On the algebraic realization of SU(4) symmetry
International Nuclear Information System (INIS)
Asatryan, G.M.; Zaslavsky, A.N.
1976-01-01
A possibility of nonlinear realization of the symmetry with linearization on the SU(4)xYxC group is discussed. Algebraic properties of SU(4) are restored from the Weinberg condition: amplitudes of goldstone scattering on particles should have a reasonable (as in the Regge theory) asymptotic behaviour. In this case the breaking appears to be minimal. Large values of psi meson masses lead to high-lying charmed trajectories in the SU(4) algebraic realization
Indian Academy of Sciences (India)
Abstract. We introduce in this paper embedded Gaussian unitary ensemble of random matrices, for m fermions in Ω number of single particle orbits, generated by random two- body interactions that are SU(4) scalar, called EGUE(2)-SU(4). Here the SU(4) algebra corresponds to Wigner's supermultiplet SU(4) symmetry in ...
SU(4): algebraic approach to new resonances. Technical report No. 76-139
International Nuclear Information System (INIS)
Oneda, S.; Takasugi, E.
1976-01-01
Present status of algebraic approach (including the conventional group theoretical method) to new boson resonances in SU(4) is reviewed. The mass formulas, intermultiplet mass relations and the derivation of selection rules for the new resonances are discussed. It is stressed that one does not need to subscribe to the perturbation theoretic point of view towards SU(4) breaking. A possible relation between the SU(3) and SU(4) world is demonstrated. Some crude discussion is given to the new possible P-wave states in the 3.4 to 3.5 GeV region and the problems associated with the X
Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra
van den Hijligenberg, N.W.; van den Hijligenberg, N.W.; Martini, Ruud
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of
New narrow boson resonances and SU(4) symmetry: Selection rules, SU(4) mixing, and mass formulas
International Nuclear Information System (INIS)
Takasugi, E.; Oneda, S.
1975-01-01
General SU(4) sum rules are obtained for bosons in the theoretical framework of asymptotic SU(4), chiral SU(4) direct-product SU(4) charge algebra, and a simple mechanism of SU(4) and chiral SU(4) direct-product SU(4) breaking. The sum rules exhibit a remarkable interplay of the masses, SU(4) mixing angles, and axial-vector matrix elements of 16-plet boson multiplets. Under a particular circumstance (i.e., in the ''ideal'' limit) this interplay produces selection rules which may explain the remarkable stability of the newly found narrow boson resonances. General SU(4) mass formulas and inter-SU(4) -multiplet mass relations are derived and SU(4) mixing parameters are completely determined. Ground state 1 -- and 0 -+ 16-plets are especially discussed and the masses of charmed and uncharmed new members of these multiplets are predicted
Quantum cluster algebra structures on quantum nilpotent algebras
Goodearl, K R
2017-01-01
All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.
Algebraic structure of chiral anomalies
International Nuclear Information System (INIS)
Stora, R.
1985-09-01
I will describe first the algebraic aspects of chiral anomalies, exercising however due care about the topological delicacies. I will illustrate the structure and methods in the context of gauge anomalies and will eventually make contact with results obtained from index theory. I will go into two sorts of generalizations: on the one hand, generalizing the algebraic set up yields e.g. gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories; on the other hand most constructions applied to the cohomologies which characterize anomalies easily extend to higher cohomologies. Section II is devoted to a description of the general set up as it applies to gauge anomalies. Section III deals with a number of algebraic set ups which characterize more general types of anomalies: gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories. It also includes brief remarks on σ models and a reminder on the full BRST algebra of quantized gauge theories
Quantum algebras in nuclear structure
International Nuclear Information System (INIS)
Bonatsos, D.; Daskaloyannis, C.
1995-01-01
Quantum algebras is a mathematical tool which provides us with a class of symmetries wider than that of Lie algebras, which are contained in the former as a special case. After a self-contained introduction through the necessary mathematical tools (q-numbers, q-analysis, q-oscillators, q-algebras), the su q (2) rotator model and its extensions, the construction of deformed exactly soluble models (Interacting Boson Model, Moszkowski model), the use of deformed bosons in the description of pairing correlations, and the symmetries of the anisotropic quantum harmonic oscillator with rational ratios of frequencies, which underline the structure of superdeformed and hyperdeformed nuclei are discussed in some details. A brief description of similar applications to molecular structure and an outlook are also given. (author) 2 Tabs., 324 Refs
Particle-like structure of Lie algebras
Vinogradov, A. M.
2017-07-01
If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i's, we say that 𝔤 is simply assembled from the 𝔤i's. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i's, one obtains a Lie algebra assembled in two steps from 𝔤i's, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.
Algebraic Structures on MOD Planes
Kandasamy, Vasantha; Ilanthenral, K.; Smarandache, Florentin
2015-01-01
Study of MOD planes happens to a very recent one. In this book, systematically algebraic structures on MOD planes like, MOD semigroups, MOD groups and MOD rings of different types are defined and studied. Such study is innovative for a large four quadrant planes are made into a small MOD planes. Several distinct features enjoyed by these MOD planes are defined, developed and described.
Contractions of quantum algebraic structures
International Nuclear Information System (INIS)
Doikou, A.; Sfetsos, K.
2010-01-01
A general framework for obtaining certain types of contracted and centrally extended algebras is reviewed. The whole process relies on the existence of quadratic algebras, which appear in the context of boundary integrable models. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
International Nuclear Information System (INIS)
Vyas, Manan; Kota, V.K.B.
2010-01-01
For m fermions in Ω number of single particle orbitals, each fourfold degenerate, we introduce and analyze in detail embedded Gaussian unitary ensemble of random matrices generated by random two-body interactions that are SU(4) scalar [EGUE(2)-SU(4)]. Here the SU(4) algebra corresponds to the Wigner's supermultiplet SU(4) symmetry in nuclei. Embedding algebra for the EGUE(2)-SU(4) ensemble is U(4Ω) contains U(Ω) x SU(4). Exploiting the Wigner-Racah algebra of the embedding algebra, analytical expression for the ensemble average of the product of any two m particle Hamiltonian matrix elements is derived. Using this, formulas for a special class of U(Ω) irreducible representations (irreps) {4 r , p}, p = 0, 1, 2, 3 are derived for the ensemble averaged spectral variances and also for the covariances in energy centroids and spectral variances. On the other hand, simplifying the tabulations of Hecht for SU(Ω) Racah coefficients, numerical calculations are carried out for general U(Ω) irreps. Spectral variances clearly show, by applying Jacquod and Stone prescription, that the EGUE(2)-SU(4) ensemble generates ground state structure just as the quadratic Casimir invariant (C 2 ) of SU(4). This is further corroborated by the calculation of the expectation values of C 2 [SU(4)] and the four periodicity in the ground state energies. Secondly, it is found that the covariances in energy centroids and spectral variances increase in magnitude considerably as we go from EGUE(2) for spinless fermions to EGUE(2) for fermions with spin to EGUE(2)-SU(4) implying that the differences in ensemble and spectral averages grow with increasing symmetry. Also for EGUE(2)-SU(4) there are, unlike for GUE, non-zero cross-correlations in energy centroids and spectral variances defined over spaces with different particle numbers and/or U(Ω) [equivalently SU(4)] irreps. In the dilute limit defined by Ω → ∞, r >> 1 and r/Ω → 0, for the {4 r , p} irreps, we have derived analytical
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Hochschild homology of structured algebras
DEFF Research Database (Denmark)
Wahl, Nathalie; Westerland, Craig Christopher
2016-01-01
–Kontsevich–Soibelman moduli space action on the Hochschild complex of open TCFTs, the Tradler–Zeinalian and Kaufmann actions of Sullivan diagrams on the Hochschild complex of strict Frobenius algebras, and give applications to string topology in characteristic zero. Our main tool is a generalization of the Hochschild complex....
Superalgebras with Grassmann algebra-valued structure constants from superfields
International Nuclear Information System (INIS)
Azcarraga, J.A. de; Lukierski, J.
1987-05-01
We introduce generalized Lie algebras and superalgebras with generators and structure constants taking values in a Grassmann algebra. Such algebraic structures describe the equal time algebras in the superfield formalism. As an example we consider the equal time commutators and anticommutators among bilinears made out of the D=1 quantum superfields describing the supersymmetric harmonic oscillator. (author). 10 refs
International Nuclear Information System (INIS)
Kanakoglou, K; Daskaloyannis, C
2008-01-01
Parabosonic algebra in finite or infinite degrees of freedom is considered as a Z 2 -graded associative algebra, and is shown to be a Z 2 -graded (or super) Hopf algebra. The super-Hopf algebraic structure of the parabosonic algebra is established directly without appealing to its relation to the osp(1/2n) Lie superalgebraic structure. The notion of super-Hopf algebra is equivalently described as a Hopf algebra in the braided monoidal category CZ 2 M. The bosonization technique for switching a Hopf algebra in the braided monoidal category H M (where H is a quasitriangular Hopf algebra) into an ordinary Hopf algebra is reviewed. In this paper, we prove that for the parabosonic algebra P B , beyond the application of the bosonization technique to the original super-Hopf algebra, a bosonization-like construction is also achieved using two operators, related to the parabosonic total number operator. Both techniques switch the same super-Hopf algebra P B to an ordinary Hopf algebra, thus producing two different variants of P B , with an ordinary Hopf structure
Algebraic and structural automata theory
Mikolajczak, B
1991-01-01
Automata Theory is part of computability theory which covers problems in computer systems, software, activity of nervous systems (neural networks), and processes of live organisms development.The result of over ten years of research, this book presents work in the following areas of Automata Theory: automata morphisms, time-varying automata, automata realizations and relationships between automata and semigroups.Aimed at those working in discrete mathematics and computer science, parts of the book are suitable for use in graduate courses in computer science, electronics, telecommunications, and control engineering. It is assumed that the reader is familiar with the basic concepts of algebra and graph theory.
An introduction to algebraic structures
Landin, Joseph
2010-01-01
As the author notes in the preface, ""The purpose of this book is to acquaint a broad spectrum of students with what is today known as 'abstract algebra.'"" Written for a one-semester course, this self-contained text includes numerous examples designed to base the definitions and theorems on experience, to illustrate the theory with concrete examples in familiar contexts, and to give the student extensive computational practice.The first three chapters progress in a relatively leisurely fashion and include abundant detail to make them as comprehensible as possible. Chapter One provides a short
Three short distance structures from quantum algebras
International Nuclear Information System (INIS)
Kempf, A.
1997-01-01
Known results are reviewed and new results are given on three types of short distance structures of observables which typically appear in studies of quantum group related algebras. In particular, one of the short distance structures is shown to suggest a new mechanism for the introduction of internal symmetries
Hamiltonian structure of linearly extended Virasoro algebra
International Nuclear Information System (INIS)
Arakelyan, T.A.; Savvidi, G.K.
1991-01-01
The Hamiltonian structure of linearly extended Virasoro algebra which admits free bosonic field representation is described. An example of a non-trivial extension is found. The hierarchy of integrable non-linear equations corresponding to this Hamiltonian structure is constructed. This hierarchy admits the Lax representation by matrix Lax operator of second order
Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra
N.W. van den Hijligenberg; R. Martini
1995-01-01
textabstractWe discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra
The structure of relation algebras generated by relativizations
Givant, Steven R
1994-01-01
The foundation for an algebraic theory of binary relations was laid by De Morgan, Peirce, and Schröder during the second half of the nineteenth century. Modern development of the subject as a theory of abstract algebras, called "relation algebras", was undertaken by Tarski and his students. This book aims to analyze the structure of relation algebras that are generated by relativized subalgebras. As examples of their potential for applications, the main results are used to establish representation theorems for classes of relation algebras and to prove existence and uniqueness theorems for simple closures (i.e., for minimal simple algebras containing a given family of relation algebras as relativized subalgebras). This book is well written and accessible to those who are not specialists in this area. In particular, it contains two introductory chapters on the arithmetic and the algebraic theory of relation algebras. This book is suitable for use in graduate courses on algebras of binary relations or algebraic...
On the structure of transitively differential algebras
Post, Gerhard F.
1999-01-01
We study finite-dimensional Lie algebras of polynomial vector fields in $n$ variables that contain the vector fields ${\\partial}/{\\partial x_i} \\; (i=1,\\ldots, n)$ and $x_1{\\partial}/{\\partial x_1}+ \\dots + x_n{\\partial}/{\\partial x_n}$. We derive some general results on the structure of such Lie
Fundamental structures of algebra and discrete mathematics
Foldes, Stephan
2011-01-01
Introduces and clarifies the basic theories of 12 structural concepts, offering a fundamental theory of groups, rings and other algebraic structures. Identifies essentials and describes interrelationships between particular theories. Selected classical theorems and results relevant to current research are proved rigorously within the theory of each structure. Throughout the text the reader is frequently prompted to perform integrated exercises of verification and to explore examples.
The Jordan structure of lie and Kac-Moody algebras
International Nuclear Information System (INIS)
Ferreira, L.A.; Gomes, J.F.; Teotonio Sobrinho, P.; Zimerman, A.H.
1989-01-01
A precise relation between the structures of Lie and Jordan algebras by presenting a method of constructing one type of algebra from the other is established. The method differs in some aspects of the Tits construction and Jordan pairs. The examples of the Lie algebras associated to simple Jordan algebras M m (n ) and Clifford algebras are discussed in detail. This approach will shed light on the role of the realizations of Jordan algebras through some types of Fermi fields used in the construction of Kac-Moodey and Virasoro algebras as well as its relevance in the study of some aspects of conformal fields theories. (author)
Towards a structure theory for Lie-admissible algebras
International Nuclear Information System (INIS)
Wene, G.P.
1981-01-01
The concepts of radical and decomposition of algebras are presented. Following a discussion of the theory for associative algebras, examples are presented that illuminate the difficulties encountered in choosing a structure theory for nonassociative algebras. Suitable restrictions, based upon observed phenomenon, are given that reduce the class of Lie-admissible algebras to a manageable size. The concepts developed in the first part of the paper are then reexamined in the context of this smaller class of Lie-admissible algebras
Differential Hopf algebra structures on the Universal Enveloping Algebra of a Lie Algebra
van den Hijligenberg, N.W.; van den Hijligenberg, N.; Martini, Ruud
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincaré–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebrastructure of U(g).
Effective constraint algebras with structure functions
International Nuclear Information System (INIS)
Bojowald, Martin; Brahma, Suddhasattwa
2016-01-01
This article presents the result that fluctuations and higher moments of a state, by themselves, do not imply quantum corrections in structure functions of constrained systems. Moment corrections are isolated from other types of quantum effects, such as factor-ordering choices and regularization, by introducing a new condition with two parts: (i) having a direct (or faithful) quantization of the classical structure functions, (ii) free of factor-ordering ambiguities. In particular, it is assumed that the classical constraints can be quantized in an anomaly free way, so that properties of the resulting constraint algebras can be derived. If the two-part condition is not satisfied, effective constraints can still be evaluated, but quantum effects may be stronger. Consequences for canonical quantum gravity, whose structure functions encode space–time structure, are discussed. In particular, deformed algebras found in models of loop quantum gravity provide reliable information even in the Planck regime. (paper)
Bicrossproduct structure and graded contractions of deformed algebras
International Nuclear Information System (INIS)
Perez Bueno, J.C.
1997-01-01
It is shown that all members in the family of deformed Hopf algebras corresponding to the graded contractions of the inhomogeneous algebras iso(p,q), p + q = N, have a bicrossproduct structure. (author)
The structure of the super-W∞(λ) algebra
International Nuclear Information System (INIS)
Bergshoeff, E.; Wit, B. de; Vasiliev, M.
1991-01-01
We give a comprehensive treatment of the super-W ∞ (λ) algebra, an extension of the super-Virasoro algebra that contains generators of spin S ≥ 1/2. The parameter λ defines the embedding of the Virasoro subalgebra. We describe how to obtain the super-W ∞ (λ) algebra from the associative algebra of superspace differential operators. We discuss the structure of this associative algebra and its relation with the so-called wedge algebra, in which the generators for given spin are restricted to finite-dimensional representations of sl(2). From the super-W ∞ (λ) algebra one can obtain a variety of W ∞ algebras by consistent truncations for specific values of λ. Without truncation the algebras are formally isomorphic for different values of λ. We present a realization in terms of the currents of a supersymmetric bc system. (orig.)
Algebraic structure of open string interactions
International Nuclear Information System (INIS)
Ramond, P.; Rodgers, V.G.J.
1986-05-01
Starting from the gauge invariant equations of motion for the free open string we show how to generate interactions by analogy with Yang-Mills. We postulate Non-Abelian transformation laws acting on the fields of the gauge invariant free open string theory. By demanding algebraic closure we then derive a set of consistency requirements and show that they lead to the construction of the minimal interacting equations which contain no cubic terms away from the physical gauge. We present explicit solutions to lowest interacting order for both vertices and structure functions. 14 refs
Algebraic structure of open-string interactions
International Nuclear Information System (INIS)
Ramond, P.; Rodgers, V.G.J.
1986-01-01
Starting from the gauge-invariant equations of motion for the free open string we show how to generate interactions by analogy with the Yang-Mills system. We postulate non-Abelian transformation laws acting on the fields of the gauge-invariant free open-string theory. By demanding algebraic closure we then derive a set of consistency requirements and show that they lead to the construction of the minimal interacting equations which contain no cubic terms away from the physical gauge. We present explicit solutions to lowest interacting order for both vertices and structure functions
On the algebraic structure of differential calculus on quantum groups
International Nuclear Information System (INIS)
Rad'ko, O.V.; Vladimirov, A.A.
1997-01-01
Intrinsic Hopf algebra structure of the Woronowicz differential complex is shown to generate quite naturally a bicovariant algebra of four basic objects within a differential calculus on quantum groups - coordinate functions, differential forms, Lie derivatives, and inner derivatives - as the cross-product algebra of two mutually dual graded Hopf algebras. This construction, properly taking into account Hopf-algebraic properties of Woronowicz's bicovariant calculus, provides a direct proof of the Cartan identity and of many other useful relations. A detailed comparison with other approaches is also given
Hopf algebra structures in particle physics
International Nuclear Information System (INIS)
Weinzierl, Stefan
2004-01-01
In the recent years, Hopf algebras have been introduced to describe certain combinatorial properties of quantum field theories. I give a basic introduction to these algebras and review some occurrences in particle physics. (orig.)
Determination of the chiral SU(4) x SU(4) breaking parameters
International Nuclear Information System (INIS)
Das, K.P.; Deshpande, N.G.
1978-06-01
Broken chiral SU(4) x SU(4) symmetry: from the observed mass spectrum of pseudoscalar charmed mesons the symmetry breakig parameters of the theory could be solved. It is found that both vacuum and Hamiltonian breaking play an important role as far as charmed states are concerned. Purely from the masses of D and F mesons the current algebra mass ratio m/sub c//m/sub s/ < 5 is deduced. This differs greatly from values obtained using linear or quadratic mass formulas. Considering eta, eta', and eta/sub c/ mixing a good solution with m/sub c//m/sub s/ approx. 3.2 and (anti cc)/anti uu) approx. 5.67 is further obtained. 18 references
The structure of algebraic problem in high schools
Chio, José Angel; Álvarez, Aida; Estrada, Pablo
2010-01-01
The paper is aimed at discussing the importance of pupil’s knowledge of algebraic problem structure. The research started by diagnosing pupil’s actual command of algebraic problem structure. Finally suggestions to teachers of mathematics for facing difficulties in solving problems are given.
The structure of algebraic problem in high schools
Directory of Open Access Journals (Sweden)
Chio, José Angel
2010-01-01
Full Text Available The paper is aimed at discussing the importance of pupil’s knowledge of algebraic problem structure. The research started by diagnosing pupil’s actual command of algebraic problem structure. Finally suggestions to teachers of mathematics for facing difficulties in solving problems are given.
A Hilbert space structure on Banach algebras
International Nuclear Information System (INIS)
Mohammad, N.; Thaheem, A.B.
1988-08-01
In this note we define an inner product on ''reduced'' Banach *-algebras via a measure on the set of positive functionals. It is shown here that the resultant inner product space is a topological algebra and also a completeness condition is obtained. (author). 9 refs
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
Hopf structure and Green ansatz of deformed parastatistics algebras
Energy Technology Data Exchange (ETDEWEB)
Aneva, Boyka [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, bld. Tsarigradsko chaussee 72, BG-1784 Sofia (Bulgaria); Popov, Todor [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, bld. Tsarigradsko chaussee 72, BG-1784 Sofia (Bulgaria)
2005-07-22
Deformed parabose and parafermi algebras are revised and endowed with Hopf structure in a natural way. The noncocommutative coproduct allows for construction of parastatistics Fock-like representations, built out of the simplest deformed Bose and Fermi representations. The construction gives rise to quadratic algebras of deformed anomalous commutation relations which define the generalized Green ansatz.
Particle-like structure of coaxial Lie algebras
Vinogradov, A. M.
2018-01-01
This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
Algebraic Modeling of Topological and Computational Structures and Applications
Theodorou, Doros; Stefaneas, Petros; Kauffman, Louis
2017-01-01
This interdisciplinary book covers a wide range of subjects, from pure mathematics (knots, braids, homotopy theory, number theory) to more applied mathematics (cryptography, algebraic specification of algorithms, dynamical systems) and concrete applications (modeling of polymers and ionic liquids, video, music and medical imaging). The main mathematical focus throughout the book is on algebraic modeling with particular emphasis on braid groups. The research methods include algebraic modeling using topological structures, such as knots, 3-manifolds, classical homotopy groups, and braid groups. The applications address the simulation of polymer chains and ionic liquids, as well as the modeling of natural phenomena via topological surgery. The treatment of computational structures, including finite fields and cryptography, focuses on the development of novel techniques. These techniques can be applied to the design of algebraic specifications for systems modeling and verification. This book is the outcome of a w...
Sepanski, Mark R
2010-01-01
Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems
Pawlak algebra and approximate structure on fuzzy lattice.
Zhuang, Ying; Liu, Wenqi; Wu, Chin-Chia; Li, Jinhai
2014-01-01
The aim of this paper is to investigate the general approximation structure, weak approximation operators, and Pawlak algebra in the framework of fuzzy lattice, lattice topology, and auxiliary ordering. First, we prove that the weak approximation operator space forms a complete distributive lattice. Then we study the properties of transitive closure of approximation operators and apply them to rough set theory. We also investigate molecule Pawlak algebra and obtain some related properties.
String field theory. Algebraic structure, deformation properties and superstrings
International Nuclear Information System (INIS)
Muenster, Korbinian
2013-01-01
This thesis discusses several aspects of string field theory. The first issue is bosonic open-closed string field theory and its associated algebraic structure - the quantum open-closed homotopy algebra. We describe the quantum open-closed homotopy algebra in the framework of homotopy involutive Lie bialgebras, as a morphism from the loop homotopy Lie algebra of closed string to the involutive Lie bialgebra on the Hochschild complex of open strings. The formulation of the classical/quantum open-closed homotopy algebra in terms of a morphism from the closed string algebra to the open string Hochschild complex reveals deformation properties of closed strings on open string field theory. In particular, we show that inequivalent classical open string field theories are parametrized by closed string backgrounds up to gauge transformations. At the quantum level the correspondence is obstructed, but for other realizations such as the topological string, a non-trivial correspondence persists. Furthermore, we proof the decomposition theorem for the loop homotopy Lie algebra of closed string field theory, which implies uniqueness of closed string field theory on a fixed conformal background. Second, the construction of string field theory can be rephrased in terms of operads. In particular, we show that the formulation of string field theory splits into two parts: The first part is based solely on the moduli space of world sheets and ensures that the perturbative string amplitudes are recovered via Feynman rules. The second part requires a choice of background and determines the real string field theory vertices. Each of these parts can be described equivalently as a morphism between appropriate cyclic and modular operads, at the classical and quantum level respectively. The algebraic structure of string field theory is then encoded in the composition of these two morphisms. Finally, we outline the construction of type II superstring field theory. Specific features of the
Gravity and the structure of noncommutative algebras
International Nuclear Information System (INIS)
Buric, Maja; Madore, John; Grammatikopoulos, Theodoros; Zoupanos, George
2006-01-01
A gravitational field can be defined in terms of a moving frame, which when made noncommutative yields a preferred basis for a differential calculus. It is conjectured that to a linear perturbation of the commutation relations which define the algebra there corresponds a linear perturbation of the gravitational field. This is shown to be true in the case of a perturbation of Minkowski space-time
On the Structure of С*-Algebras Generated by Representations of the Elementary Inverse Semigroup
Directory of Open Access Journals (Sweden)
S.A. Grigoryan
2016-06-01
Full Text Available The class of С*-algebras generated by the elementary inverse semigroup and being deformations of the Toeplitz algebra has been introduced and studied. The properties of these algebras have been investigated. All their irreducible representations and automorphism groups have been described. These algebras have been proved to be Z-graded С*-algebras. For a certain class of algebras in the family under consideration the compact quantum semigroup structure has been constructed.
Structure Sense in High School Algebra: The Effect of Brackets
Hoch, Maureen; Dreyfus, Tommy
2005-01-01
This paper presents an initial attempt to define structure sense for high school algebra and to test part of this definition. A questionnaire was distributed to 92 eleventh grade students in order to identify those who use structure sense. Presence and absence of brackets was examined to see how they affect use of structure sense. The overall use…
Quantum algebra structure of certain Jackson integrals
International Nuclear Information System (INIS)
Matsuo, Atsushi
1993-01-01
The q-difference system satisfied by Jackson integrals with a configuration of A-type root system is studied. We explicitly construct some linear combination of Jackson integrals, which satisfies the quantum Knizhnik-Zamolodchikov equation for the 2-point correlation function of q-vertex operators, introduced by Frenkel and Reshetik hin, for the quantum affine algebra U q (sl 2 ). The expression of integrands for the n-point case is conjectured, and a set of linear relations for the corresponding Jackson integrals is proved. (orig.)
International Nuclear Information System (INIS)
Partensky, A.; Maguin, C.
1976-11-01
The main results of a work concerning the calculation of the matrices of the generators of SU(4) in a given (p,p',p'') irreducible representation, in which the states are labelled by the spin quantum numbers, S, MS, are given. Then the SU(4) algebra is defined, the labelling problem of the states is discussed and the Racah formula transformed, which facilitates the calculation. The semi-reduced matrix elements of the Q, Vsup(Q) and Wsup(Q) vectors are defined. Finally an explicit formulation of the matrix elements of Q is given, in the particular case T=p for any S, or S=p for any T; the example of the (3 2 0) irreducible representation is treated
Su(4) properties of the Dirac-Kaehler equation
International Nuclear Information System (INIS)
Linhares, C.A.; Mignaco, J.A.
1991-01-01
We use the Dirac-Kaehler formalism in the space of differential forms (endowed with a Clifford product) to study the SU(4) symmetry related to the description of spin-1/2 particles found previously in the usual matrix treatment. We show that differential forms may be taken as the generators spanning the algebra of the SU(4) group and how the operations of this group can be related to a change of frame of reference in the algebra. We demonstrate that minimal left ideals of the algebra constitute irreducible representations for spin-1/2 particles for Clifford operation from the left, and exhibit how these ideals are related via space inversion, time reversal and their product. We also consider the dual space of minimal right ideals and show how the Dirac-Kaehler differential operator acts from the right, leaving the minimal right ideals invariant. This allows the introduction of an adjoint form and through the definition of a suitable scalar product, of conserved currents. We emphasize the relevance of all these features to the problem of proliferation of fermion species in the continuum limit of the lattice formalism. (author)
The algebraic structure of lax equations for infinite matrices
Helminck, G.F.
2002-01-01
In this paper we discuss the algebraic structure of the tower of differential difference equations that one can associate with any commutative subalgebra of $M_k(\\mathbb{C})$. These equations can be formulated conveniently in so-called Lax equations for infinite upper- resp. lowertriangular matrices
Reduced-density-matrix theory and algebraic structures
International Nuclear Information System (INIS)
Kryachko, E.S.
1978-01-01
A survey of recent work on algebraic structures and reduced-density-matrix theory is presented. The approach leads to a method of classifying reduced density matrices and generalizes the notion of open and closed shells in many-body theory. 6 references
Algebraic structure of a generalized coupled dispersionless system
International Nuclear Information System (INIS)
Victor, Kuetche Kamgang; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin
2006-01-01
We study a physical model of the O(3)-invariant coupled integrable dispersionless equations that describes the dynamic of a focused system within the background of a plane gravitational field. The investigation is carried out both numerically and analytically, and realized beneath some assumptions superseding the structure constant with the structure function implemented in Lie algebra and quasigroup theory, respectively. The energy density and topological structures such as loop soliton are examined
Which structural rules admit cut elimination? An algebraic criterion
Terui, Kazushige
2007-01-01
Consider a general class of structural inference rules such as exchange, weakening, contraction and their generalizations. Among them, some are harmless but others do harm to cut elimination. Hence it is natural to ask under which condition cut elimination is preserved when a set of structural rules is added to a structure-free logic. The aim of this work is to give such a condition by using algebraic semantics. ¶ We consider full Lambek calculus (FL), i.e., intuitioni...
Algebraic structure of general electromagnetic fields and energy flow
International Nuclear Information System (INIS)
Hacyan, Shahen
2011-01-01
Highlights: → Algebraic structure of general electromagnetic fields in stationary spacetime. → Eigenvalues and eigenvectors of the electomagnetic field tensor. → Energy-momentum in terms of eigenvectors and Killing vector. → Explicit form of reference frame with vanishing Poynting vector. → Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.
