WorldWideScience

Sample records for su2 yang-mills field

  1. Space-time wormholes with Yang-Mills fields

    Energy Technology Data Exchange (ETDEWEB)

    Rey, S.J. (California Univ., Santa Barbara (USA). Dept. of Physics)

    1990-05-21

    Recently, Hosoya and Ogura found a wormhole instanton solution with a nontrivial SU(2) magnetic field. In this paper, we identify their solution with the gravitating meron configuration of the SU(2) gauge theory. In addition, we also find a generalized Yang-Mills wormhole solution with nontrivial electric and magnetic fields. These correspond to the 'nested' meron wormholes. Fermion dynamics on these wormhole backgrounds and implications for low-energy physics are also discussed. (orig.).

  2. Thermodynamics of SU(2) quantum Yang-Mills theory and CMB anomalies

    CERN Document Server

    Hofmann, Ralf

    2013-01-01

    A brief review of effective SU(2) Yang-Mills thermodynamics in the deconfining phase is given, including the construction of the thermal ground-state estimate in terms of an inert, adjoint scalar field $\\phi$, based on non-propagating (anti)selfdual field configurations of topological charge unity. We explain why the screening physics of an SU(2) photon is subject to an electric-magnetically dual interpretation. Next, we elucidate how a low-frequency excess of line temperature in the Cosmic Microwave Background (CMB) determines the value of the critical temperature of the deconfining-preconfining phase transition of an SU(2) Yang-Mills theory postulated to describe photon propagation, and we describe how, starting at a redshift of about unity, SU(2) photons collectively work 3D temperature depressions into the CMB. Upon projection along a line of sight, a given depression influences the present CMB sky in a cosmologically local way, possibly explaining the large-angle anomalies confirmed recently by the Planc...

  3. Thermodynamics of SU(2 quantum Yang-Mills theory and CMB anomalies

    Directory of Open Access Journals (Sweden)

    Hofmann Ralf

    2014-04-01

    Full Text Available A brief review of effective SU(2 Yang-Mills thermodynamics in the deconfining phase is given, including the construction of the thermal ground-state estimate in terms of an inert, adjoint scalar field φ, based on non-propagating (antiselfdual field configurations of topological charge unity. We also discuss kinematic constraints on interacting propagating gauge fields implied by the according spatial coarse-graining, and we explain why the screening physics of an SU(2 photon is subject to an electric-magnetically dual interpretation. This argument relies on the fact that only (anticalorons of scale parameter ρ ∼ |φ|−1 contribute to the coarse-graining required for thermal-ground-state emergence at temperature T. Thus, use of the effective gauge coupling e in the (anticaloron action is justified, yielding the value ħ for the latter at almost all temperatures. As a consequence, the indeterministic transition of initial to final plane waves caused by an effective, pointlike vertex is fundamentally mediated in Euclidean time by a single (anticaloron being part of the thermal ground state. Next, we elucidate how a low-frequency excess of line temperature in the Cosmic Microwave Background (CMB determines the value of the critical temperature of the deconfining-preconfining phase transition of an SU(2 Yang-Mills theory postulated to describe photon propagation, and we describe how, starting at a redshift of about unity, SU(2 photons collectively work 3D temperature depressions into the CMB. Upon projection along a line of sight, a given depression influences the present CMB sky in a cosmologically local way, possibly explaining the large-angle anomalies confirmed recently by the Planck collaboration. Finally, six relativistic polarisations residing in the SU(2 vector modes roughly match the number of degrees of freedom in cosmic neutrinos (Planck which would disqualify the latter as radiation. Indeed, if interpreted as single center

  4. Hagedorn spectrum and thermodynamics of SU(2) and SU(3) Yang-Mills theories

    CERN Document Server

    Caselle, Michele; Panero, Marco

    2015-01-01

    We present a high-precision lattice calculation of the equation of state in the confining phase of SU(2) Yang-Mills theory. We show that the results are described very well by a gas of massive, non-interacting glueballs, provided one assumes an exponentially growing Hagedorn spectrum. The latter can be derived within an effective bosonic closed-string model, leading to a parameter-free theoretical prediction, which is in perfect agreement with our lattice results. Furthermore, when applied to SU(3) Yang-Mills theory, this effective model accurately describes the lattice results reported by Bors\\'anyi et al. in JHEP 07 (2012) 056.

  5. Lattice simulation of a center symmetric three dimensional effective theory for SU(2) Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Dominik

    2010-11-17

    We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for theWilson line which includes a ''fuzzy'' bag term to generate non-perturbative fluctuations between Z(2) degenerate ground states. The model is studied in the limit where the gauge fields are set to zero as well as the full model with gauge fields. We confirm that, at moderately weak coupling, the ''fuzzy'' bag term leads to eigenvalue repulsion in a finite region above the deconfining phase transition which shrinks in the extreme weak-coupling limit. A non-trivial Z(N) symmetric vacuum arises in the confined phase. The effective potential for the Polyakov loop in the theory with gauge fields is extracted from the simulations including all modes of the loop as well as for cooled configurations where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram. Other results include the exact location of the phase boundary in the plane spanned by the coupling parameters, correlation lengths of several operators in the magnetic and electric sectors and the spatial string tension. We also present results from simulations of the full 4D Yang-Mills theory and attempt to make a qualitative comparison to the 3D effective theory. (orig.)

  6. Extended Soliton Solutions in an Effective Action for SU(2 Yang-Mills Theory

    Directory of Open Access Journals (Sweden)

    Nobuyuki Sawado

    2006-01-01

    Full Text Available The Skyrme-Faddeev-Niemi (SFN model which is an O(3 σ model in three dimensional space up to fourth-order in the first derivative is regarded as a low-energy effective theory of SU(2 Yang-Mills theory. One can show from the Wilsonian renormalization group argument that the effective action of Yang-Mills theory recovers the SFN in the infrared region. However, the theory contains an additional fourth-order term which destabilizes the soliton solution. We apply the perturbative treatment to the second derivative term in order to exclude (or reduce the ill behavior of the original action and show that the SFN model with the second derivative term possesses soliton solutions.

  7. Hagedorn spectrum and thermodynamics of SU(2) and SU(3) Yang-Mills theories

    Energy Technology Data Exchange (ETDEWEB)

    Caselle, Michele; Nada, Alessandro; Panero, Marco [Department of Physics, University of Turin & INFN,Via Pietro Giuria 1, I-10125 Turin (Italy)

    2015-07-27

    We present a high-precision lattice calculation of the equation of state in the confining phase of SU(2) Yang-Mills theory. We show that the results are described very well by a gas of massive, non-interacting glueballs, provided one assumes an exponentially growing Hagedorn spectrum. The latter can be derived within an effective bosonic closed-string model, leading to a parameter-free theoretical prediction, which is in perfect agreement with our lattice results. Furthermore, when applied to SU(3) Yang-Mills theory, this effective model accurately describes the lattice results reported by Borsányi et al. in http://dx.doi.org/10.1007/JHEP07(2012)056.

  8. Instantons, vortices and confinement in SU(2) Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, A.L.L. de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Oxman, L.E.; Teixeira, B.F.I. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    Full text: In this work, we derive a recently proposed Abelian model to describe the interaction of correlated instantons, center vortices, and dual fields in three dimensional SU(2) Yang-Mills theory. Correlated monopoles and center vortices are believed to play a relevant role in accommodating the different properties of the confining string in Yang-Mills theories, receiving support from lattice simulations. In fact, scenarios based on either monopoles or closed center vortices are only partially successful to describe the expected behavior of the potential between quarks. At asymptotic distances, this potential should be linear and depend on the representation of the subgroup Z(N) of SU(N) (N-ality). At intermediate scales, it should posses Casimir scaling. The Cho-Faddeev- Niemi representation (CFN) can be used to associate monopoles with defects of the local color frame used to decompose the gauge fields. This possible frame defects can be extended to describe not only monopoles but also center vortices, correlated or not. In these scenarios, one of the difficulties is how to deal with the integration over an ensemble of extended objects, after considering a phenomenological parametrization of their properties, such as stiffness, interactions with dual fields, and interactions between them. This is particularly severe in four dimensional theories where center vortices generate two dimensional extended world surfaces. However, in three dimensions center vortices are stringlike and an ensemble of world lines is naturally associated with a second quantized field theory. The aim of this work is presenting a careful derivation of an effective model, considering instantons and center vortices in D=3 SU(3) theory, after parameterizing some intrinsic physical properties that these objects could present. One of the fundamental ingredients will be the adoption of recent techniques borrowed from polymer physics, where the extended objects are also one dimensional. This

  9. Thermodynamics of SU(2) mathcal{N} =2 supersymmetric Yang-Mills theory

    Science.gov (United States)

    Paik, Steve; Yaffe, Laurence G.

    2010-01-01

    The thermodynamics of four-dimensional SU(2) mathcal{N} =2 super-Yang-Mills theory is examined in both high and low temperature regimes. At low temperatures, compelling evidence is found for two distinct equilibrium states related by a spontaneously broken discrete R-symmetry. These equilibrium states exist because the quantum moduli space of the theory has two singular points where extra massless states appear. At high temperature, a unique R-symmetry-preserving equilibrium state is found. Discrepancies with previous results in the literature are explained.

  10. From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.

    Science.gov (United States)

    Pepe, M; Wiese, U-J

    2009-05-15

    We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.

  11. Quantum Yang-Mills field theory

    Science.gov (United States)

    Frasca, Marco

    2017-01-01

    We show that the Dyson-Schwinger set of equations for the Yang-Mills theory can be exactly solved till the two-point function. This is obtained given a set of nonlinear waves solving the classical equations of motion. Translation invariance is maintained by the proper choice of the solution of the equation for the two-point function as devised by Coleman. The computation of the Dyson-Schwinger equations is performed in the same way as devised by Bender, Milton and Savage providing a set of partial differential equations whose proof of existence of the solutions is standard. So, the correlation functions of the theory could be proved to exist and the two-point function manifests a mass gap.

  12. A Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold S4 via the connection, with the general- ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.

  13. Galilean Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Bagchi, Arjun [Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Basu, Rudranil [Saha Institute of Nuclear Physics,Block AF, Sector 1, Bidhannagar, Kolkata 700068 (India); Kakkar, Ashish [Indian Institute of Science Education and Research,Dr Homi Bhabha Road, Pashan. Pune 411008 (India); Mehra, Aditya [Indian Institute of Science Education and Research,Dr Homi Bhabha Road, Pashan. Pune 411008 (India); Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2016-04-11

    We investigate the symmetry structure of the non-relativistic limit of Yang-Mills theories. Generalising previous results in the Galilean limit of electrodynamics, we discover that for Yang-Mills theories there are a variety of limits inside the Galilean regime. We first explicitly work with the SU(2) theory and then generalise to SU(N) for all N, systematising our notation and analysis. We discover that the whole family of limits lead to different sectors of Galilean Yang-Mills theories and the equations of motion in each sector exhibit hitherto undiscovered infinite dimensional symmetries, viz. infinite Galilean Conformal symmetries in D=4. These provide the first examples of interacting Galilean Conformal Field Theories (GCFTs) in D>2.

  14. Wormhole solutions in the Einstein-Yang-Mills-Higgs system: Solution of first-order equations for G=SU(2)

    Energy Technology Data Exchange (ETDEWEB)

    Degen, F.

    1987-07-01

    For an SU(2) Einstein-Yang-Mills-Higgs model they study the extreme wormhole solutions. They use an iterative method based on expansion in the radial distance N from the boundary of the hole. Here they present the nontrivial solutions of the first-order equations. They give useful information about existing extremal wormholes. Especially they note that although the zero-order solution which they use is abelian, this is not the case for all solutions of first-order equations. The method employed in solving these equations is to expand all first-order fields in the appropriate generalized harmonics. They find a nonabelian solution if the value of the Higgs scalar at the horizon is equal to the Planck mass and if the magnetic charge b and the electric charge e of the hole satisfy b = 1/e.

  15. First results for SU(2) Yang-Mills with one adjoint Dirac Fermion

    CERN Document Server

    Athenodorou, Andreas; Bergner, Georg; Lucini, Biagio; Patella, Agostino

    2013-01-01

    We present a first exploratory study of SU(2) gauge theory with one Dirac flavour in the adjoint representation. We provide initial results for the spectroscopy and the anomalous dimension for the chiral condensate. Our investigation indicates that the theory is conformal or near-conformal, with an anomalous dimension of order one. A discussion of the relevance of these findings in relation to walking technicolor scenarios is also presented.

  16. Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang-Mills fields

    Energy Technology Data Exchange (ETDEWEB)

    Cazenave, T. [Paris-6 Univ., 75 (France). Lab. d`Analyse Numerique; Shatah, J.; Tahvildar-Zadeh, A.S.

    1998-04-01

    In this article we explore some of the connections between the theories of Yang-Mills fields, wave maps, and harmonic maps. It has been shown that the search for similarity solutions of wave maps leads to harmonic maps of the hyperbolic space. On the other hand, Glassey and Strauss have shown that the equations for an SO(3)-equivariant Yang-Mills connection on the Minkowski space R{sup 3,1} with gauge group SU(2) reduce to a certain nonlinear wave equation, which we can now identify as a wave map on R{sup 1,1}. More generally, we will here show the reduction under equivariance of a Yang-Mills system on the Minkowski space R{sup n,1} to a wave map system on R{sup n-2,1} in the specific case of SO(n) bundles with SO(n) symmetry. We then prove for odd n the existence of equivariant harmonic maps from the hyperbolic space H{sup n} that are smooth at the ideal boundary of H{sup n}, thus establishing the existence of similarity solutions for equivariant wave maps and Yang-Mills fields. As a consequence we show that for n {>=} 7, it is possible to have a wave map into a negatively curved target manifold that develops from smooth initial data and blows up in finite time, in sharp contrast to the elliptic case of harmonic maps. Finally we show how these singular solutions can be lifted to one dimension higher to produce singular travelling waves. (orig.). 14 refs.

  17. The Isolated Electron: De Broglie’s Hidden Thermodynamics, SU(2 Quantum Yang-Mills Theory, and a Strongly Perturbed BPS Monopole

    Directory of Open Access Journals (Sweden)

    Ralf Hofmann

    2017-10-01

    Full Text Available Based on a recent numerical simulation of the temporal evolution of a spherically perturbed BPS monopole, SU(2 Yang-Mills thermodynamics, Louis de Broglie’s deliberations on the disparate Lorentz transformations of the frequency of an internal “clock” on one hand and the associated quantum energy on the other hand, and postulating that the electron is represented by a figure-eight shaped, self-intersecting center vortex loop in SU(2 Quantum Yang-Mills theory we estimate the spatial radius R 0 of this self-intersection region in terms of the electron’s Compton wave length λ C . This region, which is immersed into the confining phase, constitutes a blob of deconfining phase of temperature T 0 mildly above the critical temperature T c carrying a frequently perturbed BPS monopole (with a magnetic-electric dual interpretation of its charge w.r.t. U(1⊂SU(2. We also establish a quantitative relation between rest mass m 0 of the electron and SU(2 Yang-Mills scale Λ , which in turn is defined via T c . Surprisingly, R 0 turns out to be comparable to the Bohr radius while the core size of the monopole matches λ C , and the correction to the mass of the electron due to Coulomb energy is about 2%.

  18. Massive and mass-less Yang-Mills and gravitational fields

    NARCIS (Netherlands)

    Veltman, M.J.G.; Dam, H. van

    1970-01-01

    Massive and mass-less Yang-Mills and gravitational fields are considered. It is found that there is a discrete difference between the zero-mass theories and the very small, but non-zero mass theories. In the case of gravitation, comparison of massive and mass-less theories with experiment, in

  19. Renormalizable Lagrangians for massive Yang-Mills fields

    NARCIS (Netherlands)

    Hooft, G. 't

    1971-01-01

    Renormalizable models are constructed in which local gauge invariance is broken spontaneously. Feynman rules and Ward identities can be found by means of a path integral method, and they can be checked by algebra. In one of these models, which is studied in more detail, local SU(2) is broken in such

  20. A Unified Field Theory of Gravity, Electromagnetism, and theA Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold $S_4$ via the connection, with the generalized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.

  1. On the Effective Action of Dressed Mean Fields for N=4 Super-Yang-Mills Theory

    Science.gov (United States)

    Cvetic, Gorazd; Kondrashuk, Igor; Schmidt, Ivan

    2006-01-01

    On the basis of the general considerations such as R-operation and Slavnov-Taylor identity we show that the effective action, being understood as Legendre transform of the logarithm of the path integral, possesses particular structure in N = 4 supersymmetric Yang-Mills theory for kernels of the effective action expressed in terms of the dressed effective fields. These dressed effective fields have been introduced in our previous papers as actual variables of the effective action. The concept of dressed effective fields naturally appears in the framework of solution to Slavnov-Taylor identity. The particularity of the structure is independence of these kernels on the ultraviolet regularization scale Λ. These kernels are functions of mutual spacetime distances and of the gauge coupling. The fact that β function in this theory vanishes is used significantly.

  2. On the Effective Action of Dressed Mean Fields for N = 4 Super-Yang-Mills Theory

    Directory of Open Access Journals (Sweden)

    Gorazd Cvetic

    2006-01-01

    Full Text Available On the basis of the general considerations such as R-operation and Slavnov-Taylor identity we show that the effective action, being understood as Legendre transform of the logarithm of the path integral, possesses particular structure in N = 4 supersymmetric Yang-Mills theory for kernels of the effective action expressed in terms of the dressed effective fields. These dressed effective fields have been introduced in our previous papers as actual variables of the effective action. The concept of dressed effective fields naturally appears in the framework of solution to Slavnov-Taylor identity. The particularity of the structure is independence of these kernels on the ultraviolet regularization scale Λ. These kernels are functions of mutual spacetime distances and of the gauge coupling. The fact that β function in this theory vanishes is used significantly.

  3. On the renormalization of topological Yang-Mills field theory in N=1 superspace

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.W. de; Penna Firme, A.B.

    1996-03-01

    We discuss the renormalization aspects of topological super-Yang-Mills field theory in N=1 superspace. Our approach makes use of the regularization independent BRS algebraic technique adapted to the case of a N=1 supersymmetric model. We give the expression of the most general local counterterm to the classical action to all orders of the perturbative expansion. The counterterm is shown to be BRS-coboundary, implying that the co-homological properties of the super topological theory are not affected by quantum effects. We also demonstrate the vanishing of the Callan-Symanzik {beta}-function of the model by employing a recently discovered supersymmetric antighost Ward identity. (author). 30 refs.

  4. Classical Yang-Mills potentials

    Energy Technology Data Exchange (ETDEWEB)

    Mandula, J.E.

    1976-12-15

    Classical Coulomb-type configurations of Yang-Mills fields coupled to external sources (charges) are described and discussed. They are shown to be stable against small classical fluctuations in the fields if the Yang-Mills coupling is sufficiently small. In developing the stability analysis, massless charged scalar fields in the presence of a weak Coulomb potential are also shown to be stable to small field fluctuations. (AIP)

  5. Gauge field spectrum in massive Yang-Mills theory with Lorentz violation

    Science.gov (United States)

    Santos, T. R. S.; Sobreiro, R. F.; Tomaz, A. A.

    2016-10-01

    The spectrum of the massive C P T -odd Yang-Mills propagator with Lorentz violation is calculated at tree level. The modification is due to mass terms generated by the exigence of multiplicative renormalizability of Yang-Mills theory with Lorentz violation. The causality analysis is performed with group and front velocities for both spacelike and timelike background tensors. It is shown that, by demanding causality, it is always possible to define a physical sector for the gauge propagator. Hence, it is expected that the model is also unitary if one takes the Faddeev-Popov ghost into account.

  6. Duality in supersymmetric Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1997-02-01

    These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N{sub f} < N{sub c}, in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N{sub f} large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs.

  7. Einstein-Yang-Mills from pure Yang-Mills amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Dhritiman; Plefka, Jan [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, D-12489 Berlin (Germany); Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, D-14476 Potsdam (Germany); Wen, Congkao [I.N.F.N. Sezione di Roma Tor Vergata,Via della Ricerca Scientifica, 00133 Roma (Italy)

    2016-10-14

    We present new relations for scattering amplitudes of color ordered gluons and gravitons in Einstein-Yang-Mills theory. Tree-level amplitudes of arbitrary multiplicities and polarizations involving up to three gravitons and up to two color traces are reduced to partial amplitudes of pure Yang-Mills theory. In fact, the double-trace identities apply to Einstein-Yang-Mills extended by a dilaton and a B-field. Our results generalize recent work of Stieberger and Taylor for the single graviton case with a single color trace. As the derivation is made in the dimension-agnostic Cachazo-He-Yuan formalism, our results are valid for external bosons in any number of spacetime dimensions. Moreover, they generalize to the superamplitudes in theories with 16 supercharges.

  8. Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Astrid

    2011-09-06

    In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the {beta} function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension

  9. Field-dependent BRST-antiBRST transformations in Yang-Mills and Gribov-Zwanziger theories

    Science.gov (United States)

    Moshin, Pavel Yu.; Reshetnyak, Alexander A.

    2014-11-01

    We introduce the notion of finite BRST-antiBRST transformations, both global and field-dependent, with a doublet λa, a=1,2, of anticommuting Grassmann parameters and find explicit Jacobians corresponding to these changes of variables in Yang-Mills theories. It turns out that the finite transformations are quadratic in their parameters. At the same time, exactly as in the case of finite field-dependent BRST transformations for the Yang-Mills vacuum functional, special field-dependent BRST-antiBRST transformations, with sa-potential parameters λa=saΛ induced by a finite even-valued functional Λ and by the anticommuting generators sa of BRST-antiBRST transformations, amount to a precise change of the gauge-fixing functional. This proves the independence of the vacuum functional under such BRST-antiBRST transformations. We present the form of transformation parameters that generates a change of the gauge in the path integral and evaluate it explicitly for connecting two arbitrary Rξ-like gauges. For arbitrary differentiable gauges, the finite field-dependent BRST-antiBRST transformations are used to generalize the Gribov horizon functional h, given in the Landau gauge, and being an additive extension of the Yang-Mills action by the Gribov horizon functional in the Gribov-Zwanziger model. This generalization is achieved in a manner consistent with the study of gauge independence. We also discuss an extension of finite BRST-antiBRST transformations to the case of general gauge theories and present an ansatz for such transformations. introduction of finite BRST-antiBRST transformations, being polynomial in powers of a constant Sp(2)-doublet of Grassmann-odd parameters λa and leaving the quantum action of the Yang-Mills theory invariant to all orders in λa; definition of finite field-dependent BRST-antiBRST transformations, being polynomial in powers of an Sp(2)-doublet of Grassmann-odd functionals λa(ϕ) depending on the classical Yang-Mills fields, the ghost

  10. Yang-Mills theory for non-semisimple groups

    CERN Document Server

    Nuyts, J; Nuyts, Jean; Wu, Tai Tsun

    2003-01-01

    For semisimple groups, possibly multiplied by U(1)'s, the number of Yang-Mills gauge fields is equal to the number of generators of the group. In this paper, it is shown that, for non-semisimple groups, the number of Yang-Mills fields can be larger. These additional Yang-Mills fields are not irrelevant because they appear in the gauge transformations of the original Yang-Mills fields. Such non-semisimple Yang-Mills theories may lead to physical consequences worth studying. The non-semisimple group with only two generators that do not commute is studied in detail.

  11. Geometrodynamics of gauge fields on the geometry of Yang-Mills and gravitational gauge theories

    CERN Document Server

    Mielke, Eckehard W

    2016-01-01

    This monograph aims to provide a unified, geometrical foundation of gauge theories of elementary particle physics. The underlying geometrical structure is unfolded in a coordinate-free manner via the modern mathematical notions of fibre bundles and exterior forms. Topics such as the dynamics of Yang-Mills theories, instanton solutions and topological invariants are included. By transferring these concepts to local space-time symmetries, generalizations of Einstein's theory of gravity arise in a Riemann-Cartan space with curvature and torsion. It provides the framework in which the (broken) Poincaré gauge theory, the Rainich geometrization of the Einstein-Maxwell system, and higher-dimensional, non-abelian Kaluza-Klein theories are developed. Since the discovery of the Higgs boson, concepts of spontaneous symmetry breaking in gravity have come again into focus, and, in this revised edition, these will be exposed in geometric terms. Quantizing gravity remains an open issue: formulating it as a de Sitter t...

  12. New Integrable 4D Quantum Field Theories from Strongly Deformed Planar N=4 Supersymmetric Yang-Mills Theory.

    Science.gov (United States)

    Gürdoğan, Ömer; Kazakov, Vladimir

    2016-11-11

    We introduce a family of new integrable quantum field theories in four dimensions by considering the γ-deformed N=4 supersymmetric Yang-Mills (SYM) theory in the double scaling limit of large imaginary twists and small coupling. This limit discards the gauge fields and retains only certain Yukawa and scalar interactions with three arbitrary effective couplings. In the 't Hooft limit, these 4D theories are integrable, and contain a wealth of conformal correlators such that the whole arsenal of AdS/CFT integrability remains applicable. As a special case of these models, we obtain a quantum field theory of two complex scalars with a chiral, quartic interaction. The Berenstein-Maldacena-Nastase vacuum anomalous dimension is dominated in each loop order by a single "wheel" graph, whose bulk represents an integrable "fishnet" graph. This explicitly demonstrates the all-loop integrability of gamma-deformed planar N=4 SYM theory, at least in our limit. Using this feature and integrability results we provide an explicit conjecture for the periods of double-wheel graphs with an arbitrary number of spokes in terms of multiple zeta values of limited depth.

  13. Solutions to Yang-Mills Equations on Four-Dimensional de Sitter Space

    Science.gov (United States)

    Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.

    2017-08-01

    We consider pure SU(2) Yang-Mills theory on four-dimensional de Sitter space dS4 and construct a smooth and spatially homogeneous magnetic solution to the Yang-Mills equations. Slicing dS4 as R ×S3, via an SU(2)-equivariant ansatz, we reduce the Yang-Mills equations to ordinary matrix differential equations and further to Newtonian dynamics in a double-well potential. Its local maximum yields a Yang-Mills solution whose color-magnetic field at time τ ∈R is given by B˜a=-1/2 Ia/(R2cosh2τ ), where Ia for a =1 , 2, 3 are the SU(2) generators and R is the de Sitter radius. At any moment, this spatially homogeneous configuration has finite energy, but its action is also finite and of the value -1/2 j (j +1 )(2 j +1 )π3 in a spin-j representation. Similarly, the double-well bounce produces a family of homogeneous finite-action electric-magnetic solutions with the same energy. There is a continuum of other solutions whose energy and action extend down to zero.

  14. Conserved currents and gauge invariance in Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Barnich, G. [Universite Libre de Bruxelles (Belgium). Faculte des Sciences; Brandt, F. [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie H; Henneaux, M. [Universite Libre de Bruxelles (Belgium). Faculte des Sciences

    1994-12-31

    It is shown that in the absence of free abelian gauge fields, the conserved currents of (classical) Yang-Mills gauge models coupled to matter fields can be always redefined so as to be gauge invariant. This is a direct consequence of the general analysis of the Wess-Zumino consistency condition for Yang-Mills theory that we have provided recently. (orig.).

  15. $P-V$ criticality of a specific black hole in $f(R)$ gravity coupled with Yang-Mills field arXiv

    CERN Document Server

    Övgün, Ali

    In this paper, we study the $P-v$ criticality of a specific charged AdS type black hole (SBH) in $f(R)$ gravity coupled with Yang-Mills field. In the extended phase space, we treat the cosmological constant as a thermodynamic pressure. After we study the various thermodynamical quantities, we show that the thermodynamic properties of the SBH behave as a Van der Waals liquid-gas system at the critical points and there is a first order phase transition between small-large SBH.

  16. Yang-Mills mass gap at large-N, noncommutative YM theory, topological quantum field theory and hyperfiniteness

    Science.gov (United States)

    Bochicchio, Marco

    2015-03-01

    We review a number of old and new concepts in quantum gauge theories, some of which are well-established but not widely appreciated, some are most recent, that may have analogs in gauge formulations of quantum gravity, loop quantum gravity, and their topological versions, and may be of general interest. Such concepts involve noncommutative gauge theories and their relation to the large-N limit, loop equations and the change to the anti-selfdual (ASD) variables also known as Nicolai map, topological field theory (TFT) and its relation to localization and Morse-Smale-Floer homology, with an emphasis both on the mathematical aspects and the physical meaning. These concepts, assembled in a new way, enter a line of attack to the problem of the mass gap in large-NSU(N) Yang-Mills (YM), that is reviewed as well. Algebraic considerations furnish a measure of the mathematical complexity of a complete solution of large-NSU(N) YM: In the large-N limit of pure SU(N) YM the ambient algebra of Wilson loops is known to be a type II1 nonhyperfinite factor. Nevertheless, for the mass gap problem at the leading 1/N order, only the subalgebra of local gauge-invariant single-trace operators matters. The connected two-point correlators in this subalgebra must be an infinite sum of propagators of free massive fields, since the interaction is subleading in (1)/(N), a vast simplification. It is an open problem, determined by the growth of the degeneracy of the spectrum, whether the aforementioned local subalgebra is in fact hyperfinite. Moreover, the sum of free propagators that occurs in the two-point correlators in the aforementioned local subalgebra must be asymptotic for large momentum to the result implied by the asymptotic freedom and the renormalization group: This fundamental constraint fixes asymptotically the residues of the poles of the propagators in terms of the mass spectrum and of the anomalous dimensions of the local operators. For the mass gap problem, in the search of a

  17. Chaotic behavior of the lattice Yang-Mills on CUDA

    Directory of Open Access Journals (Sweden)

    Forster Richárd

    2015-12-01

    Full Text Available The Yang-Mills fields plays important role in the strong interaction, which describes the quark gluon plasma. The non-Abelian gauge theory provides the theoretical background understanding of this topic. The real time evolution of the classical fields is derived by the Hamiltonian for SU(2 gauge field tensor. The microcanonical equations of motion is solved on 3 dimensional lattice and chaotic dynamics was searched by the monodromy matrix. The entropy-energy relation was presented by Kolmogorov-Sinai entropy. We used block Hessenberg reduction to compute the eigenvalues of the current matrix. While the purely CPU based algorithm can handle effectively only a small amount of values, the GPUs provide enough performance to give more computing power to solve the problem.

  18. Confinement from semiclassical gluon fields in SU(2) gauge theory

    CERN Document Server

    Langfeld, Kurt

    2010-01-01

    The infrared structure of SU(2) Yang-Mills theory is studied by means of lattice gauge simulations using a new constrained cooling technique. This method reduces the action while all Polyakov lines on the lattice remain unchanged. In contrast to unconstrained cooling, quark confinement is still intact. A study of the Hessian of the Yang-Mills action shows that low action (semi-) classical configurations can be achieved, with a characteristic splitting between collective modes and higher momentum modes. Besides confinement, the semiclassical configurations also support the topological susceptibility and generate spontaneous breakdown of chiral symmetry.We show that they possess a cluster structure of locally mainly (anti-) selfdual objects. By contrast to an instanton or a meron medium, the topological charge of individual clusters is smoothly distributed.

  19. A non-perturbative study of matter field propagators in Euclidean Yang-Mills theory in linear covariant, Curci-Ferrari and maximal Abelian gauges

    Energy Technology Data Exchange (ETDEWEB)

    Capri, M.A.L.; Fiorentini, D.; Sorella, S.P. [UERJ - Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); Pereira, A.D. [UERJ - Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); UFF - Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil)

    2017-08-15

    In this work, we study the propagators of matter fields within the framework of the refined Gribov-Zwanziger theory, which takes into account the effects of the Gribov copies in the gauge-fixing quantization procedure of Yang-Mills theory. In full analogy with the pure gluon sector of the refined Gribov-Zwanziger action, a non-local long-range term in the inverse of the Faddeev-Popov operator is added in the matter sector. Making use of the recent BRST-invariant formulation of the Gribov-Zwanziger framework achieved in Capri et al. (Phys Rev D 92(4):045039, 2015), (Phys Rev D 94(2):025035, 2016), (Phys Rev D 93(6):065019, 2016), (arXiv:1611.10077 [hepth]), Pereira et al. (arXiv:1605.09747 [hep-th]), the propagators of scalar and quark fields in the adjoint and fundamental representations of the gauge group are worked out explicitly in the linear covariant, Curci-Ferrari and maximal Abelian gauges. Whenever lattice data are available, our results exhibit good qualitative agreement. (orig.)

  20. Interface Yang-Mills, supersymmetry, and Janus

    Energy Technology Data Exchange (ETDEWEB)

    D' Hoker, Eric [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Estes, John [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Gutperle, Michael [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)]. E-mail: gutperle@physics.ucla.edu

    2006-10-02

    We consider theories consisting of a planar interface with N=4 super-Yang-Mills on either side and varying gauge coupling across the interface. The interface does not carry any independent degrees of freedom, but is allowed to support local gauge invariant operators, included with independent interface couplings. In general, both conformal symmetry and supersymmetry will be broken, but for special arrangements of the interface couplings, these symmetries may be restored. We provide a systematic classification of all allowed interface supersymmetries. We find new theories preserving eight and four Poincare supersymmetries, which get extended to sixteen and eight supersymmetries in the conformal limit, respectively with SU(2)xSU(2), SO(2)xSU(2) internal symmetry. The Lagrangians for these theories are explicitly constructed. We also recover the theory with two Poincare supersymmetries and SU(3) internal symmetry proposed earlier as a candidate CFT dual to super-Janus. Since our new interface theories have only operators from the supergravity multiplet turned on, dual supergravity solutions are expected to exist. We speculate on the possible relation between the interface theory with maximal supersymmetry and the near-horizon limit of the D3-D5 system.

  1. Spontaneously broken Yang-Mills-Einstein supergravities as double copies

    Science.gov (United States)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; Roiban, Radu

    2017-06-01

    Color/kinematics duality and the double-copy construction have proved to be systematic tools for gaining new insight into gravitational theories. Extending our earlier work, in this paper we introduce new double-copy constructions for large classes of spontaneously-broken Yang-Mills-Einstein theories with adjoint Higgs fields. One gauge-theory copy entering the construction is a spontaneously-broken (super-)Yang-Mills theory, while the other copy is a bosonic Yang-Mills-scalar theory with trilinear scalar interactions that display an explicitly-broken global symmetry. We show that the kinematic numerators of these gauge theories can be made to obey color/kinematics duality by exhibiting particular additional Lie-algebraic relations. We discuss in detail explicit examples with N=2 supersymmetry, focusing on Yang-Mills-Einstein supergravity theories belonging to the generic Jordan family in four and five dimensions, and identify the map between the supergravity and double-copy fields and parameters. We also briefly discuss the application of our results to N=4 supergravity theories. The constructions are illustrated by explicit examples of tree-level and one-loop scattering amplitudes.

  2. No-go for partially massless spin-2 Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Saenz, Sebastian [Physics Department and Institute for Strings, Cosmology, and Astroparticle Physics,Columbia University,New York, NY 10027 (United States); Hinterbichler, Kurt [Perimeter Institute for Theoretical Physics,31 Caroline St. N, Waterloo, Ontario, N2L 2Y5 (Canada); Joyce, Austin [Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,Chicago, IL 60637 (United States); Mitsou, Ermis [Physics Department and Institute for Strings, Cosmology, and Astroparticle Physics,Columbia University,New York, NY 10027 (United States); Rosen, Rachel A. [Physics Department and Institute for Strings, Cosmology, and Astroparticle Physics,Columbia University,New York, NY 10027 (United States); Perimeter Institute for Theoretical Physics,31 Caroline St. N, Waterloo, Ontario, N2L 2Y5 (Canada)

    2016-02-05

    There are various no-go results forbidding self-interactions for a single partially massless spin-2 field. Given the photon-like structure of the linear partially massless field, it is natural to ask whether a multiplet of such fields can interact under an internal Yang-Mills like extension of the partially massless symmetry. We give two arguments that such a partially massless Yang-Mills theory does not exist. The first is that there is no Yang-Mills like non-abelian deformation of the partially massless symmetry, and the second is that cubic vertices with the appropriate structure constants do not exist.

