WorldWideScience

Sample records for su4 algebraic structure

  1. Differential structures in C*-algebras

    Indian Academy of Sciences (India)

    enveloping algebra non commutative differential forms and de Rham algebra. Second and higher order differential structure defined by a closed symmetric operator dom(δ) = a W∗-domain algebra. (Weaver) a W∗-domain algebra = non commutative ...

  2. Abstract algebra structure and application

    CERN Document Server

    Finston, David R

    2014-01-01

    This text seeks to generate interest in abstract algebra by introducing each new structure and topic via a real-world application. The down-to-earth presentation is accessible to a readership with no prior knowledge of abstract algebra. Students are led to algebraic concepts and questions in a natural way through their everyday experiences. Applications include: Identification numbers and modular arithmetic (linear) error-correcting codes, including cyclic codes ruler and compass constructions cryptography symmetry of patterns in the real plane Abstract Algebra: Structure and Application is suitable as a text for a first course on abstract algebra whose main purpose is to generate interest in the subject, or as a supplementary text for more advanced courses. The material paves the way to subsequent courses that further develop the theory of abstract algebra and will appeal to students of mathematics, mathematics education, computer science, and engineering interested in applications of algebraic concepts.

  3. Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra

    NARCIS (Netherlands)

    van den Hijligenberg, N.W.; van den Hijligenberg, N.W.; Martini, Ruud

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of

  4. Quantum cluster algebra structures on quantum nilpotent algebras

    CERN Document Server

    Goodearl, K R

    2017-01-01

    All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.

  5. How Structure Sense for Algebraic Expressions or Equations Is Related to Structure Sense for Abstract Algebra

    Science.gov (United States)

    Novotna, Jarmila; Hoch, Maureen

    2008-01-01

    Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…

  6. N-Algebraic Structures and S-N-Algebraic Structures

    CERN Document Server

    Kandasamy, W B V; Smarandache, Florentin

    2006-01-01

    For the first time, we have introduced the concept of N-groups, N-semigroups, N-loops, and N-groupoids. We also define a mixed N-algebraic structure. The main aim of this book is to attract young mathematicians to this interesting field. It contains more than 200 new definitions. These concepts find applications in fields like finite automaton, coloring problems and coding theory.

  7. On the structure of quantum L∞ algebras

    Science.gov (United States)

    Blumenhagen, Ralph; Fuchs, Michael; Traube, Matthias

    2017-10-01

    It is believed that any classical gauge symmetry gives rise to an L∞ algebra. Based on the recently realized relation between classical W algebras and L∞ algebras, we analyze how this generalizes to the quantum case. Guided by the existence of quantum W algebras, we provide a physically well motivated definition of quantum L∞ algebras describing the consistency of global symmetries in quantum field theories. In this case we are restricted to only two non-trivial graded vector spaces X 0 and X -1 containing the symmetry variations and the symmetry generators. This quantum L∞ algebra structure is explicitly exemplified for the quantum W_3 algebra. The natural quantum product between fields is the normal ordered one so that, due to contractions between quantum fields, the higher L∞ relations receive off-diagonal quantum corrections. Curiously, these are not present in the loop L∞ algebra of closed string field theory.

  8. A Structure of BCI-Algebras

    Science.gov (United States)

    Chajda, Ivan

    2014-10-01

    Commutative BCI-algebras can be considered as semilattices whose sections are equipped with certain involutions. A similar view can be applied to commutative BCK-algebras. However, for general BCK-algebras a certain construction was settled by the author and J. Kühr (Miskolc Math. Notes 8:11-21, 2007) showing that they can be considered as structures essentially weaker than semilattices but still with certain involutions in sections. The aim of this paper is to involve a similar approach for BCI-algebras.

  9. Ordered Algebraic Structures : the 1991 Conrad Conference

    CERN Document Server

    Holland, C

    1993-01-01

    This volume contains a selection of papers presented at the 1991 Conrad Conference, held in Gainesville, Florida, USA, in December, 1991. Together, these give an overview of some recent advances in the area of ordered algebraic structures. The first part of the book is devoted to ordered permutation groups and universal, as well as model-theoretic, aspects. The second part deals with material variously connected to general topology and functional analysis. Collectively, the contents of the book demonstrate the wide applicability of order-theoretic methods, and how ordered algebraic structures have connections with many research disciplines. For researchers and graduate students whose work involves ordered algebraic structures.

  10. Algebraic Sub-Structuring for Electromagnetic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Gao, W.G.; Bai, Z.J.; Li, X.Y.S.; Lee, L.Q.; Husbands, P.; Ng, E.G.; /LBL, Berkeley /UC, Davis /SLAC

    2006-06-30

    Algebraic sub-structuring refers to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to form approximate solutions to the original problem. In this paper, they show that algebraic sub-structuring can be effectively used to solve generalized eigenvalue problems arising from the finite element analysis of an accelerator structure.

  11. Algebraic sub-structuring for electromagnetic applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao; Gao, Weiguo; Bai, Zhaojun; Li, Xiaoye; Lee, Lie-Quan; Husbands, Parry; Ng, Esmond G.

    2004-09-14

    Algebraic sub-structuring refers to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to form approximate solutions to the original problem. In this paper, we show that algebraic sub-structuring can be effectively used to solve generalized eigenvalue problems arising from the finite element analysis of an accelerator structure.

  12. A note on transport of algebraic structures

    DEFF Research Database (Denmark)

    Holm, Henrik Granau

    2015-01-01

    We study transport of algebraic structures and prove a theorem which subsumes results of Comfort and Ross on topological group structures on Stone-Cech compactifications, of Chevalley and of Gil de Lamadrid and Jans on topological group and ring structures on universal covering spaces, and of Gle......We study transport of algebraic structures and prove a theorem which subsumes results of Comfort and Ross on topological group structures on Stone-Cech compactifications, of Chevalley and of Gil de Lamadrid and Jans on topological group and ring structures on universal covering spaces...

  13. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    NARCIS (Netherlands)

    N.W. van den Hijligenberg; R. Martini

    1995-01-01

    textabstractWe discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra

  14. An introduction to algebraic structures

    CERN Document Server

    Landin, Joseph

    2010-01-01

    As the author notes in the preface, ""The purpose of this book is to acquaint a broad spectrum of students with what is today known as 'abstract algebra.'"" Written for a one-semester course, this self-contained text includes numerous examples designed to base the definitions and theorems on experience, to illustrate the theory with concrete examples in familiar contexts, and to give the student extensive computational practice.The first three chapters progress in a relatively leisurely fashion and include abundant detail to make them as comprehensible as possible. Chapter One provides a short

  15. Algebraic and structural automata theory

    CERN Document Server

    Mikolajczak, B

    1991-01-01

    Automata Theory is part of computability theory which covers problems in computer systems, software, activity of nervous systems (neural networks), and processes of live organisms development.The result of over ten years of research, this book presents work in the following areas of Automata Theory: automata morphisms, time-varying automata, automata realizations and relationships between automata and semigroups.Aimed at those working in discrete mathematics and computer science, parts of the book are suitable for use in graduate courses in computer science, electronics, telecommunications, and control engineering. It is assumed that the reader is familiar with the basic concepts of algebra and graph theory.

  16. On a Equation in Finite Algebraically Structures

    Science.gov (United States)

    Valcan, Dumitru

    2013-01-01

    Solving equations in finite algebraically structures (semigroups with identity, groups, rings or fields) many times is not easy. Even the professionals can have trouble in such cases. Therefore, in this paper we proposed to solve in the various finite groups or fields, a binomial equation of the form (1). We specify that this equation has been…

  17. Differential Hopf algebra structures on the Universal Enveloping Algebra of a Lie Algebra

    NARCIS (Netherlands)

    van den Hijligenberg, N.W.; van den Hijligenberg, N.; Martini, Ruud

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincaré–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebrastructure of U(g).

  18. Fundamental structures of algebra and discrete mathematics

    CERN Document Server

    Foldes, Stephan

    2011-01-01

    Introduces and clarifies the basic theories of 12 structural concepts, offering a fundamental theory of groups, rings and other algebraic structures. Identifies essentials and describes interrelationships between particular theories. Selected classical theorems and results relevant to current research are proved rigorously within the theory of each structure. Throughout the text the reader is frequently prompted to perform integrated exercises of verification and to explore examples.

  19. Algebra

    CERN Document Server

    Tabak, John

    2004-01-01

    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  20. Algebra

    CERN Document Server

    Flanders, Harley

    1975-01-01

    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  1. Particle-like structure of coaxial Lie algebras

    Science.gov (United States)

    Vinogradov, A. M.

    2018-01-01

    This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.

  2. Structural features of algebraic quantum notations

    Directory of Open Access Journals (Sweden)

    Elizabeth Gire

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] The formalism of quantum mechanics includes a rich collection of representations for describing quantum systems, including functions, graphs, matrices, histograms of probabilities, and Dirac notation. The varied features of these representations affect how computations are performed. For example, identifying probabilities of measurement outcomes for a state described in Dirac notation may involve identifying expansion coefficients by inspection, but if the state is described as a function, identifying those expansion coefficients often involves performing integrals. In this study, we focus on three notational systems: Dirac notation, algebraic wave-function notation, and matrix notation. These quantum notations must include information about basis states and their associated complex probability amplitudes. In this theory paper, we identify four structural features of quantum notations, which we term individuation, degree of externalization, compactness, and symbolic support for computational rules. We illustrate how student reasoning interacts with these structural features with episodes from interviews with advanced undergraduate physics majors reasoning about a superposition state of an infinite square well system. We find evidence of the students coordinating different notations through the use of Dirac notation, using an expression in Dirac notation to guide their work in another notation. These uses are supported by the high degree of individuation, compactness, and symbolic support for computation and the moderate degree of externalization provided by Dirac notation.

  3. Algebra

    CERN Document Server

    Sepanski, Mark R

    2010-01-01

    Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems

  4. Algebraic Modeling of Topological and Computational Structures and Applications

    CERN Document Server

    Theodorou, Doros; Stefaneas, Petros; Kauffman, Louis

    2017-01-01

    This interdisciplinary book covers a wide range of subjects, from pure mathematics (knots, braids, homotopy theory, number theory) to more applied mathematics (cryptography, algebraic specification of algorithms, dynamical systems) and concrete applications (modeling of polymers and ionic liquids, video, music and medical imaging). The main mathematical focus throughout the book is on algebraic modeling with particular emphasis on braid groups. The research methods include algebraic modeling using topological structures, such as knots, 3-manifolds, classical homotopy groups, and braid groups. The applications address the simulation of polymer chains and ionic liquids, as well as the modeling of natural phenomena via topological surgery. The treatment of computational structures, including finite fields and cryptography, focuses on the development of novel techniques. These techniques can be applied to the design of algebraic specifications for systems modeling and verification. This book is the outcome of a w...

  5. Pawlak algebra and approximate structure on fuzzy lattice.

    Science.gov (United States)

    Zhuang, Ying; Liu, Wenqi; Wu, Chin-Chia; Li, Jinhai

    2014-01-01

    The aim of this paper is to investigate the general approximation structure, weak approximation operators, and Pawlak algebra in the framework of fuzzy lattice, lattice topology, and auxiliary ordering. First, we prove that the weak approximation operator space forms a complete distributive lattice. Then we study the properties of transitive closure of approximation operators and apply them to rough set theory. We also investigate molecule Pawlak algebra and obtain some related properties.

  6. Neutrosophic N-Structures Applied to BCK/BCI-Algebras

    Directory of Open Access Journals (Sweden)

    Young Bae Jun

    2017-10-01

    Full Text Available Neutrosophic N -structures with applications in B C K / B C I -algebras is discussed. The notions of a neutrosophic N -subalgebra and a (closed neutrosophic N -ideal in a B C K / B C I -algebra are introduced, and several related properties are investigated. Characterizations of a neutrosophic N -subalgebra and a neutrosophic N -ideal are considered, and relations between a neutrosophic N -subalgebra and a neutrosophic N -ideal are stated. Conditions for a neutrosophic N -ideal to be a closed neutrosophic N -ideal are provided.

  7. Z sub 2 -gradings of Clifford algebras and multivector structures

    CERN Document Server

    Mosna, R A

    2003-01-01

    Let Cl(V, g) be the real Clifford algebra associated with the real vector space V, endowed with a nondegenerate metric g. In this paper, we study the class of Z sub 2 -gradings of Cl(V, g) which are somehow compatible with the multivector structure of the Grassmann algebra over V. A complete characterization for such Z sub 2 -gradings is obtained by classifying all the even subalgebras coming from them. An expression relating such subalgebras to the usual even part of Cl(V, g) is also obtained. Finally, we employ this framework to define spinor spaces, and to parametrize all the possible signature changes on Cl(V, g) by Z sub 2 -gradings of this algebra.

  8. Using linear algebra for protein structural comparison and classification

    OpenAIRE

    Janaína Gomide; Raquel Melo-Minardi; Marcos Augusto dos Santos; Goran Neshich; Wagner Meira Jr.; Júlio César Lopes; Marcelo Santoro

    2009-01-01

    In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as term...

  9. Chiral algebras

    CERN Document Server

    Beilinson, Alexander

    2004-01-01

    Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the ch

  10. Algebraic partial Boolean algebras

    CERN Document Server

    Smith, D

    2003-01-01

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial...

  11. Abstract numeric relations and the visual structure of algebra.

    Science.gov (United States)

    Landy, David; Brookes, David; Smout, Ryan

    2014-09-01

    Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition, it has often been assumed that skilled users of these formalisms treat situations in terms of semantic properties encoded in an abstract syntax that governs the use of notation without particular regard to the details of the physical structure of the equation itself (Anderson, 2005; Hegarty, Mayer, & Monk, 1995). We explore how the notational structure of verbal descriptions or algebraic equations (e.g., the spatial proximity of certain words or the visual alignment of numbers and symbols in an equation) plays a role in the process of interpreting or constructing symbolic equations. We propose in particular that construction processes involve an alignment of notational structures across representation systems, biasing reasoners toward the selection of formal notations that maintain the visuospatial structure of source representations. For example, in the statement "There are 5 elephants for every 3 rhinoceroses," the spatial proximity of 5 and elephants and 3 and rhinoceroses will bias reasoners to write the incorrect expression 5E = 3R, because that expression maintains the spatial relationships encoded in the source representation. In 3 experiments, participants constructed equations with given structure, based on story problems with a variety of phrasings. We demonstrate how the notational alignment approach accounts naturally for a variety of previously reported phenomena in equation construction and successfully predicts error patterns that are not accounted for by prior explanations, such as the left to right transcription heuristic.

  12. Algebraic algorithms for structure determination in biological chemistry

    Science.gov (United States)

    Emiris, Ioannis Z.; Fritzilas, Epaminondas D.; Manocha, Dinesh

    Several problems in computational chemistry, structural molecular biology, and biological chemistry can be solved by symbolic-numerical algorithms. We introduce suitable algebraic tools and then survey their usage in concrete applications. In particular, questions on molecular structure can be modeled by systems of polynomial equations, mainly by drawing on techniques from robot kinematics. Resultant-based algorithms, including sparse resultants and their matrix formulae, are described in order to reduce the solving of polynomial systems to numerical linear algebra. As an illustration, we focus on computing all conformations of cyclic molecules and on matching pharmacophores under distance constraints; in both cases, the number of independent degrees of freedom is relatively small. We summarize some existing results as well as sketch some original work. Both lead to complete and accurate solutions for those problems in the sense that our algorithms output all solutions with sufficiently high precision for the needs of biochemical applications.

  13. The structure of the super-W∞(λ) algebra

    NARCIS (Netherlands)

    Bergshoeff, E.; Wit, B. de; Vasiliev, M.

    1991-01-01

    We give a comprehensive treatment of the super-W∞(λ) algebra, an extension of the super-Virasoro algebra that contains generators of spin s ≥ ½. The parameter λ defines the embedding of the Virasoro subalgebra. We describe how to obtain the super-W∞(λ) algebra from the associative algebra of

  14. Superconformal Algebraic Approach to Hadron Structure

    Energy Technology Data Exchange (ETDEWEB)

    de Teramond, Guy F. [Univ. of Costa Rica, San Pedro (Costa Rica); Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Deur, Alexandre [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Dosch, Hans Gunter [Heidelberg Univ. (Germany). Inst. for Theoretische Physik; Sufian, Raza Sabbir [Univ. of Kentucky, Lexington, KY (United States)

    2017-03-01

    Fundamental aspects of nonperturbative QCD dynamics which are not obvious from its classical Lagrangian, such as the emergence of a mass scale and confinement, the existence of a zero mass bound state, the appearance of universal Regge trajectories and the breaking of chiral symmetry are incorporated from the onset in an effective theory based on superconformal quantum mechanics and its embedding in a higher dimensional gravitational theory. In addition, superconformal quantum mechanics gives remarkable connections between the light meson and nucleon spectra. This new approach to hadron physics is also suitable to describe nonperturbative QCD observables based on structure functions, such as GPDs, which are not amenable to a first-principle computation. The formalism is also successful in the description of form factors, the nonperturbative behavior of the strong coupling and diffractive processes. We also discuss in this article how the framework can be extended rather successfully to the heavy-light hadron sector.

  15. Logic and algebraic structures in quantum computing

    CERN Document Server

    Eskandarian, Ali; Harizanov, Valentina S

    2016-01-01

    Arising from a special session held at the 2010 North American Annual Meeting of the Association for Symbolic Logic, this volume is an international cross-disciplinary collaboration with contributions from leading experts exploring connections across their respective fields. Themes range from philosophical examination of the foundations of physics and quantum logic, to exploitations of the methods and structures of operator theory, category theory, and knot theory in an effort to gain insight into the fundamental questions in quantum theory and logic. The book will appeal to researchers and students working in related fields, including logicians, mathematicians, computer scientists, and physicists. A brief introduction provides essential background on quantum mechanics and category theory, which, together with a thematic selection of articles, may also serve as the basic material for a graduate course or seminar.

  16. Poisson-Nijenhuis structures on quiver path algebras

    Science.gov (United States)

    Bartocci, Claudio; Tacchella, Alberto

    2017-07-01

    We introduce a notion of noncommutative Poisson-Nijenhuis structure on the path algebra of a quiver. In particular, we focus on the case when the Poisson bracket arises from a noncommutative symplectic form. The formalism is then applied to the study of the Calogero-Moser and Gibbons-Hermsen integrable systems. In the former case, we give a new interpretation of the bihamiltonian reduction performed in Bartocci et al. (Int Math Res Not 2010:279-296, 2010. arXiv:0902.0953).

  17. Modern algebra

    CERN Document Server

    Warner, Seth

    1990-01-01

    Standard text provides an exceptionally comprehensive treatment of every aspect of modern algebra. Explores algebraic structures, rings and fields, vector spaces, polynomials, linear operators, much more. Over 1,300 exercises. 1965 edition.

  18. Using linear algebra for protein structural comparison and classification

    Science.gov (United States)

    2009-01-01

    In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in. PMID:21637532

  19. Using linear algebra for protein structural comparison and classification

    Directory of Open Access Journals (Sweden)

    Janaína Gomide

    2009-01-01

    Full Text Available In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD and Latent Semantic Indexing (LSI techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.

  20. Using linear algebra for protein structural comparison and classification.

    Science.gov (United States)

    Gomide, Janaína; Melo-Minardi, Raquel; Dos Santos, Marcos Augusto; Neshich, Goran; Meira, Wagner; Lopes, Júlio César; Santoro, Marcelo

    2009-07-01

    In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.

  1. Iterant Algebra

    Directory of Open Access Journals (Sweden)

    Louis H. Kauffman

    2017-07-01

    Full Text Available We give an exposition of iterant algebra, a generalization of matrix algebra that is motivated by the structure of measurement for discrete processes. We show how Clifford algebras and matrix algebras arise naturally from iterants, and we then use this point of view to discuss the Schrödinger and Dirac equations, Majorana Fermions, representations of the braid group and the framed braids in relation to the structure of the Standard Model for physics.

  2. Structuring students’ analogical reasoning in solving algebra problem

    Science.gov (United States)

    Lailiyah, S.; Nusantara, T.; Sa’dijah, C.; Irawan, E. B.; Kusaeri; Asyhar, A. H.

    2018-01-01

    The average achievement of Indonesian students’ mathematics skills according to Benchmark International Trends in Mathematics and Science Study (TIMSS) is ranked at the 38th out of 42 countries and according to the survey result in Program for International Student Assessment (PISA) is ranked at the 64th out of 65 countries. The low mathematics skill of Indonesian student has become an important reason to research more deeply about reasoning and algebra in mathematics. Analogical reasoning is a very important component in mathematics because it is the key to creativity and it can make the learning process in the classroom become effective. The major part of the analogical reasoning is about structuring including the processes of inferencing and decision-making happens. Those processes involve base domain and target domain. Methodologically, the subjects of this research were 42 students from class XII. The sources of data were derived from the results of thinks aloud, the transcribed interviews, and the videos taken while the subject working on the instruments and interviews. The collected data were analyzed using qualitative techniques. The result of this study described the structuring characteristics of students’ analogical reasoning in solving algebra problems from all the research subjects.

  3. Leibniz Algebras and Lie Algebras

    Directory of Open Access Journals (Sweden)

    Geoffrey Mason

    2013-10-01

    Full Text Available This paper concerns the algebraic structure of finite-dimensional complex Leibniz algebras. In particular, we introduce left central and symmetric Leibniz algebras, and study the poset of Lie subalgebras using an associative bilinear pairing taking values in the Leibniz kernel.

  4. Algebraic Structure of Cut Feynman Integrals and the Diagrammatic Coaction.

    Science.gov (United States)

    Abreu, Samuel; Britto, Ruth; Duhr, Claude; Gardi, Einan

    2017-08-04

    We study the algebraic and analytic structure of Feynman integrals by proposing an operation that maps an integral into pairs of integrals obtained from a master integrand and a corresponding master contour. This operation is a coaction. It reduces to the known coaction on multiple polylogarithms, but applies more generally, e.g., to hypergeometric functions. The coaction also applies to generic one-loop Feynman integrals with any configuration of internal and external masses, and in dimensional regularization. In this case, we demonstrate that it can be given a diagrammatic representation purely in terms of operations on graphs, namely, contractions and cuts of edges. The coaction gives direct access to (iterated) discontinuities of Feynman integrals and facilitates a straightforward derivation of the differential equations they admit. In particular, the differential equations for any one-loop integral are determined by the diagrammatic coaction using limited information about their maximal, next-to-maximal, and next-to-next-to-maximal cuts.

  5. Riemann type algebraic structures and their differential-algebraic integrability analysis

    Directory of Open Access Journals (Sweden)

    Prykarpatsky A.K.

    2010-06-01

    Full Text Available The differential-algebraic approach to studying the Lax type integrability of generalized Riemann type equations is devised. The differentiations and the associated invariant differential ideals are analyzed in detail. The approach is also applied to studying the Lax type integrability of the well known Korteweg-de Vries dynamical system.

  6. Structures of W(2.2 Lie conformal algebra

    Directory of Open Access Journals (Sweden)

    Yuan Lamei

    2016-01-01

    . In this paper, we study conformal derivations, central extensions and conformal modules for this Lie conformal algebra. Also, we compute the cohomology of this Lie conformal algebra with coefficients in its modules. In particular, we determine its cohomology with trivial coefficients both for the basic and reduced complexes.

  7. Linear algebra-based matrix structural analysis of two-dimensional reciprocal structures

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The following paper proposes a formulation for the extension of linear algebra-based matrix structural analysis to assemblies in which elements join in intermediate points. Such a formulation in particular must include now the possibility to describe an expanded set of joints as prismatic joint...

  8. The Schroedinger-Virasoro algebra. Mathematical structure and dynamical Schroedinger symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Unterberger, Jeremie [Henri Poincare Univ., Vandoeuvre-les-Nancy (France). Inst. Elie Cartan; Roger, Claude [Lyon I Univ., Villeurbanne (France). Dept. de Mathematiques

    2012-07-01

    This monograph provides the first up-to-date and self-contained presentation of a recently discovered mathematical structure the Schroedinger-Virasoro algebra. Just as Poincare invariance or conformal (Virasoro) invariance play a key role in understanding, respectively, elementary particles and two-dimensional equilibrium statistical physics, this algebra of non-relativistic conformal symmetries may be expected to apply itself naturally to the study of some models of non-equilibrium statistical physics, or more specifically in the context of recent developments related to the non-relativistic AdS/CFT correspondence. The study of the structure of this infinite-dimensional Lie algebra touches upon topics as various as statistical physics, vertex algebras, Poisson geometry, integrable systems and supergeometry as well as representation theory, the cohomology of infinite-dimensional Lie algebras, and the spectral theory of Schroedinger operators. (orig.)

  9. Galilean Duffin-Kemmer-Petiau algebra and symplectic structure

    CERN Document Server

    Fernandes, M C B; Vianna, J D M

    2003-01-01

    We develop the Duffin-Kemmer-Petiau (DKP) approach in the phase-space picture of quantum mechanics by considering DKP algebras in a Galilean covariant context. Specifically, we develop an algebraic calculus based on a tensor algebra defined on a five-dimensional space which plays the role of spacetime background of the non-relativistic DKP equation. The Liouville operator is determined and the Liouville-von Neumann equation is written in two situations: the free particle and a particle in an external electromagnetic field. A comparison between the non-relativistic and the relativistic cases is commented.

  10. Mastering algebra retrains the visual system to perceive hierarchical structure in equations.

    Science.gov (United States)

    Marghetis, Tyler; Landy, David; Goldstone, Robert L

    2016-01-01

    Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.

  11. Bihamiltonian structure of the KP hierarchy and the W sub KP algebra

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa-O' Farrill, J.M.; Ramos, E. (Inst. voor Theoretische Fysica, Univ. Leuven, Heverlee (Belgium)); Mas, J. (Dept. de Fisica de Particulas Elementales, Univ. de Santiago de Compostela (Spain))

    1991-08-29

    We construct the second hamiltonian structure of the KP hierarchy as a natural extension of the Gel'fand-Dickey brackets of the generalized KdV hierarchies. The first structure - which has been recently identified as W{sub 1+{infinity}} is coordinated with the second structure and arises as a trivial (generalized) cocycle. The second structure gives rise to a non linear algebra, denoted W{sub KP}, with generators of weights 1, 2, ... . The reduced algebra obtained by setting weight 1 field to zero contains a centerless Virasoro subalgebra, and we argue that this is a universal W algebra from which all W{sub n} algebras are obtained through reduction. (orig.).

  12. A nonlinear deformed su(2) algebra with a two-colour quasitriangular Hopf structure

    CERN Document Server

    Bonatsos, Dennis; Kolokotronis, P; Ludu, A; Quesne, C

    1996-01-01

    Nonlinear deformations of the enveloping algebra of su(2), involving two arbitrary functions of J_0 and generalizing the Witten algebra, were introduced some time ago by Delbecq and Quesne. In the present paper, the problem of endowing some of them with a Hopf algebraic structure is addressed by studying in detail a specific example, referred to as ${\\cal A}^+_q(1)$. This algebra is shown to possess two series of (N+1)-dimensional unitary irreducible representations, where N=0, 1, 2, .... To allow the coupling of any two such representations, a generalization of the standard Hopf axioms is proposed by proceeding in two steps. In the first one, a variant and extension of the deforming functional technique is introduced: variant because a map between two deformed algebras, su_q(2) and ${\\cal A}^+_q(1)$, is considered instead of a map between a Lie algebra and a deformed one, and extension because use is made of a two-valued functional, whose inverse is singular. As a result, the Hopf structure of su_q(2) is car...

  13. Additional operations in algebra of structural numbers for control algorithm development

    Directory of Open Access Journals (Sweden)

    Morhun A.V.

    2016-12-01

    Full Text Available The structural numbers and the algebra of the structural numbers due to the simplicity of representation, flexibility and current algebraic operations are the powerful tool for a wide range of applications. In autonomous power supply systems and systems with distributed generation (Micro Grid mathematical apparatus of structural numbers can be effectively used for the calculation of the parameters of the operating modes of consumption of electric energy. The purpose of the article is the representation of the additional algebra of structural numbers. The standard algebra was proposed to be extended by the additional operations and modification current in order to expand the scope of their use, namely to construct a flexible, adaptive algorithms of control systems. It is achieved due to the possibility to consider each individual component of the system with its parameters and provide easy management of entire system and each individual component. Thus, structural numbers and extended algebra are the perspective line of research and further studying is required.

  14. Root systems from Toric Calabi-Yau Geometry. Towards new algebraic structures and symmetries in physics?

    CERN Document Server

    Torrente-Lujan, E

    2004-01-01

    The algebraic approach to the construction of the reflexive polyhedra that yield Calabi-Yau spaces in three or more complex dimensions with K3 fibres reveals graphs that include and generalize the Dynkin diagrams associated with gauge symmetries. In this work we continue to study the structure of graphs obtained from $CY_3$ reflexive polyhedra. We show how some particularly defined integral matrices can be assigned to these diagrams. This family of matrices and its associated graphs may be obtained by relaxing the restrictions on the individual entries of the generalized Cartan matrices associated with the Dynkin diagrams that characterize Cartan-Lie and affine Kac-Moody algebras. These graphs keep however the affine structure, as it was in Kac-Moody Dynkin diagrams. We presented a possible root structure for some simple cases. We conjecture that these generalized graphs and associated link matrices may characterize generalizations of these algebras.

