867 Lakeshore Rd. Burlington, ON, L7R 4A6 (Canada); Rosa, F. [National Water Research Institute, Environment Canada, 867 Lakeshore Rd. Burlington, ON, L7R 4A6 (Canada); Rekas, G. [National Water Research Institute, Environment Canada, 867 Lakeshore Rd. Burlington, ON, L7R 4A6 (Canada); Palabrica, V. [National Water Research Institute, Environment Canada, 867 Lakeshore Rd. Burlington, ON, L7R 4A6 (Canada); Schachtschneider, J. [National Water Research Institute, Environment Canada, 867 Lakeshore Rd. Burlington, ON, L7R 4A6 (Canada)

    2007-06-15

    Occurrence and fate of alkylphenols (APs), known endocrine disruptors, were investigated in a Great Lakes coastal wetland, Cootes Paradise, ON. The wetland, which receives discharges from a Wastewater Treatment Plant (WTP) and several Combined Sewer Overflows (CSOs), is an important spawning ground for fish and crucial habitat for other fauna. Elevated concentrations of nonylphenol ethoxylates (NPEs) and their degradation product nonylphenol (NP) were found in water and sediment samples near the sources. Since transfer of APs through the food chain is of concern, we compared their concentrations in invertebrates from clean and contaminated sites. The results reveal transfer of alkylphenolics from sediments to biota and their accumulation in the invertebrate tissue, particularly the highly hydrophobic 4-NP, whose concentrations ranged from 1.9 to 6.3 {mu}g g{sup -1}. To our knowledge, this is the first study to evaluate AP concentrations in tissue of benthic invertebrates under real environmental conditions. - Concentrations of alkylphenolic compounds in water, sediments and benthic invertebrates in a large coastal wetland and implications for trophic transfer.

  6. Estimating ecological water stress caused by anthropogenic uses in the US Great Lakes region

    Science.gov (United States)

    Alian, S.; Mayer, A. S.; Maclean, A.; Watkins, D. W., Jr.; Gyawali, R.; Mirchi, A.

    2016-12-01

    Anthropocentric water resources management that prioritizes socio-economic growth can cause harmful ecological water stress by depriving aquatic ecosystems of the water needed to sustain habitats. It is important to better understand the impacts of water withdrawal by different economic sectors (e.g., agriculture, power utilities, manufacturing, etc.), withdrawal sources, and extent of return flow (i.e., return of water to river system) at different spatial and temporal scales in order to characterize potentially harmful streamflow disturbances, and to inform water management. Herein, GIS technology is used to characterize and map ecological water stress in the Great Lakes region by compiling and analyzing water withdrawal data for different use categories. An integrative geospatial method is developed to quantify catchment scale streamflow disturbance as the sum of flow depletion and return flow, and propagate it along the stream network in order to calculate water stress index as function of consumptive use and impacted streamflow. Results for the Kalamazoo River Watershed, Michigan, illustrate that although average annual and July water stress is generally relatively low, protective management actions may be necessary in a significant number of catchments, especially in urban catchments with very high water stress. Water stress is significantly higher under low flow conditions, indicating the need to adjust withdrawals to reduce adverse resource impacts on sensitive streams.

  7. Micronuclei and other erythrocyte nuclear abnormalities in fishes from the Great Lakes Basin, USA

    Science.gov (United States)

    Braham, Ryan P.; Blazer, Vicki; Shaw, Cassidy H.; Mazik, Patricia M.

    2017-01-01

    Biological markers (biomarkers) sensitive to genotoxic and mutagenic contamination in fishes are widely used to identify exposure effects in aquatic environments. The micronucleus assay was incorporated into a suite of indicators to assess exposure to genotoxic and mutagenic contamination at five Great Lakes Areas of Concern (AOCs), as well as one non-AOC (reference) site. The assay allowed enumeration of micronuclei as well as other nuclear abnormalities for both site and species comparisons. Erythrocyte abnormality data was also compared to skin and liver tumor prevalence and hepatic transcript abundance. Erythrocyte abnormalities were observed at all sites with variable occurrence and severity among sites and species. Benthic-oriented brown bullhead (Ameiurus nebulosus) and white sucker (Catostomus commersonii) expressed lower rates of erythrocyte abnormalities, but higher rates of skin and liver neoplasms, when compared to pelagic-oriented largemouth bass (Micropterus salmoides) or smallmouth bass (Micropterus dolomieu) at the same site. The reduced erythrocyte abnormalities, increased transcript abundance associated with Phase I and II toxicant responsive pathways, and increased neoplastic lesions among benthic-oriented taxa may indicate the development of contaminant resistance of these species to more acute effects.

  8. Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes.

    Science.gov (United States)

    Klymus, Katy E; Marshall, Nathaniel T; Stepien, Carol A

    2017-01-01

    Describing and monitoring biodiversity comprise integral parts of ecosystem management. Recent research coupling metabarcoding and environmental DNA (eDNA) demonstrate that these methods can serve as important tools for surveying biodiversity, while significantly decreasing the time, expense and resources spent on traditional survey methods. The literature emphasizes the importance of genetic marker development, as the markers dictate the applicability, sensitivity and resolution ability of an eDNA assay. The present study developed two metabarcoding eDNA assays using the mtDNA 16S RNA gene with Illumina MiSeq platform to detect invertebrate fauna in the Laurentian Great Lakes and surrounding waterways, with a focus for use on invasive bivalve and gastropod species monitoring. We employed careful primer design and in vitro testing with mock communities to assess ability of the markers to amplify and sequence targeted species DNA, while retaining rank abundance information. In our mock communities, read abundances reflected the initial input abundance, with regressions having significant slopes (pspecies, care must be taken when analyzing results and identifying sequence reads to species level. These markers extend eDNA metabarcoding research for molluscs and appear relevant to other invertebrate taxa, such as rotifers and bryozoans. Furthermore, the sphaeriid mussel assay is group-specific, exclusively amplifying bivalves in the Sphaeridae family and providing species-level identification. Our assays provide useful tools for managers and conservation scientists, facilitating early detection of invasive species as well as improving resolution of mollusc diversity.

  9. Characterization of Atmospheric Nitrate Dynamics in a Sub-Alpine Watershed Using Δ17O and δ15N

    Science.gov (United States)

    Bourgeois, I.; Savarino, J. P.; Clement, J. C.

    2015-12-01

    Remote subalpine ecosystems are usually characterized by nutrient-poor soils (Körner, 2004; Seastedt et al., 2004), making them particularly susceptible to undergo changes due to increased atmospheric N deposition (Vitousek et al., 1997; Preunkert et al., 2003). Using Δ17O, a conserved tracer of atmospheric nitrate (NO3 atm) (Michalski et al., 2004; Tsunogai et al., 2010), and δ15N, indicator of NO3 biological sources (Kendall, 1998; Casciotti et al., 2009), we measured the seasonal variations of NO3 atm stable isotopic composition and concentration in several streams and soils originating from two sub-alpine watersheds in the French Alps. Our objective was to investigate whether or not NO3 atm impacts the soil N biogeochemical cycle by increasing nutrients availability for plants and bacteria. We coupled streams and soils measurements with snow-pits sampling and aerosols collection at the Lautaret Pass, to better emphasize the correlation between atmospheric deposition, soil retention and watersheds effluents response. Our results reveal that different temporal dynamics govern our study site: stream measurements show that in spring, snowmelt results in a NO3 atm impulse, accounting for ca. 31 % of the total stream NO3 budget; on the opposite in autumn, NO3 atm accounts only for ca. 3 % of the total stream NO3 budget, highlighting the presence of a NO3 bacterial pool (nitrification). We also inferred from the observed Δ17O variations two distinct phenomena in the spring/summer season: a fast snow run-off and a slower snow-water percolation. The later is believed to affect most the soil N cycle as it directly increases available NO3. Measured soil leachates and extracts confirm this hypothesis and point out the potential importance of anthropogenic N deposition as on average 7 to 10 % of the soil solutions NO3 derives directly from the atmosphere.