  3. Width of the confining string in Yang-Mills theory.

    Science.gov (United States)

    Gliozzi, F; Pepe, M; Wiese, U-J

    2010-06-11

    We investigate the transverse fluctuations of the confining string connecting two static quarks in (2+1)D SU(2) Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string increases logarithmically with the distance between the static quark charges. Corrections at intermediate distances due to universal higher-order terms in the effective string action are calculated analytically. They accurately fit the numerical data.

  4. The Vacua of 5d, N=2 Gauged Yang-Mills/Einstein/Tensor Supergravity Abelian Case

    CERN Document Server

    Günaydin, M; Gunaydin, Murat; Zagermann, Marco

    2000-01-01

    We give a detailed study of the critical points of the potentials of thesimplest non-trivial N=2 gauged Yang-Mills/Einstein supergravity theories withtensor multiplets. The scalar field target space of these examples isSO(1,1)XSO(2,1)/SO(2). The possible gauge groups are SO(2)XU(1)_R andSO(1,1)XU(1)_R, where U(1)_R is a subgroup of the R-symmetry group SU(2)_R, andSO(2) and SO(1,1) are subgroups of the isometry group of the scalar manifold.The scalar potentials of these theories consist of a contribution from theU(1)_R gauging and a contribution that is due to the presence of the tensorfields. We find that the latter contribution can change the form of thesupersymmetric extrema from maxima to saddle points. In addition, it leads tonovel critical points not present in the corresponding gaugedYang-Mills/Einstein supergravity theories without the tensor multiplets. Forthe SO(2)XU(1)_R gauged theory these novel critical points correspond toanti-de Sitter ground states. For the non-compact SO(1,1)XU(1)_R gauging, ...

  5. Gauging the Full R-Symmetry Group in Five-dimensional, N = 2 Yang-Mills/Einstein/tensor Supergravity

    CERN Document Server

    Günaydin, M; Gunaydin, Murat; Zagermann, Marco

    2001-01-01

    We show that certain 5d, N=2 Yang-Mills/Einstein supergravity theories admit the gauging of the \\emph{full} R-symmetry group, $SU(2)_{R}$, of the underlying $\\mathcal{N}=2$ Poincar\\'{e} superalgebra. This generalizes the previously studied Abelian gaugings of $U(1)_{R}\\subset SU(2)_{R}$, and completes the construction of the most general vector and tensor field coupled $5d$, $\\mathcal{N}=2$ supergravity theories with gauge interactions. The gauging of $SU(2)_{R}$ turns out to be possible only in special cases, and leads to a new type of scalar potential. For a large class of these theories the potential does not have any critical points.

  6. On the monodromies of N = 2 supersymmetric Yang-Mills theory

    CERN Document Server

    Klemm, A.; Yankielowicz, S.; Theisen, S.; Klemm, A; Lerche, W; Theisen, S; Yankielowicz, S

    1994-01-01

    We review the generalization of the work of Seiberg and Witten on N=2 supersymmetric SU(2) Yang-Mills theory to SU(n) gauge groups. The quantum moduli spaces of the effective low energy theory parametrize a special family of hyperelliptic genus n-1 Riemann surfaces. We discuss the massless spectrum and the monodromies.

  7. BRST renormalization of the first order Yang-Mills theory

    Science.gov (United States)

    Frenkel, J.; Taylor, John C.

    2017-12-01

    We examine the renormalization of the first order formulation of the Yang-Mills theory, by using the BRST identities. These preserve the gauge invariance of the theory and enable a recursive proof of renormalizability to higher orders in perturbation theory. The renormalization involves non-linear mixings as well as re-scalings of the fields and sources, which lead to a renormalized action at all orders.

  8. Hagedorn spectrum and equation of state of Yang-Mills theories

    CERN Document Server

    Caselle, Michele; Panero, Marco

    2015-01-01

    We present a novel lattice calculation of the equation of state of SU(2) Yang-Mills theory in the confining phase. We show that a gas of massive, non-interacting glueballs describes remarkably well the results, provided that a bosonic closed-string model is used to derive an exponentially growing Hagedorn spectrum for the heavy glueball states with no free parameters. This effective model can be applied to SU(3) Yang-Mills theory and the theoretical prediction agrees nicely with the lattice results reported by Bors\\'anyi et al. in JHEP 07 (2012) 056.

  9. Deconfinement in Yang-Mills Theory through Toroidal Compactification

    Energy Technology Data Exchange (ETDEWEB)

    Simic, Dusan; Unsal, Mithat; /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    We introduce field theory techniques through which the deconfinement transition of four-dimensional Yang-Mills theory can be moved to a semi-classical domain where it becomes calculable using two-dimensional field theory. We achieve this through a double-trace deformation of toroidally compactified Yang-Mills theory on R{sup 2} x S{sub L}{sup 1} x S{sub {beta}}{sup 1}. At large N, fixed-L, and arbitrary {beta}, the thermodynamics of the deformed theory is equivalent to that of ordinary Yang-Mills theory at leading order in the large N expansion. At fixed-N, small L and a range of {beta}, the deformed theory maps to a two-dimensional theory with electric and magnetic (order and disorder) perturbations, analogs of which appear in planar spin-systems and statistical physics. We show that in this regime the deconfinement transition is driven by the competition between electric and magnetic perturbations in this two-dimensional theory. This appears to support the scenario proposed by Liao and Shuryak regarding the magnetic component of the quark-gluon plasma at RHIC.

  10. Nonperturbative Results for Yang-Mills Theories

    DEFF Research Database (Denmark)

    Sannino, Francesco; Schechter, Joseph

    2010-01-01

    Some non perturbative aspects of the pure SU(3) Yang-Mills theory are investigated assuming a specific form of the beta function, based on a recent modification by Ryttov and Sannino of the known one for supersymmetric gauge theories. The characteristic feature is a pole at a particular value of ....... Assuming the usual QCD value one finds it to be 1.67 GeV, which is in surprisingly good agreement with a quenched lattice calculation. A similar calculation is made for the supersymmetric Yang-Mills theory where the corresponding beta function is considered to be exact....

  11. Solvable Relativistic Hydrogenlike System in Supersymmetric Yang-Mills Theory

    DEFF Research Database (Denmark)

    Caron-Huot, Simon; Henn, Johannes M.

    2014-01-01

    he classical Kepler problem, as well as its quantum mechanical version, the hydrogen atom, enjoys a well-known hidden symmetry, the conservation of the Laplace-Runge-Lenz vector, which makes these problems superintegrable. Is there a relativistic quantum field theory extension that preserves...... this symmetry? In this Letter we show that the answer is positive: in the nonrelativistic limit, we identify the dual conformal symmetry of planar N=4 super Yang-Mills theory with the well-known symmetries of the hydrogen atom. We point out that the dual conformal symmetry offers a novel way to compute...

  12. The thermodynamics of quantum Yang-Mills theory theory and applications

    CERN Document Server

    Hofmann, Ralf

    2016-01-01

    This latest edition enhances the material of the first edition with a derivation of the value of the action for each of the Harrington-Shepard calorons/anticalorons that are relevant for the emergence of the thermal ground state. Also included are discussions of the caloron center versus its periphery, the role of the thermal ground state in U(1) wave propagation, photonic particle-wave duality, and calculational intricacies and book-keeping related to one-loop scattering of massless modes in the deconfining phase of an SU(2) Yang-Mills theory. Moreover, a derivation of the temperature-redshift relation of the CMB in deconfining SU(2) Yang-Mills thermodynamics and its application to explaining an apparent early re-ionization of the Universe are given. Finally, a mechanism of mass generation for cosmic neutrinos is proposed.

  13. Perturbative spacetimes from Yang-Mills theory

    CERN Document Server

    Luna, Andrés; Nicholson, Isobel; Ochirov, Alexander; O'Connell, Donal; Westerberg, Niclas; White, Chris D.

    2017-04-12

    The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.

  14. Finite-action solutions of Yang-Mills equations on de Sitter dS4 and anti-de Sitter AdS4 spaces

    Science.gov (United States)

    Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.

    2017-11-01

    We consider pure SU(2) Yang-Mills theory on four-dimensional de Sitter dS4 and anti-de Sitter AdS4 spaces and construct various solutions to the Yang-Mills equations. On de Sitter space we reduce the Yang-Mills equations via an SU(2)-equivariant ansatz to Newtonian mechanics of a particle moving in R^3 under the influence of a quartic potential. Then we describe magnetic and electric-magnetic solutions, both Abelian and non-Abelian, all having finite energy and finite action. A similar reduction on anti-de Sitter space also yields Yang-Mills solutions with finite energy and action. We propose a lower bound for the action on both backgrounds. Employing another metric on AdS4, the SU(2) Yang-Mills equations are reduced to an analytic continuation of the above particle mechanics from R^3 to R^{2,1} . We discuss analytical solutions to these equations, which produce infinite-action configurations. After a Euclidean continuation of dS4 and AdS4 we also present self-dual (instanton-type) Yang-Mills solutions on these backgrounds.

  15. Excluded-volume effects for a hadron gas in Yang-Mills theory

    CERN Document Server

    Alba, Paolo; Nada, Alessandro; Panero, Marco; Stöcker, Horst

    2016-01-01

    When the multiplicities of particles produced in heavy-ion collisions are fitted to the hadron-resonance-gas model, excluded-volume effects play a significant role. In this work, we study the impact of such effects onto the equation of state of pure Yang-Mills theory at low temperatures, comparing the predictions of the statistical model with lattice results. In particular, we present a detailed analysis of the SU(2) and SU(3) Yang-Mills theories: we find that, for both of them, the best fits to the equilibrium thermodynamic quantities are obtained when one assumes that the volume of different glueball states is inversely proportional to their mass. The implications of these findings for QCD are discussed.

  16. Universal aspects in the equation of state for Yang-Mills theories

    CERN Document Server

    Nada, Alessandro

    2015-01-01

    We present high-precision lattice calculations of the thermodynamics of Yang-Mills theories with different gauge groups. In the confining phase, we show that the equation of state is described remarkably well by a gas of massive, non-interacting glueballs, provided that an effective bosonic closed-string model is used to derive an exponentially growing Hagedorn spectrum for the heavy states. In particular, this model describes very accurately the results for the SU(3) theory reported by Bors\\'anyi et al. in JHEP 07 (2012) 056, as well as a novel set of lattice data for the SU(2) theory. In addition, we also also show that the equation of state in the deconfined phase exhibits a near perfect proportionality to the number of gluon degrees of freedom, including for the Yang-Mills theory based on the exceptional, center-less gauge group $G_2$.

  17. Nonperturbative aspects of Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Schleifenbaum, Wolfgang

    2008-07-01

    The subject of this thesis is the theory of strong interactions of quarks and gluons, with particular emphasis on nonperturbative aspects of the gluon sector. Continuum methods are used to investigate in particular the confinement phenomenon. Confinement which states that the elementary quarks and gluons cannot be detected as free particles requires an understanding of large-scale correlations. In perturbation theory, only short-range correlations can be reliably described. A nonperturbative approach is given by the set of integral Dyson Schwinger equations involving all Green functions of the theory. A solution for the gluon propagator is obtained in the infrared and ultraviolet asymptotic limits. In chapter 1, redundant degrees of freedom of the Yang Mills gauge theory are removed by fixing the Weyl and Coulomb gauge prior to quantization. The constrained quantization in the Dirac bracket formalism is then performed explicitly to produce the quantized Yang Mills Hamiltonian. The asymptotic infrared limits of Coulomb gauge correlation functions are studied analytically in chapter 2 in the framework of the Gribov Zwanziger confinement scenario. The Coulomb potential between heavy quarks as part of the Yang Mills Hamiltonian is calculated in this limit. A connection between the infrared limits of Coulomb and Landau gauge is established. The Hamiltonian derived paves the way in chapter 3 for finding the Coulomb gauge vacuum wave functional by means of the variational principle. Numerical solutions for the propagators in this vacuum state are discussed and seen to reproduce the anticipated infrared limit. The discussion is extended to the vertex functions. The effect of the approximations on the results is examined. Chapter 4 is mainly devoted to the ultraviolet behavior of the propagators. The discussion is issued in both Coulomb and Landau gauge. A nonperturbative running coupling is defined and calculated. The ultraviolet tails of the variational solutions from

  18. Casimir scaling and Yang-Mills glueballs

    Science.gov (United States)

    Hong, Deog Ki; Lee, Jong-Wan; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide

    2017-12-01

    We conjecture that in Yang-Mills theories the ratio between the ground-state glueball mass squared and the string tension is proportional to the ratio of the eigenvalues of quadratic Casimir operators in the adjoint and the fundamental representations. The proportionality constant depends on the dimension of the space-time only, and is henceforth universal. We argue that this universality, which is supported by available lattice results, is a direct consequence of area-law confinement. In order to explain this universal behavior, we provide three analytical arguments, based respectively on a Bethe-Salpeter analysis, on the saturation of the scale anomaly by the lightest scalar glueball and on QCD sum rules, commenting on the underlying assumptions that they entail and on their physical implications.

  19. Gravitational catalysis of merons in Einstein-Yang-Mills theory

    Science.gov (United States)

    Canfora, Fabrizio; Oh, Seung Hun; Salgado-Rebolledo, Patricio

    2017-10-01

    We construct regular configurations of the Einstein-Yang-Mills theory in various dimensions. The gauge field is of meron-type: it is proportional to a pure gauge (with a suitable parameter λ determined by the field equations). The corresponding smooth gauge transformation cannot be deformed continuously to the identity. In the three-dimensional case we consider the inclusion of a Chern-Simons term into the analysis, allowing λ to be different from its usual value of 1 /2 . In four dimensions, the gravitating meron is a smooth Euclidean wormhole interpolating between different vacua of the theory. In five and higher dimensions smooth meron-like configurations can also be constructed by considering warped products of the three-sphere and lower-dimensional Einstein manifolds. In all cases merons (which on flat spaces would be singular) become regular due to the coupling with general relativity. This effect is named "gravitational catalysis of merons".

  20. Lifting the Gribov ambiguity in Yang-Mills theories

    Energy Technology Data Exchange (ETDEWEB)

    Serreau, J., E-mail: serreau@apc.univ-paris7.fr [APC, AstroParticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cite, 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France); Tissier, M. [LPTMC, Laboratoire de Physique Theorique de la Matiere Condensee, CNRS UMR 7600, Universite Pierre et Marie Curie, boite 121, 4 pl. Jussieu, 75252 Paris Cedex 05 (France)

    2012-05-30

    We propose a new one-parameter family of Landau gauges for Yang-Mills theories which can be formulated by means of functional integral methods and are thus well suited for analytic calculations, but which are free of Gribov ambiguities and avoid the Neuberger zero problem of the standard Faddeev-Popov construction. The resulting gauge-fixed theory is perturbatively renormalizable in four dimensions and, for what concerns the calculation of ghost and gauge field correlators, it reduces to a massive extension of the Faddeev-Popov action. We study the renormalization group flow of this theory at one-loop and show that it has no Landau pole in the infrared for some - including physically relevant - range of values of the renormalized parameters.

  1. The Plane-Wave/Super Yang-Mills Duality

    Energy Technology Data Exchange (ETDEWEB)

    Sadri, D

    2003-10-14

    We present a self-contained review of the Plane-wave/super-Yang-Mills duality, which states that strings on a plane-wave background are dual to a particular large R-charge sector of N=4, D=4 superconformal U(N) gauge theory. This duality is a specification of the usual AdS/CFT correspondence in the ''Penrose limit''. The Penrose limit of AdS{sub 5} S{sup 5} leads to the maximally supersymmetric ten dimensional plane-wave (henceforth the plane-wave) and corresponds to restricting to the large R-charge sector, the BMN sector, of the dual superconformal field theory. After assembling the necessary background knowledge, we state the duality and review some of its supporting evidence. We review the suggestion by 't Hooft that Yang-Mills theories with gauge groups of large rank might be dual to string theories and the realization of this conjecture in the form of the AdS/CFT duality. We discuss plane-waves as exact solutions of supergravity and their appearance as Penrose limits of other backgrounds, then present an overview of string theory on the plane-wave background, discussing the symmetries and spectrum. We then make precise the statement of the proposed duality, classify the BMN operators, and mention some extensions of the proposal. We move on to study the gauge theory side of the duality, studying both quantum and non-planar corrections to correlation functions of BMN operators, and their operator product expansion. The important issue of operator mixing and the resultant need for re-diagonalization is stressed. Finally, we study strings on the plane-wave via light-cone string field theory, and demonstrate agreement on the one-loop correction to the string mass spectrum and the corresponding quantity in the gauge theory. A new presentation of the relevant superalgebra is given.

  2. Scattering amplitudes in N=2 Maxwell-Einstein and Yang-Mills/Einstein supergravity

    CERN Document Server

    Chiodaroli, Marco; Johansson, Henrik; Roiban, Radu

    2015-01-01

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N=2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N=2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian and Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which th...

  3. WDVV equations for pure Super-Yang-Mills theory

    NARCIS (Netherlands)

    Hoevenaars, L.K.; Martini, Ruud

    2000-01-01

    In the literature, there are two proofs that the prepotential of $N=2$ pure Super-Yang-Mills theory satisfies the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations. We show that these two methods are in fact equivalent.

  4. Super-Yang-Mills and M5-branes

    OpenAIRE

    Singh, Harvendra

    2011-01-01

    We uplift 5-dimensional super-Yang-Mills theory to a 6-dimensional gauge theory with the help of a space-like constant vector $\\eta^M$, whose norm determines the Yang-Mills coupling constant. After the localization of $\\eta^M$ the 6D gauge theory acquires Lorentzian invariance as well as scale invariance. We discuss KK states, instantons and the flux quantization. The 6D theory admits extended solutions like 1/2 BPS `strings' and monopoles.

  5. On the geometry of moduli space of vacua in N = 2 supersymmetric Yang-Mills theory

    CERN Document Server

    Ceresole, Anna; Ferrara, S.

    1994-01-01

    We consider generic properties of the moduli space of vacua in N=2 supersymmetric Yang--Mills theory recently studied by Seiberg and Witten. We find, on general grounds, Picard--Fuchs type of differential equations expressing the existence of a flat holomorphic connection, which for one parameter (i.e. for gauge group G=SU(2)), are second order equations. In the case of coupling to gravity (as in string theory), where also ``gravitational'' electric and magnetic monopoles are present, the electric--magnetic S duality, due to quantum corrections, does not seem any longer to be related to Sl(2,\\IZ) as for N=4 supersymmetric theory.

  6. AdS charged black holes in Einstein-Yang-Mills gravity's rainbow: Thermal stability and P - V criticality

    Science.gov (United States)

    Hendi, Seyed Hossein; Momennia, Mehrab

    2018-02-01

    Motivated by the interesting non-abelian gauge field, in this paper, we look for the analytical solutions of Yang-Mills theory in the context of gravity's rainbow. Regarding the trace of quantum gravity in black hole thermodynamics, we examine the first law of thermodynamics and also thermal stability in the canonical ensemble. We show that although the rainbow functions and Yang-Mills charge modify the solutions, the first law of thermodynamics is still valid. Based on the phenomenological similarities between the adS black holes and van der Waals liquid/gas systems, we study the critical behavior of the Yang-Mills black holes in the extended phase space thermodynamics. We also investigate the effects of various parameters on thermal instability as well as critical properties by using appropriate figures.

  7. 5D maximally supersymmetric Yang-Mills in 4D superspace. Applications

    Energy Technology Data Exchange (ETDEWEB)

    McGarrie, Moritz

    2013-03-15

    We reformulate 5D maximally supersymmetric Yang-Mills in 4D Superspace, for a manifold with boundaries. We emphasise certain features and conventions necessary to allow for supersymmetric model building applications. Finally we apply the holographic interpretation of a slice of AdS and show how to generate Dirac soft masses between external source fields, as well as kinetic mixing, as a boundary effective action.

  8. Amplitude relations in heterotic string theory and Einstein-Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Potsdam (Germany)

    2016-11-11

    We present all-multiplicity evidence that the tree-level S-matrix of gluons and gravitons in heterotic string theory can be reduced to color-ordered single-trace amplitudes of the gauge multiplet. Explicit amplitude relations are derived for up to three gravitons, up to two color traces and an arbitrary number of gluons in each case. The results are valid to all orders in the inverse string tension α{sup ′} and generalize to the ten-dimensional superamplitudes which preserve 16 supercharges. Their field-theory limit results in an alternative proof of the recently discovered relations between Einstein-Yang-Mills amplitudes and those of pure Yang-Mills theory. Similarities and differences between the integrands of the Cachazo-He-Yuan formulae and the heterotic string are investigated.

  9. Matrix models for 5d super Yang-Mills

    Science.gov (United States)

    Minahan, Joseph A.

    2017-11-01

    In this contribution to the issue on localization in gauge theories we investigate the matrix models derived from localizing N=1 super Yang-Mills on S 5. We consider the large-N limit and attempt to solve the matrix model by a saddle-point approximation. In general it is not possible to find an analytic solution, but at the weak and the strong limits of the ’t Hooft coupling there are dramatic simplifications that allows us to extract most of the interesting information. At weak coupling we show that the matrix model is close to the Gaussian matrix model and that the free-energy scales as N 2. At strong coupling we show that if the theory contains one adjoint hypermultiplet then the free-energy scales as N 3. We also find the expectation value of a supersymmetric Wilson loop that wraps the equator. We demonstrate how to extract the effective couplings and reproduce results of Seiberg. Finally, we compare to results for the six-dimensional (2,0) theory derived using the AdS/CFT correspondence. We show that by choosing the hypermultiplet mass such that the supersymmetry is enhanced to N=2 , the Wilson loop result matches the analogous calculation using AdS/CFT. The free-energies differ by a rational fraction. This is a contribution to the review issue ‘Localization techniques in quantum field theories’ (ed Pestun and Zabzine) which contains 17 chapters available at [1].

  10. Finite temperature and the Polyakov loop in the covariant variational approach to Yang-Mills Theory

    Science.gov (United States)

    Quandt, Markus; Reinhardt, Hugo

    2017-03-01

    We extend the covariant variational approach for Yang-Mills theory in Landau gauge to non-zero temperatures. Numerical solutions for the thermal propagators are presented and compared to high-precision lattice data. To study the deconfinement phase transition, we adapt the formalism to background gauge and compute the effective action of the Polyakov loop for the colour groups SU(2) and SU(3). Using the zero-temperature propagators as input, all parameters are fixed at T = 0 and we find a clear signal for a deconfinement phase transition at finite temperatures, which is second order for SU(2) and first order for SU(3). The critical temperatures obtained are in reasonable agreement with lattice data.

  11. Nonlinear description of Yang-Mills cosmology: cosmic inflation and the accompanying Hannay’s angle

    Science.gov (United States)

    Bouguerra, Yacine; Maamache, Mustapha; Ryeol Choi, Jeong

    2017-06-01

    Hannay’s angle is a classical analogue of the “geometrical phase factor” found by Berry in his research on the quantum adiabatic theorem. This classical analogue is defined if closed curves of constant action variables return to the same curves in phase space after an adaibatic evolution. Adiabatic evolution of Yang-Mills cosmology, which is described by a time-dependent quartic oscillator, is investigated. Phase properties of the Yang-Mills fields are analyzed and the corresponding Hannay’s angle is derived from a rigorous evaluation. The obtained Hannay’s angle shift is represented in terms of several observable parameters associated with such an angle shift. The time evolution of Hannay’s angle in Yang-Mills cosmology is examined from an illustration plotted on the basis of numerical evaluation, and its physical nature is addressed. Hannay’s angle, together with its quantum counterpart Berry’s phase, plays a pivotal role in conceptual understanding of several cosmological problems and indeed can be used as a supplementary probe for cosmic inflation. Supported by Basic Science Research Program through National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)

  12. Non-Abelian fields in AdS$_4$ spacetime: axially symmetric, composite configurations

    CERN Document Server

    Kichakova, Olga; Radu, Eugen; Shnir, Yasha

    2014-01-01

    We construct new finite energy regular solutions in Einstein-Yang-Mills-SU(2) theory. They are static, axially symmetric and approach at infinity the anti-de Sitter spacetime background. These configurations are characterized by a pair of integers $(m, n)$, where $m$ is related to the polar angle and $n$ to the azimuthal angle, being related to the known flat space monopole-antimonopole chains and vortex rings. Generically, they describe composite configurations with several individual components, possesing a nonzero magnetic charge, even in the absence of a Higgs field. Such Yang-Mills configurations exist already in the probe limit, the AdS geometry supplying the attractive force needed to balance the repulsive force of Yang-Mills gauge interactions. The gravitating solutions are constructed by numerically solving the elliptic Einstein-DeTurck--Yang-Mills equations. The variation of the gravitational coupling constant $\\alpha$ reveals the existence of two branches of gravitating solutions which bifurcate at...

  13. Topological susceptibility for the SU(3) Yang--Mills theory

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Giusti, Leonardo; Pica, Claudio

    2004-01-01

    We present the results of a computation of the topological susceptibility in the SU(3) Yang--Mills theory performed by employing the expression of the topological charge density operator suggested by Neuberger's fermions. In the continuum limit we find r_0^4 chi = 0.059(3), which corresponds to c...

  14. Coset Space Dimensional Reduction of Einstein--Yang--Mills theory

    CERN Document Server

    Chatzistavrakidis, A.; Prezas, N.; Zoupanos, G.

    2007-01-01

    In the present contribution we extend our previous work by considering the coset space dimensional reduction of higher-dimensional Einstein--Yang--Mills theories including scalar fluctuations as well as Kaluza--Klein excitations of the compactification metric and we describe the gravity-modified rules for the reduction of non-abelian gauge theories.

  15. Gravitational leptogenesis in axion inflation with SU(2) gauge field

    Science.gov (United States)

    Maleknejad, Azadeh

    2016-12-01

    We present an intrinsic leptogenesis mechanism in models of axion inflation with a classical SU(2) gauge field. The gauge field is coupled to the axion with a Chern-Simons interaction and comprises a tiny fraction of the total energy, ρYM/ρtot lesssim epsilon2. However, it has spin-2 fluctuations which breaks the parity and leads to the generation of chiral gravitational waves during inflation. By the gravitational anomaly in SM, it naturally creates a net lepton number density, sufficient to explain the matter asymmetry. We show that this mechanism can generate the observed value of baryon to photon number density in a natural range of parameters and yet has a small chiral tensor power spectrum on large scales.

  16. Reformulations of the Yang-Mills theory toward quark confinement and mass gap

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Kei-Ichi; Shinohara, Toru [Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522 (Japan); Kato, Seikou [Fukui National College of Technology, Sabae 916-8507 (Japan); Shibata, Akihiro [Computing Research Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2016-01-22

    We propose the reformulations of the SU (N) Yang-Mills theory toward quark confinement and mass gap. In fact, we have given a new framework for reformulating the SU (N) Yang-Mills theory using new field variables. This includes the preceding works given by Cho, Faddeev and Niemi, as a special case called the maximal option in our reformulations. The advantage of our reformulations is that the original non-Abelian gauge field variables can be changed into the new field variables such that one of them called the restricted field gives the dominant contribution to quark confinement in the gauge-independent way. Our reformulations can be combined with the SU (N) extension of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator to give a gauge-invariant definition for the magnetic monopole in the SU (N) Yang-Mills theory without the scalar field. In the so-called minimal option, especially, the restricted field is non-Abelian and involves the non-Abelian magnetic monopole with the stability group U (N− 1). This suggests the non-Abelian dual superconductivity picture for quark confinement. This should be compared with the maximal option: the restricted field is Abelian and involves only the Abelian magnetic monopoles with the stability group U(1){sup N−1}, just like the Abelian projection. We give some applications of this reformulation, e.g., the stability for the homogeneous chromomagnetic condensation of the Savvidy type, the large N treatment for deriving the dimensional transmutation and understanding the mass gap, and also the numerical simulations on a lattice which are given by Dr. Shibata in a subsequent talk.

  17. Phase structure of lattice N=4 super Yang-Mills

    DEFF Research Database (Denmark)

    Catterall, Simon; Damgaard, Poul H.; DeGrand, Thomas

    2012-01-01

    We make a first study of the phase diagram of four-dimensional N = 4 super Yang-Mills theory regulated on a space-time lattice. The lattice formulation we employ is both gauge invariant and retains at all lattice spacings one exactly preserved supersymmetry charge. Our numerical results are consi......We make a first study of the phase diagram of four-dimensional N = 4 super Yang-Mills theory regulated on a space-time lattice. The lattice formulation we employ is both gauge invariant and retains at all lattice spacings one exactly preserved supersymmetry charge. Our numerical results...... are consistent with the existence of a single deconfined phase at all observed values of the bare coupling....

  18. Yang-Mills- SU(3) via FORM

    Energy Technology Data Exchange (ETDEWEB)

    Costa Jorge, Patricia M. da; Peres, Patricia Duarte [Universidade Catolica de Petropolis, RJ (Brazil). Dept. de Ciencia da Computacao; Boldo, J.L

    1997-06-01

    This work uses FORM software aspects for obtaining a series of formal results in the non-Abelian gauge theory, with SU(3) group. The work also studies field transformation, Lagrangian density invariance, field equations, energy distribution and the theory reparametrization in terms of fields associated to particles which are possible to be detected in accelerators

  19. Notes on theta dependence in holographic Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Bigazzi, Francesco [INFN - Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Cotrone, Aldo L. [Dipartimento di Fisica e Astronomia, Università di Firenze and INFN - Sezione di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Sisca, Roberto [Università di Pisa, Dipartimento di Fisica “E. Fermi' ,Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy)

    2015-08-18

    Effects of the θ parameter are studied in Witten’s model of holographic 4d Yang-Mills, where θ is the coefficient of the CP-breaking topological term. First, the gravity background, including the full backreaction of the RR form dual to the θ parameter, is revisited. Then, a number of observables are computed holographically: the ground-state energy density, the string tension, the ’t Hooft loop, the light scalar glueball mass, the baryon mass scale, the critical temperature for deconfinement — and thus the whole (T,θ) phase diagram — and the entanglement entropy. A simple rule is provided to derive the θ corrections to (at least) all the CP-neutral observables of the model. Some of the observables we consider can and have been in fact studied in pure 4d Yang-Mills on the lattice. In that framework the results, obtained in the small θ regime, are given up to very few powers of θ{sup 2}. The corresponding holographic results agree qualitatively with available lattice data and signal an overall mass scale reduction by θ. Moreover, being exact in θ, they provide a benchmark for higher order corrections in Yang-Mills.

  20. Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry

    Science.gov (United States)

    Hsu, J. P.

    1981-01-01

    A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.

  1. Gauging Yang-Mills Symmetries In 1+1-Dimensional Spacetime

    OpenAIRE

    Almukahhal, Raja Q.; Hubsch, Tristan

    1999-01-01

    We present a systematic and 'from the ground up' analysis of the 'minimal coupling' type of gauging of Yang-Mills symmetries in (2,2)-supersymmetric 1+1-dimensional spacetime. Unlike in the familiar 3+1-dimensional N=1 supersymmetric case, we find several distinct types of minimal coupling symmetry gauging, and so several distinct types of gauge (super)fields, some of which entirely novel. Also, we find that certain (quartoid) constrained superfields can couple to no gauge superfield at all, ...

  2. Fifty years of Yang-Mills Theories: a phenomenological point of view

    CERN Document Server

    De Rújula, Alvaro

    2005-01-01

    On the occasion of the celebration of the first half-century of Yang--Mills theories, I am contributing a personal recollection of how the subject, in its early times, confronted physical reality, that is, its "phenomenology". There is nothing original in this work, except, perhaps, my own points of view. But I hope that the older practitioners of the field will find here grounds for nostalgia, or good reasons to disagree with me. Younger addicts may learn that history does not resemble at all what is reflected in current textbooks: it was orders of magnitude more fascinating.

  3. Non-supersymmetric matrix strings from generalized Yang-Mills theory on arbitrary Riemann surfaces

    Science.gov (United States)

    Billó, M.; D'Adda, A.; Provero, P.

    2000-06-01

    We quantize pure 2d Yang-Mills theory on an arbitrary Riemann surface in the gauge where the field strength is diagonal. Twisted sectors originate, as in Matrix string theory, from permutations of the eigenvalues around homotopically non-trivial loops. These sectors, that must be discarded in the usual quantization due to divergences occurring when two eigenvalues coincide, can be consistently kept if one modifies the action by introducing a coupling of the field strength to the space-time curvature. This leads to a generalized Yang-Mills theory whose action reduces to the usual one in the limit of zero curvature. After integrating over the non-diagonal components of the gauge fields, the theory becomes a free string theory (sum over unbranched coverings) with a U (1) gauge theory on the world-sheet. This is shown to be equivalent to a lattice theory with a gauge group which is the semi-direct product of S N and U (1) N. By using well known results on the statistics of coverings, the partition function on arbitrary Riemann surfaces and the kernel functions on surfaces with boundaries are calculated. Extensions to include branch points and non-abelian groups on the world-sheet are briefly commented upon.

  4. Infrared degrees of freedom of Yang-Mills theory in the Schrödinger representation

    Science.gov (United States)

    Forkel, Hilmar

    2006-05-01

    We set up a new calculational framework for the Yang-Mills vacuum transition amplitude in the Schrödinger representation. After integrating out hard-mode contributions perturbatively and performing a gauge-invariant gradient expansion of the ensuing soft-mode action, a manageable saddle-point expansion for the vacuum overlap can be formulated. In combination with the squeezed approximation to the vacuum wave functional this allows for an essentially analytical treatment of physical amplitudes. Moreover, it leads to the identification of dominant and gauge-invariant classes of gauge field orbits which play the role of gluonic infrared (IR) degrees of freedom. The latter emerge as a diverse set of saddle-point solutions and are represented by unitary matrix fields. We discuss their scale stability, the associated virial theorem and other general properties including topological quantum numbers and action bounds. We then find important saddle-point solutions (most of them solitons) explicitly and examine their physical impact. While some are related to tunneling solutions of the classical Yang-Mills equation, i.e. to instantons and merons, others appear to play unprecedented roles. A remarkable new class of IR degrees of freedom consists of Faddeev-Niemi type link and knot solutions, potentially related to glueballs.

  5. Topological susceptibility for the SU(3) Yang--Mills theory

    CERN Document Server

    Del Debbio, L; Pica, C; Debbio, Luigi Del; Giusti, Leonardo; Pica, Claudio

    2005-01-01

    We present the results of a computation of the topological susceptibility in the SU(3) Yang--Mills theory performed by employing the expression of the topological charge density operator suggested by Neuberger's fermions. In the continuum limit we find r_0^4 chi = 0.059(3), which corresponds to chi=(191 \\pm 5 MeV)^4 if F_K is used to set the scale. Our result supports the Witten--Veneziano explanation for the large mass of the eta'.

  6. Simple singularities and N = 2 supersymmetric Yang-Mills theory

    CERN Document Server

    Klemm, A D; Theisen, Stefan J; Yankielowicz, Shimon; Klemm, A; Lerche, W; Theisen, S

    1995-01-01

    We present a first step towards generalizing the work of Seiberg and Witten on N=2 supersymmetric Yang-Mills theory to arbitrary gauge groups. Specifically, we propose a particular sequence of hyperelliptic genus n-1 Riemann surfaces to underly the quantum moduli space of SU(n) N=2 supersymmetric gauge theory. These curves have an obvious generalization to arbitrary simply laced gauge groups, which involves the A-D-E type simple singularities. To support our proposal, we argue that the monodromy in the semiclassical regime is correctly reproduced. We also give some remarks on a possible relation to string theory.

  7. Super Yang-mills Theories On The Lattice

    CERN Document Server

    Bibireata, D

    2005-01-01

    We developed a toolkit for simulating gauge theories on the lattice. The toolkit has support far simulations in any dimension, with SU(Nc ≥ 2) gauge groups, with particles in fundamental or adjoint representation, and with Wilson or domain wall fermions. The main objective of the toolkit is to provide a framework for simulating super Yang-Mills theories on the lattice. As a check, we use the toolkit to match the meson spectrum of QCD in two dimensions, which can be computed exactly in the large Nc limit. Then, we perform a set of exploratory studies of N = 1 SYM in four dimensions and its dimensionally reduced models.

  8. N=1 supersymmetric Yang-Mills theory on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Stefano

    2015-04-08

    Supersymmetry (SUSY) relates two classes of particles of our universe, bosons and fermions. SUSY is considered nowadays a fundamental development to explain many open questions about high energy physics. The N=1 super Yang-Mills (SYM) theory is a SUSY model that describes the interaction between gluons and their fermion superpartners called ''gluinos''. Monte Carlo simulations on the lattice are a powerful tool to explore the non-perturbative dynamics of this theory and to understand how supersymmetry emerges at low energy. This thesis presents new results and new simulations about the properties of N=1 SYM, in particular about the phase diagram at finite temperature.