  15. Hidden gauge structure of supersymmetric free differential algebras

    Energy Technology Data Exchange (ETDEWEB)

    Andrianopoli, Laura [DISAT, Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); INFN - Sezione di Torino,Torino (Italy); D’Auria, Riccardo [DISAT, Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); Ravera, Lucrezia [DISAT, Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); INFN - Sezione di Torino,Torino (Italy)

    2016-08-16

    The aim of this paper is to clarify the role of the nilpotent fermionic generator Q{sup ′} introduced in http://dx.doi.org/10.1016/0550-3213(82)90376-5 and appearing in the hidden supergroup underlying the free differential algebra (FDA) of D=11 supergravity. We give a physical explanation of its role by looking at the gauge properties of the theory. We find that its presence is necessary, in order that the extra 1-forms of the hidden supergroup give rise to the correct gauge transformations of the p-forms of the FDA. This interpretation is actually valid for any supergravity containing antisymmetric tensor fields, and any supersymmetric FDA can always be traded for a hidden Lie superalgebra containing extra fermionic nilpotent generators. As an interesting example we construct the hidden superalgebra associated with the FDA of N=2, D=7 supergravity. In this case we are able to parametrize the mutually non local 2- and 3-form B{sup (2)} and B{sup (3)} in terms of hidden 1-forms and find that supersymmetry and gauge invariance require in general the presence of two nilpotent fermionic generators in the hidden algebra. We propose that our approach, where all the invariances of the FDA are expressed as Lie derivatives of the p-forms in the hidden supergroup manifold, could be an appropriate framework to discuss theories defined in enlarged versions of superspace recently considered in the literature, such us double field theory and its generalizations.

  16. A new approach to codeword stabilized quantum codes using the algebraic structure of modules

    OpenAIRE

    Santiago, Douglas Frederico Guimarães; Otoni, Geraldo Samuel Sena

    2015-01-01

    In this work, we study the Codeword Stabilized Quantum Codes (CWS codes) a generalization of the stabilizers quantum codes using a new approach, the algebraic structure of modules, a generalization of linear spaces. We show then a new result that relates CWS codes with stabilizer codes generalizing results in the literature.

  17. C*-algebras of homoclinic and heteroclinic structure in expansive dynamics

    DEFF Research Database (Denmark)

    Thomsen, Klaus

    , and the constructions of Ruelle and Putnam for Smale spaces. The general setup is used to analyze the structure of the -algebras arising from the homoclinic and heteroclinic equivalence relations in expansive dynamical systems; in particular expansive group endomorphisms and automorphisms, and generalized 1-solenoids...

  18. Algebraic Groups

    DEFF Research Database (Denmark)

    2007-01-01

    -theorists, and to stimulate contacts between participants. Each of the first four days was dedicated to one area of research that has recently seen decisive progress: \\begin{itemize} \\item structure and classification of wonderful varieties, \\item finite reductive groups and character sheaves, \\item quantum cohomology......The workshop continued a series of Oberwolfach meetings on algebraic groups, started in 1971 by Tonny Springer and Jacques Tits who both attended the present conference. This time, the organizers were Michel Brion, Jens Carsten Jantzen, and Raphaël Rouquier. During the last years, the subject...... of algebraic groups (in a broad sense) has seen important developments in several directions, also related to representation theory and algebraic geometry. The workshop aimed at presenting some of these developments in order to make them accessible to a "general audience" of algebraic group...

  19. Making Sense of Abstract Algebra: Exploring Secondary Teachers' Understandings of Inverse Functions in Relation to Its Group Structure

    Science.gov (United States)

    Wasserman, Nicholas H.

    2017-01-01

    This article draws on semi-structured, task-based interviews to explore secondary teachers' (N = 7) understandings of inverse functions in relation to abstract algebra. In particular, a concept map task is used to understand the degree to which participants, having recently taken an abstract algebra course, situated inverse functions within its…

  20. Evolution algebras and their applications

    CERN Document Server

    Tian, Jianjun Paul

    2008-01-01

    Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.

  1. Leavitt path algebras

    CERN Document Server

    Abrams, Gene; Siles Molina, Mercedes

    2017-01-01

    This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...

  2. Uniform Frechet algebras

    CERN Document Server

    Goldmann, H

    1990-01-01

    The first part of this monograph is an elementary introduction to the theory of Fréchet algebras. Important examples of Fréchet algebras, which are among those considered, are the algebra of all holomorphic functions on a (hemicompact) reduced complex space, and the algebra of all continuous functions on a suitable topological space.The problem of finding analytic structure in the spectrum of a Fréchet algebra is the subject of the second part of the book. In particular, the author pays attention to function algebraic characterizations of certain Stein algebras (= algebras of holomorphic functions on Stein spaces) within the class of Fréchet algebras.

  3. Linear associative algebras

    CERN Document Server

    Abian, Alexander

    1973-01-01

    Linear Associative Algebras focuses on finite dimensional linear associative algebras and the Wedderburn structure theorems.The publication first elaborates on semigroups and groups, rings and fields, direct sum and tensor product of rings, and polynomial and matrix rings. The text then ponders on vector spaces, including finite dimensional vector spaces and matrix representation of vectors. The book takes a look at linear associative algebras, as well as the idempotent and nilpotent elements of an algebra, ideals of an algebra, total matrix algebras and the canonical forms of matrices, matrix

  4. Algebra V homological algebra

    CERN Document Server

    Shafarevich, I

    1994-01-01

    This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.

  5. Quantum cluster algebras and quantum nilpotent algebras

    Science.gov (United States)

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  6. Quantum cluster algebras and quantum nilpotent algebras.

    Science.gov (United States)

    Goodearl, Kenneth R; Yakimov, Milen T

    2014-07-08

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein-Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405-455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337-397] for the case of symmetric Kac-Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1-52] associated with double Bruhat cells coincide with the corresponding cluster algebras.

  7. Conditional Probability, Three-Slit Experiments, and the Jordan Algebra Structure of Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Gerd Niestegge

    2012-01-01

    classical probabilities, quantum mechanics, and Jordan algebras. This structure exhibits some similarities with Alfsen and Shultz's noncommutative spectral theory, but these two mathematical approaches are not identical. Barnum, Emerson, and Ududec adapted the concept of higher-order interference, introduced by Sorkin in 1994, into a general probabilistic framework. Their adaption is used here to reveal a close link between the existence of the Jordan product and the nonexistence of interference of third or higher order in those quantum logics which entail a reasonable calculus of conditional probability. The complete characterization of the Jordan algebraic structure requires the following three further postulates: a Hahn-Jordan decomposition property for the states, a polynomial functional calculus for the observables, and the positivity of the square of an observable. While classical probabilities are characterized by the absence of any kind of interference, the absence of interference of third (and higher order thus characterizes a probability calculus which comes close to quantum mechanics but still includes the exceptional Jordan algebras.

  8. A nuclear mass formula based on SU(4) symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P.; Juillet, O.; Gjelsten, B.K.

    1997-02-01

    It is argued that mass anomalies at the N {approx} Z line are associated with SU(4) isospin-spin symmetry. Drawing on these arguments, a Weizsaecker-type nuclear mass formula is investigated which has the eigenvalue of the quadratic Casimir operator of SU(4) as a Wigner term. This SU(4)-based mass formula yields a better agreement than the one with the usual Wigner term |N - Z|/A. In addition, the SU(4) eigenvalue expression adequately replaces the usual pairing term of the Weizsaecker formula giving a lower overall rms deviation than the latter. (author). 16 refs.

  9. Contributions to the structure theory of non-simple C*-algebras

    DEFF Research Database (Denmark)

    Bentmann, Rasmus Moritz

    This thesis is mainly concerned with classification results for non-simple purely ininite C*-algebras, specifically Cuntz-Krieger algebras and graph C*-algebras, and continuous fields of Kirchberg algebras. In Article A, we perform some computations concerning projective dimension in filtrated K-...

  10. Lie algebras

    CERN Document Server

    Jacobson, Nathan

    1979-01-01

    Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its

  11. SU(4) Kondo effect in carbon nanotube quantum dots

    Science.gov (United States)

    Aguado, Ramon; Choi, Mahn-Soo; Lopez, Rosa

    2005-03-01

    We investigate theoretically the non-equilibrium transport properties of carbon nanotube quantum dots. Owing to the two-dimensional band structure of graphene, a double orbital degeneracy plays the role of a pseudo-spin, which is entangled with the spin. Quantum fluctuations between these four degrees of freedom result in an SU(4) Kondo effect at low temperatures. This exotic Kondo effect manifests as a four-peak splitting in the non-linear conductance when an axial magnetic field is applied [1]. Recent transport experiments in carbon nanotube quantum dots [2] clearly support our theoretical findings. [1] M. S. Choi, R. Lopez and R. Aguado, cond-mat/0411665 (2004). [2] P. Jarillo-Herrero, J. Kong, H. S. J. van der Zant, C. Dekker, L. P. Kouwenhoven and S. De Franceschi, to be published (2004).

  12. Algebraic Structure of tt * Equations for Calabi-Yau Sigma Models

    Science.gov (United States)

    Alim, Murad

    2017-08-01

    The tt * equations define a flat connection on the moduli spaces of {2d, \\mathcal{N}=2} quantum field theories. For conformal theories with c = 3 d, which can be realized as nonlinear sigma models into Calabi-Yau d-folds, this flat connection is equivalent to special geometry for threefolds and to its analogs in other dimensions. We show that the non-holomorphic content of the tt * equations, restricted to the conformal directions, in the cases d = 1, 2, 3 is captured in terms of finitely many generators of special functions, which close under derivatives. The generators are understood as coordinates on a larger moduli space. This space parameterizes a freedom in choosing representatives of the chiral ring while preserving a constant topological metric. Geometrically, the freedom corresponds to a choice of forms on the target space respecting the Hodge filtration and having a constant pairing. Linear combinations of vector fields on that space are identified with the generators of a Lie algebra. This Lie algebra replaces the non-holomorphic derivatives of tt * and provides these with a finer and algebraic meaning. For sigma models into lattice polarized K3 manifolds, the differential ring of special functions on the moduli space is constructed, extending known structures for d = 1 and 3. The generators of the differential rings of special functions are given by quasi-modular forms for d = 1 and their generalizations in d = 2, 3. Some explicit examples are worked out including the case of the mirror of the quartic in {\\mathbbm{P}^3}, where due to further algebraic constraints, the differential ring coincides with quasi modular forms.

  13. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  14. Hierarchy structure in integrable systems of gauge fields and underlying Lie algebras

    Science.gov (United States)

    Takasaki, K.

    1990-02-01

    An improved version of Nakamura's self-dual Yang-Mills hierarchy is presentd and its symmetry contents are studied. The new hierarchy as well as the previous one represents a set of commuting dynamical flows in an infinite dimensional manifolds of “loop type”, but includes a large set of dependent variables. Because of new degrees of freedom the theory acquires a more symmetric form with richer structures. For example it allows a large symmetry algebra of Riemann-Hilbert type, which is actually a direct sum of two subalgebras (“left” and “right”). This phenomenon is basically the same as observed recently by Avan and Bellon on the case of principal chiral models. In addition to these rather familiar symmeties, a new type of symmetries referred to as “coordinate transformation type” are also introduced. Generators of the above dynamical flows are all included therein. These two types of symmetries altogether form a big Lie algebra, which lead to more satisfactory understanding of symmetry properties of integrable systems of guage fields.

  15. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  16. Monomial algebras

    CERN Document Server

    Villarreal, Rafael

    2015-01-01

    The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

  17. NATO Advanced Study Institute on Structural Theory of Automata, Semigroups and Universal Algebra

    CERN Document Server

    Rosenberg, Ivo; Goldstein, Martin

    2005-01-01

    Several of the contributions to this volume bring forward many mutually beneficial interactions and connections between the three domains of the title. Developing them was the main purpose of the NATO ASI summerschool held in Montreal in 2003. Although some connections, for example between semigroups and automata, were known for a long time, developing them and surveying them in one volume is novel and hopefully stimulating for the future. Another aspect is the emphasis on the structural theory of automata that studies ways to contstruct big automata from small ones. The volume also has contributions on top current research or surveys in the three domains. One contribution even links clones of universal algebra with the computational complexity of computer science. Three contributions introduce the reader to research in the former East block.

  18. An algorithm for analysis of the structure of finitely presented Lie algebras

    Directory of Open Access Journals (Sweden)

    Vladimir P. Gerdt

    1997-12-01

    Full Text Available We consider the following problem: what is the most general Lie algebra satisfying a given set of Lie polynomial equations? The presentation of Lie algebras by a finite set of generators and defining relations is one of the most general mathematical and algorithmic schemes of their analysis. That problem is of great practical importance, covering applications ranging from mathematical physics to combinatorial algebra. Some particular applications are constructionof prolongation algebras in the Wahlquist-Estabrook method for integrability analysis of nonlinear partial differential equations and investigation of Lie algebras arising in different physical models. The finite presentations also indicate a way to q-quantize Lie algebras. To solve this problem, one should perform a large volume of algebraic transformations which is sharply increased with growth of the number of generators and relations. For this reason, in practice one needs to use a computer algebra tool. We describe here an algorithm for constructing the basis of a finitely presented Lie algebra and its commutator table, and its implementation in the C language. Some computer results illustrating our algorithmand its actual implementation are also presented.

  19. Boolean algebra essentials

    CERN Document Server

    Solomon, Alan D

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  20. Developing Algebra Structure Module and Model of Cooperative Learning Helping Concept Map Media for Improving Proofing Ability

    Science.gov (United States)

    Syafari

    2017-01-01

    This research was purposed to develop module and learning model and instrument of proofing ability in algebra structure through cooperative learning with helping map concept media for students of mathematic major and mathematics education in State University and Private University in North Sumatra province. The subject of this research was the…

  1. Galois Connections for Flow Algebras

    DEFF Research Database (Denmark)

    Filipiuk, Piotr; Terepeta, Michal Tomasz; Nielson, Hanne Riis

    2011-01-01

    We generalise Galois connections from complete lattices to flow algebras. Flow algebras are algebraic structures that are less restrictive than idempotent semirings in that they replace distributivity with monotonicity and dispense with the annihilation property; therefore they are closer to the ...... using Galois connections such that correctness of the analyses is preserved. The approach is illustrated for a mutual exclusion algorithm....

  2. Boolean algebra

    CERN Document Server

    Goodstein, R L

    2007-01-01

    This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.

  3. Computer Algebra Study of Structural and Symmetry Properties of Discrete Dynamical Systems

    Science.gov (United States)

    Kornyak, V. V.

    2010-06-01

    To study structural and symmetry properties of discrete dynamical systems of different types -- deterministic, mesoscopic statistical and quantum -- we develope various approaches based essentially on the computer algebra and computational group theory methods. We introduce the concept of a system of discrete relations on an abstract simplicial complex and develope algorithms for analysis of compatibility and construction of canonical decompositions of such systems. We describe application of these techniques to some cellular automata. Much attention is paid to study symmetries of the systems. In the case of deterministic systems we reveale some important relations between symmetries and dynamics. In particular, we demonstrate that moving soliton-like structures -- like "spaceships" in cellular automata, "traveling waves" in mathematical physics and "generalized coherent states" in quantum physics -- arise inevitably in deterministic dynamical system whose symmetry group splits the set of states into finite number of group orbits. We propose an approach to quantization of discrete systems based on introduction of gauge connection with values in unitary representations of some finite quantizing groups -- the elements of the connection are interpreted as amplitudes of quantum transitions. To study properties of the suggested quantization we introduce a class of simple models -- local quantum models on regular graphs.

  4. Structural regularities of helicoidally-like biopolymers in the framework of algebraic topology: II. {alpha}-Helix and DNA structures

    Energy Technology Data Exchange (ETDEWEB)

    Samoylovich, M. I., E-mail: samoylovich@technomash.ru [Central Research Technological Institute ' Technomash' (Russian Federation); Talis, A. L. [Russian Academy of Sciences, Nesmeyanov Institute of Organoelement Compounds (Russian Federation)

    2013-09-15

    The developed apparatus of the 'structural application' of algebraic geometry and topology makes it possible to determine topologically stable helicoidally-like packings of polyhedra (clusters). A packing found is limited by a minimal surface with zero instability index; this surface is set by the Weierstrass representation and corresponds to the bifurcation point. The symmetries of the packings under consideration are determined by four-dimensional polyhedra (polytopes) from a closed sequence, which begins with diamondlike polytope (240). One example of these packings is a packing of tetrahedra, which arises as a result of the multiplication of a peculiar starting aggregation of tetrahedra by a fractional 40/11 axis with an angle of helical rotation of 99 Degree-Sign . The arrangement of atoms in particular positions of this starting aggregation allows one to obtain a model of the {alpha}-helix. This apparatus makes it possible to determine a priori the symmetry parameters of DNA double helices.

  5. Modules Over Color Hom-Poisson Algebras

    OpenAIRE

    Bakayoko, Ibrahima

    2014-01-01

    In this paper we introduce color Hom-Poisson algebras and show that every color Hom-associative algebra has a non-commutative Hom-Poisson algebra structure in which the Hom-Poisson bracket is the commutator bracket. Then we show that color Poisson algebras (respectively morphism of color Poisson algebras) turn to color Hom-Poisson algebras (respectively morphism of Color Hom-Poisson algebras) by twisting the color Poisson structure. Next we prove that modules over color Hom–associative algebr...

  6. The connection-set algebra--a novel formalism for the representation of connectivity structure in neuronal network models.

    Science.gov (United States)

    Djurfeldt, Mikael

    2012-07-01

    The connection-set algebra (CSA) is a novel and general formalism for the description of connectivity in neuronal network models, from small-scale to large-scale structure. The algebra provides operators to form more complex sets of connections from simpler ones and also provides parameterization of such sets. CSA is expressive enough to describe a wide range of connection patterns, including multiple types of random and/or geometrically dependent connectivity, and can serve as a concise notation for network structure in scientific writing. CSA implementations allow for scalable and efficient representation of connectivity in parallel neuronal network simulators and could even allow for avoiding explicit representation of connections in computer memory. The expressiveness of CSA makes prototyping of network structure easy. A C+ + version of the algebra has been implemented and used in a large-scale neuronal network simulation (Djurfeldt et al., IBM J Res Dev 52(1/2):31-42, 2008b) and an implementation in Python has been publicly released.

  7. Introduction to abstract algebra

    CERN Document Server

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  8. Noncommutative algebra and geometry

    CERN Document Server

    De Concini, Corrado; Vavilov, Nikolai 0

    2005-01-01

    Finite Galois Stable Subgroups of Gln. Derived Categories for Nodal Rings and Projective Configurations. Crowns in Profinite Groups and Applications. The Galois Structure of Ambiguous Ideals in Cyclic Extensions of Degree 8. An Introduction to Noncommutative Deformations of Modules. Symmetric Functions, Noncommutative Symmetric Functions and Quasisymmetric Functions II. Quotient Grothendieck Representations. On the Strong Rigidity of Solvable Lie Algebras. The Role of Bergman in Invesigating Identities in Matrix Algebras with Symplectic Involution. The Triangular Structure of Ladder Functors.

  9. Algebraic Approach to Algorithmic Logic

    Directory of Open Access Journals (Sweden)

    Bancerek Grzegorz

    2014-09-01

    Full Text Available We introduce algorithmic logic - an algebraic approach according to [25]. It is done in three stages: propositional calculus, quantifier calculus with equality, and finally proper algorithmic logic. For each stage appropriate signature and theory are defined. Propositional calculus and quantifier calculus with equality are explored according to [24]. A language is introduced with language signature including free variables, substitution, and equality. Algorithmic logic requires a bialgebra structure which is an extension of language signature and program algebra. While-if algebra of generator set and algebraic signature is bialgebra with appropriate properties and is used as basic type of algebraic logic.

  10. Quantitative Algebraic Reasoning

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon

    2016-01-01

    We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...... equational theory whose free algebras correspond to well known structures. In each case we have finitary and continuous versions. The four cases are: Hausdorff metrics from quantitive semilattices; pWasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed...

  11. Algebra review

    CERN Document Server

    Denlinger, Charles

    1978-01-01

    Algebra Review serves as a background supplement to Howard Anton and Bernard Kolman's books on finite mathematics-Applied Finite Mathematics and Applied Finite Mathematics with Calculus. This book discusses the number systems of algebra, algebraic notation, exponents and radicals, and fractional exponents. The polynomials and factoring, binomial theorem, and rational expressions are also elaborated. This text covers equations such as linear equations, quadratic equations, and higher degree equations. The Cartesian coordinate system, graphing equations in two variables, and some special functio

  12. Topological Partial *-ALGEBRAS:. Basic Properties and Examples

    Science.gov (United States)

    Antoine, J.-P.; Bagarello, F.; Trapani, C.

    Let {A} be a partial *-algebra endowed with a topology τ that makes it into a locally convex topological vector space {A} {[ τ ]}. Then {A} is called a topological partial *-algebra if it satisfies a number of conditions, which all amount to require that the topology τ fits with the multiplier structure of {A}. Besides the obvious cases of topological quasi *-algebras and CQ*-algebras, we examine several classes of potential topological partial *-algebras, either function spaces (lattices of Lp spaces on [0, 1] or on ℝ, amalgam spaces), or partial *-algebras of operators (operators on a partial inner product space, O*-algebras).

  13. Algebraic geometry

    National Research Council Canada - National Science Library

    Hartshorne, Robin

    1977-01-01

    .... 141 BECKERIWEISPFENNINGIKREDEL. Grabner Bases. A Computational Approach to Commutative Algebra. 142 LANG. Real and Functional Analysis. 3rd ed. 143 DOOB. Measure Theory. 144 DENNIS/FARB. Noncommutat...

  14. Algebraic Numbers

    Directory of Open Access Journals (Sweden)

    Watase Yasushige

    2016-12-01

    Full Text Available This article provides definitions and examples upon an integral element of unital commutative rings. An algebraic number is also treated as consequence of a concept of “integral”. Definitions for an integral closure, an algebraic integer and a transcendental numbers [14], [1], [10] and [7] are included as well. As an application of an algebraic number, this article includes a formal proof of a ring extension of rational number field ℚ induced by substitution of an algebraic number to the polynomial ring of ℚ[x] turns to be a field.

  15. Galilean contractions of W-algebras

    Directory of Open Access Journals (Sweden)

    Jørgen Rasmussen

    2017-09-01

    Full Text Available Infinite-dimensional Galilean conformal algebras can be constructed by contracting pairs of symmetry algebras in conformal field theory, such as W-algebras. Known examples include contractions of pairs of the Virasoro algebra, its N=1 superconformal extension, or the W3 algebra. Here, we introduce a contraction prescription of the corresponding operator-product algebras, or equivalently, a prescription for contracting tensor products of vertex algebras. With this, we work out the Galilean conformal algebras arising from contractions of N=2 and N=4 superconformal algebras as well as of the W-algebras W(2,4, W(2,6, W4, and W5. The latter results provide evidence for the existence of a whole new class of W-algebras which we call Galilean W-algebras. We also apply the contraction prescription to affine Lie algebras and find that the ensuing Galilean affine algebras admit a Sugawara construction. The corresponding central charge is level-independent and given by twice the dimension of the underlying finite-dimensional Lie algebra. Finally, applications of our results to the characterisation of structure constants in W-algebras are proposed.

  16. Developing Students' Functional Thinking in Algebra through Different Visualisations of a Growing Pattern's Structure

    Science.gov (United States)

    Wilkie, Karina J.; Clarke, Doug M.

    2016-01-01

    Spatial visualisation of geometric patterns and their generalisation have become a recognised pathway to developing students' functional thinking and understanding of variables in algebra. This design-based research project investigated upper primary students' development of explicit generalisation of functional relationships and their…

  17. Tutorial appendix: structure preserving representation of euclidean motions through conformal geometric algebra

    NARCIS (Netherlands)

    Dorst, L.; Dorst, L.; Lasenby, J.

    2011-01-01

    Using conformal geometric algebra, Euclidean motions in n-D are represented as orthogonal transformations of a representational space of two extra dimensions, and a well-chosen metric. Orthogonal transformations are representable as multiple reflections, and by means of the geometric product this

  18. C*-algebras of homoclinic and heteroclinic structure in expansive dynamics

    DEFF Research Database (Denmark)

    Thomsen, Klaus

    2010-01-01

    We unify various constructions of C*-algebras from dynamical systems, specifically, the dimension group construction of Krieger for shift spaces, the corresponding constructions of Wagoner and Boyle, Fiebig and Fiebig for countable state Markov shifts and one-sided shift spaces, respectively, and...

  19. On the Ext algebras of parabolic Verma modules and A infinity-structures

    DEFF Research Database (Denmark)

    Klamt, Angela; Stroppel, Catharina

    2012-01-01

    We study the Ext-algebra of the direct sum of all parabolic Verma modules in the principal block of the Bernstein–Gelfand–Gelfand category O for the Hermitian symmetric pair (gln+m,gln¿glm) and present the corresponding quiver with relations for the cases n=1,2. The Kazhdan–Lusztig combinatorics ...

  20. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...

  1. Implicative Algebras

    African Journals Online (AJOL)

    Tadesse

    Department of Mathematics, Faculty of Computer and Mathematical Sciences, Addis Ababa. University, Addis Ababa, Ethiopia(*drkvenkateswarlu@gmail.com, **berhanufk@yahoo.co.uk). ABSTRACT. In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra ...

  2. Algebraic monoids, group embeddings, and algebraic combinatorics

    CERN Document Server

    Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang

    2014-01-01

    This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids.   Topics presented include:   v  structure and representation theory of reductive algebraic monoids v  monoid schemes and applications of monoids v  monoids related to Lie theory v  equivariant embeddings of algebraic groups v  constructions and properties of monoids from algebraic combinatorics v  endomorphism monoids induced from vector bundles v  Hodge–Newton decompositions of reductive monoids   A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular.   Graduate students as well a...

  3. Linear algebra done right

    CERN Document Server

    Axler, Sheldon

    2015-01-01

    This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

  4. Chiral algebras of class S

    Energy Technology Data Exchange (ETDEWEB)

    Beem, Christopher [Institute for Advanced Study,Einstein Dr., Princeton, NJ 08540 (United States); Peelaers, Wolfger; Rastelli, Leonardo [C.N. Yang Institute for Theoretical Physics, SUNY,Stony Brook, NY 11794-3840 (United States); Rees, Balt C. van [Theory Group, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland)

    2015-05-05

    Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.

  5. Lie-algebraic structure of Lax-Sato integrable heavenly equations and the Lagrange-d'Alembert principle

    Science.gov (United States)

    Hentosh, Oksana E.; Prykarpatsky, Yarema A.; Blackmore, Denis; Prykarpatski, Anatolij K.

    2017-10-01

    The work is devoted to recent investigations of the Lax-Sato compatible linear vector field equations, especially to the related Lie-algebraic structures and integrability properties of a very interesting class of nonlinear dynamical systems called the dispersionless heavenly type equations, which were initiated by Plebański and later analyzed in a series of articles. The AKS-algebraic and related R-structure schemes are used to study the orbits of the corresponding co-adjoint actions, which are intimately related to the classical Lie-Poisson structures on them. It is demonstrated that their compatibility condition coincides with the corresponding heavenly equation being considered. It is shown that all these equations originate in this way and can be represented as a Lax compatibility condition for specially constructed loop vector fields on the torus. The infinite hierarchy of conservations laws related to the heavenly equations is described, and its analytical structure connected with the Casimir invariants is mentioned. In addition, typical examples of such equations, demonstrating in detail their integrability via the scheme devised herein, are presented. The relationship of the very interesting Lagrange-d'Alembert type mechanical interpretation of the devised integrability scheme with the Lax-Sato equations is also discussed.

  6. On the algebraic structure of gravitational descendants in CP(n-1) coset models

    CERN Document Server

    Lerche, Wolfgang; Lerche, W; Warner, N P

    1995-01-01

    We investigate how specific free-field realizations of twisted N=2 supersymmetric coset models give rise to natural extensions of the ``matter'' Hilbert spaces in such a manner as to incorporate the various gravitational excitations. In particular, we show that adopting a particular screening prescription is equivalent to imposing the requisite equivariance condition on cohomology. We find a simple algebraic characterization of the W_n-gravitational ground ring spectra of these theories in terms of affine-SU(n) highest weights..

  7. College algebra

    CERN Document Server

    Kolman, Bernard

    1985-01-01

    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  8. Commutative Algebra

    CERN Document Server

    Fontana, Marco; Olberding, Bruce; Swanson, Irena

    2011-01-01

    Commutative algebra is a rapidly growing subject that is developing in many different directions. This volume presents several of the most recent results from various areas related to both Noetherian and non-Noetherian commutative algebra. This volume contains a collection of invited survey articles by some of the leading experts in the field. The authors of these chapters have been carefully selected for their important contributions to an area of commutative-algebraic research. Some topics presented in the volume include: generalizations of cyclic modules, zero divisor graphs, class semigrou

  9. College algebra

    CERN Document Server

    Fine, Henry Burchard

    2005-01-01

    At the beginning of the twentieth century, college algebra was taught differently than it is nowadays. There are many topics that are now part of calculus or analysis classes. Other topics are covered only in abstract form in a modern algebra class on field theory. Fine's College Algebra offers the reader a chance to learn the origins of a variety of topics taught in today's curriculum, while also learning valuable techniques that, in some cases, are almost forgotten. In the early 1900s, methods were often emphasized, rather than abstract principles. In this book, Fine includes detailed discus

  10. Algebraic Geometry

    CERN Document Server

    Holme, Audun

    1988-01-01

    This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.