  10. Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway, 1987-98

    Science.gov (United States)

    Loving, Brian L.; Miller, Craig W.; Waddell, Kidd M.

    2000-01-01

    The Southern Pacific Transportation Company completed a rock-fill causeway across Great Salt Lake in 1959. The effect of the causeway was to change the water and salt balance of Great Salt Lake by creating two separate but interconnected parts of the lake, with more than 95 percent of freshwater surface inflow entering the lake south of the causeway.The water and salt balance of Great Salt Lake primarily depends on the amount of inflow from tributary streams and the conveyance properties of the causeway that divides the lake into south and north parts. The conveyance properties of the causeway consist of two 15-foot-wide culverts, a 290-foot-wide breach, and permeable rock-fill material.

  11. Biogeochemical and hydrologic processes controlling mercury cycling in Great Salt Lake, Utah

    Science.gov (United States)

    Naftz, D.; Kenney, T.; Angeroth, C.; Waddell, B.; Darnall, N.; Perschon, C.; Johnson, W. P.

    2006-12-01

    Great Salt Lake (GSL), in the Western United States, is a terminal lake with a highly variable surface area that can exceed 5,100 km2. The open water and adjacent wetlands of the GSL ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere, as well as a brine shrimp industry with annual revenues exceeding 70 million dollars. Despite the ecologic and economic significance of GSL, little is known about the biogeochemical cycling of mercury (Hg) and no water-quality standards currently exist for this system. Whole water samples collected since 2000 were determined to contain elevated concentrations of total Hg (100 ng/L) and methyl Hg (33 ng/L). The elevated levels of methyl Hg are likely the result of high rates of SO4 reduction and associated Hg methylation in persistently anoxic areas of the lake at depths greater than 6.5 m below the water surface. Hydroacoustic equipment deployed in this anoxic layer indicates a "conveyor belt" flow system that can distribute methyl Hg in a predominantly southerly direction throughout the southern half of GSL (fig. 1, URL: http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs- AUG06.pdf). Periodic and sustained wind events on GSL may result in transport of the methyl Hg-rich anoxic water and bottom sediments into the oxic and biologically active regions. Sediment traps positioned above the anoxic brine interface have captured up to 6 mm of bottom sediment during cumulative wind-driven resuspension events (fig. 2, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Vertical velocity data collected with hydroacoustic equipment indicates upward flow > 1.5 cm/sec during transient wind events (fig. 3, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Transport of methyl Hg into the oxic regions of GSL is supported by biota samples. The median Hg concentration (wet weight) in brine shrimp increased seasonally from the spring to fall time period and is likely a

  12. Nutrient Inputs to the Laurentian Great Lakes by Source and Watershed Estimated Using SPARROW Watershed Models1

    Science.gov (United States)

    Robertson, Dale M; Saad, David A

    2011-01-01

    Abstract Nutrient input to the Laurentian Great Lakes continues to cause problems with eutrophication. To reduce the extent and severity of these problems, target nutrient loads were established and Total Maximum Daily Loads are being developed for many tributaries. Without detailed loading information it is difficult to determine if the targets are being met and how to prioritize rehabilitation efforts. To help address these issues, SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed for estimating loads and sources of phosphorus (P) and nitrogen (N) from the United States (U.S.) portion of the Great Lakes, Upper Mississippi, Ohio, and Red River Basins. Results indicated that recent U.S. loadings to Lakes Michigan and Ontario are similar to those in the 1980s, whereas loadings to Lakes Superior, Huron, and Erie decreased. Highest loads were from tributaries with the largest watersheds, whereas highest yields were from areas with intense agriculture and large point sources of nutrients. Tributaries were ranked based on their relative loads and yields to each lake. Input from agricultural areas was a significant source of nutrients, contributing ∼33-44% of the P and ∼33-58% of the N, except for areas around Superior with little agriculture. Point sources were also significant, contributing ∼14-44% of the P and 13-34% of the N. Watersheds around Lake Erie contributed nutrients at the highest rate (similar to intensively farmed areas in the Midwest) because they have the largest nutrient inputs and highest delivery ratio. PMID:22457580

  13. The Great Salt Lake: A Barometer of Low Frequency Climate Variability

    OpenAIRE

    Lall, Upmanu; Mann, Michael

    1994-01-01

    Low frequency (interannual or longer period) climatic variability is of interest bacause of its sugnificance for the understanding and prediction of protracted climatic anomalies. Closed basin lakes are sensitive to long term climatic fluctuations and integrate out high frequency variability. It is thus natural to examine the records of such lakes to better understand long term climate dynamics. Here we use Singul...

  14. An accuracy assessment of forest disturbance mapping in the western Great Lakes

    Science.gov (United States)

    P.L. Zimmerman; I.W. Housman; C.H. Perry; R.A. Chastain; J.B. Webb; M.V. Finco

    2013-01-01

    The increasing availability of satellite imagery has spurred the production of thematic land cover maps based on satellite data. These maps are more valuable to the scientific community and land managers when the accuracy of their classifications has been assessed. Here, we assessed the accuracy of a map of forest disturbance in the watersheds of Lake Superior and Lake...

  15. 40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy

    Science.gov (United States)

    2010-07-01

    ... concern are subject to best technology in process and treatment requirements. Lake Superior Basin... to the Lake Superior Basin shall identify the best technology in process and treatment to eliminate... loading results in a lowering of water quality. B. Alternative or Enhanced Treatment Analysis. Identify...

  16. Effects of future urban and biofuel crop expansions on the riverine export of phosphorus to the Laurentian Great Lakes

    Science.gov (United States)

    LaBeau, Meredith B.; Robertson, Dale M.; Mayer, Alex S.; Pijanowski, Bryan C.; Saad, David A.

    2013-01-01

    Increased phosphorus (P) loadings threaten the health of the world’s largest freshwater resource, the Laurentian Great Lakes (GL). To understand the linkages between land use and P delivery, we coupled two spatially explicit models, the landscape-scale SPARROW P fate and transport watershed model and the Land Transformation Model (LTM) land use change model, to predict future P export from nonpoint and point sources caused by changes in land use. According to LTM predictions over the period 2010–2040, the GL region of the U.S. may experience a doubling of urbanized areas and agricultural areas may increase by 10%, due to biofuel feedstock cultivation. These land use changes are predicted to increase P loadings from the U.S. side of the GL basin by 3.5–9.5%, depending on the Lake watershed and development scenario. The exception is Lake Ontario, where loading is predicted to decrease by 1.8% for one scenario, due to population losses in the drainage area. Overall, urban expansion is estimated to increase P loadings by 3.4%. Agricultural expansion associated with predicted biofuel feedstock cultivation is predicted to increase P loadings by an additional 2.4%. Watersheds that export P most efficiently and thus are the most vulnerable to increases in P sources tend to be found along southern Lake Ontario, southeastern Lake Erie, western Lake Michigan, and southwestern Lake Superior where watershed areas are concentrated along the coastline with shorter flow paths. In contrast, watersheds with high soil permeabilities, fractions of land underlain by tile drains, and long distances to the GL are less vulnerable.

  17. Dispersal strategies, secondary range expansion and invasion genetics of the nonindigenous round goby, Neogobius melanostomus, in Great Lakes tributaries.

    Science.gov (United States)

    Bronnenhuber, Jennifer E; Dufour, Brad A; Higgs, Dennis M; Heath, Daniel D

    2011-05-01

    Dispersal strategies are important mechanisms underlying the spatial distribution and colonizing ability of all mobile species. In the current study, we use highly polymorphic microsatellite markers to evaluate local dispersal and colonization dynamics of the round goby (Neogobius melanostomus), an aquatic invader expanding its range from lake to river environments in its introduced North American range. Genetic structure, genotype assignment and genetic diversity were compared among 1262 round gobies from 20 river and four lake sites in three Great Lakes tributaries. Our results indicate that a combination of short-distance diffusion and long-distance dispersal, collectively referred to as 'stratified dispersal', is facilitating river colonization. Colonization proceeded upstream yearly (approximately 500 m/year; 2005-2009) in one of two temporal replicates while genetic structure was temporally stable. Contiguous dispersal from the lake was observed in all three rivers with a substantial portion of river fish (7.3%) identified as migrants. Genotype assignment indicated a separate introduction occurred upstream of the invasion front in one river. Genetic diversity was similar and relatively high among lake and recently colonized river populations, indicating that founder effects are mitigated through a dual-dispersal strategy. The remarkable success of round goby as an aquatic invader stresses the need for better diffusion models of secondary range expansion for presumably sessile invasive species. © 2011 Blackwell Publishing Ltd.