  9. Space-time symmetry and quantum Yang-Mills gravity how space-time translational gauge symmetry enables the unification of gravity with other forces

    CERN Document Server

    Hsu, Jong-Ping

    2013-01-01

    Yang-Mills gravity is a new theory, consistent with experiments, that brings gravity back to the arena of gauge field theory and quantum mechanics in flat space-time. It provides solutions to long-standing difficulties in physics, such as the incompatibility between Einstein's principle of general coordinate invariance and modern schemes for a quantum mechanical description of nature, and Noether's 'Theorem II' which showed that the principle of general coordinate invariance in general relativity leads to the failure of the law of conservation of energy. Yang-Mills gravity in flat space-time a

  10. Photon and dilepton production in supersymmetric Yang-Mills plasma

    Science.gov (United States)

    Huot, Simon C.; Kovtun, Pavel; Moore, Guy D.; Starinets, Andrei; Yaffe, Laurence G.

    2006-12-01

    By weakly gauging one of the U(1) subgroups of the R-symmetry group, Script N = 4 super-Yang-Mills theory can be coupled to electromagnetism, thus allowing a computation of photon production and related phenomena in a QCD-like non-Abelian plasma at both weak and strong coupling. We compute photon and dilepton emission rates from finite temperature Script N = 4 supersymmetric Yang-Mills plasma both perturbatively at weak coupling to leading order, and non-perturbatively at strong coupling using the AdS/CFT duality conjecture. Comparison of the photo-emission spectra for Script N = 4 plasma at weak coupling, Script N = 4 plasma at strong coupling, and QCD at weak coupling reveals several systematic trends which we discuss. We also evaluate the electric conductivity of Script N = 4 plasma in the strong coupling limit, and to leading-log order at weak coupling. Current-current spectral functions in the strongly coupled theory exhibit hydrodynamic peaks at small frequency, but otherwise show no structure which could be interpreted as well-defined thermal resonances in the high-temperature phase.

  11. Photon and dilepton production in supersymmetric Yang-Mills plasma

    Energy Technology Data Exchange (ETDEWEB)

    Huot, Simon C. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Kovtun, Pavel [KITP, University of California, Santa Barbara, CA 93106-4030 (United States); Moore, Guy D. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Starinets, Andrei [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Yaffe, Laurence G. [Department of Physics, University of Washington, Seattle, WA, 98195-1560, (United States)

    2006-12-15

    By weakly gauging one of the U(1) subgroups of the R-symmetry group, N 4 super-Yang-Mills theory can be coupled to electromagnetism, thus allowing a computation of photon production and related phenomena in a QCD-like non-Abelian plasma at both weak and strong coupling. We compute photon and dilepton emission rates from finite temperature N = 4 supersymmetric Yang-Mills plasma both perturbatively at weak coupling to leading order, and non-perturbatively at strong coupling using the AdS/CFT duality conjecture. Comparison of the photo-emission spectra for N = 4 plasma at weak coupling, N = 4 plasma at strong coupling, and QCD at weak coupling reveals several systematic trends which we discuss. We also evaluate the electric conductivity of N = 4 plasma in the strong coupling limit, and to leading-log order at weak coupling. Current-current spectral functions in the strongly coupled theory exhibit hydrodynamic peaks at small frequency, but otherwise show no structure which could be interpreted as well-defined thermal resonances in the high-temperature phase.

  12. Confinement in a three-dimensional Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Frasca, Marco

    2017-04-15

    We show that, starting from known exact classical solutions of the Yang-Mills theory in three dimensions, the string tension is obtained and the potential is consistent with a marginally confining theory. The potential we obtain agrees fairly well with preceding findings in the literature but here we derive it analytically from the theory without further assumptions. The string tension is in strict agreement with lattice results and the well-known theoretical result by Karabali-Kim-Nair analysis. Classical solutions depend on a dimensionless numerical factor arising from integration. This factor enters into the determination of the spectrum and has been arbitrarily introduced in some theoretical models. We derive it directly from the solutions of the theory and is now fully justified. The agreement obtained with the lattice results for the ground state of the theory is well below 1% at any value of the degree of the group. (orig.)

  13. Super Yang-Mills theory as a random matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, W. [Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11794-3840 (United States)

    1995-07-15

    We generalize the Gervais-Neveu gauge to four-dimensional {ital N}=1 superspace. The model describes an {ital N}=2 super Yang-Mills theory. All chiral superfields ({ital N}=2 matter and ghost multiplets) exactly cancel to all loops. The remaining Hermitian scalar superfield (matrix) has a renormalizable massive propagator and simplified vertices. These properties are associated with {ital N}=1 supergraphs describing a superstring theory on a random lattice world sheet. We also consider all possible finite matrix models, and find they have a universal large-color limit. These could describe gravitational strings if the matrix-model coupling is fixed to unity, for exact electric-magnetic self-duality.

  14. Entropy production and equilibration in Yang-Mills quantum mechanics.

    Science.gov (United States)

    Tsai, Hung-Ming; Müller, Berndt

    2012-01-01

    The Husimi distribution provides for a coarse-grained representation of the phase-space distribution of a quantum system, which may be used to track the growth of entropy of the system. We present a general and systematic method of solving the Husimi equation of motion for an isolated quantum system, and we construct a coarse-grained Hamiltonian whose expectation value is exactly conserved. As an application, we numerically solve the Husimi equation of motion for two-dimensional Yang-Mills quantum mechanics (the x-y model) and calculate the time evolution of the coarse-grained entropy of a highly excited state. We show that the coarse-grained entropy saturates to a value that coincides with the microcanonical entropy corresponding to the energy of the system. © 2012 American Physical Society

  15. Boundary effects in super-Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Mushtaq B.; Ganai, Prince A. [National Institute of Technology, Department of Physics, Srinagar, Kashmir (India); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Alberta (Canada); Zaz, Zaid [University of Kashmir, Department of Electronics and Communication Engineering, Srinagar, Kashmir (India); Bhat, Anha [National Institute of Technology, Department of Metallurgical and Materials Engineering, Srinagar, Kashmir (India); Masood, Syed [International Islamic University, Department of Physics, Islamabad (Pakistan)

    2017-05-15

    In this paper, we shall analyze a three dimensional supersymmetry theory with N = 2 supersymmetry. We will analyze the quantization of this theory, in the presence of a boundary. The effective Lagrangian used in the path integral quantization of this theory, will be given by the sum of the gauge fixing term and the ghost term with the original classical Lagrangian. Even though the supersymmetry of this effective Lagrangian will also be broken due to the presence of a boundary, it will be demonstrated that half of the supersymmetry of this theory can be preserved by adding a boundary Lagrangian to the effective bulk Lagrangian. The supersymmetric transformation of this new boundary Lagrangian will exactly cancel the boundary term generated from the supersymmetric transformation of the effective bulk Lagrangian. We will analyze the Slavnov-Taylor identity for this N = 2 Yang-Mills theory with a boundary. (orig.)

  16. On the hydrodynamic attractor of Yang-Mills plasma

    Science.gov (United States)

    Spaliński, Michał

    2018-01-01

    There is mounting evidence suggesting that relativistic hydrodynamics becomes relevant for the physics of quark-gluon plasma as the result of nonhydrodynamic modes decaying to an attractor apparent even when the system is far from local equilibrium. Here we determine this attractor for Bjorken flow in N = 4 supersymmetric Yang-Mills theory (SYM) using Borel summation of the gradient expansion of the expectation value of the energy momentum tensor. By comparing the result to numerical simulations of the flow based on the AdS/CFT correspondence we show that it provides an accurate and unambiguous approximation of the hydrodynamic attractor in this system. This development has important implications for the formulation of effective theories of hydrodynamics.

  17. The five-loop beta function of Yang-Mills theory with fermions

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, F. [Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands); Ruijl, B. [Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands); Leiden Centre of Data Science, Leiden University, Niels Bohrweg 1, 2333 CA Leiden (Netherlands); Ueda, T.; Vermaseren, J.A.M. [Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands); Vogt, A. [Department of Mathematical Sciences, University of Liverpool,Liverpool L69 3BX (United Kingdom)

    2017-02-17

    We have computed the five-loop corrections to the scale dependence of the renormalized coupling constant for Quantum Chromodynamics (QCD), its generalization to non-Abelian gauge theories with a simple compact Lie group, and for Quantum Electrodynamics (QED). Our analytical result, obtained using the background field method, infrared rearrangement via a new diagram-by-diagram implementation of the R{sup ∗} operation and the FORCER program for massless four-loop propagators, confirms the QCD and QED results obtained by only one group before. The numerical size of the five-loop corrections is briefly discussed in the standard (MS)-bar scheme for QCD with n{sub f} flavours and for pure SU(N) Yang-Mills theory. Their effect in QCD is much smaller than the four-loop contributions, even at rather low scales.

  18. Non-Abelian localization for supersymmetric Yang-Mills-Chern-Simons theories on a Seifert manifold

    Science.gov (United States)

    Ohta, Kazutoshi; Yoshida, Yutaka

    2012-11-01

    We derive non-Abelian localization formulas for supersymmetric Yang-Mills-Chern-Simons theory with matters on a Seifert manifold M, which is the three-dimensional space of a circle bundle over a two-dimensional Riemann surface Σ, by using the cohomological approach introduced by Källén. We find that the partition function and the vacuum expectation value of the supersymmetric Wilson loop reduces to a finite dimensional integral and summation over classical flux configurations labeled by discrete integers. We also find that the partition function reduces further to just a discrete sum over integers in some cases, and evaluate the supersymmetric index (Witten index) exactly on S1×Σ. The index completely agrees with the previous prediction from field theory and branes. We discuss a vacuum structure of the Aharony-Bergman-Jafferis-Maldacena theory deduced from the localization.

  19. 't Hooft loop and the phases of SU(2) LGT

    OpenAIRE

    Burgio, Giuseppe

    2013-01-01

    We analyze the vacuum structure of SU(2) lattice gauge theories in D=2,3,4, concentrating on the stability of 't Hooft loops. High precision calculations have been performed in D=3; similar results hold also for D=4 and D=2. We discuss the impact of our findings on the continuum limit of Yang-Mills theories.

  20. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    Science.gov (United States)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; Roiban, Radu

    2017-07-01

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + ϕ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism. Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.

  1. Adventures of the coupled Yang Mills oscillators: I. Semiclassical expansion

    Science.gov (United States)

    Matinyan, Sergei G.; Müller, Berndt

    2006-01-01

    We study the quantum mechanical motion in the x2y2 potentials with n = 2, 3, which arise in the spatially homogeneous limit of the Yang-Mills (YM) equations. These systems show strong stochasticity in the classical limit (planck = 0) and exhibit a quantum mechanical confinement feature. We calculate the partition function Z(t) going beyond the Thomas-Fermi (TF) approximation by means of the semiclassical expansion using the Wigner-Kirkwood (WK) method. We derive a novel compact form of the differential equation for the WK function. After separating the motion in the channels of the equipotential surface from the motion in the central region, we show that the leading higher order corrections to the TF term vanish up to eighth order in planck, if we treat the quantum motion in the hyperbolic channels correctly by adiabatic separation of the degrees of freedom. Finally, we obtain an asymptotic expansion of the partition function in terms of the parameter g2planck4t3.

  2. One-dimensional structures behind twisted and untwisted superYang-Mills theory

    CERN Document Server

    Baulieu, Laurent

    2011-01-01

    We give a one-dimensional interpretation of the four-dimensional twisted N=1 superYang-Mills theory on a Kaehler manifold by performing an appropriate dimensional reduction. We prove the existence of a 6-generator superalgebra, which does not possess any invariant Lagrangian but contains two different subalgebras that determine the twisted and untwisted formulations of the N=1 superYang-Mills theory.

  3. N=4 Super-Yang-Mills Theory, QCD and Collider Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Z.

    2004-10-04

    We review how (dimensionally regulated) scattering amplitudes in N=4 super-Yang-Mills theory provide a useful testing ground for perturbative QCD calculations relevant to collider physics, as well as another avenue for investigating the AdS/CFT correspondence. We describe the iterative relation for two-loop scattering amplitudes in N=4 super-Yang-Mills theory found in (C. Anastasiou et al., Phys. Rev. Lett. 91:251602 (2003),) and discuss recent progress toward extending it to three loops.

  4. Topological sectors and measures on moduli space in quantum Yang-Mills on a Riemann surface

    Science.gov (United States)

    Fine, Dana Stanley

    1996-03-01

    Previous path integral treatments of Yang-Mills on a Riemann surface automatically sum over principal fiber bundles of all possible topological types in computing quantum expectations. This paper extends the path integral formulation to treat separately each topological sector. The formulation is sufficiently explicit to calculate Wilson line expectations exactly. Further, it suggests two new measures on the moduli space of flat connections, one of which proves to agree with the small-volume limit of the Yang-Mills measure.

  5. Representation dependence of k -strings in pure Yang-Mills theory via supersymmetry

    Science.gov (United States)

    Anber, Mohamed M.; Pellizzani, Vito

    2017-12-01

    We exploit a conjectured continuity between super Yang-Mills on R3×S1 and pure Yang-Mills to study k -strings in the latter theory. As expected, we find that Wilson-loop correlation functions depend on the N-ality of a representation R to the leading order. However, the next-to-leading order correction is not universal and is given by the group characters, in the representation R , of the permutation group. We also study W-bosons in super Yang-Mills. We show that they are deconfined on the string world sheet, and therefore, they can change neither the string N-ality nor its tension. This phenomenon mirrors the fact that soft gluons do not screen probe charges with nonzero N-ality in pure Yang-Mills. Finally, we comment on the scaling law of k -strings in super Yang-Mills and compare our findings with strings in Seiberg-Witten theory, deformed Yang-Mills theory, and holographic studies that were performed in the 't Hooft large-N limit.

  6. A noncompact Weyl-Einstein-Yang-Mills model: A semiclassical quantum gravity

    Science.gov (United States)

    Dengiz, Suat

    2017-08-01

    We construct and study perturbative unitarity (i.e., ghost and tachyon analysis) of a 3 + 1-dimensional noncompact Weyl-Einstein-Yang-Mills model. The model describes a local noncompact Weyl's scale plus SU(N) phase invariant Higgs-like field,conformally coupled to a generic Weyl-invariant dynamical background. Here, the Higgs-like sector generates the Weyl's conformal invariance of system. The action does not admit any dimensionful parameter and genuine presence of de Sitter vacuum spontaneously breaks the noncompact gauge symmetry in an analogous manner to the Standard Model Higgs mechanism. As to flat spacetime, the dimensionful parameter is generated within the dimensional transmutation in quantum field theories, and thus the symmetry is radiatively broken through the one-loop Effective Coleman-Weinberg potential. We show that the mere expectation of reducing to Einstein's gravity in the broken phases forbids anti-de Sitter space to be its stable vacua. The model is unitary in de Sitter and flat vacua around which a massless graviton, N2 - 1 massless scalar bosons, N massless Dirac fermions, N2 - 1 Proca-type massive Abelian and non-Abelian vector bosons are generically propagated.

  7. Anti-Ferromagnetic Condensate in Yang-Mills Theory

    OpenAIRE

    Fingberg, Jochen; Polonyi, Janos

    1996-01-01

    SU(2) gauge theory with competing interactions is shown to possess a rich phase structure with anti-ferromagnetic vacua. It is argued that the phase boundaries persist in the weak coupling limit suggesting the existence of different renormalized continuum theories for QCD.

  8. Integrability in dipole-deformed \\boldsymbol{N=4} super Yang-Mills

    Science.gov (United States)

    Guica, Monica; Levkovich Maslyuk, Fedor; Zarembo, Konstantin

    2017-09-01

    We study the null dipole deformation of N=4 super Yang-Mills theory, which is an example of a potentially solvable ‘dipole CFT’: a theory that is non-local along a null direction, has non-relativistic conformal invariance along the remaining ones, and is holographically dual to a Schrödinger space-time. We initiate the field-theoretical study of the spectrum in this model by using integrability inherited from the parent theory. The dipole deformation corresponds to a nondiagonal Drinfeld-Reshetikhin twist in the spin chain picture, which renders the traditional Bethe ansatz inapplicable from the very beginning. We use instead the Baxter equation supplemented with nontrivial asymptotics, which gives the full 1-loop spectrum in the sl(2) sector. We show that anomalous dimensions of long gauge theory operators perfectly match the string theory prediction, providing a quantitative test of Schrödinger holography. Dedicated to the memory of Petr Petrovich Kulish.

  9. N=4 super-Yang-Mills in LHC superspace. Part I: Classical and quantum theory

    CERN Document Server

    Chicherin, Dmitry

    2017-02-10

    We present a formulation of the maximally supersymmetric N=4 gauge theory in Lorentz harmonic chiral (LHC) superspace. It is closely related to the twistor formulation of the theory but employs the simpler notion of Lorentz harmonic variables. They parametrize a two-sphere and allow us to handle efficiently infinite towers of higher-spin auxiliary fields defined on ordinary space-time. In this approach the chiral half of N=4 supersymmetry is manifest. The other half is realized non-linearly and the algebra closes on shell. We give a straightforward derivation of the Feynman rules in coordinate space. We show that the LHC formulation of the N=4 super-Yang-Mills theory is remarkably similar to the harmonic superspace formulation of the N=2 gauge and hypermultiplet matter theories. In the twin paper \\cite{twin} we apply the LHC formalism to the study of the non-chiral multipoint correlation functions of the N=4 stress-tensor supermultiplet.

  10. Energy loss of a heavy quark moving through Script N = 4 supersymmetric Yang-Mills plasma

    Science.gov (United States)

    Herzog, Christopher P.; Karch, Andreas; Kovtun, Pavel; Kozcaz, Can; Yaffe, Laurence G.

    2006-07-01

    We use the AdS/CFT correspondence to determine the rate of energy loss of a heavy quark moving through Script N = 4 SU(Nc) supersymmetric Yang-Mills plasma at large 't Hooft coupling. Using the dual description of the quark as a classical string ending on a D7-brane, we use a complementary combination of analytic and numerical techniques to determine the friction coefficient as a function of quark mass. Provided strongly coupled Script N = 4 Yang-Mills plasma is a good model for hot, strongly coupled QCD, our results may be relevant for charm and bottom physics at RHIC.

  11. Perturbative running of the twisted Yang-Mills coupling in the gradient flow scheme

    CERN Document Server

    Bribian, Eduardo I

    2016-01-01

    We report on our ongoing computation of the perturbative running of the Yang-Mills coupling using gradient flow techniques. In particular, we use the gradient flow method with twisted boundary conditions to perform a perturbative expansion of the expectation value of the Yang-Mills energy density up to fourth order in the coupling at finite flow time. We regularise the resulting integrals using dimensional regularisation, and reproduce the universal coefficient of the 1/{\\epsilon} term in the relation between bare and renormalised couplings. The computation of the finite part leading to a determination of the {\\Lambda} parameter in this scheme is underway.

  12. Color Memory: A Yang-Mills Analog of Gravitational Wave Memory

    Science.gov (United States)

    Pate, Monica; Raclariu, Ana-Maria; Strominger, Andrew

    2017-12-01

    A transient color flux across null infinity in classical Yang-Mills theory is considered. It is shown that a pair of test "quarks" initially in a color singlet generically acquire net color as a result of the flux. A nonlinear formula is derived for the relative color rotation of the quarks. For a weak color flux, the formula linearizes to the Fourier transform of the soft gluon theorem. This color memory effect is the Yang-Mills analog of the gravitational memory effect.

  13. Yangian Symmetry and Integrability of Planar N =4 Supersymmetric Yang-Mills Theory

    Science.gov (United States)

    Beisert, Niklas; Garus, Aleksander; Rosso, Matteo

    2017-04-01

    In this Letter, we establish Yangian symmetry of planar N =4 supersymmetric Yang-Mills theory. We prove that the classical equations of motion of the model close onto themselves under the action of Yangian generators. Moreover, we propose an off-shell extension of our statement, which is equivalent to the invariance of the action and prove that it is exactly satisfied. We assert that our relationship serves as a criterion for integrability in planar gauge theories by explicitly checking that it applies to the integrable Aharony-Bergman-Jafferis-Maldacena theory but not to the nonintegrable N =1 supersymmetric Yang-Mills theory.

  14. Light Dilaton at Fixed Points and Ultra Light Scale Super Yang Mills

    DEFF Research Database (Denmark)

    Antipin, Oleg; Mojaza, Matin; Sannino, Francesco

    2012-01-01

    the spectrum near this point. We demonstrate that this theory naturally features a light scalar degree of freedom to be identified with the dilaton and elucidate its physical properties. We compute the spectrum and demonstrate that at low energy the nonperturbative part of the spectrum of the theory is the one...... of pure supersymmetric Yang-Mills. We can therefore determine the exact nonperturbative fermion condensate and deduce relevant properties of the nonperturbative spectrum of the theory. We also show that the intrinsic scale of super Yang-Mills is exponentially smaller than the scale associated...

  15. Computation of the string tension in three dimensional Yang-Mills theory using large N reduction

    OpenAIRE

    Kiskis, Joe; Narayanan, Rajamani

    2008-01-01

    We numerically compute the string tension in the large N limit of three dimensional Yang-Mills theory using Wilson loops. Space-time loops are formed as products of smeared space-like links and unsmeared time-like links. We use continuum reduction and both unfolded and folded Wilson loops in the analysis.

  16. Debye screening in strongly coupled Script N = 4 supersymmetric Yang-Mills plasma

    Science.gov (United States)

    Bak, Dongsu; Karch, Andreas; Yaffe, Laurence G.

    2007-08-01

    Using the AdS/CFT correspondence, we examine the behavior of correlators of Polyakov loops and other operators in Script N = 4 supersymmetric Yang-Mills theory at non-zero temperature. The implications for Debye screening in this strongly coupled non-Abelian plasma, and comparisons with available results for thermal QCD, are discussed.

  17. Center-stabilized Yang-Mills Theory:Confinement and Large N Volume Independence

    Energy Technology Data Exchange (ETDEWEB)

    Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.; Yaffe, Laurence G.; /Washington U., Seattle

    2008-03-21

    We examine a double trace deformation of SU(N) Yang-Mills theory which, for large N and large volume, is equivalent to unmodified Yang-Mills theory up to O(1/N{sup 2}) corrections. In contrast to the unmodified theory, large N volume independence is valid in the deformed theory down to arbitrarily small volumes. The double trace deformation prevents the spontaneous breaking of center symmetry which would otherwise disrupt large N volume independence in small volumes. For small values of N, if the theory is formulated on R{sup 3} x S{sup 1} with a sufficiently small compactification size L, then an analytic treatment of the non-perturbative dynamics of the deformed theory is possible. In this regime, we show that the deformed Yang-Mills theory has a mass gap and exhibits linear confinement. Increasing the circumference L or number of colors N decreases the separation of scales on which the analytic treatment relies. However, there are no order parameters which distinguish the small and large radius regimes. Consequently, for small N the deformed theory provides a novel example of a locally four-dimensional pure gauge theory in which one has analytic control over confinement, while for large N it provides a simple fully reduced model for Yang-Mills theory. The construction is easily generalized to QCD and other QCD-like theories.

  18. Horizon Formation and Far-from-Equilibrium Isotropization in a Supersymmetric Yang-Mills Plasma

    Science.gov (United States)

    Chesler, Paul M.; Yaffe, Laurence G.

    2009-05-01

    Using gauge-gravity duality, we study the creation and evolution of anisotropic, homogeneous strongly coupled N=4 supersymmetric Yang-Mills plasma. In the dual gravitational description, this corresponds to horizon formation in a geometry driven to be anisotropic by a time-dependent change in boundary conditions.

  19. Center-stabilized Yang-Mills theory: Confinement and large N volume independence

    Science.gov (United States)

    Ünsal, Mithat; Yaffe, Laurence G.

    2008-09-01

    We examine a double trace deformation of SU(N) Yang-Mills theory which, for large N and large volume, is equivalent to unmodified Yang-Mills theory up to O(1/N2) corrections. In contrast to the unmodified theory, large N volume independence is valid in the deformed theory down to arbitrarily small volumes. The double trace deformation prevents the spontaneous breaking of center symmetry which would otherwise disrupt large N volume independence in small volumes. For small values of N, if the theory is formulated on R3×S1 with a sufficiently small compactification size L, then an analytic treatment of the nonperturbative dynamics of the deformed theory is possible. In this regime, we show that the deformed Yang-Mills theory has a mass gap and exhibits linear confinement. Increasing the circumference L or number of colors N decreases the separation of scales on which the analytic treatment relies. However, there are no order parameters which distinguish the small and large radius regimes. Consequently, for small N the deformed theory provides a novel example of a locally four-dimensional pure-gauge theory in which one has analytic control over confinement, while for large N it provides a simple fully reduced model for Yang-Mills theory. The construction is easily generalized to QCD and other QCD-like theories.

  20. Generalized WDVV equations for F4 pure N=2 Super-Yang-Mills theory

    NARCIS (Netherlands)

    Hoevenaars, L.K.; Kersten, P.H.M.; Martini, Ruud

    2000-01-01

    An associative algebra of holomorphic differential forms is constructed associated with pure N=2 Super-Yang-Mills theory for the Lie algebra $F_4$ . Existence and associativity of this algebra, combined with the general arguments in the work of Marshakov, Mironov and Morozov, proves that the

  1. Three-loop octagons and n-gons in maximally supersymmetric Yang-Mills theory

    DEFF Research Database (Denmark)

    Caron Huot, Simon; He, Song

    2013-01-01

    We study the S-matrix of planar = 4 supersymmetric Yang-Mills theory when external momenta are restricted to a two-dimensional subspace of Minkowski space. We find significant simplifications and new, interesting structures for tree and loop amplitudes in two-dimensional kinematics, in particular...

  2. Axion inflation with an SU(2) gauge field: detectable chiral gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Maleknejad, Azadeh [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. Code. 19538-33511, Tehran (Iran, Islamic Republic of)

    2016-07-20

    We study a single field axion inflation model in the presence of an SU(2) gauge field with a small vev. In order to make the analysis as model-independent as possible, we consider an arbitrary potential for the axion that is able to support the slow-roll inflation. The gauge field is coupled to the axion with a Chern-Simons interaction (λ/f)F{sub μν}{sup a}F̃{sub a}{sup μν} where (λ/f)∼((O(10))/(M{sub pl})). It has a negligible effect on the background evolution, ((ρ{sub YM})/(M{sub pl}{sup 2}H{sup 2}))≲ϵ{sup 2}. However, its quantum fluctuations make a significant contribution to the cosmic perturbation. In particular, the gauge field has a spin-2 fluctuation which explicitly breaks the parity between the left- and right-handed polarization states. The chiral tensor modes are linearly coupled to the gravitational waves and lead to a circularly polarized tensor power spectrum comparable to the unpolarized vacuum power spectrum. Moreover, the scalar sector is modified by the linear scalar fluctuations of the gauge field. Since the spin-0 and spin-2 fluctuations of the SU(2) gauge field are independent, the gauge field can, at the same time, generate a detectable chiral gravitational wave signal and have a negligible contribution to the scalar fluctuations, in agreement with the current CMB observations.

  3. SU(2)$_{\\tiny\\mbox{CMB}}$ at high redshifts and the value of $H_0$

    CERN Document Server

    Hahn, Steffen

    2016-01-01

    We investigate a high-$z$ cosmological model to compute the co-moving sound horizon $r_s$ at baryon freeze-out following hydrogen recombination. This model assumes a replacement of the conventional CMB photon gas by SU(2) Yang-Mills thermodynamics, three flavors of massless neutrinos ($N_\

  4. Aspects of finite field-dependent symmetry in SU(2) Cho–Faddeev–Niemi decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com

    2013-11-25

    In this Letter we consider SU(2) Yang–Mills theory analyzed in Cho–Faddeev–Niemi variables which remains invariant under local gauge transformations. The BRST symmetries of this theory are generalized by making the infinitesimal parameter finite and field-dependent. Further, we show that under appropriate choices of finite and field-dependent parameter, the gauge-fixing and ghost terms corresponding to Landau as well as maximal Abelian gauge for such Cho–Faddeev–Niemi decomposed theory appear naturally within functional integral through Jacobian calculation.

  5. Spherically symmetric classical solutions in SU(2) gauge theory with a Higgs field

    Energy Technology Data Exchange (ETDEWEB)

    Ratra, B.; Yaffe, L.G.

    1988-04-21

    A consistent ansatz for time dependent classical solutions in an SU(2) gauge theory with a doublet Higgs field is presented. The (3+1)-dimensional field equations are reduced to those of an effective (1+1)-dimensional theory. This ansatz describes solutions which travel between topologically distinct classical vacua of the non-abelian gauge theory. The real time version of these solutions describes the creation and decay of the unstable static 'sphaleron', the imaginary time version describes a euclidean instanton. (orig.)

  6. An object oriented code for simulating supersymmetric Yang-Mills theories

    Science.gov (United States)

    Catterall, Simon; Joseph, Anosh

    2012-06-01

    We present SUSY_LATTICE - a C++ program that can be used to simulate certain classes of supersymmetric Yang-Mills (SYM) theories, including the well known N=4 SYM in four dimensions, on a flat Euclidean space-time lattice. Discretization of SYM theories is an old problem in lattice field theory. It has resisted solution until recently when new ideas drawn from orbifold constructions and topological field theories have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theories in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local, free of doublers and also possess exact gauge-invariance. In principle they form the basis for a truly non-perturbative definition of the continuum SYM theories. In the continuum limit they reproduce versions of the SYM theories formulated in terms of twisted fields, which on a flat space-time is just a change of the field variables. In this paper, we briefly review these ideas and then go on to provide the details of the C++ code. We sketch the design of the code, with particular emphasis being placed on SYM theories with N=(2,2) in two dimensions and N=4 in three and four dimensions, making one-to-one comparisons between the essential components of the SYM theories and their corresponding counterparts appearing in the simulation code. The code may be used to compute several quantities associated with the SYM theories such as the Polyakov loop, mean energy, and the width of the scalar eigenvalue distributions. Program summaryProgram title: SUSY_LATTICE Catalogue identifier: AELS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9315 No. of bytes in distributed program

  7. Fundamental fermion interactions via vector bosons of unified SU(2 x SU(4 gauge fields

    Directory of Open Access Journals (Sweden)

    Eckart eMarsch

    2016-02-01

    Full Text Available Employing the fermion unification model based on the intrinsic SU(8 symmetry of a generalized Dirac equation, we discuss the fundamental interactions under the SU(8=SU(2$otimes$SU(4 symmetry group. The physics involved can describe all fermions, the leptons (electron and neutrino, and the coloured up and down quarks of the first generation in the standard model (SM by a complex SU(8 octet of Dirac spinor fields. The fermion interactions are found to be mediated by the unified SU(4 and SU(2 vector gauge boson fields, which include the photon, the gluons, and the bosons $Z$ and $W$ as well known from the SM, but also comprise new ones, namely three coloured $X$ bosons carrying a fractional hypercharge of $pm4/3$ and transmuting leptons into quarks and vice versa. The full covariant derivative of the model is derived and discussed. The Higgs mechanism gives mass to the $Z$ and $W$ bosons, but also permits one to derive the mass of the coloured $X$ boson, for which depending on the choice of the values of the coupling constant, the estimates are 35~GeV or 156~GeV, values that are well within reach of the LHC. The scalar Higgs field can also lend masses to the fermions and fix their physical values for given appropriate coupling constants to that field.

  8. Five-dimensional Yang-Mills-Einstein supergravity on orbifold spacetimes: From phenomenology to M -theory

    Science.gov (United States)

    McReynolds, Sean

    Five-dimensional N = 2 Yang-Mills-Einstein supergravity and its couplings to hyper and tensor multiplets are considered on an orbifold spacetime of the form M4 x S1/Gamma, where Gamma is a discrete group. As is well known in such cases, supersymmetry is broken to N = 1 on the orbifold fixed planes, and chiral 4D theories can be obtained from bulk hypermultiplets (or from the coupling of fixed-plane supported fields). Five-dimensional gauge symmetries are broken by boundary conditions for the fields, which are equivalent to some set of Gamma-parity assignments in the orbifold theory, allowing for arbitrary rank reduction. Furthermore, Wilson lines looping from one boundary to the other can break bulk gauge groups, or give rise to vacuum expectation values for scalars on the boundaries, which can result in spontaneous breaking of boundary gauge groups. The broken gauge symmetries do not survive as global symmetries of the low energy theories below the compactification scale due to 4 D minimal couplings to gauge fields. Axionic fields are a generic feature, just as in any compactification of M-theory (or string theory for that matter), and we exhibit the form of this field and its role as the QCD axion, capable of resolving the strong CP problem. The main motivation for the orbifold theories here is taken to be orbifold-GUTS, wherein a unified gauge group is sought in higher dimensions while allowing the orbifold reduction to handle problems such as rapid proton decay, exotic matter, mass hierarchies, etc. To that end, we discuss the allowable minimal SU(5), SO(10) and E6 GUT theories with all fields living in five dimensions. It is argued that, within the class of homogeneous quaternionic scalar manifolds characterizing the hypermultiplet couplings in 5D, supergravity admits a restricted set of theories that yield minimal phenomenological field content. In addition, non-compact gaugings are a novel feature of supergravity theories, and in particular we consider the

  9. Non-Abelian fields in AdS4 spacetime: Axially symmetric, composite configurations

    Science.gov (United States)

    Kichakova, Olga; Kunz, Jutta; Radu, Eugen; Shnir, Yasha

    2014-12-01

    We construct new finite-energy regular solutions in Einstein-Yang-Mills-SU(2) theory. They are static, axially symmetric and approach at infinity the anti-de Sitter spacetime background. These configurations are characterized by a pair of integers (m ,n ), where m is related to the polar angle and n to the azimuthal angle, being related to the known flat-space monopole-antimonopole chains and vortex rings. Generically, they describe composite configurations with several individual components, possessing a nonzero magnetic charge, even in the absence of a Higgs field. Such Yang-Mills configurations exist already in the probe limit, with the AdS geometry supplying the attractive force needed to balance the repulsive force of Yang-Mills gauge interactions. The gravitating solutions are constructed by numerically solving the elliptic Einstein-DeTurck-Yang-Mills equations. The variation of the gravitational coupling constant α reveals the existence of two branches of gravitating solutions which bifurcate at some critical value of α . The lower-energy branch connects to the solutions in the global AdS spacetime, while the upper branch is linked to the generalized Bartnik-McKinnon solutions in asymptotically flat spacetime. Also, a spherically symmetric, closed-form solution is found as a perturbation around the globally anti-de Sitter vacuum state.

  10. Twisted supersymmetric 5D Yang-Mills theory and contact geometry

    Science.gov (United States)

    Källén, Johan; Zabzine, Maxim

    2012-05-01

    We extend the localization calculation of the 3D Chern-Simons partition func- tion over Seifert manifolds to an analogous calculation in five dimensions. We construct a twisted version of N = 1 supersymmetric Yang-Mills theory defined on a circle bundle over a four dimensional symplectic manifold. The notion of contact geometry plays a crucial role in the construction and we suggest a generalization of the instanton equations to five- dimensional contact manifolds. Our main result is a calculation of the full perturbative partition function on S 5 for the twisted supersymmetric Yang-Mills theory with different Chern-Simons couplings. The final answer is given in terms of a matrix model. Our construction admits generalizations to higher dimensional contact manifolds. This work is inspired by the work of Baulieu-Losev-Nekrasov from the mid 90's, and in a way it is covariantization of their ideas for a contact manifold.

  11. Topics In N = 4 Yang-mills And The Self-dual String

    CERN Document Server

    Basu, A

    2005-01-01

    We analyze some systematics of the coupling constant dependence of correlators in N = 4 Yang- Mills, which is the world-volume theory on D3-branes. We use the fact that the operator Ot that generates infinitesimal changes of the coupling constant in this theory sits in the same supermultiplet as the superconformal currents. We show how superconformal current Ward identities determine a class of terms in the operator product expansion of Ot with any other operator. In certain cases, this leads to constraints on the coupling dependence of correlation functions in N = 4 Yang-Mills. As an application, we demonstrate the exact non-renormalization of two and certain three-point correlation functions of BPS operators. We next approximate these integrated correlators by using a truncated OPE expansion. This leads to differential equations for the coupling dependence. When applied to a particular sixteen point correlator, the coupling dependence we find agrees with the corresponding amplitude computed via the Ad...