  11. Dirac cohomology for degenerate affine Hecke-Clifford algebras

    NARCIS (Netherlands)

    Chan, K.Y.

    In this paper, we study the Dirac cohomology theory on a class of algebraic structures. The main examples of this algebraic structure are the degenerate affine Hecke-Clifford algebra of type An-1 by Nazarov and of classical types by Khongsap-Wang. The algebraic structure contains a remarkable

  12. Elementary algebra

    CERN Document Server

    McKeague, Charles P

    1981-01-01

    Elementary Algebra 2e, Second Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first tackles the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the substitution method, solving linear systems by graphing, solutions to linear equations in two variables, multiplication property of equality, word problems, addition property of equality, and subtraction, addition, multiplication, and division of real numbers. The manuscript then examines exponents and polynomials, factoring, and rational e

  13. Elementary algebra

    CERN Document Server

    McKeague, Charles P

    1986-01-01

    Elementary Algebra, Third Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first ponders on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the elimination method, solving linear systems by graphing, word problems, addition property of equality, solving linear equations, linear inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then takes a look at exponents and polynomials, factoring, and rational expressions. Topics include reducing ra

  14. Certain number-theoretic episodes in algebra

    CERN Document Server

    Sivaramakrishnan, R

    2006-01-01

    Many basic ideas of algebra and number theory intertwine, making it ideal to explore both at the same time. Certain Number-Theoretic Episodes in Algebra focuses on some important aspects of interconnections between number theory and commutative algebra. Using a pedagogical approach, the author presents the conceptual foundations of commutative algebra arising from number theory. Self-contained, the book examines situations where explicit algebraic analogues of theorems of number theory are available. Coverage is divided into four parts, beginning with elements of number theory and algebra such as theorems of Euler, Fermat, and Lagrange, Euclidean domains, and finite groups. In the second part, the book details ordered fields, fields with valuation, and other algebraic structures. This is followed by a review of fundamentals of algebraic number theory in the third part. The final part explores links with ring theory, finite dimensional algebras, and the Goldbach problem.

  15. Realizations of AF-algebras as graph algebras, Exel-Laca algebras, and ultragraph algebras

    OpenAIRE

    Katsura, Takeshi; Sims, Aidan; Tomforde, Mark

    2008-01-01

    We give various necessary and sufficient conditions for an AF-algebra to be isomorphic to a graph C*-algebra, an Exel-Laca algebra, and an ultragraph C*-algebra. We also explore consequences of these results. In particular, we show that all stable AF-algebras are both graph C*-algebras and Exel-Laca algebras, and that all simple AF-algebras are either graph C*-algebras or Exel-Laca algebras. In addition, we obtain a characterization of AF-algebras that are isomorphic to the C*-algebra of a ro...

  16. Color Algebras

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.

  17. Linear algebra

    CERN Document Server

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  18. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  19. Basic algebra

    CERN Document Server

    Jacobson, Nathan

    2009-01-01

    A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L

  20. Linear algebra

    CERN Document Server

    Stoll, R R

    1968-01-01

    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  1. Abstract algebra

    CERN Document Server

    Deskins, W E

    1996-01-01

    This excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. These systems, which consist of sets of elements, operations, and relations among the elements, and prescriptive axioms, are abstractions and generalizations of various models which evolved from efforts to explain or discuss physical phenomena.In Chapter 1, the author discusses the essential ingredients of a mathematical system, and in the next four chapters covers the basic number systems, decompositions of integers, diop

  2. Algebraic arithmetic

    CERN Document Server

    Bell, Eric T

    1927-01-01

    The central topic of this book is the presentation of the author's principle of arithmetical paraphrases, which won him the Bôcher Prize in 1924. This general principle served to unify and extend many isolated results in the theory of numbers. The author successfully provides a systematic attempt to find a unified theory for each of various classes of related important problems in the theory of numbers, including its interrelations with algebra and analysis. This book will be of interest to advanced students in various branches of mathematics, including number theory, abstract algebra, ellipti

  3. Linear algebra

    CERN Document Server

    Allenby, Reg

    1995-01-01

    As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin

  4. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  5. Problems in abstract algebra

    CERN Document Server

    Wadsworth, A R

    2017-01-01

    This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.

  6. Deficiently extremal Gorenstein algebras

    Indian Academy of Sciences (India)

    For the given codimension g ≥ 3 and initial degree p ≥ 2, a Gorenstein algebra R/I with minimal multiplicity is extremal in the sense of Schenzel [8]. This has a nice structural implication: the minimal resolution of R/I must be pure and almost linear, and so their. Betti numbers are given by Herzog and Kühl [3] formulae.

  7. Computer algebra and algebraic analysis

    OpenAIRE

    Castro Jiménez, Francisco Jesús; Lambán Pardo, Laureano (Coordinador); Romero Ibáñez, Ana (Coordinador); Rubio García, Julio (Coordinador)

    2010-01-01

    Este artículo describe algunas aplicaciones del Álgebra Computacional al Análisis Algebraico, también conocido como teoría de D-módulos, es decir, el estudio algebraico de sistemas lineales de ecuaciones en derivadas parciales. Mostramos cómo calcular diferentes objetos e invariantes en teoría de D-módulos, utilizando bases de Groebner para anillos de operadores diferenciales lineales. This paper describes some applications of Computer Algebra to Algebraic Analysis also known as D-module t...

  8. N-linear algebraic maps for chemical structure codification: a suitable generalization for atom-pair approaches?

    Science.gov (United States)

    Garcia-Jacas, Cesar R; Marrero-Ponce, Yovani; Barigye, Stephen J; Valdes-Martini, Jose R; Rivera-Borroto, Oscar M; Olivero-Verbel, Jesus

    2014-01-01

    The present manuscript introduces, for the first time, a novel 3D-QSAR alignment free method (QuBiLS-MIDAS) based on tensor concepts through the use of the three-linear and four-linear algebraic forms as specific cases of n-linear maps. To this end, the k(th) three-tuple and four-tuple spatial-(dis)similarity matrices are defined, as tensors of order 3 and 4, respectively, to represent 3Dinformation among "three and four" atoms of the molecular structures. Several measures (multi-metrics) to establish (dis)-similarity relations among "three and four" atoms are discussed, as well as, normalization schemes proposed for the n-tuple spatial-(dis)similarity matrices based on the simple-stochastic and mutual probability algebraic transformations. To consider specific interactions among atoms, both for the global and local indices, n-tuple path and length cut-off constraints are introduced. This algebraic scaffold can also be seen as a generalization of the vector-matrix-vector multiplication procedure (which is a matrix representation of the traditional linear, quadratic and bilinear forms) for the calculation of molecular descriptors and is thus a new theoretical approach with a methodological contribution. A variability analysis based on Shannon's entropy reveals that the best distributions are achieved with the ternary and quaternary measures corresponding to the bond and dihedral angles. In addition, the proposed indices have superior entropy behavior than the descriptors calculated by other programs used in chemo-informatics studies, such as, DRAGON, PADEL, Mold2, and so on. A principal component analysis shows that the novel 3D n-tuple indices codify the same information captured by the DRAGON 3D-indices, as well as, information not codified by the latter. A QSAR study to obtain deeper criteria on the contribution of the novel molecular parameters was performed for the binding affinity to the corticosteroid-binding globulin, using Cramer's steroid database. The

  9. The Leibniz-Hopf algebra and Lyndon words

    NARCIS (Netherlands)

    M. Hazewinkel (Michiel)

    1996-01-01

    textabstractLet ${cal Z$ denote the free associative algebra ${ol Z langle Z_1 , Z_2 , ldots rangle$ over the integers. This algebra carries a Hopf algebra structure for which the comultiplication is $Z_n mapsto Sigma_{i+j=n Z_i otimes Z_j$. This the noncommutative Leibniz-Hopf algebra. It carries a

  10. THE STRUCTURE OF THE COMPUTATIONAL SIGNAL ALGEBRA AND ITS APPLICATION IN DIGITAL IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    MARLIO PAREDES

    2011-01-01

    Full Text Available Este trabajo se inicia a partir del conocimiento de la estructura matemática del espacio de señales usado en el procesamiento de señales y provee el desarrollo de un marco teórico computacional de álgebra de señales para el modelamiento y procesamiento de aplicaciones usando imágenes digitales. Las estructuras matemáticas fueron implementadas sobre estructuras computacionales usando el lenguaje de programación Java como una herramienta para la codifi cación de los algoritmos. La herramienta implementada fue llamada JCID (Java Computational Image Developer, la cual permite implementar varios de los operadores del algebra de señales para señales de dimensión uno y dimensión dos, y la creación de nuevas entradas a través de la composición de los operadores básicos.

  11. Algebras with actions and automata

    Directory of Open Access Journals (Sweden)

    W. Kühnel

    1982-01-01

    Full Text Available In the present paper we want to give a common structure theory of left action, group operations, R-modules and automata of different types defined over various kinds of carrier objects: sets, graphs, presheaves, sheaves, topological spaces (in particular: compactly generated Hausdorff spaces. The first section gives an axiomatic approach to algebraic structures relative to a base category B, slightly more powerful than that of monadic (tripleable functors. In section 2 we generalize Lawveres functorial semantics to many-sorted algebras over cartesian closed categories. In section 3 we treat the structures mentioned in the beginning as many-sorted algebras with fixed “scalar” or “input” object and show that they still have an algebraic (or monadic forgetful functor (theorem 3.3 and hence the general theory of algebraic structures applies. These structures were usually treated as one-sorted in the Lawvere-setting, the action being expressed by a family of unary operations indexed over the scalars. But this approach cannot, as the one developed here, describe continuity of the action (more general: the action to be a B-morphism, which is essential for the structures mentioned above, e.g. modules for a sheaf of rings or topological automata. Finally we discuss consequences of theorem 3.3 for the structure theory of various types of automata. The particular case of algebras with fixed “natural numbers object” has been studied by the authors in [23].

  12. Algebra and Number Theory An Integrated Approach

    CERN Document Server

    Dixon, Martyn; Subbotin, Igor

    2011-01-01

    Explore the main algebraic structures and number systems that play a central role across the field of mathematics Algebra and number theory are two powerful branches of modern mathematics at the forefront of current mathematical research, and each plays an increasingly significant role in different branches of mathematics, from geometry and topology to computing and communications. Based on the authors' extensive experience within the field, Algebra and Number Theory has an innovative approach that integrates three disciplines-linear algebra, abstract algebra, and number theory-into one compr

  13. Color Algebras

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  14. Matrix relation algebras

    NARCIS (Netherlands)

    el Bachraoui, M.; van de Vel, M.L.J.

    2002-01-01

    Square matrices over a relation algebra are relation algebras in a natural way. We show that for fixed n, these algebras can be characterized as reducts of some richer kind of algebra. Hence for fixed n, the class of n × n matrix relation algebras has a first-order characterization. As a

  15. Algebraic theory of molecules

    CERN Document Server

    Iachello, F

    1995-01-01

    1. The Wave Mechanics of Diatomic Molecules. 2. Summary of Elements of Algebraic Theory. 3. Mechanics of Molecules. 4. Three-Body Algebraic Theory. 5. Four-Body Algebraic Theory. 6. Classical Limit and Coordinate Representation. 8. Prologue to the Future. Appendices. Properties of Lie Algebras; Coupling of Algebras; Hamiltonian Parameters

  16. Algebra, Geometry and Mathematical Physics Conference

    CERN Document Server

    Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander

    2014-01-01

    This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...

  17. Alternative algebraic approaches in quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mezey, Paul G., E-mail: paul.mezey@gmail.com [Canada Research Chair in Scientific Modeling and Simulation, Department of Chemistry and Department of Physics and Physical Oceanography, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John' s, NL A1B 3X7 (Canada)

    2015-01-22

    Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.

  18. Real Algebraic Geometry

    CERN Document Server

    Mahé, Louis; Roy, Marie-Françoise

    1992-01-01

    Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...

  19. Algebraic functions

    CERN Document Server

    Bliss, Gilbert Ames

    1933-01-01

    This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t

  20. Algebra of Majorana doubling.

    Science.gov (United States)

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  1. Universal algebra

    CERN Document Server

    Grätzer, George

    1979-01-01

    Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...

  2. Free probability on Hecke algebras and certain group C^{*}-algebras induced by Hecke algebras

    Directory of Open Access Journals (Sweden)

    Ilwoo Cho

    2016-01-01

    Full Text Available In this paper, by establishing free-probabilistic models on the Hecke algebras \\(\\mathcal{H}\\left(GL_{2}(\\mathbb{Q}_{p}\\right\\ induced by \\(p\\-adic number fields \\(\\mathbb{Q}_{p}\\, we construct free probability spaces for all primes \\(p\\. Hilbert-space representations are induced by such free-probabilistic structures. We study \\(C^{*}\\-algebras induced by certain partial isometries realized under the representations.

  3. A one-parameter family of hamiltonian structures for the KP hierarchy and a continuous deformation of the nonlinear W[sub KP] algebra

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa-O' Farrill, J.M. (Bonn Univ. (Germany). Physikalisches Inst.); Mas, J. (Santiago Univ., Santiago de Compostela (Spain). Dept. de Fisica de Particulas Elementales); Ramos, E. (Leuven Univ. (Belgium). Inst. voor Theoretische Fysica)

    1993-11-01

    The KP hierarchy is hamiltonian relative to a one-parameter family of Poisson structures obtained from a generalized Adler map in the space of formal pseudodifferential symbols with noninteger powers. The resulting W-algebra is a one-parameter deformation of W[sub KP] admitting a central extension for generic values of the parameter, reducing naturally to W[sub n] for special values of the parameter, and contracting to the centrally extended W[sub 1+[infinity

  4. A one-parameter family of hamiltonian structures for the KP hierarchy and a continuous deformation of the nonlinear W[sub KP] algebra

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa-O' Farril, J.M. (Bonn Univ. (Germany). Physikalisches Inst.); Mas, J. (Universidad de Santiago de Compostela (Spain). Dept. de Fisica de Particulas Elementales); Ramos, E. (Leuven Univ. (Belgium). Inst. voor Theoretische Fysica)

    1992-07-01

    The KP hierarchy is hamiltonian relative to a one-parameter family of inequivalent Poisson structures obtained from a generalized Adler map in the space of formal pseudodifferential symbols with noninteger powers. The resulting W-algebra is a one-parameter deformation of W[sub KP] admitting a central extension for generic values of the parameter, reducing naturally to W[sub n] for special values of the parameter, and contracting to the centrally extended W[sub 1+[infinity

  5. Open algebraic surfaces

    CERN Document Server

    Miyanishi, Masayoshi

    2000-01-01

    Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...

  6. Remarks on the differential algebraic approach to particle beam optics by M. Berz

    Energy Technology Data Exchange (ETDEWEB)

    Garczynski, V.

    1992-12-31

    The underlying mathematical structure of the differential algebraic approach of M. Berz to particle beam optics is isomorphic to the familiar truncated polynomial algebra. Concrete examples of derivations in this algebra, consistent with the truncation operation, are given.

  7. Computations in finite-dimensional Lie algebras

    Directory of Open Access Journals (Sweden)

    A. M. Cohen

    1997-12-01

    Full Text Available This paper describes progress made in context with the construction of a general library of Lie algebra algorithms, called ELIAS (Eindhoven Lie Algebra System, within the computer algebra package GAP. A first sketch of the package can be found in Cohen and de Graaf[1]. Since then, in a collaborative effort with G. Ivanyos, the authors have continued to develop algorithms which were implemented in ELIAS by the second author. These activities are part of a bigger project, called ACELA and financed by STW, the Dutch Technology Foundation, which aims at an interactive book on Lie algebras (cf. Cohen and Meertens [2]. This paper gives a global description of the main ways in which to present Lie algebras on a computer. We focus on the transition from a Lie algebra abstractly given by an array of structure constants to a Lie algebra presented as a subalgebra of the Lie algebra of n×n matrices. We describe an algorithm typical of the structure analysis of a finite-dimensional Lie algebra: finding a Levi subalgebra of a Lie algebra.

  8. Algebra 1 groups, rings, fields and arithmetic

    CERN Document Server

    Lal, Ramji

    2017-01-01

    This is the first in a series of three volumes dealing with important topics in algebra. It offers an introduction to the foundations of mathematics together with the fundamental algebraic structures, namely groups, rings, fields, and arithmetic. Intended as a text for undergraduate and graduate students of mathematics, it discusses all major topics in algebra with numerous motivating illustrations and exercises to enable readers to acquire a good understanding of the basic algebraic structures, which they can then use to find the exact or the most realistic solutions to their problems.

  9. Graph model of the Heisenberg-Weyl algebra

    Energy Technology Data Exchange (ETDEWEB)

    Blasiak, P; Horzela, A [H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences ul. Radzikowskiego 152, PL 31342 Krakow (Poland); Duchamp, G H E [Universite Paris-Nord, LIPN, CNRS UMR 7030 99 Av. J.-B. Clement, F-93430 Villetaneuse (France); Penson, K A; Solomon, A I, E-mail: pawel.blasiak@ifj.edu.p, E-mail: ghed@lipn-univ.paris13.f, E-mail: andrzej.horzela@ifj.edu.p, E-mail: penson@lptmc.jussieu.f, E-mail: a.i.solomon@open.ac.u [Universite Pierre et Marie Curie, LPTMC, CNRS UMR 7600 Tour 24 - 2ieme et., 4 pl. Jussieu, F 75252 Paris Cedex 05 (France)

    2010-03-01

    We consider an algebraic formulation of Quantum Theory and develop a combinatorial model of the Heisenberg-Weyl algebra structure. It is shown that by lifting this structure to the richer algebra of graph operator calculus, we gain a simple interpretation involving, for example, the natural composition of graphs. This provides a deeper insight into the algebraic structure of Quantum Theory and sheds light on the intrinsic combinatorial underpinning of its abstract formalism.

  10. The Yoneda algebra of a K2 algebra need not be another K2 algebra

    OpenAIRE

    Cassidy, T.; Phan, C.; Shelton, B.

    2010-01-01

    The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.

  11. Numerical results indicate a half-filling SU(4) Kondo state in carbon nanotubes

    Science.gov (United States)

    Büsser, C. A.; Martins, G. B.

    2007-01-01

    Numerical calculations simulate transport experiments in carbon nanotube quantum dots [P. Jarillo-Herrero , Nature 434, 484 (2005)], where a strongly enhanced Kondo temperature TK≈8.0K was associated with the SU(4) symmetry of the Hamiltonian at quarter-filling for an orbitally double-degenerate single-occupied electronic shell. Our results clearly suggest that the Kondo conductance measured for an adjacent shell with TK≈16.0K , interpreted as a singlet-triplet Kondo effect, can be associated instead to an SU(4) Kondo effect at half-filling. Besides presenting spin-charge Kondo screening similar to the quarter-filling SU(4), the half-filling SU(4) has been recently associated to very rich physical behavior, including a non-Fermi-liquid state [M. R. Galpin , Phys. Rev. Lett. 94, 186406 (2005)].

  12. Relational Algebra and SQL: Better Together

    Science.gov (United States)

    McMaster, Kirby; Sambasivam, Samuel; Hadfield, Steven; Wolthuis, Stuart

    2013-01-01

    In this paper, we describe how database instructors can teach Relational Algebra and Structured Query Language together through programming. Students write query programs consisting of sequences of Relational Algebra operations vs. Structured Query Language SELECT statements. The query programs can then be run interactively, allowing students to…

  13. Linear algebra

    CERN Document Server

    Said-Houari, Belkacem

    2017-01-01

    This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...

  14. Novikov-Jordan algebras

    OpenAIRE

    Dzhumadil'daev, A. S.

    2002-01-01

    Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.

  15. Embeddings of Heyting Algebras

    NARCIS (Netherlands)

    Jongh, D.H.J. de; Visser, A.

    In this paper we study embeddings of Heyting Algebras. It is pointed out that such embeddings are naturally connected with Derived Rules. We compare the Heyting Algebras embeddable in the Heyting Algebra of the Intuitionistic Propositional Calculus (IPC), i.e. the free Heyting Algebra on countably

  16. Introduction to relation algebras relation algebras

    CERN Document Server

    Givant, Steven

    2017-01-01

    The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...

  17. Flexibility of Bricard's linkages and other structures via resultants and computer algebra.

    Science.gov (United States)

    Lewis, Robert H; Coutsias, Evangelos A

    2016-07-01

    Flexibility of structures is extremely important for chemistry and robotics. Following our earlier work, we study flexibility using polynomial equations, resultants, and a symbolic algorithm of our creation that analyzes the resultant. We show that the software solves a classic arrangement of quadrilaterals in the plane due to Bricard. We fill in several gaps in Bricard's work and discover new flexible arrangements that he was apparently unaware of. This provides strong evidence for the maturity of the software, and is a wonderful example of mathematical discovery via computer assisted experiment.

  18. Regular extensions of iterative algebras and metric interpretations

    NARCIS (Netherlands)

    Bergstra, J.A.; Tiuryn, J.

    1981-01-01

    An algebra is said to be iterative if every nontrivial finite system of fixed-point equations has unique solution. The paper discusses possibilities of finding topological structure for a given iterative algebra so that the unique solution

  19. Algebra I textbook for students of mathematics

    CERN Document Server

    Gorodentsev, Alexey L

    2016-01-01

    This book is the first volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.

  20. Algebra II textbook for students of mathematics

    CERN Document Server

    Gorodentsev, Alexey L

    2017-01-01

    This book is the second volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.

  1. Computers in nonassociative rings and algebras

    CERN Document Server

    Beck, Robert E

    1977-01-01

    Computers in Nonassociative Rings and Algebras provides information pertinent to the computational aspects of nonassociative rings and algebras. This book describes the algorithmic approaches for solving problems using a computer.Organized into 10 chapters, this book begins with an overview of the concept of a symmetrized power of a group representation. This text then presents data structures and other computational methods that may be useful in the field of computational algebra. Other chapters consider several mathematical ideas, including identity processing in nonassociative algebras, str

  2. The concept of training in community network for teaching algebraic structures that are aimed to create a methodical competence of a mathematics teacher

    Directory of Open Access Journals (Sweden)

    Ирина Викторовна Кузнецова

    2012-12-01

    Full Text Available The paper proposes the concept of learning activities in online communities for teaching algebraic structures of the future teachers of mathematics, including a set of theoretical and methodological positions, laws, principles, factors, and pedagogical conditions of its implementation. Work is executed with support of the Russian fund of basic researches under the initiative project № 11-07-00733 «The Hypertext information retrieval thesaurus» a science Meta language» (structure; mathematical, linguistic and program maintenance; sections linguistics, mathematics, economy».

  3. Deformed Virasoro Algebras from Elliptic Quantum Algebras

    Science.gov (United States)

    Avan, J.; Frappat, L.; Ragoucy, E.

    2017-09-01

    We revisit the construction of deformed Virasoro algebras from elliptic quantum algebras of vertex type, generalizing the bilinear trace procedure proposed in the 1990s. It allows us to make contact with the vertex operator techniques that were introduced separately at the same period. As a by-product, the method pinpoints two critical values of the central charge for which the center of the algebra is extended, as well as (in the gl(2) case) a Liouville formula.

  4. Coping with Algebraic Constraints in Power Networks

    NARCIS (Netherlands)

    Monshizadeh, Nima; De Persis, Claudio; van der Schaft, Abraham; Scherpen, Jacquelien M.A.

    2016-01-01

    In the intuitive modelling of the power network, the generators and the loads are located at different subset of nodes. This corresponds to the so-called structure preserving model which is naturally expressed in terms of differential algebraic equations (DAE). The algebraic constraints in the

  5. Mattson Solomon transform and algebra codes

    DEFF Research Database (Denmark)

    Martínez-Moro, E.; Benito, Diego Ruano

    2009-01-01

    In this note we review some results of the first author on the structure of codes defined as subalgebras of a commutative semisimple algebra over a finite field (see Martínez-Moro in Algebra Discrete Math. 3:99-112, 2007). Generator theory and those aspects related to the theory of Gröbner bases...

  6. Singularity Theory for W-Algebra Potentials

    NARCIS (Netherlands)

    Gaite, J

    1994-01-01

    The Landau potentials of W3-algebra models are analyzed with algebraic-geometric methods. The number of ground states and the number of independent perturbations of every potential coincide and can be computed. This number agrees with the structure of ground states obtained in a previous paper,

  7. Young Mathematicians at Work: Constructing Algebra

    Science.gov (United States)

    Fosnot, Catherine Twomey; Jacob, Bill

    2010-01-01

    This book provides a landscape of learning that helps teachers recognize, support, and celebrate their students' capacity to structure their worlds algebraically. It identifies the models, contexts, and landmarks that facilitate algebraic thinking in young students and provides insightful and practical methods for teachers, math supervisors, and…

  8. Lukasiewicz-Moisil algebras

    CERN Document Server

    Boicescu, V; Georgescu, G; Rudeanu, S

    1991-01-01

    The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

  9. Algebraic theory of numbers

    CERN Document Server

    Samuel, Pierre

    2008-01-01

    Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

  10. Relation between dual S-algebras and BE-algebras

    Directory of Open Access Journals (Sweden)

    Arsham Borumand Saeid

    2015-05-01

    Full Text Available In this paper, we investigate the relationship between dual (Weak Subtraction algebras, Heyting algebras and BE-algebras. In fact, the purpose of this paper is to show that BE-algebra is a generalization of Heyting algebra and dual (Weak Subtraction algebras. Also, we show that a bounded commutative self distributive BE-algebra is equivalent to the Heyting algebra.  

  11. Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, F [Faculte des Sciences, Universite de Sfax, BP 1171, 3000 Sfax (Tunisia); Makhlouf, A [Laboratoire de Mathematiques, Informatique et Applications, Universite de Haute Alsace, 4, rue des Freres Lumiere F-68093 Mulhouse (France); Silvestrov, S, E-mail: Faouzi.Ammar@rnn.fss.t, E-mail: Abdenacer.Makhlouf@uha.f, E-mail: sergei.silvestrov@math.lth.s [Centre for Mathematical Sciences, Lund University, Box 118, SE-221 00 Lund (Sweden)

    2010-07-02

    In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.

  12. Statecharts Via Process Algebra

    Science.gov (United States)

    Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance

    1999-01-01

    Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics

  13. Advantages of unity with SU(4)-color: Reflections through neutrino oscillations, baryogenesis and proton decay

    Science.gov (United States)

    Pati, Jogesh C.

    2017-03-01

    By way of paying tribute to Abdus Salam, I first recall the ideas of higher unification which the two of us introduced in 1972-73 to remove certain shortcomings in the status of particle physics prevailing then, and then present their current role in theory as well as experiments. These attempts initiated the idea of grand unification and provided the core symmetry-structure G(2, 2, 4) = SU(2)L × SU(2)R × SU(4)-color towards such a unification. Embodied with quark-lepton unification and left-right symmetry, the symmetry G(2, 2, 4) is uniquely chosen as being the minimal one that permits members of a family to belong to a single multiplet. The minimal extension of G(2, 2, 4) to a simple group is given by the attractive SO(10)-symmetry that was suggested a year later. The new concepts, and the many advantages introduced by this core symmetry (which are, of course, retained by SO(10) as well) are noted. These include explanations of the observed: (i) (rather weird) electroweak and color quantum numbers of the members of a family; (ii) quantization of electric charge; (iii) electron-proton charge-ratio being - 1; (iv) the co-existence of quarks and leptons; (v) likewise that of the three basic forces — the weak, electromagnetic and strong; (vi) the non-trivial cancelation of the triangle anomalies within each family; and opening the door for (vii) the appealing concept of parity being an exact symmetry of nature at the fundamental level. In addition, as a distinguishing feature, both because of SU(4)-color and independently because of SU(2)R as well, the symmetry G(2, 2, 4) introduced, to my knowledge, for the first time in the literature: (viii) a new kind of matter — the right-handed (RH) neutrino (νR) — as a compelling member of each family, and together with it; (ix) (B-L) as a local symmetry. The RH neutrions — contrary to prejudices held in the 1970’s against neutrinos being massive and thereby against the existence of νR’s as well — have in

  14. A generalization of Connes-Kreimer Hopf algebra

    Science.gov (United States)

    Byun, Jungyoon

    2005-07-01

    "Bonsai" Hopf algebras, introduced here, are generalizations of Connes-Kreimer Hopf algebras, which are motivated by Feynman diagrams and renormalization. We show that we can find operad structure on the set of bonsais. We introduce a new differential on these bonsai Hopf algebras, which is inspired by the tree differential. The cohomologies of these are computed here, and the relationship of this differential with the appending operation * of Connes-Kreimer Hopf algebras is investigated.

  15. Algebraic pattern recognition

    Science.gov (United States)

    Przybyłek, Michał R.

    2014-01-01

    This paper offers an algebraic explanation for the phenomenon of a new and prosperous branch of evolutionary metaheuristics - "skeletal algorithms". We show how this explanation gives rise to algorithms for recognition of algebraic theories and present sample applications.