The bubble algebra: structure of a two-colour Temperley-Lieb Algebra
International Nuclear Information System (INIS)
Grimm, Uwe; Martin, Paul P
2003-01-01
We define new diagram algebras providing a sequence of multiparameter generalizations of the Temperley-Lieb algebra, suitable for the modelling of dilute lattice systems of two-dimensional statistical mechanics. These algebras give a rigorous foundation to the various 'multi-colour algebras' of Grimm, Pearce and others. We determine the generic representation theory of the simplest of these algebras, and locate the nongeneric cases (at roots of unity of the corresponding parameters). We show by this example how the method used (Martin's general procedure for diagram algebras) may be applied to a wide variety of such algebras occurring in statistical mechanics. We demonstrate how these algebras may be used to solve the Yang-Baxter equations
Abstract numeric relations and the visual structure of algebra.
Landy, David; Brookes, David; Smout, Ryan
2014-09-01
Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition, it has often been assumed that skilled users of these formalisms treat situations in terms of semantic properties encoded in an abstract syntax that governs the use of notation without particular regard to the details of the physical structure of the equation itself (Anderson, 2005; Hegarty, Mayer, & Monk, 1995). We explore how the notational structure of verbal descriptions or algebraic equations (e.g., the spatial proximity of certain words or the visual alignment of numbers and symbols in an equation) plays a role in the process of interpreting or constructing symbolic equations. We propose in particular that construction processes involve an alignment of notational structures across representation systems, biasing reasoners toward the selection of formal notations that maintain the visuospatial structure of source representations. For example, in the statement "There are 5 elephants for every 3 rhinoceroses," the spatial proximity of 5 and elephants and 3 and rhinoceroses will bias reasoners to write the incorrect expression 5E = 3R, because that expression maintains the spatial relationships encoded in the source representation. In 3 experiments, participants constructed equations with given structure, based on story problems with a variety of phrasings. We demonstrate how the notational alignment approach accounts naturally for a variety of previously reported phenomena in equation construction and successfully predicts error patterns that are not accounted for by prior explanations, such as the left to right transcription heuristic.
Differential structures in C*-algebras
Indian Academy of Sciences (India)
Second and higher order differential structure defined by a closed symmetric operator. Differential ... (1) General theory – differential seminorm approach and growth conditions ...... S is dual of a Banach space, and the weak ∗-topology on A2.
An Algebraic Approach to Inference in Complex Networked Structures
2015-07-09
44], [45],[46] where the shift is the elementary non-trivial filter that generates, under an appropriate notion of shift invariance, all linear ... elementary filter, and its output is a graph signal with the value at vertex n of the graph given approximately by a weighted linear combination of...AFRL-AFOSR-VA-TR-2015-0265 An Algebraic Approach to Inference in Complex Networked Structures Jose Moura CARNEGIE MELLON UNIVERSITY Final Report 07
The structure of the super-W sub infinity (. lambda. ) algebra
Energy Technology Data Exchange (ETDEWEB)
Bergshoeff, E [CERN, Geneva (Switzerland). Theory Div.; Wit, B de [Utrecht Univ. (Netherlands). Inst. for Theoretical Physics; Vasiliev, M [AN SSSR, Moscow (USSR). Theoretical Dept., P.N. Lebedev Inst.
1991-12-02
We give a comprehensive treatment of the super-W{sub {infinity}}({lambda}) algebra, an extension of the super-Virasoro algebra that contains generators of spin S {>=} 1/2. The parameter {lambda} defines the embedding of the Virasoro subalgebra. We describe how to obtain the super-W{sub {infinity}}({lambda}) algebra from the associative algebra of superspace differential operators. We discuss the structure of this associative algebra and its relation with the so-called wedge algebra, in which the generators for given spin are restricted to finite-dimensional representations of sl(2). From the super-W{sub {infinity}}({lambda}) algebra one can obtain a variety of W{sub {infinity}} algebras by consistent truncations for specific values of {lambda}. Without truncation the algebras are formally isomorphic for different values of {lambda}. We present a realization in terms of the currents of a supersymmetric bc system. (orig.).
SU(4) proprerties of the Dirac equation
International Nuclear Information System (INIS)
Linhares, C.A.; Mignaco, J.A.
1985-09-01
The Dirac equation in four dimensions has an intimate connection with the representations of the group SU(4). This connection is shown in detail and subsequent properties are displayed in the continuum as well as in the lattice description [pt
Comments on the SU(4) dark matter
Shuryak, Edward
2018-01-01
We discuss possible scale of $SU(4)$ dark matter, in form of neutral baryons. We argue that it is very likely that those would have time to cluster into large "nuclear drops" in which they are Bose-condensed.
Logic and algebraic structures in quantum computing
Eskandarian, Ali; Harizanov, Valentina S
2016-01-01
Arising from a special session held at the 2010 North American Annual Meeting of the Association for Symbolic Logic, this volume is an international cross-disciplinary collaboration with contributions from leading experts exploring connections across their respective fields. Themes range from philosophical examination of the foundations of physics and quantum logic, to exploitations of the methods and structures of operator theory, category theory, and knot theory in an effort to gain insight into the fundamental questions in quantum theory and logic. The book will appeal to researchers and students working in related fields, including logicians, mathematicians, computer scientists, and physicists. A brief introduction provides essential background on quantum mechanics and category theory, which, together with a thematic selection of articles, may also serve as the basic material for a graduate course or seminar.
Superconformal Algebraic Approach to Hadron Structure
Energy Technology Data Exchange (ETDEWEB)
de Teramond, Guy F. [Univ. of Costa Rica, San Pedro (Costa Rica); Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Deur, Alexandre [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Dosch, Hans Gunter [Heidelberg Univ. (Germany). Inst. for Theoretische Physik; Sufian, Raza Sabbir [Univ. of Kentucky, Lexington, KY (United States)
2017-03-01
Fundamental aspects of nonperturbative QCD dynamics which are not obvious from its classical Lagrangian, such as the emergence of a mass scale and confinement, the existence of a zero mass bound state, the appearance of universal Regge trajectories and the breaking of chiral symmetry are incorporated from the onset in an effective theory based on superconformal quantum mechanics and its embedding in a higher dimensional gravitational theory. In addition, superconformal quantum mechanics gives remarkable connections between the light meson and nucleon spectra. This new approach to hadron physics is also suitable to describe nonperturbative QCD observables based on structure functions, such as GPDs, which are not amenable to a first-principle computation. The formalism is also successful in the description of form factors, the nonperturbative behavior of the strong coupling and diffractive processes. We also discuss in this article how the framework can be extended rather successfully to the heavy-light hadron sector.
Vertex algebras and algebraic curves
Frenkel, Edward
2004-01-01
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...
IDEAL STRUCTURE OF UNIFORM ROE ALGEBRAS OVER SIMPLE CORES
Institute of Scientific and Technical Information of China (English)
CHEN XIAOMAN; WANG QIN
2004-01-01
This paper characterizes ideal structure of the uniform Roe algebra B* (X) over sinple cores X. A necessary and sufficient condition for a principal ideal of B*(X) to be spatial is given and an example of non-spatial ideal of B* (X) is constructed. By establishing an one-one correspondence between the ideals of B* (X) and the ω-filters on X, the maximal ideals of B* (X) are completely described by the corona of the Stone-Cech compactification of X.
Using linear algebra for protein structural comparison and classification.
Gomide, Janaína; Melo-Minardi, Raquel; Dos Santos, Marcos Augusto; Neshich, Goran; Meira, Wagner; Lopes, Júlio César; Santoro, Marcelo
2009-07-01
In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.
Using linear algebra for protein structural comparison and classification
Directory of Open Access Journals (Sweden)
Janaína Gomide
2009-01-01
Full Text Available In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD and Latent Semantic Indexing (LSI techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.
String field theory-inspired algebraic structures in gauge theories
International Nuclear Information System (INIS)
Zeitlin, Anton M.
2009-01-01
We consider gauge theories in a string field theory-inspired formalism. The constructed algebraic operations lead, in particular, to homotopy algebras of the related Batalin-Vilkovisky theories. We discuss an invariant description of the gauge fixing procedure and special algebraic features of gauge theories coupled to matter fields.
Supersymmetry algebra cohomology. I. Definition and general structure
International Nuclear Information System (INIS)
Brandt, Friedemann
2010-01-01
This paper concerns standard supersymmetry algebras in diverse dimensions, involving bosonic translational generators and fermionic supersymmetry generators. A cohomology related to these supersymmetry algebras, termed supersymmetry algebra cohomology, and corresponding 'primitive elements' are defined by means of a BRST (Becchi-Rouet-Stora-Tyutin)-type coboundary operator. A method to systematically compute this cohomology is outlined and illustrated by simple examples.
INPUT-OUTPUT STRUCTURE OF LINEAR-DIFFERENTIAL ALGEBRAIC SYSTEMS
KUIJPER, M; SCHUMACHER, JM
Systems of linear differential and algebraic equations occur in various ways, for instance, as a result of automated modeling procedures and in problems involving algebraic constraints, such as zero dynamics and exact model matching. Differential/algebraic systems may represent an input-output
Structuring students’ analogical reasoning in solving algebra problem
Lailiyah, S.; Nusantara, T.; Sa'dijah, C.; Irawan, E. B.; Kusaeri; Asyhar, A. H.
2018-01-01
The average achievement of Indonesian students’ mathematics skills according to Benchmark International Trends in Mathematics and Science Study (TIMSS) is ranked at the 38th out of 42 countries and according to the survey result in Program for International Student Assessment (PISA) is ranked at the 64th out of 65 countries. The low mathematics skill of Indonesian student has become an important reason to research more deeply about reasoning and algebra in mathematics. Analogical reasoning is a very important component in mathematics because it is the key to creativity and it can make the learning process in the classroom become effective. The major part of the analogical reasoning is about structuring including the processes of inferencing and decision-making happens. Those processes involve base domain and target domain. Methodologically, the subjects of this research were 42 students from class XII. The sources of data were derived from the results of thinks aloud, the transcribed interviews, and the videos taken while the subject working on the instruments and interviews. The collected data were analyzed using qualitative techniques. The result of this study described the structuring characteristics of students’ analogical reasoning in solving algebra problems from all the research subjects.
Algebraic partial Boolean algebras
International Nuclear Information System (INIS)
Smith, Derek
2003-01-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8
SU(4) properties of the Dirac equation
International Nuclear Information System (INIS)
Linhares, C.A.; Mignaco, J.A.
1988-01-01
The Dirac equation in four dimensions has an intimate connection with the representations of the group SU(4). This connection is shown in detail and subsequente properties are displayed in the continuum as well as in the lattice description. (author) [pt
su(1,2) Algebraic Structure of XYZ Antiferromagnetic Model in Linear Spin-Wave Frame
International Nuclear Information System (INIS)
Jin Shuo; Xie Binghao; Yu Zhaoxian; Hou Jingmin
2008-01-01
The XYZ antiferromagnetic model in linear spin-wave frame is shown explicitly to have an su(1,2) algebraic structure: the Hamiltonian can be written as a linear function of the su(1,2) algebra generators. Based on it, the energy eigenvalues are obtained by making use of the similar transformations, and the algebraic diagonalization method is investigated. Some numerical solutions are given, and the results indicate that only one group solution could be accepted in physics
Broken SU(4) symmetry and new resonance
International Nuclear Information System (INIS)
Ueda, Y.
1975-11-01
Weinberg's spectral function sum rules are modified to accommodate broken symmetry effects of SU(4). With a simple choice of the symmetry-breaking term, the spectral function sum rules yield the observed vector meson mass spectrum as well as sum rules for the e - e + decay rates of vector mesons. In particular, a new mass formula, which can be interpreted as the broken symmetry version of the Schwinger formula, is derived, the agreement with experiments is excellent. (Ueda, Y.)
Riemann type algebraic structures and their differential-algebraic integrability analysis
Directory of Open Access Journals (Sweden)
Prykarpatsky A.K.
2010-06-01
Full Text Available The differential-algebraic approach to studying the Lax type integrability of generalized Riemann type equations is devised. The differentiations and the associated invariant differential ideals are analyzed in detail. The approach is also applied to studying the Lax type integrability of the well known Korteweg-de Vries dynamical system.
Certain algebraic structures and their applications to physics
International Nuclear Information System (INIS)
Salingaros, N.A.
1978-01-01
The aim of this thesis is to understand internal and external symmetries in Physics as arising from the same algebra by different processes, while the algebra itself arises out of the geometry of space-time. The result obtained is the Associative Generalized Algebra of Tensor Types. This algebra is constructed from the differential forms of spacetime, and is an algebra in the mathematical sense, describing all tensor types together. It is associative, and therefore very easy to use. A calculational formalism is developed that simplifies algebraic manipulations. The construction allows a classification of algebras that appear useful in Physics. The geometry excludes self-dual Minkowski bivector fields, but allows self-dual Euclidean bivector fields, a result, with important consequences in the theory of solutions of Yang-Mills gauge fields are demonstrated. There is only one bivector field, and every other bivector field, such as the electromagnetic field, is isomorphic to it. An exhaustive classification of the transformations of all fields in space-time yields the result that the only transformations of the electromagnetic field are the Lorentz transformations and the duality rotation. A fundamental asymmetry between the electric and magnetic fields are demonstrated. The derivative in the algebra is associative, and combines the Cartan exterior derivative with the coderivative of Hodge. The simplest derivative equations satisfied by a field in flat space-time are precisely the Maxwell equations
Algebraic structure of the Green's ansatz and its q-deformed analogue
International Nuclear Information System (INIS)
Palev, T.D.
1994-08-01
The algebraic structure of the Green's ansatz is analyzed in such a way that its generalization to the case of q-deformed para-Bose and para-Fermi operators is becoming evident. To this end the underlying Lie (super) algebraic properties of the parastatistics are essentially used. (author). 41 refs
Modular structure of the local algebras associated with the free massless scalar field theory
International Nuclear Information System (INIS)
Hislop, P.D.; Longo, R.
1982-01-01
The modular structure of the von Neuman algebra of local observables associated with a double cone in the vacuum representation of the free massless scalar field theory of any number of dimensions is described. The modular automorphism group is induced by the unitary implementation of a family of generalized fractional linear transformations on Minkowski space and is a subgroup of the conformal group. The modular conjugation operator is the anti-unitary impementation of a product of time reversal and relativistic ray inversion. The group generated by the modular conjugation operators for the local algebras associated with the family of double cone regions is the group of proper conformal transformations. A theorem is presented asserting the unitary equivalence of local algebras associated with lightcones, double cones and wedge regions. For the double cone algebras, this provides an explicitly realization of spacelike duality and establishes the known type III 1 factor property. It is shown that the timelike duality property of the lightcone algebras does not hold for the double cone algebras. A different definition of the von Neumann algebras associated with a region is introduced which agrees with the standard one for a lightcone or a double cone region but which allows the timelike duality property for the double cone algebras. In the case of one spatial dimension, the standard local algebras associated with the double cone regions satisfy both specelike and timelike duality. (orig.)
Galilean Duffin-Kemmer-Petiau algebra and symplectic structure
Fernandes, M C B; Vianna, J D M
2003-01-01
We develop the Duffin-Kemmer-Petiau (DKP) approach in the phase-space picture of quantum mechanics by considering DKP algebras in a Galilean covariant context. Specifically, we develop an algebraic calculus based on a tensor algebra defined on a five-dimensional space which plays the role of spacetime background of the non-relativistic DKP equation. The Liouville operator is determined and the Liouville-von Neumann equation is written in two situations: the free particle and a particle in an external electromagnetic field. A comparison between the non-relativistic and the relativistic cases is commented.
On Parametrization of the Linear GL(4,C) and Unitary SU(4) Groups in Terms of Dirac Matrices
Red'Kov, Victor M.; Bogush, Andrei A.; Tokarevskaya, Natalia G.
2008-02-01
Parametrization of 4 × 4-matrices G of the complex linear group GL(4,C) in terms of four complex 4-vector parameters (k,m,n,l) is investigated. Additional restrictions separating some subgroups of GL(4,C) are given explicitly. In the given parametrization, the problem of inverting any 4 × 4 matrix G is solved. Expression for determinant of any matrix G is found: det G = F(k,m,n,l). Unitarity conditions G+ = G-1 have been formulated in the form of non-linear cubic algebraic equations including complex conjugation. Several simplest solutions of these unitarity equations have been found: three 2-parametric subgroups G1, G2, G3 - each of subgroups consists of two commuting Abelian unitary groups; 4-parametric unitary subgroup consis! ting of a product of a 3-parametric group isomorphic SU(2) and 1-parametric Abelian group. The Dirac basis of generators Λk, being of Gell-Mann type, substantially differs from the basis λi used in the literature on SU(4) group, formulas relating them are found - they permit to separate SU(3) subgroup in SU(4). Special way to list 15 Dirac generators of GL(4,C) can be used {Λk} = {μiÅνjÅ(μiVνj = KÅL ÅM )}, which permit to factorize SU(4) transformations according to S = eiaμ eibνeikKeilLeimM, where two first factors commute with each other and are isomorphic to SU(2) group, the three last ones are 3-parametric groups, each of them consisting of three Abelian commuting unitary subgroups. Besides, the structure of fifteen Dirac matrices Λk permits to separate twenty 3-parametric subgroups in SU(4) isomorphic to SU(2); those subgroups might be used as bigger elementary blocks in constructing of a general transformation SU(4). It is shown how one can specify the present approach for the pseudounitary group SU(2,2) and SU(3,1).
Tolar, Tammy Daun; Lederberg, Amy R.; Fletcher, Jack M.
2009-01-01
The goal of this study was to develop and evaluate a structural model of the relations among cognitive abilities and arithmetic skills and college students' algebra achievement. The model of algebra achievement was compared to a model of performance on the Scholastic Assessment in Mathematics (SAT-M) to determine whether the pattern of relations…
International Nuclear Information System (INIS)
Mohammad, N.; Siddiqui, A.H.
1987-11-01
The notion of a 2-Banach algebra is introduced and its structure is studied. After a short discussion of some fundamental properties of bivectors and tensor product, several classical results of Banach algebras are extended to the 2-Banach algebra case. A condition under which a 2-Banach algebra becomes a Banach algebra is obtained and the relation between algebra of bivectors and 2-normed algebra is discussed. 11 refs
Mastering algebra retrains the visual system to perceive hierarchical structure in equations.
Marghetis, Tyler; Landy, David; Goldstone, Robert L
2016-01-01
Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.
Refined algebraic quantisation in a system with nonconstant gauge invariant structure functions
International Nuclear Information System (INIS)
Martínez-Pascual, Eric
2013-01-01
In a previous work [J. Louko and E. Martínez-Pascual, “Constraint rescaling in refined algebraic quantisation: Momentum constraint,” J. Math. Phys. 52, 123504 (2011)], refined algebraic quantisation (RAQ) within a family of classically equivalent constrained Hamiltonian systems that are related to each other by rescaling one momentum-type constraint was investigated. In the present work, the first steps to generalise this analysis to cases where more constraints occur are developed. The system under consideration contains two momentum-type constraints, originally abelian, where rescalings of these constraints by a non-vanishing function of the coordinates are allowed. These rescalings induce structure functions at the level of the gauge algebra. Providing a specific parametrised family of real-valued scaling functions, the implementation of the corresponding rescaled quantum momentum-type constraints is performed using RAQ when the gauge algebra: (i) remains abelian and (ii) undergoes into an algebra of a nonunimodular group with nonconstant gauge invariant structure functions. Case (ii) becomes the first example known to the author where an open algebra is handled in refined algebraic quantisation. Challenging issues that arise in the presence of non-gauge invariant structure functions are also addressed
Expert Strategies in Solving Algebraic Structure Sense Problems: The Case of Quadratic Equations
Jupri, Al; Sispiyati, R.
2017-02-01
Structure sense, an intuitive ability towards symbolic expressions, including skills to interpret, to manipulate, and to perceive symbols in different roles, is considered as a key success in learning algebra. In this article, we report results of three phases of a case study on solving algebraic structure sense problems aiming at testing the appropriateness of algebraic structure sense tasks and at investigating expert strategies dealing with the tasks. First, we developed three tasks on quadratic equations based on the characteristics of structure sense for high school algebra. Next, we validated the tasks to seven experts. In the validation process, we requested these experts to solve each task using two different strategies. Finally, we analyzing expert solution strategies in the light of structure sense characteristics. We found that even if eventual expert strategies are in line with the characteristics of structure sense; some of their initial solution strategies used standard procedures which might pay less attention to algebraic structures. This finding suggests that experts have reconsidered their procedural work and have provided more efficient solution strategies. For further investigation, we consider to test the tasks to high school algebra students and to see whether they produce similar results as experts.
A nonlinear deformed su(2) algebra with a two-color quasitriangular Hopf structure
International Nuclear Information System (INIS)
Bonatsos, D.; Daskaloyannis, C.; Kolokotronis, P.; Ludu, A.; Quesne, C.
1997-01-01
Nonlinear deformations of the enveloping algebra of su(2), involving two arbitrary functions of J 0 and generalizing the Witten algebra, were introduced some time ago by Delbecq and Quesne. In the present paper, the problem of endowing some of them with a Hopf algebraic structure is addressed by studying in detail a specific example, referred to as scr(A) q + (1). This algebra is shown to possess two series of (N+1)-dimensional unitary irreducible representations, where N=0,1,2,hor-ellipsis. To allow the coupling of any two such representations, a generalization of the standard Hopf axioms is proposed by proceeding in two steps. In the first one, a variant and extension of the deforming functional technique is introduced: variant because a map between two deformed algebras, su q (2) and scr(A) q + (1), is considered instead of a map between a Lie algebra and a deformed one, and extension because use is made of a two-valued functional, whose inverse is singular. As a result, the Hopf structure of su q (2) is carried over to scr(A) q + (1), thereby endowing the latter with a double Hopf structure. In the second step, the definition of the coproduct, counit, antipode, and scr(R)-matrix is extended so that the double Hopf algebra is enlarged into a new algebraic structure. The latter is referred to as a two-color quasitriangular Hopf algebra because the corresponding scr(R)-matrix is a solution of the colored Yang endash Baxter equation, where the open-quotes colorclose quotes parameters take two discrete values associated with the two series of finite-dimensional representations. copyright 1997 American Institute of Physics
On the structure of graded transitive Lie algebras
Post, Gerhard F.
2000-01-01
We study finite-dimensional Lie algebras ${\\mathfrak L}$ of polynomial vector fields in $n$ variables that contain the vector fields $\\dfrac{\\partial}{\\partial x_i} \\; (i=1,\\ldots, n)$ and $x_1\\dfrac{\\partial}{\\partial x_1}+ \\dots + x_n\\dfrac{\\partial}{\\partial x_n}$. We show that the maximal ones
Spin structures on algebraic curves and their applications in string theories
International Nuclear Information System (INIS)
Ferrari, F.
1990-01-01
The free fields on a Riemann surface carrying spin structures live on an unramified r-covering of the surface itself. When the surface is represented as an algebraic curve related to the vanishing of the Weierstrass polynomial, its r-coverings are algebraic curves as well. We construct explicitly the Weierstrass polynomial associated to the r-coverings of an algebraic curve. Using standard techniques of algebraic geometry it is then possible to solve the inverse Jacobi problem for the odd spin structures. As an application we derive the partition functions of bosonic string theories in many examples, including two general curves of genus three and four. The partition functions are explicitly expressed in terms of branch points apart from a factor which is essentially a theta constant. 53 refs., 4 figs. (Author)
The Hopf algebra structure of the character rings of classical groups
International Nuclear Information System (INIS)
Fauser, Bertfried; Jarvis, Peter D; King, Ronald C
2013-01-01
The character ring Char-GL of covariant irreducible tensor representations of the general linear group admits a Hopf algebra structure isomorphic to the Hopf algebra Symm-Λ of symmetric functions. Here we study the character rings Char-O and Char-Sp of the orthogonal and symplectic subgroups of the general linear group within the same framework of symmetric functions. We show that Char-O and Char-Sp also admit natural Hopf algebra structures that are isomorphic to that of Char-GL, and hence to Symm-Λ. The isomorphisms are determined explicitly, along with the specification of standard bases for Char-O and Char-Sp analogous to those used for Symm-Λ. A major structural change arising from the adoption of these bases is the introduction of new orthogonal and symplectic Schur–Hall scalar products. Significantly, the adjoint with respect to multiplication no longer coincides, as it does in the Char-GL case, with a Foulkes derivative or skew operation. The adjoint and Foulkes derivative now require separate definitions, and their properties are explored here in the orthogonal and symplectic cases. Moreover, the Hopf algebras Char-O and Char-Sp are not self-dual. The dual Hopf algebras Char-O * and Char-Sp are identified. Finally, the Hopf algebra of the universal rational character ring Char-GLrat of mixed irreducible tensor representations of the general linear group is introduced and its structure maps identified. (paper)
Quantum field theory on toroidal topology: Algebraic structure and applications
Energy Technology Data Exchange (ETDEWEB)
Khanna, F.C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); TRIUMF, Vancouver, BC, V6T 2A3 (Canada); Malbouisson, A.P.C., E-mail: adolfo@cbpf.br [Centro Brasileiro de Pesquisas Físicas/MCT, 22290-180, Rio de Janeiro, RJ (Brazil); Malbouisson, J.M.C., E-mail: jmalboui@ufba.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Santana, A.E., E-mail: asantana@unb.br [International Center for Condensed Matter Physics, Instituto de Física, Universidade de Brasília, 70910-900, Brasília, DF (Brazil)
2014-06-01
The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ{sub D}{sup d}=(S{sup 1}){sup d}×R{sup D−d} is developed from a Lie-group representation and c{sup ∗}-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ{sub 4}{sup 1}. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu
Quantum field theory on toroidal topology: Algebraic structure and applications
International Nuclear Information System (INIS)
Khanna, F.C.; Malbouisson, A.P.C.; Malbouisson, J.M.C.; Santana, A.E.
2014-01-01
The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ D d =(S 1 ) d ×R D−d is developed from a Lie-group representation and c ∗ -algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ 4 1 . The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu–Jona-Lasinio models, are considered. Then
Generalized EMV-Effect Algebras
Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.
2018-04-01
Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.
Entanglement beyond tensor product structure: algebraic aspects of quantum non-separability
International Nuclear Information System (INIS)
Derkacz, Łukasz; Gwóźdź, Marek; Jakóbczyk, Lech
2012-01-01
An algebraic approach to quantum non-separability is applied to the case of two qubits. It is based on the partition of the algebra of observables into independent subalgebras and the tensor product structure of the Hilbert space is not exploited. Even in this simple case, such a general formulation has some advantages. Using algebraic formalism, we can explicitly show the relativity of the notion of entanglement to the observables measured in the system and characterize separable and non-separable pure states. As a universal measure of non-separability of pure states, we propose to take the so-called total correlation. This quantity depends on the state as well as on the algebraic partition. Its numerical value is given by the norm of the corresponding correlation matrix. (paper)
Structure of Lie point and variational symmetry algebras for a class of odes
Ndogmo, J. C.
2018-04-01
It is known for scalar ordinary differential equations, and for systems of ordinary differential equations of order not higher than the third, that their Lie point symmetry algebras is of maximal dimension if and only if they can be reduced by a point transformation to the trivial equation y(n)=0. For arbitrary systems of ordinary differential equations of order n ≥ 3 reducible by point transformations to the trivial equation, we determine the complete structure of their Lie point symmetry algebras as well as that for their variational, and their divergence symmetry algebras. As a corollary, we obtain the maximal dimension of the Lie point symmetry algebra for any system of linear or nonlinear ordinary differential equations.
Additional operations in algebra of structural numbers for control algorithm development
Directory of Open Access Journals (Sweden)
Morhun A.V.
2016-12-01
Full Text Available The structural numbers and the algebra of the structural numbers due to the simplicity of representation, flexibility and current algebraic operations are the powerful tool for a wide range of applications. In autonomous power supply systems and systems with distributed generation (Micro Grid mathematical apparatus of structural numbers can be effectively used for the calculation of the parameters of the operating modes of consumption of electric energy. The purpose of the article is the representation of the additional algebra of structural numbers. The standard algebra was proposed to be extended by the additional operations and modification current in order to expand the scope of their use, namely to construct a flexible, adaptive algorithms of control systems. It is achieved due to the possibility to consider each individual component of the system with its parameters and provide easy management of entire system and each individual component. Thus, structural numbers and extended algebra are the perspective line of research and further studying is required.
Quantum W-algebras and elliptic algebras
International Nuclear Information System (INIS)
Feigin, B.; Kyoto Univ.; Frenkel, E.
1996-01-01
We define a quantum W-algebra associated to sl N as an associative algebra depending on two parameters. For special values of the parameters, this algebra becomes the ordinary W-algebra of sl N , or the q-deformed classical W-algebra of sl N . We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U q (n). (orig.)
International Nuclear Information System (INIS)
Hislop, P.D.