  18. Housing Archetype Analysis for Home Energy-Efficient Retrofit in the Great Lakes Region

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. K.; Mrozowski, T.; Harrell-Seyburn, A.; Ehrlich, N.; Hembroff, L.; Bieburn, B.; Mazor, M.; McIntyre, A.; Mutton, C.; Parsons, G.; Syal, M. G.; Wilkinson, R.

    2014-09-01

    This project report details activities and results of the 'Market Characterization' project undertaken by the Cost Effective Energy Retrofit (CEER) team targeted toward the DOE goal of achieving 30%-50% reduction in existing building energy use. CEER consists of members from the Dow Chemical Company, Michigan State University, Ferris State University and Habitat for Humanity Kent County. The purpose of this market characterization project was to identify housing archetypes which are dominant within Great Lakes region and therefore offer significant potential for energy-efficient retrofit research and implementation due to the substantial number of homes possessing similar characteristics. Understanding the characteristics of housing groups referred to as 'archetypes' by vintage, style, and construction characteristics can allow research teams to focus their retrofit research and develop prescriptive solutions for those structure types which are prevalent and offer high potential uptake within a region or market. Key research activities included; literature review, statistical analysis of national and regional data of the American Housing Survey (AHS) collected by the U.S. Census Bureau, analysis of Michigan specific data, development of a housing taxonomy of architectural styles, case studies of two local markets (i.e., Ann Arbor and Grand Rapids in Michigan) and development of a suggested framework (or process) for characterizing local markets. In order to gain a high level perspective, national and regional data from the U.S. Census Bureau was analyzed using cross tabulations, multiple regression models, and logistic regression to characterize the housing stock and determine dominant house types using 21 variables.

  19. Macro-Scale Correction of Precipitation Undercatch in the Midwest/Great Lakes Region

    Science.gov (United States)

    Chiu, C. M.; Hamlet, A. F.

    2015-12-01

    Precipitation gauge undercatch is a serious problem in the context of using observed meteorological data sets for hydrologic modeling studies in regions with cold winters, such as the Midwest. Attention to this matter is urgently needed to support hydroclimatological research efforts in the region. To support hydrologic modeling studies, a new hybrid gridded meteorological dataset at 1/16 degree resolution based on data from CO-OP station records, the U. S. Historical Climatology Network, the Historical Canadian Climate Database, and Precipitation Regression on Independent Slopes Method has been assembled over the Great Lakes and Midwest regions from 1915-2013 at daily time step. Preliminary hydrologic simulations results using the Variable Infiltration Capacity hydrology model with this hybrid gridded meteorological dataset showed that precipitation gauge undercatch was a very significant issue throughout the region, especially for winter snowfall and simulated streamflow, which were both grossly underpredicted. Correction of primary CO-OP station data is generally infeasible due to missing station meta data and lack of local-scale wind speed measurements. Instead, macro-scale post processing techniques were developed to adjust the regridded precipitation product from CO-OP station records from 1950-2013 forwards, accounting for undercatch as a function of regridded wind speed simulations obtained from NCAR Reanalysis. Comparisons of simulated and observed streamflow over seven river basins in the Midwest were used to evaluate the datasets constructed using different combinations of meteorological station inputs, with and without undercatch corrections. The comparisons show promise in producing corrected precipitation data sets from 1950-2013 for hydrologic modeling studies, with substantial improvements in streamflow simulation from the uncalibrated VIC model when gauge undercatch corrections are included.

  20. Freshwater wrack along Great Lakes coasts harbors Escherichia coli: Potential for bacterial transfer between watershed environments

    Science.gov (United States)

    Nevers, Meredith; Przybyla-Kelly, Kasia; Spoljaric, Ashley; Shively, Dawn A.; Whitman, Richard L.; Byappanahalli, Muruleedhara

    2016-01-01

    We investigated the occurrence, persistence, and growth potential of Escherichia coli associated with freshwater organic debris (i.e., wrack) frequently deposited along shorelines (shoreline wrack), inputs from rivers (river CPOM), and parking lot runoffs (urban litter). Samples were collected from 9 Great Lakes beaches, 3 creeks, and 4 beach parking lots. Shoreline wrack samples were mainly composed of wood chips, straw, sticks, leaf litter, seeds, feathers, and mussel shells; creek and parking lot samples included dry grass, straw, seeds, wood chips, leaf/pine needle litter; soil particles were present in parking lot samples only. E. coli concentrations (most probable number, MPN) were highly variable in all sample types: shoreline wrack frequently reached 105/g dry weight (dw), river CPOM ranged from 81 to 7,916/g dw, and urban litter ranged from 0.5 to 24,952/g dw. Sequential rinsing studies showed that 61–87% of E. coli concentrations were detected in the first wash of shoreline wrack, with declining concentrations associated with 4–8 subsequent washings; viable counts were still detected even after 8 washes. E. coli grew readily in shoreline wrack and river CPOM incubated at 35 °C. At 30°C, growth was only detected in river CPOM and not in shoreline wrack or urban litter, but the bacteria persisted for at least 16 days. In summary, freshwater wrack is an understudied component of the beach ecosystem that harbors E. coli and thus likely influences estimations of water quality and the microbial community in the nearshore as a result of transfer between environments.

  1. Sympatric wolf and coyote populations of the western Great Lakes region are reproductively isolated.

    Science.gov (United States)

    Wheeldon, Tyler J; Patterson, Brent R; White, Bradley N

    2010-10-01

    Interpretation of the genetic composition and taxonomic history of wolves in the western Great Lakes region (WGLR) of the United States has long been debated and has become more important to their conservation given the recent changes in their status under the Endangered Species Act. Currently, the two competing hypotheses on WGLR wolves are that they resulted from hybridization between (i) grey wolves (Canis lupus) and western coyotes (C. latrans) or (ii) between grey wolves and eastern wolves (C. lycaon). We performed a genetic analysis of sympatric wolves and coyotes from the region to assess the degree of reproductive isolation between them and to clarify the taxonomic status of WGLR wolves. Based on data from maternal, paternal and bi-parental genetic markers, we demonstrate a clear genetic distinction between sympatric wolves and coyotes and conclude that they are reproductively isolated and that wolf-coyote hybridization in the WGLR is uncommon. The data reject the hypothesis that wolves in the WGLR derive from hybridization between grey wolves and western coyotes, and we conclude that the extant WGLR wolf population is derived from hybridization between grey wolves and eastern wolves. Grey-eastern wolf hybrids (C. lupus × lycaon) comprise a substantial population that extends across Michigan, Wisconsin, Minnesota and western Ontario. These findings have important implications for the conservation and management of wolves in North America, specifically concerning the overestimation of grey wolf numbers in the United States and the need to address policies for hybrids. © 2010 Blackwell Publishing Ltd.