  16. Families talen en algebra

    NARCIS (Netherlands)

    Asveld, P.R.J.

    1976-01-01

    Operaties op formele talen geven aanleiding tot bijbehorende operatoren op families talen. Bepaalde onderwerpen uit de algebra (universele algebra, tralies, partieel geordende monoiden) kunnen behulpzaam zijn in de studie van verzamelingen van dergelijke operatoren.

  17. Factorization algebras in quantum field theory

    CERN Document Server

    Costello, Kevin

    2017-01-01

    Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.

  18. Algebraic statistics computational commutative algebra in statistics

    CERN Document Server

    Pistone, Giovanni; Wynn, Henry P

    2000-01-01

    Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.

  19. Combinatorial commutative algebra

    CERN Document Server

    Miller, Ezra

    2005-01-01

    Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determined rings. The chapters in this work cover topics ranging from homological invariants of monomial ideals and their polyhedral resolutions, to tools for studying algebraic varieties.

  20. Foundations of algebraic geometry

    CERN Document Server

    Weil, A

    1946-01-01

    This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.

  1. Entropic Forms and Related Algebras

    Directory of Open Access Journals (Sweden)

    Antonio Maria Scarfone

    2013-02-01

    Full Text Available Starting from a very general trace-form entropy, we introduce a pair of algebraic structures endowed by a generalized sum and a generalized product. These algebras form, respectively, two Abelian fields in the realm of the complex numbers isomorphic each other. We specify our results to several entropic forms related to distributions recurrently observed in social, economical, biological and physical systems including the stretched exponential, the power-law and the interpolating Bosons-Fermions distributions. Some potential applications in the study of complex systems are advanced.

  2. The Lie algebra of the N=2-string

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, K.

    2006-07-01

    The theory of generalized Kac-Moody algebras is a generalization of the theory of finite dimensional simple Lie algebras. The physical states of some compactified strings give realizations of generalized Kac-Moody algebras. For example the physical states of a bosonic string moving on a 26 dimensional torus form a generalized Kac-Moody algebra and the physical states of a N=1 string moving on a 10 dimensional torus form a generalized Kac-Moody superalgebra. A natural question is whether the physical states of the compactified N=2-string also realize such an algebra. In this thesis we construct the Lie algebra of the compactified N=2-string, study its properties and show that it is not a generalized Kac-Moody algebra. The Fock space of a N=2-string moving on a 4 dimensional torus can be described by a vertex algebra constructed from a rational lattice of signature (8,4). Here 6 coordinates with signature (4,2) come from the matter part and 6 coordinates with signature (4,2) come from the ghost part. The physical states are represented by the cohomology of the BRST-operator. The vertex algebra induces a product on the vector space of physical states that defines the structure of a Lie algebra on this space. This Lie algebra shares many properties with generalized Kac-Moody algebra but we will show that it is not a generalized Kac-Moody algebra. (orig.)

  3. On q-deformed infinite-dimensional n-algebra

    Directory of Open Access Journals (Sweden)

    Lu Ding

    2016-03-01

    Full Text Available The q-deformation of the infinite-dimensional n-algebras is investigated. Based on the structure of the q-deformed Virasoro–Witt algebra, we derive a nontrivial q-deformed Virasoro–Witt n-algebra which is nothing but a sh-n-Lie algebra. Furthermore in terms of the pseud-differential operators, we construct the (cosine n-algebra and the q-deformed SDiff(T2 n-algebra. We find that they are the sh-n-Lie algebras for the n even case. In terms of the magnetic translation operators, an explicit physical realization of the (cosine n-algebra is given.

  4. Algebraic methods in system theory

    Science.gov (United States)

    Brockett, R. W.; Willems, J. C.; Willsky, A. S.

    1975-01-01

    Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.

  5. Half-filling SU(4) Kondo state in carbon nanotubes: Numerical results

    Energy Technology Data Exchange (ETDEWEB)

    Martins, G.B. [Department of Physics, Oakland University, Rochester, MI 48309 (United States)], E-mail: martins@oakland.edu; Buesser, C.A. [Department of Physics and Astronomy, Ohio University, Athens, OH 45701 2979 (United States)

    2008-04-01

    Charge transport measurements in carbon nanotube quantum dots by P. Jarillo-Herrero et al. [Nature 434 (2005) 484] have detected a strongly enhanced Kondo temperature T{sub K}{approx}8.0 K. This Kondo state was associated with the SU(4) symmetry of the Hamiltonian at quarter-filling for an orbitally double-degenerate single-occupied electronic shell, indicating the simultaneous Kondo screening of charge and spin. Pure SU(4) symmetry can only be achieved when the orbital quantum number is preserved upon tunneling. So-called channel mixing can destroy the SU(4) state, transforming it into an SU(2)-type Kondo state (the so-called two-level SU(2) state). In this work, numerical calculations of charge transport show in detail the transition between these two Kondo states. Our results indicate that the SU(4) state seems to be quite robust, surviving to considerable amount of channel mixing. Moreover, a curious behavior of the conductance is revealed close to the two level SU(2) state.

  6. Half-filling SU(4) Kondo state in carbon nanotubes: Numerical results

    Science.gov (United States)

    Martins, G. B.; Büsser, C. A.

    2008-04-01

    Charge transport measurements in carbon nanotube quantum dots by P. Jarillo-Herrero et al. [Nature 434 (2005) 484] have detected a strongly enhanced Kondo temperature TK≈8.0 K. This Kondo state was associated with the SU(4) symmetry of the Hamiltonian at quarter-filling for an orbitally double-degenerate single-occupied electronic shell, indicating the simultaneous Kondo screening of charge and spin. Pure SU(4) symmetry can only be achieved when the orbital quantum number is preserved upon tunneling. So-called channel mixing can destroy the SU(4) state, transforming it into an SU(2)-type Kondo state (the so-called two-level SU(2) state). In this work, numerical calculations of charge transport show in detail the transition between these two Kondo states. Our results indicate that the SU(4) state seems to be quite robust, surviving to considerable amount of channel mixing. Moreover, a curious behavior of the conductance is revealed close to the two level SU(2) state.

  7. Breaking of SU(4) symmetry and interplay between strongly-correlated phases in the Hubbard model

    Czech Academy of Sciences Publication Activity Database

    Golubeva, A.; Sotnikov, A.; Cichy, A.; Kuneš, Jan; Hofstetter, W.

    2017-01-01

    Roč. 95, č. 12 (2017), s. 1-7, č. článku 125108. ISSN 2469-9950 EU Projects: European Commission(XE) 646807 - EXMAG Institutional support: RVO:68378271 Keywords : Hubbard model * SU(4) Subject RIV: BE - Theoretical Physics Impact factor: 3.836, year: 2016

  8. Computer algebra and operators

    Science.gov (United States)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  9. Lectures on algebraic statistics

    CERN Document Server

    Drton, Mathias; Sullivant, Seth

    2009-01-01

    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  10. CASL, the Common Algebraic Specification Language

    DEFF Research Database (Denmark)

    Mossakowski, Till; Haxthausen, Anne Elisabeth; Sannella, Donald

    2008-01-01

    CASL is an expressive specification language that has been designed to supersede many existing algebraic specification languages and provide a standard. CASL consists of several layers, including basic (unstructured) specifications, structured specifications and architectural specifications...

  11. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    OpenAIRE

    Shomron, Noam; Parlett, Beresford N.

    2008-01-01

    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  12. Introduction to abstract algebra, solutions manual

    CERN Document Server

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  13. Differential geometry on Hopf algebras and quantum groups

    Energy Technology Data Exchange (ETDEWEB)

    Watts, Paul [Univ. of California, Berkeley, CA (United States)

    1994-12-15

    The differential geometry on a Hopf algebra is constructed, by using the basic axioms of Hopf algebras and noncommutative differential geometry. The space of generalized derivations on a Hopf algebra of functions is presented via the smash product, and used to define and discuss quantum Lie algebras and their properties. The Cartan calculus of the exterior derivative, Lie derivative, and inner derivation is found for both the universal and general differential calculi of an arbitrary Hopf algebra, and, by restricting to the quasitriangular case and using the numerical R-matrix formalism, the aforementioned structures for quantum groups are determined.

  14. Exact solution of SU(4) non-equilibrium Kondo model at the Toulouse point.

    Science.gov (United States)

    Duki, Solomon; Mathur, Harsh

    2007-03-01

    SU(4) symmetry in quantum dots has become a growing interest in both semiconductor quantum dots and carbon nanotube quantum dots[1]. We investigate theoretically the properties of an SU(4) Kondo model out of equilibrium by solving the problem exactly at a special point in the parameter space. The solution reveals that, in contrast to the SU(2) model, there are two more excitations in the system other than the charge and spin excitations. We investigate the differential conductance for arbitrary voltage bias. [1] P. Jarillo-Herrero, J. Kong, H.S.J. van der Zant, C. Dekker, L.P. Kouwenhoven and S. De Franceschi, http://www.nature.com/openurl?urlver=Z39.88-2004&rftvalfmt=info:ofi/fmt:kev:mtx:journal&rft.genre=journal&rft. volume=434&rft.spage=484 &rft.date=2005 (Nature) 434, 484, (2005).

  15. SU(4) flavor symmetry breaking in D-meson couplings to light hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Fontoura, C.E. [Instituto Tecnologico da Aeronautica, DCTA, Sao Jose dos Campos, SP (Brazil); Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil); Haidenbauer, J. [Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Krein, G. [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)

    2017-05-15

    The validity of SU(4)-flavor symmetry relations of couplings of charmed D-mesons to light mesons and baryons is examined with the use of {sup 3}P{sub 0} quark-pair creation model and nonrelativistic quark-model wave functions. We focus on the three-meson couplings ππρ, KKρ and DDρ and baryon-baryon-meson couplings NNπ, NΛK and NΛ{sub c}D. It is found that SU(4)-flavor symmetry is broken at the level of 30% in the DDρ tree-meson couplings and 20% in the baryon-baryon-meson couplings. Consequences of these findings for DN cross sections and existence of bound states D-mesons in nuclei are discussed. (orig.)

  16. Simple relation algebras

    CERN Document Server

    Givant, Steven

    2017-01-01

    This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...

  17. Lie algebras and applications

    CERN Document Server

    Iachello, Francesco

    2015-01-01

    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  18. The static three-quark SU(3) and four-quark SU(4) potentials

    CERN Document Server

    Alexandrou, C; Tsapalis, A; Forcrand, Ph. de

    2002-01-01

    We present results on the static three- and four-quark potentials in SU(3) and SU(4) respectively within quenched lattice QCD. We use an analytic multi-hit procedure for the time links and a variational approach to determine the ground state. The three- and four-quark potentials extracted are consistent with a sum of two-body potentials, possibly with a weak many-body component. The results give support to the $\\Delta$ ansatz for the baryonic area law.

  19. Uniform topology on EQ-algebras

    Directory of Open Access Journals (Sweden)

    Yang Jiang

    2017-04-01

    Full Text Available In this paper, we use filters of an EQ-algebra E to induce a uniform structure (E, , and then the part induce a uniform topology in E. We prove that the pair (E, is a topological EQ-algebra, and some properties of (E, are investigated. In particular, we show that (E, is a first-countable, zero-dimensional, disconnected and completely regular space. Finally, by using convergence of nets, the convergence of topological EQ-algebras is obtained.

  20. Higher dimensional classical W-algebras

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Moras, F. (Santiago Univ., Santiago de Compostela (Spain). Dept. de Fisica de Particulas Elementales); Ramos, E. (Dept. of Physics, Queen Mary and Westfield Coll., London (United Kingdom))

    1993-11-01

    Classical W-algebras in higher dimensions are constructed. This is achieved by generalizing the classical Gel'fand-Dickey brackets to the commutative limit of the ring of classical pseudodifferential operators in arbitrary dimension. These W-algebras are the Poisson structures associated with a higher dimensional version of the Khokhlov-Zabolotskaya hierarchy (dispersionless KP-hierarchy). The two dimensional case is worked out explicitly and it is shown that the role of DiffS(1) is taken by the algebra of generators of local diffeomorphisms in two dimensions. (orig.)

  1. Introduction to abstract algebra

    CERN Document Server

    Smith, Jonathan D H

    2008-01-01

    Taking a slightly different approach from similar texts, Introduction to Abstract Algebra presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It helps students fully understand groups, rings, semigroups, and monoids by rigorously building concepts from first principles. A Quick Introduction to Algebra The first three chapters of the book show how functional composition, cycle notation for permutations, and matrix notation for linear functions provide techniques for practical computation. The author also uses equivalence relations to introduc

  2. Three-Nucleon Bound States and the Wigner-SU(4) Limit

    Science.gov (United States)

    Vanasse, Jared; Phillips, Daniel R.

    2017-03-01

    We examine the extent to which the properties of three-nucleon bound states are well-reproduced in the limit that nuclear forces satisfy Wigner's SU(4) (spin-isospin) symmetry. To do this we compute the charge radii up to next-to-leading order (NLO) in an effective field theory that is an expansion in powers of R/ a, with R the range of the nuclear force and a the nucleon-nucleon (N N) scattering lengths. In the Wigner-SU(4) limit, the triton and helium-3 point charge radii are equal. At NLO in the range expansion both are 1.66 fm. Adding the first-order corrections due to the breaking of Wigner symmetry in the N N scattering lengths gives a ^3{H} point charge radius of 1.58 fm, which is remarkably close to the experimental number, 1.5978± 0.040 fm (Angeli and Marinova in At Data Nucl Data Tables 99:69-95, 2013). For the ^3{He} point charge radius we find 1.70 fm, about 4% away from the experimental value of 1.77527± 0.0054 fm (Angeli and Marinova 2013). We also examine the Faddeev components that enter the tri-nucleon wave function and find that an expansion of them in powers of the symmetry-breaking parameter converges rapidly. Wigner's SU(4) symmetry is thus a useful starting point for understanding tri-nucleon bound-state properties.

  3. Numerical Results for SU(4) and SU(2) Kondo Effect in Carbon Nanotubes

    Science.gov (United States)

    Martins, George; Busser, Carlos

    2006-03-01

    New numerical results are presented for the Kondo effect in Carbon Nanotube (CNT) quantum dots (QDs). As recently reported by P. Jarillo-Herrero et al. (Nature 434, 484 (2005)), the Kondo effect in CNTs presents an SU(4) symmetry, which arises from the entanglement of orbital and spin degrees of freedom. As the number of co-tunneling processes increases, thanks to the extra (orbital) degree of freedom, the Kondo temperature reaches a high value of TK=7.7K. Interesting considerations can be drawn regarding the change from SU(4) to SU(2) symmetries depending on the hopping matrix elements between the leads and the CNT QD. Our results will analyze the transition between the SU(4) and the so-called two-level SU(2) (2LSU(2)) Kondo regimes induced by the variation of the coupling of the QD to the leads. The effect of an external magnetic field along the tube direction will also be analyzed. Our results will be compared with available Numerical Renormalization Group (NRG) results by M-S Choi et al. (Phys. Rev. Lett. 95, 067204 (2005)). A comparison with the experimental results will be made to gauge the adequacy of the model and approximations made.

  4. Lectures in general algebra

    CERN Document Server

    Kurosh, A G; Stark, M; Ulam, S

    1965-01-01

    Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the

  5. Algebraic extensions of fields

    CERN Document Server

    McCarthy, Paul J

    1991-01-01

    ""...clear, unsophisticated and direct..."" - MathThis textbook is intended to prepare graduate students for the further study of fields, especially algebraic number theory and class field theory. It presumes some familiarity with topology and a solid background in abstract algebra. Chapter 1 contains the basic results concerning algebraic extensions. In addition to separable and inseparable extensions and normal extensions, there are sections on finite fields, algebraically closed fields, primitive elements, and norms and traces. Chapter 2 is devoted to Galois theory. Besides the fundamenta

  6. Fundamentals of Hopf algebras

    CERN Document Server

    Underwood, Robert G

    2015-01-01

    This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras, and Hopf algebras.  The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author’s 2011 publication, An Introduction to Hopf Algebras.  The book may be used as the main text or as a supplementary text for a graduate algebra course.  Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields, and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforw...

  7. Cohomology of Effect Algebras

    Directory of Open Access Journals (Sweden)

    Frank Roumen

    2017-01-01

    Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.

  8. The Virasoro vertex algebra and factorization algebras on Riemann surfaces

    Science.gov (United States)

    Williams, Brian

    2017-12-01

    This paper focuses on the connection of holomorphic two-dimensional factorization algebras and vertex algebras which has been made precise in the forthcoming book of Costello-Gwilliam. We provide a construction of the Virasoro vertex algebra starting from a local Lie algebra on the complex plane. Moreover, we discuss an extension of this factorization algebra to a factorization algebra on the category of Riemann surfaces. The factorization homology of this factorization algebra is computed as the correlation functions. We provide an example of how the Virasoro factorization algebra implements conformal symmetry of the beta-gamma system using the method of effective BV quantization.

  9. SU(4)-SU(2) crossover and spin-filter properties of a double quantum dot nanosystem

    Science.gov (United States)

    Lopes, V.; Padilla, R. A.; Martins, G. B.; Anda, E. V.

    2017-06-01

    The SU(4)-SU(2) crossover, driven by an external magnetic field h , is analyzed in a capacitively coupled double quantum dot device connected to independent leads. As one continuously charges the dots from empty to quarter filled, by varying the gate potential Vg, the crossover starts when the magnitude of the spin polarization of the double quantum dot, as measured by - , becomes finite. Although the external magnetic field breaks the SU(4) symmetry of the Hamiltonian, the ground state preserves it in a region of Vg, where - =0 . Once the spin polarization becomes finite, it initially increases slowly until a sudden change occurs, in which (polarization direction opposite to the magnetic field) reaches a maximum and then decreases to negligible values abruptly, at which point an orbital SU(2) ground state is fully established. This crossover from one Kondo state, with emergent SU(4) symmetry, where spin and orbital degrees of freedom all play a role, to another, with SU(2) symmetry, where only orbital degrees of freedom participate, is triggered by a competition between g μBh , the energy gain by the Zeeman-split polarized state and the Kondo temperature TKS U (4 ), the gain provided by the SU(4) unpolarized Kondo-singlet state. At fixed magnetic field, the knob that controls the crossover is the gate potential, which changes the quantum dots occupancies. If one characterizes the occurrence of the crossover by Vgmax, the value of Vg where reaches a maximum, one finds that the function f relating the Zeeman splitting, Bmax, which corresponds to Vgmax, i.e., Bmax=f (Vgmax) , has a similar universal behavior to that of the function relating the Kondo temperature to Vg. In addition, our numerical results show that near the SU(4) Kondo temperature and for relatively small magnetic fields the device has a ground state that restricts the electronic population at the dots to be spin polarized along the magnetic field. These two facts introduce very efficient spin

  10. On Integral Manifolds for Leibniz Algebras

    Directory of Open Access Journals (Sweden)

    Juan Monterde

    2014-01-01

    Full Text Available We discuss several partial solutions to the so-called “coquecigrue problem” of Loday; these solutions parallel, but also generalize in several directions, the classical Lie group-Lie algebra correspondence. Our study highlights some clear similarities between the split and nonsplit cases and leads us to a general unifying scheme that provides an answer to the problem of the algebraic structure of a coquecigrue.

  11. Fundamentals of algebraic graph transformation

    CERN Document Server

    Ehrig, Hartmut; Prange, Ulrike; Taentzer, Gabriele

    2006-01-01

    Graphs are widely used to represent structural information in the form of objects and connections between them. Graph transformation is the rule-based manipulation of graphs, an increasingly important concept in computer science and related fields. This is the first textbook treatment of the algebraic approach to graph transformation, based on algebraic structures and category theory. Part I is an introduction to the classical case of graph and typed graph transformation. In Part II basic and advanced results are first shown for an abstract form of replacement systems, so-called adhesive high-level replacement systems based on category theory, and are then instantiated to several forms of graph and Petri net transformation systems. Part III develops typed attributed graph transformation, a technique of key relevance in the modeling of visual languages and in model transformation. Part IV contains a practical case study on model transformation and a presentation of the AGG (attributed graph grammar) tool envir...

  12. On almost ƒ-algebras

    African Journals Online (AJOL)

    Click on the link to view the abstract. Keywords: Almost ƒ-algebra; ƒ-algebra; orthosymmetric bimorphism. Quaestiones Mathematicae 32(2009), 55–69. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Article Metrics. Metrics Loading ... Metrics powered by PLOS ALM.

  13. C*-algebras

    Science.gov (United States)

    Bär, Christian; Becker, Christian

    In this chapter we will collect those basic concepts and facts related to C*-algebras that will be needed later on. We give complete proofs. In Sects. 1, 2, 3, and 6 we follow closely the presentation in [1]. For more information on C*-algebras, see, e.g. [2-6].

  14. Linear-Algebra Programs

    Science.gov (United States)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  15. Ready, Set, Algebra?

    Science.gov (United States)

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…

  16. Automorphisms of the Cuntz algebras

    DEFF Research Database (Denmark)

    Conti, Roberto; Szymanski, Wojciech

    2011-01-01

    We survey recent results on endomorphisms and especially on automorphisms of the Cuntz algebras, with a special emphasis on the structure of the Weyl group. We discuss endomorphisms globally preserving the diagonal MASA and their corresponding actions. In particular, we investigate those...... endomorphisms of O_n which restrict to automorphisms of the diagonal. We review a combinatorial approach to the study of permutative endomorphisms. All the presented material is put in context with current research topics....

  17. Elements of mathematics algebra

    CERN Document Server

    Bourbaki, Nicolas

    2003-01-01

    This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...

  18. Quantum affine algebras

    Energy Technology Data Exchange (ETDEWEB)

    Chari, V. (Tata Inst. of Fundamental Research, Bombay (India). School of Mathematics); Pressley, A. (King' s Coll., London (United Kingdom). Dept. of Mathematics)

    1991-12-01

    A quantum group is a Hopf algebra U{sub q}(a), depending on a parameter q element of C, which 'tends to' the universal enveloping algebra U(a) of a Lie algebra a as q tends to 1. In this paper, we develop a highest weight theory for the finite-dimensional representations of U{sub q}(a) when a is the affine algebra sl{sub 2}, assuming that q is not a root of unity. We also give a concrete construction of all finite-dimensional irreducible representations of U{sub q}(sl{sub 2}). Many, but not all, of the results extend without difficulty to the case of U{sub q}(g) with g any finite-dimensional complex simple Lie algebra. (orig./HSI).

  19. The planar algebra of a semisimple and cosemisimple Hopf algebra

    Indian Academy of Sciences (India)

    To a semisimple and cosemisimple Hopf algebra over an algebraically closed field, we associate a planar algebra defined by generators and relations and show that it is a connected, irreducible, spherical, non-degenerate planar algebra with non-zero modulus and of depth two. This association is shown to yield a bijection ...

  20. Lie n-algebras of BPS charges

    Energy Technology Data Exchange (ETDEWEB)

    Sati, Hisham [University of Pittsburgh,Pittsburgh, PA, 15260 (United States); Mathematics Program, Division of Science and Mathematics, New York University Abu Dhabi,Saadiyat Island, Abu Dhabi (United Arab Emirates); Schreiber, Urs [Mathematics Institute of the Academy,Žitna 25, Praha 1, 115 67 (Czech Republic)

    2017-03-16

    We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p+1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane charges as they are lifted from ordinary cohomology to twisted K-theory. This supports the proposal that M-brane charges live in a twisted cohomology theory.

  1. Yoneda algebras of almost Koszul algebras

    Indian Academy of Sciences (India)

    School of Mathematics and Physics, University of South China, Hengyang,. Hunan, People's Republic of China. E-mail: zhenglijing817@163.com. MS received 4 September 2013; revised 14 ... (Ŵ0,Ŵ0) with multiplication defined by the Yoneda product. In the rest of the paper, we fix a finite dimensional k-algebra S ∼= k × k ...

  2. Generalized Poincare algebras, Hopf algebras and {kappa}-Minkowski spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Kovacevic, D., E-mail: domagoj.kovacevic@fer.hr [Faculty of Electrical Engineering and Computing, Unska 3, HR-10000 Zagreb (Croatia); Meljanac, S., E-mail: meljanac@irb.hr [Rudjer Boskovic Institute, Bijenicka c. 54, HR-10002 Zagreb (Croatia); Pachol, A., E-mail: pachol@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik (Iceland); Strajn, R., E-mail: rina.strajn@gmail.com [Rudjer Boskovic Institute, Bijenicka c. 54, HR-10002 Zagreb (Croatia)

    2012-05-01

    We propose a generalized description for the {kappa}-Poincare-Hopf algebra as a symmetry quantum group of underlying {kappa}-Minkowski spacetime. We investigate all the possible implementations of (deformed) Lorentz algebras which are compatible with the given choice of {kappa}-Minkowski algebra realization. For the given realization of {kappa}-Minkowski spacetime there is a unique {kappa}-Poincare-Hopf algebra with undeformed Lorentz algebra. We have constructed a three-parameter family of deformed Lorentz generators with {kappa}-Poincare algebras which are related to {kappa}-Poincare-Hopf algebra with undeformed Lorentz algebra. Known bases of {kappa}-Poincare-Hopf algebra are obtained as special cases. Also deformation of igl(4) Hopf algebra compatible with the {kappa}-Minkowski spacetime is presented. Some physical applications are briefly discussed.

  3. Feynman graphs and related Hopf algebras

    Energy Technology Data Exchange (ETDEWEB)

    Duchamp, G H E [Institut Galilee, LIPN, CNRS UMR 7030 99 Av. J.-B. Clement, F-93430 Villetaneuse (France); Blasiak, P [H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences ul. Eliasza-Radzikowskiego 152, PL 31342 Cracow (Poland); Horzela, A [H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences ul. Eliasza-Radzikowskiego 152, PL 31342 Cracow (Poland); Penson, K A [Laboratoire de Physique Theorique de la Matiere Condensee Universite Pierre et Marie Curie, CNRS UMR 7600 Tour 24 - 2ieme et., 4 pl. Jussieu, F 75252 Paris Cedex 05 (France); Solomon, A I [Laboratoire de Physique Theorique de la Matiere Condensee Universite Pierre et Marie Curie, CNRS UMR 7600 Tour 24 - 2ieme et., 4 pl. Jussieu, F 75252 Paris Cedex 05 (France); Open University, Physics and Astronomy Department Milton Keynes MK7 6AA (United Kingdom)

    2006-02-28

    In a recent series of communications we have shown that the reordering problem of bosons leads to certain combinatorial structures. These structures may be associated with a certain graphical description. In this paper, we show that there is a Hopf Algebra structure associated with this problem which is, in a certain sense, unique.

  4. Brauer algebras of type B

    NARCIS (Netherlands)

    Cohen, A.M.; Liu, S.

    2015-01-01

    For each n ≥ 1, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular

  5. On Genetic and Evolution Algebras

    Science.gov (United States)

    Qaralleh, Izzat

    2017-03-01

    The genetic and evolution algebras generally are non-associative algebra. The concept of evolution and genetic algebras were introduced to answer the question what non-Mendelian genetics offers to mathematics. This paper we review some results of evolution and genetic algebras.

  6. Counting relations on Ockham algebras

    OpenAIRE

    Davey, Brian A.; Nguyen, Long T.; Pitkethly, Jane G.

    2015-01-01

    We find all finite Ockham algebras that admit only finitely many compatible relations (modulo a natural equivalence). Up to isomorphism and symmetry, these Ockham algebras form two countably infinite families: one family consists of the quasi-primal Ockham algebras, and the other family is a sequence of generalised Stone algebras.

  7. A Richer Understanding of Algebra

    Science.gov (United States)

    Foy, Michelle

    2008-01-01

    Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number,…

  8. Typing linear algebra: A biproduct-oriented approach

    OpenAIRE

    Macedo, Hugo,; Oliveira, José de

    2013-01-01

    Interested in formalizing the generation of fast running code for linear algebra applications, the authors show how an index-free, calculational approach to matrix algebra can be developed by regarding matrices as morphisms of a category with biproducts. This shifts the traditional view of matrices as indexed structures to a type-level perspective analogous to that of the pointfree algebra of programming. The derivation of fusion, cancellation and abide laws from the biproduct equations makes...

  9. Fundamental fermion interactions via vector bosons of unified SU(2 x SU(4 gauge fields

    Directory of Open Access Journals (Sweden)

    Eckart eMarsch

    2016-02-01

    Full Text Available Employing the fermion unification model based on the intrinsic SU(8 symmetry of a generalized Dirac equation, we discuss the fundamental interactions under the SU(8=SU(2$otimes$SU(4 symmetry group. The physics involved can describe all fermions, the leptons (electron and neutrino, and the coloured up and down quarks of the first generation in the standard model (SM by a complex SU(8 octet of Dirac spinor fields. The fermion interactions are found to be mediated by the unified SU(4 and SU(2 vector gauge boson fields, which include the photon, the gluons, and the bosons $Z$ and $W$ as well known from the SM, but also comprise new ones, namely three coloured $X$ bosons carrying a fractional hypercharge of $pm4/3$ and transmuting leptons into quarks and vice versa. The full covariant derivative of the model is derived and discussed. The Higgs mechanism gives mass to the $Z$ and $W$ bosons, but also permits one to derive the mass of the coloured $X$ boson, for which depending on the choice of the values of the coupling constant, the estimates are 35~GeV or 156~GeV, values that are well within reach of the LHC. The scalar Higgs field can also lend masses to the fermions and fix their physical values for given appropriate coupling constants to that field.