1988-01-01
The Tomita modular operators and the duality property for the local von Neumann algebras in quantum field models describing free massless particles with arbitrary helicity are studied. It is proved that the representation of the Poincare group in each model extends to a unitary representation of SU(2, 2), a covering group of the conformal group. An irreducible set of ''standard'' linear fields is shown to be covariant with respect to this representation. The von Neumann algebras associated with wedge, double-cone, and lightcone regions generated by these fields are proved to be unitarily equivalent. The modular operators for these algebras are obtained in explicit form using the conformal covariance and the results of Bisognano and Wichmann on the modular structure of the wedge algebras. The modular automorphism groups are implemented by one-parameter groups of conformal transformations. The modular conjugation operators are used to prove the duality property for the double-cone algebras and the timelike duality property for the lightcone algebras. copyright 1988 Academic Press, Inc
Hidden gauge structure of supersymmetric free differential algebras
Energy Technology Data Exchange (ETDEWEB)
Andrianopoli, Laura [DISAT, Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); INFN - Sezione di Torino,Torino (Italy); D’Auria, Riccardo [DISAT, Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); Ravera, Lucrezia [DISAT, Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); INFN - Sezione di Torino,Torino (Italy)
2016-08-16
The aim of this paper is to clarify the role of the nilpotent fermionic generator Q{sup ′} introduced in http://dx.doi.org/10.1016/0550-3213(82)90376-5 and appearing in the hidden supergroup underlying the free differential algebra (FDA) of D=11 supergravity. We give a physical explanation of its role by looking at the gauge properties of the theory. We find that its presence is necessary, in order that the extra 1-forms of the hidden supergroup give rise to the correct gauge transformations of the p-forms of the FDA. This interpretation is actually valid for any supergravity containing antisymmetric tensor fields, and any supersymmetric FDA can always be traded for a hidden Lie superalgebra containing extra fermionic nilpotent generators. As an interesting example we construct the hidden superalgebra associated with the FDA of N=2, D=7 supergravity. In this case we are able to parametrize the mutually non local 2- and 3-form B{sup (2)} and B{sup (3)} in terms of hidden 1-forms and find that supersymmetry and gauge invariance require in general the presence of two nilpotent fermionic generators in the hidden algebra. We propose that our approach, where all the invariances of the FDA are expressed as Lie derivatives of the p-forms in the hidden supergroup manifold, could be an appropriate framework to discuss theories defined in enlarged versions of superspace recently considered in the literature, such us double field theory and its generalizations.
An algebraic sub-structuring method for large-scale eigenvalue calculation
International Nuclear Information System (INIS)
Yang, C.; Gao, W.; Bai, Z.; Li, X.; Lee, L.; Husbands, P.; Ng, E.
2004-01-01
We examine sub-structuring methods for solving large-scale generalized eigenvalue problems from a purely algebraic point of view. We use the term 'algebraic sub-structuring' to refer to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to provide approximate solutions to the original problem. We are interested in the question of which spectral components one should extract from each sub-structure in order to produce an approximate solution to the original problem with a desired level of accuracy. Error estimate for the approximation to the smallest eigenpair is developed. The estimate leads to a simple heuristic for choosing spectral components (modes) from each sub-structure. The effectiveness of such a heuristic is demonstrated with numerical examples. We show that algebraic sub-structuring can be effectively used to solve a generalized eigenvalue problem arising from the simulation of an accelerator structure. One interesting characteristic of this application is that the stiffness matrix produced by a hierarchical vector finite elements scheme contains a null space of large dimension. We present an efficient scheme to deflate this null space in the algebraic sub-structuring process
Causal structure and algebraic classification of non-dissipative linear optical media
International Nuclear Information System (INIS)
Schuller, Frederic P.; Witte, Christof; Wohlfarth, Mattias N.R.
2010-01-01
In crystal optics and quantum electrodynamics in gravitational vacua, the propagation of light is not described by a metric, but an area metric geometry. In this article, this prompts us to study conditions for linear electrodynamics on area metric manifolds to be well-posed. This includes an identification of the timelike future cones and their duals associated to an area metric geometry, and thus paves the ground for a discussion of the related local and global causal structures in standard fashion. In order to provide simple algebraic criteria for an area metric manifold to present a consistent spacetime structure, we develop a complete algebraic classification of area metric tensors up to general transformations of frame. This classification, valuable in its own right, is then employed to prove a theorem excluding the majority of algebraic classes of area metrics as viable spacetimes. Physically, these results classify and drastically restrict the viable constitutive tensors of non-dissipative linear optical media.
International Nuclear Information System (INIS)
Prykarpatsky, A.K.; Blackmore, D.L.; Bogolubov, N.N. Jr.
2007-05-01
The infinite-dimensional operator Lie algebras of the related integrable nonlocal differential-difference dynamical systems are treated as their hidden symmetries. As a result of their dimerization the Lax type representations for both local differential-difference equations and nonlocal ones are obtained. An alternative approach to the Lie-algebraic interpretation of the integrable local differential-difference systems is also proposed. The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the centrally extended Lie algebra of integro-differential operators with matrix-valued coefficients coupled with suitable eigenfunctions and adjoint eigenfunctions evolutions of associated spectral problems is obtained by means of a specially constructed Baecklund transformation. The Hamiltonian description for the corresponding set of additional symmetry hierarchies is represented. The relation of these hierarchies with Lax type integrable (3+1)-dimensional nonlinear dynamical systems and their triple Lax type linearizations is analyzed. The Lie-algebraic structures, related with centrally extended current operator Lie algebras are discussed with respect to constructing new nonlinear integrable dynamical systems on functional manifolds and super-manifolds. Special Poisson structures and related with them factorized integrable operator dynamical systems having interesting applications in modern mathematical physics, quantum computing mathematics and other fields are constructed. The previous purely computational results are explained within the approach developed. (author)
International Nuclear Information System (INIS)
Zhang Yufeng; Guo Fukui
2007-01-01
Two types of Lie algebras, which are the subalgebras of the Lie algebra A 2 , A 3 respectively, are presented. The resulting loop algebras are following. As their applications, two different integrable couplings of the Yang hierarchy are obtained, called them the double integrable couplings. The Hamiltonian structure of one of them is worked out by a proper linear isomorphic transformation and the quadratic-form identity
Quantum group structure and local fields in the algebraic approach to 2D gravity
Schnittger, Jens
1994-01-01
This review contains a summary of work by J.-L. Gervais and the author on the operator approach to 2d gravity. Special emphasis is placed on the construction of local observables -the Liouville exponentials and the Liouville field itself - and the underlying algebra of chiral vertex operators. The double quantum group structure arising from the presence of two screening charges is discussed and the generalized algebra and field operators are derived. In the last part, we show that our construction gives rise to a natural definition of a quantum tau function, which is a noncommutative version of the classical group-theoretic representation of the Liouville fields by Leznov and Saveliev.
Algebraic structures in generalized Clifford analysis and applications to boundary value problems
Directory of Open Access Journals (Sweden)
José Játem
2015-12-01
Full Text Available The present article has a threefold purpose: First it is a survey of the algebraic structures of generalized Clifford-type algebras and shows the main results of the corresponding Clifford-type analysis and its application to boundary value problems known so far. Second it is aimed to implement algorithms to provide the fast and accurate computation of boundary value problems for inhomogeneous equations in the framework of the generalized Clifford analysis. Finally it is also aimed to encourage the development of a generalized discrete Clifford analysis.
The hidden symmetries and their algebraic structure of the static axially symmetric SDYM fields
International Nuclear Information System (INIS)
Hao Sanru
1993-01-01
A new explicit transformation about the static axially symmetric self-dual Yang-Mills (SDYM) fields is presented. The theory has proved that the new transformation is a symmetric one. For the two kinds of the Lie algebraic generators of the Lie group SL (N. R) /SO (N), the corresponding transformations are given. By making use of the Yang-Baxter equality and their square brackets, the loop and conformal algebraic structures of the symmetric transformations for the basic fields have been obtained. All the results obtained can be directly generalized to the other models
Representations of quantum bicrossproduct algebras
International Nuclear Information System (INIS)
Arratia, Oscar; Olmo, Mariano A del
2002-01-01
We present a method to construct induced representations of quantum algebras which have a bicrossproduct structure. We apply this procedure to some quantum kinematical algebras in (1+1) dimensions with this kind of structure: null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and quantum κ-Galilei algebra
The tensor structure on the representation category of the Wp triplet algebra
International Nuclear Information System (INIS)
Tsuchiya, Akihiro; Wood, Simon
2013-01-01
We study the braided monoidal structure that the fusion product induces on the Abelian category W p -mod, the category of representations of the triplet W-algebra W p . The W p -algebras are a family of vertex operator algebras that form the simplest known examples of symmetry algebras of logarithmic conformal field theories. We formalize the methods for computing fusion products, developed by Nahm, Gaberdiel and Kausch, that are widely used in the physics literature and illustrate a systematic approach to calculating fusion products in non-semi-simple representation categories. We apply these methods to the braided monoidal structure of W p -mod, previously constructed by Huang, Lepowsky and Zhang, to prove that this braided monoidal structure is rigid. The rigidity of W p -mod allows us to prove explicit formulae for the fusion product on the set of all simple and all projective W p -modules, which were first conjectured by Fuchs, Hwang, Semikhatov and Tipunin; and Gaberdiel and Runkel. (paper)
Nonflexible Lie-admissible algebras
International Nuclear Information System (INIS)
Myung, H.C.
1978-01-01
We discuss the structure of Lie-admissible algebras which are defined by nonflexible identities. These algebras largely arise from the antiflexible algebras, 2-varieties and associator dependent algebras. The nonflexible Lie-admissible algebras in our discussion are in essence byproducts of the study of nonassociative algebras defined by identities of degree 3. The main purpose is to discuss the classification of simple Lie-admissible algebras of nonflexible type
Recoupling Lie algebra and universal ω-algebra
International Nuclear Information System (INIS)
Joyce, William P.
2004-01-01
We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure
International Nuclear Information System (INIS)
Ludu, A.; Greiner, M.
1995-09-01
A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs
Wasserman, Nicholas H.
2017-01-01
This article draws on semi-structured, task-based interviews to explore secondary teachers' (N = 7) understandings of inverse functions in relation to abstract algebra. In particular, a concept map task is used to understand the degree to which participants, having recently taken an abstract algebra course, situated inverse functions within its…
International Nuclear Information System (INIS)
Takao, Masaru
1989-01-01
We review W-algebras which are generated by stress tensor and primary fields. Associativity plays an important role in determining the extended algebra and further implies the algebras to exist for special values of central charges. Explicitly constructing the algebras including primary fields of spin less than 4, we investigate the closure structure of the Jacobi identity of the extended algebras. (author)
International Nuclear Information System (INIS)
Taghavi-Chabert, Arman
2011-01-01
Optical (or Robinson) structures are one generalization of four-dimensional shearfree congruences of null geodesics to higher dimensions. They are Lorentzian analogues of complex and CR structures. In this context, we extend the Goldberg-Sachs theorem to five dimensions. To be precise, we find a new algebraic condition on the Weyl tensor, which generalizes the Petrov type II condition, in the sense that it ensures the existence of such congruences on a five-dimensional spacetime, vacuum or under weaker assumptions on the Ricci tensor. This results in a significant simplification of the field equations. We discuss possible degenerate cases, including a five-dimensional generalization of the Petrov type D condition. We also show that the vacuum black ring solution is endowed with optical structures, yet fails to be algebraically special with respect to them. We finally explain the generalization of these ideas to higher dimensions, which has been checked in six and seven dimensions.
Fiber-wise linear Poisson structures related to W∗-algebras
Odzijewicz, Anatol; Jakimowicz, Grzegorz; Sliżewska, Aneta
2018-01-01
In the framework of Banach differential geometry we investigate the fiber-wise linear Poisson structures as well as the Lie groupoid and Lie algebroid structures which are defined in the canonical way by the structure of a W∗-algebra (von Neumann algebra) M. The main role in this theory is played by the complex Banach-Lie groupoid G(M) ⇉ L(M) of partially invertible elements of M over the lattice L(M) of orthogonal projections of M. The Atiyah sequence and the predual Atiyah sequence corresponding to this groupoid are investigated from the point of view of Banach Poisson geometry. In particular we show that the predual Atiyah sequence fits in a short exact sequence of complex Banach sub-Poisson V B-groupoids with G(M) ⇉ L(M) as the side groupoid.
Braided matrix structure of the Sklyanin algebra and of the quantum Lorentz group
International Nuclear Information System (INIS)
Majid, S.
1993-01-01
Braided groups and braided matrices are novel algebraic structures living in braided or quasitensor categories. As such they are a generalization of super-groups and super-matrices to the case of braid statistics. Here we construct braided group versions of the standard quantum groups U q (g). They have the same FRT generators l ± but a matrix braided-coproduct ΔL=LxL, where L=l + Sl - , and are self-dual. As an application, the degenerate Sklyanin algebra is shown to be isomorphic to the braided matrices BM 1 (2); it is a braided-commutative bialgebra in a braided category. As a second application, we show that the quantum double D(U q (sl 2 )) (also known as the 'quantum Lorentz group') is the semidirect product as an algebra of two copies of U q (sl 2 ), and also a semidirect product as a coalgebra if we use braid statistics. We find various results of this type for the doubles of general quantum groups and their semi-limits as doubles of the Lie algebras of Poisson Lie groups. (orig.)
Nonlinearly deformed W∞ algebra and second hamiltonian structure of KP hierarchy
International Nuclear Information System (INIS)
Yu Feng; Wu Yongshi
1992-01-01
The characteristic nonlinearity of W N algebras, appropriate for their many applications in two-dimensional quantum physics, is lost in the usual large-N limits. In this paper we search for nonlinear extensions of the Virasoro algebra that incorporate all higher-spin currents with spin s≥2. We show that under certain natural homogeneity requirements, the Jacobi identities lead to a unique nonlinear, centerless deformation of classical w ∞ and W ∞ . The latter, which we call dW/dt ∞ , constitutes a universal W-algebra which is very likely to contain all W N algebras by reduction. Also it is closely related to the linear W 1+∞ by a set of interesting recursion relations, which suggests the isomorphism of dW/dt ∞ to the second hamiltonian structure of the KP hierarchy proposed by Dickey. The implications for the symmetries in two-dimensional quantum gravity and noncritical c≤1 strings in the context of the KP approach are discussed. (orig.)
Algebraic models for the hierarchy structure of evolution equations at small x
International Nuclear Information System (INIS)
Rembiesa, P.; Stasto, A.M.
2005-01-01
We explore several models of QCD evolution equations simplified by considering only the rapidity dependence of dipole scattering amplitudes, while provisionally neglecting their dependence on transverse coordinates. Our main focus is on the equations that include the processes of pomeron splittings. We examine the algebraic structures of the governing equation hierarchies, as well as the asymptotic behavior of their solutions in the large-rapidity limit
Structural analysis and design of multivariable control systems: An algebraic approach
Tsay, Yih Tsong; Shieh, Leang-San; Barnett, Stephen
1988-01-01
The application of algebraic system theory to the design of controllers for multivariable (MV) systems is explored analytically using an approach based on state-space representations and matrix-fraction descriptions. Chapters are devoted to characteristic lambda matrices and canonical descriptions of MIMO systems; spectral analysis, divisors, and spectral factors of nonsingular lambda matrices; feedback control of MV systems; and structural decomposition theories and their application to MV control systems.
Rudiments of algebraic geometry
Jenner, WE
2017-01-01
Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.
International Nuclear Information System (INIS)
Fisch, J.M.L.
1990-01-01
The algebraic structure of the antifield-antibracket formalism for both reducible and irreducible gauge theories is clarified. This is done by using the methods of Homological Perturbation Theory (HPT). A crucial ingredient of the construction is the Koszul-Tate complex associated with the stationary surface of the classical extremals. The Koszul-Tate differential acts on the antifields and is graded by the antighost number. It provides a resolution of the algebra A of functions defined on the stationary surface, namely, it is acyclic except at degree zero where its homology group reduces to A. Acyclicity only holds because of the introduction of the ghosts of ghosts and provides an alternative criterion for what is meant by a proper solution of the master equation. The existence of the BRST symmetry follows from the techniques of HPT. The classical Lagrangian BRST cohomology is completely worked out and shown to be isomorphic with the cohomology of the exterior derivative along the gauge orbits on the stationary surface. The algebraic structure of the formalism is identical with the structure of the Hamiltonian BRST construction. The role played there by the constraint surface is played here by the stationary surface. Only elementary quantum questions (general properties of the measure) are addressed. (orig.)
SU(4) x U(1) gauge theory. II. CP nonconservation
International Nuclear Information System (INIS)
Deshpande, N.G.; Hwa, R.C.; Mannheim, P.D.
1979-01-01
We exploit the higher symmetry inherent in an SU(4) x U(1) gauge theory to construct a spontaneously broken theory of CP nonconservation. Higgs multiplets in the adjoint representation of SU(4) contain both even and odd CP fields; thus, requiring the simultaneous nonvanishing of the vacuum expectation values of these fields leads to CP noninvariance of the vacuum. We find that all the CP-nonconserving effects are mediated in our theory by the superheavy gauge bosons of the broken SU(4) x U(1) symmetry. In fact, the very existence of CP violation sets an upper limit on the masses of these bosons. In our model the dominant CP effect lies in the neutral kaon system and is found to arise through a direct (ΔS = 2) K 1 -K 2 transition. The model has all the features of a superweak theory, with a neutron electric dipole moment substantially smaller than 10 -24 e cm
Abrams, Gene; Siles Molina, Mercedes
2017-01-01
This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...
Introduction to quantum algebras
International Nuclear Information System (INIS)
Kibler, M.R.
1992-09-01
The concept of a quantum algebra is made easy through the investigation of the prototype algebras u qp (2), su q (2) and u qp (1,1). The latter quantum algebras are introduced as deformations of the corresponding Lie algebras; this is achieved in a simple way by means of qp-bosons. The Hopf algebraic structure of u qp (2) is also discussed. The basic ingredients for the representation theory of u qp (2) are given. Finally, in connection with the quantum algebra u qp (2), the qp-analogues of the harmonic oscillator are discussed and of the (spherical and hyperbolical) angular momenta. (author) 50 refs
International Nuclear Information System (INIS)
Kiritsis, E.B.
1987-01-01
N = 2 superconformal-invariant theories are studied and their general structure is analyzed. The geometry of N = 2 complex superspace is developed as a tool to study the correlation functions of the theories above. The Ward identities of the global N = 2 superconformal symmetry are solved, to restrict the form of correlation functions. Advantage is taken of the existence of the degenerate operators to derive the ''fusion'' rules for the unitary minimal systems with c<1. In particular, the closure of the operator algebra for such systems is shown. The c = (1/3 minimal system is analyzed and its two-, three-, and four-point functions as well as its operator algebra are calculated explicitly
Quantum group structure and local fields in the algebraic approach to 2D gravity
Schnittger, J.
1995-07-01
This review contains a summary of the work by J.-L. Gervais and the author on the operator approach to 2d gravity. Special emphasis is placed on the construction of local observables — the Liouville exponentials and the Liouville field itself — and the underlying algebra of chiral vertex operators. The double quantum group structure arising from the presence of two screening charges is discussed and the generalized algebra and field operators are derived. In the last part, we show that our construction gives rise to a natural definition of a quantum tau function, which is a noncommutative version of the classical group-theoretic representation of the Liouville fields by Leznov and Saveliev.
International Nuclear Information System (INIS)
Abbagari, Souleymanou; Bouetou, Thomas B.; Kofane, Timoleon C.
2013-01-01
The prolongation structure methodologies of Wahlquist—Estabrook [H.D. Wahlquist and F.B. Estabrook, J. Math. Phys. 16 (1975) 1] for nonlinear differential equations are applied to a more general set of coupled integrable dispersionless system. Based on the obtained prolongation structure, a Lie-Algebra valued connection of a closed ideal of exterior differential forms related to the above system is constructed. A Lie-Algebra representation of some hidden structural symmetries of the previous system, its Bäcklund transformation using the Riccati form of the linear eigenvalue problem and their general corresponding Lax-representation are derived. In the wake of the previous results, we extend the above prolongation scheme to higher-dimensional systems from which a new (2 + 1)-dimensional coupled integrable dispersionless system is unveiled along with its inverse scattering formulation, which applications are straightforward in nonlinear optics where additional propagating dimension deserves some attention. (general)
Unified SU(4) color models in ten dimensions
International Nuclear Information System (INIS)
Hanlon, B.E.; Joshi, G.C.
1992-01-01
Some aspects of constructing unified models with SU(4) as the color group via a unifying group defined in ten dimensions are examined. Four dimensional theories are recovered using the Coset Space Dimensional Reduction scheme. Candidate models are considered in order to highlight some of the difficulties in constructing realistic four dimensional theories. 30 refs
Abstract algebra for physicists
International Nuclear Information System (INIS)
Zeman, J.
1975-06-01
Certain recent models of composite hadrons involve concepts and theorems from abstract algebra which are unfamiliar to most theoretical physicists. The algebraic apparatus needed for an understanding of these models is summarized here. Particular emphasis is given to algebraic structures which are not assumed to be associative. (2 figures) (auth)
Algebraic Structure of tt * Equations for Calabi-Yau Sigma Models
Alim, Murad
2017-08-01
The tt * equations define a flat connection on the moduli spaces of {2d, \\mathcal{N}=2} quantum field theories. For conformal theories with c = 3 d, which can be realized as nonlinear sigma models into Calabi-Yau d-folds, this flat connection is equivalent to special geometry for threefolds and to its analogs in other dimensions. We show that the non-holomorphic content of the tt * equations, restricted to the conformal directions, in the cases d = 1, 2, 3 is captured in terms of finitely many generators of special functions, which close under derivatives. The generators are understood as coordinates on a larger moduli space. This space parameterizes a freedom in choosing representatives of the chiral ring while preserving a constant topological metric. Geometrically, the freedom corresponds to a choice of forms on the target space respecting the Hodge filtration and having a constant pairing. Linear combinations of vector fields on that space are identified with the generators of a Lie algebra. This Lie algebra replaces the non-holomorphic derivatives of tt * and provides these with a finer and algebraic meaning. For sigma models into lattice polarized K3 manifolds, the differential ring of special functions on the moduli space is constructed, extending known structures for d = 1 and 3. The generators of the differential rings of special functions are given by quasi-modular forms for d = 1 and their generalizations in d = 2, 3. Some explicit examples are worked out including the case of the mirror of the quartic in {\\mathbbm{P}^3}, where due to further algebraic constraints, the differential ring coincides with quasi modular forms.
Algebraic structure of Robinson–Trautman and Kundt geometries in arbitrary dimension
International Nuclear Information System (INIS)
Podolský, J; Švarc, R
2015-01-01
We investigate the Weyl tensor algebraic structure of a fully general family of D-dimensional geometries that admit a non-twisting and shear-free null vector field k. From the coordinate components of the curvature tensor we explicitly derive all Weyl scalars of various boost weights. This enables us to give a complete algebraic classification of the metrics in the case when the optically privileged null direction k is a (multiple) Weyl aligned null direction (WAND). No field equations are applied, so the results are valid not only in Einstein's gravity, including its extension to higher dimensions, but also in any metric gravitation theory that admits non-twisting and shear-free spacetimes. We prove that all such geometries are of type I(b), or more special, and we derive surprisingly simple necessary and sufficient conditions under which k is a double, triple or quadruple WAND. All possible algebraically special types, including the refinement to subtypes, are thus identified, namely II(a), II(b), II(c), II(d), III(a), III(b), N, O, II i , III i , D, D(a), D(b), D(c), D(d), and their combinations. Some conditions are identically satisfied in four dimensions. We discuss both important subclasses, namely the Kundt family of geometries with the vanishing expansion (Θ=0) and the Robinson–Trautman family (Θ ≠ 0, and in particular Θ=1/r). Finally, we apply Einstein's field equations and obtain a classification of all Robinson–Trautman vacuum spacetimes. This reveals fundamental algebraic differences in the D>4 and D=4 cases, namely that in higher dimensions there only exist such spacetimes of types D(a) ≡ D(abd), D(c) ≡ D(bcd) and O. (paper)
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
Categories and Commutative Algebra
Salmon, P
2011-01-01
L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
Generalized space-time supersymmetries, division algebras and octonionic M-theory
International Nuclear Information System (INIS)
Lukierski, Jerzy; Toppan, Francesco
2002-03-01
We describe the set of generalized Poincare and conformal superalgebras in D= 4,5 and 7 dimensions as two sequences of superalgebraic structures, taking values in the division algebras R, C and H. The generalized conformal superalgebras are described for D = 4 by OSp(1;8|R), for D = 5 by SU(4,4;1) and for D = 7 by U α U (8;1|H). The relation with other schemes, in particular the framework of conformal spin (super) algebras and Jordan (super) algebras is discussed. By extending the division-algebra-valued super-algebras to octonions we get in D= 11 an octonionic generalized Poincare superalgebra, which we call octonionic M-algebra, describing the octonionic M-theory. It contains 32 real supercharges but, due to the octonionic structure only 52 real bosonic generators remain independent in place of the 528 bosonic charges of standard M-algebra. In octonionic M-theory there is a sort of equivalence between the octonionic M2 (supermembrane) and the octonionic M5 (super-5-brane) sectors. We also define the octonionic generalized conformal M-superalgebra with 239 bosonic generators. (author)
Hamiltonian structure, (anti-)self-adjoint flows in the KP hierarchy and the W1+∞ and W∞ algebras
International Nuclear Information System (INIS)
Yu Feng; Wu Yongshi
1991-01-01
The extended conformal W N algebras are known to be related to the generalized KdV hierarchies through their second hamiltonian structure. In this letter we discuss the relationship between the large-N limits of the W N algebras and the KP hierarchy which contains all generalized KdV hierarchies. We show that the Poisson bracket algebra corresponding to the hamiltonian structure found by Watanabe for the KP hierarchy is isomorphic to the classical (or centerless) W 1+∞ algebra, and it contains a subalgebra which is isomorphic to the W ∞ algebra. Moreover, the usual generators of W 1+∞ and W ∞ are explicitly expressed in terms of the KP currents, and are shown to relate in a simple way to certain KP flows satisfying a sort of (anti-)self-duality. Our results not only clarify the underlying algebraic structure of the KP hierarchy, but also hint about a possible relationship between the latter and 4D self-dual Yang-Mills equations or gravity. (orig.)
On Robust Stability of Differential-Algebraic Equations with Structured Uncertainty
Directory of Open Access Journals (Sweden)
A. Kononov
2018-03-01
Full Text Available We consider a linear time-invariant system of differential-algebraic equations (DAE, which can be written as a system of ordinary differential equations with non-invertible coefficients matrices. An important characteristic of DAE is the unsolvability index, which reflects the complexity of the internal structure of the system. The question of the asymptotic stability of DAE containing the uncertainty given by the matrix norm is investigated. We consider a perturbation in the structured uncertainty case. It is assumed that the initial nominal system is asymptotically stable. For the analysis, the original equation is reduced to the structural form, in which the differential and algebraic subsystems are separated. This structural form is equivalent to the input system in the sense of coincidence of sets of solutions, and the operator transforming the DAE into the structural form possesses the inverse operator. The conversion to structural form does not use a change of variables. Regularity of matrix pencil of the source equation is the necessary and sufficient condition of structural form existence. Sufficient conditions have been obtained that perturbations do not break the internal structure of the nominal system. Under these conditions robust stability of the DAE with structured uncertainty is investigated. Estimates for the stability radius of the perturbed DAE system are obtained. The text of the article is from the simpler case, in which the perturbation is present only for an unknown function, to a more complex one, under which the perturbation is also present in the derivative of the unknown function. We used values of the real and the complex stability radii of explicit ordinary differential equations for obtaining the results. We consider the example illustrating the obtained results.
Perturbed gradient flow trees and a∞-algebra structures in morse cohomology
Mescher, Stephan
2018-01-01
This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A∞-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya’s definition of Morse-A∞-categories for closed oriented manifolds involving families of Morse functions. To make A∞-structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid’s approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained. In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will be of interest to researchers in mathematics (geome...
Finite automata over algebraic structures: models and some methods of analysis
Directory of Open Access Journals (Sweden)
Volodymyr V. Skobelev
2015-10-01
Full Text Available In this paper some results of research in two new trends of finite automata theory are presented. For understanding the value and the aim of these researches some short retrospective analysis of development of finite automata theory is given. The first trend deals with families of finite automata defined via recurrence relations on algebraic structures over finite rings. The problem of design of some algorithm that simulates with some accuracy any element of given family of automata is investigated. Some general scheme for design of families of hash functions defined by outputless automata is elaborated. Computational security of these families of hash functions is analyzed. Automata defined on varieties with some algebra are presented and their homomorphisms are characterized. Special case of these automata, namely automata on elliptic curves, are investigated in detail. The second trend deals with quantum automata. Languages accepted by some basic models of quantum automata under supposition that unitary operators associated with input alphabet commute each with the others are characterized.
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
International Nuclear Information System (INIS)
Garcia, R.L.
1983-11-01
The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
B-decay anomalies in Pati-Salam SU(4)
Barbieri, Riccardo; Tesi, Andrea
2018-03-01
Attempts to incorporate in a coherent picture the B-decay anomalies presumably observed in b→ c and b→ s semi-leptonic decays have to face the absence of signals in other related experiments, both at low and at high energies. By extending and making more precise the content of Barbieri et al. (Eur Phys J C 77(1):8, 2017), we describe one such attempt based on the Pati-Salam SU(4) group, that unifies colour and the B- L charge, in the context of a new strongly interacting sector, equally responsible for producing a pseudo-Goldstone Higgs boson.
Associative and Lie deformations of Poisson algebras
Remm, Elisabeth
2011-01-01
Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.
Linear algebraic analyses of structures with one predominant type of anomalous scatterer
International Nuclear Information System (INIS)
Karle, J.
1989-01-01
Further studies have been made of the information content of the exact linear equations for analyzing anomalous dispersion data in one-wavelength experiments. The case of interest concerns structures containing atoms that essentially do not scatter anomalously and one type of anomalously scattering atoms. For this case, there are three alternative ways of writing the equations. The alternative sets of equations and the transformations for transforming one set into the other are given explicitly. Comparison calculations were made with different sets of equations. Isomorphous replacement information is readily introduced into the calculations and the advantage of doing so is clearly illustrated by the results. Another aspect of the potential of the exact linear algebraic theory is its application to multiple-wavelength experiments. Successful applications of the latter have been made by several collaborative groups of investigators. (orig.)