  12. Supersymmetry algebra and BPS states of super Yang-Mills theories on noncommutative tori

    OpenAIRE

    Konechny, A.; Schwarz, A

    1999-01-01

    We consider 10-dimensional super Yang-Mills theory with topological terms compactified on a noncommutative torus. We calculate supersymmetry algebra and derive BPS energy spectra from it. The cases of d-dimensional tori with d=2,3,4 are considered in full detail. SO(d,d|Z)-invariance of the BPS spectrum and relation of new results to the previous work in this direction are discussed.

  13. Black Hole Solution of Einstein-Born-Infeld-Yang-Mills Theory

    Directory of Open Access Journals (Sweden)

    Kun Meng

    2017-01-01

    Full Text Available A new four-dimensional black hole solution of Einstein-Born-Infeld-Yang-Mills theory is constructed; several degenerated forms of the black hole solution are presented. The related thermodynamical quantities are calculated, with which the first law of thermodynamics is checked to be satisfied. Identifying the cosmological constant as pressure of the system, the phase transition behaviors of the black hole in the extended phase space are studied.

  14. Light quark energy loss in strongly coupled N=4 supersymmetric Yang-Mills plasma

    Science.gov (United States)

    Chesler, Paul M.; Jensen, Kristan; Karch, Andreas; Yaffe, Laurence G.

    2009-06-01

    We compute the penetration depth of a light quark moving through a large Nc, strongly coupled N=4 supersymmetric Yang-Mills plasma using gauge/gravity duality and a combination of analytic and numerical techniques. We find that the maximum distance a quark with energy E can travel through a plasma is given by Δxmax⁡(E)=(C/T)(E/Tλ)1/3 with C≈0.5.

  15. On the infrared behavior of the shear spectral function in hot Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, Aleksi [Department of Physics and Helsinki Institute of Physics,P.O.Box 64, FI-00014 University of Helsinki (Finland); Zhu, Yan [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela,E-15706 Santiago de Compostela, Galicia (Spain)

    2015-03-25

    We revisit the determination of the two-loop spectral function in the shear channel of hot Yang-Mills theory. Correcting a technical error in an earlier computation is seen to improve the infrared behavior of the quantity significantly, while a partial Hard Thermal Loop resummation is seen to have only a very minor numerical effect on the result. These facts make it possible to straightforwardly apply the spectral function to the corresponding imaginary time correlator and the shear sum rule.

  16. Experiments on Frequency Dependence of the Deflection of Light in Yang-Mills Gravity

    Science.gov (United States)

    Hao, Yun; Zhu, Yiyi; Hsu, Jong-Ping

    2018-01-01

    In Yang-Mills gravity based on flat space-time, the eikonal equation for a light ray is derived from the modified Maxwell's wave equations in the geometric-optics limit. One obtains a Hamilton-Jacobi type equation, GLµv∂µΨ∂vΨ = 0 with an effective Riemannian metric tensor GLµv. According to Yang-Mills gravity, light rays (and macroscopic objects) move as if they were in an effective curved space-time with a metric tensor. The deflection angle of a light ray by the sun is about 1.53″ for experiments with optical frequencies ≈ 1014Hz. It is roughly 12% smaller than the usual value 1.75″. However, the experimental data in the past 100 years for the deflection of light by the sun in optical frequencies have uncertainties of (10-20)% due to large systematic errors. If one does not take the geometric-optics limit, one has the equation, GLµv[∂µΨ∂vΨcosΨ+ (∂µ∂vΨ)sinΨ] = 0, which suggests that the deflection angle could be frequency-dependent, according to Yang-Mills gravity. Nowadays, one has very accurate data in the radio frequencies ≈ 109Hz with uncertainties less than 0.1%. Thus, one can test this suggestion by using frequencies ≈ 1012 Hz, which could have a small uncertainty 0.1% due to the absence of systematic errors in the very long baseline interferometry.

  17. Double-winding Wilson loops in the S U (N ) Yang-Mills theory

    Science.gov (United States)

    Matsudo, Ryutaro; Kondo, Kei-Ichi

    2017-11-01

    We consider double-winding, triple-winding, and multiple-winding Wilson loops in the S U (N ) Yang-Mills gauge theory. We examine how the area-law falloff of the vacuum expectation value of a multiple-winding Wilson loop depends on the number of color N . In sharp contrast to the difference-of-areas law recently found for a double-winding S U (2 ) Wilson loop average, we show irrespective of the spacetime dimensionality that a double-winding S U (3 ) Wilson loop follows a novel area law which is neither difference-of-areas nor sum-of-areas law for the area-law falloff and that the difference-of-areas law is excluded and the sum-of-areas law is allowed for S U (N ) (N ≥4 ), provided that the string tension obeys the Casimir scaling for the higher representations. Moreover, we extend these results to arbitrary multiple-winding Wilson loops. Next, we argue that the area law follows a novel law, which is neither sum-of-areas nor difference-of-areas law when N ≥3 . In fact, such a behavior is exactly derived in the S U (N ) Yang-Mills theory in the two-dimensional spacetime. Finally, we introduce new Wilson loops whose averages are expected to follow the difference-of-areas law even in the S U (N ) Yang-Mills theory for N ≥3 .

  18. Pure Yang-mills, Noncommutative Chern-simons And Noncommutative Quantum Mechanics: A Hamiltonian Approach

    CERN Document Server

    Yelnykov, O V

    2005-01-01

    This thesis addresses three topics: calculation of the invariant measure for the pure Yang-Mills configuration space in (3 + 1) dimensions, Hamiltonian analysis of the pure Chern-Simons theory on the noncommutative plane and noncommutative quantum mechanics in the presence of singular potentials. In Chapter 1 we consider a gauge-invariant Hamiltonian analysis for Yang-Mills theories in three spatial dimensions. The gauge potentials are parameterized in terms of a matrix variable which facilitates the elimination of the gauge degrees of freedom. We develop an approximate calculation of the volume element on the gauge-invariant configuration space. We also make a rough estimate of the ratio of 0++ glueball mass and the square root of string tension by comparison with (2 + 1)-dimensional Yang-Mills theory. In Chapter 2 the Hamiltonian analysis of the pure Chern- Simons theory on the noncommutative plane is performed. We use the techniques of geometric quantization to show that the classical reduced phase space o...

  19. Stress-energy tensor of a quark moving through a strongly-coupled N=4 supersymmetric Yang-Mills plasma: Comparing hydrodynamics and AdS/CFT duality

    Science.gov (United States)

    Chesler, Paul M.; Yaffe, Laurence G.

    2008-08-01

    The stress-energy tensor of a quark moving through a strongly-coupled N=4 supersymmetric Yang-Mills plasma, at large Nc, is evaluated using gauge/string duality. The accuracy with which the resulting wake, in position space, is reproduced by hydrodynamics is examined. Remarkable agreement is found between hydrodynamics and the complete result down to distances less than 2/T away from the quark. In performing the gravitational analysis, we use a relatively simple formulation of the bulk to boundary problem in which the linearized Einstein field equations are fully decoupled. Our analysis easily generalizes to other sources in the bulk.

  20. Symmetric energy-momentum tensor in Maxwell, Yang-Mills, and Proca theories obtained using only Noether's theorem

    Energy Technology Data Exchange (ETDEWEB)

    Montesinos, M. [CINVESTAV-IPN, 07360 Mexico D.F. (Mexico); Flores, E. [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)]. E-mail: merced@fis.cinvestav.mx

    2006-07-01

    The symmetric and gauge-invariant energy-momentum tensors for source-free Maxwell and Yang-Mills theories are obtained by means of translations in spacetime via a systematic implementation of Noether's theorem. For the source-free neutral Proca field, the same procedure yields also the symmetric energy-momentum tensor. In all cases, the key point to get the right expressions for the energy-momentum tensors is the appropriate handling of their equations of motion and the Bianchi identities. It must be stressed that these results are obtained without using Belinfante's symmetrization techniques which are usually employed to this end. (Author)

  1. Cut-and-join operators and N=4 super Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W. [DESY, Hamburg (Germany). Theory Group

    2010-02-15

    We show which multi-trace structures are compatible with the symmetrisation of local operators in N=4 super Yang-Mills when they are organised into representations of the global symmetry group. Cut-and-join operators give the non-planar expansion of correlation functions of these operators in the free theory. Using these techniques we find the 1/N corrections to the quarter-BPS operators which remain protected at weak coupling. We also present a new way of counting these chiral ring operators using the Weyl group S{sub N}. (orig.)

  2. Gluon scattering in N=4 super-Yang-Mills theory fromweak to strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; /SLAC

    2008-03-25

    I describe some recent developments in the understanding of gluon scattering amplitudes in N = 4 super-Yang-Mills theory in the large-N{sub c} limit. These amplitudes can be computed to high orders in the weak coupling expansion, and also now at strong coupling using the AdS/CFT correspondence. They hold the promise of being solvable to all orders in the gauge coupling, with the help of techniques based on integrability. They are intimately related to expectation values for polygonal Wilson loops composed of light-like segments.

  3. Screening in strongly coupled mathcal{N} = {2^*} supersymmetric Yang-Mills plasma

    Science.gov (United States)

    Hoyos, Carlos; Paik, Steve; Yaffe, Laurence G.

    2011-10-01

    Using gauge-gravity duality, we extend thermodynamic studies and present results for thermal screening masses in strongly coupled mathcal{N} = {2^*} supersymmetric Yang-Mills theory. This non-conformal theory is a mass deformation of maximally supersymmetric mathcal{N} = 4 gauge theory. Results are obtained for the entropy density, pressure, specific heat, equation of state, and screening masses, down to previously unexplored low temperatures. The temperature dependence of screening masses in various symmetry channels, which characterize the longest length scales over which thermal fluctuations in the non-Abelian plasma are correlated, is examined and found to be asymptotically linear in the low temperature regime.

  4. Subleading Terms in the Collinear Limit of Yang-Mills Amplitudes

    OpenAIRE

    Stieberger, Stephan; Taylor, Tomasz R.

    2015-01-01

    For two massless particles i and j, the collinear limit is a special kinematic configuration in which the particles propagate with parallel four-momentum vectors, with the total momentum P distributed as p_i=xP and p_j=(1-x)P, so that s_{ij}=(p_i+p_j)^2=P^2=0. In Yang-Mills theory, if i and j are among N gauge bosons participating in a scattering process, it is well known that the partial amplitudes associated to the (single trace) group factors with adjacent i and j are singular in the colli...

  5. Supersymmetric Yang-Mills theory on conformal supergravity backgrounds in ten dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Paul de; Figueroa-O’Farrill, José [Maxwell Institute and School of Mathematics, The University of Edinburgh,James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom)

    2016-03-14

    We consider bosonic supersymmetric backgrounds of ten-dimensional conformal supergravity. Up to local conformal isometry, we classify the maximally supersymmetric backgrounds, determine their conformal symmetry superalgebras and show how they arise as near-horizon geometries of certain half-BPS backgrounds or as a plane-wave limit thereof. We then show how to define Yang-Mills theory with rigid supersymmetry on any supersymmetric conformal supergravity background and, in particular, on the maximally supersymmetric backgrounds. We conclude by commenting on a striking resemblance between the supersymmetric backgrounds of ten-dimensional conformal supergravity and those of eleven-dimensional Poincaré supergravity.

  6. Wilson punctured network defects in 2D q-deformed Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Noriaki [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo,Kashiwa, Chiba 277-8583 (Japan)

    2016-12-14

    In the context of class S theories and 4D/2D duality relations there, we discuss the skein relations of general topological defects on the 2D side which are expected to be counterparts of composite surface-line operators in 4D class S theory. Such defects are geometrically interpreted as networks in a three dimensional space. We also propose a conjectural computational procedure for such defects in two dimensional SU(N) topological q-deformed Yang-Mills theory by interpreting it as a statistical mechanical system associated with ideal triangulations.

  7. Chiral expansion and Macdonald deformation of two-dimensional Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Koekenyesi, Zoltan; Sinkovics, Annamaria [Institute of Theoretical Physics, MTA-ELTE Theoretical Research Group, Eoetvoes Lorand University, 1117, Budapest, Pazmany, s. 1/A (Hungary); Szabo, Richard J. [Heriot-Watt Univ., Edinburgh (United Kingdom). Dept. of Mathematics; Maxwell Institute for Mathematical Sciences, Edinburgh (United Kingdom); The Higgs Centre for Theoretical Physics, Edinburgh (United Kingdom)

    2016-11-15

    We derive the analog of the large N Gross-Taylor holomorphic string expansion for the refinement of q-deformed U(N) Yang-Mills theory on a compact oriented Riemann surface. The derivation combines Schur-Weyl duality for quantum groups with the Etingof-Kirillov theory of generalized quantum characters which are related to Macdonald polynomials. In the unrefined limit we reproduce the chiral expansion of q-deformed Yang-Mills theory derived by de Haro, Ramgoolam and Torrielli. In the classical limit q = 1, the expansion defines a new β-deformation of Hurwitz theory wherein the refined partition function is a generating function for certain parameterized Euler characters, which reduce in the unrefined limit β = 1 to the orbifold Euler characteristics of Hurwitz spaces of holomorphic maps. We discuss the geometrical meaning of our expansions in relation to quantum spectral curves and β-ensembles of matrix models arising in refined topological string theory. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. D = 5 maximally supersymmetric Yang-Mills theory diverges at six loops

    CERN Document Server

    Bern, Zvi; Dixon, Lance J.; Douglas, Michael R.; von Hippel, Matt; Johansson, Henrik

    2013-01-01

    The connection of maximally supersymmetric Yang-Mills theory to the (2,0) theory in six dimensions has raised the possibility that it might be perturbatively ultraviolet finite in five dimensions. We test this hypothesis by computing the coefficient of the first potential ultraviolet divergence of planar (large $N_c$) maximally supersymmetric Yang-Mills theory in D = 5, which occurs at six loops. We show that the coefficient is nonvanishing. Furthermore, the numerical value of the divergence falls very close to an approximate exponential formula based on the coefficients of the divergences through five loops. This formula predicts the approximate values of the ultraviolet divergence at loop orders L > 6 in the critical dimension D = 4 + 6/L. To obtain the six-loop divergence we first construct the planar six-loop four-point amplitude integrand using generalized unitarity. The ultraviolet divergence follows from a set of vacuum integrals, which are obtained by expanding the integrand in the external momenta. T...

  9. Can large Nc equivalence between supersymmetric Yang-Mills theory and its orbifold projections be valid?

    Science.gov (United States)

    Kovtun, Pavel; Ünsal, Mithat; Yaffe, Laurence G.

    2005-11-01

    In previous work, we found that necessary and sufficient conditions for large Nc equivalence between parent and daughter theories, for a wide class of orbifold projections of U(Nc) gauge theories, are just the natural requirements that the discrete symmetry used to define the projection not be spontaneously broken in the parent theory, and the discrete symmetry permuting equivalent gauge group factors not be spontaneously broken in the daughter theory. In this paper, we discuss the application of this result to Zk projections of N=1 supersymmetric Yang-Mills theory in four dimensions, as well as various multiflavor generalizations. Zk projections with k>2 yielding chiral gauge theories violate the symmetry realization conditions needed for large Nc equivalence, due to the spontaneous symmetry breaking of discrete chiral symmetry in the parent super-Yang-Mills theory. But for Z2 projections, we show that previous assertions of large Nc inequivalence, in infinite volume, between the parent and daughter theories were based on incorrect mappings of vacuum energies, theta angles, or connected correlators between the two theories. With the correct identifications, there is no sign of any inconsistency. A subtle but essential feature of the connection between parent and daughter theories involves multivaluedness in the mapping of theta parameters from parent to daughter.

  10. Iteration of Planar Amplitudes inMaximally Supersymmetric Yang-Mills Theoryat Three Loops

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Zvi; /UCLA; Dixon, Lance J.; /SLAC; Smirnov, Vladimir A.; /Moscow State U.

    2005-05-27

    We compute the leading-color (planar) three-loop four-point amplitude of N = 4 supersymmetric Yang-Mills theory in 4 - 2{epsilon} dimensions, as a Laurent expansion about {epsilon} = 0 including the finite terms. The amplitude was constructed previously via the unitarity method, in terms of two Feynman loop integrals, one of which has been evaluated already. Here we use the Mellin-Barnes integration technique to evaluate the Laurent expansion of the second integral. Strikingly, the amplitude is expressible, through the finite terms, in terms of the corresponding one- and two-loop amplitudes, which provides strong evidence for a previous conjecture that higher-loop planar N = 4 amplitudes have an iterative structure. The infrared singularities of the amplitude agree with the predictions of Sterman and Tejeda-Yeomans based on resummation. Based on the four-point result and the exponentiation of infrared singularities, we give an exponentiated ansatz for the maximally helicity-violating n-point amplitudes to all loop orders. The 1/{epsilon}{sup 2} pole in the four-point amplitude determines the soft, or cusp, anomalous dimension at three loops in N = 4 supersymmetric Yang-Mills theory. The result confirms a prediction by Kotikov, Lipatov, Onishchenko and Velizhanin, which utilizes the leading-twist anomalous dimensions in QCD computed by Moch, Vermaseren and Vogt. Following similar logic, we are able to predict a term in the three-loop quark and gluon form factors in QCD.

  11. Aspects Of Yang-mills Theory: Solitons, Dualities And Spin Chains

    CERN Document Server

    Freyhult, L K

    2004-01-01

    One of the still big problems in the Standard Model of particle physics is the problem of confinement. Quarks or other coloured particles have never been observed in isolation. Quarks are only observed in colour neutral bound states. The strong interactions are described using a Yang-Mills theory. These type of theories exhibits asymptotic freedom, i.e. the coupling is weak at high energies. This means that the theory is perturbative at high energies only. Understanding quark confinement requires knowledge of the non perturbative regime. One attempt has been to identify the proper order parameters for describing the low energy limit and then to write down effective actions in terms of these order parameters. We discuss one possible scenario for confinement and the effective models constructed with this as inspiration. Further we discuss solitons in these models and their properties. Yang-Mills theory has also become important in the context of string theory. According to the AdS/CFT correspondence string theo...

  12. Distinctive ultraviolet structure of extra-dimensional Yang-Mills theories by integration of heavy Kaluza-Klein modes

    Science.gov (United States)

    García-Jiménez, I.; Novales-Sánchez, H.; Toscano, J. J.

    2016-05-01

    One-loop Standard Model observables produced by virtual heavy Kaluza-Klein fields play a prominent role in the minimal model of universal extra dimensions. Motivated by this aspect, we integrate out all the Kaluza-Klein heavy modes coming from the Yang-Mills theory set on a spacetime with an arbitrary number, n , of compact extra dimensions. After fixing the gauge with respect to the Kaluza-Klein heavy gauge modes in a covariant manner, we calculate a gauge-independent effective Lagrangian expansion containing multiple Kaluza-Klein sums that entail a bad divergent behavior. We use the Epstein-zeta function to regularize and characterize discrete divergences within such multiple sums, and then we discuss the interplay between the number of extra dimensions and the degree of accuracy of effective Lagrangians to generate or not divergent terms of discrete origin. We find that nonrenormalizable terms with mass dimension k are finite as long as k >4 +n . Multiple Kaluza-Klein sums of nondecoupling logarithmic terms, not treatable by Epstein-zeta regularization, are produced by four-dimensional momentum integration. On the grounds of standard renormalization, we argue that such effects are unobservable.

  13. High energy behavior of a six-point R-current correlator in N=4 supersymmetric Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Jochen; Hentschinski, Martin; Mischler, Anna-Maria [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Ewerz, Carlo [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany). ExtreMe Matter Institute EMMI; Bielefeld Univ. (Germany). Fakultaet fuer Physik; European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT), Villazzano (Italy)

    2009-12-15

    We study the high energy limit of a six-point R-current correlator in N=4 supersymmetric Yang-Mills theory for finite N{sub c}. We make use of the framework of perturbative resummation of large logarithms of the energy. More specifically, we apply the (extended) generalized leading logarithmic approximation. We find that the same conformally invariant two-to-four gluon vertex occurs as in non-supersymmetric Yang-Mills theory. As a new feature we find a direct coupling of the four-gluon t-channel state to the R-current impact factor. (orig.)

  14. Phase transitions in q-deformed 2d Yang-Mills theory and topological strings

    CERN Document Server

    Arsiwalla, X; Marino, M; Sinkovics, A; Arsiwalla, Xerxes; Boels, Rutger; Marino, Marcos; Sinkovics, Annamaria

    2006-01-01

    We analyze large N phase transitions for U(N) q-deformed two-dimensional Yang-Mills theory on the sphere. We determine the phase diagram of the model and we show that, for small values of the deformation parameter, the theory exhibits a phase transition which is smoothly connected to the Douglas-Kazakov phase transition. For large values of the deformation parameter the phase transition is absent. By explicitly computing the one-instanton suppression factor in the weakly coupled phase, we also show that the transition is triggered by instanton effects. Finally, we present the solution of the model in the strongly coupled phase. Our analysis suggests that, on certain backgrounds, nonperturbative topological string theory has new phase transitions at small radius. From the point of view of gauge theory, it suggests a mechanism to smooth out large N phase transitions.

  15. Towards the spectrum of low-lying particles in supersymmetric Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, G. [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Montvay, I. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Muenster, G.; Oezugurel, U.D.; Sandbrink, D. [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1

    2013-04-15

    We present the current results of our simulations of N=1 supersymmetric Yang-Mills theory on a lattice. The masses of the gluino-glue particle, the a-{eta}', the a-f{sub 0} meson, and the scalar glueball are obtained at finer lattice spacing than before, and extrapolations towards vanishing gluino mass are made. The calculations employ different levels of stout smearing. The statistical accuracy as well as the control of finite size effects and lattice artefacts are better than in previous investigations. Taking the statistical and systematic uncertainties into account, the extrapolations towards vanishing gluino mass of the masses of the fermionic and bosonic states in our present calculations are consistent with the formation of degenerate supermultiplets.

  16. Realization of Center Symmetry in Two Adjoint Flavor Large-N Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon; /Syracuse U.; Galvez, Richard; /Syracuse U.; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.

    2010-08-26

    We report on the results of numerical simulations of SU(N) lattice Yang Mills with two flavors of (light) Wilson fermion in the adjoint representation. We analytically and numerically address the question of center symmetry realization on lattices with {Lambda} sites in each direction in the large-N limit. We show, by a weak coupling calculation that, for massless fermions, center symmetry realization is independent of {Lambda}, and is unbroken. Then, we extend our result by conducting simulations at non zero mass and finite gauge coupling. Our results indicate that center symmetry is intact for a range of fermion mass in the vicinity of the critical line on lattices of volume 2{sup 4}. This observation makes it possible to compute infinite volume physical observables using small volume simulations in the limit N {yields} {infinity}, with possible applications to the determination of the conformal window in gauge theories with adjoint fermions.

  17. Solving the functional Schroedinger equation: Yang-Mills string tension and surface critical scaling

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, Paul E-mail: p.r.w.mansfield@durham.ac.uk

    2004-04-01

    Motivated by a heuristic model of the Yang-Mills vacuum that accurately describes the string-tension in three dimensions we develop a systematic method for solving the functional equation in a derivative expansion. This is applied to the Landau-Ginzburg theory that describes surface critical scaling in the Ising model. A Renormalisation Group analysis of the solution yields the value {eta} = 1.003 for the anomalous dimension of the correlation function of surface spins which compares well with the exact result of unity implied by Onsager's solution. We give the expansion of the corresponding {beta}-function to 17th order (which receives contributions from up to 17-loops in conventional perturbation theory). (author)

  18. Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.D. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam (Germany); UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); Sobreiro, R.F. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Sorella, S.P. [UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil)

    2016-10-15

    In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi:10.1103/PhysRevD.92.045039. arXiv:1506.06995 [hepth], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions. (orig.)

  19. Exact beta function and glueball spectrum in large N Yang-Mills theory.

    Science.gov (United States)

    Bochicchio, M.

    In the pure large-N Yang-Mills theory there is a quasi-BPS sector that is exactly solvable at large N. It follows an exact beta function and the glueball spectrum in this sector. The main technical tool is a new holomorphic loop equation for quasi-BPS Wilson loops, that occurs as a non-supersymmetric analogue of Dijkgraaf-Vafa holomorphic loop equation for the glueball superpotential of n=1 SUSY gauge theories. The new holomorphic loop equation is localized, i.e. reduced to a critical equation, by a deformation of the loop that is a vanishing boundary in homology, somehow in analogy with Witten's cohomological localization by a coboundary deformation in SUSY gauge theories.

  20. About renormalization of the Yang - Mills theory and the approach to calculation of the heat kernel

    Science.gov (United States)

    Ivanov, Aleksandr

    2017-10-01

    The quantum theory of Yang - Mills in four-dimensional space - time plays an important role in modern theoretical physics. Currently, this model contains many open problems, therefore, it is of great interest to mathematicians. This work consists of several parts, however, it only offers a new approach and, therefore, it is methodological. First of all, the diagram technique and the mathematical basis will be recalled in the first part. Then the process of renormalization will be explained. It is based on momentum cut-off regularization and described in [1] and [2]. However, this type of the regularization has several problems, as a result, only the first correction is calculated. After common constructions and observations, the first correction will be described in detail. Namely, the heat kernel will be considered since it plays a main role in this formalism. In particular, the method for calculating of coefficients of arbitrary order will be proposed.

  1. Regge meets collinear in strongly-coupled N=4 super Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Sprenger, Martin [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)

    2017-01-10

    We revisit the calculation of the six-gluon remainder function in planar N=4 super Yang-Mills theory from the strong coupling TBA in the multi-Regge limit and identify an infinite set of kinematically subleading terms. These new terms can be compared to the strong coupling limit of the finite-coupling expressions for the impact factor and the BFKL eigenvalue proposed by Basso et al. in https://www.doi.org/10.1007/JHEP01(2015)027, which were obtained from an analytic continuation of the Wilson loop OPE. After comparing the results order by order in those subleading terms, we show that it is possible to precisely map both formalisms onto each other. A similar calculation can be carried out for the seven-gluon amplitude, the result of which shows that the central emission vertex does not become trivial at strong coupling.

  2. SU(5)-invariant decomposition of ten-dimensional Yang-Mills supersymmetry

    CERN Document Server

    Baulieu, Laurent

    2011-01-01

    The N=1,d=10 superYang-Mills action is constructed in a twisted form, using SU(5)-invariant decomposition of spinors in 10 dimensions. The action and its off-shell closed twisted scalar supersymmetry operator Q derive from a Chern-Simons term. The action can be decomposed as the sum of a term in the cohomology of Q and of a term that is Q-exact. The first term is a fermionic Chern-Simons term for a twisted component of the Majorana-Weyl gluino and it is related to the second one by a twisted vector supersymmetry with 5 parameters. The cohomology of Q and some topological observables are defined from descent equations. In this SU(5)

  3. Boost invariant flow, black hole formation, and far-from-equilibrium dynamics in N=4 supersymmetric Yang-Mills theory

    Science.gov (United States)

    Chesler, Paul M.; Yaffe, Laurence G.

    2010-07-01

    Using gauge/gravity duality, we study the creation and evolution of boost-invariant anisotropic, strongly-coupled N=4 supersymmetric Yang-Mills plasma. In the dual gravitational description, this corresponds to horizon formation in a geometry driven to be anisotropic by a time-dependent change in boundary conditions.

  4. Modular Symmetry and Fractional Charges in N = 2 Supersymmetric Yang-Mills and the Quantum Hall Effect

    Directory of Open Access Journals (Sweden)

    Brian P. Dolan

    2007-01-01

    Full Text Available The parallel rôles of modular symmetry in N = 2 supersymmetric Yang-Mills and in the quantum Hall effect are reviewed. In supersymmetric Yang-Mills theories modular symmetry emerges as a version of Dirac's electric - magnetic duality. It has significant consequences for the vacuum structure of these theories, leading to a fractal vacuum which has an infinite hierarchy of related phases. In the case of N = 2 supersymmetric Yang-Mills in 3+1 dimensions, scaling functions can be defined which are modular forms of a subgroup of the full modular group and which interpolate between vacua. Infra-red fixed points at strong coupling correspond to θ-vacua with θ a rational number that, in the case of pure SUSY Yang-Mills, has odd denominator. There is a mass gap for electrically charged particles which can carry fractional electric charge. A similar structure applies to the 2+1 dimensional quantum Hall effect where the hierarchy of Hall plateaux can be understood in terms of an action of the modular group and the stability of Hall plateaux is due to the fact that odd denominator Hall conductivities are attractive infra-red fixed points. There is a mass gap for electrically charged excitations which, in the case of the fractional quantum Hall effect, carry fractional electric charge.

  5. Three-dimensional super Yang-Mills with compressible quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Faedo, Antón F. [Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, ES-08028, Barcelona (Spain); Kundu, Arnab [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Mateos, David [Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, ES-08028, Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, ES-08010, Barcelona (Spain); Pantelidou, Christiana [Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, ES-08028, Barcelona (Spain); Tarrío, Javier [Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, ES-08028, Barcelona (Spain); Université Libre de Bruxelles (ULB) and International Solvay Institutes,Service de Physique Théorique et Mathématique, Campus de la Plaine, CP 231, B-1050, Brussels (Belgium)

    2016-03-22

    We construct the gravity dual of three-dimensional, SU(N{sub /tiny} {sub c}) super Yang-Mills theory with N{sub /tiny} {sub f} flavors of dynamical quarks in the presence of a non-zero quark density N{sub /tiny} {sub q}. The supergravity solutions include the backreaction of N{sub /tiny} {sub c} color D2-branes and N{sub /tiny} {sub f} flavor D6-branes with N{sub /tiny} {sub q} units of electric flux on their worldvolume. For massless quarks, the solutions depend non-trivially only on the dimensionless combination ρ=N{sub /tiny} {sub c}{sup 2}N{sub /tiny} {sub q}/λ{sup 2}N{sub /tiny} {sub f}{sup 4}, with λ=g{sub /tiny} {sub YM}{sup 2}N{sub /tiny} {sub c} the ’t Hooft coupling, and describe renormalization group flows between the super Yang-Mills theory in the ultraviolet and a non-relativistic theory in the infrared. The latter is dual to a hyperscaling-violating, Lifshitz-like geometry with dynamical and hyperscaling-violating exponents z=5 and θ=1, respectively. If ρ≪1 then at intermediate energies there is also an approximate AdS{sub 4} region, dual to a conformal Chern-Simons-Matter theory, in which the flow exhibits quasi-conformal dynamics. At zero temperature we compute the chemical potential and the equation of state and extract the speed of sound. At low temperature we compute the entropy density and extract the number of low-energy degrees of freedom. For quarks of non-zero mass M{sub /tiny} {sub q} the physics depends non-trivially on ρ and M{sub /tiny} {sub q}N{sub /tiny} {sub c}/λN{sub /tiny} {sub f}.

  6. The Analytic Structure of Scattering Amplitudes in N = 4 Super-Yang-Mills Theory

    Science.gov (United States)

    Litsey, Sean Christopher

    We begin the dissertation in Chapter 1 with a discussion of tree-level amplitudes in Yang-. Mills theories. The DDM and BCJ decompositions of the amplitudes are described and. related to one another by the introduction of a transformation matrix. This is related to the. Kleiss-Kuijf and BCJ amplitude identities, and we conjecture a connection to the existence. of a BCJ representation via a condition on the generalized inverse of that matrix. Under. two widely-believed assumptions, this relationship is proved. Switching gears somewhat, we introduce the RSVW formulation of the amplitude, and the extension of BCJ-like features to residues of the RSVW integrand is proposed. Using the previously proven connection of BCJ representations to the generalized inverse condition, this extension is validated, including a version of gravitational double copy. The remainder of the dissertation involves an analysis of the analytic properties of loop. amplitudes in N = 4 super-Yang-Mills theory. Chapter 2 contains a review of the planar case, including an exposition of dual variables and momentum twistors, dual conformal symmetry, and their implications for the amplitude. After defining the integrand and on-shell diagrams, we explain the crucial properties that the amplitude has no poles at infinite momentum and that its leading singularities are dual-conformally-invariant cross ratios, and can therefore be normalized to unity. We define the concept of a dlog form, and show that it is a feature of the planar integrand as well. This leads to the definition of a pure integrand basis. The proceeding setup is connected to the amplituhedron formulation, and we put forward the hypothesis that the amplitude is determined by zero conditions. Chapter 3 contains the primary computations of the dissertation. This chapter treats. amplitudes in fully nonplanar N = 4 super-Yang-Mills, analyzing the conjecture that they. follow the pattern of having no poles at infinity, can be written in dlog

  7. The Two-Loop Six-Point MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Z.; Dixon, L.J.; Kosower, D.A.; Roiban, R.; Spradlin, M.; Vergu, C.; Volovich, A.

    2008-03-12

    We give a representation of the parity-even part of the planar two-loop six-gluon MHV amplitude of N = 4 super-Yang-Mills theory, in terms of loop-momentum integrals with simple dual conformal properties. We evaluate the integrals numerically in order to test directly the ABDK/BDS all-loop ansatz for planar MHV amplitudes. We find that the ansatz requires an additive remainder function, in accord with previous indications from strong-coupling and Regge limits. The planar six-gluon amplitude can also be compared with the hexagonal Wilson loop computed by Drummond, Henn, Korchemsky and Sokatchev in arXiv:0803.1466 [hep-th]. After accounting for differing singularities and other constants independent of the kinematics, we find that the Wilson loop and MHV-amplitude remainders are identical, to within our numerical precision. This result provides non-trivial confirmation of a proposed n-point equivalence between Wilson loops and planar MHV amplitudes, and suggests that an additional mechanism besides dual conformal symmetry fixes their form at six points and beyond.

  8. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice

    CERN Document Server

    Voigt, Aiko; Müller-Preussker, Michael; Sternbeck, Andre

    2007-01-01

    We study the infrared behaviour of lattice SU(3) Yang-Mills theory in Coulomb gauge in terms of the ghost propagator, the Coulomb potential and the transversal and the time-time component of the equal-time gluon propagator. In particular, we focus on the Gribov problem and its impact on the observables. We observe that the simulated annealing method is advantageous for fixing the Coulomb gauge in large volumes. We study finite size and discretization effects. While finite size effects can be controlled by the cone cut, and the ghost propagator and the Coulomb potential become scaling functions with the cylinder cut, the equal-time gluon propagator does not show scaling in the considered range of the inverse coupling constant. The ghost propagator is infrared enhanced. The Coulomb potential is now extended to considerably lower momenta and shows a more complicated infrared regime. The Coulomb string tension satisfies Zwanziger's inequality, but its estimate can be considered only preliminary because of the sys...

  9. Doubled Lattice Chern-Simons-Yang-Mills Theories with Discrete Gauge Group

    CERN Document Server

    Caspar, Stephan; Olesen, Therkel Z; Vlasii, Nadiia D; Wiese, Uwe-Jens

    2016-01-01

    We construct doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group $G$ in the Hamiltonian formulation. Here, these theories are considered on a square spatial lattice and the fundamental degrees of freedom are defined on pairs of links from the direct lattice and its dual, respectively. This provides a natural lattice construction for topologically-massive gauge theories, which are invariant under parity and time-reversal symmetry. After defining the building blocks of the doubled theories, paying special attention to the realization of gauge transformations on quantum states, we examine the dynamics in the group space of a single cross, which is spanned by a single link and its dual. The dynamics is governed by the single-cross electric Hamiltonian and admits a simple quantum mechanical analogy to the problem of a charged particle moving on a discrete space affected by an abstract electromagnetic potential. Such a particle might accumulate a phase shift equivalent to an Aharonov-Bohm pha...

  10. On Yang--Mills Theories with Chiral Matter at Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Shifman, M.; /Minnesota U., Theor. Phys. Inst. /Saclay, SPhT; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.