  10. Endomorphisms of graph algebras

    DEFF Research Database (Denmark)

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D......_E of C*(E). Our results pertain both automorphisms and proper endomorphisms. Firstly, the Weyl group and the restricted Weyl group of a graph C*-algebra are introduced and investigated. In particular, criteria of outerness for automorphisms in the restricted Weyl group are found. We also show...

  11. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  12. Bundles of Banach algebras

    Directory of Open Access Journals (Sweden)

    J. W. Kitchen

    1994-01-01

    Full Text Available We study bundles of Banach algebras π:A→X, where each fiber Ax=π−1({x} is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers are commutative, we investigate how the Gelfand representation of the section space algebra Γ(π relates to the Gelfand representation of the fibers. In the general case, we investigate how adjoining an identity to the bundle π:A→X relates to the standard adjunction of identities to the fibers.

  13. A Babylonian Geometrical Algebra.

    Science.gov (United States)

    Bidwell, James K.

    1986-01-01

    A possible method of derivation of prescriptions for solving problems, found in Babylonian cuneiform texts, is presented. It is a kind of "geometric algebra" based mainly on one figure and the manipulation of or within various areas and segments. (MNS)

  14. Lie groups, lie algebras, and representations an elementary introduction

    CERN Document Server

    Hall, Brian

    2015-01-01

    This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compac...

  15. Representation theory a homological algebra point of view

    CERN Document Server

    Zimmermann, Alexander

    2014-01-01

      Introducing the representation theory of groups and finite dimensional algebras, this book first studies basic non-commutative ring theory, covering the necessary background of elementary homological algebra and representations of groups to block theory. It further discusses vertices, defect groups, Green and Brauer correspondences and Clifford theory. Whenever possible the statements are presented in a general setting for more general algebras, such as symmetric finite dimensional algebras over a field. Then, abelian and derived categories are introduced in detail and are used to explain stable module categories, as well as derived categories and their main invariants and links between them. Group theoretical applications of these theories are given – such as the structure of blocks of cyclic defect groups – whenever appropriate. Overall, many methods from the representation theory of algebras are introduced. Representation Theory assumes only the most basic knowledge of linear algebra, groups, rings ...

  16. Beginning algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Beginning Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in algebra. The publication first elaborates on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on solving linear systems by graphing, elimination method, graphing ordered pairs and straight lines, linear and compound inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then examines exponents and polynomials, factoring, and rational expressions. Topics include multiplication and division

  17. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  18. Intermediate algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex

  19. The Boolean algebra of Galois algebras

    Directory of Open Access Journals (Sweden)

    Lianyong Xue

    2003-02-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B|bx=g(xb for all x∈B} for each g∈G, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|g∈G}, e a nonzero element in Ba, and He={g∈G|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.

  20. C*-algebras and numerical linear algebra

    CERN Document Server

    Arveson, W

    1992-01-01

    We consider problems associated with the computation of spectra of self-adjoint operators in terms of the eigenvalue distributions of their n x n sections. Under rather general circumstances, we show how these eigenvalues accumulate near points of the essential spectrum of the given operator, and we prove that their averages converge to a measure concentrated precisely on the essential spectrum. In the primary cases of interest, namely the discretized Hamiltonians of one-dimensional quantum systems, this limiting measure is associated with a tracial state on a certain simple C*-algebra. These results have led us to conclude that one must view this kind of numerical analysis in the context of C*-algebras.

  1. Algebras in genetics

    CERN Document Server

    Wörz-Busekros, Angelika

    1980-01-01

    The purpose of these notes is to give a rather complete presentation of the mathematical theory of algebras in genetics and to discuss in detail many applications to concrete genetic situations. Historically, the subject has its origin in several papers of Etherington in 1939- 1941. Fundamental contributions have been given by Schafer, Gonshor, Holgate, Reiers¢l, Heuch, and Abraham. At the moment there exist about forty papers in this field, one survey article by Monique Bertrand from 1966 based on four papers of Etherington, a paper by Schafer and Gonshor's first paper. Furthermore Ballonoff in the third section of his book "Genetics and Social Structure" has included four papers by Etherington and Reiers¢l's paper. Apparently a complete review, in par­ ticular one comprising more recent results was lacking, and it was difficult for students to enter this field of research. I started to write these notes in spring 1978. A first german version was finished at the end of that year. Further revision and tran...

  2. Hecke algebras with unequal parameters

    CERN Document Server

    Lusztig, G

    2003-01-01

    Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...

  3. Division algebras and extended super KdVs

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: toppan@cbpf.br

    2001-05-01

    The division algebras R, C, H, O are used to construct and analyze the N = 1, 2, 4, 8 supersymmetric extensions of the KdV hamiltonian equation. In particular a global N = 8 super-KdV system is introduced and shown to admit a Poisson bracket structure given by the 'Non-Associate N = 8 Superconformal Algebra'. (author)

  4. C*-algebras by example

    CERN Document Server

    Davidson, Kenneth R

    1996-01-01

    The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea

  5. Algebra II workbook for dummies

    CERN Document Server

    Sterling, Mary Jane

    2014-01-01

    To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr

  6. Non-commutative multiple-valued logic algebras

    CERN Document Server

    Ciungu, Lavinia Corina

    2014-01-01

    This monograph provides a self-contained and easy-to-read introduction to non-commutative multiple-valued logic algebras; a subject which has attracted much interest in the past few years because of its impact on information science, artificial intelligence and other subjects.   A study of the newest results in the field, the monograph includes treatment of pseudo-BCK algebras, pseudo-hoops, residuated lattices, bounded divisible residuated lattices, pseudo-MTL algebras, pseudo-BL algebras and pseudo-MV algebras. It provides a fresh perspective on new trends in logic and algebras in that algebraic structures can be developed into fuzzy logics which connect quantum mechanics, mathematical logic, probability theory, algebra and soft computing.   Written in a clear, concise and direct manner, Non-Commutative Multiple-Valued Logic Algebras will be of interest to masters and PhD students, as well as researchers in mathematical logic and theoretical computer science.

  7. Regularity of C*-algebras and central sequence algebras

    DEFF Research Database (Denmark)

    Christensen, Martin S.

    The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...

  8. Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra

    CERN Document Server

    Pitsch, Wolfgang; Zarzuela, Santiago

    2016-01-01

    This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...

  9. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    Science.gov (United States)

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  10. The planar algebra associated to a Kac algebra

    Indian Academy of Sciences (India)

    of the planar algebra associated with the subfactor corresponding to (an outer action on a factor by) a finite-dimensional Kac algebra. One of the relations shows that the antipode of the Kac algebra agrees with the `rotation on 2-boxes'.

  11. Complex Algebraic Varieties

    CERN Document Server

    Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf

    1992-01-01

    The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...

  12. Complex algebraic geometry

    CERN Document Server

    Kollár, János

    1997-01-01

    This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

  13. Algebraic number theory

    CERN Document Server

    Jarvis, Frazer

    2014-01-01

    The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...

  14. Higher regulators, algebraic

    CERN Document Server

    Bloch, Spencer J

    2000-01-01

    This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.

  15. Basic linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  16. Computer Program For Linear Algebra

    Science.gov (United States)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  17. International Conference on Semigroups, Algebras and Operator Theory

    CERN Document Server

    Meakin, John; Rajan, A

    2015-01-01

    This book discusses recent developments in semigroup theory and its applications in areas such as operator algebras, operator approximations and category theory. All contributing authors are eminent researchers in their respective fields, from across the world. Their papers, presented at the 2014 International Conference on Semigroups, Algebras and Operator Theory in Cochin, India, focus on recent developments in semigroup theory and operator algebras. They highlight current research activities on the structure theory of semigroups as well as the role of semigroup theoretic approaches to other areas such as rings and algebras. The deliberations and discussions at the conference point to future research directions in these areas. This book presents 16 unpublished, high-quality and peer-reviewed research papers on areas such as structure theory of semigroups, decidability vs. undecidability of word problems, regular von Neumann algebras, operator theory and operator approximations. Interested researchers will f...

  18. Integrable systems in the realm of algebraic geometry

    CERN Document Server

    Vanhaecke, Pol

    2001-01-01

    This book treats the general theory of Poisson structures and integrable systems on affine varieties in a systematic way. Special attention is drawn to algebraic completely integrable systems. Several integrable systems are constructed and studied in detail and a few applications of integrable systems to algebraic geometry are worked out. In the second edition some of the concepts in Poisson geometry are clarified by introducting Poisson cohomology; the Mumford systems are constructed from the algebra of pseudo-differential operators, which clarifies their origin; a new explanation of the multi Hamiltonian structure of the Mumford systems is given by using the loop algebra of sl(2); and finally Goedesic flow on SO(4) is added to illustrate the linearizatin algorith and to give another application of integrable systems to algebraic geometry.

  19. Partially ordered algebraic systems

    CERN Document Server

    Fuchs, Laszlo

    2011-01-01

    Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

  20. Principles of algebraic geometry

    CERN Document Server

    Griffiths, Phillip A

    1994-01-01

    A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top

  1. Algebraic geometric codes

    Science.gov (United States)

    Shahshahani, M.

    1991-01-01

    The performance characteristics are discussed of certain algebraic geometric codes. Algebraic geometric codes have good minimum distance properties. On many channels they outperform other comparable block codes; therefore, one would expect them eventually to replace some of the block codes used in communications systems. It is suggested that it is unlikely that they will become useful substitutes for the Reed-Solomon codes used by the Deep Space Network in the near future. However, they may be applicable to systems where the signal to noise ratio is sufficiently high so that block codes would be more suitable than convolutional or concatenated codes.

  2. Elementary algebraic geometry

    CERN Document Server

    Kendig, Keith

    2015-01-01

    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  3. Algebraic curves and cryptography

    CERN Document Server

    Murty, V Kumar

    2010-01-01

    It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on

  4. Handbook of linear algebra

    CERN Document Server

    Hogben, Leslie

    2013-01-01

    With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

  5. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  6. Helmholtz algebraic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  7. Algebra with Galois theory

    CERN Document Server

    Artin, Emil

    2007-01-01

    The present text was first published in 1947 by the Courant Institute of Mathematical Sciences of New York University. Published under the title Modern Higher Algebra. Galois Theory, it was based on lectures by Emil Artin and written by Albert A. Blank. This volume became one of the most popular in the series of lecture notes published by Courant. Many instructors used the book as a textbook, and it was popular among students as a supplementary text as well as a primary textbook. Because of its popularity, Courant has republished the volume under the new title Algebra with Galois Theory.

  8. Linear Algebra Thoroughly Explained

    CERN Document Server

    Vujičić, Milan

    2008-01-01

    Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.

  9. Algebraic number theory

    CERN Document Server

    Weiss, Edwin

    1998-01-01

    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

  10. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  11. Algebra & trigonometry I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq

  12. Twisted Quantum Affine Algebras

    Science.gov (United States)

    Chari, Vyjayanthi; Pressley, Andrew

    We give a highest weight classification of the finite-dimensional irreducible representations of twisted quantum affine algebras. As in the untwisted case, such representations are in one-to-one correspondence with n-tuples of monic polynomials in one variable. But whereas in the untwisted case n is the rank of the underlying finite-dimensional complex simple Lie algebra ?, in the twisted case n is the rank of the subalgebra of ? fixed by the diagram automorphism. The way in which such an n-tuple determines a representation is also more complicated than in the untwisted case.

  13. Quantum affine algebras

    Science.gov (United States)

    Chari, Vyjayanthi; Pressley, Andrew

    1991-12-01

    We classify the finite-dimensional irreducible representations of the quantum affine algebraU_q (hat sl_2 ) in terms of highest weights (this result has a straightforward generalization for arbitrary quantum affine algebras). We also give an explicit construction of all such representations by means of an evaluation homomorphismU_q (hat sl_2 ) to U_q (sl_2 ), first introduced by M. Jimbo. This is used to compute the trigonometric R-matrices associated to finite-dimensional representations ofU_q (hat sl_2 ).

  14. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1998-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  15. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1975-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  16. Methods of algebraic geometry in control theory

    CERN Document Server

    Falb, Peter

    1999-01-01

    "Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...

  17. Hyper-lattice algebraic model for data warehousing

    CERN Document Server

    Sen, Soumya; Chaki, Nabendu

    2016-01-01

    This book presents Hyper-lattice, a new algebraic model for partially ordered sets, and an alternative to lattice. The authors analyze some of the shortcomings of conventional lattice structure and propose a novel algebraic structure in the form of Hyper-lattice to overcome problems with lattice. They establish how Hyper-lattice supports dynamic insertion of elements in a partial order set with a partial hierarchy between the set members. The authors present the characteristics and the different properties, showing how propositions and lemmas formalize Hyper-lattice as a new algebraic structure.

  18. Algebraic special functions and SO(3,2)

    Energy Technology Data Exchange (ETDEWEB)

    Celeghini, E., E-mail: celeghini@fi.infn.it [Dipartimento di Fisica, Università di Firenze and INFN–Sezione di Firenze, I50019 Sesto Fiorentino, Firenze (Italy); Olmo, M.A. del, E-mail: olmo@fta.uva.es [Departamento de Física Teórica and IMUVA, Universidad de Valladolid, E-47011, Valladolid (Spain)

    2013-06-15

    A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L{sup 2} functions defined on (−1,1)×Z and on the sphere S{sup 2}, respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining in this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L{sup 2} functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L{sup 2} functions.

  19. Denotational semantics for thread algebra

    NARCIS (Netherlands)

    Vu, T.D.

    2008-01-01

    This paper gives a denotational semantics for thread algebra (TA), an algebraic framework for the description and analysis of recent programming languages such as C# and Java [J.A. Bergstra, C.A. Middelburg, Thread algebra for strategic interleaving, Formal Aspects of Computing, in press.

  20. Process Algebra and Markov Chains

    NARCIS (Netherlands)

    Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.

    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  1. Challenges in Computational Commutative Algebra

    OpenAIRE

    Abbott, John

    2006-01-01

    In this paper we consider a number of challenges from the point of view of the CoCoA project one of whose tasks is to develop software specialized for computations in commutative algebra. Some of the challenges extend considerably beyond the boundary of commutative algebra, and are addressed to the computer algebra community as a whole.

  2. On Weak-BCC-Algebras

    Science.gov (United States)

    Thomys, Janus; Zhang, Xiaohong

    2013-01-01

    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  3. Crossed Products and MF algebras

    OpenAIRE

    Li, Weihua; Orfanos, Stefanos

    2013-01-01

    We prove that the crossed product AxG of a unital finitely generated MF algebra A by a discrete finitely generated amenable residually finite group G is an MF algebra, provided that the action is almost periodic. This generalizes a result of Hadwin and Shen. We also construct two examples of crossed product C*-algebras whose BDF Ext semigroups are not groups.

  4. Exotic group C*-algebras

    OpenAIRE

    Wiersma, Matthew

    2014-01-01

    Let $\\Gamma$ be a discrete group. When $\\Gamma$ is nonamenable, the reduced and full group $C$*-algebras differ and it is generally believed that there should be many intermediate $C$*-algebras, however few examples are known. In this paper we give new constructions and compare existing constructions of intermediate group $C$*-algebras for both generic and specific groups $\\Gamma$.

  5. Meadow enriched ACP process algebras

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2009-01-01

    We introduce the notion of an ACP process algebra. The models of the axiom system ACP are the origin of this notion. ACP process algebras have to do with processes in which no data are involved. We also introduce the notion of a meadow enriched ACP process algebra, which is a simple generalization

  6. An algebra of reversible computation.

    Science.gov (United States)

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  7. Orthogonal symmetries and Clifford algebras

    Indian Academy of Sciences (India)

    16]). Finite dimensional simple algebras with involution form an important class of algebras with involution whose properties are relatively well understood. By a theorem due to. Albert, a central simple K-algebra A carries an involution fixing K if ...

  8. Circle Maps and C*-algebras

    DEFF Research Database (Denmark)

    Schmidt, Thomas Lundsgaard

    Let $\\T$ be the unit circle in the complex plane, and let $\\phi:\\T\\to\\T$ be a map which is continuous, surjective and piecewise monotone. We stress that $\\phi$ is allowed to have critical points. This thesis introduces a construction of a two \\'etale groupoids, $\\Gamma_\\phi$, $\\Gamma_\\phi^+$, from...... such a map, generalising the transformation groupoid of a local homeomorphism first introduced by Renault in \\cite{re}. We conduct a detailed study of the relationship between the dynamics of $\\phi$, the properties of these groupoids, the structure of their corresponding reduced groupoid $C^*$-algebras, and......, for certain classes of maps, the K-theory of these algebras. When the map $\\phi$ is transitive, we show that the algebras $C^*_r(\\Gamma_\\phi)$ and $C^*_r(\\Gamma_\\phi^+)$ are purely infinite and satisfy the Universal Coefficient Theorem. Furthermore, we find necessary and sufficient conditions for simplicity...

  9. A stochastic causality-based process algebra

    NARCIS (Netherlands)

    Brinksma, Hendrik; Katoen, Joost P.; Langerak, Romanus; Latella, Diego

    1995-01-01

    This paper discusses stochastic extensions of a simple process algebra in a causality-based setting. Atomic actions are supposed to happen after a delay that is determined by a stochastic variable with a certain distribution. A simple stochastic type of event structures is discussed, restricting the

  10. Commutative algebra with a view toward algebraic geometry

    CERN Document Server

    Eisenbud, David

    1995-01-01

    Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...

  11. Rings of quotients of incidence algebras and path algebras

    DEFF Research Database (Denmark)

    Esparza, Eduardo Ortega

    2006-01-01

    We compute the maximal right/left/symmetric rings of quotients of finite dimensional incidence and graph algebras. We show that these rings of quotients are Morita equivalent to incidence algebras and path algebras respectively, with respect to simpler, well determined partially ordered sets and ...... and finite quivers, respectively. The geometric background of these algebras gives us an intuitive idea of the construction of their maximal ring of quotients.......We compute the maximal right/left/symmetric rings of quotients of finite dimensional incidence and graph algebras. We show that these rings of quotients are Morita equivalent to incidence algebras and path algebras respectively, with respect to simpler, well determined partially ordered sets...

  12. Discourses on Algebra

    Indian Academy of Sciences (India)

    To the Indian reader, the word discourse, evokes a respected figure interpreting divine wisdom to common folk in an accessible fash- ion. I dug a bit deeper with Google trans- late, and found that the original Russian ti- tle of Shafarevich's book was more like Se- lected Chapters of Algebra and that it was first published in a ...

  13. Real space process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1993-01-01

    The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication

  14. Algebraic geometry in India

    Indian Academy of Sciences (India)

    revolutionised by the introduction of new con- cepts and techniques by Grothendieck and others; this progress has been instrumental in solving outstanding and famous problems not only in algebraic geometry but also in related fields like number theory. Mathematicians from India have made influ- ential and extensive ...

  15. Pseudo-Weak-R0 Algebras

    Directory of Open Access Journals (Sweden)

    Yong Lin Liu

    2014-01-01

    Full Text Available A positive answer to the open problem of Iorgulescu on extending weak-R0 algebras and R0-algebras to the noncommutative forms is given. We show that pseudo-weak-R0 algebras are categorically isomorphic to pseudo-IMTL algebras and that pseudo-R0 algebras are categorically isomorphic to pseudo-NM algebras. Some properties, the noncommutative forms of the properties in weak-R0 algebras and R0-algebras, are investigated. The simplified axiom systems of pseudo-weak-R0 algebras and pseudo-R0 algebras are obtained.

  16. Advanced modern algebra part 2

    CERN Document Server

    Rotman, Joseph J

    2017-01-01

    This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.

  17. Applications of Kac-Moody Algebras in Quantum Field Theory.

    Science.gov (United States)

    Cougo Pinto, Marcus Venicius

    We apply methods of infinite dimensional algebras to the investigation of two objects from quantum field theory, namely, the vertex operator from bosonic string theory and the set of oscillators from a theory with small violations of the Pauli exclusion principle. For the theory with vertex operators we construct the affine algebra B_sp{l}{(1)} in terms of an underlying Lie-admissible not associative algebra; the construction provides us with a simple mechanism for the onset and elimination of an associativity anomaly involving fermionic variables. We study the Ignat'ev-Kuz'min and Greenberg-Mohapatra algebras, which define the theory with small violations of the Pauli exclusion principle. With the results thus obtained we construct representations of Kac-Moody and Virasoro algebras; those representations in turn are useful in providing some unitary structure for the theory.

  18. Some quantum Lie algebras of type D sub n positive

    CERN Document Server

    Bautista, C

    2003-01-01

    A quantum Lie algebra is constructed within the positive part of the Drinfeld-Jimbo quantum group of type D sub n. Our quantum Lie algebra structure includes a generalized antisymmetry property and a generalized Jacobi identity closely related to the braid equation. A generalized universal enveloping algebra of our quantum Lie algebra of type D sub n positive is proved to be the Drinfeld-Jimbo quantum group of the same type. The existence of such a generalized Lie algebra is reduced to an integer programming problem. Moreover, when the integer programming problem is feasible we show, by means of the generalized Jacobi identity, that the Poincare-Birkhoff-Witt theorem (basis) is still true.

  19. Planar Para Algebras, Reflection Positivity

    Science.gov (United States)

    Jaffe, Arthur; Liu, Zhengwei

    2017-05-01

    We define a planar para algebra, which arises naturally from combining planar algebras with the idea of ZN para symmetry in physics. A subfactor planar para algebra is a Hilbert space representation of planar tangles with parafermionic defects that are invariant under para isotopy. For each ZN, we construct a family of subfactor planar para algebras that play the role of Temperley-Lieb-Jones planar algebras. The first example in this family is the parafermion planar para algebra (PAPPA). Based on this example, we introduce parafermion Pauli matrices, quaternion relations, and braided relations for parafermion algebras, which one can use in the study of quantum information. An important ingredient in planar para algebra theory is the string Fourier transform (SFT), which we use on the matrix algebra generated by the Pauli matrices. Two different reflections play an important role in the theory of planar para algebras. One is the adjoint operator; the other is the modular conjugation in Tomita-Takesaki theory. We use the latter one to define the double algebra and to introduce reflection positivity. We give a new and geometric proof of reflection positivity by relating the two reflections through the string Fourier transform.

  20. Parallel and Scalable Sparse Basic Linear Algebra Subprograms

    DEFF Research Database (Denmark)

    Liu, Weifeng

    Sparse basic linear algebra subprograms (BLAS) are fundamental building blocks for numerous scientific computations and graph applications. Compared with Dense BLAS, parallelization of Sparse BLAS routines entails extra challenges due to the irregularity of sparse data structures. This thesis...

  1. Entanglement classification with algebraic geometry

    Science.gov (United States)

    Sanz, M.; Braak, D.; Solano, E.; Egusquiza, I. L.

    2017-05-01

    We approach multipartite entanglement classification in the symmetric subspace in terms of algebraic geometry, its natural language. We show that the class of symmetric separable states has the structure of a Veronese variety and that its k-secant varieties are SLOCC invariants. Thus SLOCC classes gather naturally into families. This classification presents useful properties such as a linear growth of the number of families with the number of particles, and nesting, i.e. upward consistency of the classification. We attach physical meaning to this classification through the required interaction length of parent Hamiltonians. We show that the states W N and GHZ N are in the same secant family and that, effectively, the former can be obtained in a limit from the latter. This limit is understood in terms of tangents, leading to a refinement of the previous families. We compute explicitly the classification of symmetric states with N≤slant4 qubits in terms of both secant families and its refinement using tangents. This paves the way to further use of projective varieties in algebraic geometry to solve open problems in entanglement theory.

  2. Foliation theory in algebraic geometry

    CERN Document Server

    McKernan, James; Pereira, Jorge

    2016-01-01

    Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013.  Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...

  3. Algebraic Structure of Dynamical Systems

    Science.gov (United States)

    2017-05-22

    id) with the standard Cartesian coordinate system, i.e. the left most and bottom-most entry of D is identified with D(0, 0, . . . , 0). Specify blocks...nothing in mathematics that prohibits it. Some would argue that occurrences like this lie at the heart of the beauty of mathematics. However, this...r2, . . .. For example, the group Z 2 can be presented as Z2 = 〈e1, e2 | e1e2 = e2e1〉, where e1 and e2 are the standard coordinate vectors. 42 Let F

  4. A Representation of Lattice Effect Algebras by Means of Right Near Semirings with Involution

    Science.gov (United States)

    Chajda, Ivan; Länger, Helmut

    2017-12-01

    Since every lattice effect algebra decomposes into blocks which are MV-algebras and since every MV-algebra can be represented by a certain semiring with an antitone involution as shown by Belluce, Di Nola and Ferraioli, the natural question arises if a lattice effect algebra can also be represented by means of a semiring-like structure. This question is answered in the present paper by establishing a one-to-one correspondence between lattice effect algebras and certain right near semirings with an antitone involution.

  5. The algebra of supertraces for 2+1 super de Sitter gravity

    Science.gov (United States)

    Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.

    1993-01-01

    The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.

  6. Semi-algebraic function rings and reflectors of partially ordered rings

    CERN Document Server

    Schwartz, Niels

    1999-01-01

    The book lays algebraic foundations for real geometry through a systematic investigation of partially ordered rings of semi-algebraic functions. Real spectra serve as primary geometric objects, the maps between them are determined by rings of functions associated with the spectra. The many different possible choices for these rings of functions are studied via reflections of partially ordered rings. Readers should feel comfortable using basic algebraic and categorical concepts. As motivational background some familiarity with real geometry will be helpful. The book aims at researchers and graduate students with an interest in real algebra and geometry, ordered algebraic structures, topology and rings of continuous functions.

  7. Real algebraic geometry

    CERN Document Server

    Bochnak, Jacek; Roy, Marie-Françoise

    1998-01-01

    This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

  8. Split Malcev algebras

    Indian Academy of Sciences (India)

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  9. Algebra, Arithmetic, and Geometry

    CERN Document Server

    Tschinkel, Yuri

    2009-01-01

    The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont

  10. Algebra & trigonometry II essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica

  11. Modern algebra essentials

    CERN Document Server

    Lutfiyya, Lutfi A

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.

  12. KAES: An Expert System for the Algebraic Analysis of Kinship Terminologies

    OpenAIRE

    Read, Dwight W; Behrens, Cliff

    1990-01-01

    In this paper we discuss a new algebraic approach for analyzing kin terminology structure and describe a computer-based system being created to assist researchers in implementing the algebraic approach. A key aspect of our algebraic analysis is a shift away from a genealogical orientation to one of viewing a kinship terminology as a structured, culturally defined conceptual system. The basic idea is that a kinship terminology can be viewed as a structure consisting of a set of symbols (kin te...

  13. BLAS (Basic Linear Algebra Subroutines), Linear Algebra Modules and Supercomputers.

    Science.gov (United States)

    1984-12-31

    Linear Algebra Subroutines (BLAS) and linear algebra software modules in general. The need for these extensions and new sets of modules is largely due...potential computin .p"er. The participants represented most active groups in ilecar algebral , ware an were about equally divided among industry...discussions. Section 2 describes seven proposals for linear algebra software modules and Sec- tion 3 describes four presentations on the use of such

  14. Further linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Most of the introductory courses on linear algebra develop the basic theory of finite­ dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num­ ber of illustrative and worked examples, as well as many exercises that are strategi­ cally placed throughout the text. Solutions to the ex...

  15. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    Science.gov (United States)

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  16. Second-Order Algebraic Theories

    Science.gov (United States)

    Fiore, Marcelo; Mahmoud, Ola

    Fiore and Hur [10] recently introduced a conservative extension of universal algebra and equational logic from first to second order. Second-order universal algebra and second-order equational logic respectively provide a model theory and a formal deductive system for languages with variable binding and parameterised metavariables. This work completes the foundations of the subject from the viewpoint of categorical algebra. Specifically, the paper introduces the notion of second-order algebraic theory and develops its basic theory. Two categorical equivalences are established: at the syntactic level, that of second-order equational presentations and second-order algebraic theories; at the semantic level, that of second-order algebras and second-order functorial models. Our development includes a mathematical definition of syntactic translation between second-order equational presentations. This gives the first formalisation of notions such as encodings and transforms in the context of languages with variable binding.

  17. Symmetric linear systems - An application of algebraic systems theory

    Science.gov (United States)

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  18. Categorical Algebra and its Applications

    CERN Document Server

    1988-01-01

    Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.

  19. Kleene Algebra and Bytecode Verification

    Science.gov (United States)

    2016-04-27

    Bytecode 2005 Preliminary Version Kleene Algebra and Bytecode Verification Lucja Kot 1 Dexter Kozen 2 Department of Computer Science Cornell...first-order methods that inductively annotate program points with abstract values. In [6] we introduced a second-order approach based on Kleene algebra ...form a left-handed Kleene algebra . The dataflow labeling is not achieved by inductively labeling the program with abstract values, but rather by

  20. Applications of Computer Algebra Conference

    CERN Document Server

    Martínez-Moro, Edgar

    2017-01-01

    The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.

  1. Introduction to algebraic independence theory

    CERN Document Server

    Philippon, Patrice

    2001-01-01

    In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.