NATO Advanced Study Institute on Structural Theory of Automata, Semigroups and Universal Algebra
Rosenberg, Ivo; Goldstein, Martin
2005-01-01
Several of the contributions to this volume bring forward many mutually beneficial interactions and connections between the three domains of the title. Developing them was the main purpose of the NATO ASI summerschool held in Montreal in 2003. Although some connections, for example between semigroups and automata, were known for a long time, developing them and surveying them in one volume is novel and hopefully stimulating for the future. Another aspect is the emphasis on the structural theory of automata that studies ways to contstruct big automata from small ones. The volume also has contributions on top current research or surveys in the three domains. One contribution even links clones of universal algebra with the computational complexity of computer science. Three contributions introduce the reader to research in the former East block.
Flat structure and potential vector fields related with algebraic solutions to Painlevé VI equation
Directory of Open Access Journals (Sweden)
Mitsuo Kato
2018-01-01
Full Text Available A potential vector field is a solution of an extended WDVV equation which is a generalization of a WDVV equation. It is expected that potential vector fields corresponding to algebraic solutions of Painlevé VI equation can be written by using polynomials or algebraic functions explicitly. The purpose of this paper is to construct potential vector fields corresponding to more than thirty non-equivalent algebraic solutions.
Quantum deformation of the affine transformation algebra
International Nuclear Information System (INIS)
Aizawa, N.; Sato, Haru-Tada
1994-01-01
We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)
An algorithm for analysis of the structure of finitely presented Lie algebras
Directory of Open Access Journals (Sweden)
Vladimir P. Gerdt
1997-12-01
Full Text Available We consider the following problem: what is the most general Lie algebra satisfying a given set of Lie polynomial equations? The presentation of Lie algebras by a finite set of generators and defining relations is one of the most general mathematical and algorithmic schemes of their analysis. That problem is of great practical importance, covering applications ranging from mathematical physics to combinatorial algebra. Some particular applications are constructionof prolongation algebras in the Wahlquist-Estabrook method for integrability analysis of nonlinear partial differential equations and investigation of Lie algebras arising in different physical models. The finite presentations also indicate a way to q-quantize Lie algebras. To solve this problem, one should perform a large volume of algebraic transformations which is sharply increased with growth of the number of generators and relations. For this reason, in practice one needs to use a computer algebra tool. We describe here an algorithm for constructing the basis of a finitely presented Lie algebra and its commutator table, and its implementation in the C language. Some computer results illustrating our algorithmand its actual implementation are also presented.
African Journals Online (AJOL)
Tadesse
In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized. Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative. Key words: Implicative ...
Meson-baryon four-body reaction amplitudes in exact SU(4)
International Nuclear Information System (INIS)
Liede, I.; Maalampi, J.; Roos, M.
1976-01-01
Fully SU(4) symmetric meson-baryon four body reaction amplitudes are presented in terms of SU(4) eigenamplitudes. The mesons and baryons considered belong to the SU(4) representations 15 and 20, respectively. Using these reletions, the cross-sections for the production of charmed particles can be predicted from known uncharmed reactions. (author)
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
Villarreal, Rafael
2015-01-01
The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.
q-structure algebra of Uq(g-circumflex) from its adjoint action
International Nuclear Information System (INIS)
El Hassouni, A.; Hassouni, Y.; Zakkari, M.
1994-08-01
We prove that the adjoint action of the quantum affine Lie algebra U q (g-circumflex), where g is a simple finite dimensional Lie algebra, reproduces the q-commutation relationship of U q (g-circumflex) if and only if g is of type A n , n ≥ 1. (author). 4 refs
Twisted classical Poincare algebras
International Nuclear Information System (INIS)
Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.
1993-11-01
We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)
Solomon, Alan D
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean
Polishchuk, Alexander
2005-01-01
Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.
On the algebraic structure of the holomorphic anomaly for c-circumflex 3 topological strings
International Nuclear Information System (INIS)
Lopez, E.
1995-01-01
An introduction to topological field theories and topological strings have been made. t t-bar-equations as consistency conditions of a contact term algebra are solved. The holomorphic anomaly for correlators is derived. 16 refs
Spin-4 extended conformal algebras
International Nuclear Information System (INIS)
Kakas, A.C.
1988-01-01
We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)
Goodstein, R L
2007-01-01
This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.
Structure of quasiparticles and their fusion algebra in fractional quantum Hall states
Barkeshli, Maissam; Wen, Xiao-Gang
2009-05-01
It was recently discovered that fractional quantum Hall (FQH) states can be characterized quantitatively by the pattern of zeros that describe how the ground-state wave function goes to zero when electrons are brought close together. Quasiparticles in the FQH states can be described in a similar quantitative way by the pattern of zeros that result when electrons are brought close to the quasiparticles. In this paper, we combine the pattern of zeros approach and the conformal field theory (CFT) approach to calculate the topological properties of quasiparticles. We discuss how the quasiparticles in FQH states naturally form representations of a magnetic translation algebra, with members of a representation differing from each other by Abelian quasiparticles. We find that this structure dramatically simplifies topological properties of the quasiparticles, such as their fusion rules, charges, and scaling dimensions, and has consequences for the ground state degeneracy of FQH states on higher genus surfaces. We find constraints on the pattern of zeros of quasiparticles that can fuse together, which allow us to derive the fusion rules of quasiparticles from their pattern of zeros, at least in the case of the (generalized and composite) parafermion states. We also calculate from CFT the number of quasiparticle types in the generalized and composite parafermion states, which confirm the result obtained previously through a completely different approach.
Structure of quasiparticles and their fusion algebra in fractional quantum Hall states
International Nuclear Information System (INIS)
Barkeshli, Maissam; Wen Xiaogang
2009-01-01
It was recently discovered that fractional quantum Hall (FQH) states can be characterized quantitatively by the pattern of zeros that describe how the ground-state wave function goes to zero when electrons are brought close together. Quasiparticles in the FQH states can be described in a similar quantitative way by the pattern of zeros that result when electrons are brought close to the quasiparticles. In this paper, we combine the pattern of zeros approach and the conformal field theory (CFT) approach to calculate the topological properties of quasiparticles. We discuss how the quasiparticles in FQH states naturally form representations of a magnetic translation algebra, with members of a representation differing from each other by Abelian quasiparticles. We find that this structure dramatically simplifies topological properties of the quasiparticles, such as their fusion rules, charges, and scaling dimensions, and has consequences for the ground state degeneracy of FQH states on higher genus surfaces. We find constraints on the pattern of zeros of quasiparticles that can fuse together, which allow us to derive the fusion rules of quasiparticles from their pattern of zeros, at least in the case of the (generalized and composite) parafermion states. We also calculate from CFT the number of quasiparticle types in the generalized and composite parafermion states, which confirm the result obtained previously through a completely different approach.
Jordan algebras versus C*- algebras
International Nuclear Information System (INIS)
Stormer, E.
1976-01-01
The axiomatic formulation of quantum mechanics and the problem of whether the observables form self-adjoint operators on a Hilbert space, are discussed. The relation between C*- algebras and Jordan algebras is studied using spectral theory. (P.D.)
International Nuclear Information System (INIS)
Ogievetsky, O.; Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA
1992-01-01
The q-differential calculus for the q-Minkowski space is developed. The algebra of the q-derivatives with the q-Lorentz generators is found giving the q-deformation of the Poincare algebra. The reality structure of the q-Poincare algebra is given. The reality structure of the q-differentials is also found. The real Laplaacian is constructed. Finally the comultiplication, counit and antipode for the q-Poincare algebra are obtained making it a Hopf algebra. (orig.)
Djurfeldt, Mikael
2012-07-01
The connection-set algebra (CSA) is a novel and general formalism for the description of connectivity in neuronal network models, from small-scale to large-scale structure. The algebra provides operators to form more complex sets of connections from simpler ones and also provides parameterization of such sets. CSA is expressive enough to describe a wide range of connection patterns, including multiple types of random and/or geometrically dependent connectivity, and can serve as a concise notation for network structure in scientific writing. CSA implementations allow for scalable and efficient representation of connectivity in parallel neuronal network simulators and could even allow for avoiding explicit representation of connections in computer memory. The expressiveness of CSA makes prototyping of network structure easy. A C+ + version of the algebra has been implemented and used in a large-scale neuronal network simulation (Djurfeldt et al., IBM J Res Dev 52(1/2):31-42, 2008b) and an implementation in Python has been publicly released.
Algebraic structures of the fermion mass spectrum and the phenomenon of the quark mixing
International Nuclear Information System (INIS)
Plankl, J.
1990-01-01
In the present thesis algebraic structures of the fermion mass spectrum are considered, whereby especially a possible connection with the phenomenon of the flavor mixing is looked for. After a presentation of the relevant theoretical and experimental foundations arguments are given, which call for the hypothesis of a relation of the mass and mixing parameters. We discuss the populary approaches of the mass matrices of the quarks. A main topic of this thesis form studies on the 'democratic' mass matrix. For this approximation, which corresponds to a matrix of the rank one, specific corrections are proposed, which have a breaking of chiral permutation symmetries as consequence, from which the masses of the first two generations result. The generation of possible small neutrino masses follows by the see-saw mechanism, which in generalized form serves also for the foundation of the smallness of the masses of the first two families. The mass hierarchy becomes understandable, if the corrections to the rank-1-matrix are of radiative nature. In this connection we especially enter the model of the 'see-saw democracy' more closely. The second main topic represents another access to the present theme, whic is given by the mixing matrix of the quarks. We diagonalize the mixing matrix for two and three families. Furthermore we define eigenstates of the weak interaction and give for the real 3x3 matrix a geometrical interpretation of the flavor mixing. Beyond we obtain in the current eigen base in the case of a decoupled third generation for the first two families mass matrices with democratic structure. (orig.) [de
Modular structure of local algebras associated with massless free quantum fields
International Nuclear Information System (INIS)
Hislop, P.D.
1984-01-01
The Tomita modular operators and the duality property for the local von Neumann algebras in quantum field models describing free massless particles with arbitrary helicity are studied. It is proved that the representation of the Poincare group in each model extends to a unitary representation SU(2,2), a covering group of the conformal group. An irreducible set of standard linear fields is shown to be covariant with respect to this representation. The von Neumann algebras associated with wedge, double-cone, and lightcone regions generated by these fields are proved to be unitarily equivalent. Using the results of Bisognano and Wichmann, the modular operators for these algebras are obtained in explicit form as conformal transformations and the duality property is proved. In the bose case, it is shown that the double-cone algebras constructed from any irreducible set of linear fields not including the standard fields do not satisfy duality and that any non-standard linear fields are not conformally covariant. A simple proof of duality, independent of the Tomita-Takesaki theory, for the double-cone algebras in the scalar case is also presented
Operadic formulation of topological vertex algebras and gerstenhaber or Batalin-Vilkovisky algebras
International Nuclear Information System (INIS)
Huang Yizhi
1994-01-01
We give the operadic formulation of (weak, strong) topological vertex algebras, which are variants of topological vertex operator algebras studied recently by Lian and Zuckerman. As an application, we obtain a conceptual and geometric construction of the Batalin-Vilkovisky algebraic structure (or the Gerstenhaber algebra structure) on the cohomology of a topological vertex algebra (or of a weak topological vertex algebra) by combining this operadic formulation with a theorem of Getzler (or of Cohen) which formulates Batalin-Vilkovisky algebras (or Gerstenhaber algebras) in terms of the homology of the framed little disk operad (or of the little disk operad). (orig.)
Prykarpatsky, Yarema A.; Artemovych, Orest D.; Pavlov, Maxim V.; Prykarpatski, Anatolij K.
2013-06-01
A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic hierarchy, proposed recently by O. D. Artemovych, M. V. Pavlov, Z. Popowicz and A. K. Prykarpatski, is developed. In addition to the Lax-type representation, found before by Z. Popowicz, a closely related representation is constructed in exact form by means of a new differential-functional technique. The bi-Hamiltonian integrability and compatible Poisson structures of the generalized Riemann type hierarchy are analyzed by means of the symplectic and gradient-holonomic methods. An application of the devised differential-algebraic approach to other Riemann and Vakhnenko type hydrodynamic systems is presented.
Contraction of graded su(2) algebra
International Nuclear Information System (INIS)
Patra, M.K.; Tripathy, K.C.
1989-01-01
The Inoenu-Wigner contraction scheme is extended to Lie superalgebras. The structure and representations of extended BRS algebra are obtained from contraction of the graded su(2) algebra. From cohomological consideration, we demonstrate that the graded su(2) algebra is the only superalgebra which, on contraction, yields the full BRS algebra. (orig.)
Introduction to abstract algebra
Nicholson, W Keith
2012-01-01
Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be
On the Ext algebras of parabolic Verma modules and A infinity-structures
DEFF Research Database (Denmark)
Klamt, Angela; Stroppel, Catharina
2012-01-01
We study the Ext-algebra of the direct sum of all parabolic Verma modules in the principal block of the Bernstein–Gelfand–Gelfand category O for the Hermitian symmetric pair (gln+m,gln¿glm) and present the corresponding quiver with relations for the cases n=1,2. The Kazhdan–Lusztig combinatorics ...
Wilkie, Karina J,; Clarke, Doug
2014-01-01
This design-based research project investigated the development of functional thinking in algebra for the upper primary years of schooling. Ten teachers and their students were involved in a sequence of five cycles of collaborative planning, team-teaching, evaluating and revising five lessons on functional thinking for their students over one…
Ford, Timothy J
2017-01-01
This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.
Quantitative Algebraic Reasoning
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon
2016-01-01
We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We deﬁne an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...... equational theory whose free algebras correspond to well known structures. In each case we have ﬁnitary and continuous versions. The four cases are: Hausdorﬀ metrics from quantitive semilattices; pWasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed...
On the algebraic structure of self-dual gauge fields and sigma models
International Nuclear Information System (INIS)
Bais, F.A.; Sasaki, R.
1983-01-01
An extensive and detailed analysis of self-dual gauge fields, in particular with axial symmetry, is presented, culminating in a purely algebraic procedure to generate solutions. The method which is particularly suited for the construction of multimonopole solutions for a theory with arbitrary G, is also applicable to a wide class of non-linear sigma models. The relevant symmetries as well as the associated linear problems which underly the exact solubility of the problem, are constructed and discussed in detail. (orig.)
On the structure of the commutative Z2 graded algebra valued integrable equations
International Nuclear Information System (INIS)
Konopelchenko, B.G.
1980-01-01
Partial differential equations integrable by the linear matrix spectral problem of arbitrary order are considered for the case that the 'potentials' take their values in the commutative infinte-dimensional Z 2 graded algebra (superalgebra). The general form of the integrable equations and their Baecklund transformations are found. The infinite sets of the integrals of the motion are constructed. The hamiltonian character of the integrable equations is proved. (orig.)
International Nuclear Information System (INIS)
Marquette, Ian
2013-01-01
We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Directory of Open Access Journals (Sweden)
Arash Ghaani Farashahi
2015-12-01
Full Text Available This article presents a unified approach to the abstract notions of partial convolution and involution in $L^p$-function spaces over semi-direct product of locally compact groups. Let $H$ and $K$ be locally compact groups and $tau:Hto Aut(K$ be a continuous homomorphism. Let $G_tau=Hltimes_tau K$ be the semi-direct product of $H$ and $K$ with respect to $tau$. We define left and right $tau$-convolution on $L^1(G_tau$ and we show that, with respect to each of them, the function space $L^1(G_tau$ is a Banach algebra. We define $tau$-convolution as a linear combination of the left and right $tau$-convolution and we show that the $tau$-convolution is commutative if and only if $K$ is abelian. We prove that there is a $tau$-involution on $L^1(G_tau$ such that with respect to the $tau$-involution and $tau$-convolution, $L^1(G_tau$ is a non-associative Banach $*$-algebra. It is also shown that when $K$ is abelian, the $tau$-involution and $tau$-convolution make $L^1(G_tau$ into a Jordan Banach $*$-algebra. Finally, we also present the generalized notation of $tau$-convolution for other $L^p$-spaces with $p>1$.
Galilean contractions of W-algebras
Directory of Open Access Journals (Sweden)
Jørgen Rasmussen
2017-09-01
Full Text Available Infinite-dimensional Galilean conformal algebras can be constructed by contracting pairs of symmetry algebras in conformal field theory, such as W-algebras. Known examples include contractions of pairs of the Virasoro algebra, its N=1 superconformal extension, or the W3 algebra. Here, we introduce a contraction prescription of the corresponding operator-product algebras, or equivalently, a prescription for contracting tensor products of vertex algebras. With this, we work out the Galilean conformal algebras arising from contractions of N=2 and N=4 superconformal algebras as well as of the W-algebras W(2,4, W(2,6, W4, and W5. The latter results provide evidence for the existence of a whole new class of W-algebras which we call Galilean W-algebras. We also apply the contraction prescription to affine Lie algebras and find that the ensuing Galilean affine algebras admit a Sugawara construction. The corresponding central charge is level-independent and given by twice the dimension of the underlying finite-dimensional Lie algebra. Finally, applications of our results to the characterisation of structure constants in W-algebras are proposed.
Algebraic monoids, group embeddings, and algebraic combinatorics
Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang
2014-01-01
This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: v structure and representation theory of reductive algebraic monoids v monoid schemes and applications of monoids v monoids related to Lie theory v equivariant embeddings of algebraic groups v constructions and properties of monoids from algebraic combinatorics v endomorphism monoids induced from vector bundles v Hodge–Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular. Graduate students as well a...
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.
2015-01-01
Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.
Garrett, Paul B
2007-01-01
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
ALGEBRAIC STRUCTURES AND SYNTHESIS PROTEIN: A DESCRIPTION OF GENE CAPN10
Directory of Open Access Journals (Sweden)
Obidio Rubio
2016-06-01
Full Text Available This article mainly informative, some ways of algebraic modeling of human genome sequences is presented, with special emphasis on describing mutations in the genes, which by modifying protein synthesis involve genetic diseases such as Diabetes Mellitus. Mutations as endomorphisms on an R-module, which consists of a direct sum of groups of sequences 2q37.3 gene, on the rings Z64 and Z125, where el haplotype compound for the polymorphisms SNP43, SNP19 and SNP63 occur.
International Nuclear Information System (INIS)
Krishnaswami, Govind S.
2006-01-01
Large-N multi-matrix loop equations are formulated as quadratic difference equations in concatenation of gluon correlations. Though non-linear, they involve highest rank correlations linearly. They are underdetermined in many cases. Additional linear equations for gluon correlations, associated to symmetries of action and measure are found. Loop equations aren't differential equations as they involve left annihilation, which doesn't satisfy the Leibnitz rule with concatenation. But left annihilation is a derivation of the commutative shuffle product. Moreover shuffle and concatenation combine to define a bialgebra. Motivated by deformation quantization, we expand concatenation around shuffle in powers of q, whose physical value is 1. At zeroth order the loop equations become quadratic PDEs in the shuffle algebra. If the variation of the action is linear in iterated commutators of left annihilations, these quadratic PDEs linearize by passage to shuffle reciprocal of correlations. Remarkably, this is true for regularized versions of the Yang-Mills, Chern-Simons and Gaussian actions. But the linear equations are underdetermined just as the loop equations were. For any particular solution, the shuffle reciprocal is explicitly inverted to get the zeroth order gluon correlations. To go beyond zeroth order, we find a Poisson bracket on the shuffle algebra and associative q-products interpolating between shuffle and concatenation. This method, and a complementary one of deforming annihilation rather than product are shown to give over and underestimates for correlations of a gaussian matrix model
Einstein algebras and general relativity
International Nuclear Information System (INIS)
Heller, M.
1992-01-01
A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs
Chiral algebras for trinion theories
International Nuclear Information System (INIS)
Lemos, Madalena; Peelaers, Wolfger
2015-01-01
It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.
Automorphic Lie algebras with dihedral symmetry
International Nuclear Information System (INIS)
Knibbeler, V; Lombardo, S; A Sanders, J
2014-01-01
The concept of automorphic Lie algebras arises in the context of reduction groups introduced in the early 1980s in the field of integrable systems. automorphic Lie algebras are obtained by imposing a discrete group symmetry on a current algebra of Krichever–Novikov type. Past work shows remarkable uniformity between algebras associated to different reduction groups. For example, if the base Lie algebra is sl 2 (C) and the poles of the automorphic Lie algebra are restricted to an exceptional orbit of the symmetry group, changing the reduction group does not affect the Lie algebra structure. In this research we fix the reduction group to be the dihedral group and vary the orbit of poles as well as the group action on the base Lie algebra. We find a uniform description of automorphic Lie algebras with dihedral symmetry, valid for poles at exceptional and generic orbits. (paper)
Certain number-theoretic episodes in algebra
Sivaramakrishnan, R
2006-01-01
Many basic ideas of algebra and number theory intertwine, making it ideal to explore both at the same time. Certain Number-Theoretic Episodes in Algebra focuses on some important aspects of interconnections between number theory and commutative algebra. Using a pedagogical approach, the author presents the conceptual foundations of commutative algebra arising from number theory. Self-contained, the book examines situations where explicit algebraic analogues of theorems of number theory are available. Coverage is divided into four parts, beginning with elements of number theory and algebra such as theorems of Euler, Fermat, and Lagrange, Euclidean domains, and finite groups. In the second part, the book details ordered fields, fields with valuation, and other algebraic structures. This is followed by a review of fundamentals of algebraic number theory in the third part. The final part explores links with ring theory, finite dimensional algebras, and the Goldbach problem.
Evolution algebras generated by Gibbs measures
International Nuclear Information System (INIS)
Rozikov, Utkir A.; Tian, Jianjun Paul
2009-03-01
In this article we study algebraic structures of function spaces defined by graphs and state spaces equipped with Gibbs measures by associating evolution algebras. We give a constructive description of associating evolution algebras to the function spaces (cell spaces) defined by graphs and state spaces and Gibbs measure μ. For finite graphs we find some evolution subalgebras and other useful properties of the algebras. We obtain a structure theorem for evolution algebras when graphs are finite and connected. We prove that for a fixed finite graph, the function spaces have a unique algebraic structure since all evolution algebras are isomorphic to each other for whichever Gibbs measures are assigned. When graphs are infinite graphs then our construction allows a natural introduction of thermodynamics in studying of several systems of biology, physics and mathematics by theory of evolution algebras. (author)
Algebraic entropy for algebraic maps
International Nuclear Information System (INIS)
Hone, A N W; Ragnisco, Orlando; Zullo, Federico
2016-01-01
We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)
Algebraic quantum field theory
International Nuclear Information System (INIS)
Foroutan, A.
1996-12-01
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
International Nuclear Information System (INIS)
MacCallum, M.A.H.
1990-01-01
The implementation of a new computer algebra system is time consuming: designers of general purpose algebra systems usually say it takes about 50 man-years to create a mature and fully functional system. Hence the range of available systems and their capabilities changes little between one general relativity meeting and the next, despite which there have been significant changes in the period since the last report. The introductory remarks aim to give a brief survey of capabilities of the principal available systems and highlight one or two trends. The reference to the most recent full survey of computer algebra in relativity and brief descriptions of the Maple, REDUCE and SHEEP and other applications are given. (author)
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
International Nuclear Information System (INIS)
Figueroa-O'Farrill, J.M.; Mas, J.; Ramos, E.
1993-01-01
The KP hierarchy is hamiltonian relative to a one-parameter family of Poisson structures obtained from a generalized Adler map in the space of formal pseudodifferential symbols with noninteger powers. The resulting W-algebra is a one-parameter deformation of W KP admitting a central extension for generic values of the parameter, reducing naturally to W n for special values of the parameter, and contracting to the centrally extended W 1+∞ , W ∞ and further truncations. In the classical limit, all algebras in the one-parameter family are equivalent and isomorphic to W KP . The reduction induced by setting the spin-one field to zero yields a one-parameter deformation of W ∞ which contracts to a new nonlinear algebra of the W ∞ -type. (orig.)
Characteristic Dynkin diagrams and W algebras
International Nuclear Information System (INIS)
Ragoucy, E.
1993-01-01
We present a classification of characteristic Dynkin diagrams for the A N , B N , C N and D N algebras. This classification is related to the classification of W(G, K) algebras arising from non-abelian Toda models, and we argue that it can give new insight on the structure of W algebras. (orig.)
On Elementary and Algebraic Cellular Automata
Gulak, Yuriy
In this paper we study elementary cellular automata from an algebraic viewpoint. The goal is to relate the emergent complex behavior observed in such systems with the properties of corresponding algebraic structures. We introduce algebraic cellular automata as a natural generalization of elementary ones and discuss their applications as generic models of complex systems.
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Jacobson, Nathan
2009-01-01
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L
International Nuclear Information System (INIS)
Marchiolli, M.A.; Ruzzi, M.
2012-01-01
We propose a self-consistent theoretical framework for a wide class of physical systems characterized by a finite space of states which allows us, within several mathematical virtues, to construct a discrete version of the Weyl–Wigner–Moyal (WWM) formalism for finite-dimensional discrete phase spaces with toroidal topology. As a first and important application from this ab initio approach, we initially investigate the Robertson–Schrödinger (RS) uncertainty principle related to the discrete coordinate and momentum operators, as well as its implications for physical systems with periodic boundary conditions. The second interesting application is associated with a particular uncertainty principle inherent to the unitary operators, which is based on the Wiener–Khinchin theorem for signal processing. Furthermore, we also establish a modified discrete version for the well-known Heisenberg–Kennard–Robertson (HKR) uncertainty principle, which exhibits additional terms (or corrections) that resemble the generalized uncertainty principle (GUP) into the context of quantum gravity. The results obtained from this new algebraic approach touch on some fundamental questions inherent to quantum mechanics and certainly represent an object of future investigations in physics. - Highlights: ► We construct a discrete version of the Weyl–Wigner–Moyal formalism. ► Coherent states for finite-dimensional discrete phase spaces are established. ► Discrete coordinate and momentum operators are properly defined. ► Uncertainty principles depend on the topology of finite physical systems. ► Corrections for the discrete Heisenberg uncertainty relation are also obtained.
Hohn, Franz E
2012-01-01
This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur
Wadsworth, A R
2017-01-01
This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.
Pati, Jogesh C.
2017-03-01
By way of paying tribute to Abdus Salam, I first recall the ideas of higher unification which the two of us introduced in 1972-73 to remove certain shortcomings in the status of particle physics prevailing then, and then present their current role in theory as well as experiments. These attempts initiated the idea of grand unification and provided the core symmetry-structure G(2, 2, 4) = SU(2)L × SU(2)R × SU(4)-color towards such a unification. Embodied with quark-lepton unification and left-right symmetry, the symmetry G(2, 2, 4) is uniquely chosen as being the minimal one that permits members of a family to belong to a single multiplet. The minimal extension of G(2, 2, 4) to a simple group is given by the attractive SO(10)-symmetry that was suggested a year later. The new concepts, and the many advantages introduced by this core symmetry (which are, of course, retained by SO(10) as well) are noted. These include explanations of the observed: (i) (rather weird) electroweak and color quantum numbers of the members of a family; (ii) quantization of electric charge; (iii) electron-proton charge-ratio being - 1; (iv) the co-existence of quarks and leptons; (v) likewise that of the three basic forces — the weak, electromagnetic and strong; (vi) the non-trivial cancelation of the triangle anomalies within each family; and opening the door for (vii) the appealing concept of parity being an exact symmetry of nature at the fundamental level. In addition, as a distinguishing feature, both because of SU(4)-color and independently because of SU(2)R as well, the symmetry G(2, 2, 4) introduced, to my knowledge, for the first time in the literature: (viii) a new kind of matter — the right-handed (RH) neutrino (νR) — as a compelling member of each family, and together with it; (ix) (B-L) as a local symmetry. The RH neutrions — contrary to prejudices held in the 1970’s against neutrinos being massive and thereby against the existence of νR’s as well — have in
Indian Academy of Sciences (India)
tion - 6. How Architectural Features Affect. Building During Earthquakes? C VRMurty. 48 Turbulence and Dispersion. K 5 Gandhi. BOOK REVIEWS. 86 Algebraic Topology. Siddhartha Gadgil. Front Cover. - .. ..-.......... -. Back Cover. Two-dimensional vertical section through a turbulent plume. (Courtesy: G S Shat, CAOS, IISc.).
Indian Academy of Sciences (India)
Deligne, Mumford and Artin [DM, Ar2]) and consider algebraic stacks, then we can cons- truct the 'moduli ... the moduli scheme and the moduli stack of vector bundles. First I will give ... 1–31. © Printed in India. 1 ...... Cultura, Spain. References.
Introduction to algebraic quantum field theory
International Nuclear Information System (INIS)
Horuzhy, S.S.
1990-01-01
This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs
Generalized NLS hierarchies from rational W algebras
International Nuclear Information System (INIS)
Toppan, F.
1993-11-01
Finite rational W algebras are very natural structures appearing in coset constructions when a Kac-Moody subalgebra is factored out. The problem of relating these algebras to integrable hierarchies of equations is studied by showing how to associate to a rational W algebra its corresponding hierarchy. Two examples are worked out, the sl(2)/U(1) coset, leading to the Non-Linear Schroedinger hierarchy, and the U(1) coset of the Polyakov-Bershadsky W algebra, leading to a 3-field representation of the KP hierarchy already encountered in the literature. In such examples a rational algebra appears as algebra of constraints when reducing a KP hierarchy to a finite field representation. This fact arises the natural question whether rational algebras are always associated to such reductions and whether a classification of rational algebras can lead to a classification of the integrable hierarchies. (author). 19 refs
Algebraic characterizations of measure algebras
Czech Academy of Sciences Publication Activity Database
Jech, Thomas
2008-01-01
Roč. 136, č. 4 (2008), s. 1285-1294 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190509 Institutional research plan: CEZ:AV0Z10190503 Keywords : Von - Neumann * sequential topology * Boolean-algebras * Souslins problem * Submeasures Subject RIV: BA - General Mathematics Impact factor: 0.584, year: 2008
Algebraic study of chiral anomalies
Indian Academy of Sciences (India)
Chiral anomalies; gauge theories; bundles; connections; quantum ﬁeld ... The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a ﬁxed background connection. ... Current Issue : Vol.