    2008-08-20

    Strong coupling dynamics of Yang-Mills theories with chiral fermion content remained largely elusive despite much effort over the years. In this work, we propose a dynamical framework in which we can address non-perturbative properties of chiral, non-supersymmetric gauge theories, in particular, chiral quiver theories on S{sub 1} x R{sub 3}. Double-trace deformations are used to stabilize the center-symmetric vacuum. This allows one to smoothly connect smaller(S{sub 1}) to larger(S{sub 1}) physics (R{sub 4} is the limiting case) where the double-trace deformations are switched off. In particular, occurrence of the mass gap in the gauge sector and linear confinement due to bions are analytically demonstrated. We find the pattern of the chiral symmetry realization which depends on the structure of the ring operators, a novel class of topological excitations. The deformed chiral theory, unlike the undeformed one, satisfies volume independence down to arbitrarily small volumes (a working Eguchi-Kawai reduction) in the large N limit. This equivalence, may open new perspectives on strong coupling chiral gauge theories on R{sub 4}.

  11. The Galilean nature of V-duality for noncommutative open string and Yang-Mills theories

    Energy Technology Data Exchange (ETDEWEB)

    Cai, R.-G. E-mail: cai@het.phys.sci.osaka-u.ac.jp; Lu, J.X. E-mail: jxlu@umich.edu; Wu, Y.-S. E-mail: wu@physics.utah.edu

    2001-07-09

    A V-duality conjecture for noncommutative open string theories (NCOS) that result from decoupling D-branes in Lorentz-boost related backgrounds was put forward recently in hep-th/0006013. The aim of this paper is to test the Galilean nature of this conjecture in the gravity dual setup. We start with an (F, D3) bound state Lorentz-boosted along one D3-brane direction perpendicular to the F-string, and show that insisting a decoupled NCOS allows only infinitesimal Lorentz boosts. In this way, it is shown that the V-duality relates a family of NCOS by Galileo boosts. Starting with a Lorentz-boosted (D1,D3) bound state, we show that a similar V-duality works for noncommutative Yang-Mills (NCYM) theories as well. In addition, we deduce by a holography argument that the running string tension, as a function of the energy scale, for NCOS (or NCYM) remains unchanged under V-duality.

  12. Two-dimensional Yang-Mills theory: perturbative and instanton contributions, and its relation to QCD in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bassetto, A

    2000-06-01

    Two different scenarios (light-front and equal-time) are possible for Yang-Mills theories in two dimensions. The exact q-barq-potential can be derived in perturbation theory starting from the light-front vacuum, but requires essential instanton contributions in the equal-time formulation. In higher dimensions no exact result is available and, paradoxically, only the latter formulation (equal-time) is acceptable, at least in a perturbative context.

  13. Correlations of the energy-momentum tensor via gradient flow in SU(3) Yang-Mills theory at finite temperature

    Science.gov (United States)

    Kitazawa, Masakiyo; Iritani, Takumi; Asakawa, Masayuki; Hatsuda, Tetsuo

    2017-12-01

    Euclidean two-point correlators of the energy-momentum tensor (EMT) in SU(3) gauge theory on the lattice are studied on the basis of the Yang-Mills gradient flow. The entropy density and the specific heat obtained from the two-point correlators are shown to be in good agreement with those from the one-point functions of EMT. These results constitute a first step toward the first principle simulations of the transport coefficients with the gradient flow.

  14. The Gribov problem in presence of background field for SU(2) Yang–Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio, E-mail: canfora@cecs.cl [Centro de Estudios Científicos (CECS), Casilla 1469, Valdivia (Chile); Hidalgo, Diego, E-mail: dhidalgo@cecs.cl [Centro de Estudios Científicos (CECS), Casilla 1469, Valdivia (Chile); Departamento de Física, Universidad de Concepción, Casilla 160, Concepción (Chile); Pais, Pablo, E-mail: pais@cecs.cl [Centro de Estudios Científicos (CECS), Casilla 1469, Valdivia (Chile); Physique Théorique et Mathématique, Univérsite de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium)

    2016-12-10

    The Gribov problem in the presence of a background field is analyzed: in particular, we study the Gribov copies equation in the Landau–De Witt gauge as well as the semi-classical Gribov gap equation. As background field, we choose the simplest non-trivial one which corresponds to a constant gauge potential with non-vanishing component along the Euclidean time direction. This kind of constant non-Abelian background fields is very relevant in relation with (the computation of) the Polyakov loop but it also appears when one considers the non-Abelian Schwinger effect. We show that the Gribov copies equation is affected directly by the presence of the background field, constructing an explicit example. The analysis of the Gribov gap equation shows that the larger the background field, the smaller the Gribov mass parameter. These results strongly suggest that the relevance of the Gribov copies (from the path integral point of view) decreases as the size of the background field increases.

  15. Four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory

    Science.gov (United States)

    Bern, Zvi; Czakon, Michael; Dixon, Lance J.; Kosower, David A.; Smirnov, Vladimir A.

    2007-04-01

    We present an expression for the leading-color (planar) four-loop four-point amplitude of N=4 supersymmetric Yang-Mills theory in 4-2γ dimensions, in terms of eight separate integrals. The expression is based on consistency of unitarity cuts and infrared divergences. We expand the integrals around γ=0, and obtain analytic expressions for the poles from 1/γ8 through 1/γ4. We give numerical results for the coefficients of the 1/γ3 and 1/γ2 poles. These results all match the known exponentiated structure of the infrared divergences, at four separate kinematic points. The value of the 1/γ2 coefficient allows us to test a conjecture of Eden and Staudacher for the four-loop cusp (soft) anomalous dimension. We find that the conjecture is incorrect, although our numerical results suggest that a simple modification of the expression, flipping the sign of the term containing ζ32, may yield the correct answer. Our numerical value can be used, in a scheme proposed by Kotikov, Lipatov, and Velizhanin, to estimate the two constants in the strong-coupling expansion of the cusp anomalous dimension that are known from string theory. The estimate works to 2.6% and 5% accuracy, providing nontrivial evidence in support of the AdS/CFT correspondence. We also use the known constants in the strong-coupling expansion as additional input to provide approximations to the cusp anomalous dimension which should be accurate to under 1% for all values of the coupling. When the evaluations of the integrals are completed through the finite terms, it will be possible to test the iterative, exponentiated structure of the finite terms in the four-loop four-point amplitude, which was uncovered earlier at two and three loops.

  16. A new double-scaling limit of N = 4 super-Yang-Mills theory and pp-wave strings

    DEFF Research Database (Denmark)

    Kristjansen, C.; Plefka, J.; Semenoff, G. W.

    2002-01-01

    The metric of a spacetime with a parallel plane (pp)-wave can be obtained in a certain limit of the space AdS5 × S5. According to the AdS/CFT correspondence, the holographic dual of superstring theory on that background should be the analogous limit of N = 4 supersymmetric Yang-Mills theory...... scaling limit may be defined. We exactly compute two- and three-point functions of chiral primaries in this limit. We also carefully study certain operators conjectured to correspond to string excitations on the pp-wave background. We find non-planar linear mixing of these proposed operators, requiring...

  17. Predicting Planck Scale and Newtonian Constant from a Yang-Mills Gauge Theory: 1- and 2-Loop Estimates

    Directory of Open Access Journals (Sweden)

    Rodrigo F. Sobreiro

    2016-01-01

    Full Text Available Recently, a model for an emergent gravity based on SO(5 Yang-Mills action in Euclidian 4-dimensional spacetime was proposed. In this work we provide some 1- and 2-loop computations and show that the model can accommodate suitable predicting values for the Newtonian constant. Moreover, it is shown that the typical scale of the expected transition between the quantum and the geometrodynamical theory is consistent with Planck scale. We also provide a discussion on the cosmological constant problem.

  18. Numerical determination of quark potential, glueball masses, and phase structure in the N=1 supersymmetric Yang-Mills theory; Numerische Bestimmung von Quarkpotential, Glueball-Massen und Phasenstruktur in der N=1 supersymmetrischen Yang-Mills-Theorie

    Energy Technology Data Exchange (ETDEWEB)

    Sandbrink, Dirk

    2015-01-26

    One of the most promising candidates to describe the physics beyond the standard model is the so-called supersymmetry. This work was created in the context of the DESY-Muenster-Collaboration, which studies in particular the N=1 supersymmetric Yang-Mills theory (SYM). SYM is a comparatively simple theory, which is therefore well-suited to study the expected properties of a supersymmetric theory with the help of Monte Carlo simulations on the lattice. This thesis is focused on the numerical determination of the quarkpotential, the glueball masses and the phase structur of the N=1 supersymmetric Yang-Mills theory. The quarkpotential is used to calculate the Sommer scale, which in turn is needed to convert the dimensionless lattice spacing into physical units. Glueballs are hypothetical particles built out of gluons, their masses are relatively hard to determine in lattice simulations due to their pure gluonic nature. For this reason, various methods are studied to reduce the uncertainties of the mass determination. The focus lies on smearing methods and their use in variational smearing as well as on the use of different glueball operators. Lastly, a first look is taken at the phase diagram of the model at finite temperature. Various simulations have been performed at finite temperature in parallel to those performed at temperature zero to analyse the behaviour of the Polyakov loop and the gluino condensate in greater detail.

  19. SU(2)CMB at high redshifts and the value of H0

    Science.gov (United States)

    Hahn, Steffen; Hofmann, Ralf

    2017-07-01

    We investigate a high-z cosmological model to compute the comoving sound horizon rs at baryon-velocity freeze-out towards the end of hydrogen recombination. This model assumes a replacement of the conventional cosmic microwave background (CMB) photon gas by deconfining SU(2) Yang-Mills thermodynamics, three flavours of massless neutrinos (Nν = 3) and a purely baryonic matter sector [no cold dark-matter (CDM)]. The according SU(2) temperature-redshift relation of the CMB is contrasted with recent measurements appealing to the thermal Sunyaev-Zel'dovich effect and CMB-photon absorption by molecular rotation bands or atomic hyperfine levels. Relying on a realistic simulation of the ionization history throughout recombination, we obtain z* = 1693.55 ± 6.98 and zdrag = 1812.66 ± 7.01. Due to considerable widths of the visibility functions in the solutions to the associated Boltzmann hierarchy and Euler equation, we conclude that z* and zdrag overestimate the redshifts for the respective photon and baryon-velocity freeze-out. Realistic decoupling values turn out to be zlf,* = 1554.89 ± 5.18 and zlf, drag = 1659.30 ± 5.48. With rs(zlf, drag) = (137.19 ± 0.45) Mpc and the essentially model independent extraction of rsH0 = constant from low-z data in Bernal, Verde & Riess, we obtain a good match with the value H0 = (73.24 ± 1.74) km s-1 Mpc-1 extracted in Riess et al. by appealing to Cepheid-calibrated Type Ia supernovae, new parallax measurements, stronger constraints on the Hubble flow and a refined computation of distance to NGC 4258 from maser data. We briefly comment on a possible interpolation of our high-z model, invoking percolated and unpercolated U(1) topological solitons of a Planck-scale axion field, to the phenomenologically successful low-z ΛCDM cosmology.

  20. Color superconductivity, Z{sub N} flux tubes and monopole confinement in deformed N=2* super Yang-Mills theories

    Energy Technology Data Exchange (ETDEWEB)

    Kneipp, Marco A.C. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Dept. de Fisica Teorica]. E-mail: kneipp@cbpf.br

    2003-11-15

    We study the ZN flux tubes and monopole confinement in deformed N=2* super Yang-Mills theories. In order to do that we consider an N=4 super Yang-Mills theory with an arbitrary gauge group G and add some N=2, N=1 and N=0 deformation terms. We analyze some possible vacuum solutions and phases of the theory, depending on the deformation terms which are added. In the Coulomb phase for the N=2* theory, G is broken to U(1)r and the theory has monopole solutions. Then, by adding some deformation terms, the theory passes to the Higgs or color superconducting phase, in which G is broken to its center CG. In this phase we construct the ZN flux tubes Ansatz and obtain the BPS string tension. We show that the monopole magnetic fluxes are linear integer combinations of the string fluxes and therefore the monopoles can become confined. Then, we obtain a bound for the threshold length of the string-breaking. We also show the possible formation of a confining system with 3 different monopoles for the SU(3) gauge group. Finally we show that the BPS string tensions of the theory satisfy the Casimir scaling law. (author)

  1. Conference on Yang-Mills Gauge Field Theories : C. N. Yang's Contributions to Physics

    CERN Document Server

    Phua, K K

    2016-01-01

    During the last six decades, Yang–Mills theory has increasingly become the cornerstone of theoretical physics. It is seemingly the only fully consistent relativistic quantum many-body theory in four space-time dimensions. As such it is the underlying theoretical framework for the Standard Model of Particle Physics, which has been shown to be the correct theory at the energies we now can measure. It has been investigated also from many other perspectives, and many new and unexpected features have been uncovered from this theory. In recent decades, apart from high energy physics, the theory has been actively applied in other branches of physics, such as statistical physics, condensed matter physics, nonlinear systems, etc. This makes the theory an indispensable topic for all who are involved in physics.The conference celebrated the exceptional achievements using Yang–Mills theory over the years but also many other truly remarkable contributions to different branches of physics from Prof C N Yang. This volum...

  2. Two-loop RGE of a general renormalizable Yang-Mills theory in a renormalization scheme with an explicit UV cutoff

    Energy Technology Data Exchange (ETDEWEB)

    Chankowski, Piotr H. [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland); Lewandowski, Adrian [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany); Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland); Meissner, Krzysztof A. [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland)

    2016-11-18

    We perform a systematic one-loop renormalization of a general renormalizable Yang-Mills theory coupled to scalars and fermions using a regularization scheme with a smooth momentum cutoff Λ (implemented through an exponential damping factor). We construct the necessary finite counterterms restoring the BRST invariance of the effective action by analyzing the relevant Slavnov-Taylor identities. We find the relation between the renormalized parameters in our scheme and in the conventional (MS)-bar scheme which allow us to obtain the explicit two-loop renormalization group equations in our scheme from the known two-loop ones in the (MS)-bar scheme. We calculate in our scheme the divergences of two-loop vacuum graphs in the presence of a constant scalar background field which allow us to rederive the two-loop beta functions for parameters of the scalar potential. We also prove that consistent application of the proposed regularization leads to counterterms which, together with the original action, combine to a bare action expressed in terms of bare parameters. This, together with treating Λ as an intrinsic scale of a hypothetical underlying finite theory of all interactions, offers a possibility of an unconventional solution to the hierarchy problem if no intermediate scales between the electroweak scale and the Planck scale exist.

  3. Color-Kinematics Duality and Sudakov Form Factor at Five Loops for N=4 Supersymmetric Yang-Mills Theory.

    Science.gov (United States)

    Yang, Gang

    2016-12-30

    Using color-kinematics duality, we construct for the first time the full integrand of the five-loop Sudakov form factor in N=4 super-Yang-Mills theory, including nonplanar contributions. This result also provides a first manifestation of the color-kinematics duality at five loops. The integrand is explicitly ultraviolet finite when D<26/5, coincident with the known finiteness bound for amplitudes. If the double-copy method could be applied to the form factor, this would indicate an interesting ultraviolet finiteness bound for N=8 supergravity at five loops. The result is also expected to provide an essential input for computing the five-loop nonplanar cusp anomalous dimension.

  4. Solving the functional Schrödinger equation: Yang-Mills string tension and surface critical scaling

    Science.gov (United States)

    Mansfield, Paul

    2004-04-01

    Motivated by a heuristic model of the Yang-Mills vacuum that accurately describes the string-tension in three dimensions we develop a systematic method for solving the functional Schrödinger equation in a derivative expansion. This is applied to the Landau-Ginzburg theory that describes surface critical scaling in the Ising model. A Renormalisation Group analysis of the solution yields the value eta = 1.003 for the anomalous dimension of the correlation function of surface spins which compares well with the exact result of unity implied by Onsager's solution. We give the expansion of the corresponding beta-function to 17-th order (which receives contributions from up to 17-loops in conventional perturbation theory).

  5. Semi-classical quantization in N = 4 supersymmetric Yang-Mills theory and duality

    Science.gov (United States)

    Fraser, Christophe; Hollowood, Timothy J.

    1997-02-01

    At a generic point in the moduli space of vacua of an N = 4 supersymmetric gauge theory with arbitrary gauge group the Higgs force does not cancel the magneto-static force between magnetic monopoles of distinct charge. As a consequence the moduli space of magnetically charged solutions is related in a simple way to those of the SU(2) theory. This leads to a rather simple test of S-duality. On certain subspaces of the moduli space of vacua the forces between distinct monopoles cancel and the test of S-duality becomes more complicated.

  6. New Geometric Framework for SU(2) Gauge Theory

    CERN Document Server

    Turakulov, Z Ya

    1997-01-01

    An explicit model of fiber bundle with local fibers being disinct copies of vector 3-space is introduced. They are endowed with frames which are used as local isotopic ones. The field local of isotopic frames is considered as gauge field itself while the form of gauge connections is derived from it. A covariant equation for the field of local frames is found. It is shown that Yang-Mills equation follows from it, but variety of solutions of the new equation is highly reduced in such that no ambiguities (Yang-Wu and vacuum ones) arise. It is shown that Lagrangian for the field gives non-zero trace for the stress-energy tensor and zero value for spin of the field of plane wave. Some new solutions for the fields of punctual source and spherical wave are found.

  7. A geometric method of constructing exact solutions in modified f(R,T)-gravity with Yang-Mills and Higgs interactions

    CERN Document Server

    Vacaru, Sergiu I.; Yazici, Enis

    2014-01-01

    We show that a geometric techniques can be elaborated and applied for constructing generic off-diagonal exact solutions in $f(R,T)$--modified gravity for systems of gravitational-Yang-Mills-Higgs equations. The corresponding classes of metrics and generalized connections are determined by generating and integration functions which depend, in general, on all space and time coordinates and may possess, or not, Killing symmetries. For nonholonomic constraints resulting in Levi-Civita configurations, we can extract solutions of the Einstein-Yang-Mills-Higgs equations. We show that the constructions simplify substantially for metrics with at least one Killing vector. There are provided and analyzed some examples of exact solutions describing generic off-diagonal modifications to black hole/ellipsoid and solitonic configurations.

  8. Renormalization of nonabelian gauge theories with tensor matter fields

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Vitor; Renan, Ricardo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Sorella, Silvio Paolo [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    1996-03-01

    The renormalizability of a nonabelian model describing the coupling between antisymmetric second rank tensor matter fields and Yang-Mills gauge fields is discussed within the BRS algebraic framework. (author). 12 refs.

  9. The Complete Four-Loop Four-Point Amplitude in N=4 Super-Yang-Mills Theory

    CERN Document Server

    Bern, Z; Dixon, Lance J; Johansson, H; Roiban, R

    2010-01-01

    We present the complete four-loop four-point amplitude in N=4 super-Yang-Mills theory, for a general gauge group and general D-dimensional covariant kinematics, and including all non-planar contributions. We use the method of maximal cuts --- an efficient application of the unitarity method --- to construct the result in terms of 50 four-loop integrals. We give graphical rules, valid in D-dimensions, for obtaining various non-planar contributions from previously-determined terms. We examine the ultraviolet behavior of the amplitude near D=11/2. The non-planar terms are as well-behaved in the ultraviolet as the planar terms. However, in the color decomposition of the three- and four-loop amplitude for an SU(N_c) gauge group, the coefficients of the double-trace terms are better behaved in the ultraviolet than are the single-trace terms. The results from this paper were an important step toward obtaining the corresponding amplitude in N=8 supergravity, which confirmed the existence of cancellations beyond those...

  10. Analytic result for the two-loop six-point NMHV amplitude in N=4 super Yang-Mills theory

    CERN Document Server

    Dixon, Lance J.; Henn, Johannes M.

    2012-01-01

    We provide a simple analytic formula for the two-loop six-point ratio function of planar N = 4 super Yang-Mills theory. This result extends the analytic knowledge of multi-loop six-point amplitudes beyond those with maximal helicity violation. We make a natural ansatz for the symbols of the relevant functions appearing in the two-loop amplitude, and impose various consistency conditions, including symmetry, the absence of spurious poles, the correct collinear behaviour, and agreement with the operator product expansion for light-like (super) Wilson loops. This information reduces the ansatz to a small number of relatively simple functions. In order to fix these parameters uniquely, we utilize an explicit representation of the amplitude in terms of loop integrals that can be evaluated analytically in various kinematic limits. The final compact analytic result is expressed in terms of classical polylogarithms, whose arguments are rational functions of the dual conformal cross-ratios, plus precisely two function...

  11. Equation of state of the SU($3$) Yang-Mills theory: a precise determination from a moving frame

    CERN Document Server

    Giusti, Leonardo

    2017-06-10

    The equation of state of the SU($3$) Yang-Mills theory is determined in the deconfined phase with a precision of about 0.5%. The calculation is carried out by numerical simulations of lattice gauge theory with shifted boundary conditions in the time direction. At each given temperature, up to $230\\, T_c$ with $T_c$ being the critical temperature, the entropy density is computed at several lattice spacings so to be able to extrapolate the results to the continuum limit with confidence. Taken at face value, above a few $T_c$ the results exhibit a striking linear behaviour in $\\ln(T/T_c)^{-1}$ over almost 2 orders of magnitude. Within errors, data point straight to the Stefan-Boltzmann value but with a slope grossly different from the leading-order perturbative prediction. The pressure is determined by integrating the entropy in the temperature, while the energy density is extracted from $T s=(\\epsilon + p )$. The continuum values of the potentials are well represented by Pad\\'e interpolating formulas, which als...

  12. Equation of state of the SU(3) Yang-Mills theory: A precise determination from a moving frame

    Science.gov (United States)

    Giusti, Leonardo; Pepe, Michele

    2017-06-01

    The equation of state of the SU(3) Yang-Mills theory is determined in the deconfined phase with a precision of about 0.5%. The calculation is carried out by numerical simulations of lattice gauge theory with shifted boundary conditions in the time direction. At each given temperature, up to 230Tc with Tc being the critical temperature, the entropy density is computed at several lattice spacings so to be able to extrapolate the results to the continuum limit with confidence. Taken at face value, above a few Tc the results exhibit a striking linear behaviour in ln ⁡(T /Tc)-1 over almost 2 orders of magnitude. Within errors, data point straight to the Stefan-Boltzmann value but with a slope grossly different from the leading-order perturbative prediction. The pressure is determined by integrating the entropy in the temperature, while the energy density is extracted from Ts = (ɛ + p). The continuum values of the potentials are well represented by Padé interpolating formulas, which also connect them well to the Stefan-Boltzmann values in the infinite temperature limit. The pressure, the energy and the entropy densities are compared with results in the literature. The discrepancy among previous computations near Tc is analyzed and resolved thanks to the high precision achieved.

  13. Solution of the Dyson-Schwinger-Equations of the Hamiltonian approach to Yang-Mills-Theory in Coulomb-gauge; Loesung der Dyson-Schwinger-Gleichungen des Hamilton-Zugangs zur Yang-Mills-Theorie in Coulomb-Eichung

    Energy Technology Data Exchange (ETDEWEB)

    Epple, Mark Dominik

    2008-12-03

    In this work we examine the Yang-Mills-Schroedinger equation, which is a result from minimizing the vacuum energy density in Coulomb gauge. We use an ansatz for the vacuum wave functional which is motivated by the exact wave functional of quantum electrodynamics. The wave functional is by construction singular on the Gribov horizon and has a variational kernel in the exponent which represents the gluon energy. We derive the so-called Dyson-Schwinger-equations from the variational principle, that the vacuum energy density is stationary under variation with respect to the variational kernel. These Dyson-Schwinger-equations build a set of coupled integral equations for the gluon and ghost propagator, and for the curvature in gauge orbit space. These equations have been derived in the last few years, have been examined analytically in certain approximations, and first numerical results have been obtained. The case of the so-called horizon condition, which means that the ghost form factor is divergent in the infrared, has always been of special interest. But is has been found in certain approximations analytically as well als numerically that the fully coupled system has no self-consistent solution within the employed truncation on two-loop level in the energy. But one can obtain a solvable system by inserting the bare ghost-propagator into the Coulomb equation. This system possesses two different kind of infrared-divergent solutions which differ in the exponents of the power laws of the form factors in the infrared. The weaker divergent solution has previously been found, but not the stronger divergent solution. The subject of this work is to develop a deeper understanding of the presented system. We present a new renormalization scheme which enables us to reduce the number of renormalization parameters by one. This new system of integral equations is solved numerically with greatly increased precision. Doing so we found the stronger divergent solution for the first

  14. Numerical methods for the study of a N=1 super-Yang-Mills theory with SU(2){sub c} and SU(3){sub c} Wilson fermions; Numerische Methoden zur Erforschung einer N=1 Super Yang-Mills-Theorie mit SU(2){sub c} und SU(3){sub c} Wilson Fermionen

    Energy Technology Data Exchange (ETDEWEB)

    Ferling, Alexander

    2009-05-29

    A main topic of this thesis was to transfer the hybrid Monte-Carlo algorithm on a N=1 supersymmetric model. As model served the two-step multi-boson algorithm (TSMB). Beside the essential algorithm in the TSMB program further optimizations were realized. A further step was to optimize the lattice action so that discretization artefacts at finite lattice parameters were more strongly suppressed.

  15. Phase diagram of Script N = 4 super-Yang-Mills theory with R-symmetry chemical potentials

    Science.gov (United States)

    Yamada, Daisuke; Yaffe, Laurence G.

    2006-09-01

    The phase diagram of large Nc, weakly-coupled Script N = 4 supersymmetric Yang-Mills theory on a three-sphere with non-zero chemical potentials is examined. In the zero coupling limit, a transition line in the μ-T plane is found, separating a ``confined'' phase in which the Polyakov loop has vanishing expectation value from a ``deconfined'' phase in which this order parameter is non-zero. For non-zero but weak coupling, perturbative methods may be used to construct a dimensionally reduced effective theory valid for sufficiently high temperature. If the maximal chemical potential exceeds a critical value, then the free energy becomes unbounded below and no genuine equilibrium state exists. However, the deconfined plasma phase remains metastable, with a lifetime which grows exponentially with Nc (not Nc2). This metastable phase persists with increasing chemical potential until a phase boundary, analogous to a spinodal decomposition line, is reached. Beyond this point, no long-lived locally stable quasi-equilibrium state exists. The resulting picture for the phase diagram of the weakly coupled theory is compared with results believed to hold in the strongly coupled limit of the theory, based on the AdS/CFT correspondence and the study of charged black hole thermodynamics. The confinement/deconfinement phase transition at weak coupling is in qualitative agreement with the Hawking-Page phase transition in the gravity dual of the strongly coupled theory. The black hole thermodynamic instability line may be the counterpart of the spinodal decomposition phase boundary found at weak coupling, but no black hole tunneling instability, analogous to the instability of the weakly coupled plasma phase is currently known.

  16. The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Zvi; Czakon, Michael; Dixon, Lance J.; Kosower, David A.; Smirnov, Vladimir A.

    2006-11-15

    We present an expression for the leading-color (planar) four-loop four-point amplitude of N = 4 supersymmetric Yang-Mills theory in 4-2{epsilon} dimensions, in terms of eight separate integrals. The expression is based on consistency of unitarity cuts and infrared divergences. We expand the integrals around {epsilon} = 0, and obtain analytic expressions for the poles from 1/{epsilon}{sup 8} through 1/{epsilon}{sup 4}. We give numerical results for the coefficients of the 1/{epsilon}{sup 3} and 1/e{sup 2} poles. These results all match the known exponentiated structure of the infrared divergences, at four separate kinematic points. The value of the 1/{epsilon}{sup 2} coefficient allows us to test a conjecture of Eden and Staudacher for the four-loop cusp (soft) anomalous dimension. We find that the conjecture is incorrect, although our numerical results suggest that a simple modification of the expression, flipping the sign of the term containing {zeta}{sub 3}{sup 2}, may yield the correct answer. Our numerical value can be used, in a scheme proposed by Kotikov, Lipatov and Velizhanin, to estimate the two constants in the strong-coupling expansion of the cusp anomalous dimension that are known from string theory. The estimate works to 2.6% and 5% accuracy, providing non-trivial evidence in support of the AdS/CFT correspondence. We also use the known constants in the strong-coupling expansion as additional input to provide approximations to the cusp anomalous dimension which should be accurate to under one percent for all values of the coupling. When the evaluations of the integrals are completed through the finite terms, it will be possible to test the iterative, exponentiated structure of the finite terms in the four-loop four-point amplitude, which was uncovered earlier at two and three loops.

  17. Noncommutative Geometry in M-Theory and Conformal Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Morariu, Bogdan [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of Uq(SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Funq (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models.

  18. Composite inflation from super Yang-Mills theory, orientifold, and one-flavor QCD

    DEFF Research Database (Denmark)

    Channuie, P.; Jorgensen, J. J.; Sannino, F.

    2012-01-01

    Recent investigations have shown that inflation can be driven by four-dimensional strongly interacting theories nonminimally coupled to gravity. We explore this paradigm further by considering composite inflation driven by orientifold field theories. The advantage of using these theories resides ...... nonminimally coupled QCD theory of inflation. The scale of composite inflation, for all the models presented here, is of the order of 10(16) GeV. Unitarity studies of the inflaton scattering suggest that the cutoff of the model is at the Planck scale. DOI: 10.1103/PhysRevD.86.125035...

  19. Space-time symmetries and the Yang-Mills gradient flow

    CERN Document Server

    Del Debbio, Luigi; Rago, Antonio

    2013-01-01

    The recent introduction of the gradient flow has provided a new tool to probe the dynamics of quantum field theories. The latest developments have shown how to use the gradient flow for the exploration of symmetries, and the definition of the corresponding renormalized Noether currents. In this paper we introduce infinitesimal translations along the gradient flow for gauge theories, and study the corresponding Ward identities. This approach is readily generalized to the case of gauge theories defined on a lattice, where the regulator breaks translation invariance. The Ward identities in this case lead to a nonperturbative renormalization of the energy-momentum tensor. We discuss an application of this method to the study of dilatations and scale invariance on the lattice.

  20. Isomonodromic deformations and SU 2-invariant instantons on S4

    Science.gov (United States)

    Manasliski, Richard Muñiz

    2009-07-01

    Anti-self-dual (ASD) solutions to the Yang-Mills equation (or instantons) over an anti-self-dual 4-manifold, which are invariant under an appropriate action of a three-dimensional Lie group, give rise, via twistor construction, to isomonodromic deformations of connections on CP having four simple singularities. As is well known, such deformations are governed by the sixth Painlevé equation P VI(α,β,γ,δ). We work out the particular case of the SU-action on S4, obtained from the irreducible representation on R5. In particular, we express the parameters (α,β,γ,δ) in terms of the instanton number. The present paper contains the proof of the result announced in [Richard Muñiz Manasliski, Painlevé VI equation from invariant instantons, in: Geometric and Topological Methods for Quantum field theory, Contemp. Math., vol. 434, Amer. Math. Soc., Providence, RI, 2007, pp. 215-222].

  1. Generalized zeta function representation of groups and 2-dimensional topological Yang-Mills theory: The example of GL(2, 𝔽q) and PGL(2, 𝔽q)

    Science.gov (United States)

    Roche, Ph.

    2016-03-01

    We recall the relation between zeta function representation of groups and two-dimensional topological Yang-Mills theory through Mednikh formula. We prove various generalisations of Mednikh formulas and define generalization of zeta function representations of groups. We compute some of these functions in the case of the finite group GL(2, 𝔽q) and PGL(2, 𝔽q). We recall the table characters of these groups for any q, compute the Frobenius-Schur indicator of their irreducible representations, and give the explicit structure of their fusion rings.

  2. Color superconductivity, BPS Z{sub k} strings and monopole confinement in N 2 and N = 4 super Yang-Mills theories

    Energy Technology Data Exchange (ETDEWEB)

    Kneipp, Marco A.C. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Dept. de Fisica Teorica; Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas

    2004-12-01

    We review some recent developments on BPS string solutions and monopole confinement in the Higgs (or color) superconducting phase of N = 2 and N = 4 super Yang-Mills theories. In particular, the monopole magnetic fluxes are shown to be always integer linear combinations of string fluxes. Moreover, a bound for the threshold length of the string breaking is obtained. When the gauge group SU(N) is broken to Z{sub N}, the BPS string tension satisfies the Casimir scaling law. Furthermore, in the SU(3) case the string solutions are such that they allow the formation of a confining system with three monopoles. (author)

  3. Branes for Higgs phases and exact conformal field theories

    CERN Document Server

    Sfetsos, K

    1999-01-01

    We consider multicenter supergravity solutions corresponding to Higgs phases of supersymmetric Yang-Mills theories with Z_N symmetric vacuua. In certain energy regimes, we find a description in terms of a generalized wormhole solution that corresponds to the SL(2,R)/U(1) \\times SU(2)/U(1) exact conformal field theory. We show that U-dualities map these backgrounds to purely gravitational ones and comment on the relation to the black holes arising from intersecting D1 and D5 branes. We also discuss supersymmetric properties of the various solutions and the relation to 2-dim solitons, on flat space, of the reduced axion-dilaton-gravity equations. Finally, we address the problem of understanding other supergravity solutions from the multicenter ones. As prototype examples we use rotating D3 branes and NS5 and D5 branes associated to non-Abelian duals of 4-dim hyper-Kahler metrics with SO(3) isometry.

  4. N=4 super-Yang-Mills in LHC superspace. Part II: Non-chiral correlation functions of the stress-tensor multiplet

    CERN Document Server

    Chicherin, Dmitry

    2017-03-09

    We study the multipoint super-correlation functions of the full non-chiral stress-tensor multiplet in N=4 super-Yang-Mills theory in the Born approximation. We derive effective supergraph Feynman rules for them. Surprisingly, the Feynman rules for the non-chiral correlators differ only slightly from those for the chiral correlators. We rely on the formulation of the theory in Lorentz harmonic chiral (LHC) superspace elaborated in the twin paper \\cite{PartI}. In this approach only the chiral half of the supersymmetry is manifest. The other half is realized by nonlinear and nonlocal transformations of the LHC superfields. However, at Born level only the simple linear part of the transformations is relevant. It corresponds to effectively working in the self-dual sector of the theory. Our method is also applicable to a wider class of supermultiplets like all the half-BPS operators and the Konishi multiplet.

  5. Quantum tunneling of spin-1 particles from a 5D Einstein-Yang-Mills-Gauss-Bonnet black hole beyond semiclassical approximation

    Science.gov (United States)

    Jusufi, K.

    2016-12-01

    In the present paper we study the Hawking radiation as a quantum tunneling effect of spin-1 particles from a five-dimensional, spherically symmetric, Einstein-Yang-Mills-Gauss-Bonnet (5D EYMGB) black hole. We solve the Proca equation (PE) by applying the WKB approximation and separation of variables via Hamilton-Jacobi (HJ) equation which results in a set of five differential equations, and reproduces, in this way, the Hawking temperature. In the second part of this paper, we extend our results beyond the semiclassical approximation. In particular, we derive the logarithmic correction to the entropy of the EYMGB black hole and show that the quantum corrected specific heat indicates the possible existence of a remnant.

  6. Dryson equations, Ward identities, and the infrared behavior of Yang-Mills theories. [Schwinger-Dyson equations, Slavnov-Taylor identities

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M.

    1979-01-01

    It was shown using the Schwinger-Dyson equations and the Slavnov-Taylor identities of Yang-Mills theory that no inconsistency arises if the gluon propagator behaves like (1/p/sup 2/)/sup 2/ for small p/sup 2/. To see whether the theory actually contains such singular long range behavior, a nonperturbative closed set of equations was formulated by neglecting the transverse parts of GAMMA and GAMMA/sub 4/ in the Schwinger-Dyson equations. This simplification preserves all the symmetries of the theory and allows the possibility for a singular low-momentum behavior of the gluon propagator. The justification for neglecting GAMMA/sup (T)/ and GAMMA/sub 4//sup (T)/ is not evident but it is expected that the present study of the resulting equations will elucidate this simplification, which leads to a closed set of equations.

  7. twistors and gauge fields

    Directory of Open Access Journals (Sweden)

    A. G. Sergeev

    1986-01-01

    Full Text Available We describe briefly the basic ideas and results of the twistor theory. The main points: twistor representation of Minkowsky space, Penrose correspondence and its geometrical properties, twistor interpretation of linear massless fields, Yang-Mills fields (including instantons and monopoles and Einstein-Hilbert equations.