  2. Algebra I Essentials For Dummies

    CERN Document Server

    Sterling, Mary Jane

    2010-01-01

    With its use of multiple variables, functions, and formulas algebra can be confusing and overwhelming to learn and easy to forget. Perfect for students who need to review or reference critical concepts, Algebra I Essentials For Dummies provides content focused on key topics only, with discrete explanations of critical concepts taught in a typical Algebra I course, from functions and FOILs to quadratic and linear equations. This guide is also a perfect reference for parents who need to review critical algebra concepts as they help students with homework assignments, as well as for adult learner

  3. Computational aspects of algebraic curves

    CERN Document Server

    Shaska, Tanush

    2005-01-01

    The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove

  4. Nonassociativity, Malcev algebras and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Guenaydin, M. [Institute for Gravitation and the Cosmos and Physics Department, Penn State University, University Park, PA (United States); Minic, D. [Department of Physics, Virginia Tech, Blacksburg, VA (United States)

    2013-10-15

    Nonassociative structures have appeared in the study of D-branes in curved backgrounds. In recent work, string theory backgrounds involving three-form fluxes, where such structures show up, have been studied in more detail. We point out that under certain assumptions these nonassociative structures coincide with nonassociative Malcev algebras which had appeared in the quantum mechanics of systems with non-vanishing three-cocycles, such as a point particle moving in the field of a magnetic charge. We generalize the corresponding Malcev algebras to include electric as well as magnetic charges. These structures find their classical counterpart in the theory of Poisson-Malcev algebras and their generalizations. We also study their connection to Stueckelberg's generalized Poisson brackets that do not obey the Jacobi identity and point out that nonassociative string theory with a fundamental length corresponds to a realization of his goal to find a non-linear extension of quantum mechanics with a fundamental length. Similar nonassociative structures are also known to appear in the cubic formulation of closed string field theory in terms of open string fields, leading us to conjecture a natural string-field theoretic generalization of the AdS/CFT-like (holographic) duality. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Supersymmetry Breaking Threshold Corrections in the $SU(4)\\times SU(2)_L\\times SU(2)_R$ Model

    OpenAIRE

    Korakianitis, O.; Tracas, N. D.

    1993-01-01

    We evaluate the SUSY and top threshold effects in the context of the MSSM and the string derived model based on SU(4)$\\times$SU(2)$_L\\times$SU(2)$_R$. In both cases we run the two loop RGEs and determine the lower bounds of the supersymmetric particle masses, dictated by the experimentally accepted regions of the values of the low energy parameters.

  6. Matematica Para La Escuela Secundaria, Primer Curso de Algebra (Parte 1), Comentario. Traduccion Preliminar de la Edicion en Ingles Revisada. (Mathematics for High School, First Course in Algebra, Part 1, Teacher's Commentary. Translation of the Revised English Edition).

    Science.gov (United States)

    Allen, Frank B.; And Others

    This is the teacher's commentary for part one of a three-part SMSG algebra text for high school students. The principal objective of the text is to help the student develop an understanding and appreciation of some of the algebraic structure as a basis for the techniques of algebra. Chapter topics include congruence; numbers and variables;…

  7. Matematica Para La Escuela Secundaria, Primer Curso de Algebra (Parte 2), Comentario. Traduccion Preliminar de la Edicion en Ingles Revisada. (Mathematics for High School, First Course in Algebra, Part 2, Teacher's Commentary. Preliminary Translation of the Revised English Edition).

    Science.gov (United States)

    Allen, Frank B.; And Others

    This is the teacher's commentary for part two of a three-part SMSG algebra text for high school students. The principal objective of the text is to help the student develop an understanding and appreciation of some of the algebraic structure as a basis for the techniques of algebra. Chapter topics include addition and multiplication of real…

  8. Matematica Para La Escuela Secundaria, Primer Curso de Algebra (Parte 2). Traduccion Preliminar de la Edicion Inglesa Revisada. (Mathematics for High School, First Course in Algebra, Part 2. Preliminary Translation of the Revised English Edition).

    Science.gov (United States)

    Allen, Frank B.; And Others

    This is part two of a three-part SMSG algebra text for high school students. The principal objective of the text is to help the student develop an understanding and appreciation of some of the algebraic structure as a basis for the techniques of algebra. Chapter topics include addition and multiplication of real numbers, subtraction and division…

  9. Matematica Para La Escuela Secundaria, Primer Curso de Algebra (Parte 1). Traduccion Preliminar de la Edicion Inglesa Revisada. (Mathematics for High School, First Course in Algebra, Part 1. Preliminary Translation of the Revised English Edition).

    Science.gov (United States)

    Allen, Frank B.; And Others

    This is the student text for part one of a three-part SMSG algebra course for high school students. The principal objective of the text is to help the student develop an understanding and appreciation of some of the algebraic structure as a basis for the techniques of algebra. Chapter topics include congruence; numbers and variables; operations;…

  10. L{sub ∞} algebras and field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hohm, Olaf [Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY (United States); Zwiebach, Barton [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2017-03-15

    We review and develop the general properties of L{sub ∞} algebras focusing on the gauge structure of the associated field theories. Motivated by the L{sub ∞} homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the L{sub ∞} structure of general gauge invariant perturbative field theories. We sketch such formulations for non-abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an L{sub ∞} algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full L{sub ∞} algebra for the interacting theory. The analysis suggests that L{sub ∞} algebras provide a classification of perturbative gauge invariant classical field theories. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. States and Measures on Hyper BCK-Algebras

    Directory of Open Access Journals (Sweden)

    Xiao-Long Xin

    2014-01-01

    Full Text Available We define the notions of Bosbach states and inf-Bosbach states on a bounded hyper BCK-algebra (H,∘,0,e and derive some basic properties of them. We construct a quotient hyper BCK-algebra via a regular congruence relation. We also define a ∘-compatibled regular congruence relation θ and a θ-compatibled inf-Bosbach state s on (H,∘,0,e. By inducing an inf-Bosbach state s^ on the quotient structure H/[0]θ, we show that H/[0]θ is a bounded commutative BCK-algebra which is categorically equivalent to an MV-algebra. In addition, we introduce the notions of hyper measures (states/measure morphisms/state morphisms on hyper BCK-algebras, and present a relation between hyper state-morphisms and Bosbach states. Then we construct a quotient hyper BCK-algebra H/Ker(m by a reflexive hyper BCK-ideal Ker(m. Further, we prove that H/Ker(m is a bounded commutative BCK-algebra.

  12. Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras

    NARCIS (Netherlands)

    Put, Marius van der

    1999-01-01

    The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.

  13. Abstract Algebra to Secondary School Algebra: Building Bridges

    Science.gov (United States)

    Christy, Donna; Sparks, Rebecca

    2015-01-01

    The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

  14. A New Proof of the Pythagorean Theorem and Its Application to Element Decompositions in Topological Algebras

    Directory of Open Access Journals (Sweden)

    Fred Greensite

    2012-01-01

    Full Text Available We present a new proof of the Pythagorean theorem which suggests a particular decomposition of the elements of a topological algebra in terms of an “inverse norm” (addressing unital algebraic structure rather than simply vector space structure. One consequence is the unification of Euclidean norm, Minkowski norm, geometric mean, and determinant, as expressions of this entity in the context of different algebras.

  15. Kinship Algebra Expert System (KAES): A Software Implementation of a Cultural Theory

    OpenAIRE

    Read, Dwight W

    2006-01-01

    The computer program Kinship Algebra Expert System (KAES) provides a graphically based framework for constructing, if possible, a generative algebraic model for the structure of a kinship terminology (the terms used to refer to one’s kin). The algebraic modeling is based on a theory of kinship terminologies elaborated through writing the software program. The theory relates the properties and structure of kinship terminologies to an underlying logic that the KAES program helps uncover and mod...

  16. On split Lie algebras with symmetric root systems

    Indian Academy of Sciences (India)

    and α(h) = (h|hαi ) for every h ∈ H. This notion depends on the Hilbert space structure of an L∗. -algebra. In the study of semisimple locally finite split Lie algebras over a field of characteristic zero K [5], Stumme introduces the next definition (Definition III.21 of [5]):. A subsetM of nonzero roots is called irreducible if for every ...

  17. On the bialgebra of functional graphs and differential algebras

    Directory of Open Access Journals (Sweden)

    Maurice Ginocchio

    1997-12-01

    Full Text Available We develop the bialgebraic structure based on the set of functional graphs, which generalize the case of the forests of rooted trees. We use noncommutative polynomials as generating monomials of the functional graphs, and we introduce circular and arborescent brackets in accordance with the decomposition in connected components of the graph of a mapping of {1, 2, …, n} in itself as in the frame of the discrete dynamical systems. We give applications fordifferential algebras and algebras of differential operators.

  18. Quadratic forms and Clifford algebras on derived stacks

    OpenAIRE

    Vezzosi, Gabriele

    2013-01-01

    In this paper we present an approach to quadratic structures in derived algebraic geometry. We define derived n-shifted quadratic complexes, over derived affine stacks and over general derived stacks, and give several examples of those. We define the associated notion of derived Clifford algebra, in all these contexts, and compare it with its classical version, when they both apply. Finally, we prove three main existence results for derived shifted quadratic forms over derived stacks, define ...

  19. Geometric Algebra Computing

    CERN Document Server

    Corrochano, Eduardo Bayro

    2010-01-01

    This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int

  20. Handbook of algebra

    CERN Document Server

    Hazewinkel, M

    2008-01-01

    Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it i

  1. Matlab linear algebra

    CERN Document Server

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to

  2. Algebraic Statistics for Network Models

    Science.gov (United States)

    2014-02-19

    use algebra, combinatorics and Markov bases to give a constructing way of answering this question for ERGMs of interest. Question 2: How do we model...for every function. 06/06/13 Petrović. Manuscripts 8, 10. Invited lecture at the Scientific Session on Commutative Algebra and Combinatorics at the

  3. Patterns to Develop Algebraic Reasoning

    Science.gov (United States)

    Stump, Sheryl L.

    2011-01-01

    What is the role of patterns in developing algebraic reasoning? This important question deserves thoughtful attention. In response, this article examines some differing views of algebraic reasoning, discusses a controversy regarding patterns, and describes how three types of patterns--in contextual problems, in growing geometric figures, and in…

  4. Process algebra for performance evaluation

    NARCIS (Netherlands)

    Hermanns, H.; Herzog, Ulrich; Katoen, Joost P.

    2002-01-01

    This paper surveys the theoretical developments in the field of stochastic process algebras, process algebras where action occurrences may be subject to a delay that is determined by a random variable. A huge class of resource-sharing systems – like large-scale computers, client–server

  5. Algebraic Methods in Plane Geometry

    Indian Academy of Sciences (India)

    Srimath

    group, taxicab number, Carmi- chael number. Algebraic Methods in Plane Geometry. 2. Cubic Curves. Shailesh A Shirali. Shailesh Shirali heads a. Community Mathematics. Center at Rishi Valley. School (KFI). He has a ..... Ian Stewart and David Tall, Algebraic Number Theory and Fermat's Last. Theorem, A K Peters, 2002.

  6. Templates for Linear Algebra Problems

    NARCIS (Netherlands)

    Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der

    1995-01-01

    The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and

  7. A distinguished real Banach algebra

    Indian Academy of Sciences (India)

    ˆfnzn . With respect to the usual pointwise operations of addition, multiplication and scalar- multiplication by reals, Cs(T) and As become real algebras. When As is endowed with the supremum norm, then As is isomorphically isometric to the real Banach algebra, AR(D), of all holomorphic functions on the disk that are real on.

  8. Astro Algebra [CD-ROM].

    Science.gov (United States)

    1997

    Astro Algebra is one of six titles in the Mighty Math Series from Edmark, a comprehensive line of math software for students from kindergarten through ninth grade. Many of the activities in Astro Algebra contain a unique technology that uses the computer to help students make the connection between concrete and abstract mathematics. This software…

  9. Linear Algebra and Image Processing

    Science.gov (United States)

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  10. Revisiting timing in process algebra

    NARCIS (Netherlands)

    Middelburg, C.A.

    We shortly review the framework of process algebras with timing presented by Baeten and Middelburg [Handbook of Process Algebra, Elsevier, 2001, Chapter 10]. In order to cover processes that are capable of performing certain actions at all points in some time interval, we add integration to the

  11. Waterloo Workshop on Computer Algebra

    CERN Document Server

    Zima, Eugene; WWCA-2016; Advances in computer algebra : in honour of Sergei Abramov's' 70th birthday

    2018-01-01

    This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016.   This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.

  12. Representations of affine Hecke algebras

    CERN Document Server

    Xi, Nanhua

    1994-01-01

    Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest

  13. Elements of algebraic coding systems

    CERN Document Server

    Cardoso da Rocha, Jr, Valdemar

    2014-01-01

    Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...

  14. Basic algebraic geometry, v.2

    CERN Document Server

    Shafarevich, Igor Rostislavovich

    1994-01-01

    Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...

  15. Rota-Baxter algebras and the Hopf algebra of renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi-Fard, K.

    2006-06-15

    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  16. (Modular Effect Algebras are Equivalent to (Frobenius Antispecial Algebras

    Directory of Open Access Journals (Sweden)

    Dusko Pavlovic

    2017-01-01

    Full Text Available Effect algebras are one of the generalizations of Boolean algebras proposed in the quest for a quantum logic. Frobenius algebras are a tool of categorical quantum mechanics, used to present various families of observables in abstract, often nonstandard frameworks. Both effect algebras and Frobenius algebras capture their respective fragments of quantum mechanics by elegant and succinct axioms; and both come with their conceptual mysteries. A particularly elegant and mysterious constraint, imposed on Frobenius algebras to characterize a class of tripartite entangled states, is the antispecial law. A particularly contentious issue on the quantum logic side is the modularity law, proposed by von Neumann to mitigate the failure of distributivity of quantum logical connectives. We show that, if quantum logic and categorical quantum mechanics are formalized in the same framework, then the antispecial law of categorical quantum mechanics corresponds to the natural requirement of effect algebras that the units are each other's unique complements; and that the modularity law corresponds to the Frobenius condition. These correspondences lead to the equivalence announced in the title. Aligning the two formalisms, at the very least, sheds new light on the concepts that are more clearly displayed on one side than on the other (such as e.g. the orthogonality. Beyond that, it may also open up new approaches to deep and important problems of quantum mechanics (such as the classification of complementary observables.

  17. Parsing with Regular Expressions & Extensions to Kleene Algebra

    DEFF Research Database (Denmark)

    Grathwohl, Niels Bjørn Bugge

    to do so. To be optimal, the algorithm performs a PSPACE-complete preprocessing step; for a fixed RE the running time is linear in the input size. Finally, we present and implement a determinization procedure, omitting the preprocessing step, and a surface language, Kleenex, for expressing general...... string transductions. We have implemented a compiler that translates Kleenex programs into efficient C code. The resulting programs are essentially optimally streaming, run in worst-case linear time in the input size, and show consistent high performance in the 1 Gbps range on various use cases....... In the second part of this thesis, we study two extensions to Kleene algebra. Chomsky algebra is an algebra with a structure similar to Kleene algebra, but with a generalized mu-operator for recursion instead of the Kleene star. We show that the axioms of idempotent semirings along with continuity of the mu...

  18. Head First Algebra A Learner's Guide to Algebra I

    CERN Document Server

    Pilone, Tracey

    2008-01-01

    Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i

  19. A Verified Algebra for Linked Data

    Directory of Open Access Journals (Sweden)

    Ross Horne

    2011-07-01

    Full Text Available A foundation is investigated for the application of loosely structured data on the Web. This area is often referred to as Linked Data, due to the use of URIs in data to establish links. This work focuses on emerging W3C standards which specify query languages for Linked Data. The approach is to provide an abstract syntax to capture Linked Data structures and queries, which are then internalised in a process calculus. An operational semantics for the calculus specifies how queries, data and processes interact. A labelled transition system is shown to be sound with respect to the operational semantics. Bisimulation over the labelled transition system is used to verify an algebra over queries. The derived algebra is a contribution to the application domain. For instance, the algebra may be used to rewrite a query to optimise its distribution across a cluster of servers. The framework used to provide the operational semantics is powerful enough to model related calculi for the Web.

  20. Multifractal vector fields and stochastic Clifford algebra.

    Science.gov (United States)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  1. Applications of computer algebra

    CERN Document Server

    1985-01-01

    Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with in­ creasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equa­ tion and obtains a closed for...

  2. MATLAB matrix algebra

    CERN Document Server

    Pérez López, César

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...

  3. Algebraic topology and concurrency

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric

    2006-01-01

    We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...... differences between ordinary and directed homotopy through examples. We also relate the topological view to a combinatorial view of concurrent programs closer to transition systems, through the notion of a cubical set. Finally we apply some of these concepts to the proof of the safeness of a two......-phase protocol, well-known and used in concurrent database theory. We end up with a list of problems from both a mathematical and a computer-scientific point of view....

  4. Space-time algebra

    CERN Document Server

    Hestenes, David

    2015-01-01

    This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, a...

  5. Quantized Algebra I Texts

    Science.gov (United States)

    DeBuvitz, William

    2014-03-01

    I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a popular Algebra I textbook, and I was surprised and dismayed by how it treated simultaneous equations and quadratic equations. The coefficients are always simple integers in examples and exercises, even when they are related to physics. This is probably a good idea when these topics are first presented to the students. It makes it easy to solve simultaneous equations by the method of elimination of a variable. And it makes it easy to solve some quadratic equations by factoring. The textbook also discusses the method of substitution for linear equations and the use of the quadratic formula, but only with simple integers.

  6. Algebraic Multigrid Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    2017-08-01

    AMG is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the BoomerAMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL and is very similar to the AMG2013 benchmark with additional optimizations. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem with a 27-point stencil, which can be scaled up and is designed to solve a very large problem. A second problem simulates a time dependent problem, in which successively various smnllcr systems are solved.

  7. Algebra for cryptologists

    CERN Document Server

    Meijer, Alko R

    2016-01-01

    This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has been described as the science of the integrity of information, covering all aspects like confidentiality, authenticity and non-repudiation and also including the protocols required for achieving these aims. In both theory and practice it requires notions and constructions from three major disciplines: computer science, electronic engineering and mathematics. Within mathematics, group theory, the theory of finite fields, and elementary number theory as well as some topics not normally covered in courses in algebra, such as the theory of Boolean functions and Shannon theory, are involved. Although essentially self-contained, a degree of mathematical maturity on the part of the reader is assumed, corresponding to his o...

  8. Abstract algebra an introduction with applications

    CERN Document Server

    Robinson, Derek JS

    2015-01-01

    This is the second edition of the introduction to abstract algebra. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. There is ample material here for a two semester course in abstract algebra.

  9. Network algebra for synchronous and asynchronous dataflow

    NARCIS (Netherlands)

    Bergstra, J.A.; Stefanescu, G.

    1994-01-01

    Network algebra (NA) is proposed as a uniform algebraic framework for the description (and analysis) of dataflow networks. The core of this algebraic setting is provided by an equational theory called Basic Network Algebra (BNA). It constitutes a selection of primitives and identities from the

  10. Planar algebra of the subgroup-subfactor

    Indian Academy of Sciences (India)

    G in terms of operator matrices. We also obtain an identification between the planar algebra of the fixed algebra sub- factor RG ⊂ RH and the G-invariant planar subalgebra of the planar algebra of the 'flip' of ⋆n. Keywords. Planar algebras; subfactors; standard invariant. 1. Introduction. For every pair H ⊂ G of finite groups, ...

  11. Cohomology of 3-dimensional color Lie algebras

    NARCIS (Netherlands)

    Piontkovski, Dmitri; Silvestrov, Sergei D.

    2007-01-01

    We develop the cohomology theory of color Lie algebras due to Scheunert-Zhang in a framework of non-homogeneous quadratic Koszul algebras. In this approach, the Chevalley-Eilenberg complex of a color Lie algebra becomes a standard Koszul complex for its universal enveloping algebra, providing a

  12. Non Abelian Sugawara construction and the q-deformed N=2 superconformal algebra

    Energy Technology Data Exchange (ETDEWEB)

    Batista, E.; Gomes, J.F.; Lautenschleguer, I.J.

    1996-03-01

    The construction of a q-deformed N=2 superconformal algebra is proposed in terms of level 1 current of U{sub q}(su(2)) quantum affine Lie algebra and a single real Fermi field. In particular, it suggests the expression for the q-deformed Energy-Momentum tensor in the Sugawara form. Its constituents generate two isomorphic quadratic algebraic structures. The generalization to U{sub q}(su(N+1)) is also proposed. (author). 17 refs.

  13. Semiprojectivity of universal -algebras generated by algebraic elements

    DEFF Research Database (Denmark)

    Shulman, Tatiana

    2012-01-01

    Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given....

  14. Homology theory on algebraic varieties

    CERN Document Server

    Wallace, Andrew H

    1958-01-01

    Homology Theory on Algebraic Varieties, Volume 6 deals with the principles of homology theory in algebraic geometry and includes the main theorems first formulated by Lefschetz, one of which is interpreted in terms of relative homology and another concerns the Poincaré formula. The actual details of the proofs of these theorems are introduced by geometrical descriptions, sometimes aided with diagrams. This book is comprised of eight chapters and begins with a discussion on linear sections of an algebraic variety, with emphasis on the fibring of a variety defined over the complex numbers. The n

  15. Introduction to algebra and trigonometry

    CERN Document Server

    Kolman, Bernard

    1981-01-01

    Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are

  16. Coxeter groups and Hopf algebras

    CERN Document Server

    Aguiar, Marcelo

    2011-01-01

    An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary backgrou

  17. Study guide for college algebra

    CERN Document Server

    Snow, James W; Shapiro, Arnold

    1981-01-01

    Study Guide for College Algebra is a supplemental material for the basic text, College Algebra. Its purpose is to make the learning of college algebra and trigonometry easier and enjoyable.The book provides detailed solutions to exercises found in the text. Students are encouraged to use the study guide as a learning tool during the duration of the course, a reviewer prior to an exam, a reference book, and as a quick overview before studying a section of the text. The Study Guide and Solutions Manual consists of four major components: basic concepts that should be learned from each unit, what

  18. Algebraic and stochastic coding theory

    CERN Document Server

    Kythe, Dave K

    2012-01-01

    Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.

  19. Test bank for college algebra

    CERN Document Server

    Kolman, Bernard; Levitan, Michael L

    1985-01-01

    Test Bank for College Algebra, Second Edition is a supplementary material for the text, College Algebra, Second Edition. The book is intended for use by mathematics teachers.The book contains standard tests for each chapter in the textbook. Each set of test aims to evaluate the level of understanding the student has achieved during the course. The answers for each chapter test and the final exam are found at the end of the book.Mathematics teachers teaching college algebra will find the book very useful.

  20. Infinite-Dimensional Lie Algebras

    Science.gov (United States)

    Kac, Victor G.

    1994-08-01

    This is the third, substantially revised edition of this important monograph by a giant in the field of mathematics. The book is concerned with Kac-Moody algebras, a particular class of infinite-dimensional Lie algebras, and their representations. Each chapter begins with a motivating discussion and ends with a collection of exercises with hints to the more challenging problems. The theory has applications in many areas of mathematics, and Lie algebras have been significant in the study of fundamental particles, including string theory, so this book should appeal to mathematical physicists, as well as mathematicians.

  1. Introduction to applied algebraic systems

    CERN Document Server

    Reilly, Norman R

    2009-01-01

    This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as

  2. Lectures on Algebraic Geometry I

    CERN Document Server

    Harder, Gunter

    2012-01-01

    This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho

  3. Pre-Algebra Essentials For Dummies

    CERN Document Server

    Zegarelli, Mark

    2010-01-01

    Many students worry about starting algebra. Pre-Algebra Essentials For Dummies provides an overview of critical pre-algebra concepts to help new algebra students (and their parents) take the next step without fear. Free of ramp-up material, Pre-Algebra Essentials For Dummies contains content focused on key topics only. It provides discrete explanations of critical concepts taught in a typical pre-algebra course, from fractions, decimals, and percents to scientific notation and simple variable equations. This guide is also a perfect reference for parents who need to review critical pre-algebra

  4. Lectures on algebraic quantum field theory and operator algebras

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Berlin Univ. (Germany). Institut fuer Theoretische Physik. E-mail: schroer@cbpf.br

    2001-04-01

    In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)

  5. Connections between algebra, combinatorics, and geometry

    CERN Document Server

    Sather-Wagstaff, Sean

    2014-01-01

    Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...

  6. Valued Graphs and the Representation Theory of Lie Algebras

    Directory of Open Access Journals (Sweden)

    Joel Lemay

    2012-07-01

    Full Text Available Quivers (directed graphs, species (a generalization of quivers and their representations play a key role in many areas of mathematics including combinatorics, geometry, and algebra. Their importance is especially apparent in their applications to the representation theory of associative algebras, Lie algebras, and quantum groups. In this paper, we discuss the most important results in the representation theory of species, such as Dlab and Ringel’s extension of Gabriel’s theorem, which classifies all species of finite and tame representation type. We also explain the link between species and K-species (where K is a field. Namely, we show that the category of K -species can be viewed as a subcategory of the category of species. Furthermore, we prove two results about the structure of the tensor ring of a species containing no oriented cycles. Specifically, we prove that two such species have isomorphic tensor rings if and only if they are isomorphic as “crushed” species, and we show that if K is a perfect field, then the tensor algebra of a K -species tensored with the algebraic closure of K is isomorphic to, or Morita equivalent to, the path algebra of a quiver.

  7. Asymptotic aspect of derivations in Banach algebras.

    Science.gov (United States)

    Roh, Jaiok; Chang, Ick-Soon

    2017-01-01

    We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.

  8. Cartooning in Algebra and Calculus

    Science.gov (United States)

    Moseley, L. Jeneva

    2014-01-01

    This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.

  9. A Menu of Algebraic Delights.

    Science.gov (United States)

    Mathematics Teacher, 1986

    1986-01-01

    Included are brief reports on an algebra quiz in a menu format; two activity sheets on base two; and an alternative method of teaching least common multiple and greatest common factor, and related ideas, with six lessons outlined. (MNS)

  10. Ada Linear-Algebra Program

    Science.gov (United States)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  11. Computational linear and commutative algebra

    CERN Document Server

    Kreuzer, Martin

    2016-01-01

    This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...

  12. Classical theory of algebraic numbers

    CERN Document Server

    Ribenboim, Paulo

    2001-01-01

    Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...

  13. The Jacobson radical of group algebras

    CERN Document Server

    Karpilovsky, G

    1987-01-01

    Let G be a finite group and let F be a field. It is well known that linear representations of G over F can be interpreted as modules over the group algebra FG. Thus the investigation of ring-theoretic structure of the Jacobson radical J(FG) of FG is of fundamental importance. During the last two decades the subject has been pursued by a number of researchers and many interesting results have been obtained. This volume examines these results.The main body of the theory is presented, giving the central ideas, the basic results and the fundamental methods. It is assumed that the reader has had the equivalent of a standard first-year graduate algebra course, thus familiarity with basic ring-theoretic and group-theoretic concepts and an understanding of elementary properties of modules, tensor products and fields. A chapter on algebraic preliminaries is included, providing a survey of topics needed later in the book. There is a fairly large bibliography of works which are either directly relevant to the text or of...

  14. A new (in)finite-dimensional algebra for quantum integrable models

    Energy Technology Data Exchange (ETDEWEB)

    Baseilhac, Pascal [Laboratoire de Mathematiques et Physique Theorique CNRS/UMR 6083, Universite de Tours, Parc de Grandmont, 37200 Tours (France)]. E-mail: baseilha@phys.univ-tours.fr; Koizumi, Kozo [Laboratoire de Mathematiques et Physique Theorique CNRS/UMR 6083, Universite de Tours, Parc de Grandmont, 37200 Tours (France)]. E-mail: kozo.koizumi@lmpt.univ-tours.fr

    2005-08-08

    A new (in)finite-dimensional algebra which is a fundamental dynamical symmetry of a large class of (continuum or lattice) quantum integrable models is introduced and studied in details. Finite-dimensional representations are constructed and mutually commuting quantities-which ensure the integrability of the system-are written in terms of the fundamental generators of the new algebra. Relation with the deformed Dolan-Grady integrable structure recently discovered by one of the authors and Terwilliger's tridiagonal algebras is described. Remarkably, this (in)finite-dimensional algebra is a 'q-deformed' analogue of the original Onsager's algebra arising in the planar Ising model. Consequently, it provides a new and alternative algebraic framework for studying massive, as well as conformal, quantum integrable models.

  15. A new (in)finite-dimensional algebra for quantum integrable models

    Science.gov (United States)

    Baseilhac, Pascal; Koizumi, Kozo

    2005-08-01

    A new (in)finite-dimensional algebra which is a fundamental dynamical symmetry of a large class of (continuum or lattice) quantum integrable models is introduced and studied in details. Finite-dimensional representations are constructed and mutually commuting quantities—which ensure the integrability of the system—are written in terms of the fundamental generators of the new algebra. Relation with the deformed Dolan-Grady integrable structure recently discovered by one of the authors and Terwilliger's tridiagonal algebras is described. Remarkably, this (in)finite-dimensional algebra is a " q-deformed" analogue of the original Onsager's algebra arising in the planar Ising model. Consequently, it provides a new and alternative algebraic framework for studying massive, as well as conformal, quantum integrable models.