Comments on two-loop Kac-Moody algebras
Energy Technology Data Exchange (ETDEWEB)
Ferreira, L A; Gomes, J F; Zimerman, A H [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Schwimmer, A [Istituto Nazionale di Fisica Nucleare, Trieste (Italy)
1991-10-01
It is shown that the two-loop Kac-Moody algebra is equivalent to a two variable loop algebra and a decouple {beta}-{gamma} system. Similarly WZNW and CSW models having as algebraic structure the Kac-Moody algebra are equivalent to an infinity to versions of the corresponding ordinary models and decoupled Abelian fields. (author). 15 refs.
The Leibniz-Hopf algebra and Lyndon words
M. Hazewinkel (Michiel)
1996-01-01
textabstractLet ${cal Z$ denote the free associative algebra ${ol Z langle Z_1 , Z_2 , ldots rangle$ over the integers. This algebra carries a Hopf algebra structure for which the comultiplication is $Z_n mapsto Sigma_{i+j=n Z_i otimes Z_j$. This the noncommutative Leibniz-Hopf algebra. It carries a
On the classification of quantum W-algebras
International Nuclear Information System (INIS)
Bowcock, P.; Watts, G.T.M.
1992-01-01
In this paper we consider the structure of general quantum W-algebras. We introduce the notions of deformability, positive-definiteness, and reductivity of a W-algebra. We show that one can associate a reductive finite Lie algebra to each reductive W-algebra. The finite Lie algebra is also endowed with a preferred sl(2) subalgebra, which gives the conformal weights of the W-algebra. We extend this to cover W-algebras containing both bosonic and fermionic fields, and illustrate our ideas with the Poisson bracket algebras of generalised Drinfeld-Sokolov hamiltonian systems. We then discuss the possibilities of classifying deformable W-algebras which fall outside this class in the context of automorphisms of Lie algebras. In conclusion we list the cases in which the W-algebra has no weight-one fields, and further, those in which it has only one weight-two field. (orig.)
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.
Equivalency of two-dimensional algebras
International Nuclear Information System (INIS)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.
2011-01-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Classical algebraic chromodynamics
International Nuclear Information System (INIS)
Adler, S.L.
1978-01-01
I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon, giving a U(n) -based theory with outer product P/sup a/(u,v) = (1/2)(d/sup a/bc + if/sup a/bc)(u/sup b/v/sup c/ - v/sup b/u/sup c/) which obeys the Jacobi identity, inner product S (u,v) = (1/2)(u/sup a/v/sup a/ + v/sup a/u/sup a/), and with the n 2 gluon fields elevated to algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra satisfies the condition S (P (u,v),w) = S (u,P (v,w)) for all elements u,v,w of the algebra, all the standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case. I analyze in detail the color charge algebra in the two-particle (qq, qq-bar, q-barq-bar) case and show that the above consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark and antiquark charges: Q/sup a//sub q/ = xi/sup a/, Q/sup a//sub q/ = xi-bar/sup a/ + delta/sup a/0(n/2)/sup 3/2/1, with xi/sup a/xi/sup b/ = (1/2)(d/sup a/bc + if/sup a/bc) xi/sup c/, xi-bar/sup a/xi-bar/sup b/ = -(1/2)(d/sup a/bc - if/sup a/bc) xi-bar/sup c/. The algebraic structure of the two-particle U(n) force problem, when expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative orientations of the classical source charges have physical significance
International Nuclear Information System (INIS)
Jacob, M.
1967-01-01
The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( ΔI = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [fr
The BRS algebra of a free differential algebra
International Nuclear Information System (INIS)
Boukraa, S.
1987-04-01
We construct in this work, the Weil and the universal BRS algebras of theories that can have as a gauge symmetry a free differential (Sullivan) algebra, the natural extension of Lie algebras allowing the definition of p-form gauge potentials (p>1). The finite gauge transformations of these potentials are deduced from the infinitesimal ones and the group structure is shown. The geometrical meaning of these p-form gauge potentials is given by the notion of a Quillen superconnection. (author). 19 refs
Enveloping σ-C C C-algebra of a smooth Frechet algebra crossed ...
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 116; Issue 2. Enveloping -*-Algebra of a Smooth Frechet Algebra Crossed Product by R R , K -Theory and Differential Structure in *-Algebras. Subhash J Bhatt. Regular Articles Volume 116 Issue 2 May 2006 pp 161-173 ...
Kleyn, Aleks
2007-01-01
The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.
Linear operators in Clifford algebras
International Nuclear Information System (INIS)
Laoues, M.
1991-01-01
We consider the real vector space structure of the algebra of linear endomorphisms of a finite-dimensional real Clifford algebra (2, 4, 5, 6, 7, 8). A basis of that space is constructed in terms of the operators M eI,eJ defined by x→e I .x.e J , where the e I are the generators of the Clifford algebra and I is a multi-index (3, 7). In particular, it is shown that the family (M eI,eJ ) is exactly a basis in the even case. (orig.)
The algebraic collective model
International Nuclear Information System (INIS)
Rowe, D.J.; Turner, P.S.
2005-01-01
A recently proposed computationally tractable version of the Bohr collective model is developed to the extent that we are now justified in describing it as an algebraic collective model. The model has an SU(1,1)xSO(5) algebraic structure and a continuous set of exactly solvable limits. Moreover, it provides bases for mixed symmetry collective model calculations. However, unlike the standard realization of SU(1,1), used for computing beta wave functions and their matrix elements in a spherical basis, the algebraic collective model makes use of an SU(1,1) algebra that generates wave functions appropriate for deformed nuclei with intrinsic quadrupole moments ranging from zero to any large value. A previous paper focused on the SO(5) wave functions, as SO(5) (hyper-)spherical harmonics, and computation of their matrix elements. This paper gives analytical expressions for the beta matrix elements needed in applications of the model and illustrative results to show the remarkable gain in efficiency that is achieved by using such a basis in collective model calculations for deformed nuclei
Algebra, Geometry and Mathematical Physics Conference
Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander
2014-01-01
This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...
International Nuclear Information System (INIS)
Hohm, Olaf; Zwiebach, Barton
2017-01-01
We review and develop the general properties of L_∞ algebras focusing on the gauge structure of the associated field theories. Motivated by the L_∞ homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the L_∞ structure of general gauge invariant perturbative field theories. We sketch such formulations for non-abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an L_∞ algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full L_∞ algebra for the interacting theory. The analysis suggests that L_∞ algebras provide a classification of perturbative gauge invariant classical field theories. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Alternative algebraic approaches in quantum chemistry
International Nuclear Information System (INIS)
Mezey, Paul G.
2015-01-01
Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed
Alternative algebraic approaches in quantum chemistry
Energy Technology Data Exchange (ETDEWEB)
Mezey, Paul G., E-mail: paul.mezey@gmail.com [Canada Research Chair in Scientific Modeling and Simulation, Department of Chemistry and Department of Physics and Physical Oceanography, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John' s, NL A1B 3X7 (Canada)
2015-01-22
Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.
(Super)conformal algebra on the (super)torus
International Nuclear Information System (INIS)
Mezincescu, L.; Nepomechie, R.I.; Zachos, C.K.
1989-01-01
A generalization of the Virasoro algebra has recently been introduced by Krichever and Novikov (KN). The KN algebra describes the algebra of general conformal transformations in a basis appropriate to a genus-g Riemann surface. We examine in detail the genus-one KN algebra, and find explicit expressions for the central extension. We, further, construct explicitly the superconformal algebra of the supertorus, which yields supersymmetric generalizations of the genus-one KN algebra. A novel feature of the odd-spin-structure case is that the algebra includes a central element which is anticommuting. We comment on possible applications to string theory. (orig.)
Extented second moment algebra as an efficient tool in structural reliability
International Nuclear Information System (INIS)
Ditlevsen, O.
1982-01-01
During the seventies, second moment structural reliability analysis was extensively discussed with respect to philosophy and method. One recent clarification into a consistent formalism is represented by the extended second moment reliability theory with the generalized reliability index as its measure of safety. Its methods of formal failure probability calculations are useful independent of the opinion that one may adopt about the philosophy of the second moment reliability formalism. After an introduction of the historical development of the philosphy the paper gives a short introductory review of the extended second moment structural reliability theory. (orig.)
International Nuclear Information System (INIS)
Dragon, N.
1979-01-01
The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)
International Nuclear Information System (INIS)
Yau, Donald
2011-01-01
We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.
Sugawara operators for classical Lie algebras
Molev, Alexander
2018-01-01
The celebrated Schur-Weyl duality gives rise to effective ways of constructing invariant polynomials on the classical Lie algebras. The emergence of the theory of quantum groups in the 1980s brought up special matrix techniques which allowed one to extend these constructions beyond polynomial invariants and produce new families of Casimir elements for finite-dimensional Lie algebras. Sugawara operators are analogs of Casimir elements for the affine Kac-Moody algebras. The goal of this book is to describe algebraic structures associated with the affine Lie algebras, including affine vertex algebras, Yangians, and classical \\mathcal{W}-algebras, which have numerous ties with many areas of mathematics and mathematical physics, including modular forms, conformal field theory, and soliton equations. An affine version of the matrix technique is developed and used to explain the elegant constructions of Sugawara operators, which appeared in the last decade. An affine analogue of the Harish-Chandra isomorphism connec...
Bliss, Gilbert Ames
1933-01-01
This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t
Iterated Leavitt Path Algebras
International Nuclear Information System (INIS)
Hazrat, R.
2009-11-01
Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)
International Nuclear Information System (INIS)
Engelhardt, M.
2006-01-01
A random vortex world-surface model for the infrared sector of SU(4) Yang-Mills theory is constructed, focusing on the confinement properties and the behavior at the deconfinement phase transition. Although the corresponding data from lattice Yang-Mills theory can be reproduced, the model requires a more complex action and considerably more tuning than the SU(2) and SU(3) cases studied previously. Its predictive capabilities are accordingly reduced. This behavior has a definite physical origin, which is elucidated in detail in the present work. As the number of colors is raised in Yang-Mills theory, the corresponding infrared effective vortex description cannot indefinitely continue to rely on dynamics determined purely by vortex world-surface characteristics; additional color structures present on the vortices begin to play a role. As evidenced by the modeling effort reported here, definite signatures of this behavior appear in the case of four colors
SU(4) flavor symmetry breaking in D-meson couplings to light hadrons
Energy Technology Data Exchange (ETDEWEB)
Fontoura, C.E. [Instituto Tecnologico da Aeronautica, DCTA, Sao Jose dos Campos, SP (Brazil); Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil); Haidenbauer, J. [Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Krein, G. [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)
2017-05-15
The validity of SU(4)-flavor symmetry relations of couplings of charmed D-mesons to light mesons and baryons is examined with the use of {sup 3}P{sub 0} quark-pair creation model and nonrelativistic quark-model wave functions. We focus on the three-meson couplings ππρ, KKρ and DDρ and baryon-baryon-meson couplings NNπ, NΛK and NΛ{sub c}D. It is found that SU(4)-flavor symmetry is broken at the level of 30% in the DDρ tree-meson couplings and 20% in the baryon-baryon-meson couplings. Consequences of these findings for DN cross sections and existence of bound states D-mesons in nuclei are discussed. (orig.)
Lee, Jaehoon; Wilczek, Frank
2013-11-27
Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.
Spectrum-generating SU(4) in particle physics. II. Electromagnetic decays of vector mesons
International Nuclear Information System (INIS)
Bohm, A.; Teese, R.B.
1977-09-01
The decay rates for the electromagnetic decays of vector mesons are derived within the spectrum-generating SU(4) approach. Radiative as well as leptonic decays of vector mesons can be derived from one theoretical assumption and given in terms of three reduced matrix elements. The implication of the experimental value GAMMA(rho → πγ) = (35 +- 10) keV for the form of the electromagnetic current operator is discussed
Breaking of SU(4) symmetry and interplay between strongly-correlated phases in the Hubbard model
Czech Academy of Sciences Publication Activity Database
Golubeva, A.; Sotnikov, A.; Cichy, A.; Kuneš, Jan; Hofstetter, W.
2017-01-01
Roč. 95, č. 12 (2017), s. 1-7, č. článku 125108. ISSN 2469-9950 EU Projects: European Commission(XE) 646807 - EXMAG Institutional support: RVO:68378271 Keywords : Hubbard model * SU(4) Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 3.836, year: 2016
Grätzer, George
1979-01-01
Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...
Flexibility of Bricard's linkages and other structures via resultants and computer algebra.
Lewis, Robert H; Coutsias, Evangelos A
2016-07-01
Flexibility of structures is extremely important for chemistry and robotics. Following our earlier work, we study flexibility using polynomial equations, resultants, and a symbolic algorithm of our creation that analyzes the resultant. We show that the software solves a classic arrangement of quadrilaterals in the plane due to Bricard. We fill in several gaps in Bricard's work and discover new flexible arrangements that he was apparently unaware of. This provides strong evidence for the maturity of the software, and is a wonderful example of mathematical discovery via computer assisted experiment.
SU(4) Kondo effect in double quantum dots with ferromagnetic leads
Weymann, Ireneusz; Chirla, Razvan; Trocha, Piotr; Moca, Cǎtǎlin Paşcu
2018-02-01
We investigate the spin-resolved transport properties, such as the linear conductance and the tunnel magnetoresistance, of a double quantum dot device attached to ferromagnetic leads and look for signatures of the SU (4 ) symmetry in the Kondo regime. We show that the transport behavior greatly depends on the magnetic configuration of the device, and the spin-SU(2) as well as the orbital and spin-SU(4) Kondo effects become generally suppressed when the magnetic configuration of the leads varies from the antiparallel to the parallel one. Furthermore, a finite spin polarization of the leads lifts the spin degeneracy and drives the system from the SU(4) to an orbital-SU(2) Kondo state. We analyze in detail the crossover and show that the Kondo temperature between the two fixed points has a nonmonotonic dependence on the degree of spin polarization of the leads. In terms of methods used, we characterize transport by using a combination of analytical and numerical renormalization group approaches.
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...
Jafarizadeh, M. A.; Ranjbar, Z.; Fouladi, N.; Ghapanvari, M.
2018-01-01
In this paper, a successful algebraic method based on the dual algebraic structure for three level pairing model in the framework of sdg IBM is proposed for transitional nuclei which show transitional behavior from spherical to gamma-unstable quantum shape phase transition. In this method complicated sdg Hamiltonian, which is a three level pairing Hamiltonian is determined easily via the exactly solvable method. This description provides a better interpretation of some observables such as BE (4) in nuclei which exhibits the necessity of inclusion of g boson in the sd IBM, while BE (4) cannot be explained in the sd boson model. Some observables such as Energy levels, BE (2), BE (4), the two neutron separation energies signature splitting of the γ-vibrational band and expectation values of the g-boson number operator are calculated and examined for 46 104 - 110Pd isotopes.
Miyanishi, Masayoshi
2000-01-01
Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...
International Nuclear Information System (INIS)
Baeuerle, G.G.A.; Kerf, E.A. de
1990-01-01
The structure of the laws in physics is largely based on symmetries. This book is on Lie algebras, the mathematics of symmetry. It gives a thorough mathematical treatment of finite dimensional Lie algebras and Kac-Moody algebras. Concepts such as Cartan matrix, root system, Serre's construction are carefully introduced. Although the book can be read by an undergraduate with only an elementary knowledge of linear algebra, the book will also be of use to the experienced researcher. Experience has shown that students who followed the lectures are well-prepared to take on research in the realms of string-theory, conformal field-theory and integrable systems. 48 refs.; 66 figs.; 3 tabs
Computations in finite-dimensional Lie algebras
Directory of Open Access Journals (Sweden)
A. M. Cohen
1997-12-01
Full Text Available This paper describes progress made in context with the construction of a general library of Lie algebra algorithms, called ELIAS (Eindhoven Lie Algebra System, within the computer algebra package GAP. A first sketch of the package can be found in Cohen and de Graaf[1]. Since then, in a collaborative effort with G. Ivanyos, the authors have continued to develop algorithms which were implemented in ELIAS by the second author. These activities are part of a bigger project, called ACELA and financed by STW, the Dutch Technology Foundation, which aims at an interactive book on Lie algebras (cf. Cohen and Meertens [2]. This paper gives a global description of the main ways in which to present Lie algebras on a computer. We focus on the transition from a Lie algebra abstractly given by an array of structure constants to a Lie algebra presented as a subalgebra of the Lie algebra of n×n matrices. We describe an algorithm typical of the structure analysis of a finite-dimensional Lie algebra: finding a Levi subalgebra of a Lie algebra.
Algebraic methods for a direct calculus of observables in the theory of nuclear band structure
International Nuclear Information System (INIS)
Klein, A.
1983-01-01
The basis for much of the present understanding of nuclear structure derives from the study of mean field approximations (such as Hartree-Fock or Bardeen-Cooper-Schrieffer) and of small deviations from the mean field (random phase approximation and the cranking model). This review is devoted to the study of a theoretical framework for these and other approximations. The approach is the application of Heisenberg matrix mechanics to the nuclear many-body problem. It utilizes a calculus for matrix elements of suitably chosen simple operators between exact eigenstates of the Hamiltonian. In the first class of investigations, in which single fermion operators were chosen, one ends with a theory providing a justification for and generalization of various core-particle coupling models and a basis for nuclear field theory. In a further group of studies of matrix elements of multipole and/or pair operators, the collective behavior of even nuclei can be examined, divorced from their coupling to neighboring odd nuclei. Various investigations carried out over two decades are described. A common theoretical thread is that the calculations are done uniformly in fermion shell model space in a representation in which the Hamiltonian is diagonal. New developments which may alter these considerations profoundly by enlarging the framework in which they may be carried out are envisaged. (author)
Non-linear realization of the Virasoro-Kac-Moody algebra and the anomalies
International Nuclear Information System (INIS)
Aoyama, S.
1988-01-01
The non-linear realization of the Virasoro algebra x Kac-Moody algebra will be studied. We will calculate the Ricci tensor of the relevant Kaehler manifold to show a new vacuum structure for this coupled algebra. (orig.)
Remarks on the differential algebraic approach to particle beam optics by M. Berz
International Nuclear Information System (INIS)
Garczynski, V.
1992-01-01
The underlying mathematical structure of the differential algebraic approach of M. Berz to particle beam optics is isomorphic to the familiar truncated polynomial algebra. Concrete examples of derivations in this algebra, consistent with the truncation operation, are given
Algebra 1 groups, rings, fields and arithmetic
Lal, Ramji
2017-01-01
This is the first in a series of three volumes dealing with important topics in algebra. It offers an introduction to the foundations of mathematics together with the fundamental algebraic structures, namely groups, rings, fields, and arithmetic. Intended as a text for undergraduate and graduate students of mathematics, it discusses all major topics in algebra with numerous motivating illustrations and exercises to enable readers to acquire a good understanding of the basic algebraic structures, which they can then use to find the exact or the most realistic solutions to their problems.
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
Relational Algebra and SQL: Better Together
McMaster, Kirby; Sambasivam, Samuel; Hadfield, Steven; Wolthuis, Stuart
2013-01-01
In this paper, we describe how database instructors can teach Relational Algebra and Structured Query Language together through programming. Students write query programs consisting of sequences of Relational Algebra operations vs. Structured Query Language SELECT statements. The query programs can then be run interactively, allowing students to…
Wigner oscillators, twisted Hopf algebras and second quantization
Energy Technology Data Exchange (ETDEWEB)
Castro, P.G.; Toppan, F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: pgcastro@cbpf.br; toppan@cbpf.br; Chakraborty, B. [S. N. Bose National Center for Basic Sciences, Kolkata (India)]. E-mail: biswajit@bose.res.in
2008-07-01
By correctly identifying the role of central extension in the centrally extended Heisenberg algebra h, we show that it is indeed possible to construct a Hopf algebraic structure on the corresponding enveloping algebra U(h) and eventually deform it through Drinfeld twist. This Hopf algebraic structure and its deformed version U{sup F}(h) is shown to be induced from a more 'fundamental' Hopf algebra obtained from the Schroedinger field/oscillator algebra and its deformed version, provided that the fields/oscillators are regarded as odd-elements of a given superalgebra. We also discuss the possible implications in the context of quantum statistics. (author)
The Yoneda algebra of a K2 algebra need not be another K2 algebra
Cassidy, T.; Phan, C.; Shelton, B.
2010-01-01
The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.
Cluster algebras in mathematical physics
International Nuclear Information System (INIS)
Francesco, Philippe Di; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-01-01
This special issue of Journal of Physics A: Mathematical and Theoretical contains reviews and original research articles on cluster algebras and their applications to mathematical physics. Cluster algebras were introduced by S Fomin and A Zelevinsky around 2000 as a tool for studying total positivity and dual canonical bases in Lie theory. Since then the theory has found diverse applications in mathematics and mathematical physics. Cluster algebras are axiomatically defined commutative rings equipped with a distinguished set of generators (cluster variables) subdivided into overlapping subsets (clusters) of the same cardinality subject to certain polynomial relations. A cluster algebra of rank n can be viewed as a subring of the field of rational functions in n variables. Rather than being presented, at the outset, by a complete set of generators and relations, it is constructed from the initial seed via an iterative procedure called mutation producing new seeds successively to generate the whole algebra. A seed consists of an n-tuple of rational functions called cluster variables and an exchange matrix controlling the mutation. Relations of cluster algebra type can be observed in many areas of mathematics (Plücker and Ptolemy relations, Stokes curves and wall-crossing phenomena, Feynman integrals, Somos sequences and Hirota equations to name just a few examples). The cluster variables enjoy a remarkable combinatorial pattern; in particular, they exhibit the Laurent phenomenon: they are expressed as Laurent polynomials rather than more general rational functions in terms of the cluster variables in any seed. These characteristic features are often referred to as the cluster algebra structure. In the last decade, it became apparent that cluster structures are ubiquitous in mathematical physics. Examples include supersymmetric gauge theories, Poisson geometry, integrable systems, statistical mechanics, fusion products in infinite dimensional algebras, dilogarithm
Directory of Open Access Journals (Sweden)
Ирина Викторовна Кузнецова
2012-12-01
Full Text Available The paper proposes the concept of learning activities in online communities for teaching algebraic structures of the future teachers of mathematics, including a set of theoretical and methodological positions, laws, principles, factors, and pedagogical conditions of its implementation. Work is executed with support of the Russian fund of basic researches under the initiative project № 11-07-00733 «The Hypertext information retrieval thesaurus» a science Meta language» (structure; mathematical, linguistic and program maintenance; sections linguistics, mathematics, economy».
Dzhumadil'daev, A. S.
2002-01-01
Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.
Introduction to relation algebras relation algebras
Givant, Steven
2017-01-01
The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...
Bounded elements in Locally C*-algebras
International Nuclear Information System (INIS)
El Harti, Rachid
2001-09-01
In order to get more useful information about Locally C*-algebras, we introduce in this paper the notion of bounded elements. First, we study the connection between bounded elements and spectrally bounded elements. Some structural results of Locally C*-algebras are established in Theorems 1 , 2 and 3. As an immediate consequence of Theorem 3, we give a characterization of the connected component of the identity in the group of unitary elements for a Locally C*-algebra. (author)
Foulis, David J.; Pulmannov, Sylvia
2018-04-01
Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.
Uncertainty relations and semi-groups in B-algebras
International Nuclear Information System (INIS)
Papaloucas, L.C.
1980-07-01
Starting from a B-algebra which satisfies the conditions of a structure theorem, we obtain directly a Lie algebra for which the Lie ring satisfies automatically the Heisenberg uncertainty relations. (author)
Underlying theory based on quaternions for Alder's algebraic chromodynamics
International Nuclear Information System (INIS)
Horwitz, L.P.; Biedenharn, L.C.
1981-01-01
It is shown that the complex-linear tensor product for quantum quaternionic Hilbert (module) spaces provides an algebraic structure for the non-local gauge field in Adler's algebraic chromodynamics for U
Spectroscopy of SU(4) composite Higgs theory with two distinct fermion representations
Ayyar, Venkitesh; DeGrand, Thomas; Golterman, Maarten; Hackett, Daniel C.; Jay, William I.; Neil, Ethan T.; Shamir, Yigal; Svetitsky, Benjamin
2018-04-01
We have simulated the SU(4) lattice gauge theory coupled to dynamical fermions in the fundamental and two-index antisymmetric (sextet) representations simultaneously. Such theories arise naturally in the context of composite Higgs models that include a partially composite top quark. We describe the low-lying meson spectrum of the theory and fit the pseudoscalar masses and decay constants to chiral perturbation theory. We infer as well the mass and decay constant of the Goldstone boson corresponding to the nonanomalous U(1) symmetry of the model. Our results are broadly consistent with large-Nc scaling and vector-meson dominance.
Minimal Supersymmetric $SU(4) \\to SU(2)_L \\to SU(2)_R$
King, S F
1998-01-01
We present a minimal string-inspired supersymmetric $SU(4) \\times SU(2)_L potential in this model, based on a generalisation of that recently proposed by Dvali, Lazarides and Shafi. The model contains a global U(1) R-symmetry and reduces to the MSSM at low energies. However it improves on the MSSM since it explains the magnitude of its $\\mu$ term and gives a prediction for $\\tan \\beta both `cold' and `hot' dark matter candidates. A period of hybrid inflation above the symmetry breaking scale is also possible in this model. Finally it suggests the existence of `heavy' charge $\\pm e/6$ (colored) and $\\pm e/2$ (color singlet) states.
Quantization and representation theory of finite W algebras
International Nuclear Information System (INIS)
Boer, J. de; Tjin, T.
1993-01-01
In this paper we study the finitely generated algebras underlying W algebras. These so called 'finite W algebras' are constructed as Poisson reductions of Kirillov Poisson structures on simple Lie algebras. The inequivalent reductions are labeled by the inequivalent embeddings of sl 2 into the simple Lie algebra in question. For arbitrary embeddings a coordinate free formula for the reduced Poisson structure is derived. We also prove that any finite W algebra can be embedded into the Kirillov Poisson algebra of a (semi)simple Lie algebra (generalized Miura map). Furthermore it is shown that generalized finite Toda systems are reductions of a system describing a free particle moving on a group manifold and that they have finite W symmetry. In the second part we BRST quantize the finite W algebras. The BRST cohomoloy is calculated using a spectral sequence (which is different from the one used by Feigin and Frenkel). This allows us to quantize all finite W algebras in one stroke. Examples are given. In the last part of the paper we study the representation theory of finite W algebras. It is shown, using a quantum inversion of the generalized Miura transformation, that the representations of finite W algebras can be constructed from the representations of a certain Lie subalgebra of the original simple Lie algebra. As a byproduct of this we are able to construct the Fock realizations of arbitrary finite W algebras. (orig.)
Algebra II textbook for students of mathematics
Gorodentsev, Alexey L
2017-01-01
This book is the second volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
Algebra I textbook for students of mathematics
Gorodentsev, Alexey L
2016-01-01
This book is the first volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
DEFF Research Database (Denmark)
Schmidt, Thomas Lundsgaard
such a map, generalising the transformation groupoid of a local homeomorphism first introduced by Renault in \\cite{re}. We conduct a detailed study of the relationship between the dynamics of $\\phi$, the properties of these groupoids, the structure of their corresponding reduced groupoid $C^*$-algebras, and......, for certain classes of maps, the K-theory of these algebras. When the map $\\phi$ is transitive, we show that the algebras $C^*_r(\\Gamma_\\phi)$ and $C^*_r(\\Gamma_\\phi^+)$ are purely infinite and satisfy the Universal Coefficient Theorem. Furthermore, we find necessary and sufficient conditions for simplicity...... of these algebras in terms of dynamical properties of $\\phi$. We proceed to consider the situation when the algebras are non-simple, and describe the primitive ideal spectrum in this case. We prove that any irreducible representation factors through the $C^*$-algebra of the reduction of the groupoid to the orbit...
Homotopy Theory of C*-Algebras
Ostvaer, Paul Arne
2010-01-01
Homotopy theory and C* algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitable fodder for standard homotopy theoretic moves, leading to unstable and stable model structures. With the foundations in place one is led to natural definitions of invariants for C*-spaces such as homology and cohomology theories, K-theory and zeta-functions. The text is largely self-contained. It
Computers in nonassociative rings and algebras
Beck, Robert E
1977-01-01
Computers in Nonassociative Rings and Algebras provides information pertinent to the computational aspects of nonassociative rings and algebras. This book describes the algorithmic approaches for solving problems using a computer.Organized into 10 chapters, this book begins with an overview of the concept of a symmetrized power of a group representation. This text then presents data structures and other computational methods that may be useful in the field of computational algebra. Other chapters consider several mathematical ideas, including identity processing in nonassociative algebras, str
Cellularity of certain quantum endomorphism algebras
DEFF Research Database (Denmark)
Andersen, Henning Haahr; Lehrer, G. I.; Zhang, R.
Let $\\tA=\\Z[q^{\\pm \\frac{1}{2}}][([d]!)\\inv]$ and let $\\Delta_{\\tA}(d)$ be an integral form of the Weyl module of highest weight $d \\in \\N$ of the quantised enveloping algebra $\\U_{\\tA}$ of $\\fsl_2$. We exhibit for all positive integers $r$ an explicit cellular structure for $\\End...... of endomorphism algebras, and another which relates the multiplicities of indecomposable summands to the dimensions of simple modules for an endomorphism algebra. Our cellularity result then allows us to prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above...