  2. Micronuclei and other erythrocyte nuclear abnormalities in fishes from the Great Lakes Basin, USA.

    Science.gov (United States)

    Braham, Ryan P; Blazer, Vicki S; Shaw, Cassidy H; Mazik, Patricia M

    2017-10-01

    Biological markers (biomarkers) sensitive to genotoxic and mutagenic contamination in fishes are widely used to identify exposure effects in aquatic environments. The micronucleus assay was incorporated into a suite of indicators to assess exposure to genotoxic and mutagenic contamination at five Great Lakes Areas of Concern (AOCs), as well as one non-AOC (reference) site. The assay allowed enumeration of micronuclei as well as other nuclear abnormalities for both site and species comparisons. Erythrocyte abnormality data was also compared to skin and liver tumor prevalence and hepatic transcript abundance. Erythrocyte abnormalities were observed at all sites with variable occurrence and severity among sites and species. Benthic-oriented brown bullhead (Ameiurus nebulosus) and white sucker (Catostomus commersonii) expressed lower rates of erythrocyte abnormalities, but higher rates of skin and liver neoplasms, when compared to pelagic-oriented largemouth bass (Micropterus salmoides) or smallmouth bass (Micropterus dolomieu) at the same site. The reduced erythrocyte abnormalities, increased transcript abundance associated with Phase I and II toxicant responsive pathways, and increased neoplastic lesions among benthic-oriented taxa may indicate the development of contaminant resistance of these species to more acute effects. Environ. Mol. Mutagen. 58:570-581, 2017. © 2017 This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  3. Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes

    Science.gov (United States)

    Clay, Keith; Shearin, Zachery; Bourke, Kimberly; Bickford, Wesley A.; Kowalski, Kurt P.

    2016-01-01

    Plant–microbial interactions may play a key role in plant invasions. One common microbial interaction takes place between plants and fungal endophytes when fungi asymptomatically colonize host plant tissues. The objectives of this study were to isolate and sequence fungal endophytes colonizing non-native Phragmites australis in the Great Lakes region to evaluate variation in endophyte community composition among three host tissue types and three geographical regions. We collected entire ramets from multiple clones and populations, surface sterilized plant tissues, and plated replicate tissue samples from leaves, stems, and rhizomes on corn meal agar plates to culture and isolate fungal endophytes. Isolates were then subjected to Sanger sequencing of the ITS region of the nuclear ribosomal DNA. Sequences were compared to fungal databases to define operational taxonomic units (OTUs) that were analyzed statistically for community composition. In total, we obtained 173 endophyte isolates corresponding to 55 OTUs, 39 of which were isolated only a single time. The most common OTU corresponded most closely to Sarocladium strictum and comprised 25 % of all fungal isolates. More OTUs were found in stem tissues, but endophyte diversity was greatest in rhizome tissues. PERMANOVA analyses indicated significant differences in endophyte communities among tissue types, geographical regions, and the interaction between those factors, but no differences among individual ramets were detected. The functional role of the isolated endophytes is not yet known, but one genus isolated here (Stagonospora) has been reported to enhance Phragmites growth. Understanding the diversity and functions of Phragmites endophytes may provide targets for control measures based on disrupting host plant/endophyte interactions.

  4. Estimating Monthly Water Withdrawals, Return Flow, and Consumptive Use in the Great Lakes Basin

    Science.gov (United States)

    Shaffer, Kimberly H.; Stenback, Rosemary S.

    2010-01-01

    Water-resource managers and planners require water-withdrawal, return-flow, and consumptive-use data to understand how anthropogenic (human) water use affects the hydrologic system. Water models like MODFLOW and GSFLOW use calculations and input values (including water-withdrawal and return flow data) to simulate and predict the effects of water use on aquifer and stream conditions. Accurate assessments of consumptive use, interbasin transfer, and areas that are on public supply or sewer are essential in estimating the withdrawal and return-flow data needed for the models. As the applicability of a model to real situations depends on accurate input data, limited or poor water-use data hampers the ability of modelers to simulate and predict hydrologic conditions. Substantial differences exist among the many agencies nationwide that are responsible for compiling water-use data including what data are collected, how the data are organized, how often the data are collected, quality assurance, required level of accuracy, and when data are released to the public. This poster presents water-use information and estimation methods summarized from recent U.S. Geological Survey (USGS) reports with the intent to assist water-resource managers and planners who need estimates of monthly water withdrawals, return flows, and consumptive use. This poster lists references used in Shaffer (2009) for water withdrawals, consumptive use, and return flows. Monthly percent of annual withdrawals and monthly consumptive-use coefficients are used to compute monthly water withdrawals, consumptive use, and return flow for the Great Lakes Basin.

  5. Proboscideans and paleoenvironments of the Pleistocene Great Lakes: landscape, vegetation, and stable isotopes

    Science.gov (United States)

    Metcalfe, Jessica Z.; Longstaffe, Fred J.; Hodgins, Greg

    2013-09-01

    In this study, we review the history of proboscideans in the Great Lakes region (Ontario and western New York) in the context of local glacial and vegetational histories. Further, we investigate mammoth (Mammuthus) and mastodon (Mammut) environmental niche partitioning using stable isotope analysis of bone and dentin collagen (δ13Ccol, δ15Ncol) and structural carbonate in tooth enamel bioapatite (δ13Csc, δ18Osc), and demonstrate that stable isotopes can be used to identify non-locals among museum specimens with no contextual records. New radiocarbon dates suggest that Ontario mastodons lived in tundra-like environments as well as their more common spruce forest habitat. Local Ontario/New York mammoths and mastodons consumed 100% C3-plant diets and drank low-18O waters, consistent with colder-than-modern climates and proximity to glacial meltwater sources. Mammoths and mastodons occupied distinct environmental niches, characterized by different oxygen- and nitrogen-isotope compositions and geographical locations. This suggests that direct competition for resources was not a major factor in their local extinction. We suggest that both mammoths and mastodons obtained water from sources formed primarily from precipitation rather than glacial meltwater. We describe how high δ15N values in mammoths could have been caused by a combination of preferences for dry environments, consumption of low-nutrient forage (particularly stems and stalks), coprophagy, geophagy, and dung fertilization. We argue that low δ15N values in mastodons could have been caused by consumption of trees and shrubs (including nitrogen-fixing taxa) and a preference for recently deglaciated landscapes and/or spruce environments. Finally, we raise the possibility that mastodons contributed to the spruce-pine transition by browsing directly on spruce trees.

  6. Environmental DNA (eDNA metabarcoding assays to detect invasive invertebrate species in the Great Lakes.

    Directory of Open Access Journals (Sweden)

    Katy E Klymus

    Full Text Available Describing and monitoring biodiversity comprise integral parts of ecosystem management. Recent research coupling metabarcoding and environmental DNA (eDNA demonstrate that these methods can serve as important tools for surveying biodiversity, while significantly decreasing the time, expense and resources spent on traditional survey methods. The literature emphasizes the importance of genetic marker development, as the markers dictate the applicability, sensitivity and resolution ability of an eDNA assay. The present study developed two metabarcoding eDNA assays using the mtDNA 16S RNA gene with Illumina MiSeq platform to detect invertebrate fauna in the Laurentian Great Lakes and surrounding waterways, with a focus for use on invasive bivalve and gastropod species monitoring. We employed careful primer design and in vitro testing with mock communities to assess ability of the markers to amplify and sequence targeted species DNA, while retaining rank abundance information. In our mock communities, read abundances reflected the initial input abundance, with regressions having significant slopes (p<0.05 and high coefficients of determination (R2 for all comparisons. Tests on field environmental samples revealed similar ability of our markers to measure relative abundance. Due to the limited reference sequence data available for these invertebrate species, care must be taken when analyzing results and identifying sequence reads to species level. These markers extend eDNA metabarcoding research for molluscs and appear relevant to other invertebrate taxa, such as rotifers and bryozoans. Furthermore, the sphaeriid mussel assay is group-specific, exclusively amplifying bivalves in the Sphaeridae family and providing species-level identification. Our assays provide useful tools for managers and conservation scientists, facilitating early detection of invasive species as well as improving resolution of mollusc diversity.