  16. The Corona Factorization Property, Stability, and the Cuntz Semigroup of a C*-algebra

    DEFF Research Database (Denmark)

    Esparza, Eduardo Ortega; Perera, F.; Rordam, M.

    2012-01-01

    The Corona Factorization Property, originally invented to study extensions of C*-algebras, conveys essential information about the intrinsic structure of the C*-algebra. We show that the Corona Factorization Property of a Sigma-unital C*-algebra is completely captured by its Cuntz semigroup (of...... equivalence classes of positive elements in the stabilization of A). The corresponding condition in the Cuntz semigroup is a very weak comparability property termed the Corona Factorization Property for semigroups. Using this result, one can, for example, show that all unital C*-algebras with a finite...... decomposition rank have the Corona Factorization Property. Applying similar techniques, we study the related question of when C*-algebras are stable. We give an intrinsic characterization, that we term property (S), of C*-algebras that have no nonzero unital quotients and no nonzero bounded 2-quasitraces. We...

  17. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.

    Science.gov (United States)

    Yu, Zhang; Zhang, Yufeng

    2009-01-15

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.

  18. Differential Algebra for Model Comparison

    OpenAIRE

    Harrington, Heather A.; Ho, Kenneth L.; Meshkat, Nicolette

    2016-01-01

    We present a method for rejecting competing models from noisy time-course data that does not rely on parameter inference. First we characterize ordinary differential equation models in only measurable variables using differential algebra elimination. Next we extract additional information from the given data using Gaussian Process Regression (GPR) and then transform the differential invariants. We develop a test using linear algebra and statistics to reject transformed models with the given d...

  19. Distribution theory of algebraic numbers

    CERN Document Server

    Yang, Chung-Chun

    2008-01-01

    The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.

  20. Nineteen papers on algebraic semigroups

    CERN Document Server

    Aizenshtat, A Ya; Podran, N E; Ponizovskii, IS; Shain, BM

    1988-01-01

    This volume contains papers selected by leading specialists in algebraic semigroups in the U.S., the United Kingdom, and Australia. Many of the papers strongly influenced the development of algebraic semigroups, but most were virtually unavailable outside the U.S.S.R. Written by some of the most prominent Soviet researchers in the field, the papers have a particular emphasis on semigroups of transformations. Boris Schein of the University of Arkansas is the translator.

  1. Generalized Bunce-Deddens algebras

    OpenAIRE

    Orfanos, Stefanos

    2008-01-01

    We define a broad class of crossed product C*-algebras of the form C(G)xG, where G is a discrete countable amenable residually finite group, and G is a profinite completion of G. We show that they are unital separable simple nuclear quasidiagonal C*-algebras, or real rank zero, stable rank one, with comparability of projections and with a unique trace.

  2. C*-algebras asociated to C*-correspondences and applications to mirror quantum spheres

    DEFF Research Database (Denmark)

    Robertson, David; Szymanski, Wojciech

    2011-01-01

    The structure of the C*-algebras corresponding to even-dimensional mirror quantum spheres is investigated. It is shown that they are isomorphic both to Cuntz-Pimsner algebras of certain C*-correspondences and C*-algebras of certain labelled graphs. In order to achieve this, catrgories of labelled...... graphs and C*-correspondences are studied. A functor from labelled graphs to C*-correspondences is constructed, such that the corresponding asociated C*-algebras are isomorphic. Furthermore, it is shown that C*-correspondences for the mirror quantum spheres arise via a general construction of restricted...

  3. (M,N-Soft Intersection BL-Algebras and Their Congruences

    Directory of Open Access Journals (Sweden)

    Xueling Ma

    2014-01-01

    Full Text Available The purpose of this paper is to give a foundation for providing a new soft algebraic tool in considering many problems containing uncertainties. In order to provide these new soft algebraic structures, we discuss a new soft set-(M, N-soft intersection set, which is a generalization of soft intersection sets. We introduce the concepts of (M, N-SI filters of BL-algebras and establish some characterizations. Especially, (M, N-soft congruences in BL-algebras are concerned.

  4. Esercizi scelti di algebra

    CERN Document Server

    Chirivì, Rocco; Dvornicich, Roberto

    2017-01-01

    Questo libro – primo di due volumi -  presenta oltre 250 esercizi scelti di algebra ricavati dai compiti d'esame dei corsi di Aritmetica tenuti dagli autori all'Università di Pisa. Ogni esercizio viene presentato con una o più soluzioni accuratamente redatte con linguaggio e notazioni uniformi. Caratteristica distintiva del libro è che gli esercizi proposti sono tutti diversi uno dall'altro e le soluzioni richiedono sempre una piccola idea originale; ciò rende il libro unico nel genere. Gli argomenti di questo primo volume sono: principio d'induzione, combinatoria, congruenze, gruppi abeliani, anelli commutativi, polinomi, estensioni di campi, campi finiti. Il libro contiene inoltre una dettagliata sezione di richiami teorici e può essere usato come libro di riferimento per lo studio. Una serie di esercizi preliminari introduce le tecniche principali da usare per confrontarsi con i testi d'esame proposti. Il volume è rivolto a tutti gli studenti del primo anno dei corsi di laur ea in Matematica e Inf...

  5. Basic abstract algebra for graduate students and advanced undergraduates

    CERN Document Server

    Ash, Robert B

    2006-01-01

    Geared toward upper-level undergraduates and graduate students, this text surveys fundamental algebraic structures and maps between these structures. Its techniques are used in many areas of mathematics, with applications to physics, engineering, and computer science as well. Author Robert B. Ash, a Professor of Mathematics at the University of Illinois, focuses on intuitive thinking. He also conveys the intrinsic beauty of abstract algebra while keeping the proofs as brief and clear as possible.The early chapters provide students with background by investigating the basic properties of groups

  6. Double-partition Quantum Cluster Algebras

    DEFF Research Database (Denmark)

    Jakobsen, Hans Plesner; Zhang, Hechun

    2012-01-01

    A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double parti- tions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping...... together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis....

  7. Principles of linear algebra with Mathematica

    CERN Document Server

    Shiskowski, Kenneth M

    2013-01-01

    A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings,

  8. Finite-dimensional division algebras over fields

    CERN Document Server

    Jacobson, Nathan

    2009-01-01

    Finite-Dimensional Division Algebras over fields determine, by the Wedderburn Theorem, the semi-simple finite-dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. The book concentrates on those algebras that have an involution. Algebras with involution appear in many contexts; they arose first in the study of the so-called 'multiplication algebras of Riemann matrices'. The largest part of the book is the fifth chapter, dealing with involutorial simple algebras of finite dimension over a field. Of parti

  9. Algebra 2 linear algebra, Galois theory, representation theory, group extensions and Schur multiplier

    CERN Document Server

    Lal, Ramji

    2017-01-01

    This is the second in a series of three volumes dealing with important topics in algebra. Volume 2 is an introduction to linear algebra (including linear algebra over rings), Galois theory, representation theory, and the theory of group extensions. The section on linear algebra (chapters 1–5) does not require any background material from Algebra 1, except an understanding of set theory. Linear algebra is the most applicable branch of mathematics, and it is essential for students of science and engineering As such, the text can be used for one-semester courses for these students. The remaining part of the volume discusses Jordan and rational forms, general linear algebra (linear algebra over rings), Galois theory, representation theory (linear algebra over group algebras), and the theory of extension of groups follow linear algebra, and is suitable as a text for the second and third year students specializing in mathematics. .

  10. New ${\\cal W}_{q,p}(sl(2))$ algebras from the elliptic algebra ${\\cal A}_{q,p}({\\hat sl}(2)_c)$

    CERN Document Server

    Avan, J; Rossi, M; Sorba, Paul

    1997-01-01

    We construct operators t(z) in the elliptic algebra introduced by Foda et al. ${\\cal A}_{q,p}({\\hat sl}(2)_c)$. They close an exchange algebra when p^m=q^{c+2} for m integer. In addition they commute when p=q^{2k} for k integer non-zero, and they belong to the center of ${\\cal A}_{q,p}({\\hat sl}(2)_c)$ when k is odd. The Poisson structures obtained for t(z) in these classical limits are identical to the q-deformed Virasoro Poisson algebra, characterizing the exchange algebras at generic values of p, q and m as new ${\\cal W}_{q,p}(sl(2))$ algebras.

  11. Thought beyond language: neural dissociation of algebra and natural language.

    Science.gov (United States)

    Monti, Martin M; Parsons, Lawrence M; Osherson, Daniel N

    2012-08-01

    A central question in cognitive science is whether natural language provides combinatorial operations that are essential to diverse domains of thought. In the study reported here, we addressed this issue by examining the role of linguistic mechanisms in forging the hierarchical structures of algebra. In a 3-T functional MRI experiment, we showed that processing of the syntax-like operations of algebra does not rely on the neural mechanisms of natural language. Our findings indicate that processing the syntax of language elicits the known substrate of linguistic competence, whereas algebraic operations recruit bilateral parietal brain regions previously implicated in the representation of magnitude. This double dissociation argues against the view that language provides the structure of thought across all cognitive domains.

  12. Residuated lattices an algebraic glimpse at substructural logics

    CERN Document Server

    Galatos, Nikolaos; Kowalski, Tomasz; Ono, Hiroakira

    2007-01-01

    The book is meant to serve two purposes. The first and more obvious one is to present state of the art results in algebraic research into residuated structures related to substructural logics. The second, less obvious but equally important, is to provide a reasonably gentle introduction to algebraic logic. At the beginning, the second objective is predominant. Thus, in the first few chapters the reader will find a primer of universal algebra for logicians, a crash course in nonclassical logics for algebraists, an introduction to residuated structures, an outline of Gentzen-style calculi as well as some titbits of proof theory - the celebrated Hauptsatz, or cut elimination theorem, among them. These lead naturally to a discussion of interconnections between logic and algebra, where we try to demonstrate how they form two sides of the same coin. We envisage that the initial chapters could be used as a textbook for a graduate course, perhaps entitled Algebra and Substructural Logics. As the book progresses the f...

  13. Nonlinear holomorphic supersymmetry, Dolan-Grady relations and Onsager algebra

    Energy Technology Data Exchange (ETDEWEB)

    Klishevich, Sergey M. E-mail: sklishev@lauca.usach.cl; Plyushchay, Mikhail S. E-mail: mplyushc@lauca.usach.cl

    2002-04-29

    Recently, it was noticed by us that the nonlinear holomorphic supersymmetry of order n is contained in N, n>1 (n-HSUSY) has an algebraic origin. We show that the Onsager algebra underlies n-HSUSY and investigate the structure of the former in the context of the latter. A new infinite set of mutually commuting charges is found which, unlike those from the Dolan-Grady set, include the terms quadratic in the Onsager algebra generators. This allows us to find the general form of the superalgebra of n-HSUSY and fix it explicitly for the cases of n=2,3,4,5,6. The similar results are obtained for a new, contracted form of the Onsager algebra generated via the contracted Dolan-Grady relations. As an application, the algebraic structure of the known 1D and 2D systems with n-HSUSY is clarified and a generalization of the construction to the case of nonlinear pseudo-supersymmetry is proposed. Such a generalization is discussed in application to some integrable spin models and with its help we obtain a family of quasi-exactly solvable systems appearing in the PT-symmetric quantum mechanics.

  14. κ-Minkowski Spacetimes and DSR Algebras: Fresh Look and Old Problems

    Directory of Open Access Journals (Sweden)

    Andrzej Borowiec

    2010-10-01

    Full Text Available Some classes of Deformed Special Relativity (DSR theories are reconsidered within the Hopf algebraic formulation. For this purpose we shall explore a minimal framework of deformed Weyl-Heisenberg algebras provided by a smash product construction of DSR algebra. It is proved that this DSR algebra, which uniquely unifies κ-Minkowski spacetime coordinates with Poincaré generators, can be obtained by nonlinear change of generators from undeformed one. Its various realizations in terms of the standard (undeformed Weyl-Heisenberg algebra opens the way for quantum mechanical interpretation of DSR theories in terms of relativistic (Stückelberg version Quantum Mechanics. On this basis we review some recent results concerning twist realization of κ-Minkowski spacetime described as a quantum covariant algebra determining a deformation quantization of the corresponding linear Poisson structure. Formal and conceptual issues concerning quantum κ-Poincaré and κ-Minkowski algebras as well as DSR theories are discussed. Particularly, the so-called ''q-analog'' version of DSR algebra is introduced. Is deformed special relativity quantization of doubly special relativity remains an open question. Finally, possible physical applications of DSR algebra to description of some aspects of Planck scale physics are shortly recalled.

  15. Crossed products for interactions and graph algebras

    DEFF Research Database (Denmark)

    Kwasniewski, Bartosz

    2014-01-01

    . These results cover the case of crossed products by endomorphisms with hereditary ranges and complemented kernels. As model examples of interactions not coming from endomorphisms we introduce and study in detail interactions arising from finite graphs. The interaction (V,H) associated to a graph E acts...... on the core F_E of the graph algebra C*(E). By describing a partial homeomorphism dual to (V,H) we find the fundamental structure theorems for C*(E), such as Cuntz–Krieger uniqueness theorem, as results concerning reversible noncommutative dynamics on F_E . We also provide a new approach to calculation of K...

  16. Discrete event systems in dioid algebra and conventional algebra

    CERN Document Server

    Declerck, Philippe

    2013-01-01

    This book concerns the use of dioid algebra as (max, +) algebra to treat the synchronization of tasks expressed by the maximum of the ends of the tasks conditioning the beginning of another task - a criterion of linear programming. A classical example is the departure time of a train which should wait for the arrival of other trains in order to allow for the changeover of passengers.The content focuses on the modeling of a class of dynamic systems usually called "discrete event systems" where the timing of the events is crucial. Events are viewed as sudden changes in a process which i

  17. Dynamical systems of algebraic origin

    CERN Document Server

    Schmidt, Klaus

    1995-01-01

    Although much of classical ergodic theory is concerned with single transformations and one-parameter flows, the subject inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multidimensional symmetry groups. However, the wealth of concrete and natural examples which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. The purpose of this book is to help remedy this scarcity of explicit examples by introducing a class of continuous Zd-actions diverse enough to exhibit many of the new phenomena encountered in the transition from Z to Zd, but which nevertheless lends itself to systematic study: the Zd-actions by automorphisms of compact, abelian groups. One aspect of these actions, not surprising in itself but quite striking in its extent and depth nonetheless, is the connection with commutative algebra and arithmetical algebraic geometry. The algebraic framework resulting...

  18. Visualizing automorphisms of graph algebras

    DEFF Research Database (Denmark)

    Avery, James Emil; Johansen, Rune; Szymanski, Wojciech

    2018-01-01

    Graph C*-algebras have been celebrated as C*-algebras that can be seen, because many important properties may be determined by looking at the underlying graph. This paper introduces the permutation graph for a permutative endomorphism of a graph C*-algebra as a labeled directed multigraph...... that gives a visual representation of the endomorphism and facilitates computations. Combinatorial criteria have previously been developed for deciding when such an endomorphism is an automorphism, but here the question is reformulated in terms of the permutation graph and new proofs are given. Furthermore......, it is shown how to use permutation graphs to efficiently generate exhaustive collections of permutative automorphisms. Permutation graphs provide a natural link to the textile systems representing induced endomorphisms on the edge shift of the given graph, and this allows the powerful tools of the theory...

  19. Probability on real Lie algebras

    CERN Document Server

    Franz, Uwe

    2016-01-01

    This monograph is a progressive introduction to non-commutativity in probability theory, summarizing and synthesizing recent results about classical and quantum stochastic processes on Lie algebras. In the early chapters, focus is placed on concrete examples of the links between algebraic relations and the moments of probability distributions. The subsequent chapters are more advanced and deal with Wigner densities for non-commutative couples of random variables, non-commutative stochastic processes with independent increments (quantum Lévy processes), and the quantum Malliavin calculus. This book will appeal to advanced undergraduate and graduate students interested in the relations between algebra, probability, and quantum theory. It also addresses a more advanced audience by covering other topics related to non-commutativity in stochastic calculus, Lévy processes, and the Malliavin calculus.

  20. Logarithmic exotic conformal Galilean algebras

    Energy Technology Data Exchange (ETDEWEB)

    Henkel, Malte, E-mail: Malte.henkel@univ-lorraine.fr [Groupe de Physique Statistique, Institut Jean Lamour (CNRS UMR 7198), Université de Lorraine Nancy, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy Cedex (France); Hosseiny, Ali, E-mail: al_hosseiny@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G.C. Evin, Tehran 19839 (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Rouhani, Shahin, E-mail: rouhani@ipm.ir [Department of Physics, Sharif University of Technology, P.O. Box 11165-9161, Tehran (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2014-02-15

    Logarithmic representations of the conformal Galilean algebra (CGA) and the Exotic Conformal Galilean algebra (ECGA) are constructed. This can be achieved by non-decomposable representations of the scaling dimensions or the rapidity indices, specific to conformal Galilean algebras. Logarithmic representations of the non-exotic CGA lead to the expected constraints on scaling dimensions and rapidities and also on the logarithmic contributions in the co-variant two-point functions. On the other hand, the ECGA admits several distinct situations which are distinguished by different sets of constraints and distinct scaling forms of the two-point functions. Two distinct realisations for the spatial rotations are identified as well. This is the first concrete example of a reducible, but non-decomposable representation, without logarithmic terms. Such cases had been anticipated before.

  1. Topics in quaternion linear algebra

    CERN Document Server

    Rodman, Leiba

    2014-01-01

    Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses...

  2. Visualizing automorphisms of graph algebras

    DEFF Research Database (Denmark)

    Avery, James Emil; Johansen, Rune; Szymanski, Wojciech

    2017-01-01

    Graph C*-algebras have been celebrated as C*-algebras that can be seen, because many important properties may be determined by looking at the underlying graph. This paper introduces the permutation graph for a permutative endomorphism of a graph C*-algebra as a labeled directed multigraph...... that gives a visual representation of the endomorphism and facilitates computations. Combinatorial criteria have previously been developed for deciding when such an endomorphism is an automorphism, but here the question is reformulated in terms of the permutation graph and new proofs are given. Furthermore......, it is shown how to use permutation graphs to efficiently generate exhaustive collections of permutative automorphisms. Permutation graphs provide a natural link to the textile systems representing induced endomorphisms on the edge shift of the given graph, and this allows the powerful tools of the theory...

  3. Order units in a C-algebra

    Indian Academy of Sciences (India)

    Abstract. Order unit property of a positive element in a *-algebra is defined. It is proved that precisely projections satisfy this order theoretic property. This way, unital hereditary *-subalgebras of a *-algebra are characterized.

  4. Applied matrix algebra in the statistical sciences

    CERN Document Server

    Basilevsky, Alexander

    2005-01-01

    This comprehensive text offers teachings relevant to both applied and theoretical branches of matrix algebra and provides a bridge between linear algebra and statistical models. Appropriate for advanced undergraduate and graduate students. 1983 edition.

  5. Quantum Groupoids Acting on Semiprime Algebras

    Directory of Open Access Journals (Sweden)

    Inês Borges

    2011-01-01

    Full Text Available Following Linchenko and Montgomery's arguments we show that the smash product of an involutive weak Hopf algebra and a semiprime module algebra, satisfying a polynomial identity, is semiprime.

  6. Enveloping σ-C C C-algebra of a smooth Frechet algebra crossed ...

    Indian Academy of Sciences (India)

    ... enveloping -*-algebra R E ( S ( R , A ∞ , ) ) of the smooth Schwartz crossed product R S ( R , A ∞ , ) of the Frechet algebra A ∞ of C ∞ -elements of is isomorphic to the -*-crossed product R C ∗ ( R , E ( A ) , ) of the enveloping -*-algebra () of by the induced action. When is a hermitian Q -algebra, ...

  7. Computational triadic algebras of signs

    Energy Technology Data Exchange (ETDEWEB)

    Zadrozny, W. [T.J. Watson Research Center, Yorktown Heights, NY (United States)

    1996-12-31

    We present a finite model of Peirce`s ten classes of signs. We briefly describe Peirce`s taxonomy of signs; we prove that any finite collection of signs can be extended to a finite algebra of signs in which all interpretants are themselves being interpreted; and we argue that Peirce`s ten classes of signs can be defined using constraints on algebras of signs. The paper opens the possibility of defining multimodal cognitive agents using Peirce`s classes of signs, and is a first step towards building a computational logic of signs based on Peirce`s taxonomies.

  8. Algebraic Varieties and System Design

    DEFF Research Database (Denmark)

    Aabrandt, Andreas

    Design and analysis of networks have many applications in the engineering sciences. This dissertation seeks to contribute to the methods used in the analysis of networks with a view towards assisting decision making processes. Networks are initially considered as objects in the category of graphs...... and later as objects in the category of hypergraphs. The connection with the category of simplicial pairs become apparent when the topology is analyzed using homological algebra. A topological ranking is developed that measures the ability of the network to stay path-connected. Combined with the analysis...... are called algebraic varieties....

  9. Algebraic geometry and theta functions

    CERN Document Server

    Coble, Arthur B

    1929-01-01

    This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and

  10. Scalable Parallel Algebraic Multigrid Solvers

    Energy Technology Data Exchange (ETDEWEB)

    Bank, R; Lu, S; Tong, C; Vassilevski, P

    2005-03-23

    The authors propose a parallel algebraic multilevel algorithm (AMG), which has the novel feature that the subproblem residing in each processor is defined over the entire partition domain, although the vast majority of unknowns for each subproblem are associated with the partition owned by the corresponding processor. This feature ensures that a global coarse description of the problem is contained within each of the subproblems. The advantages of this approach are that interprocessor communication is minimized in the solution process while an optimal order of convergence rate is preserved; and the speed of local subproblem solvers can be maximized using the best existing sequential algebraic solvers.

  11. Linear algebra and its applications

    CERN Document Server

    Lax, Peter D

    2013-01-01

    Praise for the First Edition"". . .recommended for the teacher and researcher as well as for graduate students. In fact, [it] has a place on every mathematician's bookshelf."" -American Mathematical MonthlyLinear Algebra and Its Applications, Second Edition presents linear algebra as the theory and practice of linear spaces and linear maps with a unique focus on the analytical aspects as well as the numerous applications of the subject. In addition to thorough coverage of linear equations, matrices, vector spaces, game theory, and numerical analysis, the Second Edition features

  12. Yangian Algebras and Classical Riemann Problems

    OpenAIRE

    Khoroshkin, S.; Lebedev, D.; Pakuliak, S.

    1997-01-01

    We investigate different Hopf algebras associated to Yang's solution of quantum Yang-Baxter equation. It is shown that for the precise definition of the algebra one needs the commutation relations for the deformed algebra of formal currents and the specialization of the Riemann problem for the currents. Two different Riemann problems are considered. They lead to the central extended Yangian double associated with ${sl}_2$ and to the degeneration of scaling limit of elliptic affine algebra. Un...

  13. Discrimination in a General Algebraic Setting

    Directory of Open Access Journals (Sweden)

    Benjamin Fine

    2015-01-01

    Full Text Available Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras.

  14. Quantized Matrix Algebras and Quantum Seeds

    DEFF Research Database (Denmark)

    Jakobsen, Hans Plesner; Pagani, Chiara

    2015-01-01

    We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees.......We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees....

  15. Parts of the Whole: An Algebra Lesson

    Directory of Open Access Journals (Sweden)

    Dorothy Wallace

    2011-07-01

    Full Text Available This column draws on research of Eon Harper to demonstrate how an understanding of his proposed stages of algebra acquisition would inform a systemic overhaul of algebra education. Harper's stages also explain why students may pass a series of algebra courses yet still be unable to make sense of calculus, as well as offering insight on what aspects of algebra support quantitative literacy.

  16. Algebra success in 20 minutes a day

    CERN Document Server

    LearningExpress, LLC

    2014-01-01

    Stripped of unnecessary math jargon but bursting with algebra essentials, this handy guide covers vital algebra skills that apply to real-world scenarios. Whether you're new to algebra or just looking for a refresher, Algebra Success in 20 Minutes a Day offers a lesson plan that provides quick and thorough instruction in practical, critical skills. All lessons can be completed in just 20 minutes a day, for a manageable and non-intimidating learning experience.

  17. Generalized module extension Banach algebras: Derivations and ...

    African Journals Online (AJOL)

    Let A and X be Banach algebras and let X be an algebraic Banach A-module. Then the ℓ-1direct sum A x X equipped with the multiplication (a; x)(b; y) = (ab; ay + xb + xy) (a; b ∈ A; x; y ∈ X) is a Banach algebra, denoted by A ⋈ X, which will be called "a generalized module extension Banach algebra". Module extension ...

  18. Tensor models, Kronecker coefficients and permutation centralizer algebras

    Science.gov (United States)

    Geloun, Joseph Ben; Ramgoolam, Sanjaye

    2017-11-01

    We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.

  19. Algebra and Geometry of Hamilton's Quaternions

    Indian Academy of Sciences (India)

    IAS Admin

    Inspired by the relation between the algebra of complex numbers and plane geometry, William. Rowan Hamilton sought an algebra of triples for application to three-dimensional geometry. Un- able to multiply and divide triples, he invented a non-commutative division algebra of quadru- ples, in what he considered his most ...

  20. Very true operators on MTL-algebras

    Directory of Open Access Journals (Sweden)

    Wang Jun Tao

    2016-01-01

    Full Text Available The main goal of this paper is to investigate very true MTL-algebras and prove the completeness of the very true MTL-logic. In this paper, the concept of very true operators on MTL-algebras is introduced and some related properties are investigated. Also, conditions for an MTL-algebra to be an MV-algebra and a Gödel algebra are given via this operator. Moreover, very true filters on very true MTL-algebras are studied. In particular, subdirectly irreducible very true MTL-algebras are characterized and an analogous of representation theorem for very true MTL-algebras is proved. Then, the left and right stabilizers of very true MTL-algebras are introduced and some related properties are given. As applications of stabilizer of very true MTL-algebras, we produce a basis for a topology on very true MTL-algebras and show that the generated topology by this basis is Baire, connected, locally connected and separable. Finally, the corresponding logic very true MTL-logic is constructed and the soundness and completeness of this logic are proved based on very true MTL-algebras.

  1. Classifying bicrossed products of two Taft algebras

    OpenAIRE

    Agore, A. L.

    2016-01-01

    We classify all Hopf algebras which factorize through two Taft algebras $\\mathbb{T}_{n^{2}}(\\bar{q})$ and respectively $T_{m^{2}}(q)$. To start with, all possible matched pairs between the two Taft algebras are described: if $\\bar{q} \

  2. New family of Maxwell like algebras

    Energy Technology Data Exchange (ETDEWEB)

    Concha, P.K., E-mail: patillusion@gmail.com [Departamento de Ciencias, Facultad de Artes y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Casilla 567, Valdivia (Chile); Durka, R., E-mail: remigiuszdurka@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Merino, N., E-mail: nemerino@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Rodríguez, E.K., E-mail: everodriguezd@gmail.com [Departamento de Ciencias, Facultad de Artes y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Casilla 567, Valdivia (Chile)

    2016-08-10

    We introduce an alternative way of closing Maxwell like algebras. We show, through a suitable change of basis, that resulting algebras are given by the direct sums of the AdS and the Maxwell algebras already known in the literature. Casting the result into the S-expansion method framework ensures the straightaway construction of the gravity theories based on a found enlargement.

  3. Fractional superLie algebras and groups

    Energy Technology Data Exchange (ETDEWEB)

    Ahmedov, H. [Feza Gursey Institute, Cengelkoy, Istanbul (Turkey)]. E-mail: hagi@gursey.gov.tr; Yildiz, A. [ Feza Gursey Institute, Cengelkoy, Istanbul (Turkey); Ucan, Y. [Yildiz Technical University, Department of Mathematics, Besiktas, Istanbul (Turkey)

    2001-08-24

    The nth root of a Lie algebra and its dual (that is the fractional supergroup) based on the permutation group S{sub n} invariant forms is formulated in the Hopf algebra formalism. Detailed discussion of S{sub 3}-graded sl(2) algebras is performed. (author)

  4. Asymptotic symmetry algebra of conformal gravity

    Science.gov (United States)

    Irakleidou, Maria; Lovrekovic, Iva

    2017-11-01

    We compute asymptotic symmetry algebras of conformal gravity. Due to more general boundary conditions allowed in conformal gravity in comparison to those in Einstein gravity, we can classify the corresponding algebras. The highest algebra for nontrivial boundary conditions is five dimensional and it leads to global geon solution with nonvanishing charges.

  5. (L,M-Fuzzy σ-Algebras

    Directory of Open Access Journals (Sweden)

    Fu-Gui Shi

    2010-01-01

    Full Text Available The notion of (L,M-fuzzy σ-algebras is introduced in the lattice value fuzzy set theory. It is a generalization of Klement's fuzzy σ-algebras. In our definition of (L,M-fuzzy σ-algebras, each L-fuzzy subset can be regarded as an L-measurable set to some degree.