An application of the division algebras, Jordan algebras and split composition algebras
International Nuclear Information System (INIS)
Foot, R.; Joshi, G.C.
1992-01-01
It has been established that the covering group of the Lorentz group in D = 3, 4, 6, 10 can be expressed in a unified way, based on the four composition division algebras R, C, Q and O. In this paper, the authors discuss, in this framework, the role of the complex numbers of quantum mechanics. A unified treatment of quantum-mechanical spinors is given. The authors provide an explicit demonstration that the vector and spinor transformations recently constructed from a subgroup of the reduced structure group of the Jordan algebras M n 3 are indeed the Lorentz transformations. The authors also show that if the division algebras in the construction of the covering groups of the Lorentz groups in D = 3, 4, 6, 10 are replaced by the split composition algebras, then the sequence of groups SO(2, 2), SO(3, 3) and SO(5, 5) result. The analysis is presumed to be self-contained as the relevant aspects of the division algebras and Jordan algebras are reviewed. Some applications to physical theory are indicated
Parsing with Regular Expressions & Extensions to Kleene Algebra
DEFF Research Database (Denmark)
Grathwohl, Niels Bjørn Bugge
. In the second part of this thesis, we study two extensions to Kleene algebra. Chomsky algebra is an algebra with a structure similar to Kleene algebra, but with a generalized mu-operator for recursion instead of the Kleene star. We show that the axioms of idempotent semirings along with continuity of the mu......-operator completely axiomatize the equational theory of the context-free languages. KAT+B! is an extension to Kleene algebra with tests (KAT) that adds mutable state. We describe a test algebra B! for mutable tests and give a commutative coproduct between KATs. Combining the axioms of B! with those of KAT and some...
Magnetic and orbital instabilities in a lattice of SU(4) organometallic Kondo complexes
International Nuclear Information System (INIS)
Lobos, A M; Aligia, A A
2014-01-01
Motivated by experiments of scanning tunneling spectroscopy (STS) on self- assembled networks of iron(II)-phtalocyanine (FePc) molecules deposited on a clean Au(111) surface [FePc/Au(111)] and its explanation in terms of the extension of the impurity SU(4) Anderson model to the lattice in the Kondo regime, we study the competition between the Kondo effect and the magneto-orbital interactions occurring in FePc/Au(111). We explore the quantum phases and critical points of the model using a large-N slave-boson method in the mean-field approximation. The SU(4) symmetry in the impurity appears as a combination of the usual spin and an orbital pseudospin arising from the degenerate 3d xz and 3d yz orbitals in the Fe atom. In the case of the lattice, our results show that the additional orbital degrees of freedom crucially modify the low-temperature phase diagram, and induce new types of orbital interactions among the Fe atoms, which can potentially stabilize exotic quantum phases with magnetic and orbital order. The dominant instability corresponds to spin ferromagnetic and orbital antiferromagnetic order
Inflation and monopoles in supersymmetric SU(4)c x SU(2)L x SU(2)R
International Nuclear Information System (INIS)
Jeannerot, R.; Khalil, S.; Lazarides, G.; Shafi, Q.
2000-02-01
We show how hybrid inflation can be successfully realized in a supersymmetric model with gauge group G PS = SU(4) c x SU(2) L x SU(2) R . By including a non-renormalizable superpotential term, we generate an inflationary valley along which G PS is broken to the standard model gauge group. Thus, catastrophic production of the doubly charged magnetic monopoles, which are predicted by the model, cannot occur at the end of inflation. The results of the cosmic background explorer can be reproduced with natural values (of order 10 -3 ) of the relevant coupling constant, and symmetry breaking scale of G PS close to 10 16 GeV. The spectral index of density perturbations lies between unity and 0.94. Moreover, the μ-term is generated via a Peccei-Quinn symmetry and proton is practically stable. Baryogenesis in the universe takes place via leptogenesis. The low deuterium abundance constraint on the baryon asymmetry, the gravitino limit on the reheat temperature and the requirement of almost maximal ν μ - ν τ mixing from SuperKamiokande can be simultaneously met with m νμ , m ντ and heaviest Dirac neutrino mass determined from the large angle MSW resolution of the solar neutrino problem, the SuperKamiokande results and SU(4) c symmetry respectively. (author)
Automorphisms of the Cuntz algebras
DEFF Research Database (Denmark)
Conti, Roberto; Szymanski, Wojciech
2011-01-01
We survey recent results on endomorphisms and especially on automorphisms of the Cuntz algebras, with a special emphasis on the structure of the Weyl group. We discuss endomorphisms globally preserving the diagonal MASA and their corresponding actions. In particular, we investigate those endomorp......We survey recent results on endomorphisms and especially on automorphisms of the Cuntz algebras, with a special emphasis on the structure of the Weyl group. We discuss endomorphisms globally preserving the diagonal MASA and their corresponding actions. In particular, we investigate those...
Generalized W-algebras and integrable hierarchies
International Nuclear Information System (INIS)
Burroughs, N.; De Groot, M.; Hollowood, T.; Miramontes, L.
1992-01-01
We report on generalizations of the KdV-type integrable hierarchies of Drinfel'd and Sokolov. These hierarchies lead to the existence of new classical W-algebras, which arise as the second hamiltonian structure of the hierarchies. In particular, we present a construction of the W n (l) -algebras. (orig.)
Mattson Solomon transform and algebra codes
DEFF Research Database (Denmark)
Martínez-Moro, E.; Benito, Diego Ruano
2009-01-01
In this note we review some results of the first author on the structure of codes defined as subalgebras of a commutative semisimple algebra over a finite field (see Martínez-Moro in Algebra Discrete Math. 3:99-112, 2007). Generator theory and those aspects related to the theory of Gröbner bases ...
Observable algebras for the rational and trigonometric Euler-Calogero-Moser Models
International Nuclear Information System (INIS)
Avan, J.; Billey, E.
1995-01-01
We construct polynomial Poisson algebras of observables for the classical Euler-Calogero-Moser (ECM) models. Their structure connects them to flavour-indexed non-linear W ∞ algebras, albeit with qualitative differences. The conserved Hamiltonians and symmetry algebras derived in a previous work are subsets of these algebra. We define their linear, N →∞ limits, realizing W ∞ type algebras coupled to current algebras. ((orig.))
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
Boicescu, V; Georgescu, G; Rudeanu, S
1991-01-01
The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.
Clark, Allan
1984-01-01
This concise, readable, college-level text treats basic abstract algebra in remarkable depth and detail. An antidote to the usual surveys of structure, the book presents group theory, Galois theory, and classical ideal theory in a framework emphasizing proof of important theorems.Chapter I (Set Theory) covers the basics of sets. Chapter II (Group Theory) is a rigorous introduction to groups. It contains all the results needed for Galois theory as well as the Sylow theorems, the Jordan-Holder theorem, and a complete treatment of the simplicity of alternating groups. Chapter III (Field Theory)
Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras
International Nuclear Information System (INIS)
Ammar, F; Makhlouf, A; Silvestrov, S
2010-01-01
In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.
Hecke symmetries and characteristic relations on reflection equation algebras
International Nuclear Information System (INIS)
Gurevich, D.I.; Pyatov, P.N.
1996-01-01
We discuss how properties of Hecke symmetry (i.e., Hecke type R-matrix) influence the algebraic structure of the corresponding Reflection Equation (RE) algebra. Analogues of the Newton relations and Cayley-Hamilton theorem for the matrix of generators of the RE algebra related to a finite rank even Hecke symmetry are derived. 10 refs
{kappa}-deformed realization of D=4 conformal algebra
Energy Technology Data Exchange (ETDEWEB)
Klimek, M. [Technical Univ. of Czestochowa, Inst. of Mathematics and Computer Science, Czestochowa (Poland); Lukierski, J. [Universite de Geneve, Department de Physique Theorique, Geneve (Switzerland)
1995-07-01
We describe the generators of {kappa}-conformal transformations, leaving invariant the {kappa}-deformed d`Alembert equation. In such a way one obtains the conformal extension of-shell spin spin zero realization of {kappa}-deformed Poincare algebra. Finally the algebraic structure of {kappa}-deformed conformal algebra is discussed. (author). 23 refs.
Generating loop graphs via Hopf algebra in quantum field theory
International Nuclear Information System (INIS)
Mestre, Angela; Oeckl, Robert
2006-01-01
We use the Hopf algebra structure of the time-ordered algebra of field operators to generate all connected weighted Feynman graphs in a recursive and efficient manner. The algebraic representation of the graphs is such that they can be evaluated directly as contributions to the connected n-point functions. The recursion proceeds by loop order and vertex number
A note on the transition probability over Csup(*)-algebras
International Nuclear Information System (INIS)
Alberti, P.M.; Karl-Marx-Universitaet, Leipzig
1983-01-01
The algebraic structure of Uhlmann's transition probability between mixed states on unital Csup(*)-algebras is analyzed. Several improvements of methods to calculate the transition probability are fixed, examples are given (e.g., the case of quasi-local Csup(*)-algebras is dealt with) and two more functional characterizations are proved in general. (orig.)
A type of loop algebra and the associated loop algebras
International Nuclear Information System (INIS)
Tam Honwah; Zhang Yufeng
2008-01-01
A higher-dimensional twisted loop algebra is constructed. As its application, a new Lax pair is presented, whose compatibility gives rise to a Liouville integrable hierarchy of evolution equations by making use of Tu scheme. One of the reduction cases of the hierarchy is an analogous of the well-known AKNS system. Next, the twisted loop algebra, furthermore, is extended to another higher dimensional loop algebra, from which a hierarchy of evolution equations with 11-potential component functions is obtained, whose reduction is just standard AKNS system. Especially, we prove that an arbitrary linear combination of the four Hamiltonian operators directly obtained from the recurrence relations is still a Hamiltonian operator. Therefore, the hierarchy with 11-potential functions possesses 4-Hamiltonian structures. Finally, an integrable coupling of the hierarchy is worked out
Asveld, P.R.J.
1976-01-01
Operaties op formele talen geven aanleiding tot bijbehorende operatoren op families talen. Bepaalde onderwerpen uit de algebra (universele algebra, tralies, partieel geordende monoiden) kunnen behulpzaam zijn in de studie van verzamelingen van dergelijke operatoren.
Factorization algebras in quantum field theory
Costello, Kevin
2017-01-01
Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.
On (co)homology of Frobenius Poisson algebras
Zhu, Can; Van Oystaeyen, Fred; ZHANG, Yinhuo
2014-01-01
In this paper, we study Poisson (co)homology of a Frobenius Poisson algebra. More precisely, we show that there exists a duality between Poisson homology and Poisson cohomology of Frobenius Poisson algebras, similar to that between Hochschild homology and Hochschild cohomology of Frobenius algebras. Then we use the non-degenerate bilinear form on a unimodular Frobenius Poisson algebra to construct a Batalin-Vilkovisky structure on the Poisson cohomology ring making it into a Batalin-Vilkovisk...
An improved estimate of SU(4) symmetry mixing in light nuclei
International Nuclear Information System (INIS)
Haq, R.; Parikh, J.C.; Bhatt, K.H.
1974-01-01
The spectral distribution method of French has been very successful in determining ground state energies and mixing intensities of various irreps of a group near the ground state. For the SU(4) group these methods have been extensively used. The method incorporated actually estimates an upper limit for the mixing and lower amounts of mixing cannot be ruled out. This is beacuse the total variance sigmasup(2) which is composed of sigmasup(2) external and sigmasup(2) internal is used for estimating the amount of mixing. Whereas sigmasup(2) int gives rise to spreading of various irreps, it is only sigmasup(2) ext which leads to symmetry mixing. Better methods of estimating the mixing shall be discussed. (author)
Calculation of baryon sum rules and SU(4) mass formulae for mesons and baryons
International Nuclear Information System (INIS)
Bongardt, K.
1976-01-01
Light cone coordinates and field-field anticommutators for the free quark model on the light cone are introduced and light cone charges and light cone currents for the free quark model as well as sum rules for the meson and quark states are derived. The derivation of sum rules for the baryons is attempted. It is seen that it is possible formally to derive the same sum rules for the baryons and for the quarks. The baryon sums were derived through the symmetry properties of the baryon fields. Explicit assumptions about the spatial distribution of the three quarks in the baryons were not utilized. The meson-baryon Σ-terms, Zweig's rules in the SU (4) and a number of properties of the M-matrix are discussed. (BJ) [de
Twenty years later: Why I still believe in SU(4)-color
International Nuclear Information System (INIS)
Pati, J.C.
1994-01-01
Following some preliminary remarks of a historical nature, the recent success of the conventional approach to grand unification as regards the meeting of the coupling constants is summarized. Its shortcomings as regards the arbitrariness in the Higgs sector are noted and a case is made for an alternative approach to unification based on a purely gauge origin of the fundamental forces. This seems to call for the ideas of local supersymmetry and preons. Preonic ideas in turn seem to require SU(4)-color symmetry. The advantages of the marriage of these ideas as regards an understanding of the origins of (a) diverse mass-scales, (b) family-replication and (c) inter-family mass-hierarchy are discussed. (author). 31 refs, 2 figs
Combinatorial commutative algebra
Miller, Ezra
2005-01-01
Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determined rings. The chapters in this work cover topics ranging from homological invariants of monomial ideals and their polyhedral resolutions, to tools for studying algebraic varieties.
Generalized exclusion and Hopf algebras
International Nuclear Information System (INIS)
Yildiz, A
2002-01-01
We propose a generalized oscillator algebra at the roots of unity with generalized exclusion and we investigate the braided Hopf structure. We find that there are two solutions: these are the generalized exclusions of the bosonic and fermionic types. We also discuss the covariance properties of these oscillators
Algebraic methods in system theory
Brockett, R. W.; Willems, J. C.; Willsky, A. S.
1975-01-01
Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.
The Lie algebra of the N=2-string
International Nuclear Information System (INIS)
Kugel, K.
2006-01-01
The theory of generalized Kac-Moody algebras is a generalization of the theory of finite dimensional simple Lie algebras. The physical states of some compactified strings give realizations of generalized Kac-Moody algebras. For example the physical states of a bosonic string moving on a 26 dimensional torus form a generalized Kac-Moody algebra and the physical states of a N=1 string moving on a 10 dimensional torus form a generalized Kac-Moody superalgebra. A natural question is whether the physical states of the compactified N=2-string also realize such an algebra. In this thesis we construct the Lie algebra of the compactified N=2-string, study its properties and show that it is not a generalized Kac-Moody algebra. The Fock space of a N=2-string moving on a 4 dimensional torus can be described by a vertex algebra constructed from a rational lattice of signature (8,4). Here 6 coordinates with signature (4,2) come from the matter part and 6 coordinates with signature (4,2) come from the ghost part. The physical states are represented by the cohomology of the BRST-operator. The vertex algebra induces a product on the vector space of physical states that defines the structure of a Lie algebra on this space. This Lie algebra shares many properties with generalized Kac-Moody algebra but we will show that it is not a generalized Kac-Moody algebra. (orig.)
The Lie algebra of the N=2-string
Energy Technology Data Exchange (ETDEWEB)
Kugel, K
2006-07-01
The theory of generalized Kac-Moody algebras is a generalization of the theory of finite dimensional simple Lie algebras. The physical states of some compactified strings give realizations of generalized Kac-Moody algebras. For example the physical states of a bosonic string moving on a 26 dimensional torus form a generalized Kac-Moody algebra and the physical states of a N=1 string moving on a 10 dimensional torus form a generalized Kac-Moody superalgebra. A natural question is whether the physical states of the compactified N=2-string also realize such an algebra. In this thesis we construct the Lie algebra of the compactified N=2-string, study its properties and show that it is not a generalized Kac-Moody algebra. The Fock space of a N=2-string moving on a 4 dimensional torus can be described by a vertex algebra constructed from a rational lattice of signature (8,4). Here 6 coordinates with signature (4,2) come from the matter part and 6 coordinates with signature (4,2) come from the ghost part. The physical states are represented by the cohomology of the BRST-operator. The vertex algebra induces a product on the vector space of physical states that defines the structure of a Lie algebra on this space. This Lie algebra shares many properties with generalized Kac-Moody algebra but we will show that it is not a generalized Kac-Moody algebra. (orig.)
International Nuclear Information System (INIS)
Krivonos, S.O.; Sorin, A.S.
1994-06-01
We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs
International Nuclear Information System (INIS)
Hudetz, T.
1989-01-01
As a 'by-product' of the Connes-Narnhofer-Thirring theory of dynamical entropy for (originally non-Abelian) nuclear C * -algebras, the well-known variational principle for topological entropy is eqivalently reformulated in purly algebraically defined terms for (separable) Abelian C * -algebras. This 'algebraic variational principle' should not only nicely illustrate the 'feed-back' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by 'algebraic' methods and could thus further simplify the original proof of the variational principle (at least 'in principle'). 23 refs. (Author)
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
Computer algebra and operators
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Jurco, Branislav
2011-01-01
Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, which is simply connected in each simplicial level. We use the 1-jet of the classifying space of G to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The res...
Lectures on algebraic statistics
Drton, Mathias; Sullivant, Seth
2009-01-01
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
International Nuclear Information System (INIS)
Goddard, Peter
1990-01-01
The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)
International Nuclear Information System (INIS)
Feigin, B.L.; Semikhatov, A.M.
2004-01-01
We construct W-algebra generalizations of the sl-circumflex(2) algebra-W algebras W n (2) generated by two currents E and F with the highest pole of order n in their OPE. The n=3 term in this series is the Bershadsky-Polyakov W 3 (2) algebra. We define these algebras as a centralizer (commutant) of the Uqs-bar (n vertical bar 1) quantum supergroup and explicitly find the generators in a factored, 'Miura-like' form. Another construction of the W n (2) algebras is in terms of the coset sl-circumflex(n vertical bar 1)/sl-circumflex(n). The relation between the two constructions involves the 'duality' (k+n-1)(k'+n-1)=1 between levels k and k' of two sl-circumflex(n) algebras
Critical analysis of algebraic collective models
International Nuclear Information System (INIS)
Moshinsky, M.
1986-01-01
The author shall understand by algebraic collective models all those based on specific Lie algebras, whether the latter are suggested through simple shell model considerations like in the case of the Interacting Boson Approximation (IBA), or have a detailed microscopic foundation like the symplectic model. To analyze these models critically, it is convenient to take a simple conceptual example of them in which all steps can be implemented analytically or through elementary numerical analysis. In this note he takes as an example the symplectic model in a two dimensional space i.e. based on a sp(4,R) Lie algebra, and show how through its complete discussion we can get a clearer understanding of the structure of algebraic collective models of nuclei. In particular he discusses the association of Hamiltonians, related to maximal subalgebras of our basic Lie algebra, with specific types of spectra, and the connections between spectra and shapes
The classical limit of W-algebras
International Nuclear Information System (INIS)
Figueroa-O'Farrill, J.M.; Ramos, E.
1992-01-01
We define and compute explicitly the classical limit of the realizations of W n appearing as hamiltonian structures of generalized KdV hierarchies. The classical limit is obtained by taking the commutative limit of the ring of pseudodifferential operators. These algebras - denoted w n - have free field realizations in which the generators are given by the elementary symmetric polynomials in the free fields. We compute the algebras explicitly and we show that they are all reductions of a new algebra w KP , which is proposed as the universal classical W-algebra for the w n series. As a deformation of this algebra we also obtain w 1+∞ , the classical limit of W 1+∞ . (orig.)
Coherent states and classical limit of algebraic quantum models
International Nuclear Information System (INIS)
Scutaru, H.
1983-01-01
The algebraic models for collective motion in nuclear physics belong to a class of theories the basic observables of which generate selfadjoint representations of finite dimensional, real Lie algebras, or of the enveloping algebras of these Lie algebras. The simplest and most used for illustrations model of this kind is the Lipkin model, which is associated with the Lie algebra of the three dimensional rotations group, and which presents all characteristic features of an algebraic model. The Lipkin Hamiltonian is the image, of an element of the enveloping algebra of the algebra SO under a representation. In order to understand the structure of the algebraic models the author remarks that in both classical and quantum mechanics the dynamics is associated to a typical algebraic structure which we shall call a dynamical algebra. In this paper he shows how the constructions can be made in the case of the algebraic quantum systems. The construction of the symplectic manifold M can be made in this case using a quantum analog of the momentum map which he defines
Bicovariant quantum algebras and quantum Lie algebras
International Nuclear Information System (INIS)
Schupp, P.; Watts, P.; Zumino, B.
1993-01-01
A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)
The Boolean algebra and central Galois algebras
Directory of Open Access Journals (Sweden)
George Szeto
2001-01-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb for all x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.
Bases in Lie and quantum algebras
International Nuclear Information System (INIS)
Ballesteros, A; Celeghini, E; Olmo, M A del
2008-01-01
Applications of algebras in physics are related to the connection of measurable observables to relevant elements of the algebras, usually the generators. However, in the determination of the generators in Lie algebras there is place for some arbitrary conventions. The situation is much more involved in the context of quantum algebras, where inside the quantum universal enveloping algebra, we have not enough primitive elements that allow for a privileged set of generators and all basic sets are equivalent. In this paper we discuss how the Drinfeld double structure underlying every simple Lie bialgebra characterizes uniquely a particular basis without any freedom, completing the Cartan program on simple algebras. By means of a perturbative construction, a distinguished deformed basis (we call it the analytical basis) is obtained for every quantum group as the analytical prolongation of the above defined Lie basis of the corresponding Lie bialgebra. It turns out that the whole construction is unique, so to each quantum universal enveloping algebra is associated one and only one bialgebra. In this way the problem of the classification of quantum algebras is moved to the classification of bialgebras. In order to make this procedure more clear, we discuss in detail the simple cases of su(2) and su q (2).
CASL, the Common Algebraic Specification Language
DEFF Research Database (Denmark)
Mossakowski, Till; Haxthausen, Anne Elisabeth; Sannella, Donald
2008-01-01
CASL is an expressive specification language that has been designed to supersede many existing algebraic specification languages and provide a standard. CASL consists of several layers, including basic (unstructured) specifications, structured specifications and architectural specifications...
Breaking of the SU(4) limit for the Gamow-Teller strength in N{proportional_to}Z nuclei
Energy Technology Data Exchange (ETDEWEB)
Petermann, I. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Gesellschaft fuer Schwerionenforschung Darmstadt, Darmstadt (Germany); Martinez-Pinedo, G. [Gesellschaft fuer Schwerionenforschung Darmstadt, Darmstadt (Germany); Langanke, K. [Gesellschaft fuer Schwerionenforschung Darmstadt, Darmstadt (Germany); Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Caurier, E. [Universite Louis Pasteur, Institut de Recherches Subatomiques, Strasbourg (France)
2007-12-15
We have performed large-scale shell model calculations of the Gamow-Teller strength distributions in N{proportional_to}Z pf-shell nuclei. These calculations were motivated by the experimental attempts to measure the low-lying GT strength for the even-even N=Z+2 or N=Z-2 nuclei {sup 46}Ti, {sup 50}Cr, {sup 54}Fe and {sup 62}Ge, where a sizable low-energy GT strength could be interpreted as reminiscence of SU(4) symmetry; in the limit of exact SU(4) symmetry the GT{sub -} strength would be concentrated in a single transition to the lowest T=0, J=1{sup +} state in the daughter. We confirm that the SU(4) symmetry is strongly broken by the spin-orbit interaction and by increasing neutron excess. (orig.)
A comment on the quark mixing in the supersymmetric SU(4)xO(4) GUT model
International Nuclear Information System (INIS)
Ranfone, S.
1992-08-01
The SU(4) x O(4) and the ''flipped'' SU(5) x U(1) models seem to be the only possible Grand Universal Theories (GUT's) derivable from string theories with Kac-Moody level K=1. Naively, the SU(4) x O(4) model, at least in its minimal GUT version, is characterized by the lack of any mixing in the quark sector. In this ''Comment'' we show that, although some mixing may be generated as a consequence of large vacuum-expectation-values for the scalar partners of the right-handed neutrinos, it turns out to be too small by several orders of magnitude, in net contrast with our experimental information concerning the Cabibbo mixing. Our result, which therefore rules out the minimal SU(4) x O(4) GUT model, also applies to ''flipped'' SU(5) x U(1) in the case of the embedding in SO(10). (Author)
Introduction to abstract algebra, solutions manual
Nicholson, W Keith
2012-01-01
Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be
Hurwitz Algebras and the Octonion Algebra
Burdik, Čestmir; Catto, Sultan
2018-02-01
We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.
Extended Virasoro algebra and algebra of area preserving diffeomorphisms
International Nuclear Information System (INIS)
Arakelyan, T.A.
1990-01-01
The algebra of area preserving diffeomorphism plays an important role in the theory of relativistic membranes. It is pointed out that the relation between this algebra and the extended Virasoro algebra associated with the generalized Kac-Moody algebras G(T 2 ). The highest weight representation of these infinite-dimensional algebras as well as of their subalgebras is studied. 5 refs
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
Differential geometry on Hopf algebras and quantum groups
International Nuclear Information System (INIS)
Watts, P.
1994-01-01
The differential geometry on a Hopf algebra is constructed, by using the basic axioms of Hopf algebras and noncommutative differential geometry. The space of generalized derivations on a Hopf algebra of functions is presented via the smash product, and used to define and discuss quantum Lie algebras and their properties. The Cartan calculus of the exterior derivative, Lie derivative, and inner derivation is found for both the universal and general differential calculi of an arbitrary Hopf algebra, and, by restricting to the quasitriangular case and using the numerical R-matrix formalism, the aforementioned structures for quantum groups are determined
Clifford algebras, spinors, spin groups and covering groups
International Nuclear Information System (INIS)
Magneville, C.; Pansart, J.P.
1991-03-01
The Dirac equation uses matrices named Υ matrices which are representations of general algebraic structures associated with a metric space. These algebras are the Clifford algebras. In the first past, these algebras are studied. Then the notion of spinor is developed. It is shown that Majorana and Weyl spinors only exist for some particular metric space. In the second part, Clifford and spinor groups are studied. They may be interpreted as the extension of the notion of orthogonal group for Clifford algebras and their spaces for representation. The rotation of a spinor is computed. In the last part, the connexion between the spinor groups and the Universal Covering Groups is presented [fr
Thermodynamics of one-dimensional SU(4) and SU(6) fermions with attractive interactions
Hoffman, M. D.; Loheac, A. C.; Porter, W. J.; Drut, J. E.
2017-03-01
Motivated by advances in the manipulation and detection of ultracold atoms with multiple internal degrees of freedom, we present a finite-temperature lattice Monte Carlo calculation of the density and pressure equations of state, as well as Tan's contact, of attractively interacting SU(4)- and SU(6)-symmetric fermion systems in one spatial dimension. We also furnish a nonperturbative proof of a universal relation whereby quantities computable in the SU(2) case completely determine the virial coefficients of the SU(Nf) case. These one-dimensional systems are appealing because they can be experimentally realized in highly constrained traps and because of the dominant role played by correlations. The latter are typically nonperturbative and are crucial for understanding ground states and quantum phase transitions. While quantum fluctuations are typically overpowered by thermal ones in one and two dimensions at any finite temperature, we find that quantum effects do leave their imprint in thermodynamic quantities. Our calculations show that the additional degrees of freedom, relative to the SU(2) case, provide a dramatic enhancement of the density and pressure (in units of their noninteracting counterparts) in a wide region around vanishing β μ , where β is the inverse temperature and μ the chemical potential. As shown recently in experiments, the thermodynamics we explore here can be measured in a controlled and precise fashion in highly constrained traps and optical lattices. Our results are a prediction for such experiments in one dimension with atoms of high nuclear spin.
UV completions of partial compositeness: the case for a SU(4) gauge group
International Nuclear Information System (INIS)
Ferretti, Gabriele
2014-01-01
We present a model of partial compositeness arising as the IR limit of a SU(4) gauge theory with only fermionic matter. This group is one of the most promising ones among a handful of possible choices allowing a symmetry breaking pattern incorporating custodial symmetry and a top partner candidate, while retaining asymptotic freedom. It is favored for not giving rise to lepto-quarks or Landau poles in the SM gauge couplings. The minimal UV theory consists of five hyperfermions in the anti-symmetric representation and three in the fundamental and anti-fundamental. The IR theory is centered around the coset SU(5)/SO(5), with top partners in the fundamental of SO(5), giving rise to one composite fermion of electric charge 5/3, three of charge 2/3 and one of charge −1/3. Electro-Weak symmetry breaking occurs via top-quark-driven vacuum misalignment. The top quark mass is generated via the mechanism of partial compositeness, while the remaining fermions acquire a mass via a standard quadratic coupling to the Higgs. We compute the top and bottom quark mass matrix and the Electro-Weak currents of the composite fermions. The model does not give rise to unacceptably large deviations from the SM Z→bb-bar decay width.
Borzooei, R. A.; Dudek, W. A.; Koohestani, N.
2006-01-01
We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Directory of Open Access Journals (Sweden)
R. A. Borzooei
2006-01-01
Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Givant, Steven
2017-01-01
This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Uniform topology on EQ-algebras
Directory of Open Access Journals (Sweden)
Yang Jiang
2017-04-01
Full Text Available In this paper, we use filters of an EQ-algebra E to induce a uniform structure (E, , and then the part induce a uniform topology in E. We prove that the pair (E, is a topological EQ-algebra, and some properties of (E, are investigated. In particular, we show that (E, is a first-countable, zero-dimensional, disconnected and completely regular space. Finally, by using convergence of nets, the convergence of topological EQ-algebras is obtained.