  7. Environmental DNA detection of rare and invasive fish species in two Great Lakes tributaries.

    Science.gov (United States)

    Balasingham, Katherine D; Walter, Ryan P; Mandrak, Nicholas E; Heath, Daniel D

    2018-01-01

    The extraction and characterization of DNA from aquatic environmental samples offers an alternative, noninvasive approach for the detection of rare species. Environmental DNA, coupled with PCR and next-generation sequencing ("metabarcoding"), has proven to be very sensitive for the detection of rare aquatic species. Our study used a custom-designed group-specific primer set and next-generation sequencing for the detection of three species at risk (Eastern Sand Darter, Ammocrypta pellucida; Northern Madtom, Noturus stigmosus; and Silver Shiner, Notropis photogenis), one invasive species (Round Goby, Neogobius melanostomus) and an additional 78 native species from two large Great Lakes tributary rivers in southern Ontario, Canada: the Grand River and the Sydenham River. Of 82 fish species detected in both rivers using capture-based and eDNA methods, our eDNA method detected 86.2% and 72.0% of the fish species in the Grand River and the Sydenham River, respectively, which included our four target species. Our analyses also identified significant positive and negative species co-occurrence patterns between our target species and other identified species. Our results demonstrate that eDNA metabarcoding that targets the fish community as well as individual species of interest provides a better understanding of factors affecting the target species spatial distribution in an ecosystem than possible with only target species data. Additionally, eDNA is easily implemented as an initial survey tool, or alongside capture-based methods, for improved mapping of species distribution patterns. © 2017 John Wiley & Sons Ltd.

  8. Genetic analysis of historic western Great Lakes region wolf samples reveals early Canis lupus/lycaon hybridization.

    Science.gov (United States)

    Wheeldon, Tyler; White, Bradley N

    2009-02-23

    The genetic status of wolves in the western Great Lakes region has received increased attention following the decision to remove them from protection under the US Endangered Species Act. A recent study of mitochondrial DNA has suggested that the recovered wolf population is not genetically representative of the historic population. We present microsatellite genotype data on three historic samples and compare them with extant populations, and interpret published genetic data to show that the pre-recovery population was admixed over a century ago by eastern wolf (Canis lycaon) and grey wolf (Canis lupus) hybridization. The DNA profiles of the historic samples are similar to those of extant animals in the region, suggesting that the current Great Lakes wolves are representative of the historic population.

  9. Decadal-to-centennial-scale climate variability: Insights into the rise and fall of the Great Salt Lake

    Science.gov (United States)

    Mann, Michael E.; Lall, Upmanu; Saltzman, Barry

    1995-01-01

    We demonstrate connections between decadal and secular global climatic variations, and historical variations in the volume of the Great Salt Lake. The decadal variations correspond to a low-frequency shifting of storm tracks which influence winter precipitation and explain nearly 18% of the interannual and longer-term variance in the record of monthly volume change. The secular trend accounts for a more modest approximately 1.5% of the variance.

  10. Temporal and spatial variability of frost-free seasons in the Great Lakes region of the United States

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman; Jeffrey A. Andresen

    2014-01-01

    The frequency and timing of frost events and the length of the growing season are critical limiting factors in many human and natural ecosystems. This study investigates the temporal and spatial variability of the date of last spring frost (LSF), the date of first fall frost (FFF), and the length of the frost-free season (FFS) in the Great Lakes region of the United...

  11. Energy Budgets of Eared Grebes on the Great Salt Lake and Implications for Harvest of Brine Shrimp

    OpenAIRE

    Conover, Michael R.; Caudell, Joe N.

    2009-01-01

    About 1.5-million eared grebes (Podiceps nigricollis), representing half of the North American population, stage on Utah's Great Salt Lake, USA (GSL) during autumn migration to forage on brine shrimp (Artemia franciscana). Indirectly competing with birds for brine shrimp are commercial harvesters who annually collect >1 million kg (dry wt) of shrimp cysts (i.e., hardened eggs), an amount that during some years equals up to half of all brine shrimp cysts produced annually on the GSL. No inform...

  12. Early responses to zebra mussels in the Great Lakes: a journey from information vacuum to policy and regulation

    Science.gov (United States)

    Griffiths, Ronald W.; Schloesser, Don W.; Kovalak, William P.

    2013-01-01

    Invasive species such as zebra mussels pose a threat to the economies and environments of coastal and fresh-water habitats around the world. Consequently, it is important that government policies and programs be adequate to protect these waters from invaders. This chapter documents key events that took place in the early years (1988-1991) of zebra mussel colonization of the Laurentian Great Lakes and evaluates government responses (policies and programs) to this disruptive, invasive, freshwater species.

  13. Genetic diversity of invasive species in the Great Lakes versus their Eurasian source populations: insights for risk analysis.

    Science.gov (United States)

    Stepien, Carol A; Brown, Joshua E; Neilson, Matthew E; Tumeo, Mark A

    2005-08-01

    Combining DNA variation data and risk assessment procedures offers important diagnostic and monitoring tools for evaluating the relative success of exotic species invasions. Risk assessment may allow us to understand how the numbers of founding individuals, genetic variants, population sources, and introduction events affect successful establishment and spread. This is particularly important in habitats that are "hotbeds" for invasive species--such as the North American Great Lakes. This study compares genetic variability and its application to risk assessment within and among three Eurasian groups and five species that successfully invaded the Great Lakes during the mid 1980s through early 1990s; including zebra and quagga mussels, round and tubenose gobies, and the ruffe. DNA sequences are compared from exotic and native populations in order to evaluate the role of genetic diversity in invasions. Close relatives are also examined, since they often invade in concert and several are saline tolerant and are likely to spread to North American estuaries. Results show that very high genetic diversity characterizes the invasions of all five species, indicating that they were founded by very large numbers of propagules and underwent no founder effects. Genetic evidence points to multiple invasion sources for both dreissenid and goby species, which appears related to especially rapid spread and widespread colonization success in a variety of habitats. In contrast, results show that the ruffe population in the Great Lakes originated from a single founding population source from the Elbe River drainage. Both the Great Lakes and the Elbe River populations of ruffe have similar genetic diversity levels--showing no founder effect, as in the other invasive species. In conclusion, high genetic variability, large numbers of founders, and multiple founding sources likely significantly contribute to the risk of an exotic species introduction's success and persistence.

  14. Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe

    Science.gov (United States)

    Hansen, Michael J.; Madenjian, Charles P.; Slade, Jeffrey W.; Steeves, Todd B.; Almeida, Pedro R.; Quintella, Bernardo R.

    2016-01-01

    The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range.

  15. Use of Fish Telemetry in Rehabilitation Planning, Management, and Monitoring in Areas of Concern in the Laurentian Great Lakes

    Science.gov (United States)

    Brooks, J. L.; Boston, C.; Doka, S.; Gorsky, D.; Gustavson, K.; Hondorp, D.; Isermann, D.; Midwood, J. D.; Pratt, T. C.; Rous, A. M.; Withers, J. L.; Krueger, C. C.; Cooke, S. J.

    2017-12-01

    Freshwater ecosystems provide many ecosystem services; however, they are often degraded as a result of human activity. To address ecosystem degradation in the Laurentian Great Lakes, Canada and the United States of America established the Great Lakes Water Quality Agreement (GLWQA). In 1987, 43 highly polluted and impacted areas were identified under the GLWQA as having one or more of 14 Beneficial Use Impairments (BUIs) to the physical and chemical habitat for fish, wildlife and humans, and were designated as Areas of Concern (AOC). Subnational jurisdictions combined with local stakeholders, with support from federal governments, developed plans to remediate and restore these sites. Biotelemetry (the tracking of animals using electronic tags) provides information on the spatial ecology of fish in the wild relevant to habitat management and stock assessment. Here, seven case studies are presented where biotelemetry data were directly incorporated within the AOC Remedial Action Plan (RAP) process. Specific applications include determining seasonal fish-habitat associations to inform habitat restoration plans, identifying the distribution of pollutant-indicator species to identify exposure risk to contamination sources, informing the development of fish passage facilities to enable fish to access fragmented upstream habitats, and assessing fish use of created or restored habitats. With growing capacity for fish biotelemetry research in the Great Lakes, we discuss the strengths and weaknesses of incorporating biotelemetry into AOC RAP processes to improve the science and practice of restoration and to facilitate the delisting of AOCs.