  8. The four-loop remainder function and multi-Regge behavior at NNLLA in planar $ \\mathcal{N} $ = 4 super-Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-06-19

    We present the four-loop remainder function for six-gluon scattering with maximal helicity violation in planar NN = 4 super-Yang-Mills theory, as an analytic function of three dual-conformal cross ratios. The function is constructed entirely from its analytic properties, without ever inspecting any multi-loop integrand. We employ the same approach used at three loops, writing an ansatz in terms of hexagon functions, and fixing coefficients in the ansatz using the multi-Regge limit and the operator product expansion in the near-collinear limit. We express the result in terms of multiple polylogarithms, and in terms of the coproduct for the associated Hopf algebra. From the remainder function, we extract the BFKL eigenvalue at next-to-next-to-leading logarithmic accuracy (NNLLA), and the impact factor at N3LLA. We plot the remainder function along various lines and on one surface, studying ratios of successive loop orders. As seen previously through three loops, these ratios are surprisingly constant over large regions in the space of cross ratios, and they are not far from the value expected at asymptotically large orders of perturbation theory.

  9. The four-loop remainder function and multi-Regge behavior at NNLLA in planar N=4 super-Yang-Mills theory

    CERN Document Server

    Dixon, Lance J.; Duhr, Claude; Pennington, Jeffrey

    2014-01-01

    We present the four-loop remainder function for six-gluon scattering with maximal helicity violation in planar N=4 super-Yang-Mills theory, as an analytic function of three dual-conformal cross ratios. The function is constructed entirely from its analytic properties, without ever inspecting any multi-loop integrand. We employ the same approach used at three loops, writing an ansatz in terms of hexagon functions, and fixing coefficients in the ansatz using the multi-Regge limit and the operator product expansion in the near-collinear limit. We express the result in terms of multiple polylogarithms, and in terms of the coproduct for the associated Hopf algebra. From the remainder function, we extract the BFKL eigenvalue at next-to-next-to-leading logarithmic accuracy (NNLLA), and the impact factor at NNNLLA. We plot the remainder function along various lines and on one surface, studying ratios of successive loop orders. As seen previously through three loops, these ratios are surprisingly constant over large r...

  10. Yang-Mills mass gap, Floer homology, glueball spectrum, and conformal window in large-N QCD

    OpenAIRE

    Bochicchio, Marco

    2013-01-01

    Morse-Smale-Floer homology associates the critical points of the action functional of a classical field theory over a manifold to its homology. We associate to the intersection homology of certain Lagrangian submanifolds of R^4 the critical points of a quantum effective action of large-N SU(N) YM. For this purpose we construct in YM a trivial Topological Field Theory defined by twistor Wilson loops whose v.e.v. is 1 in the large-N limit for any shape of the loops supported on certain puncture...

  11. Algebraic renormalization perturbative twisted considerations on topological Yang-Mills theory and on N=2 supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Fucito, F.; Tanzini, A. [Rome Univ. 2 (Italy). Dipt. di Fisica; Vilar, L.C.Q.; Ventura, O.S.; Sasaki, C.A.G. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Sorella, S.P. [Universidade do Estado (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    1997-07-01

    The aim of these notes is to provide a simple and pedagogical (as much as possible) introduction to what is nowadays commonly called Algebraic Renormalization. As the same itself let it understand, the Algebraic Renormalization gives a systematic set up in order to analyse the quantum extension of a given set of classical symmetries. The framework is purely algebraic, yielding a complete characterization of all possible anomalies and invariant counterterms without making use of any explicit computation of the Feynman diagrams. This goal is achieved by collecting, with the introduction of suitable ghost fields, all the symmetries into a unique operation summarized by a generalized Slavnov-Taylor (or master equation) identity which is the starting point for the quantum analysis. The Slavnov-Taylor identity allows to define a nilpotent operator whose cohomology classes in the space of the integrated local polynomials in the fields and their derivatives with dimensions bounded by power counting give all nontrivial anomalies and counterterms. I other words, the proof of the renormalizability is reduced to the computation of some cohomology classes. (author) 28 refs., 2 figs.

  12. The large-N Yang-Mills S matrix is ultraviolet finite, but the large-N QCD S matrix is only renormalizable

    Science.gov (United States)

    Bochicchio, Marco

    2017-03-01

    Yang-Mills (YM) theory and QCD are known to be renormalizable, but not ultraviolet (UV) finite, order by order, in perturbation theory. It is a fundamental question whether YM theory or QCD is UV finite, or only renormalizable, order by order, in the large-N 't Hooft or Veneziano expansions. We demonstrate that the renormalization group (RG) and asymptotic freedom imply that in 't Hooft large-N expansion the S matrix in YM theory is UV finite, while in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massless QCD is renormalizable but not UV finite. By the same argument, the large-N N =1 supersymmetry (SUSY) YM S matrix is UV finite as well. Besides, we demonstrate that, in both 't Hooft and Veneziano large-N expansions, the correlators of local gauge-invariant operators, as opposed to the S matrix, are renormalizable but, in general, not UV finite, either in YM theory and N =1 SUSY YM theory or a fortiori in massless QCD. Moreover, we compute explicitly the counterterms that arise from renormalizing the 't Hooft and Veneziano expansions by deriving in confining massless QCD-like theories a low-energy theorem of the Novikov-Shifman-Vainshtein-Zakharov type that relates the log derivative with respect to the gauge coupling of a k -point correlator, or the log derivative with respect to the RG-invariant scale, to a (k +1 )-point correlator with the insertion of Tr F2 at zero momentum. Finally, we argue that similar results hold in the large-N limit of a vast class of confining massive QCD-like theories, provided a renormalization scheme exists—as, for example, MS ¯ —in which the beta function is not dependent on the masses. Specifically, in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massive QCD and massive N =1 SUSY QCD is renormalizable but not UV finite.

  13. Renormalization of gauge theories in the background-field approach arXiv

    CERN Document Server

    Barvinsky, Andrei O.; Herrero-Valea, Mario; Sibiryakov, Sergey M.; Steinwachs, Christian F.

    Using the background-field method we demonstrate the Becchi-Rouet-Stora-Tyutin (BRST) structure of counterterms in a broad class of gauge theories. In other words, the renormalization procedure for these gauge theories is compatible with their gauge invariance. This class encompasses Yang-Mills theories (with possibly Abelian subgroups) and relativistic gravity, including both renormalizable and non-renormalizable (effective) theories. Our results also hold for non-relativistic models such as Yang-Mills theories with anisotropic scaling or Horava gravity. They strengthen and generalize the existing results in the literature concerning the renormalization of gauge systems. We illustrate our general approach with several explicit examples.

  14. Phase diagram of the lattice SU(2) Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Bonati, C., E-mail: bonati@df.unipi.i [Dipartimento di Fisica and INFN, Pisa (Italy); Cossu, G., E-mail: cossu@post.kek.j [Scuola Normale Superiore and INFN, Pisa (Italy); D' Elia, M., E-mail: Massimo.Delia@ge.infn.i [Dipartimento di Fisica and INFN, Genova (Italy); Di Giacomo, A., E-mail: digiaco@df.unipi.i [Dipartimento di Fisica and INFN, Pisa (Italy)

    2010-03-21

    We perform a detailed study of the phase diagram of the lattice Higgs SU(2) model with fixed Higgs field length. Consistently with previsions based on the Fradkin-Shenker theorem we find a first order transition line with an endpoint whose position we determined. The diagram also shows cross-over lines: the cross-over corresponding to the pure SU(2) bulk is also present at nonzero coupling with the Higgs field and merges with the one that continues the line of first order transition beyond the critical endpoint. At high temperature the first order line becomes a crossover, whose position moves by varying the temperature.

  15. Instantons in Lifshitz field theories

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Toshiaki; Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan)

    2015-10-05

    BPS instantons are discussed in Lifshitz-type anisotropic field theories. We consider generalizations of the sigma model/Yang-Mills instantons in renormalizable higher dimensional models with the classical Lifshitz scaling invariance. In each model, BPS instanton equation takes the form of the gradient flow equations for “the superpotential” defining “the detailed balance condition”. The anisotropic Weyl rescaling and the coset space dimensional reduction are used to map rotationally symmetric instantons to vortices in two-dimensional anisotropic systems on the hyperbolic plane. As examples, we study anisotropic BPS baby Skyrmion 1+1 dimensions and BPS Skyrmion in 2+1 dimensions, for which we take Kähler 1-form and the Wess-Zumiono-Witten term as the superpotentials, respectively, and an anisotropic generalized Yang-Mills instanton in 4+1 dimensions, for which we take the Chern-Simons term as the superpotential.

  16. SU(2|2) supersymmetric mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Evgeny [Joint Institute for Nuclear Research,Dubna, Moscow Region, 141980 (Russian Federation); Lechtenfeld, Olaf [Institut für Theoretische Physik and Riemann Center for Geometry and Physics,Leibniz Universität Hannover,Appelstraße 2, 30167 Hannover (Germany); Sidorov, Stepan [Joint Institute for Nuclear Research,Dubna, Moscow Region, 141980 (Russian Federation)

    2016-11-07

    We introduce a new kind of non-relativistic N= 8 supersymmetric mechanics, associated with worldline realizations of the supergroup SU(2|2) treated as a deformation of flat N= 8, d=1 supersymmetry. Various worldline SU(2|2) superspaces are constructed as coset manifolds of this supergroup, and the corresponding superfield techniques are developed. For the off-shell SU(2|2) multiplets (3,8,5), (4,8,4) and (5,8,3), we construct and analyze the most general superfield and component actions. Common features are mass oscillator-type terms proportional to the deformation parameter and a trigonometric realization of the superconformal group OSp(4{sup ∗}|4) in the conformal cases. For the simplest (5,8,3) model the quantization is performed.

  17. From topological quantum field theories to supersymmetric gauge theories; Des theories quantiques de champ topologiques aux theories de jauge supersymetriques

    Energy Technology Data Exchange (ETDEWEB)

    Bossard, G

    2007-10-15

    This thesis contains 2 parts based on scientific contributions that have led to 2 series of publications. The first one concerns the introduction of vector symmetry in cohomological theories, through a generalization of the so-called Baulieu-Singer equation. Together with the topological BRST (Becchi-Rouet-Stora-Tyutin) operator, this symmetry gives an off-shell closed sub-sector of supersymmetry that permits to determine the action uniquely. The second part proposes a methodology for re-normalizing supersymmetric Yang-Mills theory without assuming a regularization scheme which is both supersymmetry and gauge invariance preserving. The renormalization prescription is derived thanks to the definition of 2 consistent Slavnov-Taylor operators for supersymmetry and gauge invariance, whose construction requires the introduction of the so-called shadow fields. We demonstrate the renormalizability of supersymmetric Yang-Mills theories. We give a fully consistent, regularization scheme independent, proof of the vanishing of the {beta} function and of the anomalous dimensions of the one half BPS operators in maximally supersymmetric Yang-Mills theory. After a short introduction, in chapter two, we give a review of the cohomological Yang-Mills theory in eight dimensions. We then study its dimensional reductions in seven and six dimensions. The last chapter gives quite independent results, about a geometrical interpretation of the shadow fields, an unpublished work about topological gravity in four dimensions, an extension of the shadow formalism to superconformal invariance, and finally the solution of the constraints in a twisted superspace. (author)

  18. Infrared behaviors of SU(2 gauge theory

    Directory of Open Access Journals (Sweden)

    Tuominen Kimmo

    2017-01-01

    Full Text Available We will discuss some recent results in the determination of the location of the conformal window in SU(2 gauge theory with Nf fermions in the fundamental representation of the gauge group. In particular, we will demonstrate that the long distance behavior of the continuum theory with Nf = 6 is governed by an infrared stable fixed point.

  19. Is Torsion a Fundamental Physical Field?

    CERN Document Server

    Lecian, Orchidea Maria; Montani, Giovanni

    2016-01-01

    The local Lorentz group is introduced in flat space-time, where the resulting Dirac and Yang-Mills equations are found, and then generalized to curved space-time: if matter is neglected, the Lorentz connection is identified with the contortion field, while, if matter is taken into account, both the Lorentz connection and the spinor axial current are illustrated to contribute to the torsion of space-time.

  20. Comment on "Lattice gluon and ghost propagators and the strong coupling in pure S U (3 ) Yang-Mills theory: Finite lattice spacing and volume effects"

    Science.gov (United States)

    Boucaud, Ph.; De Soto, F.; Rodríguez-Quintero, J.; Zafeiropoulos, S.

    2017-11-01

    The authors of [Phys. Rev. D 94, 014502 (2016)] reported about a careful analysis of the impact of lattice artifacts on the S U (3 ) gauge-field propagators. In particular, they found that the low-momentum behavior of the renormalized propagators depends on the lattice bare coupling and interpreted this as the result of its being affected by discretization artifacts. We discuss here a different interpretation for these results.

  1. Quasi BPS Wilson loops, localization of loop equation by homology and exact beta function in the large-N limit of SU(N) Yang-Mills theory

    Science.gov (United States)

    Bochicchio, M.

    2009-05-01

    We localize the loop equation of large-N YM theory in the anti-self-dual variables on a critical equation for an effective action by means of homological methods as opposed to the cohomological localization of equivariantly closed forms in local field theory. Our localization occurs for some special simple quasi BPS Wilson loops, that have no perimeter divergence and no cusp anomaly for backtracking cusps, in a partial Eguchi-Kawai reduction from four to two dimensions of the non-commutative theory in the limit of infinite non-commutativity and in a lattice regularization in which the anti-self-dual integration variables live at the points of the lattice, thus implying an embedding of parabolic Higgs bundles in the YM functional integral. We find that the beta function of the effective action is saturated by the non-commutative anti-self-dual vortices of the Eguchi-Kawai reduction. An exact canonical beta function of Novikov-Shifman-Vainshtein-Zakharov type, that reproduces the universal first and second perturbative coefficients follows by the localization on vortices. Finally we argue that a scheme can be found in which the canonical coupling coincides with the physical charge between static quark sources in the large-N limit and we compare our theoretical calculation with some numerical lattice result.

  2. The Yang-Mills gradient flow and SU(3) gauge theory with 12 massless fundamental fermions in a colour-twisted box

    CERN Document Server

    Lin, C -J David; Ramos, Alberto

    2015-01-01

    We perform the step-scaling investigation of the running coupling constant, using the gradient-flow scheme, in SU(3) gauge theory with twelve massless fermions in the fundamental representation. The Wilson plaquette gauge action and massless unimproved staggered fermions are used in the simulations. Our lattice data are prepared at high accuracy, such that the statistical error for the renormalised coupling, g_GF, is at the subpercentage level. To investigate the reliability of the continuum extrapolation, we employ two different lattice discretisations to obtain g_GF. For our simulation setting, the corresponding gauge-field averaging radius in the gradient flow has to be almost half of the lattice size, in order to have this extrapolation under control. We can determine the renormalisation group evolution of the coupling up to g^2_GF ~ 6, before the onset of the bulk phase structure. In this infrared regime, the running of the coupling is significantly slower than the two-loop perturbative prediction, altho...

  3. The Yang-Mills gradient flow and SU(3) gauge theory with 12 massless fundamental fermions in a colour-twisted box

    Science.gov (United States)

    Lin, C.-J. David; Ogawa, Kenji; Ramos, Alberto

    2015-12-01

    We perform the step-scaling investigation of the running coupling constant, using the gradient-flow scheme, in SU(3) gauge theory with twelve massless fermions in the fundamental representation. The Wilson plaquette gauge action and massless unimproved staggered fermions are used in the simulations. Our lattice data are prepared at high accuracy, such that the statistical error for the renormalised coupling, g GF , is at the subpercentage level. To investigate the reliability of the continuum extrapolation, we employ two different lattice discretisations to obtain g GF . For our simulation setting, the corresponding gauge-field averaging radius in the gradient flow has to be almost half of the lattice size, in order to have this extrapolation under control. We can determine the renormalisation group evolution of the coupling up to g GF 2 ˜ 6, before the onset of the bulk phase structure. In this infrared regime, the running of the coupling is significantly slower than the two-loop perturbative prediction, although we cannot draw definite conclusion regarding possible infrared conformality of this theory. Furthermore, we comment on the issue regarding the continuum extrapolation near an infrared fixed point. In addition to adopting the fit ansätz a' la Symanzik for performing this task, we discuss a possible alternative procedure inspired by properties derived from low-energy scale invariance at strong coupling. Based on this procedure, we propose a finite-size scaling method for the renormalised coupling as a means to search for infrared fixed point. Using this method, it can be shown that the behaviour of the theory around g GF 2 ˜ 6 is still not governed by possible infrared conformality.

  4. Static solutions of SU(2)-Higgs theory

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, L.G. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (US))

    1989-11-15

    The structure and stability of static spherically symmetric solutions in the SU(2)-Higgs theory are examined using both analytic and numerical methods. Accurate results are presented for the energy and instability growth rates of the sphaleron'' solution as a function of the Higgs-boson mass. The sphaleron is shown to undergo an infinite sequence of bifurcations as the Higgs-boson mass is increased, starting at {ital M}{sub {ital H}}=12M{sub W}. New deformed sphaleron'' solutions emerge from each of these bifurcations. These deformed sphalerons are not charge-conjugation invariant, have non-half-integral winding numbers, and are lower in energy than the original sphaleron. Hence, for sufficiently large Higgs-boson mass, minimal-energy paths connecting inequivalent vacuum states do not pass through the original sphaleron configuration.

  5. Entangled SU(2) and SU(1,1) coherent states

    OpenAIRE

    Wang, Xiao-Guang; Sanders, Barry C.; Pan, Shao-Hua

    2000-01-01

    Entangled SU(2) and SU(1,1) coherent states are developed as superpositions of multiparticle SU(2) and SU(1,1) coherent states. In certain cases, these are coherent states with respect to generalized su(2) and su(1,1) generators, and multiparticle parity states arise as a special case. As a special example of entangled SU(2) coherent states, entangled binomial states are introduced and these entangled binomial states enable the contraction from entangled SU(2) coherent states to entangled har...

  6. Inflation, the Higgs field and the resolution of the Cosmological Constant Paradox

    Science.gov (United States)

    De Martini, Francesco

    2017-08-01

    The nature of the scalar field responsible for the cosmological inflation, the ”inflaton”, is found to be rooted in the most fundamental concept of the Weyl’s differential geometry: the parallel displacement of vectors in curved space-time. Within this novel dynamical scenario, the standard electroweak theory of leptons based on the SU(2) L ⊗ U(1) Y as well as on the conformal groups of spacetime Weyl’s transformations is analyzed within the framework of a general-relativistic, co-covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An ”Effective Cosmological Potential”: Veff is expressed in terms of the dark energy potential: {V}{{Λ }}\\equiv {M}{{Λ }}2 via the ”mass reduction parameter”: \\zeta \\equiv \\sqrt{\\frac{|{V}eff|}{|{V}{{Λ }}|}}, a general property of the Universe. The mass of the Higgs boson, which is considered a ”free parameter” by the standard electroweak theory, by our theory is found to be proportional to the geometrical mean: {M}H\\propto \\sqrt{{M}eff× {M}P} of the Planck mass, MP and of the mass {M}eff\\equiv \\sqrt{|{V}eff|} which accounts for the measured Cosmological Constant, i.e. the measured content of vacuum-energy in the Universe. The experimental result obtained by the ATLAS and CMS Collaborations at CERN in the year 2012: MH = 125.09(GeV/c 2) leads by our theory to a value: Meff ~ 3.19 · 10-6(eV/c 2). The peculiar mathematical structure of Veff offers a clue towards the resolution of a most intriguing puzzle of modern quantum field theory, the ”Cosmological Constant Paradox”.

  7. Planar Limit of Orientifold Field Theories and Emergent Center Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Armoni, Adi; Shifman, Mikhail; Unsal, Mithat

    2007-12-05

    We consider orientifold field theories (i.e. SU(N) Yang-Mills theories with fermions in the two-index symmetric or antisymmetric representations) on R{sub 3} x S{sub 1} where the compact dimension can be either temporal or spatial. These theories are planar equivalent to supersymmetric Yang-Mills. The latter has Z{sub N} center symmetry. The famous Polyakov criterion establishing confinement-deconfinement phase transition as that from Z{sub N} symmetric to Z{sub N} broken phase applies. At the Lagrangian level the orientifold theories have at most a Z{sub 2} center. We discuss how the full Z{sub N} center symmetry dynamically emerges in the orientifold theories in the limit N {yields} {infinity}. In the confining phase the manifestation of this enhancement is the existence of stable k-strings in the large-N limit of the orientifold theories. These strings are identical to those of supersymmetric Yang-Mills theories. We argue that critical temperatures (and other features) of the confinement-deconfinement phase transition are the same in the orientifold daughters and their supersymmetric parent up to 1/N corrections. We also discuss the Abelian and non-Abelian confining regimes of four-dimensional QCD-like theories.

  8. Finite volume effects in SU(2) with two adjoint fermions

    CERN Document Server

    Patella, Agostino; Lucini, Biagio; Pica, Claudio; Rago, Antonio

    2011-01-01

    Many evidences from lattice simulations support the idea that SU(2) with two Dirac flavors in the adjoint representation (also called Minimal Walking Technicolor) is IR conformal. A possible way to see this is through the behavior of the spectrum of the mass-deformed theory. When fermions are massive, a mass-gap is generated and the theory is confined. IR-conformality is recovered in the chiral limit: masses of particles vanish in the chiral limit, while their ratios stay finite. In order to trust this analysis one has to relay on the infinite volume extrapolation. We will discuss the finite volume effects on the mesonic spectrum, investigated by varying the size of the lattice and by changing the boundary conditions for the fields.

  9. Hamiltonian Constraints and Dirac's Observables: from Relativistic Particles towards Field Theory and General Relativity.

    OpenAIRE

    Lusanna, Luca

    1995-01-01

    A review is given of the presymplectic approach to relativistic physical systems and of the determination of their Dirac's observables. After relativistic mechanics and Nambu string, the Dirac's observables of Yang-Mills theory with fermions are given for the case of massless vector bosons (like in QED). A Dirac-Yukawa-like intrinsic ultraviolet cut-off is identified from the study of the covariantization of Hamiltonian classical field theory in the Dirac-Tomonaga-Schwinger sens. The implicat...

  10. Studies in quantum field theory. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bender, C.M.; Shrauner, J.E.; Mandula, J.E.

    The theoretical physics group at Washington University has been devoted to the solution of problems in theoretical and mathematical physics. All of the personnel on this task have a similar approach to their research in that they apply sophisticated analytical and numerical techniques to problems primarily in quantum field theory. Specifically, this group has worked on quantum chromodynamics, classical Yang-Mills fields, chiral symmetry breaking condensates, lattice field theory, strong-coupling approximations, perturbation theory in large order, nonlinear waves, l/N expansions, quantum solitons, phase transitions, and nuclear potentials. Progress is reported. (WHK)

  11. Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study

    DEFF Research Database (Denmark)

    Zohar, Erez; Wahl, Thorsten B.; Burrello, Michele

    2016-01-01

    limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study...... of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation....

  12. On 2D and 3D solitons in SU(2) gluo-dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bogolubskaya, Alla; Bogolubsky, Igor [Joint Institute for Nuclear Research - JINR, Joliot-Curie st., 6, Moskovskaya obl., 141980, Dubna (Russian Federation)

    2010-07-01

    We plan to indicate the possibility of soliton existence in 2D and 3D SU(2) gluo-dynamics. Hamiltonians in terms of radial functions will be presented. Localized in space field distributions which provide local minima to these Hamiltonians are studied. Their physical implications are discussed. (author)

  13. Gauge Fields as Composite Boundary Excitations

    CERN Document Server

    Ferrara, Sergio; Ferrara, Sergio; Fronsdal, Christian

    1998-01-01

    We investigate representations of the conformal group that describe "massless" particles in the interior and at the boundary of anti-de Sitter space. It turns out that massless gauge excitations in anti-de Sitter are gauge "current" operators at the boundary. Conversely, massless excitations at the boundary are topological singletons in the interior. These representations lie at the threshold of two "unitary bounds" that apply to any conformally invariant field theory. Gravity and Yang-Mills gauge symmetry in anti-De Sitter is translated to global translational symmetry and continuous R-symmetry of the boundary superconformal field theory.

  14. Indices for 6 dimensional superconformal field theories

    Science.gov (United States)

    Kim, Seok; Lee, Kimyeong

    2017-11-01

    We review some recent developments in the 6 dimensional (2, 0) superconformal field theories, focusing on their Bogomol’nyi-Prasad-Sommerfield (BPS) spectra in the Coulomb and symmetric phases computed by various Witten indices. We shall discuss the instanton partition function of 5d maximal super-Yang-Mills theory, and the 6d superconformal index. This is a contribution to the review issue ‘Localization techniques in quantum field theories’ (ed Pestun and Zabzine) which contains 17 chapters available at [1].

  15. Topics in N = 1 supergravity in four dimensions and superstring effective field theories beyond tree-level

    Energy Technology Data Exchange (ETDEWEB)

    Saririan, Kamran [Univ. of California, Berkeley, CA (United States)

    1997-05-01

    In this thesis, the author presents some works in the direction of studying quantum effects in locally supersymmetric effective field theories that appear in the low energy limit of superstring theory. After reviewing the Kaehler covariant formulation of supergravity, he shows the calculation of the divergent one-loop contribution to the effective boson Lagrangian for supergravity, including the Yang-Mills sector and the helicity-odd operators that arise from integration over fermion fields. The only restriction is on the Yang-Mills kinetic energy normalization function, which is taken diagonal in gauge indices, as in models obtained from superstrings. He then presents the full result for the divergent one-loop contribution to the effective boson Lagrangian for supergravity coupled to chiral and Yang-Mills supermultiplets. He also considers the specific case of dilaton couplings in effective supergravity Lagrangians from superstrings, for which the one-loop result is considerably simplified. He studies gaugino condensation in the presence of an intermediate mass scale in the hidden sector. S-duality is imposed as an approximate symmetry of the effective supergravity theory. Furthermore, the author includes in the Kaehler potential the renormalization of the gauge coupling and the one-loop threshold corrections at the intermediate scale. It is shown that confinement is indeed achieved. Furthermore, a new running behavior of the dilaton arises which he attributes to S-duality. He also discusses the effects of the intermediate scale, and possible phenomenological implications of this model.

  16. Schwinger-Dyson operators as invariant vector fields on a matrix model analog of the group of loops

    Science.gov (United States)

    Krishnaswami, Govind S.

    2008-06-01

    For a class of large-N multimatrix models, we identify a group G that plays the same role as the group of loops on space-time does for Yang-Mills theory. G is the spectrum of a commutative shuffle-deconcatenation Hopf algebra that we associate with correlations. G is the exponential of the free Lie algebra. The generating series of correlations is a function on G and satisfies quadratic equations in convolution. These factorized Schwinger-Dyson or loop equations involve a collection of Schwinger-Dyson operators, which are shown to be right-invariant vector fields on G, one for each linearly independent primitive of the Hopf algebra. A large class of formal matrix models satisfying these properties are identified, including as special cases, the zero momentum limits of the Gaussian, Chern-Simons, and Yang-Mills field theories. Moreover, the Schwinger-Dyson operators of the continuum Yang-Mills action are shown to be right-invariant derivations of the shuffle-deconcatenation Hopf algebra generated by sources labeled by position and polarization.

  17. Effective SU(2) theory for the pseudogap state

    Science.gov (United States)

    Montiel, X.; Kloss, T.; Pépin, C.

    2017-03-01

    This paper exposes in a detailed manner the recent findings about the SU(2) scenario for the underdoped phase of the cuprate superconductors. The SU(2) symmetry is formulated as a rotation between the d -wave superconducting (SC) phase and a d -wave charge order. We define the operators responsible for the SU(2) rotations and we derive the nonlinear σ model associated with it. In this framework, we demonstrate that SU(2) fluctuations are massless in finite portions of the Brillouin zone corresponding to the antinodal regions (0 ,π ) and (π ,0 ). We argue that the presence of SU(2) fluctuations in the antinodal region leads to the opening of Fermi arcs around the Fermi surface and to the formation of the pseudogap. Moreover, we show that SU(2) fluctuations lead, in turn, to the emergence of a finite momentum SC order—or pair density wave (PDW)—and more importantly to a new kind of excitonic particle-hole pairs liquid, the resonant excitonic state (RES), which is made of patches of preformed particle-hole pairs with multiple momenta. When the RES liquid becomes critical, we demonstrate that electronic scattering through the critical modes leads to anomalous transport properties. This new finding can account for the strange metal (SM) phase at finite temperature, on the right-hand side of the SC dome, shedding light on another notoriously mysterious part of the phase diagram of the cuprates.

  18. Dynamical Generation of the Gauged SU(2) Linear Sigma Model

    Science.gov (United States)

    Delbourgo, R.; Scadron, M. D.

    The fermion and meson sectors of the quark-level SU(2) linear sigma model are dynamically generated from a meson-quark Lagrangian, with the quark (q) and meson (σ, π) fields all treated as elementary, having neither bare masses nor expectation values. In the chiral limit, the masses are predicted to be mq = fπg, mπ = 0, mσ = 2mq, and we also find that the quark-meson coupling is g =2π /√ {Nc}, the three-meson coupling is g' =mσ 2 /2fπ =2gmq and the four-meson coupling is λ = 2g2 = g‧/fπ, where fπ ≃ 90 MeV is the pion decay constant and Nc = 3 is the color number. By gauging this model one can generate the couplings to the vector mesons ρ and A1, including the quark-vector coupling constant gρ = 2π, gρππ, gA1ρπ and the masses mρ 700 MeV, mA1˜= √ {3} mρ ; of course the vector and axial currents remain conserved throughout.

  19. Supersymmetry Breaking Threshold Corrections in the $SU(4)\\times SU(2)_L\\times SU(2)_R$ Model

    OpenAIRE

    Korakianitis, O.; Tracas, N. D.

    1993-01-01

    We evaluate the SUSY and top threshold effects in the context of the MSSM and the string derived model based on SU(4)$\\times$SU(2)$_L\\times$SU(2)$_R$. In both cases we run the two loop RGEs and determine the lower bounds of the supersymmetric particle masses, dictated by the experimentally accepted regions of the values of the low energy parameters.

  20. Polyakov loop percolation and deconfinement in SU(2) gauge theory

    Science.gov (United States)

    Fortunato, S.; Satz, H.

    2000-03-01

    The deconfinement transition in /SU(2) gauge theory and the magnetization transition in the Ising model belong to the same universality class. The critical behaviour of the Ising model can be characterized either as spontaneous breaking of the Z2 symmetry of spin states or as percolation of appropriately defined spin clusters. We show that deconfinement in /SU(2) gauge theory can be specified as percolation of Polyakov loop clusters with Fortuin-Kasteleyn bond weights, leading to the same (Onsager) critical exponents as the conventional order-disorder description based on the Polykov loop expectation value.

  1. Equivariant spectral triples on the quantum SU(2) group

    OpenAIRE

    Chakraborty, Partha Sarathi; Pal, Arupkumar

    2002-01-01

    We characterize all equivariant odd spectral triples for the quantum SU(2) group acting on its L_2-space and having a nontrivial Chern character. It is shown that the dimension of an equivariant spectral triple is at least three, and given any element of the K-homology group of SU_q(2), there is an equivariant odd spectral triple of dimension 3 inducing that element. The method employed to get equivariant spectral triples in the quantum case is then used for classical SU(2), and we prove that...

  2. Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buividovich, P.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Polikarpov, M.I. [Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2011-11-15

    We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)

  3. Mass anomalous dimension in SU(2) with six fundamental fermions

    DEFF Research Database (Denmark)

    Bursa, Francis; Del Debbio, Luigi; Keegan, Liam

    2010-01-01

    We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. We measure the running of the coupling and the mass in the Schroedinger Functional scheme. We observe very slow running of the coupling constant. We measure the mass anomalous dimension gamma, and find it is between 0.13...

  4. The SU(2)-Higgs model on asymmetric lattices

    CERN Document Server

    Csikor, Ferenc

    1996-01-01

    We calculate the {\\cal O}(g^2,\\lambda) corrections to the coupling anisotropies of the SU(2)-Higgs model on lattices with asymmetric lattice spacings. These corrections are obtained by a one-loop calculation requiring the rotational invariance of the gauge- and Higgs-boson propagators in the continuum limit.

  5. Large-volume results in SU(2) with adjoint fermions

    CERN Document Server

    Del Debbio, Luigi; Pica, Claudio; Patella, Agostino; Rago, Antonio; Roman, Sabin

    2014-01-01

    Taming finite-volume effects is a crucial ingredient in order to identify the existence of IR fixed points. We present the latest results from our numerical simulations of SU(2) gauge theory with 2 Dirac fermions in the adjoint representation on large volumes. We compare with previous results, and extrapolate to thermodynamic limit when possible.

  6. Finite volume effects in SU(2) with two adjoint fermions

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino

    2011-01-01

    Many evidences from lattice simulations support the idea that SU(2) with two Dirac flavors in the adjoint representation (also called Minimal Walking Technicolor) is IR conformal. A possible way to see this is through the behavior of the spectrum of the mass-deformed theory. When fermions are mas...

  7. Large-volume results in SU(2) with adjoint fermions

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Lucini, Biagio; Pica, Claudio

    2013-01-01

    Taming finite-volume effects is a crucial ingredient in order to identify the existence of IR fixed points. We present the latest results from our numerical simulations of SU(2) gauge theory with 2 Dirac fermions in the adjoint representation on large volumes. We compare with previous results, an...

  8. Compactifications of IIA supergravity on SU(2)-structure manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Spanjaard, B.

    2008-07-15

    In this thesis, we study compactifications of type IIA supergravity on six-dimensional manifolds with an SU(2)-structure. A general study of six-dimensional manifolds with SU(2)-structure shows that IIA supergravity compactified on such a manifold should yield a four-dimensional gauged N=4 supergravity. We explicitly derive the bosonic spectrum, gauge transformations and action for IIA supergravity compactified on two different manifolds with SU(2)-structure, one of which also has an H{sup (3)}{sub 10}-flux, and confirm that the resulting four-dimensional theories are indeed N=4 gauged supergravities. In the second chapter, we study an explicit construction of a set of SU(2)-structure manifolds. This construction involves a Scherk-Schwarz duality twist reduction of the half-maximal six-dimensional supergravity obtained by compactifying IIA supergravity on a K3. This reduction results in a gauged N=4 four-dimensional supergravity, where the gaugings can be divided into three classes of parameters. We relate two of the classes to parameters we found before, and argue that the third class of parameters could be interpreted as a mirror flux. (orig.)

  9. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Stefan

    2008-07-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  10. Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study

    Energy Technology Data Exchange (ETDEWEB)

    Zohar, Erez, E-mail: erez.zohar@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Wahl, Thorsten B. [Rudolf Peierls Centre for Theoretical Physics, Oxford, 1 Keble Road, OX1 3NP (United Kingdom); Burrello, Michele, E-mail: michele.burrello@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Cirac, J. Ignacio [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany)

    2016-11-15

    Over the last years, Projected Entangled Pair States have demonstrated great power for the study of many body systems, as they naturally describe ground states of gapped many body Hamiltonians, and suggest a constructive way to encode and classify their symmetries. The PEPS study is not only limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation.

  11. Early Time Dynamics of Gluon Fields in High Energy Nuclear Collisions

    OpenAIRE

    Kapusta, Joseph I.; Chen, Guangyao; Fries, Rainer J.; Li, Yang

    2016-01-01

    Nuclei colliding at very high energy create a strong, quasi-classical gluon field during the initial phase of their interaction. We present an analytic calculation of the initial space-time evolution of this field in the limit of very high energies using a formal recursive solution of the Yang-Mills equations. We provide analytic expressions for the initial chromo-electric and chromo-magnetic fields and for their energy-momentum tensor. In particular, we discuss event-averaged results for ene...

  12. Mass anomalous dimension in SU(2) with six fundamental fermions

    Energy Technology Data Exchange (ETDEWEB)

    Bursa, Francis, E-mail: fwb22@cam.ac.u [Jesus College, Cambridge, CB5 8BL (United Kingdom); Del Debbio, Luigi; Keegan, Liam [SUPA, School of Astrophysics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); Pica, Claudio [CP3-Origins, University of Southern Denmark Odense, 5230 M (Denmark); Pickup, Thomas [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3NP (United Kingdom)

    2011-02-07

    We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. We measure the running of the coupling and the mass in the Schroedinger Functional scheme. We observe very slow running of the coupling constant. We measure the mass anomalous dimension {gamma}, and find it is between 0.135 and 1.03 in the range of couplings consistent with the existence of an IR fixed point.