Toward robust scalable algebraic multigrid solvers
International Nuclear Information System (INIS)
Waisman, Haim; Schroder, Jacob; Olson, Luke; Hiriyur, Badri; Gaidamour, Jeremie; Siefert, Christopher; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen
2010-01-01
This talk highlights some multigrid challenges that arise from several application areas including structural dynamics, fluid flow, and electromagnetics. A general framework is presented to help introduce and understand algebraic multigrid methods based on energy minimization concepts. Connections between algebraic multigrid prolongators and finite element basis functions are made to explored. It is shown how the general algebraic multigrid framework allows one to adapt multigrid ideas to a number of different situations. Examples are given corresponding to linear elasticity and specifically in the solution of linear systems associated with extended finite elements for fracture problems.
Directory of Open Access Journals (Sweden)
Frank Roumen
2017-01-01
Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.
Shafarevich, Igor Rostislavovich
2005-01-01
This book is wholeheartedly recommended to every student or user of mathematics. Although the author modestly describes his book as 'merely an attempt to talk about' algebra, he succeeds in writing an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields, commutative rings and groups studied in every university math course, through Lie groups and algebras to cohomology and category theory, the author shows how the origins of each algebraic concept can be related to attempts to model phenomena in physics or in other branches
Kimura, Taro; Pestun, Vasily
2018-06-01
For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.
From Rota-Baxter algebras to pre-Lie algebras
International Nuclear Information System (INIS)
An Huihui; Ba, Chengming
2008-01-01
Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras
BRST-operator for quantum Lie algebra and differential calculus on quantum groups
International Nuclear Information System (INIS)
Isaev, A.P.; Ogievetskij, O.V.
2001-01-01
For A Hopf algebra one determined structure of differential complex in two dual external Hopf algebras: A external expansion and in A* dual algebra external expansion. The Heisenberg double of these two Hopf algebras governs the differential algebra for the Cartan differential calculus on A algebra. The forst differential complex is the analog of the de Rame complex. The second complex coincide with the standard complex. Differential is realized as (anti)commutator with Q BRST-operator. Paper contains recursion relation that determines unequivocally Q operator. For U q (gl(N)) Lie quantum algebra one constructed BRST- and anti-BRST-operators and formulated the theorem of the Hodge expansion [ru
International Nuclear Information System (INIS)
Romans, L.J.
1992-01-01
We present the complete structure of the N=2 super-W 3 algebra, a non-linear extended conformal algebra containing the usual N=2 superconformal algebra (with generators of spins 1, 3/2, 3/2 and 2) and a higher-spin multiplet of generators with spins 2, 5/2, 5/2 and 3. We investigate various sub-algebras and related algebras, and find necessary conditions upon possible unitary representations of the algebra. In particular, the central charge c is restricted to two discrete series, one ascending and one descending to a common accumulation point c=6. The results suggest that the algebra is realised in certain (compact or non-compact) Kazama-Suzuki coset models, including a c=9 model proposed by Bars based on SU(2, 1)/U(2). (orig.)
Current algebra and differential geometry
International Nuclear Information System (INIS)
Alekseev, Anton; Strobl, Thomas
2005-01-01
We show that symmetries and gauge symmetries of a large class of 2-dimensional sigma models are described by a new type of a current algebra. The currents are labeled by pairs of a vector field and a 1-form on the target space of the sigma model. We compute the current-current commutator and analyse the anomaly cancellation condition, which can be interpreted geometrically in terms of Dirac structures, previously studied in the mathematical literature. Generalized complex structures correspond to decompositions of the current algebra into pairs of anomaly free subalgebras. Sigma models that we can treat with our method include both physical and topological examples, with and without Wess-Zumino type terms. (author)
Fundamentals of algebraic graph transformation
Ehrig, Hartmut; Prange, Ulrike; Taentzer, Gabriele
2006-01-01
Graphs are widely used to represent structural information in the form of objects and connections between them. Graph transformation is the rule-based manipulation of graphs, an increasingly important concept in computer science and related fields. This is the first textbook treatment of the algebraic approach to graph transformation, based on algebraic structures and category theory. Part I is an introduction to the classical case of graph and typed graph transformation. In Part II basic and advanced results are first shown for an abstract form of replacement systems, so-called adhesive high-level replacement systems based on category theory, and are then instantiated to several forms of graph and Petri net transformation systems. Part III develops typed attributed graph transformation, a technique of key relevance in the modeling of visual languages and in model transformation. Part IV contains a practical case study on model transformation and a presentation of the AGG (attributed graph grammar) tool envir...
(Quasi-)Poisson enveloping algebras
Yang, Yan-Hong; Yao, Yuan; Ye, Yu
2010-01-01
We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.
Algebra of strong and electroweak interactions
International Nuclear Information System (INIS)
Bolokhov, S.V.; Vladimirov, Yu.S.
2004-01-01
The algebraic approach to describing the electroweak and strong interactions is considered within the frames of the binary geometrophysics, based on the principles of the Fokker-Feynman direct interparticle interaction theories of the Kaluza-Klein multidimensional geometrical models and the physical structures theory. It is shown that in this approach the electroweak and strong elementary particles interaction through the intermediate vector bosons, are characterized by the subtypes of the algebraic classification of the complex 3 x 3-matrices [ru
Orbifold Riemann surfaces: Teichmueller spaces and algebras of geodesic functions
Energy Technology Data Exchange (ETDEWEB)
Mazzocco, Marta [Loughborough University, Loughborough (United Kingdom); Chekhov, Leonid O [Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow (Russian Federation)
2009-12-31
A fat graph description is given for Teichmueller spaces of Riemann surfaces with holes and with Z{sub 2}- and Z{sub 3}-orbifold points (conical singularities) in the Poincare uniformization. The corresponding mapping class group transformations are presented, geodesic functions are constructed, and the Poisson structure is introduced. The resulting Poisson algebras are then quantized. In the particular cases of surfaces with n Z{sub 2}-orbifold points and with one and two holes, the respective algebras A{sub n} and D{sub n} of geodesic functions (classical and quantum) are obtained. The infinite-dimensional Poisson algebra D{sub n}, which is the semiclassical limit of the twisted q-Yangian algebra Y'{sub q}(o{sub n}) for the orthogonal Lie algebra o{sub n}, is associated with the algebra of geodesic functions on an annulus with n Z{sub 2}-orbifold points, and the braid group action on this algebra is found. From this result the braid group actions are constructed on the finite-dimensional reductions of this algebra: the p-level reduction and the algebra D{sub n}. The central elements for these reductions are found. Also, the algebra D{sub n} is interpreted as the Poisson algebra of monodromy data of a Frobenius manifold in the vicinity of a non-semisimple point. Bibliography: 36 titles.
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…
Learning Activity Package, Algebra.
Evans, Diane
A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…
Herriott, Scott R.; Dunbar, Steven R.
2009-01-01
The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…
Seo, Young Joo; Kim, Young Hee
2016-01-01
In this paper we construct some real algebras by using elementary functions, and discuss some relations between several axioms and its related conditions for such functions. We obtain some conditions for real-valued functions to be a (edge) d -algebra.
Hayden, Dunstan; Cuevas, Gilberto
The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…
International Nuclear Information System (INIS)
Calmet, J.
1982-01-01
A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)
Algebraic Description of Motion
Davidon, William C.
1974-01-01
An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Elements of mathematics algebra
Bourbaki, Nicolas
2003-01-01
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...
Cluster algebras bases on vertex operator algebras
Czech Academy of Sciences Publication Activity Database
Zuevsky, Alexander
2016-01-01
Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016 http://www.worldscientific.com/doi/abs/10.1142/S0217979216400300
Algebraic K-theory and algebraic topology
Energy Technology Data Exchange (ETDEWEB)
Berrick, A J [Department of Mathematics, National University of Singapore (Singapore)
2003-09-15
This contribution treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers.
Energy Technology Data Exchange (ETDEWEB)
Sati, Hisham [University of Pittsburgh,Pittsburgh, PA, 15260 (United States); Mathematics Program, Division of Science and Mathematics, New York University Abu Dhabi,Saadiyat Island, Abu Dhabi (United Arab Emirates); Schreiber, Urs [Mathematics Institute of the Academy,Žitna 25, Praha 1, 115 67 (Czech Republic)
2017-03-16
We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p+1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane charges as they are lifted from ordinary cohomology to twisted K-theory. This supports the proposal that M-brane charges live in a twisted cohomology theory.
An introduction to algebraic geometry and algebraic groups
Geck, Meinolf
2003-01-01
An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles.Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type.The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups
Abstract algebra an introductory course
Lee, Gregory T
2018-01-01
This carefully written textbook offers a thorough introduction to abstract algebra, covering the fundamentals of groups, rings and fields. The first two chapters present preliminary topics such as properties of the integers and equivalence relations. The author then explores the first major algebraic structure, the group, progressing as far as the Sylow theorems and the classification of finite abelian groups. An introduction to ring theory follows, leading to a discussion of fields and polynomials that includes sections on splitting fields and the construction of finite fields. The final part contains applications to public key cryptography as well as classical straightedge and compass constructions. Explaining key topics at a gentle pace, this book is aimed at undergraduate students. It assumes no prior knowledge of the subject and contains over 500 exercises, half of which have detailed solutions provided.
Feynman graphs and related Hopf algebras
International Nuclear Information System (INIS)
Duchamp, G H E; Blasiak, P; Horzela, A; Penson, K A; Solomon, A I
2006-01-01
In a recent series of communications we have shown that the reordering problem of bosons leads to certain combinatorial structures. These structures may be associated with a certain graphical description. In this paper, we show that there is a Hopf Algebra structure associated with this problem which is, in a certain sense, unique
Decays of the new and old hadrons. I. On the universality of baryons and mesons. [SU-4 breaking
Energy Technology Data Exchange (ETDEWEB)
Bando, M; Toya, M [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, Hiroshi
1978-03-01
The decay phenomena of the new and old hadrons are investigated on the basis of the relativistic quark model. It is shown that the quark transition matrix elements in the mesons exactly coincide with those in the baryons. This fact facilitates predict the photo-decays of the L=1 mesons, experiment is now in progress at /ion of/of which the/ Fermilab. Our analysis of the decays of the new mesons suggests the possibility of the simple SU(4) breaking pattern, that is, the SU(4) breaking factors are ascribed to the current-hadron couplings such as ..gamma.. sub(V) or f sub(ps) in addition to the standard mass breaking, keeping the symmetric property of the strong vertices.
Springer, T A
1998-01-01
"[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...
International Nuclear Information System (INIS)
Marek-Crnjac, L.
2008-01-01
The essay gives arguments for deriving the electromagnetic fine structure constant from maximally symmetric spaces. A connection between the order of some subgroups of the monster simple group, the ratio of the proton mass to the electron mass and the fine structure constant is found. A derivation of the fine structure constant from the number of elements in the Cristoffel symbol and the order of the reflection group F 4 is given
Measuring the Readability of Elementary Algebra Using the Cloze Technique.
Kulm, Gerald
The relationship to readability of ten variables characterizing structural properties of mathematical prose was investigated in elementary algebra textbooks. Readability was measured by algebra student's responses to two forms of cloze tests. Linear and currilinear correlations were calculated between each structural variable and the cloze test.…
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Chatterjee, D
2007-01-01
About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the
Adaptive algebraic reconstruction technique
International Nuclear Information System (INIS)
Lu Wenkai; Yin Fangfang
2004-01-01
Algebraic reconstruction techniques (ART) are iterative procedures for reconstructing objects from their projections. It is proven that ART can be computationally efficient by carefully arranging the order in which the collected data are accessed during the reconstruction procedure and adaptively adjusting the relaxation parameters. In this paper, an adaptive algebraic reconstruction technique (AART), which adopts the same projection access scheme in multilevel scheme algebraic reconstruction technique (MLS-ART), is proposed. By introducing adaptive adjustment of the relaxation parameters during the reconstruction procedure, one-iteration AART can produce reconstructions with better quality, in comparison with one-iteration MLS-ART. Furthermore, AART outperforms MLS-ART with improved computational efficiency
Cohen, A.M.; Liu, S.
2011-01-01
For each n>0, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular
Division algebra, generalized supersymmetries and octonionic M-theory
International Nuclear Information System (INIS)
Toppan, Francesco
2004-11-01
This is the report of the talk given at the conference 'Number, Time and Relativity', held at the Bauman University, Moscow, August 2004, concerning the recent research activity of the author and his collaborators about the inter-relation of the concepts of division algebras, representations of Clifford algebras, generalized supersymmetries with the introduction of an alternative description of the M-algebra in terms of the non-associative structure of the octonions. (author)
Profinite algebras and affine boundedness
Schneider, Friedrich Martin; Zumbrägel, Jens
2015-01-01
We prove a characterization of profinite algebras, i.e., topological algebras that are isomorphic to a projective limit of finite discrete algebras. In general profiniteness concerns both the topological and algebraic characteristics of a topological algebra, whereas for topological groups, rings, semigroups, and distributive lattices, profiniteness turns out to be a purely topological property as it is is equivalent to the underlying topological space being a Stone space. Condensing the core...
Pseudo-Riemannian Novikov algebras
Energy Technology Data Exchange (ETDEWEB)
Chen Zhiqi; Zhu Fuhai [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)], E-mail: chenzhiqi@nankai.edu.cn, E-mail: zhufuhai@nankai.edu.cn
2008-08-08
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.
International Nuclear Information System (INIS)
Lebedenko, V.M.
1978-01-01
The PR-algebras, i.e. the Lie algebras with commutation relations of [Hsub(i),Hsub(j)]=rsub(ij)Hsub(i)(i< j) type are investigated. On the basis of former results a criterion for the membership of 2-solvable Lie algebras to the PR-algebra class is given. The conditions imposed by the criterion are formulated in the linear algebra language
Indian Academy of Sciences (India)
algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.
Algebraic Semantics for Narrative
Kahn, E.
1974-01-01
This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)
Leamer, Micah J.
2004-01-01
Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS
n-ary algebras: a review with applications
International Nuclear Information System (INIS)
De Azcarraga, J A; Izquierdo, J M
2010-01-01
This paper reviews the properties and applications of certain n-ary generalizations of Lie algebras in a self-contained and unified way. These generalizations are algebraic structures in which the two-entry Lie bracket has been replaced by a bracket with n entries. Each type of n-ary bracket satisfies a specific characteristic identity which plays the role of the Jacobi identity for Lie algebras. Particular attention will be paid to generalized Lie algebras, which are defined by even multibrackets obtained by antisymmetrizing the associative products of its n components and that satisfy the generalized Jacobi identity, and to Filippov (or n-Lie) algebras, which are defined by fully antisymmetric n-brackets that satisfy the Filippov identity. 3-Lie algebras have surfaced recently in multi-brane theory in the context of the Bagger-Lambert-Gustavsson model. As a result, Filippov algebras will be discussed at length, including the cohomology complexes that govern their central extensions and their deformations (it turns out that Whitehead's lemma extends to all semisimple n-Lie algebras). When the skewsymmetry of the Lie or n-Lie algebra bracket is relaxed, one is led to a more general type of n-algebras, the n-Leibniz algebras. These will be discussed as well, since they underlie the cohomological properties of n-Lie algebras. The standard Poisson structure may also be extended to the n-ary case. We shall review here the even generalized Poisson structures, whose generalized Jacobi identity reproduces the pattern of the generalized Lie algebras, and the Nambu-Poisson structures, which satisfy the Filippov identity and determine Filippov algebras. Finally, the recent work of Bagger-Lambert and Gustavsson on superconformal Chern-Simons theory will be briefly discussed. Emphasis will be made on the appearance of the 3-Lie algebra structure and on why the A 4 model may be formulated in terms of an ordinary Lie algebra, and on its Nambu bracket generalization. (topical
International Nuclear Information System (INIS)
Waldron, A.K.; Joshi, G.C.
1992-01-01
By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs
Institute of Scientific and Technical Information of China (English)
Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA
2004-01-01
In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.
Polynomials in algebraic analysis
Multarzyński, Piotr
2012-01-01
The concept of polynomials in the sense of algebraic analysis, for a single right invertible linear operator, was introduced and studied originally by D. Przeworska-Rolewicz \\cite{DPR}. One of the elegant results corresponding with that notion is a purely algebraic version of the Taylor formula, being a generalization of its usual counterpart, well known for functions of one variable. In quantum calculus there are some specific discrete derivations analyzed, which are right invertible linear ...
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Currents on Grassmann algebras
International Nuclear Information System (INIS)
Coquereaux, R.; Ragoucy, E.
1993-09-01
Currents are defined on a Grassmann algebra Gr(N) with N generators as distributions on its exterior algebra (using the symmetric wedge product). The currents are interpreted in terms of Z 2 -graded Hochschild cohomology and closed currents in terms of cyclic cocycles (they are particular multilinear forms on Gr(N)). An explicit construction of the vector space of closed currents of degree p on Gr(N) is given by using Berezin integration. (authors). 10 refs
Unipotent and nilpotent classes in simple algebraic groups and lie algebras
Liebeck, Martin W
2012-01-01
This book concerns the theory of unipotent elements in simple algebraic groups over algebraically closed or finite fields, and nilpotent elements in the corresponding simple Lie algebras. These topics have been an important area of study for decades, with applications to representation theory, character theory, the subgroup structure of algebraic groups and finite groups, and the classification of the finite simple groups. The main focus is on obtaining full information on class representatives and centralizers of unipotent and nilpotent elements. Although there is a substantial literature on this topic, this book is the first single source where such information is presented completely in all characteristics. In addition, many of the results are new--for example, those concerning centralizers of nilpotent elements in small characteristics. Indeed, the whole approach, while using some ideas from the literature, is novel, and yields many new general and specific facts concerning the structure and embeddings of...
The Boolean algebra of Galois algebras
Directory of Open Access Journals (Sweden)
Lianyong Xue
2003-02-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={bÃ¢ÂˆÂˆB|bx=g(xbÃ¢Â€Â‰for allÃ¢Â€Â‰xÃ¢ÂˆÂˆB} for each gÃ¢ÂˆÂˆG, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|gÃ¢ÂˆÂˆG}, e a nonzero element in Ba, and He={gÃ¢ÂˆÂˆG|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.
Real division algebras and other algebras motivated by physics
International Nuclear Information System (INIS)
Benkart, G.; Osborn, J.M.
1981-01-01
In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations
Toda theories, W-algebras, and minimal models
International Nuclear Information System (INIS)
Mansfield, P.; Spence, B.
1991-01-01
We discuss the classical W-algebra symmetries of Toda field theories in terms of the pseudo-differential Lax operator associated with the Toda Lax pair. We then show how the W-algebra transformations can be understood as the non-abelian gauge transformations which preserve the form of the Lax pair. This provides a new understanding of the W-algebras, and we discuss their closure and co-cycle structure using this approach. The quantum Lax operator is investigated, and we show that this operator, which generates the quantum W-algebra currents, is conserved in the conformally extended Toda theories. The W-algebra minimal model primary fields are shown to arise naturally in these theories, leading to the conjecture that the conformally extended Toda theories provide a lagrangian formulation of the W-algebra minimal models. (orig.)
Lie groups, lie algebras, and representations an elementary introduction
Hall, Brian
2015-01-01
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compac...
Twisted vertex algebras, bicharacter construction and boson-fermion correspondences
International Nuclear Information System (INIS)
Anguelova, Iana I.
2013-01-01
The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras
Non-unique factorizations algebraic, combinatorial and analytic theory
Geroldinger, Alfred
2006-01-01
From its origins in algebraic number theory, the theory of non-unique factorizations has emerged as an independent branch of algebra and number theory. Focused efforts over the past few decades have wrought a great number and variety of results. However, these remain dispersed throughout the vast literature. For the first time, Non-Unique Factorizations: Algebraic, Combinatorial, and Analytic Theory offers a look at the present state of the theory in a single, unified resource.Taking a broad look at the algebraic, combinatorial, and analytic fundamentals, this book derives factorization results and applies them in concrete arithmetical situations using appropriate transfer principles. It begins with a basic introduction that can be understood with knowledge of standard basic algebra. The authors then move to the algebraic theory of monoids, arithmetic theory of monoids, the structure of sets of lengths, additive group theory, arithmetical invariants, and the arithmetic of Krull monoids. They also provide a s...
Hilbert schemes of points and infinite dimensional Lie algebras
Qin, Zhenbo
2018-01-01
Hilbert schemes, which parametrize subschemes in algebraic varieties, have been extensively studied in algebraic geometry for the last 50 years. The most interesting class of Hilbert schemes are schemes X^{[n]} of collections of n points (zero-dimensional subschemes) in a smooth algebraic surface X. Schemes X^{[n]} turn out to be closely related to many areas of mathematics, such as algebraic combinatorics, integrable systems, representation theory, and mathematical physics, among others. This book surveys recent developments of the theory of Hilbert schemes of points on complex surfaces and its interplay with infinite dimensional Lie algebras. It starts with the basics of Hilbert schemes of points and presents in detail an example of Hilbert schemes of points on the projective plane. Then the author turns to the study of cohomology of X^{[n]}, including the construction of the action of infinite dimensional Lie algebras on this cohomology, the ring structure of cohomology, equivariant cohomology of X^{[n]} a...
Wörz-Busekros, Angelika
1980-01-01
The purpose of these notes is to give a rather complete presentation of the mathematical theory of algebras in genetics and to discuss in detail many applications to concrete genetic situations. Historically, the subject has its origin in several papers of Etherington in 1939- 1941. Fundamental contributions have been given by Schafer, Gonshor, Holgate, Reiers¢l, Heuch, and Abraham. At the moment there exist about forty papers in this field, one survey article by Monique Bertrand from 1966 based on four papers of Etherington, a paper by Schafer and Gonshor's first paper. Furthermore Ballonoff in the third section of his book "Genetics and Social Structure" has included four papers by Etherington and Reiers¢l's paper. Apparently a complete review, in par ticular one comprising more recent results was lacking, and it was difficult for students to enter this field of research. I started to write these notes in spring 1978. A first german version was finished at the end of that year. Further revision and tran...
Universal R-matrix for quantized (super) algebras
International Nuclear Information System (INIS)
Khoroshkin, S.M.; Tolstoj, V.N.
1991-01-01
For quantum deformations of finite-dimensional contragredient Lie (super)algebras an explicit formula for the universal R-matrix is given. This formula generalizes the analogous formulae for quantized semisimple Lie algebras obtained by M. Rosso, A.N. Kirillov and N. Reshetikhin, Yas.S. Soibelman and S.Z. Levendorskii. Approach is based on careful analysis of quantized rank 1 and 2 (super)algebras, a combinatorial structure of the root systems and algebraic properties of q-exponential functions. Quantum Weyl group is not used. 19 refs.; 2 tabs
A program for constructing finitely presented Lie algebras and superalgebras
International Nuclear Information System (INIS)
Gerdt, V.P.; Kornyak, V.V.
1997-01-01
The purpose of this paper is to describe a C program FPLSA for investigating finitely presented Lie algebras and superalgebras. The underlying algorithm is based on constructing the complete set of relations called also standard basis or Groebner basis of ideal of free Lie (super) algebra generated by the input set of relations. The program may be used, in particular, to compute the Lie (super)algebra basis elements and its structure constants, to classify the finitely presented algebras depending on the values of parameters in the relations, and to construct the Hilbert series. These problems are illustrated by examples. (orig.)
W∞ and the Racah-Wigner algebra
International Nuclear Information System (INIS)
Pope, C.N.; Shen, X.; Romans, L.J.
1990-01-01
We examine the structure of a recently constructed W ∞ algebra, an extension of the Virasoro algebra that describes an infinite number of fields with all conformal spins 2,3..., with central terms for all spins. By examining its underlying SL(2,R) structure, we are able to exhibit its relation to the algebas of SL(2,R) tensor operators. Based upon this relationship, we generalise W ∞ to a one-parameter family of inequivalent Lie algebras W ∞ (μ), which for general μ requires the introduction of formally negative spins. Furthermore, we display a realisation of the W ∞ (μ) commutation relations in terms of an underlying associative product, which we denote with a lone star. This product structure shares many formal features with the Racah-Wigner algebra in angular-momentum theory. We also discuss the relation between W ∞ and the symplectic algebra on a cone, which can be viewed as a co-adjoint orbit of SL(2,R). (orig.)
Cellularity of certain quantum endomorphism algebras
DEFF Research Database (Denmark)
Andersen, Henning Haahr; Lehrer, Gus; Zhang, Ruibin
2015-01-01
For any ring A˜ such that Z[q±1∕2]⊆A˜⊆Q(q1∕2), let ΔA˜(d) be an A˜-form of the Weyl module of highest weight d∈N of the quantised enveloping algebra UA˜ of sl2. For suitable A˜, we exhibit for all positive integers r an explicit cellular structure for EndUA˜(ΔA˜(d)⊗r). This algebra and its cellular...... structure are described in terms of certain Temperley–Lieb-like diagrams. We also prove general results that relate endomorphism algebras of specialisations to specialisations of the endomorphism algebras. When ζ is a root of unity of order bigger than d we consider the Uζ-module structure...... of the specialisation Δζ(d)⊗r at q↦ζ of ΔA˜(d)⊗r. As an application of these results, we prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above is equivalent to knowledge of the weight multiplicities of the tilting modules for Uζ(sl2). As an example, in the final section...
Special set linear algebra and special set fuzzy linear algebra
Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.
2009-01-01
The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...
Hecke algebras with unequal parameters
Lusztig, G
2003-01-01
Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...
International Nuclear Information System (INIS)
Connes, A.; Kreimer, D.
2000-01-01
This paper gives a complete selfcontained proof of our result (1999) showing that renormalization in quantum field theory is a special instance of a general mathematical procedure of extraction of finite values based on the Riemann-Hilbert problem. We shall first show that for any quantum field theory, the combinatorics of Feynman graphs gives rise to a Hopf algebra H which is commutative asan algebra. It is the dual Hopf algebra of the enveloping algebra of a Lie algebra G whose basis is labelled by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs is computed from insertions of one graph in the other and vice versa. The corresponding Lie group G is the group of characters of H. We show then that, using dimensional regularization, the bare (unrenormalized) theory gives rise to a loop γ(z) element of G, z element of C, where C is a small circle of complex dimensions around the integer dimension D of space-time. Our main result is that the renormalized theory is just the evaluation at z=D of the holomorphic part γ + of the Birkhoff decomposition of γ. We begin to analyse the group G and show that it is a semi-direct product of an easily understood abelian group by a highly non-trivial group closely tied up with groups of diffeomorphisms. (orig.)
Axis Problem of Rough 3-Valued Algebras
Institute of Scientific and Technical Information of China (English)
Jianhua Dai; Weidong Chen; Yunhe Pan
2006-01-01
The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.
Division algebras and extended super KdVs
International Nuclear Information System (INIS)
Toppan, F.
2001-05-01
The division algebras R, C, H, O are used to construct and analyze the N = 1, 2, 4, 8 supersymmetric extensions of the KdV hamiltonian equation. In particular a global N = 8 super-KdV system is introduced and shown to admit a Poisson bracket structure given by the 'Non-Associate N = 8 Superconformal Algebra'. (author)
Lectures on Lie algebras and their representations: 1
International Nuclear Information System (INIS)
Dobrev, V.K.
1988-05-01
The paper is based on sixteen lectures given by the author in April-June 1988 at the International Centre for Theoretical Physics, Trieste. It covers the basic material on the structure, classification and representations of Lie algebras G associated with a (generalized) Cartan matrix, or Kac-Moody algebras for short. 16 refs, tabs
The Semantic Isomorphism Theorem in Abstract Algebraic Logic
Czech Academy of Sciences Publication Activity Database
Moraschini, Tommaso
2016-01-01
Roč. 167, č. 12 (2016), s. 1298-1331 ISSN 0168-0072 R&D Projects: GA ČR GA13-14654S Institutional support: RVO:67985807 Keywords : algebra izable logics * abstract algebra ic logic * structural closure operators * semantic isomorphism theorem * evaluational frames * compositional lattice Subject RIV: BA - General Mathematics Impact factor: 0.647, year: 2016
Davidson, Kenneth R
1996-01-01
The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea
Algebra II workbook for dummies
Sterling, Mary Jane
2014-01-01
To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr
Neutrino masses in the flipped SU(5) x U(1) and the SU(4) x O(4) GUT models
Energy Technology Data Exchange (ETDEWEB)
Ranfone, S.; Papageorgiu, E.
1992-03-01
We classify the different neutrino-mass pattern arising in string-inspired Grand Universal Theory (GUT) and supersymmetric GUT models based on the flipped SU(5)xU(1) and the SU(4)xO(4) gauge groups. Phenomenologically interesting spectra are obtained through the interplay of the two seesaw mechanisms present, with typical neutrino masses {approx}10{sup -3} eV in the supersymmetric GUT models and of order 0.1 - 10 KeV in the ordinary GUTs. (author).
Srinivas, V
1996-01-01
Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application ...
Differential algebras in field theory
International Nuclear Information System (INIS)
Stora, R.
1988-01-01
The applications of differential algebras, as mathematical tools, in field theory are reviewed. The Yang-Mills theories are recalled and the free bosonic string model is treated. Moreover, in the scope of the work, the following topics are discussed: the Faddeev Popov fixed action, in a Feynman like gauge; the structure of local anomalies, including the algebric and the topological theories; the problem of quantizing a degenerate state; and the zero mode problem, in the treatment of the bosonic string conformal gauge. The analysis leads to the conclusion that not much is known about situations where a non involutive distribution is involved
Regularity of C*-algebras and central sequence algebras
DEFF Research Database (Denmark)
Christensen, Martin S.
The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...
Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra
Pitsch, Wolfgang; Zarzuela, Santiago
2016-01-01
This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...
International Nuclear Information System (INIS)
Guenaydin, M.