  16. Big Ship Data: Using vessel measurements to improve estimates of temperature and wind speed on the Great Lakes

    Science.gov (United States)

    Fries, Kevin; Kerkez, Branko

    2017-05-01

    The sheer size of many water systems challenges the ability of in situ sensor networks to resolve spatiotemporal variability of hydrologic processes. New sources of vastly distributed and mobile measurements are, however, emerging to potentially fill these observational gaps. This paper poses the question: How can nontraditional measurements, such as those made by volunteer ship captains, be used to improve hydrometeorological estimates across large surface water systems? We answer this question through the analysis of one of the largest such data sets: an unprecedented collection of one million unique measurements made by ships on the North American Great Lakes from 2006 to 2014. We introduce a flexible probabilistic framework, which can be used to integrate ship measurements, or other sets of irregular point measurements, into contiguous data sets. The performance of this framework is validated through the development of a new ship-based spatial data product of water temperature, air temperature, and wind speed across the Great Lakes. An analysis of the final data product suggests that the availability of measurements across the Great Lakes will continue to play a large role in the confidence with which these large surface water systems can be studied and modeled. We discuss how this general and flexible approach can be applied to similar data sets, and how it will be of use to those seeking to merge large collections of measurements with other sources of data, such as physical models or remotely sensed products.

  17. Developing and implementing the use of predictive models for estimating water quality at Great Lakes beaches

    Science.gov (United States)

    Francy, Donna S.; Brady, Amie M.G.; Carvin, Rebecca B.; Corsi, Steven R.; Fuller, Lori M.; Harrison, John H.; Hayhurst, Brett A.; Lant, Jeremiah; Nevers, Meredith B.; Terrio, Paul J.; Zimmerman, Tammy M.

    2013-01-01

    Predictive models have been used at beaches to improve the timeliness and accuracy of recreational water-quality assessments over the most common current approach to water-quality monitoring, which relies on culturing fecal-indicator bacteria such as Escherichia coli (E. coli.). Beach-specific predictive models use environmental and water-quality variables that are easily and quickly measured as surrogates to estimate concentrations of fecal-indicator bacteria or to provide the probability that a State recreational water-quality standard will be exceeded. When predictive models are used for beach closure or advisory decisions, they are referred to as “nowcasts.” During the recreational seasons of 2010-12, the U.S. Geological Survey (USGS), in cooperation with 23 local and State agencies, worked to improve existing nowcasts at 4 beaches, validate predictive models at another 38 beaches, and collect data for predictive-model development at 7 beaches throughout the Great Lakes. This report summarizes efforts to collect data and develop predictive models by multiple agencies and to compile existing information on the beaches and beach-monitoring programs into one comprehensive report. Local agencies measured E. coli concentrations and variables expected to affect E. coli concentrations such as wave height, turbidity, water temperature, and numbers of birds at the time of sampling. In addition to these field measurements, equipment was installed by the USGS or local agencies at or near several beaches to collect water-quality and metrological measurements in near real time, including nearshore buoys, weather stations, and tributary staff gages and monitors. The USGS worked with local agencies to retrieve data from existing sources either manually or by use of tools designed specifically to compile and process data for predictive-model development. Predictive models were developed by use of linear regression and (or) partial least squares techniques for 42 beaches

  18. Chemical Control of Invasive Phragmites in a Great Lakes Marsh: A Field Demonstration

    Science.gov (United States)

    2013-04-01

    vegetative community. BACKGROUND: Lake St. Clair is a large freshwater lake that is situated approximately 10 km (6 miles) northeast of Detroit...encroachment, influxes of polluted water, and invasion by the non-native weed, phragmites (Tulbure and Johnston 2010). Phragmites (also known as common reed...M. Norman, and P. J. Bushman. 2001. Common reed Phragmites australis: Control and effects upon biodiversity in freshwater nontidal wetlands

  19. Asynchronous onset of eutrophication among shallow prairie lakes of the Northern Great Plains, Alberta, Canada.

    Science.gov (United States)

    Maheaux, Heather; Leavitt, Peter R; Jackson, Leland J

    2016-01-01

    Coherent timing of agricultural expansion, fertilizer application, atmospheric nutrient deposition, and accelerated global warming is expected to promote synchronous fertilization of regional surface waters and coherent development of algal blooms and lake eutrophication. While broad-scale cyanobacterial expansion is evident in global meta-analyses, little is known of whether lakes in discrete catchments within a common lake district also exhibit coherent water quality degradation through anthropogenic forcing. Consequently, the primary goal of this study was to determine whether agricultural development since ca. 1900, accelerated use of fertilizer since 1960, atmospheric deposition of reactive N, or regional climate warming has resulted in coherent patterns of eutrophication of surface waters in southern Alberta, Canada. Unexpectedly, analysis of sedimentary pigments as an index of changes in total algal abundance since ca. 1850 revealed that while total algal abundance (as β-carotene, pheophytin a) increased in nine of 10 lakes over 150 years, the onset of eutrophication varied by a century and was asynchronous across basins. Similarly, analysis of temporal sequences with least-squares regression revealed that the relative abundance of cyanobacteria (echinenone) either decreased or did not change significantly in eight of the lakes since ca. 1850, whereas purple sulfur bacteria (as okenone) increased significantly in seven study sites. These patterns are consistent with the catchment filter hypothesis, which posits that lakes exhibit unique responses to common forcing associated with the influx of mass as water, nutrients, or particles. © 2015 John Wiley & Sons Ltd.

  20. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    Science.gov (United States)

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  1. Prevalence of toxin-producing Clostridium botulinum associated with the macroalga Cladophora in three Great Lakes: growth and management

    Science.gov (United States)

    Chun, Chan Lan; Kahn, Chase I.; Borchert, Andrew J.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Peller, Julie R.; Pier, Christina; Lin, Guangyun; Johnson, Eric A.; Sadowsky, Michael J.

    2015-01-01

    The reemergence of avian botulism caused by Clostridium botulinum type E has been observed across the Great Lakes in recent years. Evidence suggests an association between the nuisance algae, Cladophoraspp., and C. botulinum in nearshore areas of the Great Lakes. However, the nature of the association between Cladophora and C. botulinum is not fully understood due, in part, to the complex food web interactions in this disease etiology. In this study, we extensively evaluated their association by quantitatively examining population size and serotypes of C. botulinum in algal mats collected from wide geographic areas in lakes Michigan, Ontario, and Erie in 2011–2012 and comparing them with frequencies in other matrices such as sand and water. A high prevalence (96%) of C. botulinum type E was observed inCladophora mats collected from shorelines of the Great Lakes in 2012. Among the algae samples containing detectable C. botulinum, the population size of C. Botulinum type E was 100–104 MPN/g dried algae, which was much greater (up to 103 fold) than that found in sand or the water column, indicating thatCladophora mats are sources of this pathogen. Mouse toxinantitoxin bioassays confirmed that the putativeC. botulinum belonged to the type E serotype. Steam treatment was effective in reducing or eliminating C. botulinum type E viable cells in Cladophora mats, thereby breaking the potential transmission route of toxin up to the food chain. Consequently, our data suggest that steam treatment incorporated with a beach cleaning machine may be an effective treatment of Cladophora-borne C. botulinum and may reduce bird mortality and human health risks.

  2. Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah

    Science.gov (United States)

    Boyd, Eric S.; Yu, Ri-Qing; Barkay, Tamar; Hamilton, Trinity L.; Baxter, Bonnie K.; Naftz, David L.; Marvin-DiPasquale, Mark

    2017-01-01

    Surface water and biota from Great Salt Lake (GSL) contain some of the highest documented concentrations of total mercury (THg) and methylmercury (MeHg) in the United States. In order to identify potential biological sources of MeHg and controls on its production in this ecosystem, THg and MeHg concentrations, rates of Hg(II)-methylation and MeHg degradation, and abundances and compositions of archaeal and bacterial 16 rRNA gene transcripts were determined in sediment along a salinity gradient in GSL. Rates of Hg(II)-methylation were inversely correlated with salinity and were at or below the limits of detection in sediment sampled from areas with hypersaline surface water. The highest rates of Hg(II)-methylation were measured in sediment with low porewater salinity, suggesting that benthic microbial communities inhabiting less saline environments are supplying the majority of MeHg in the GSL ecosystem. The abundance of 16S rRNA gene transcripts affiliated with the sulfate reducer Desulfobacterium sp. was positively correlated with MeHg concentrations and Hg(II)-methylation rates in sediment, indicating a potential role for this taxon in Hg(II)-methylation in low salinity areas of GSL. Reactive inorganic Hg(II) (a proxy used for Hg(II) available for methylation) and MeHg concentrations were inversely correlated with salinity. Thus, constraints imposed by salinity on Hg(II)-methylating populations and the availability of Hg(II) for methylation are inferred to result in higher MeHg production potentials in lower salinity environments. Benthic microbial MeHg degradation was also most active in lower salinity environments. Collectively, these results suggest an important role for sediment anoxia and microbial sulfate reducers in the production of MeHg in low salinity GSL sub-habitats and may indicate a role for salinity in constraining Hg(II)-methylation and MeHg degradation activities by influencing the availability of Hg(II) for methylation.