  13. SU(2)-monopoles, curves with symmetries and Ramanujan's heritage

    Science.gov (United States)

    Braden, Harry W.; Ènol'skii, Viktor Z.

    2010-08-01

    We develop the Ercolani-Sinha construction of SU(2) monopoles for a five-parameter family of centred charge 3 monopoles. In particular we show how to solve the transcendental constraints arising on the spectral curve. For a class of symmetric curves the transcendental constraints become a number-theoretic problem and a recently proven identity of Ramanujan provides a solution. Bibliography: 36 titles.

  14. N=1 supersymmetric $SU(4) x SU(2)_{L} x SU(2)_{R}$ effective theory from the weakly coupled heterotic superstring

    CERN Document Server

    Leontaris, George K

    1999-01-01

    In the context of the free-fermionic formulation of the heterotic superstring, we construct a three generation N=1 supersymmetric SU(4)xSU(2)LxSU(2)R model supplemented by an SU(8) hidden gauge symmetry and five Abelian factors. The symmetry breaking to the standard model is achieved using vacuum expectation values of a Higgs pair in (4bar,2R)+(4,2R) at a high scale. One linear combination of the Abelian symmetries is anomalous and is broken by vacuum expectation values of singlet fields along the flat directions of the superpotential. All consistent string vacua of the model are completely classified by solving the corresponding system of F- and D-flatness equations including non-renormalizable terms up to sixth order. The requirement of existence of electroweak massless doublets further restricts the phenomenologically viable vacua. The third generation fermions receive masses from the tree-level superpotential. Further, a complete calculation of all non-renormalizable fermion mass terms up to fifth order s...

  15. N = 1 supersymmetric SU(4) x SU(2) sub L x SU (2) sub R effective theory from the weakly coupled heterotic superstring

    CERN Document Server

    Leontaris, George K

    1999-01-01

    In the context of the free-fermionic formulation of the heterotic superstring, we construct a three-generation N = 1 supersymmetric SU(4) x SU(2) sub L x SU(2) sub R model supplemented by an SU(8) hidden gauge symmetry and five Abelian factors. The symmetry breaking to the standard model is achieved using vacuum expectation values of a Higgs pair in (4,2 sub R) + (4-bar,2 sub R) at a high scale. One linear combination of the Abelian symmetries is anomalous and is broken by vacuum expectation values of singlet fields along the flat directions of the superpotential. All consistent string vacua of the model are completely classified by solving the corresponding system of F- and D-flatness equations including non-renormalizable terms up to sixth order. The requirement of existence of electroweak massless doublets imposes further restrictions to the phenomenologically viable vacua. The third generation fermions receive masses from the tree-level superpotential. Further, a complete calculation of all non-renormaliz...

  16. Periodic Euclidean solutions of SU(2)-Higgs theory

    Energy Technology Data Exchange (ETDEWEB)

    Frost, K.L.; Yaffe, L.G. [University of Washington, Department of Physics, Seattle, Washington 98105-1560 (United States)

    1999-03-01

    We examine periodic, spherically symmetric, classical solutions of SU(2)-Higgs theory in four-dimensional Euclidean space. Classical perturbation theory is used to construct periodic time-dependent solutions in the neighborhood of the static sphaleron. The behavior of the action, as a function of period, changes character depending on the value of the Higgs boson mass. The required pattern of bifurcations of solutions as a function of the Higgs boson mass is examined, and implications for the temperature dependence of the baryon number violation rate in the standard model are discussed. {copyright} {ital 1999} {ital The American Physical Society}

  17. SU (2) lattice gauge theory simulations on Fermi GPUs

    Science.gov (United States)

    Cardoso, Nuno; Bicudo, Pedro

    2011-05-01

    In this work we explore the performance of CUDA in quenched lattice SU (2) simulations. CUDA, NVIDIA Compute Unified Device Architecture, is a hardware and software architecture developed by NVIDIA for computing on the GPU. We present an analysis and performance comparison between the GPU and CPU in single and double precision. Analyses with multiple GPUs and two different architectures (G200 and Fermi architectures) are also presented. In order to obtain a high performance, the code must be optimized for the GPU architecture, i.e., an implementation that exploits the memory hierarchy of the CUDA programming model. We produce codes for the Monte Carlo generation of SU (2) lattice gauge configurations, for the mean plaquette, for the Polyakov Loop at finite T and for the Wilson loop. We also present results for the potential using many configurations (50,000) without smearing and almost 2000 configurations with APE smearing. With two Fermi GPUs we have achieved an excellent performance of 200× the speed over one CPU, in single precision, around 110 Gflops/s. We also find that, using the Fermi architecture, double precision computations for the static quark-antiquark potential are not much slower (less than 2× slower) than single precision computations.

  18. SU(4)-SU(2) crossover and spin-filter properties of a double quantum dot nanosystem

    Science.gov (United States)

    Lopes, V.; Padilla, R. A.; Martins, G. B.; Anda, E. V.

    2017-06-01

    The SU(4)-SU(2) crossover, driven by an external magnetic field h , is analyzed in a capacitively coupled double quantum dot device connected to independent leads. As one continuously charges the dots from empty to quarter filled, by varying the gate potential Vg, the crossover starts when the magnitude of the spin polarization of the double quantum dot, as measured by - , becomes finite. Although the external magnetic field breaks the SU(4) symmetry of the Hamiltonian, the ground state preserves it in a region of Vg, where - =0 . Once the spin polarization becomes finite, it initially increases slowly until a sudden change occurs, in which (polarization direction opposite to the magnetic field) reaches a maximum and then decreases to negligible values abruptly, at which point an orbital SU(2) ground state is fully established. This crossover from one Kondo state, with emergent SU(4) symmetry, where spin and orbital degrees of freedom all play a role, to another, with SU(2) symmetry, where only orbital degrees of freedom participate, is triggered by a competition between g μBh , the energy gain by the Zeeman-split polarized state and the Kondo temperature TKS U (4 ), the gain provided by the SU(4) unpolarized Kondo-singlet state. At fixed magnetic field, the knob that controls the crossover is the gate potential, which changes the quantum dots occupancies. If one characterizes the occurrence of the crossover by Vgmax, the value of Vg where reaches a maximum, one finds that the function f relating the Zeeman splitting, Bmax, which corresponds to Vgmax, i.e., Bmax=f (Vgmax) , has a similar universal behavior to that of the function relating the Kondo temperature to Vg. In addition, our numerical results show that near the SU(4) Kondo temperature and for relatively small magnetic fields the device has a ground state that restricts the electronic population at the dots to be spin polarized along the magnetic field. These two facts introduce very efficient spin

  19. SU(2) Gauge Theory with Two Fundamental Flavours

    DEFF Research Database (Denmark)

    Arthur, Rudy; Drach, Vincent; Hansen, Martin

    2016-01-01

    (Goldstone) Higgs theories to several intriguing types of dark matter candidates, such as the SIMPs. We improve our previous lattice analysis [1] by adding more data at light quark masses, at two additional lattice spacings, by determining the lattice cutoff via a Wilson flow measure of the $w_0$ parameter......We investigate the continuum spectrum of the SU(2) gauge theory with $N_f=2$ flavours of fermions in the fundamental representation. This model provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range from composite......, and by measuring the relevant renormalisation constants non-perturbatively in the RI'-MOM scheme. Our results for the lightest isovector states in the vector and axial channels, in units of the pseudoscalar decay constant, are $m_V/F_{\\rm{PS}}\\sim 13.1(2.2)$ and $m_A/F_{\\rm{PS}}\\sim 14.5(3.6)$ (combining...

  20. Dynamic SU(2) structure from seven-branes

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, Ben; McAllister, Liam; /Cornell U., Phys. Dept.; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2010-12-16

    We obtain a family of supersymmetric solutions of type IIB supergravity with dynamic SU(2) structure, which describe the local geometry near a stack of four D7-branes and one O7-plane wrapping a rigid four-cycle. The deformation to a generalized complex geometry is interpreted as a consequence of nonperturbative effects in the seven-brane gauge theory. We formulate the problem for seven-branes wrapping the base of an appropriate del Pezzo cone, and in the near-stack limit in which the four-cycle is flat, we obtain an exact solution in closed form. Our solutions serve to characterize the local geometry of nonperturbatively-stabilized flux compactifications.

  1. Probing neutrino and Higgs sectors in SU(2){sub 1} x SU(2){sub 2} x U(1){sub Y} model with lepton-flavor non-universality

    Energy Technology Data Exchange (ETDEWEB)

    Hue, L.T. [Duy Tan University, Institute of Research and Development, Da Nang City (Viet Nam); Vietnam Academy of Science and Technology, Institute of Physics, Hanoi (Viet Nam); Arbuzov, A.B. [Joint Institute for Nuclear Researches, Bogoliubov Laboratory for Theoretical Physics, Dubna (Russian Federation); Ngan, N.T.K. [Cantho University, Department of Physics, Cantho (Viet Nam); Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi (Viet Nam); Long, H.N. [Ton Duc Thang University, Theoretical Particle Physics and Cosmology Research Group, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam)

    2017-05-15

    The neutrino and Higgs sectors in the SU(2){sub 1} x SU(2){sub 2} x U(1){sub Y} model with lepton-flavor non-universality are discussed. We show that active neutrinos can get Majorana masses from radiative corrections, after adding only new singly charged Higgs bosons. The mechanism for the generation of neutrino masses is the same as in the Zee models. This also gives a hint to solving the dark matter problem based on similar ways discussed recently in many radiative neutrino mass models with dark matter. Except the active neutrinos, the appearance of singly charged Higgs bosons and dark matter does not affect significantly the physical spectrum of all particles in the original model. We indicate this point by investigating the Higgs sector in both cases before and after singly charged scalars are added into it. Many interesting properties of physical Higgs bosons, which were not shown previously, are explored. In particular, the mass matrices of charged and CP-odd Higgs fields are proportional to the coefficient of triple Higgs coupling μ. The mass eigenstates and eigenvalues in the CP-even Higgs sector are also presented. All couplings of the SM-like Higgs boson to normal fermions and gauge bosons are different from the SM predictions by a factor c{sub h}, which must satisfy the recent global fit of experimental data, namely 0.995 < vertical stroke c{sub h} vertical stroke < 1. We have analyzed a more general diagonalization of gauge boson mass matrices, then we show that the ratio of the tangents of the W-W{sup '} and Z-Z{sup '} mixing angles is exactly the cosine of the Weinberg angle, implying that number of parameters is reduced by 1. Signals of new physics from decays of new heavy fermions and Higgs bosons at LHC and constraints of their masses are also discussed. (orig.)

  2. Probing neutrino and Higgs sectors in { SU(2) }_1 × { SU(2) }_2 × { U(1) }_Y model with lepton-flavor non-universality

    Science.gov (United States)

    Hue, L. T.; Arbuzov, A. B.; Ngan, N. T. K.; Long, H. N.

    2017-05-01

    The neutrino and Higgs sectors in the { SU(2) }_1 × { SU(2) }_2 × { U(1) }_Y model with lepton-flavor non-universality are discussed. We show that active neutrinos can get Majorana masses from radiative corrections, after adding only new singly charged Higgs bosons. The mechanism for the generation of neutrino masses is the same as in the Zee models. This also gives a hint to solving the dark matter problem based on similar ways discussed recently in many radiative neutrino mass models with dark matter. Except the active neutrinos, the appearance of singly charged Higgs bosons and dark matter does not affect significantly the physical spectrum of all particles in the original model. We indicate this point by investigating the Higgs sector in both cases before and after singly charged scalars are added into it. Many interesting properties of physical Higgs bosons, which were not shown previously, are explored. In particular, the mass matrices of charged and CP-odd Higgs fields are proportional to the coefficient of triple Higgs coupling μ . The mass eigenstates and eigenvalues in the CP-even Higgs sector are also presented. All couplings of the SM-like Higgs boson to normal fermions and gauge bosons are different from the SM predictions by a factor c_h, which must satisfy the recent global fit of experimental data, namely 0.995Z-Z' mixing angles is exactly the cosine of the Weinberg angle, implying that number of parameters is reduced by 1. Signals of new physics from decays of new heavy fermions and Higgs bosons at LHC and constraints of their masses are also discussed.

  3. The Higgs field and the resolution of the Cosmological Constant Paradox in the Weyl-geometrical Universe

    Science.gov (United States)

    De Martini, Francesco

    2017-10-01

    The nature of the scalar field responsible for the cosmological inflation is found to be rooted in the most fundamental concept of Weyl's differential geometry: the parallel displacement of vectors in curved space-time. Within this novel geometrical scenario, the standard electroweak theory of leptons based on the SU(2)L⊗U(1)Y as well as on the conformal groups of space-time Weyl's transformations is analysed within the framework of a general-relativistic, conformally covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An `effective cosmological potential': Veff is expressed in terms of the dark energy potential: via the `mass reduction parameter': , a general property of the Universe. The mass of the Higgs boson, which is considered a `free parameter' by the standard electroweak theory, by our theory is found to be proportional to the mass which accounts for the measured cosmological constant, i.e. the measured content of vacuum-energy in the Universe. The non-integrable application of Weyl's geometry leads to a Proca equation accounting for the dynamics of a φρ-particle, a vector-meson proposed as an an optimum candidate for dark matter. On the basis of previous cosmic microwave background results our theory leads, in the condition of cosmological `critical density', to the assessment of the average energy content of the φρ-excitation. The peculiar mathematical structure of Veff offers a clue towards a very general resolution of a most intriguing puzzle of modern quantum field theory, the `Cosmological Constant Paradox' (here referred to as the `Λ-Paradox'). Indeed, our `universal' theory offers a resolution of the Λ-Paradox for all exponential inflationary potentials: VΛ(T,φ)∝e-nφ, and for all

  4. The Higgs field and the resolution of the Cosmological Constant Paradox in the Weyl-geometrical Universe.

    Science.gov (United States)

    De Martini, Francesco

    2017-11-13

    The nature of the scalar field responsible for the cosmological inflation is found to be rooted in the most fundamental concept of Weyl's differential geometry: the parallel displacement of vectors in curved space-time. Within this novel geometrical scenario, the standard electroweak theory of leptons based on the SU(2) L ⊗U(1) Y as well as on the conformal groups of space-time Weyl's transformations is analysed within the framework of a general-relativistic, conformally covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An 'effective cosmological potential': Veff is expressed in terms of the dark energy potential: [Formula: see text] via the 'mass reduction parameter': [Formula: see text], a general property of the Universe. The mass of the Higgs boson, which is considered a 'free parameter' by the standard electroweak theory, by our theory is found to be proportional to the mass [Formula: see text] which accounts for the measured cosmological constant, i.e. the measured content of vacuum-energy in the Universe. The non-integrable application of Weyl's geometry leads to a Proca equation accounting for the dynamics of a ϕρ -particle, a vector-meson proposed as an an optimum candidate for dark matter. On the basis of previous cosmic microwave background results our theory leads, in the condition of cosmological 'critical density', to the assessment of the average energy content of the ϕρ -excitation. The peculiar mathematical structure of Veff offers a clue towards a very general resolution of a most intriguing puzzle of modern quantum field theory, the 'Cosmological Constant Paradox' (here referred to as the 'Λ-Paradox'). Indeed, our 'universal' theory offers a resolution of the Λ-Paradox for all

  5. Numerical Results for SU(4) and SU(2) Kondo Effect in Carbon Nanotubes

    Science.gov (United States)

    Martins, George; Busser, Carlos

    2006-03-01

    New numerical results are presented for the Kondo effect in Carbon Nanotube (CNT) quantum dots (QDs). As recently reported by P. Jarillo-Herrero et al. (Nature 434, 484 (2005)), the Kondo effect in CNTs presents an SU(4) symmetry, which arises from the entanglement of orbital and spin degrees of freedom. As the number of co-tunneling processes increases, thanks to the extra (orbital) degree of freedom, the Kondo temperature reaches a high value of TK=7.7K. Interesting considerations can be drawn regarding the change from SU(4) to SU(2) symmetries depending on the hopping matrix elements between the leads and the CNT QD. Our results will analyze the transition between the SU(4) and the so-called two-level SU(2) (2LSU(2)) Kondo regimes induced by the variation of the coupling of the QD to the leads. The effect of an external magnetic field along the tube direction will also be analyzed. Our results will be compared with available Numerical Renormalization Group (NRG) results by M-S Choi et al. (Phys. Rev. Lett. 95, 067204 (2005)). A comparison with the experimental results will be made to gauge the adequacy of the model and approximations made.

  6. Effective geometric phases and topological transitions in SO(3) and SU(2) rotations.

    Science.gov (United States)

    Saarikoski, Henri; Baltanás, José Pablo; Vázquez-Lozano, J Enrique; Nitta, Junsaku; Frustaglia, Diego

    2016-04-27

    We address the development of geometric phases in classical and quantum magnetic moments (spin-1/2) precessing in an external magnetic field. We show that nonadiabatic dynamics lead to a topological phase transition determined by a change in the driving field topology. The transition is associated with an effective geometric phase which is identified from the paths of the magnetic moments in a spherical geometry. The topological transition presents close similarities between SO(3) and SU(2) cases but features differences in, e.g. the adiabatic limits of the geometric phases, being 2π and π in the classical and the quantum case, respectively. We discuss possible experiments where the effective geometric phase would be observable.

  7. Event shapes in N=4 super-Yang-Mills theory

    CERN Document Server

    Belitsky, A V; Korchemsky, G P; Sokatchev, E; Zhiboedov, A

    2014-01-01

    We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N=4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N=4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of ...

  8. On the connections between Skyrme and Yang Mills theories

    CERN Document Server

    Sánchez-Guillén, J; CERN. Geneva; Sanchez-Guillen, Joaquin

    2002-01-01

    Skyrme theories on S^3 and S^2, are analyzed using the generalized zero curvature in any dimensions. In the first case, new symmetries and integrable sectors, including the B =1 skyrmions, are unraveled. In S^2 the relation to QCD suggested by Faddeev is discussed

  9. Hermitian (ϵ,δ-Freudenthal-Kantor Triple Systems and Certain Applications of *-Generalized Jordan Triple Systems to Field Theory

    Directory of Open Access Journals (Sweden)

    Noriaki Kamiya

    2014-01-01

    Full Text Available We define Hermitian (ϵ,δ-Freudenthal-Kantor triple systems and prove a structure theorem. We also give some examples of triple systems that are generalizations of the u(N⊕u(M and sp(2N⊕u(1 Hermitian 3-algebras. We apply a *-generalized Jordan triple system to a field theory and obtain a Chern-Simons gauge theory. We find that the novel Higgs mechanism works, where the Chern-Simons gauge theory reduces to a Yang-Mills theory in a certain limit.

  10. Type IIA orientifolds on SU(2)-structure manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Danckaert, Thomas

    2010-11-15

    We investigate the possible supersymmetry-preserving orientifold projections of type IIA string theory on a six-dimensional background with SU(2)-structure. We find two categories of projections which preserve half of the low-energy supersymmetry, reducing the effective theory from an N=4 supergravity theory, to an N=2 supergravity. For these two cases, we impose the projection on the low-energy spectrum and reduce the effective N=4 supergravity action accordingly. We can identify the resulting gauged N=2 supergravity theory and bring the action into canonical form. We compute the scalar moduli spaces and characterize the gauged symmetries in terms of the geometry of these moduli spaces. Due to their origin in N=4 supergravity, which is a highly constrained theory, the moduli spaces are of a very simple form. We find that, for suitable background manifolds, isometries in all scalar sectors can become gauged. The obtained gaugings share many features with those of N=2 supergravities obtained previously from other G-structure compactifications. (orig.)

  11. Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge

    Science.gov (United States)

    Lee, Taejin

    2017-12-01

    We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.

  12. Kramers-Wannier duality and worldline representation for the SU(2) principal chiral model

    Science.gov (United States)

    Gattringer, Christof; Göschl, Daniel; Marchis, Carlotta

    2018-03-01

    In this letter we explore different representations of the SU(2) principal chiral model on the lattice. We couple chemical potentials to two of the conserved charges to induce finite density. This leads to a complex action such that the conventional field representation cannot be used for a Monte Carlo simulation. Using the recently developed Abelian color flux approach we derive a new worldline representation where the partition sum has only real and positive weights, such that a Monte Carlo simulation is possible. In a second step we transform the model to new dual variables in the Kramers-Wannier (KW) sense, such that the constraints are automatically fulfilled, and we obtain a second representation free of the complex action problem. We implement exploratory Monte Carlo simulations for both, the worldline, as well as the KW-dual form, for cross-checking the two dualizations and a first assessment of their potential for dual simulations.

  13. Confining vs. conformal scenario for SU(2) with adjoint fermions. Gluonic observables

    CERN Document Server

    Patella, Agostino; Lucini, Biagio; Pica, Claudio; Rago, Antonio

    2010-01-01

    Walking technicolor is a mechanism for electroweak symmetry breaking without Higgs field. The Higgs mechanism is provided by chiral symmetry breaking in the technicolor theory. An essential ingredient is the vicinity to an IR fixed point, which could reconcile technicolor with the electroweak precision tests. SU(2) gauge theory with two Dirac adjoint fermions has been proposed as a candidate for walking technicolor. Understanding whether this theory is confining or IR-conformal is a challenging problem, which can be addressed by means of numerical simulations. We have pointed out that a clean signal for the existence of an IR fixed point in this theory can be obtained by comparing the mesonic and gluonic sectors. We review some technical details of our calculations. Possible systematic errors are discussed.

  14. Drinfeld Doubles for Finite Subgroups of SU(2 and SU(3 Lie Groups

    Directory of Open Access Journals (Sweden)

    Robert Coquereaux

    2013-05-01

    Full Text Available Drinfeld doubles of finite subgroups of SU(2 and SU(3 are investigated in detail. Their modular data – S, T and fusion matrices – are computed explicitly, and illustrated by means of fusion graphs. This allows us to reexamine certain identities on these tensor product or fusion multiplicities under conjugation of representations that had been discussed in our recent paper [J. Phys. A: Math. Theor. 44 (2011, 295208, 26 pages], proved to hold for simple and affine Lie algebras, and found to be generally wrong for finite groups. It is shown here that these identities fail also in general for Drinfeld doubles, indicating that modularity of the fusion category is not the decisive feature. Along the way, we collect many data on these Drinfeld doubles which are interesting for their own sake and maybe also in a relation with the theory of orbifolds in conformal field theory.

  15. Progress gauge symmetry breaking in SU(6) x SU(2) sub R model

    CERN Document Server

    Hayashi, T; Matsuda, M; Matsuoka, T

    2003-01-01

    In the SU(6) x SU(2) sub R string-inspired model, we describe the evolution of the couplings and the masses down from the string scale M sub s using the renormalization group equations and minimize the effective potential. This model possesses the flavor symmetry, including the binary dihedral group D tilde sub 4. We show that the scalar mass squared of the gauge non-singlet matter field possibly becomes negative slightly below the string scale. As a consequence, the precocious radiative breaking of the gauge symmetry down to the standard model gauge group can be realized. In the present model, the large Yukawa coupling, which plays an important role in the symmetry breaking, is identical to the colored Higgs coupling related to the longevity of the proton. (author)

  16. $b \\to s \\gamma$ Decay in $SU(2)_L \\times SU(2)_R \\times U(1)$ Extensions of the Standard Model

    OpenAIRE

    Cho, Peter; Misiak, Mikolaj

    1993-01-01

    The rare radiative decay $b \\to s \\gamma$ is studied in $SU(2)_L \\times SU(2)_R \\times U(1)$ extensions of the Standard Model. Matching conditions for coefficients of operators appearing in the low energy effective Hamiltonian for this process are derived, and QCD corrections to these coefficients are analyzed. The $b \\to s \\gamma$ decay rate is then calculated and compared with the corresponding Standard Model result. We find that observable deviations from Standard Model predictions can occ...

  17. Quantum field theory as effective BV theory from Chern-Simons

    Energy Technology Data Exchange (ETDEWEB)

    Krotov, Dmitry [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow 117259 (Russian Federation); Moscow State University, Department of Physics, Vorobjevy Gory, Moscow 119899 (Russian Federation)], E-mail: krotov@itep.ru; Losev, Andrei [Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow 117259 (Russian Federation)

    2009-01-11

    The general procedure for obtaining explicit expressions for all cohomologies of Berkovits' operator is suggested. It is demonstrated that calculation of BV integral for the classical Chern-Simons-like theory (Witten's OSFT-like theory) reproduces BV version of two-dimensional gauge model at the level of effective action. This model contains gauge field, scalars, fermions and some other fields. We prove that this model is an example of 'singular' point from the perspective of the suggested method for cohomology evaluation. For arbitrary 'regular' point the same technique results in AKSZ (Alexandrov, Kontsevich, Schwarz, Zaboronsky) version of Chern-Simons theory (BF theory) in accord with [N. Berkovits, Covariant quantization of the superparticle using pure spinors, JHEP 0109 (2001) 016, (hep-th/0105050); N. Berkovits, ICTP lectures on covariant quantization of the superstring, (hep-th/0209059); M. Movshev, A. Schwarz, On maximally supersymmetric Yang-Mills theories, Nucl. Phys. B 681 (2004) 324, (hep-th/0311132); M. Movshev, A. Schwarz, Algebraic structure of Yang-Mills theory, (hep-th/0404183)].

  18. Quantum fields from the Hubble to the Planck scale

    CERN Document Server

    Kachelriess, Michael

    2017-01-01

    This book introduces quantum field theory, together with its most important applications to cosmology and astroparticle physics, in a coherent framework. The path integral approach is employed right from the start, and the use of Green functions and generating functionals is illustrated first in quantum mechanics and then in scalar field theory. Massless spin one and two fields are discussed on an equal footing, and gravity is presented as a gauge theory in close analogy with the Yang-Mills case. Concepts relevant to modern research such as helicity methods, effective theories, decoupling, or the stability of the electroweak vacuum are introduced. Various applications such as topological defects, dark matter, baryogenesis, processes in external gravitational fields, inflation and black holes help students to bridge the gap between undergraduate courses and the research literature.

  19. Massive to gauge field reduction and gravitational wave zone information

    CERN Document Server

    Deser, S

    2016-01-01

    We show explicitly that massive, Abelian, vector, just like (properly defined) massive tensor, fields limit smoothly to their massless, gauge, versions: they emit only maximal helicity radiation and mediate Coulomb and (special relativistic) Newtonian, forces between their (conserved) sources. Our main motivation, though, is to show that the recent gravitational wave detection probably cannot directly rule out very long-range gravity: Even though the waves were emitted in a strong field regime, their being detected in the weak field wave zone means the above equivalences apply. There remains the, not unlikely, possibility that no strong field generation of radiation in massive models can reproduce the observed ring-down patterns. Separately, the smooth linear limiting behaviors show that the discontinuity lies not in the mass alone, but rather in Abelian versus non-Abelian, Yang-Mills and General Relativity, regimes, whose respective massive versions are known to be non-physical.

  20. Constrained Gauge Fields from Spontaneous Lorentz Violation

    CERN Document Server

    Chkareuli, J L; Jejelava, J G; Nielsen, H B

    2008-01-01

    Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type $A_{\\mu}^{2}=M^{2}$ ($M$ is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and $CPT$) violating couplings when expressed in terms of the pure Goldstone vector modes. However, they do not lead to physical ...

  1. Constrained gauge fields from spontaneous Lorentz violation

    DEFF Research Database (Denmark)

    Chkareuli, J. L.; Froggatt, C. D.; Jejelava, J. G.

    2008-01-01

    Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type AµAµ=M2 (M is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant...... theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory...... proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and CPT) violating...

  2. On the large N limit, Wilson Loops, Confinement and Composite Antisymmetric Tensor Field theories

    CERN Document Server

    Castro, C

    2004-01-01

    A novel approach to evaluate the Wilson loops asociated with a $ SU ( \\infty )$ gauge theory in terms of pure string degrees of freedom is presented. It is based on the Guendelman-Nissimov-Pacheva formulation of composite antisymmetric tensor field theories of area (volume ) preserving diffeomorphisms which admit $p$-brane solutions and which provide a $new$ route to scale symmetry breaking and confinement in Yang-Mills theory. The quantum effects are discussed and we evaluate the vacuum expectation values (vev) of the Wilson loops in the large $N$ limit of the $quenched$ reduced $SU(N)$ Yang-Mills theory in terms of a path integral involving pure string degrees of freedom. The $quenched$ approximation is necessary to avoid a crumpling of the string world-sheet giving rise to very large Hausdorff dimensions as pointed out by Olesen. The approach is also consistent with the recent results based on the AdS/CFT correspondence and dual QCD models (dual Higgs model with dual Dirac strings ). More general Loop wav...

  3. Studies In Field Theories: Mhv Vertices, Twistor Space, Recursion Relations And Chiral Rings

    CERN Document Server

    Svrcek, P

    2005-01-01

    In this thesis we study different aspects of four dimensional field theories. In the first chapter we give introduction and overview of the thesis. In the second chapter we review the connection between perturbative Yang-Mills and twistor string theory. Inspired by this, we propose a new way of constructing Yang-Mills scattering amplitudes from Feynman graphs in which the vertices are off-shell continuations of the tree level MHV amplitudes. The MHV diagrams lead to simple formulas for tree-level amplitudes. We then give a heuristic derivation of the diagrams from twistor string theory. In the third chapter, we explore the twistor structure of scattering amplitudes in theories for which a twistor string theory analogous to the one for N = 4 gauge theory has not yet been proposed. We study the differential equations of one-loop amplitudes of gluons in gauge theories with reduced supersymmetry and of tree level and one-loop amplitudes of gravitons in general relativity and supergravity. We find that the scat...

  4. The finite temperature phase transition in the lattice SU(2)-Higgs model

    CERN Document Server

    Farakos, K; Rummukainen, K; Shaposhnikov, Mikhail E

    1994-01-01

    We study the finite temperature transition of SU(2)-Higgs model with lattice Monte Carlo techniques. We use dimensional reduction to transform the original 4-dimensional SU(2)-gauge + fundamental Higgs theory to an effective 3-dimensional SU(2) + adjoint Higgs + fundamental Higgs model. The simulations were performed with Higgs masses of 35 and 80 GeV; in both cases we observe a stronger first order transition than the perturbation theory predicts, indicating that the dynamics of the transition strongly depend on non-perturbative effects.

  5. Path integrals and coherent states of SU(2) and SU(1,1)

    CERN Document Server

    Inomata, Akira; Kuratsuji, Hiroshi

    1992-01-01

    The authors examine several topical subjects, commencing with a general introduction to path integrals in quantum mechanics and the group theoretical backgrounds for path integrals. Applications of harmonic analysis, polar coordinate formulation, various techniques and path integrals on SU(2) and SU(1, 1) are discussed. Soluble examples presented include particle-flux system, a pulsed oscillator, magnetic monopole, the Coulomb problem in curved space and others.The second part deals with the SU(2) coherent states and their applications. Construction and generalization of the SU(2) coherent sta

  6. Holographic Duals for Five-Dimensional Superconformal Quantum Field Theories

    Science.gov (United States)

    D'Hoker, Eric; Gutperle, Michael; Uhlemann, Christoph F.

    2017-03-01

    We construct global solutions to type IIB supergravity with 16 residual supersymmetries whose space-time is AdS6×S2 warped over a Riemann surface. Families of solutions are labeled by an arbitrary number L ≥3 of asymptotic regions, in each of which the supergravity fields match those of a (p ,q ) five-brane, and may therefore be viewed as near-horizon limits of fully localized intersections of five-branes in type IIB string theory. These solutions provide compelling candidates for holographic duals to a large class of five-dimensional superconformal quantum field theories which arise as nontrivial UV fixed points of perturbatively nonrenormalizable Yang-Mills theories, thereby making them more directly accessible to quantitative analysis.

  7. SU(2) Flat Connection on Riemann Surface and Twisted Geometry with Cosmological Constant

    CERN Document Server

    Han, Muxin

    2016-01-01

    SU(2) flat connection on 2D Riemann surface is shown to relate to the generalized twisted geometry in 3D space with cosmological constant. Various flat connection quantities on Riemann surface are mapped to the geometrical quantities in discrete 3D space. We propose that the moduli space of SU(2) flat connections on Riemann surface generalizes the phase space of twisted geometry or Loop Quantum Gravity to include the cosmological constant.

  8. Noether's theorems and conserved currents in gauge theories in the presence of fixed fields

    Science.gov (United States)

    Tóth, Gábor Zsolt

    2017-07-01

    We extend the standard construction of conserved currents for matter fields in general relativity to general gauge theories. In the original construction, the conserved current associated with a spacetime symmetry generated by a Killing field hμ is given by √{-g }Tμ νhν , where Tμ ν is the energy-momentum tensor of the matter. We show that if in a Lagrangian field theory that has gauge symmetry in the general Noetherian sense some of the elementary fields are fixed and are invariant under a particular infinitesimal gauge transformation, then there is a current Bμ that is analogous to √{-g }Tμ νhν and is conserved if the nonfixed fields satisfy their Euler-Lagrange equations. The conservation of Bμ can be seen as a consequence of an identity that is a generalization of ∇μTμ ν=0 and is a consequence of the gauge symmetry of the Lagrangian. This identity holds in any configuration of the fixed fields if the nonfixed fields satisfy their Euler-Lagrange equations. We also show that Bμ differs from the relevant canonical Noether current by the sum of an identically conserved current and a term that vanishes if the nonfixed fields are on shell. For an example, we discuss the case of general, possibly fermionic, matter fields propagating in fixed gravitational and Yang-Mills background. We find that in this case the generalization of ∇μTμ ν=0 is the Lorentz law ∇μTμ ν-Fa ν λJa λ=0 , which holds as a consequence of the diffeomorphism, local Lorentz and Yang-Mills gauge symmetry of the matter Lagrangian. For a second simple example, we consider the case of general fields propagating in a background that consists of a gravitational and a real scalar field.

  9. Probing N=2 superconformal field theories with localization

    Energy Technology Data Exchange (ETDEWEB)

    Fiol, Bartomeu [Departament de Física Fonamental i Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, 08028 Barcelona, Catalonia (Spain); Garolera, Blai [Escuela de Física, Universidad de Costa Rica,11501-2060 San José (Costa Rica); Torrents, Genís [Departament de Física Fonamental i Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, 08028 Barcelona, Catalonia (Spain)

    2016-01-27

    We use supersymmetric localization to study probes of four dimensional Lagrangian N=2 superconformal field theories. We first derive a unique equation for the eigenvalue density of these theories. We observe that these theories have a Wigner eigenvalue density precisely when they satisfy a necessary condition for having a holographic dual with a sensible higher-derivative expansion. We then compute in the saddle-point approximation the vacuum expectation value of 1/2-BPS circular Wilson loops, and the two-point functions of these Wilson loops with the Lagrangian density and with the stress-energy tensor. This last computation also provides the corresponding Bremsstrahlung functions and entanglement entropies. As expected, whenever a finite fraction of the matter is in the fundamental representation, the results are drastically different from those of N=4 supersymmetric Yang-Mills theory.

  10. Simulating thimble regularization of lattice quantum field theories

    CERN Document Server

    Di Renzo, Francesco

    2016-01-01

    Monte Carlo simulations of lattice quantum field theories on Lefschetz thimbles are non trivial. We discuss a new Monte Carlo algorithm based on the idea of computing contributions to the functional integral which come from complete flow lines. The latter are the steepest ascent paths attached to critical points, i.e. the basic building blocks of thimbles. The measure to sample is thus dictated by the contribution of complete flow lines to the partition function. The algorithm is based on a heat bath sampling of the gaussian approximation of the thimble: this defines the proposals for a Metropolis-like accept/reject step. The effectiveness of the algorithm has been tested on a few models, e.g. the chiral random matrix model. We also discuss thimble regularization of gauge theories, and in particular the successfull application to 0+1 dimensional QCD and the status and prospects for Yang-Mills theories.