1979-05-01
Quadratic Jordan formulation of quantum mechanics in terms of Jordan triple product is presented. This formulation extends to the case of octonionic quantum mechanics for which no Hilbert space formulation exists. Using ternary algebraic techniques we then five the constructions of the derivation, structure and Tits-Koecher (Moebius) algebras of Jordan superalgebras. (orig.) [de
Non-commutative multiple-valued logic algebras
Ciungu, Lavinia Corina
2014-01-01
This monograph provides a self-contained and easy-to-read introduction to non-commutative multiple-valued logic algebras; a subject which has attracted much interest in the past few years because of its impact on information science, artificial intelligence and other subjects. A study of the newest results in the field, the monograph includes treatment of pseudo-BCK algebras, pseudo-hoops, residuated lattices, bounded divisible residuated lattices, pseudo-MTL algebras, pseudo-BL algebras and pseudo-MV algebras. It provides a fresh perspective on new trends in logic and algebras in that algebraic structures can be developed into fuzzy logics which connect quantum mechanics, mathematical logic, probability theory, algebra and soft computing. Written in a clear, concise and direct manner, Non-Commutative Multiple-Valued Logic Algebras will be of interest to masters and PhD students, as well as researchers in mathematical logic and theoretical computer science.
Identities and derivations for Jacobian algebras
International Nuclear Information System (INIS)
Dzhumadil'daev, A.S.
2001-09-01
Constructions of n-Lie algebras by strong n-Lie-Poisson algebras are given. First cohomology groups of adjoint module of Jacobian algebras are calculated. Minimal identities of 3-Jacobian algebra are found. (author)
Kollár, János
1997-01-01
This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.
Launey, Warwick De
2011-01-01
Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete problems, with the Hadamard conjecture being a prime example. It has become clear that many of these problems are essentially algebraic in nature. This book provides a unified vision of the algebraic themes which have developed so far in design theory. These include the applications in design theory of matrix algebra, the automorphism group and its regular subgroups, the composition of smaller designs to make larger designs, and the connection between designs with regular group actions and solutions to group ring equations. Everything is explained at an elementary level in terms of orthogonality sets and pairwise combinatorial designs--new and simple combinatorial notions which cover many of the commonly studied designs. Particular attention is paid to how the main themes apply in the important new context of cocyclic development. Indeed, this book contains a comprehensive account of cocyclic Hadamard matrices. The book...
Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf
1992-01-01
The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...
Bloch, Spencer J
2000-01-01
This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.
Olver, Peter J
2018-01-01
This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Deo, Satya
2018-01-01
This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes chal...
The relation between quantum W algebras and Lie algebras
International Nuclear Information System (INIS)
Boer, J. de; Tjin, T.
1994-01-01
By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary sl 2 embeddings we show that a large set W of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many known W algebras such as W N and W 3 (2) . Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any W algebra in W can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore any realization of this semisimple affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in W. Some examples are explicitly worked out. (orig.)
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
Converting nested algebra expressions into flat algebra expressions
Paredaens, J.; Van Gucht, D.
1992-01-01
Nested relations generalize ordinary flat relations by allowing tuple values to be either atomic or set valued. The nested algebra is a generalization of the flat relational algebra to manipulate nested relations. In this paper we study the expressive power of the nested algebra relative to its
Kac-Moody algebra is not hidden symmetry of chiral models
International Nuclear Information System (INIS)
Devchand, C.; Schiff, J.
1997-01-01
A detailed examination of the infinite dimensional loop algebra of hidden symmetry transformations of the Principal Chiral Model reveals it to have a structure differing from a standard centreless Kac-Moody algebra. A new infinite dimensional Abelian symmetry algebra is shown to preserve a symplectic form on the space of solutions. (author). 15 refs
Two Types of Expanding Lie Algebra and New Expanding Integrable Systems
International Nuclear Information System (INIS)
Dong Huanhe; Yang Jiming; Wang Hui
2010-01-01
From a new Lie algebra proposed by Zhang, two expanding Lie algebras and its corresponding loop algebras are obtained. Two expanding integrable systems are produced with the help of the generalized zero curvature equation. One of them has complex Hamiltion structure with the help of generalized Tu formula (GTM). (general)
On Associative Conformal Algebras of Linear Growth
Retakh, Alexander
2000-01-01
Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...
Computer Program For Linear Algebra
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Algebra for Gifted Third Graders.
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
Gradings on simple Lie algebras
Elduque, Alberto
2013-01-01
Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra relative to a Cartan subalgebra to the beautiful Dempwolff decomposition of E_8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclassical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.
Tensor spaces and exterior algebra
Yokonuma, Takeo
1992-01-01
This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.
Dynamical systems and linear algebra
Colonius, Fritz (Prof.)
2007-01-01
Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)
Projector bases and algebraic spinors
International Nuclear Information System (INIS)
Bergdolt, G.
1988-01-01
In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector relations. The relations are sufficient conditions for the elements to span minimal ideals and hence to define algebraic spinors
Polynomial Heisenberg algebras
International Nuclear Information System (INIS)
Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M
2004-01-01
Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively
Weiss, Edwin
1998-01-01
Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te
Partially ordered algebraic systems
Fuchs, Laszlo
2011-01-01
Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i
Principles of algebraic geometry
Griffiths, Phillip A
1994-01-01
A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top
Energy Technology Data Exchange (ETDEWEB)
Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2010-02-26
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Endomorphisms of graph algebras
DEFF Research Database (Denmark)
Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech
2012-01-01
We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...
Algebraic curves and cryptography
Murty, V Kumar
2010-01-01
It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
International Nuclear Information System (INIS)
Christian, J M; McDonald, G S; Chamorro-Posada, P
2010-01-01
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Hogben, Leslie
2013-01-01
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of
Algebra & trigonometry I essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq
Algebra & trigonometry super review
2012-01-01
Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y
Linear Algebra Thoroughly Explained
Vujičić, Milan
2008-01-01
Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.
QPFT operator algebras and commutative exterior differential calculus
International Nuclear Information System (INIS)
Yur'ev, D.V.
1993-01-01
The reduction of the structure theory of the operator algebras of quantum projective (sl(2, C)-invariant) field theory (QPFT operator algebras) to a commutative exterior differential calculus by means of the operation of renormalization of a pointwise product of operator fields is described. In the first section, the author introduces the concept of the operator algebra of quantum field theory and describes the operation of the renormalization of a pointwise product of operator fields. The second section is devoted to a brief exposition of the fundamentals of the structure theory of QPT operator algebras. The third section is devoted to commutative exterior differential calculus. In the fourth section, the author establishes the connection between the renormalized pointwise product of operator fields in QPFT operator algebras and the commutative exterior differential calculus. 5 refs
Endomorphism Algebras of Tensor Powers of Modules for Quantum Groups
DEFF Research Database (Denmark)
Andersen, Therese Søby
We determine the ring structure of the endomorphism algebra of certain tensor powers of modules for the quantum group of sl2 in the case where the quantum parameter is allowed to be a root of unity. In this case there exists -- under a suitable localization of our ground ring -- a surjection from...... the group algebra of the braid group to the endomorphism algebra of any tensor power of the Weyl module with highest weight 2. We take a first step towards determining the kernel of this map by reformulating well-known results on the semisimplicity of the Birman-Murakami-Wenzl algebra in terms of the order...... of the quantum parameter. Before we arrive at these main results, we investigate the structure of the endomorphism algebra of the tensor square of any Weyl module....
International Conference on Semigroups, Algebras and Operator Theory
Meakin, John; Rajan, A
2015-01-01
This book discusses recent developments in semigroup theory and its applications in areas such as operator algebras, operator approximations and category theory. All contributing authors are eminent researchers in their respective fields, from across the world. Their papers, presented at the 2014 International Conference on Semigroups, Algebras and Operator Theory in Cochin, India, focus on recent developments in semigroup theory and operator algebras. They highlight current research activities on the structure theory of semigroups as well as the role of semigroup theoretic approaches to other areas such as rings and algebras. The deliberations and discussions at the conference point to future research directions in these areas. This book presents 16 unpublished, high-quality and peer-reviewed research papers on areas such as structure theory of semigroups, decidability vs. undecidability of word problems, regular von Neumann algebras, operator theory and operator approximations. Interested researchers will f...
Universal enveloping algebras of Toda field theories and the light-cone asymmetry parameter
International Nuclear Information System (INIS)
Itoyama, H.; Moxhay, P.
1990-01-01
The generators of the universal enveloping algebras in Toda field theories associated with Lie algebras are constructed. These form spectrum-generating algebras of the system which survive the constraints acting on the larger current algebra structure. It is found that the same generators fail to be a symmetry in the case of affine Toda field theory despite their close relationship with Mandelstam's soliton operators. We introduce the light-cone asymmetry parameter; its significance and utility are demonstrated. (orig.)
Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebras
International Nuclear Information System (INIS)
Gebert, R.W.
1993-09-01
The theory of vertex algebras constitutes a mathematically rigorous axiomatic formulation of the algebraic origins of conformal field theory. In this context Borcherds algebras arise as certain ''physical'' subspaces of vertex algebras. The aim of this review is to give a pedagogical introduction into this rapidly-developing area of mathematics. Based on the machinery of formal calculus we present the axiomatic definition of vertex algebras. We discuss the connection with conformal field theory by deriving important implications of these axioms. In particular, many explicit calculations are presented to stress the eminent role of the Jacobi identity axiom for vertex algebras. As a class of concrete examples the vertex algebras associated with even lattices are constructed and it is shown in detail how affine Lie algebras and the fake Monster Lie algebra naturally appear. This leads us to the abstract definition of Borcherds algebras as generalized Kac-Moody algebras and their basic properties. Finally, the results about the simplest generic Borcherds algebras are analysed from the point of view of symmetry in quantum theory and the construction of the Monster Lie algebra is sketched. (orig.)
The theory of algebraic numbers
Pollard, Harry
1998-01-01
An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.
Methods of algebraic geometry in control theory
Falb, Peter
1999-01-01
"Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...
The kinematic algebras from the scattering equations
International Nuclear Information System (INIS)
Monteiro, Ricardo; O’Connell, Donal
2014-01-01
We study kinematic algebras associated to the recently proposed scattering equations, which arise in the description of the scattering of massless particles. In particular, we describe the role that these algebras play in the BCJ duality between colour and kinematics in gauge theory, and its relation to gravity. We find that the scattering equations are a consistency condition for a self-dual-type vertex which is associated to each solution of those equations. We also identify an extension of the anti-self-dual vertex, such that the two vertices are not conjugate in general. Both vertices correspond to the structure constants of Lie algebras. We give a prescription for the use of the generators of these Lie algebras in trivalent graphs that leads to a natural set of BCJ numerators. In particular, we write BCJ numerators for each contribution to the amplitude associated to a solution of the scattering equations. This leads to a decomposition of the determinant of a certain kinematic matrix, which appears naturally in the amplitudes, in terms of trivalent graphs. We also present the kinematic analogues of colour traces, according to these algebras, and the associated decomposition of that determinant
Hyper-lattice algebraic model for data warehousing
Sen, Soumya; Chaki, Nabendu
2016-01-01
This book presents Hyper-lattice, a new algebraic model for partially ordered sets, and an alternative to lattice. The authors analyze some of the shortcomings of conventional lattice structure and propose a novel algebraic structure in the form of Hyper-lattice to overcome problems with lattice. They establish how Hyper-lattice supports dynamic insertion of elements in a partial order set with a partial hierarchy between the set members. The authors present the characteristics and the different properties, showing how propositions and lemmas formalize Hyper-lattice as a new algebraic structure.
Irreducible geometric subgroups of classical algebraic groups
Burness, Timothy C; Testerman, Donna M
2016-01-01
Let G be a simple classical algebraic group over an algebraically closed field K of characteristic p \\ge 0 with natural module W. Let H be a closed subgroup of G and let V be a non-trivial irreducible tensor-indecomposable p-restricted rational KG-module such that the restriction of V to H is irreducible. In this paper the authors classify the triples (G,H,V) of this form, where H is a disconnected maximal positive-dimensional closed subgroup of G preserving a natural geometric structure on W.
Hilbert schemes of points and Heisenberg algebras
International Nuclear Information System (INIS)
Ellingsrud, G.; Goettsche, L.
2000-01-01
Let X [n] be the Hilbert scheme of n points on a smooth projective surface X over the complex numbers. In these lectures we describe the action of the Heisenberg algebra on the direct sum of the cohomologies of all the X [n] , which has been constructed by Nakajima. In the second half of the lectures we study the relation of the Heisenberg algebra action and the ring structures of the cohomologies of the X [n] , following recent work of Lehn. In particular we study the Chern and Segre classes of tautological vector bundles on the Hilbert schemes X [n] . (author)
An algebra of reversible computation.
Wang, Yong
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
Thomys, Janus; Zhang, Xiaohong
2013-01-01
We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983
Assessing Elementary Algebra with STACK
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
Process Algebra and Markov Chains
Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.
This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study
Process algebra and Markov chains
Brinksma, E.; Hermanns, H.; Brinksma, E.; Hermanns, H.; Katoen, J.P.
2001-01-01
This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study
Algebraic Methods to Design Signals
2015-08-27
to date on designing signals using algebraic and combinatorial methods. Mathematical tools from algebraic number theory, representation theory and... combinatorial objects in designing signals for communication purposes. Sequences and arrays with desirable autocorrelation properties have many...multiple access methods in mobile radio communication systems. We continue our mathematical framework based on group algebras, character theory
Algebraic special functions and SO(3,2)
International Nuclear Information System (INIS)
Celeghini, E.; Olmo, M.A. del
2013-01-01
A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L 2 functions defined on (−1,1)×Z and on the sphere S 2 , respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining in this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L 2 functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L 2 functions
Computational algebraic geometry of epidemic models
Rodríguez Vega, Martín.
2014-06-01
Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.
High performance linear algebra algorithms: An introduction
DEFF Research Database (Denmark)
Gustavson, F.G.; Wasniewski, Jerzy
2006-01-01
his Mini-Symposium consisted of two back to back sessions, each consisting of five presentations, held on the afternoon of Monday, June 21, 2004. A major theme of both sessions was novel data structures for the matrices of dense linear algebra, DLA. Talks one to four of session one all centered...
Algebraic characterization of the Witten vertex
International Nuclear Information System (INIS)
Embacher, F.
1989-01-01
The Witten vertex of open bosonic string field theory is characterized by a set of algebraic properties written down in the Fock-space operator formalism. The typical 3-string overlap structure as well as the correct ghost midpoint insertion are not required from the outset but arise as consequences. 20 refs. (Author)
Lie Algebras for Constructing Nonlinear Integrable Couplings
International Nuclear Information System (INIS)
Zhang Yufeng
2011-01-01
Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti-Johnson (GJ) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their Hamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations. (general)
Algebraic entropy for differential-delay equations
Viallet, Claude M.
2014-01-01
We extend the definition of algebraic entropy to a class of differential-delay equations. The vanishing of the entropy, as a structural property of an equation, signals its integrability. We suggest a simple way to produce differential-delay equations with vanishing entropy from known integrable differential-difference equations.
Algebraic aspects of exact models
International Nuclear Information System (INIS)
Gaudin, M.
1983-01-01
Spin chains, 2-D spin lattices, chemical crystals, and particles in delta function interaction share the same underlying structures: the applicability of Bethe's superposition ansatz for wave functions, the commutativity of transfer matrices, and the existence of a ternary operator algebra. The appearance of these structures and interrelations from the eight vortex model, for delta function interreacting particles of general spin, and for spin 1/2, are outlined as follows: I. Eight Vortex Model. Equivalences to Ising model and the dimer system. Transfer matrix and symmetry of the Self Conjugate model. Relation between the XYZ Hamiltonian and the transfer matrix. One parameter family of commuting transfer matrices. A representation of the symmetric group spin. Diagonalization of the transfer matrix. The Coupled Spectrum equations. II. Identical particles with Delta Function interaction. The Bethe ansatz. Yang's representation. The Ternary Algebra and intergrability. III. Identical particles with delta function interaction: general solution for two internal states. The problem of spin 1/2 fermions. The Operator method
Bergstra, J.A.; Middelburg, C.A.
2015-01-01
We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the behaviours exhibited by the components of execution
Indian Academy of Sciences (India)
BOOK REVIEW ... To the Indian reader, the word discourse, evokes a respected ... I dug a bit deeper with Google trans- late, and ... published in a journal of mathematics educa- tion. ... The article on Shafarevich's work elsewhere ... goal then, is to develop the basics of algebra in ... ometric Greeks, and works like a magician.
Thinking Visually about Algebra
Baroudi, Ziad
2015-01-01
Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…
Benjamin, Carl; And Others
Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra I. Topics covered include: sets; vocabulary; linear equations; inequalities; real numbers; operations; factoring; fractions; formulas; ratio, proportion, and…
Swan, R G
1968-01-01
From the Introduction: "These notes are taken from a course on algebraic K-theory [given] at the University of Chicago in 1967. They also include some material from an earlier course on abelian categories, elaborating certain parts of Gabriel's thesis. The results on K-theory are mostly of a very general nature."
Bergstra, J.A.; Baeten, J.C.M.
1993-01-01
The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication
Algebraic Structure of Dynamical Systems
2017-05-22
determine three coordinates of the particle’s location at all times. So we can split the container into two discrete halves. Next we label one half of...each discrete time step, this can thought of as the whole magentic tape shifting over to the left. However the computer is not able to accurately...to suggest that the mathematics performed in this research will have such profound 10 implications, but just to demonstrate that studying math for
Commutative algebra with a view toward algebraic geometry
Eisenbud, David
1995-01-01
Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...
Schematic limits of rank 4 Azumaya bundles are the locally-Witt algebras
International Nuclear Information System (INIS)
Venkata Balaji, T.E.
2002-07-01
It is shown that the schematic image of the scheme of Azumaya algebra structures on a vector bundle of rank 4 over any base scheme is separated, of finite type, smooth of relative dimension 13 and geometrically irreducible over that base and that this construction base-changes well. This generalises the main theorem of Part I of an earlier work and clarifies it by showing that the algebraic operation of forming the even Clifford algebra (=Witt algebra) of a rank 3 quadratic module essentially translates to performing the geometric operation of taking the schematic image of the scheme of Azumaya algebra structures. (author)
Polynomial deformations of oscillator algebras in quantum theories with internal symmetries
International Nuclear Information System (INIS)
Karassiov, V.P.
1992-01-01
This paper reports that for last years some new Lie-algebraic structures (quantum groups or algebras, W-algebras, Casimir algebras) have been introduced in different areas of modern physics. All these objects are non-linear generalizations (deformations) of usual (linear) Lie algebras which are generated by a set B = {T a } of their generators T a satisfying a commutation relations (CR) of the form [T a , T b ] = f ab ({T c }) where f ab (...) are some functions of the generators T c given by power series. From the mathematical viewpoint such objects called as nonlinear or deformed Lie algebras G d may be treated as universal algebras or algebraic systems G d = left-angle B; +, · , [,] right-angle generated by a basic set B and the usual operations of the addition (+) and the multiplication (·) together with the Lie product ([T a , T b ] = T a T b - T b T a )
Operator algebras and topology
International Nuclear Information System (INIS)
Schick, T.
2002-01-01
These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L 2 -cohomology, L 2 -Betti numbers and other L 2 -invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)
Reductive Lie-admissible algebras applied to H-spaces and connections
International Nuclear Information System (INIS)
Sagle, A.A.
1982-01-01
An algebra A with multiplication xy is Lie-admissible if the vector space A with new multiplication [x,y] = xy-yx is a Lie algebra; we denote this Lie algebra by A - . Thus, an associative algebra is Lie-admissible but a Cayley algebra is not Lie-admissible. In this paper we show how Lie-admissible algebras arise from Lie groups and their application to differential geometry on Lie groups via the following theorem. Let A be an n-dimensional Lie-admissible algebra over the reals. Let G be a Lie group with multiplication function μ and with Lie algebra g which is isomorphic to A - . Then there exiss a corrdinate system at the identify e in G which represents μ by a function F:gxg→g defined locally at the origin, such that the second derivative, F 2 , at the origin defines on the vector space g the structure of a nonassociative algebra (g, F 2 ). Furthermore this algebra is isomorphic to A and (g, F 2 ) - is isomorphic to A - . Thus roughly, any Lie-admissible algebra is isomorphic to an algebra obtained from a Lie algebra via a change of coordinates in the Lie group. Lie algebras arise by using canonical coordinates and the Campbell-Hausdorff formula. Applications of this show that any G-invariant psuedo-Riemannian connection on G is completely determined by a suitable Lie-admissible algebra. These results extend to H-spaces, reductive Lie-admissible algebras and connections on homogeneous H-spaces. Thus, alternative and other non-Lie-admissible algebras can be utilized
Advanced modern algebra part 2
Rotman, Joseph J
2017-01-01
This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.
Hopf algebras in noncommutative geometry
International Nuclear Information System (INIS)
Varilly, Joseph C.
2001-10-01
We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)
On Dunkl angular momenta algebra
Energy Technology Data Exchange (ETDEWEB)
Feigin, Misha [School of Mathematics and Statistics, University of Glasgow,15 University Gardens, Glasgow G12 8QW (United Kingdom); Hakobyan, Tigran [Yerevan State University,1 Alex Manoogian, 0025 Yerevan (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)
2015-11-17
We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl(N) version of the subalgebra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.
Some quantum Lie algebras of type Dn positive
International Nuclear Information System (INIS)
Bautista, Cesar; Juarez-Ramirez, Maria Araceli
2003-01-01
A quantum Lie algebra is constructed within the positive part of the Drinfeld-Jimbo quantum group of type D n . Our quantum Lie algebra structure includes a generalized antisymmetry property and a generalized Jacobi identity closely related to the braid equation. A generalized universal enveloping algebra of our quantum Lie algebra of type D n positive is proved to be the Drinfeld-Jimbo quantum group of the same type. The existence of such a generalized Lie algebra is reduced to an integer programming problem. Moreover, when the integer programming problem is feasible we show, by means of the generalized Jacobi identity, that the Poincare-Birkhoff-Witt theorem (basis) is still true
Matrix realization of string algebra axioms and conditions of invariance
International Nuclear Information System (INIS)
Babichev, L.F.; Kuvshinov, V.I.; Fedorov, F.I.
1990-01-01
The matrix representations of Witten's and B-algebras of the field string theory in finite dimensional space of the ghost states are suggested for the case of Virasoro algebra truncated to its SU(1,1) subalgebra. In this case all algebraic operations of Witten's and B-algebras are realized in explicit form as some matrix operations in the graded complex vector space. The structure of string action coincides with the universal non-linear cubic matrix form of action for the gauge field theories. These representations lead to matrix conditions of theory invariance which can be used for finding of the explicit form of corresponding operators of the string algebras. (author)
Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers
Neshveyev, Sergey; Tuset, Lars
2012-05-01
Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 topology on the spectrum of C( G q / K q ). Next we show that the family of C*-algebras C( G q / K q ), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra {{C}[G/K]} . Finally, extending a result of Nagy, we show that C( G q / K q ) is canonically KK-equivalent to C( G/ K).
Continuum analogues of contragredient Lie algebras
International Nuclear Information System (INIS)
Saveliev, M.V.; Vershik, A.M.
1989-03-01
We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs
Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras
Directory of Open Access Journals (Sweden)
Lothar Schlafer
2008-05-01
Full Text Available C*-algebraic Weyl quantization is extended by allowing also degenerate pre-symplectic forms for the Weyl relations with infinitely many degrees of freedom, and by starting out from enlarged classical Poisson algebras. A powerful tool is found in the construction of Poisson algebras and non-commutative twisted Banach-*-algebras on the stage of measures on the not locally compact test function space. Already within this frame strict deformation quantization is obtained, but in terms of Banach-*-algebras instead of C*-algebras. Fourier transformation and representation theory of the measure Banach-*-algebras are combined with the theory of continuous projective group representations to arrive at the genuine C*-algebraic strict deformation quantization in the sense of Rieffel and Landsman. Weyl quantization is recognized to depend in the first step functorially on the (in general infinite dimensional, pre-symplectic test function space; but in the second step one has to select a family of representations, indexed by the deformation parameter h. The latter ambiguity is in the present investigation connected with the choice of a folium of states, a structure, which does not necessarily require a Hilbert space representation.
Lie Algebras Associated with Group U(n)
International Nuclear Information System (INIS)
Zhang Yufeng; Dong Huanghe; Honwah Tam
2007-01-01
Starting from the subgroups of the group U(n), the corresponding Lie algebras of the Lie algebra A 1 are presented, from which two well-known simple equivalent matrix Lie algebras are given. It follows that a few expanding Lie algebras are obtained by enlarging matrices. Some of them can be devoted to producing double integrable couplings of the soliton hierarchies of nonlinear evolution equations. Others can be used to generate integrable couplings involving more potential functions. The above Lie algebras are classified into two types. Only one type can generate the integrable couplings, whose Hamiltonian structure could be obtained by use of the quadratic-form identity. In addition, one condition on searching for integrable couplings is improved such that more useful Lie algebras are enlightened to engender. Then two explicit examples are shown to illustrate the applications of the Lie algebras. Finally, with the help of closed cycling operation relations, another way of producing higher-dimensional Lie algebras is given.
Symplectic Maps from Cluster Algebras
Directory of Open Access Journals (Sweden)
Allan P. Fordy
2011-09-01
Full Text Available We consider nonlinear recurrences generated from the iteration of maps that arise from cluster algebras. More precisely, starting from a skew-symmetric integer matrix, or its corresponding quiver, one can define a set of mutation operations, as well as a set of associated cluster mutations that are applied to a set of affine coordinates (the cluster variables. Fordy and Marsh recently provided a complete classification of all such quivers that have a certain periodicity property under sequences of mutations. This periodicity implies that a suitable sequence of cluster mutations is precisely equivalent to iteration of a nonlinear recurrence relation. Here we explain briefly how to introduce a symplectic structure in this setting, which is preserved by a corresponding birational map (possibly on a space of lower dimension. We give examples of both integrable and non-integrable maps that arise from this construction. We use algebraic entropy as an approach to classifying integrable cases. The degrees of the iterates satisfy a tropical version of the map.
Foliation theory in algebraic geometry
McKernan, James; Pereira, Jorge
2016-01-01
Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...
Supersymmetry in physics: an algebraic overview
International Nuclear Information System (INIS)
Ramond, P.
1983-01-01
In 1970, while attempting to generalize the Veneziano model (string model) to include fermions, I introduced a new algebraic structure which turned out to be a graded Lie algebra; it was used as a spectrum-generating algebra. This approach was soon after generalized to include interactions, yielding a complete model of fermions and boson (RNS model). In an unrelated work in the Soviet Union, it was shown how to generalize the Poincare group to include fermionic charges. However it was not until 1974 that an interacting field theory invariant under the Graded Poincare group in 3 + 1 dimensions was built (WZ model). Supersymmetric field theories turned out to have less divergent ultraviolet behavior than non-supersymmetric field theories. Gravity was generalized to include supersymmetry, to a theory called supergravity. By now many interacting local field theories exhibiting supersymmetry have been built and studied from 1 + 1 to 10 + 1 dimensions. Supersymmetric local field theories in less than 9 + 1 dimensions, can be understood as limits of multilocal (string) supersymmetric theories, in 9 + 1 dimensions. On the other hand, graded Lie algebras have been used in non-relativistic physics as approximate symmetries of Hamiltonians. The most striking such use so far helps comparing even and odd nuclei energy levels. It is believed that graded Lie algebras can be used whenever paired and unpaired fermions excitations can coexist. In this overview of a tremendously large field, I will only survey finite graded Lie algebras and their representations. For non-relativistic applications, all of GLA are potentially useful, while for relativistic applications, only these which include the Poincare group are to be considered
Crossed product algebras associated with topological dynamical systems
Svensson, Pär Christian
2009-01-01
We study connections between topological dynamical systems and associated algebras of crossed product type. We derive equivalences between structural properties of a crossed product and dynamical properties of the associated system and furthermore derive qualitative results concerning the crossed
Frobenius theory for positive maps of von Neumann algebras
International Nuclear Information System (INIS)
Albeverio, S.; Hoegh-Krohn, R.
1978-01-01
Frobenius theory about the cyclic structure of eigenvalues of irreducible non negative matrices is extended to the case of positive linear maps of von Neumann algebras. Semigroups of such maps and ergodic properties are also considered. (orig.) [de
Institute of Scientific and Technical Information of China (English)
WANG; Shunjin; ZHANG; Hua
2006-01-01
The problem of preserving fidelity in numerical computation of nonlinear ordinary differential equations is studied in terms of preserving local differential structure and approximating global integration structure of the dynamical system.The ordinary differential equations are lifted to the corresponding partial differential equations in the framework of algebraic dynamics,and a new algorithm-algebraic dynamics algorithm is proposed based on the exact analytical solutions of the ordinary differential equations by the algebraic dynamics method.In the new algorithm,the time evolution of the ordinary differential system is described locally by the time translation operator and globally by the time evolution operator.The exact analytical piece-like solution of the ordinary differential equations is expressd in terms of Taylor series with a local convergent radius,and its finite order truncation leads to the new numerical algorithm with a controllable precision better than Runge Kutta Algorithm and Symplectic Geometric Algorithm.
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
Directory of Open Access Journals (Sweden)
María Carolina Spinel G.
1990-01-01
Con esta base, en posteriores artículos de divulgación, presentaremos algunas aplicaciones que muestren la ventaja de su empleo en la descripción de sistema físico. Dado el amplio conocimiento que se tiene de los espacios vectoriales. La estructura y propiedades del algebra de Clifford suele presentarse con base en los elementos de un espacio vectorial. En esta dirección, en la sección 2 se define la notación y se describe la estructura de un algebra de Clifford Gn, introduciendo con detalle las operaciones básicas entre los elementos del álgebra. La sección 3 se dedica a describir una base tensorial de Gn.
Indian Academy of Sciences (India)
project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.
Beigie, Darin
2014-01-01
Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…