  3. Late quaternary changes in lakes, vegetation, and climate in the Bonneville Basin reconstructed from sediment cores from Great Salt Lake: Chapter 11

    Science.gov (United States)

    Thompson, Robert S.; Oviatt, Charles G.; Honke, Jeffrey S.; McGeehin, John

    2016-01-01

    Sediment cores from Great Salt Lake (GSL) provide the basis for reconstructing changes in lakes, vegetation, and climate for the last ~ 40 cal ka. Initially, the coring site was covered by a shallow saline lake and surrounded by Artemisia steppe or steppe-tundra under a cold and dry climate. As Lake Bonneville began to rise (from ~ 30 to 28 cal ka), Pinus and subalpine conifer pollen percentages increased and Artemisia declined, suggesting the onset of wetter conditions. Lake Bonneville oscillated near the Stansbury shoreline between ~ 26 and ~ 24 cal ka, rose to the Bonneville shoreline by ~ 18 cal ka, and then fell to the Provo shoreline, which it occupied until ~ 15 cal ka. Vegetation changed during this time span, albeit not always with the same direction or amplitude as the lake. The pollen percentages of Pinus and subalpine conifers were high from ~ 25 to 21.5 cal ka, indicating cool and moist conditions during the Stansbury oscillation and for much of the rise toward the Bonneville shoreline. Pinus percentages then decreased and Artemisia became codominant, suggesting drier and perhaps colder conditions from ~ 21 to ~ 15 cal ka, when Lake Bonneville was at or near its highest levels.Lake Bonneville declined to a low level by ~ 13 cal ka, while Pinus pollen percentages increased, indicating that conditions remained cooler and moister than today. During the Younger Dryas interval, the brief Gilbert episode rise in lake level was followed by a shallow lake with a stratified water column. This lake rise occurred as Pinus pollen percentages were declining and those of Artemisia were rising (reflecting increasingly dry conditions), after which Artemisia pollen was at very high levels (suggesting cold and dry conditions) for a brief period.Since ~ 10.6 cal ka lacustrine conditions have resembled those of present-day GSL. Pollen spectra for the period from ~ 10.6 to 7.2 cal ka have low levels of conifer pollen and high (for the

  4. Genetic analysis across different spatial scales reveals multiple dispersal mechanisms for the invasive hydrozoan Cordylophora in the Great Lakes.

    Science.gov (United States)

    Darling, John A; Folino-Rorem, Nadine C

    2009-12-01

    Discerning patterns of post-establishment spread by invasive species is critically important for the design of effective management strategies and the development of appropriate theoretical models predicting spatial expansion of introduced populations. The globally invasive colonial hydrozoan Cordylophora produces propagules both sexually and vegetatively and is associated with multiple potential dispersal mechanisms, making it a promising system to investigate complex patterns of population structure generated throughout the course of rapid range expansion. Here, we explore genetic patterns associated with the spread of this taxon within the North American Great Lakes basin. We collected intensively from eight harbours in the Chicago area in order to conduct detailed investigation of local population expansion. In addition, we collected from Lakes Michigan, Erie, and Ontario, as well as Lake Cayuga in the Finger Lakes of upstate New York in order to assess genetic structure on a regional scale. Based on data from eight highly polymorphic microsatellite loci we examined the spatial extent of clonal genotypes, assessed levels of neutral genetic diversity, and explored patterns of migration and dispersal at multiple spatial scales through assessment of population level genetic differentiation (pairwise F(ST) and factorial correspondence analysis), Bayesian inference of population structure, and assignment tests on individual genotypes. Results of these analyses indicate that Cordylophora populations in this region spread predominantly through sexually produced propagules, and that while limited natural larval dispersal can drive expansion locally, regional expansion likely relies on anthropogenic dispersal vectors.

  5. Great Bear Lake, N.W.T. - 1963, No. 13 in 1964 Data Record Series, Canadian Oceanographic Data Center (NODC Accession 7500188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Great Bear Lake has an area of 29,500 km^2 and it is the fourth largest lake in North America. It is situated at an elevation of 169 m (515 ft) and has a maximum...

  6. Notes on a collection of Crustacea Decapoda from the Great Bitter Lake, Egypt, with a list of the species of Decapoda known from the Suez Canal

    NARCIS (Netherlands)

    Holthuis, L.B.

    1956-01-01

    Between August 18 and September 5, 1950, Dr. C. Beets, geologist Royal Dutch Shell Oil Company, explored the aquatic fauna and flora of the Great Bitter Lake. In the course of this exploration dredge hauls were made at 47 stations, distributed all over the lake. An account of this work and a

  7. Description of the Microsporidian Parasite, Heterosporis sutherlandae n. sp., Infecting Fish in the Great Lakes Region, USA

    Science.gov (United States)

    Phelps, Nicholas B. D.; Mor, Sunil K.; Armién, Aníbal G.; Pelican, Katharine M.; Goyal, Sagar M.

    2015-01-01

    Heterosporosis is an increasingly important microsporidian disease worldwide, impacting wild and farmed raised fishes in both marine and freshwater environments. A previously undescribed species (Heterosporis sp.), with widespread distribution in the Great Lakes region, was the subject of this study. Three angler-caught fish were submitted to the Minnesota Veterinary Diagnostic Laboratory from 2009–2010 with lesions caused by intracellular proliferation of parasitic spores, resulting in destruction and eventual widespread necrosis of the host skeletal muscles. Mature ovoid (5.8 x 3.5μm) spores of a microsporidian parasite, consistent with the genus Heterosporis, were observed by light and electron microscopy. Molecular identification was performed using primer walking to obtain a near-complete rRNA gene sequence (~3,600 bp). A unique species of Heterosporis was identified, demonstrating less than 96% sequence identity to other published Heterosporis sp. on the basis of partial rRNA gene sequence analysis. Heterosporis sutherlandae n. sp. (formerly Heterosporis sp.) was identified in yellow perch (Perca flavescens), northern pike (Esox lucius) and walleye (Sander vitreus) from inland lakes in Minnesota and Wisconsin. Previous research suggests this species may be even more widespread in the Great Lakes region and should be reexamined using molecular techniques to better understand the distribution of this novel species. PMID:26244983

  8. Stable isotope record of Holocene climate and ecological change from brine shrimp cyst chitin for the Great Salt Lake, UT

    Science.gov (United States)

    Nielson, K. E.; Bowen, G. J.

    2009-12-01

    We present a record of oxygen and hydrogen isotopes in brine shrimp cysts from the Great Salt Lake, a terminal lake in the Great Basin, US. Water balance for the region is influenced by strength of the El Niño in Pacific and by the strength of the summer monsoon. Brine shrimp cysts are a novel proxy for isotope reconstruction, and allow reconstruction of water isotopes (oxygen, hydrogen) and ecology (hydrogen). Oxygen isotopes in chitin respond to water, while both diet and growth water contribute to hydrogen isotopes, allowing reconstruction of both environmental and ecological information from a single molecule. Values of δ18O decrease from about +15‰ to about +11‰ over course of the 8000 year record. This may suggest the importance of snow melt increased over the Holocene, or it may suggest lake is larger today than it was in mid-Holocene. Hydrogen isotopes are relatively stable for most of record, fluctuating around -140‰. Modeled hydrogen isotopes in food, also stable in the beginning of the record at about -150‰, become much heavier, shifting toward about -75‰ starting about 5000 ybp. This may suggest a shift from a primarily aquatic diet in the Mid-Holocene to a diet with a greater contribution of terrestrial material later in the Holocene. These observations agree broadly with previous inferences of a warm Mid-Holocene and associated low terrestrial productivity, followed by a more moist, and consequently more productive Late Holocene.