  6. Algebra in Dutch education, 1600-2000

    NARCIS (Netherlands)

    Krüger, Jenneke

    2015-01-01

    Algebra became part of mathematics education in the Netherlands in course of the seventeenth century. At first in the form of cossic algebra, but by the end of the century, the influence of the notation of Descartes was noticeable. In the eighteenth century, algebra was part of the basic curriculum

  7. Unifying the Algebra for All Movement

    Science.gov (United States)

    Eddy, Colleen M.; Quebec Fuentes, Sarah; Ward, Elizabeth K.; Parker, Yolanda A.; Cooper, Sandi; Jasper, William A.; Mallam, Winifred A.; Sorto, M. Alejandra; Wilkerson, Trena L.

    2015-01-01

    There exists an increased focus on school mathematics, especially first-year algebra, due to recent efforts for all students to be college and career ready. In addition, there are calls, policies, and legislation advocating for all students to study algebra epitomized by four rationales of the "Algebra for All" movement. In light of this…

  8. A Balancing Act: Making Sense of Algebra

    Science.gov (United States)

    Gavin, M. Katherine; Sheffield, Linda Jensen

    2015-01-01

    For most students, algebra seems like a totally different subject than the number topics they studied in elementary school. In reality, the procedures followed in arithmetic are actually based on the properties and laws of algebra. Algebra should be a logical next step for students in extending the proficiencies they developed with number topics…

  9. Constraint-Referenced Analytics of Algebra Learning

    Science.gov (United States)

    Sutherland, Scot M.; White, Tobin F.

    2016-01-01

    The development of the constraint-referenced analytics tool for monitoring algebra learning activities presented here came from the desire to firstly, take a more quantitative look at student responses in collaborative algebra activities, and secondly, to situate those activities in a more traditional introductory algebra setting focusing on…

  10. Build an Early Foundation for Algebra Success

    Science.gov (United States)

    Knuth, Eric; Stephens, Ana; Blanton, Maria; Gardiner, Angela

    2016-01-01

    Research tells us that success in algebra is a factor in many other important student outcomes. Emerging research also suggests that students who are started on an algebra curriculum in the earlier grades may have greater success in the subject in secondary school. What's needed is a consistent, algebra-infused mathematics curriculum all…

  11. Teaching Strategies to Improve Algebra Learning

    Science.gov (United States)

    Zbiek, Rose Mary; Larson, Matthew R.

    2015-01-01

    Improving student learning is the primary goal of every teacher of algebra. Teachers seek strategies to help all students learn important algebra content and develop mathematical practices. The new Institute of Education Sciences[IES] practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students"…

  12. Difficulties in Initial Algebra Learning in Indonesia

    Science.gov (United States)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2014-01-01

    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was…

  13. Recursion relations and branching rules for simple Lie algebras

    CERN Document Server

    Lyakhovsky, V D

    1995-01-01

    The branching rules between simple Lie algebras and its regular (maximal) simple subalgebras are studied. Two types of recursion relations for anomalous relative multiplicities are obtained. One of them is proved to be the factorized version of the other. The factorization property is based on the existence of the set of weights \\Gamma specific for each injection. The structure of \\Gamma is easily deduced from the correspondence between the root systems of algebra and subalgebra. The recursion relations thus obtained give rise to simple and effective algorithm for branching rules. The details are exposed by performing the explicit decomposition procedure for A_{3} \\oplus u(1) \\rightarrow B_{4} injection.

  14. Multidimensional analysis algebras and systems for science and engineering

    CERN Document Server

    Hart, George W

    1995-01-01

    This book deals with the mathematical properties of dimensioned quantities, such as length, mass, voltage, and viscosity. Beginning with a careful examination of how one expresses the numerical results of a measurement and uses these results in subsequent manipulations, the author rigorously constructs the notion of dimensioned numbers and discusses their algebraic structure. The result is a unification of linear algebra and traditional dimensional analysis that can be extended from the scalars to which the traditional analysis is perforce restricted to multidimensional vectors of the sort frequently encountered in engineering, systems theory, economics, and other applications.

  15. Algebraic topology of finite topological spaces and applications

    CERN Document Server

    Barmak, Jonathan A

    2011-01-01

    This volume deals with the theory of finite topological spaces and its relationship with the homotopy and simple homotopy theory of polyhedra. The interaction between their intrinsic combinatorial and topological structures makes finite spaces a useful tool for studying problems in Topology, Algebra and Geometry from a new perspective. In particular, the methods developed in this manuscript are used to study Quillen’s conjecture on the poset of p-subgroups of a finite group and the Andrews-Curtis conjecture on the 3-deformability of contractible two-dimensional complexes. This self-contained work constitutes the first detailed exposition on the algebraic topology of finite spaces. It is intended for topologists and combinatorialists, but it is also recommended for advanced undergraduate students and graduate students with a modest knowledge of Algebraic Topology.

  16. An algebraic geometric approach to separation of variables

    CERN Document Server

    Schöbel, Konrad

    2015-01-01

    Konrad Schöbel aims to lay the foundations for a consequent algebraic geometric treatment of variable separation, which is one of the oldest and most powerful methods to construct exact solutions for the fundamental equations in classical and quantum physics. The present work reveals a surprising algebraic geometric structure behind the famous list of separation coordinates, bringing together a great range of mathematics and mathematical physics, from the late 19th century theory of separation of variables to modern moduli space theory, Stasheff polytopes and operads. "I am particularly impressed by his mastery of a variety of techniques and his ability to show clearly how they interact to produce his results.”   (Jim Stasheff)   Contents The Foundation: The Algebraic Integrability Conditions The Proof of Concept: A Complete Solution for the 3-Sphere The Generalisation: A Solution for Spheres of Arbitrary Dimension The Perspectives: Applications and Generalisations   Target Groups Scientists in the fie...

  17. Discovering Theorems in Abstract Algebra Using the Software "GAP"

    Science.gov (United States)

    Blyth, Russell D.; Rainbolt, Julianne G.

    2010-01-01

    A traditional abstract algebra course typically consists of the professor stating and then proving a sequence of theorems. As an alternative to this classical structure, the students could be expected to discover some of the theorems even before they are motivated by classroom examples. This can be done by using a software system to explore a…

  18. Algebraic aspects of Tremblay-Turbiner-Winternitz Hamiltonian systems

    Science.gov (United States)

    Calzada, J. A.; Celeghini, E.; del Olmo, M. A.; Velasco, M. A.

    2012-02-01

    Using the factorization method we find a hierarchy of Tremblay-Turbiner-Winternitz Hamiltonians labeled by discrete indices. The shift operators (those connecting eigenfunctions of different Hamiltonians of the hierarchy) as well the ladder operators (they connect eigenstates of a determined Hamiltonian) obtained in this way close different algebraic structures that are presented here.

  19. Torsional Newton-Cartan geometry and the Schrodinger algebra

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hartong, Jelle; Rosseel, Jan

    2015-01-01

    We show that by gauging the Schrodinger algebra with critical exponent z and imposing suitable curvature constraints, that make diffeomorphisms equivalent to time and space translations, one obtains a geometric structure known as (twistless) torsional Newton-Cartan geometry (TTNC). This is a version

  20. Data linkage algebra, data linkage dynamics, and priority rewriting

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    We introduce an algebra of data linkages. Data linkages are intended for modelling the states of computations in which dynamic data structures are involved. We present a simple model of computation in which states of computations are modelled as data linkages and state changes take place by means of

  1. Data Linkage Algebra, Data Linkage Dynamics, and Priority Rewriting

    NARCIS (Netherlands)

    Bergstra, J.; Middelburg, C.A.

    2013-01-01

    We introduce an algebra of data linkages. Data linkages are intended for modelling the states of computations in which dynamic data structures are involved. We present a simple model of computation in which states of computations are modelled as data linkages and state changes take place by means of

  2. Limits of rank 4 Azumaya algebras and applications to ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Essential use is made of Kneser's concept [8] of 'semi-regular quadratic module'. For any free quadratic module of odd rank, a formula linking the half-discriminant and the values of ..... A little bit of writing down shows that the canonical algebra structure on B corresponds to the diagonal morphism. AlgW/X. : AlgW↩→AlgW ...

  3. Limits of rank 4 Azumaya algebras and applications to ...

    Indian Academy of Sciences (India)

    It is shown that the schematic image of the scheme of Azumaya algebra structures on a vector bundle of rank 4 over any base scheme is separated, of finite type, smooth of relative dimension 13 and geometrically irreducible over that base and that this construction base-changes well. This fully generalizes Seshadri's ...

  4. Quantum algebras and Poisson geometry in mathematical physics

    CERN Document Server

    Karasev, M V

    2005-01-01

    This collection presents new and interesting applications of Poisson geometry to some fundamental well-known problems in mathematical physics. The methods used by the authors include, in addition to advanced Poisson geometry, unexpected algebras with non-Lie commutation relations, nontrivial (quantum) Kählerian structures of hypergeometric type, dynamical systems theory, semiclassical asymptotics, etc.

  5. Algebraic reasoning and bat-and-ball problem variants: Solving isomorphic algebra first facilitates problem solving later.

    Science.gov (United States)

    Hoover, Jerome D; Healy, Alice F

    2017-12-01

    The classic bat-and-ball problem is used widely to measure biased and correct reasoning in decision-making. University students overwhelmingly tend to provide the biased answer to this problem. To what extent might reasoners be led to modify their judgement, and, more specifically, is it possible to facilitate problem solution by prompting participants to consider the problem from an algebraic perspective? One hundred ninety-seven participants were recruited to investigate the effect of algebraic cueing as a debiasing strategy on variants of the bat-and-ball problem. Participants who were cued to consider the problem algebraically were significantly more likely to answer correctly relative to control participants. Most of this cueing effect was confined to a condition that required participants to solve isomorphic algebra equations corresponding to the structure of bat-and-ball question types. On a subsequent critical question with differing item and dollar amounts presented without a cue, participants were able to generalize the learned information to significantly reduce overall bias. Math anxiety was also found to be significantly related to bat-and-ball problem accuracy. These results suggest that, under specific conditions, algebraic reasoning is an effective debiasing strategy on bat-and-ball problem variants, and provide the first documented evidence for the influence of math anxiety on Cognitive Reflection Test performance.

  6. Induced Modules for Affine Lie Algebras

    Directory of Open Access Journals (Sweden)

    Vyacheslav Futorny

    2009-03-01

    Full Text Available We study induced modules of nonzero central charge with arbitrary multiplicities over affine Lie algebras. For a given pseudo parabolic subalgebra P of an affine Lie algebra G, our main result establishes the equivalence between a certain category of P-induced G-modules and the category of weight P-modules with injective action of the central element of G. In particular, the induction functor preserves irreducible modules. If P is a parabolic subalgebra with a finite-dimensional Levi factor then it defines a unique pseudo parabolic subalgebra P^{ps}, P subset P^{ps}. The structure of P-induced modules in this case is fully determined by the structure of P^{ps}-induced modules. These results generalize similar reductions in particular cases previously considered by V. Futorny, S. König, V. Mazorchuk [Forum Math. 13 (2001, 641-661], B. Cox [Pacific J. Math. 165 (1994, 269-294] and I. Dimitrov, V. Futorny, I. Penkov [Comm. Math. Phys. 250 (2004, 47-63].

  7. Process algebra and conditional composition

    NARCIS (Netherlands)

    Bergstra, J.A.; Ponse, A.

    2001-01-01

    We discern three non-classical truth values, and define a five-valued propositional logic. We combine this logic with process algebra via conditional composition (i.e., if-then-else-). In particular, the choice operation (+) is regarded as a special case of conditional composition. We present an

  8. Math Sense: Algebra and Geometry.

    Science.gov (United States)

    Howett, Jerry

    This book is designed to help students gain the range of math skills they need to succeed in life, work, and on standardized tests; overcome math anxiety; discover math as interesting and purposeful; and develop good number sense. Topics covered in this book include algebra and geometry. Lessons are organized around four strands: (1) skill lessons…

  9. Algebra, Home Mortgages, and Recessions

    Science.gov (United States)

    Mariner, Jean A. Miller; Miller, Richard A.

    2009-01-01

    The current financial crisis and recession in the United States present an opportunity to discuss relevant applications of some topics in typical first-and second-year algebra and precalculus courses. Real-world applications of percent change, exponential functions, and sums of finite geometric sequences can help students understand the problems…

  10. Algebra from Chips and Chopsticks

    Science.gov (United States)

    Yun, Jeong Oak; Flores, Alfinio

    2012-01-01

    Students can use geometric representations of numbers as a way to explore algebraic ideas. With the help of these representations, students can think about the relations among the numbers, express them using their own words, and represent them with letters. The activities discussed here can stimulate students to try to find various ways of solving…

  11. Celestial mechanics with geometric algebra

    Science.gov (United States)

    Hestenes, D.

    1983-01-01

    Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.

  12. Relational Algebra Teaching Support Tool

    Directory of Open Access Journals (Sweden)

    Jonathas Jivago de Almeida Cruz

    2017-01-01

    Full Text Available In recent years, there has been an increasing supply of digital, pedagogical tools, known as Digital Learning Objects (DLO – digital resources (image, film, animation, etc. and software developed specifically for educational purposes. In the area of Computer Science, teaching Databases present a particular challenge because of a lack of quality tools to work with Relational Algebra. The present study proposes a web-based tool to support teaching and learning Relational Algebra – an important subject that is particularly difficult for students to understand. The purpose of the proposed tool is to provide an alternative method for teaching Relational Algebra operations, such as: selection, projection, union, set difference, rename, intersection, Cartesian product, natural join, division and some aggregate functions. In addition, we propose a graphic definition of a database schema (using features such as drag and drop, column highlights, lines, fields, etc., so students can use the tool easily, and in conjunction with the theory taught regarding the definition languages (DDL and data manipulation (DML. We intend for this tool to serve as an appropriate means for teaching and learning Relational Algebra, contributing to the development of new teaching skills, as well motivating the students in the process of learning.

  13. Homomorphisms between C∗ -algebra extensions

    Indian Academy of Sciences (India)

    -algebra extensions. CHANGGUO WEI. School of Mathematical Sciences, Ocean University of China, Qingdao 266071, ... into the other in general, so we have to consider properties of extension homomorphisms before studying the ..... Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math. (Berlin: Springer).

  14. Algebraic Methods in Plane Geometry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 10. Algebraic Methods in ... General Article Volume 13 Issue 10 October 2008 pp 916-928 ... Keywords. Conics; family of curves; Pascal's theorem; homogeneous coordinates; Butterfly theorem; abelian group; associativity of addition; group law.

  15. Hopf algebras and congruence subgroups

    CERN Document Server

    Sommerhauser, Yorck

    2007-01-01

    We prove that the kernel of the natural action of the modular group on the center of the Drinfel'd double of a semisimple Hopf algebra is a congruence subgroup. To do this, we introduce a class of generalized Frobenius-Schur indicators and endow it with an action of the modular group that is compatible with the original one.

  16. Algebraic study of chiral anomalies

    Indian Academy of Sciences (India)

    2012-06-14

    Jun 14, 2012 ... †Reproduced with kind permission from Springer Science+Business Media: Algebraic study of chiral anoma- lies, Juan Mañes, Raymond Stora and Bruno Zumino, Communications in Mathematical Physics 102, 157–174. (1985) Springer-Verlag. Even though at variance with normal Pramana policy, we ...

  17. Inequalities, Assessment and Computer Algebra

    Science.gov (United States)

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary…

  18. Adventures in Flipping College Algebra

    Science.gov (United States)

    Van Sickle, Jenna

    2015-01-01

    This paper outlines the experience of a university professor who implemented flipped learning in two sections of college algebra courses for two semesters. It details how the courses were flipped, what technology was used, advantages, challenges, and results. It explains what students do outside of class, what they do inside class, and discusses…

  19. A distinguished real Banach algebra

    Indian Academy of Sciences (India)

    We present a new and elementary approach to characterize the maximal ideals and their associated multiplicative linear functionals for a classical real Banach algebra of analytic functions. Author Affiliations. Raymond Mortini1. Département de Mathématiques, LMAM, UMR 7122, Université Paul Verlaine, Ile du Saulcy, ...

  20. Elementary Algebra Connections to Precalculus

    Science.gov (United States)

    Lopez-Boada, Roberto; Daire, Sandra Arguelles

    2013-01-01

    This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…

  1. Rationality problem for algebraic tori

    CERN Document Server

    Hoshi, Akinari

    2017-01-01

    The authors give the complete stably rational classification of algebraic tori of dimensions 4 and 5 over a field k. In particular, the stably rational classification of norm one tori whose Chevalley modules are of rank 4 and 5 is given. The authors show that there exist exactly 487 (resp. 7, resp. 216) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension 4, and there exist exactly 3051 (resp. 25, resp. 3003) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension 5. The authors make a procedure to compute a flabby resolution of a G-lattice effectively by using the computer algebra system GAP. Some algorithms may determine whether the flabby class of a G-lattice is invertible (resp. zero) or not. Using the algorithms, the suthors determine all the flabby and coflabby G-lattices of rank up to 6 and verify that they are stably permutation. The authors also show that the Krull-Schmidt theorem for G-...

  2. Vague BCK/BCI-algebras

    Directory of Open Access Journals (Sweden)

    Arsham Borumand Saeid

    2009-01-01

    Full Text Available In this note, by using the concept of vague sets, the notion of vague \\(BCK/BCI\\-algebra is introduced. And the notions of \\(\\alpha\\-cut and vague-cut are introduced and the relationships between these notions and crisp subalgebras are studied.

  3. Model Theory for Process Algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We present a first-order extension of the algebraic theory about processes known as ACP and its main models. Useful predicates on processes, such as deadlock freedom and determinism, can be added to this theory through first-order definitional extensions. Model theory is used to analyse the

  4. Weaving Geometry and Algebra Together

    Science.gov (United States)

    Cetner, Michelle

    2015-01-01

    When thinking about student reasoning and sense making, teachers must consider the nature of tasks given to students along with how to plan to use the tasks in the classroom. Students should be presented with tasks in a way that encourages them to draw connections between algebraic and geometric concepts. This article focuses on the idea that it…

  5. An introduction to abstract algebra

    CERN Document Server

    Robinson, Derek JS

    2003-01-01

    This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. In particular applications to Polya coloring theory, latin squares, Steiner systems and error correcting codes are described. Another feature of the book is that group theory and ring theory are carried further than is often done at this level. There is ample material here for a two semester course in abstract algebra. The importance of proof is stressed and rigorous proofs of almost all results are given. But care has been taken to lead the reader through the proofs by gentle stages. There are nearly 400 problems, of varying degrees of difficulty, to test the reader''s skill and progress. The book should be suitable for students ...

  6. Teachers' Understanding of Algebraic Generalization

    Science.gov (United States)

    Hawthorne, Casey Wayne

    Generalization has been identified as a cornerstone of algebraic thinking (e.g., Lee, 1996; Sfard, 1995) and is at the center of a rich conceptualization of K-8 algebra (Kaput, 2008; Smith, 2003). Moreover, mathematics teachers are being encouraged to use figural-pattern generalizing tasks as a basis of student-centered instruction, whereby teachers respond to and build upon the ideas that arise from students' explorations of these activities. Although more and more teachers are engaging their students in such generalizing tasks, little is known about teachers' understanding of generalization and their understanding of students' mathematical thinking in this domain. In this work, I addressed this gap, exploring the understanding of algebraic generalization of 4 exemplary 8th-grade teachers from multiple perspectives. A significant feature of this investigation is an examination of teachers' understanding of the generalization process, including the use of algebraic symbols. The research consisted of two phases. Phase I was an examination of the teachers' understandings of the underlying quantities and quantitative relationships represented by algebraic notation. In Phase II, I observed the instruction of 2 of these teachers. Using the lens of professional noticing of students' mathematical thinking, I explored the teachers' enacted knowledge of algebraic generalization, characterizing how it supported them to effectively respond to the needs and queries of their students. Results indicated that teachers predominantly see these figural patterns as enrichment activities, disconnected from course content. Furthermore, in my analysis, I identified conceptual difficulties teachers experienced when solving generalization tasks, in particular, connecting multiple symbolic representations with the quantities in the figures. Moreover, while the teachers strived to overcome the challenges of connecting different representations, they invoked both productive and unproductive

  7. Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that people from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.

  8. Some quantum Lie algebras of type D{sub n} positive

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Cesar [Facultad de Ciencias de la Computacion, Benemerita Universidad Autonoma de Puebla, Edif 135, 14 sur y Av San Claudio, Ciudad Universitaria, Puebla Pue. CP 72570 (Mexico); Juarez-Ramirez, Maria Araceli [Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla, Edif 158 Av San Claudio y Rio Verde sn Ciudad Universitaria, Puebla Pue. CP 72570 (Mexico)

    2003-03-07

    A quantum Lie algebra is constructed within the positive part of the Drinfeld-Jimbo quantum group of type D{sub n}. Our quantum Lie algebra structure includes a generalized antisymmetry property and a generalized Jacobi identity closely related to the braid equation. A generalized universal enveloping algebra of our quantum Lie algebra of type D{sub n} positive is proved to be the Drinfeld-Jimbo quantum group of the same type. The existence of such a generalized Lie algebra is reduced to an integer programming problem. Moreover, when the integer programming problem is feasible we show, by means of the generalized Jacobi identity, that the Poincare-Birkhoff-Witt theorem (basis) is still true.

  9. Operator theory, operator algebras and applications

    CERN Document Server

    Lebre, Amarino; Samko, Stefan; Spitkovsky, Ilya

    2014-01-01

    This book consists of research papers that cover the scientific areas of the International Workshop on Operator Theory, Operator Algebras and Applications, held in Lisbon in September 2012. The volume particularly focuses on (i) operator theory and harmonic analysis (singular integral operators with shifts; pseudodifferential operators, factorization of almost periodic matrix functions; inequalities; Cauchy type integrals; maximal and singular operators on generalized Orlicz-Morrey spaces; the Riesz potential operator; modification of Hadamard fractional integro-differentiation), (ii) operator algebras (invertibility in groupoid C*-algebras; inner endomorphisms of some semi group, crossed products; C*-algebras generated by mappings which have finite orbits; Folner sequences in operator algebras; arithmetic aspect of C*_r SL(2); C*-algebras of singular integral operators; algebras of operator sequences) and (iii) mathematical physics (operator approach to diffraction from polygonal-conical screens; Poisson geo...

  10. Normed algebras and the geometric series test

    Directory of Open Access Journals (Sweden)

    Robert Kantrowitz

    2017-11-01

    Full Text Available The purpose of this article is to survey a class of normed algebras that share many central features of Banach algebras, save for completeness. The likeness of these algebras to Banach algebras derives from the fact that the geometric series test is valid, whereas the lack of completeness points to the failure of the absolute convergence test for series in the algebra. Our main result is a compendium of conditions that are all equivalent to the validity of the geometric series test for commutative unital normed algebras. Several examples in the final section showcase some incomplete normed algebras for which the geometric series test is valid, and still others for which it is not.

  11. Infinite order decompositions of C*-algebras.

    Science.gov (United States)

    Nematjonovich, Arzikulov Farhodjon

    2016-01-01

    The present paper is devoted to infinite order decompositions of C*-algebras. It is proved that an infinite order decomposition (IOD) of a C*-algebra forms the complexification of an order unit space, and, if the C*-algebra is monotone complete (not necessarily weakly closed) then its IOD is also monotone complete ordered vector space. Also it is established that an IOD of a C*-algebra is a C*-algebra if and only if this C*-algebra is a von Neumann algebra. As a summary we obtain that the norm of an infinite dimensional matrix is equal to the supremum of norms of all finite dimensional main diagonal submatrices of this matrix and an infinite dimensional matrix is positive if and only if all finite dimensional main diagonal submatrices of this matrix are positive.

  12. Classical algebra its nature, origins, and uses

    CERN Document Server

    Cooke, Roger L

    2008-01-01

    This insightful book combines the history, pedagogy, and popularization of algebra to present a unified discussion of the subject. Classical Algebra provides a complete and contemporary perspective on classical polynomial algebra through the exploration of how it was developed and how it exists today. With a focus on prominent areas such as the numerical solutions of equations, the systematic study of equations, and Galois theory, this book facilitates a thorough understanding of algebra and illustrates how the concepts of modern algebra originally developed from classical algebraic precursors. This book successfully ties together the disconnect between classical and modern algebraand provides readers with answers to many fascinating questions that typically go unexamined, including: What is algebra about? How did it arise? What uses does it have? How did it develop? What problems and issues have occurred in its history? How were these problems and issues resolved? The author answers these questions and more,...

  13. A course in BE-algebras

    CERN Document Server

    Mukkamala, Sambasiva Rao

    2018-01-01

    This book presents a unified course in BE-algebras with a comprehensive introduction, general theoretical basis and several examples. It introduces the general theoretical basis of BE-algebras, adopting a credible style to offer students a conceptual understanding of the subject. BE-algebras are important tools for certain investigations in algebraic logic, because they can be considered as fragments of any propositional logic containing a logical connective implication and the constant "1", which is considered as the logical value “true”.  Primarily aimed at graduate and postgraduate students of mathematics, it also helps researchers and mathematicians to build a strong foundation in applied abstract algebra. Presenting insights into some of the abstract thinking that constitutes modern abstract algebra, it provides a transition from elementary topics to advanced topics in BE-algebras. With abundant examples and exercises arranged after each section, it offers readers a comprehensive, easy-to-follow int...

  14. AT -algebras and extensions of AT-algebras

    Indian Academy of Sciences (India)

    sion in K0 does not arise from the torsion parts of certain metric spaces but from nontrivial extensions of C(S1) by K. Let A be an AT -algebra. The invariant consists of the abelian semigroup V (A), the Murry–von Neumann equivalence classes of projections in matri- ces of A, an abelian semigroup k(A)+, some equivalence ...

  15. Algebraic Model for Agent Explicit Knowledge in Multi-agent Systems

    OpenAIRE

    Sabri, Khair Eddin; Khedri, Ridha; Jaskolka, Jason

    2009-01-01

    In this chapter, we present a structure to specify agent explicit knowledge based on information algebra. We define in the context of agent knowledge the combining, marginalizing, and labelling operators. Also, we define remove and frame substitution operator. These operators are all what is needed to express operations on agent explicit knowledge. We also define a set of frames to be associated with information. Then, we prove that our structure is an information algebra which links our work...

  16. Relationships Between Classroom Schedule Types and Performance on the Algebra I Criterion-Referenced Test

    OpenAIRE

    Murray, Gregory V.

    2012-01-01

    Public education has options with regard to educational settings and structures. States and school districts may select varying lengths for the school year, lengths for the school day, and lengths for individual class periods. In Utah, one measure of students' achievement is scores on the State's end-of-level criterion-referenced test (CRT) for Algebra I. Additionally, an option regarding educational structures is the schedule type used to deliver Algebra I classes. This study examined the re...

  17. The algebras of large N matrix mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, M.B.; Schwartz, C.

    1999-09-16

    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.

  18. Algebraic properties of generalized inverses

    CERN Document Server

    Cvetković‐Ilić, Dragana S

    2017-01-01

    This book addresses selected topics in the theory of generalized inverses. Following a discussion of the “reverse order law” problem and certain problems involving completions of operator matrices, it subsequently presents a specific approach to solving the problem of the reverse order law for {1} -generalized inverses. Particular emphasis is placed on the existence of Drazin invertible completions of an upper triangular operator matrix; on the invertibility and different types of generalized invertibility of a linear combination of operators on Hilbert spaces and Banach algebra elements; on the problem of finding representations of the Drazin inverse of a 2x2 block matrix; and on selected additive results and algebraic properties for the Drazin inverse. In addition to the clarity of its content, the book discusses the relevant open problems for each topic discussed. Comments on the latest references on generalized inverses are also included. Accordingly, the book will be useful for graduate students, Ph...

  19. Combinatorial algebra syntax and semantics

    CERN Document Server

    Sapir, Mark V

    2014-01-01

    Combinatorial Algebra: Syntax and Semantics provides a comprehensive account of many areas of combinatorial algebra. It contains self-contained proofs of  more than 20 fundamental results, both classical and modern. This includes Golod–Shafarevich and Olshanskii's solutions of Burnside problems, Shirshov's solution of Kurosh's problem for PI rings, Belov's solution of Specht's problem for varieties of rings, Grigorchuk's solution of Milnor's problem, Bass–Guivarc'h theorem about the growth of nilpotent groups, Kleiman's solution of Hanna Neumann's problem for varieties of groups, Adian's solution of von Neumann-Day's problem, Trahtman's solution of the road coloring problem of Adler, Goodwyn and Weiss. The book emphasize several ``universal" tools, such as trees, subshifts, uniformly recurrent words, diagrams and automata.   With over 350 exercises at various levels of difficulty and with hints for the more difficult problems, this book can be used as a textbook, and aims to reach a wide and diversified...

  20. Learning abstract algebra with ISETL

    CERN Document Server

    Dubinsky, Ed

    1994-01-01

    Most students in abstract algebra classes have great difficulty making sense of what the instructor is saying. Moreover, this seems to remain true almost independently of the quality of the lecture. This book is based on the constructivist belief that, before students can make sense of any presentation of abstract mathematics, they need to be engaged in mental activities which will establish an experiential base for any future verbal explanation. No less, they need to have the opportunity to reflect on their activities. This approach is based on extensive theoretical and empirical studies as well as on the substantial experience of the authors in teaching astract algebra. The main source of activities in this course is computer constructions, specifically, small programs written in the mathlike programming language ISETL; the main tool for reflections is work in teams of 2-4 students, where the activities are discussed and debated. Because of the similarity of ISETL expressions to standard written mathematics...