  9. Description of the Microsporidian Parasite, Heterosporis sutherlandae n. sp., Infecting Fish in the Great Lakes Region, USA.

    Directory of Open Access Journals (Sweden)

    Nicholas B D Phelps

    Full Text Available Heterosporosis is an increasingly important microsporidian disease worldwide, impacting wild and farmed raised fishes in both marine and freshwater environments. A previously undescribed species (Heterosporis sp., with widespread distribution in the Great Lakes region, was the subject of this study. Three angler-caught fish were submitted to the Minnesota Veterinary Diagnostic Laboratory from 2009-2010 with lesions caused by intracellular proliferation of parasitic spores, resulting in destruction and eventual widespread necrosis of the host skeletal muscles. Mature ovoid (5.8 x 3.5 μm spores of a microsporidian parasite, consistent with the genus Heterosporis, were observed by light and electron microscopy. Molecular identification was performed using primer walking to obtain a near-complete rRNA gene sequence (~3,600 bp. A unique species of Heterosporis was identified, demonstrating less than 96% sequence identity to other published Heterosporis sp. on the basis of partial rRNA gene sequence analysis. Heterosporis sutherlandae n. sp. (formerly Heterosporis sp. was identified in yellow perch (Perca flavescens, northern pike (Esox lucius and walleye (Sander vitreus from inland lakes in Minnesota and Wisconsin. Previous research suggests this species may be even more widespread in the Great Lakes region and should be reexamined using molecular techniques to better understand the distribution of this novel species.

  10. Quantitation of microorganic compounds in waters of the Great Lakes by adsorption on activated carbon

    Science.gov (United States)

    Daniels, Stacy L.; Kempe, Lloyd L.; Graham, E. S.; Beeton, Alfred M.

    1963-01-01

    Microorganic compounds in waters of Lakes Michigan and Huron have been sampled by adsorption on activated carbon in filters installed aboard the M/V Cisco and at the Hammond Bay Laboratory of the U.S. Bureau of Commercial Fisheries. The organic compounds were eluted from the carbon according to techniques developed at the U.S. Public Health Service. On the assumption that chloroform eluates represent less polar compounds from industrial sources and alcohol eluates the more polar varieties of natural origin, plots of chloroform eluates against alcohol eluates appear to be useful in judging water qualities. Based upon these criteria, the data in this paper indicate that both the waters of northern Lake Michigan and of Lake Huron, in the vicinity of Hammond Bay, Michigan, are relatively free from pollution. The limnetic waters of Lake Michigan showed a particularly high ratio of alcohol to chloroform eluates. Data for monthly samples indicated that this ratio fluctuated seasonally. The periodicity of the fluctuations was similar to those of lake levels and water temperatures.

  11. Sound velocity profiles collected by NOAA's Navigation Response Team No. 4 in the Great Lakes, July 5 - September 25, 2007 (NODC Accession 0020370)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical oceanographic data were collected from NOAA Navigation Response Team-4 in the Great Lakes from 05 July 2007 to 25 September 2007. Sound velocity profiles...

  12. Sound velocity profiles from velocimeter casts by NOAA Navigation Response Team-4 in the Great Lakes from 16 August 2006 to 18 October 2006 (NODC Accession 0012524)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical oceanographic data were collected from NOAA Navigation Response Team-4 in the Great Lakes from 16 August 2006 to 18 October 2006. Sound velocity profiles...

  13. Case study and lessons learned for the Great Lakes ITS Program, Airport ITS Integration and the Road Infrastructure Management System projects, final report, Wayne County, Michigan

    Science.gov (United States)

    2007-03-02

    This report presents the case study and lessons learned for the national evaluation of the Great Lakes Intelligent Transportation Systems (GLITS) Airport ITS Integration and Road Infrastructure Management System (RIMS) projects. The Airport ITS Integ...

  14. Sound velocity profiles collected in the Great Lakes and one station in Galveston Bay by NOAA Navigation Response Team 4, April - August 2006 (NODC Accession 0002823)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sound velocity profiles were collected using sound velocimeter in the Great Lakes and Galveston Bay from NOAA NAVIGATION RESPONSE TEAM 4 from 11 April 2006 to 04...

  15. Zooplankton, chemical, and other data collected from net, sediment sampler, and other instruments from 01 July 1970 to 01 March 1972 in the Great Lakes (NODC Accession 7200691)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton, chemical, and other data were collected using net, sediment sampler, and other instruments in the Great Lakes. Data were collected from 01 July 1970 to...

  16. It's like night and day: Diel net-effects on Cercopagidae densities in the Laurentian Great Lakes

    Science.gov (United States)

    Armenio, Patricia M.; Bunnell, David B.; Adams, Jean V.; Watson, Nicole M.; Woelmer, Whitney

    2017-01-01

    In the Laurentian Great Lakes, zooplankters are often sampled using standard ≤153 μm mesh nets without regard to the time of day they are collected. We sampled Cercopagidae during 2013–2014 in northern Lake Huron during day, dusk, and night using two different nets (a 0.5 m wide 153 μm mesh “standard” net and a 0.75 m wide 285 μm mesh “Bythotrephes” net) to determine if there were any differences in their sampled densities. Bythotrephes densities with the standard net were approximately 2.07-fold greater when captured at night than during the day. No time of day bias occurred with the Bythotrephes net. Nighttime Bythotrephes densities did not differ between the two net types. Cercopagis densities did not vary with net type or the time of day in this study, but future work should revisit this result given our low sample size and the low occurrence of Cercopagis in Lake Huron. To reduce bias and calculate accurate density estimates, Cercopagidae should be sampled at night if using a standard net or any time of day with the Bythotrephes net. Given the large impact of invasive predatory cladocerans Bythotrephes longimanus and Cercopagis pengoi on food webs since their invasion in the Laurentian Great Lakes in the 1980s, proper estimation of their densities is essential.

  17. 75 FR 51191 - Great Lakes Pilotage Rates-2011 Annual Review and Adjustment

    Science.gov (United States)

    2010-08-19

    ... multiplier in Step 2; Step 5: Adjust the result in Step 4, as required, for inflation or deflation; Step 6... Mittal Steel USA, Inc. Both Agreement A and Agreement B will expire on July 31, 2011. Based on... Steel USA, Inc 38,826. Key Lakes, Inc 361,385 Total tonnage, each agreement... 361,385 854,426. Percent...

  18. Biology and impact of Thrips calcaratus Uzel in the Great Lakes Region

    Science.gov (United States)

    Kenneth F. Raffa

    1991-01-01

    Basswood (Tilia americana L.) stands in the Lake States have been experiencing defoliation since around 1979. These symptoms were originally attributed to frost damage because they occur in early spring. However, the pattern of damaged trees was atypical of frost injury. Only basswood trees were affected, and there was no relationship to sites known...

  19. Sampling design for aquatic invasive species early detection in Great Lakes ports

    Science.gov (United States)

    From 2006-2012, we evaluated a pilot aquatic invasive species (AIS) early detection monitoring program in Lake Superior that was designed to detect newly introduced fishes. We established survey protocols for three major ports (Duluth-Superior, Sault Ste. Marie, Thunder Bay) and ...

  20. Sampling design for early detection of aquatic invasive species in Great Lakes ports

    Science.gov (United States)

    We evaluated a pilot adaptive monitoring program for aquatic invasive species (AIS) early detection in Lake Superior. The monitoring program is designed to detect newly-introduced fishes, and encompasses the lake’s three major ports (Duluth-Superior, Sault Ste. Marie, Thund...