  11. The A{sub 5} and the pion field

    Energy Technology Data Exchange (ETDEWEB)

    Hirn, Johannes [IFIC, Departament de Fisica Teorica, CSIC - Universitat de Valencia, Edifici d' Instituts de Paterna, Apt. Correus 22085, 46071 Valencia (Spain)], E-mail: johannes.hirn@ific.uv.es; Sanz, Veronica [CAFPE, Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, 18071 Granada (Spain)], E-mail: vsanz@ugr.es

    2007-02-15

    In this talk, an SU(N{sub f})xSU(N{sub f}) Yang-Mills model with a compact extra-dimension is used to describe the spin-1 mesons and pions of massless QCD in the large-N{sub c}. The right 4D symmetry and symmetry-breaking pattern is produced by imposing appropriate boundary conditions. The Goldstone boson (GB) fields are constructed using a Wilson line. We derive the low-energy limit (chiral lagrangian), discuss {rho}-meson dominance, sum rules between resonance couplings and the relation with the QCD high-energy behavior. Finally, we provide an analytic expression for the two-point function of vector and axial currents.

  12. Effective Action of Dressed Mean Fields for {N}=4 Super-Yang Theory

    Science.gov (United States)

    Cvetič, Gorazd; Kondrashuk, Igor; Schmidt, Ivan

    Based on general considerations such as R-operation and Slavnov-Taylor identity we show that the effective action, being understood as Legendre transform of the logarithm of the path integral, possesses particular structure in {N}=4 supersymmetric Yang-Mills theory for kernels of the effective action expressed in terms of the dressed effective fields. These dressed effective fields have been introduced in our previous papers as actual variables of the effective action. The concept of dressed effective fields naturally appears in the framework of solution to Slavnov-Taylor identity. The particularity of the structure is the independence of these kernels on the ultraviolet regularization scale Λ. These kernels are functions of mutual spacetime distances and of the gauge coupling. The fact that β function in this theory is zero is used significantly.

  13. Evolution of Hall resistivity and spectral function with doping in the SU(2) theory of cuprates

    Science.gov (United States)

    Morice, C.; Montiel, X.; Pépin, C.

    2017-10-01

    Recent transport experiments in the cuprate superconductors linked the opening of the pseudogap to a change in electronic dispersion [S. Badoux et al., Nature (London) 531, 210 (2015), 10.1038/nature16983]. Transport measurements showed that the carrier density sharply changes from x to 1 +x at the pseudogap critical doping, in accordance with the change from Fermi arcs at low doping to a large hole Fermi surface at high doping. The SU(2) theory of cuprates shows that short-range antiferromagnetic correlations cause the arising of both charge and superconducting orders, which are related by an SU(2) symmetry. The fluctuations associated with this symmetry form a pseudogap phase. Here we derive the renormalized electronic propagator under the SU(2) dome, and calculate the spectral functions and transport quantities of the renormalized bands. We show that their evolution with doping matches both spectral and transport measurements.

  14. On the SU(2 vertical stroke 1) WZNW model and its statistical mechanics applications

    Energy Technology Data Exchange (ETDEWEB)

    Saleur, H. [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[University of Southern California, Los Angeles, CA (United States). Dept. of Physics; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-11-15

    Motivated by a careful analysis of the Laplacian on the supergroup SU(2 vertical stroke 1) we formulate a proposal for the state space of the SU(2 vertical stroke 1) WZNW model. We then use properties of sl(2 vertical stroke 1) characters to compute the partition function of the theory. In the special case of level k=1 the latter is found to agree with the properly regularized partition function for the continuum limit of the integrable sl(2 vertical stroke 1)3- anti 3 super-spin chain. Some general conclusions applicable to other WZNW models (in particular the case k=-1/2) are also drawn. (orig.)

  15. Supersymmetric solutions of SU(2-Fayet–Iliopoulos-gauged N=2, d=4 supergravity

    Directory of Open Access Journals (Sweden)

    Tomás Ortín

    2017-03-01

    Full Text Available We explore the construction of supersymmetric solutions of theories of N=2,d=4 supergravity with a SU(2 gauging and SU(2 Fayet–Iliopoulos terms. In these theories an SU(2 isometry subgroup of the Special-Kähler manifold is gauged together with a SU(2 R-symmetry subgroup. We construct several solutions of the CP‾3 quadratic model directly in four dimensions and of the ST[2,6] model by dimensional reduction of the solutions found by Cariglia and Mac Conamhna in N=(1,0,d=6 supergravity with the same kind of gauging. In the CP‾3 model, we construct an AdS2×S2 solution which is only 1/8 BPS and an R×H3 solutions that also preserves 1 of the 8 possible supersymmetries. We show how to use dimensional reduction as in the ungauged case to obtain Rn×Sm and also AdSn×Sm-type solutions (with different radii in 5- and 4-dimensions from the 6-dimensional AdS3×S3 solution.

  16. Scattering lengths in SU(2) gauge theory with two fundamental fermions

    DEFF Research Database (Denmark)

    Arthur, R.; Drach, V.; Hansen, Martin Rasmus Lundquist

    2014-01-01

    We investigate non perturbatively scattering properties of Goldstone Bosons in an SU(2) gauge theory with two Wilson fermions in the fundamental representation. Such a theory can be used to build extensions of the Standard Model that unifies Technicolor and pseudo Goldstone composite Higgs models...

  17. Mass anomalous dimension and running of the coupling in SU(2) with six fundamental fermions

    DEFF Research Database (Denmark)

    Bursa, Francis; Del Debbio, Luigi; Keegan, Liam

    2010-01-01

    We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. By using the Schr\\"odinger Functional method we measure the running of the coupling and the fermion mass over a wide range of length scales. We observe very slow running of the coupling and construct an estimator for the...

  18. Light Asymmetric Dark Matter on the Lattice: SU(2) Technicolor with Two Fundamental Flavors

    DEFF Research Database (Denmark)

    Lewis, Randy; Pica, Claudio; Sannino, Francesco

    2012-01-01

    The SU(2) gauge theory with two massless Dirac flavors constitutes the building block of several models of Technicolor. Furthermore it has also been used as a template for the construction of a natural light asymmetric, or mixed type, dark matter candidate. We use explicit lattice simulations to ...

  19. A correction to the Immirzi parameter of SU(2 spin networks

    Directory of Open Access Journals (Sweden)

    M. Sadiq

    2015-02-01

    Full Text Available The elegant predictions of loop quantum gravity are obscured by the free Immirzi parameter (γ. Dreyer (2003, considering the asymptotic quasinormal modes spectrum of a black hole, proposed that γ may be fixed by letting the j=1 transitions of spin networks as the dominant processes contributing to the black hole area, as opposed to the expected j=1/2 transitions. This suggested that the gauge group of the theory might be SO(3 rather than SU(2. Corichi (2003, maintaining SU(2 as the underlying gauge group, and invoking the principle of local fermion-number conservation, reported the same value of γ for j=1 processes as obtained by Dreyer. In this note, preserving the SU(2 structure of the theory, and considering j=1 transitions as the dominant processes, we point out that the value of γ is in fact twice the value reported by these authors. We arrive at this result by assuming the asymptotic quasinormal modes themselves as dynamical systems obeying SU(2 symmetry.

  20. Confining vs. conformal scenario for SU(2) with 2 adjoint fermions. Mesonic spectrum

    DEFF Research Database (Denmark)

    Pica, Claudio; Del Debbio, Luigi; Lucini, Biagio

    2010-01-01

    The Minimal Walking Technicolor (MWT) model, based on the SU(2) gauge group with two Dirac adjoint fermions, is expected to lie close to the lower boundary of the conformal window. As such, it is believed to possess a dynamics different enough from QCD to be a viable candidate for a Technicolor t...

  1. Mass anomalous dimension of SU(2) using the spectral density method

    CERN Document Server

    Suorsa, Joni M; Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari; Tuominen, Kimmo; Tähtinen, Sara

    2016-01-01

    SU(2) with N_f = 6 and N_f = 8 are believed to have an infrared conformal fixed point. We use the spectral density method cross referenced with the mass step scaling method to evaluate the coupling constant dependence of the mass anomalous dimension for massless HEX smeared, clover improved Wilson fermions with Schr\\"odinger functional boundary conditions.

  2. Anatomy of isolated monopole in Abelian projection od SU(2) lattice gauge theory

    CERN Document Server

    Belavin, V A; Veselov, A I

    2001-01-01

    The structure of the isolated static monopolies in the maximum Abelian projection of the SU(2) gluodynamics on the lattice studied. The standard parametrization of the coupling matrix was used by determining the maximum Abelian projection of the R functional maximization relative to all scale transformations. The monopole radius R approx = 0.06 fm is evaluated

  3. Weinberg Angle Derivation from Discrete Subgroups of SU(2 and All That

    Directory of Open Access Journals (Sweden)

    Potter F.

    2015-01-01

    Full Text Available The Weinberg angle W of the Standard Model of leptons and quarks is derived from specific discrete (i.e., finite subgroups of the electroweak local gauge group SU(2 L U(1 Y . In addition, the cancellation of the triangle anomaly is achieved even when there are four quark families and three lepton families!

  4. An SU(2) symmetry of the one-dimensional spin-1 XY model

    CERN Document Server

    Kitazawa, A; Nomura, K

    2003-01-01

    We show that the one-dimensional spin-1 XY model has an additional SU(2) symmetry for the open boundary condition and for an artificial one. We can explain some degeneracies of excitation states which were reported in previous numerical studies. (letter to the editor)

  5. Gradient flow and IR fixed point in SU(2) with Nf=8 flavors

    DEFF Research Database (Denmark)

    Leino, Viljami; Karavirta, Tuomas; Rantaharju, Jarno

    2015-01-01

    We study the running of the coupling in SU(2) gauge theory with 8 massless fundamental representation fermion flavours, using the gradient flow method with the Schr\\"odinger functional boundary conditions. Gradient flow allows us to measure robust continuum limit for the step scaling function...

  6. Running coupling in SU(2) gauge theory with two adjoint fermions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari

    2016-01-01

    We study SU(2) gauge theory with two Dirac fermions in the adjoint representation of the gauge group on the lattice. Using clover improved Wilson fermion action with hypercubic truncated stout smearing we perform simulations at larger coupling than before. We measure the evolution of the coupling...

  7. The gradient flow running coupling in SU2 with 8 flavors

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Karavirta, Tuomas; Leino, Viljami

    2014-01-01

    We present preliminary results of the gradient flow running coupling with Dirichlet boundary condition in the SU(2) gauge theory with 8 fermion flavours. Improvements to the gradient flow measurement allow us to obtain a robust continuum limit. The results are consistent with perturbative running...

  8. The Kronecker product in terms of Hubbard operators and the Clebsch–Gordan decomposition of SU(2SU(2)

    Energy Technology Data Exchange (ETDEWEB)

    Enríquez, Marco; Rosas-Ortiz, Oscar, E-mail: orosas@fis.cinvestav.mx

    2013-12-15

    We review the properties of the Kronecker (direct, or tensor) product of square matrices A⊗B⊗C⋯ in terms of Hubbard operators. In its simplest form, a Hubbard operator X{sub n}{sup i,j} can be expressed as the n-square matrix which has entry 1 in position (i,j) and zero in all other entries. The algebra and group properties of the observables that define a multipartite quantum system are notably straightforward in such a framework. In particular, we use the Kronecker product in Hubbard notation to get the Clebsch–Gordan decomposition of the product group SU(2SU(2). Finally, the n-dimensional irreducible representations so obtained are used to derive closed forms of the Clebsch–Gordan coefficients that rule the addition of angular momenta. Our results can be further developed in many different directions. -- Highlights: •The Kronecker product is studied in terms of Hubbard operators. •Complicated calculations involving large matrices are reduced to simple relations of subscripts. •The algebraic properties of the quantum observables of multipartite systems are studied. •The Clebsch–Gordan coefficients are given in terms of hypergeometric {sub 3}F{sub 2} functions. •The results can be further developed in many different directions.

  9. Instantons versus factorization in large-N field theories

    NARCIS (Netherlands)

    Baal, P. van

    1984-01-01

    We discuss the contribution of surviving extrema for the action in N→ ∞ Yang-Mills theories in weak coupling and their relevance for factorization. In particular we discuss the role of fluxons in the twisted Eguchi-Kawai model.

  10. From instantons to sphalerons: Time-dependent periodic solutions of SU(2)-Higgs theory

    Energy Technology Data Exchange (ETDEWEB)

    Frost, K.L.; Yaffe, L.G. [Department of Physics, University of Washington, Seattle, Washington 98105-1560 (United States)

    1999-11-01

    We solve numerically for periodic, spherically symmetric, classical solutions of SU(2)-Higgs theory in four-dimensional Euclidean space. In the limit of short periods the solutions approach tiny instanton{endash}anti-instanton superpositions while, for longer periods, the solutions merge with the static sphaleron. A previously predicted bifurcation point, where two branches of periodic solutions meet, appears for Higgs boson masses larger than 3.091M{sub W}. {copyright} {ital 1999} {ital The American Physical Society}

  11. Template Composite Dark Matter : SU(2) gauge theory with 2 fundamental flavours

    CERN Document Server

    Drach, Vincent; Pica, Claudio; Rantaharju, Jarno; Sannino, Francesco

    2015-11-13

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon exchange computing the electric polarizability of the DM candidate. Finally, we briefly discuss the viability of the model given the present experimental constraints.

  12. Quantum entanglement in the one-dimensional spin-orbital SU (2 )⊗XXZ model

    Science.gov (United States)

    You, Wen-Long; Horsch, Peter; Oleś, Andrzej M.

    2015-08-01

    We investigate the phase diagram and the spin-orbital entanglement of a one-dimensional SU (2 )⊗XXZ model with SU(2) spin exchange and anisotropic XXZ orbital exchange interactions and negative exchange coupling constant. As a unique feature, the spin-orbital entanglement entropy in the entangled ground states increases here linearly with system size. In the case of Ising orbital interactions, we identify an emergent phase with long-range spin-singlet dimer correlations triggered by a quadrupling of correlations in the orbital sector. The peculiar translational-invariant spin-singlet dimer phase has finite von Neumann entanglement entropy and survives when orbital quantum fluctuations are included. It even persists in the isotropic SU (2 )⊗SU (2) limit. Surprisingly, for finite transverse orbital coupling, the long-range spin-singlet correlations also coexist in the antiferromagnetic spin and alternating orbital phase making this phase also unconventional. Moreover, we also find a complementary orbital singlet phase that exists in the isotropic case but does not extend to the Ising limit. The nature of entanglement appears essentially different from that found in the frequently discussed model with positive coupling. Furthermore, we investigate the collective spin and orbital wave excitations of the disentangled ferromagnetic-spin/ferro-orbital ground state and explore the continuum of spin-orbital excitations. Interestingly, one finds among the latter excitations two modes of exciton bound states. Their spin-orbital correlations differ from the remaining continuum states and exhibit logarithmic scaling of the von Neumann entropy with increasing system size. We demonstrate that spin-orbital excitons can be experimentally explored using resonant inelastic x-ray scattering, where the strongly entangled exciton states can be easily distinguished from the spin-orbital continuum.

  13. Light Kaluza Klein States in Randall-Sundrum Models with Custodial SU(2)

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela; /Fermilab; Ponton, Eduardo; /Columbia U.; Santiago, Jose; /Fermilab; Wagner, Carlos E.M.; /Argonne /Chicago U., EFI /KICP, Chicago

    2006-07-01

    We consider Randall-Sundrum scenarios based on SU(2){sub L} x SU(2){sub R} and a discrete parity exchanging L with R. The custodial and parity symmetries can be used to make the tree level contribution to the T parameter and the anomalous couplings of the bottom quark to the Z very small. We show that the resulting quantum numbers typically induce a negative T parameter at one loop that, together with the positive value of the S parameter, restrict considerably these models. There are nevertheless regions of parameter space that successfully reproduce the fit to electroweak precision observables with light Kaluza-Klein excitations accessible at colliders. We consider models of gauge-Higgs unification that implement the custodial and parity symmetries and find that the electroweak data singles out a very well defined region in parameter space. In this region one typically finds light gauge boson Kaluza-Klein excitations as well as light SU(2){sub L} singlet, and sometimes also doublet, fermionic states, that mix with the top quark, and that may yield interesting signatures at future colliders.

  14. Systematic construction of spin liquids on the square lattice from tensor networks with SU(2) symmetry

    CERN Document Server

    Mambrini, Matthieu; Poilblanc, Didier

    2016-01-01

    We elaborate a simple classification scheme of all rank-5 SU(2)-spin rotational symmetric tensors according to i) the on-site physical spin-$S$, (ii) the local Hilbert space $V^{\\otimes 4}$ of the four virtual (composite) spins attached to each site and (iii) the irreducible representations of the $C_{4v}$ point group of the square lattice. We apply our scheme to draw a complete list of all SU(2)-symmetric translationally and rotationally-invariant Projected Entangled Pair States (PEPS) with bond dimension $D\\leqslant 6$. All known SU(2)-symmetric PEPS on the square lattice are recovered and simple generalizations are provided in some cases. More generally, to each of our symmetry class can be associated a $({\\cal D}-1)$-dimensional manifold of spin liquids (potentially) preserving lattice symmetries and defined in terms of ${\\cal D}$ independent tensors of a given bond dimension $D$. In addition, generic (low-dimensional) families of PEPS explicitly breaking either (i) particular point-group lattice symmetri...

  15. Effect of SU(2) symmetry on many-body localization and thermalization

    Science.gov (United States)

    Protopopov, Ivan V.; Ho, Wen Wei; Abanin, Dmitry A.

    2017-07-01

    The many-body localized (MBL) phase is characterized by a complete set of quasilocal integrals of motion and area-law entanglement of excited eigenstates. We study the effect of non-Abelian continuous symmetries on MBL, considering the case of SU(2 ) symmetric disordered spin chains. The SU(2 ) symmetry imposes strong constraints on the entanglement structure of the eigenstates, precluding conventional MBL. We construct a fixed-point Hamiltonian, which realizes a nonergodic (but non-MBL) phase characterized by eigenstates having logarithmic scaling of entanglement with the system size, as well as an incomplete set of quasilocal integrals of motion. We study the response of such a phase to local symmetric perturbations, finding that even weak perturbations induce multispin resonances. We conclude that the nonergodic phase is generally unstable and that SU(2 ) symmetry implies thermalization. The approach introduced in this Rapid Communication can be used to study dynamics in disordered systems with non-Abelian symmetries, and provides a starting point for searching nonergodic phases beyond conventional MBL.

  16. Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    III, John F. Fuini; Yaffe, Laurence G. [Department of Physics, University of Washington,Seattle WA 98195 (United States)

    2015-07-22

    Using holography, we study the evolution of a spatially homogeneous, far from equilibrium, strongly coupled N=4 supersymmetric Yang-Mills plasma with a non-zero charge density or a background magnetic field. This gauge theory problem corresponds, in the dual gravity description, to an initial value problem in Einstein-Maxwell theory with homogeneous but anisotropic initial conditions. We explore the dependence of the equilibration process on different aspects of the initial departure from equilibrium and, while controlling for these dependencies, examine how the equilibration dynamics are affected by the presence of a non-vanishing charge density or an external magnetic field. The equilibration dynamics are remarkably insensitive to the addition of even large chemical potentials or magnetic fields; the equilibration time is set primarily by the form of the initial departure from equilibrium. For initial deviations from equilibrium which are well localized in scale, we formulate a simple model for equilibration times which agrees quite well with our results.

  17. Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field

    Science.gov (United States)

    Fuini, John F.; Yaffe, Laurence G.

    2015-07-01

    Using holography, we study the evolution of a spatially homogeneous, far from equilibrium, strongly coupled supersymmetric Yang-Mills plasma with a non-zero charge density or a background magnetic field. This gauge theory problem corresponds, in the dual gravity description, to an initial value problem in Einstein-Maxwell theory with homogeneous but anisotropic initial conditions. We explore the dependence of the equilibration process on different aspects of the initial departure from equilibrium and, while controlling for these dependencies, examine how the equilibration dynamics are affected by the presence of a non-vanishing charge density or an external magnetic field. The equilibration dynamics are remarkably insensitive to the addition of even large chemical potentials or magnetic fields; the equilibration time is set primarily by the form of the initial departure from equilibrium. For initial deviations from equilibrium which are well localized in scale, we formulate a simple model for equilibration times which agrees quite well with our results.

  18. Counting BPS operators in N=4 SYM

    CERN Document Server

    Dolan, F A

    2007-01-01

    The free field partition function for a generic U(N) gauge theory, where the fundamental fields transform in the adjoint representation, is analysed in terms of symmetric polynomial techniques. It is shown by these means how this is related to the cycle polynomial for the symmetric group and how the large N result may be easily recovered. Higher order corrections for finite N are also discussed in terms of symmetric group characters. For finite N, the partition function involving a single bosonic fundamental field is recovered and explicit counting of multi-trace quarter BPS operators in free \\N=4 super Yang Mills discussed, including a general result for large N. The partition function for BPS operators in the chiral ring of \\N=4 super Yang Mills is analysed in terms of plane partitions. Asymptotic counting of BPS primary operators with differing R-symmetry charges is discussed in both free \\N=4 super Yang Mills and in the chiral ring. Also, general and explicit expressions are derived for SU(2) gauge theory...

  19. Programs for generating Clebsch-Gordan coefficients of SU(3) in SU(2) and SO(3) bases

    Science.gov (United States)

    Bahri, C.; Rowe, D. J.; Draayer, J. P.

    2004-05-01

    Computer codes are developed to calculate Clebsch-Gordan coefficients of SU(3) in both SU(2)- and SO(3)-coupled bases. The efficiency of this code derives from the use of vector coherent state theory to evaluate the required coefficients directly without recursion relations. The approach extends to other compact semi-simple Lie groups. The codes are given in subroutine form so that users can incorporate the codes into other programs. Program summaryTitle of program: SU3CGVCS Catalogue identifier: ADTN Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTN Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: Persons requesting the program must sign the standard CPC non-profit use license Computers for which the program is designed and others on which it is operable: SGI Origin 2000, HP Apollo 9000, Sun, IBM SP, Pentium Operating systems under which the program has been tested: IRIX 6.5, HP UX 10.01, SunOS, AIX, Linux Programming language used: FORTRAN 77 Memory required to execute with typical data: On the HP system, it requires about 732 KBytes. Disk space used for output: 2100+2460 bytes No. of bits in a word: 32 bit integer and 64 bit floating point numbers. No. of processors used: 1 Has the code been vectorized: No No. of bytes in distributed program, including test data, etc.: 26 309 No. of lines in distributed program, including test data, etc.: 3969 Distribution format: tar gzip file Nature of physical problem: The group SU(3) and its Lie algebra su(3) have important applications, for example, in elementary particle physics, nuclear physics, and quantum optics [1-3]. The code presented is particularly relevant for the last two fields. Clebsch-Gordan (CG) coefficients are required whenever the symmetries of many-body systems are used for the evaluation of matrix elements of tensor operators. Moreover, the construction of CG coefficients for SU(3) serves as a nontrivial prototype for larger compact

  20. Machine learning of explicit order parameters: From the Ising model to SU(2) lattice gauge theory

    Science.gov (United States)

    Wetzel, Sebastian J.; Scherzer, Manuel

    2017-11-01

    We present a solution to the problem of interpreting neural networks classifying phases of matter. We devise a procedure for reconstructing the decision function of an artificial neural network as a simple function of the input, provided the decision function is sufficiently symmetric. In this case one can easily deduce the quantity by which the neural network classifies the input. The method is applied to the Ising model and SU(2) lattice gauge theory. In both systems we deduce the explicit expressions of the order parameters from the decision functions of the neural networks. We assume no prior knowledge about the Hamiltonian or the order parameters except Monte Carlo-sampled configurations.

  1. Representations of the deformed U(su(2)) and U(osp(1,2)) algebras

    CERN Document Server

    Bonatsos, Dennis; Kolokotronis, P; Lenis, D; Bonatsos, Dennis

    1996-01-01

    The polynomial deformations of the Witten extensions of the U(su(2)) and U(osp(1,2)) algebras are three generator algebras with normal ordering, admitting a two generator subalgebra. The modules and the representations of these algebras are based on the construction of Verma modules, which are quotient modules, generated by ideals of the original algebra. This construction unifies a large number of the known algebras under the same scheme. The finite dimensional representations show new features such as the multiplicity of representations of the same dimensionality, or the existence of finite dimensional representations only for some dimensions.

  2. Monopoles in the Plaquette Formulation of the 3D SU(2) Lattice Gauge Theory

    CERN Document Server

    Borisenko, O; Boháčik, J

    2011-01-01

    Using a plaquette formulation for lattice gauge models we describe monopoles of the three dimensional SU(2) theory which appear as configurations in the complete axial gauge and violate the continuum Bianchi identity. Furthemore we derive a dual formulation for the Wilson loop in arbitrary representation and calculate the form of the interaction between generated electric flux and monopoles in the region of a weak coupling relevant for the continuum limit. The effective theory which controls the interaction is of the sine-Gordon type model. The string tension is calculated within the semiclassical approximation.

  3. Correlation functions of the energy-momentum tensor in SU(2) gauge theory at finite temperature

    DEFF Research Database (Denmark)

    Huebner, K.; Karsch, F.; Pica, Claudio

    2008-01-01

    We calculate correlation functions of the energy-momentum tensor in the vicinity of the deconfinement phase transition of (3+1)-dimensional SU(2) gauge theory and discuss their critical behavior in the vicinity of the second order deconfinement transition. We show that correlation functions...... of the trace of the energy momentum tensor diverge uniformly at the critical point in proportion to the specific heat singularity. Correlation functions of the pressure, on the other hand, stay finite at the critical point. We discuss the consequences of these findings for the analysis of transport...

  4. An Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System

    Energy Technology Data Exchange (ETDEWEB)

    Bernevig, Andrei

    2010-02-10

    Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constant (the ReD model), and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions, and is generated by operators whose wavevector depends on the coupling strength. It renders the spin lifetime infinite at this wavevector, giving rise to a Persistent Spin Helix (PSH). We obtain the spin fluctuation dynamics at, and away, from the symmetry point, and suggest experiments to observe the PSH.

  5. An Exact SU(2) Symmetry and Persistent Spin Helix ina Spin-orbit Coupled System

    Energy Technology Data Exchange (ETDEWEB)

    Bernevig, B.A.; /Stanford U., Phys. Dept. /Santa Barbara, KITP; Orenstein, J.; /LBL, Berkeley /UC, Berkeley; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2007-01-22

    Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constant (the ReD model), and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions, and is generated by operators whose wavevector depends on the coupling strength. It renders the spin lifetime infinite at this wavevector, giving rise to a Persistent Spin Helix (PSH). We obtain the spin fluctuation dynamics at, and away, from the symmetry point, and suggest experiments to observe the PSH.

  6. Infrared conformality and bulk critical points: SU(2) with heavy adjoint quarks

    CERN Document Server

    Lucini, Biagio; Rago, Antonio; Rinaldi, Enrico

    2013-01-01

    The lattice phase structure of a gauge theory can be a serious obstruction to Monte Carlo studies of its continuum behaviour. This issue is particularly delicate when numerical studies are performed to determine whether a theory is in a (near-)conformal phase. In this work we investigate the heavy mass limit of the SU(2) gauge theory with Nf=2 adjoint fermions and its lattice phase diagram, showing the presence of a critical point ending a line of first order bulk phase transition. The relevant gauge observables and the low-lying spectrum are monitored in the vicinity of the critical point with very good control over different systematic effects. The scaling properties of masses and susceptibilities open the possibility that the effective theory at criticality is a scalar theory in the universality class of the four-dimensional Gaussian model. This behaviour is clearly different from what is observed for SU(2) gauge theory with two dynamical adjoint fermions, whose (near-)conformal numerical signature is henc...

  7. Three-Index Symmetric Matter Representations of SU(2) in F-Theory from Non-Tate Form Weierstrass Models

    CERN Document Server

    Klevers, Denis

    2016-01-01

    We give an explicit construction of a class of F-theory models with matter in the three-index symmetric (4) representation of SU(2). This matter is realized at codimension two loci in the F-theory base where the divisor carrying the gauge group is singular; the associated Weierstrass model does not have the form associated with a generic SU(2) Tate model. For 6D theories, the matter is localized at a triple point singularity of arithmetic genus g=3 in the curve supporting the SU(2) group. This is the first explicit realization of matter in F-theory in a representation corresponding to a genus contribution greater than one. The construction is realized by "unHiggsing" a model with a U(1) gauge factor under which there is matter with charge q=3. The resulting SU(2) models can be further unHiggsed to realize non-Abelian G_2xSU(2) models with more conventional matter content or SU(2)^3 models with trifundamental matter. The U(1) models used as the basis for this construction do not seem to have a Weierstrass real...

  8. Exact partition functions for the Ω-deformed N=2{sup ∗}SU(2) gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo; Macorini, Guido [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento,Via Arnesano, 73100 Lecce (Italy); INFN,Via Arnesano, 73100 Lecce (Italy)

    2016-07-12

    We study the low energy effective action of the Ω-deformed N=2{sup ∗}SU(2) gauge theory. It depends on the deformation parameters ϵ{sub 1},ϵ{sub 2}, the scalar field expectation value a, and the hypermultiplet mass m. We explore the plane ((m/(ϵ{sub 1})),((ϵ{sub 2})/(ϵ{sub 1}))) looking for special features in the multi-instanton contributions to the prepotential, motivated by what happens in the Nekrasov-Shatashvili limit ϵ{sub 2}→0. We propose a simple condition on the structure of poles of the k-instanton prepotential and show that it is admissible at a finite set of points in the above plane. At these special points, the prepotential has poles at fixed positions independent on the instanton number. Besides and remarkably, both the instanton partition function and the full prepotential, including the perturbative contribution, may be given in closed form as functions of the scalar expectation value a and the modular parameter q appearing in special combinations of Eisenstein series and Dedekind η function. As a byproduct, the modular anomaly equation can be tested at all orders at these points. We discuss these special features from the point of view of the AGT correspondence and provide explicit toroidal 1-blocks in non-trivial closed form. The full list of solutions with 1, 2, 3, and 4 poles is determined and described in details.

  9. More on the SU(2) deconfinement transition in the mixed action

    Energy Technology Data Exchange (ETDEWEB)

    Gavai, R.V. [Theoretical Physics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Mathur, M. [Dipartimento di Fisica dell Universita and INFN, Piazza Torricelli 2 Pisa-56100 (Italy)

    1997-07-01

    We examine certain issues related to the universality of the SU(2) lattice gauge theory at nonzero temperatures. Using Monte Carlo simulations and strong coupling expansions, we study the behavior of the deconfinement transition in an extended coupling plane ({beta},{beta}{sub A}) around the tricritical point where the deconfinement transition changes from second to first order. Our numerical results on N{sub {tau}}=2,4,6,8 lattices show that the tricritical point first moves down towards the Wilson axis and then moves slowly upwards, if at all, as the lattice spacing is reduced. Lattices with very large N{sub {tau}} seem to be, therefore, necessary for the mixed action to exhibit the critical exponents of the three-dimensional Ising model for positive values of the adjoint coupling. {copyright} {ital 1997} {ital The American Physical Society}

  10. Rho meson decay width in SU(2) gauge theories with 2 fundamental flavours

    CERN Document Server

    Janowski, Tadeusz; Pica, Claudio

    2016-01-01

    SU(2) gauge theories with two quark flavours in the fundamental representation are among the most promising theories of composite dynamics describing the electroweak sector. Three out of five Goldstone bosons in these models become the longitudinal components of the W and Z bosons giving them mass. Like in QCD, we expect a spectrum of excitations which appear as resonances in vector boson scattering, in particular the vector resonance corresponding to the rho-meson in QCD. In this talk I will present the preliminary results of the first calculation of the rho-meson decay width in this theory, which is analogous to rho to two pions decay calculation in QCD. The results presented were calculated in a moving frame with total momentum (0,0,1) on two ensembles. Future plans include using 3 moving frames on a larger set of ensembles to extract the resonance parameters more reliably and also take the chiral and continuum limits.

  11. $SU(2)$ gauge theory with two fundamental flavours: scalar and pseudoscalar spectrum

    CERN Document Server

    Arthur, Rudy; Hietanen, Ari; Pica, Claudio; Sannino, Francesco

    2016-01-01

    We investigate the scalar and pseudoscalar spectrum of the $SU(2)$ gauge theory with $N_f=2$ flavours of fermions in the fundamental representation using non perturbative lattice simulations. We provide first benchmark estimates of the mass of the lightest $0(0^{+})$ ($\\sigma$), $0(0^{-})$ ($\\eta'$) and $1(0^+)$ ($a_0$) states, including estimates of the relevant disconnected contributions. We find $m_{a_0}/F_{\\rm{PS}}= 16.7(4.9)$, $m_\\sigma/F_{\\rm{PS}}=19.2(10.8)$ and $m_{\\eta'}/F_{\\rm{PS}} = 12.8(4.7)$. These values for the masses of light scalar states provide crucial information for composite extensions of the Standard Model from the unified Fundamental Composi te Higgs-Technicolor theory \\cite{Cacciapaglia:2014uja} to models of composite dark matter.

  12. Study of shear viscosity of SU(2)-gluodynamics within lattice simulation

    Energy Technology Data Exchange (ETDEWEB)

    Astrakhantsev, N.Yu. [Institute for Theoretical and Experimental Physics,Moscow, 117218 (Russian Federation); Moscow Institute of Physics and Technology,Dolgoprudny, 141700 (Russian Federation); Braguta, V.V. [Institute for Theoretical and Experimental Physics,Moscow, 117218 (Russian Federation); Institute for High Energy Physics NRC “Kurchatov Institute”,Protvino, 142281 Russian Federation (Russian Federation); Far Eastern Federal University, School of Biomedicine,Vladivostok, 690950 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),Kashirskoe highway, 31, Moscow, 115409 (Russian Federation); Kotov, A.Yu. [Institute for Theoretical and Experimental Physics,Moscow, 117218 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),Kashirskoe highway, 31, Moscow, 115409 (Russian Federation)

    2015-09-14

    This paper is devoted to the study of two-point correlation function of the energy-momentum tensor 〈T{sub 12}T{sub 12}〉 for SU(2)-gluodynamics within lattice simulation of QCD. Using multilevel algorithm we carried out the measurement of the correlation function at the temperature T/T{sub c}≃1.2. It is shown that lattice data can be described by spectral functions which interpolate between hydrodynamics at low frequencies and asymptotic freedom at high frequencies. The results of the study of spectral functions allowed us to estimate the ratio of shear viscosity to the entropy density η/s=0.134±0.057.

  13. Scaling properties of SU(2) gauge theory with mixed fundamental-adjoint action

    CERN Document Server

    Rinaldi, Enrico; Lucini, Biagio; Patella, Agostino; Rago, Antonio

    2012-01-01

    We study the phase diagram of the SU(2) lattice gauge theory with fundamental-adjoint Wilson plaquette action. We confirm the presence of a first order bulk phase transition and we estimate the location of its end-point in the bare parameter space. If this point is second order, the theory is one of the simplest realizations of a lattice gauge theory admitting a continuum limit at finite bare couplings. All the relevant gauge observables are monitored in the vicinity of the fixed point with very good control over finite-size effects. The scaling properties of the low-lying glueball spectrum are studied while approaching the end-point in a controlled manner.

  14. Couplings in D(2,1;α) superconformal mechanics from the SU(2) perspective

    Energy Technology Data Exchange (ETDEWEB)

    Galajinsky, Anton [Laboratory of Mathematical Physics, Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

    2017-03-09

    Dynamical realizations of the most general N=4 superconformal group in one dimension D(2,1;α) are reconsidered from the perspective of the R-symmetry subgroup SU(2). It is shown that any realization of the R-symmetry subalgebra in some phase space can be extended to a representation of the Lie superalgebra corresponding to D(2,1;α). Novel couplings of arbitrary number of supermultiplets of the type (1,4,3) and (0,4,4) to a single supermultiplet of either the type (3,4,1), or (4,4,0) are constructed. D(2,1;α) superconformal mechanics describing superparticles propagating near the horizon of the extreme Reissner-Nordström-AdS-dS black hole in four and five dimensions is considered. The parameter α is linked to the cosmological constant.

  15. Supersymmetric Extension of Non-Hermitian su(2 Hamiltonian and Supercoherent States

    Directory of Open Access Journals (Sweden)

    Omar Cherbal

    2010-12-01

    Full Text Available A new class of non-Hermitian Hamiltonians with real spectrum, which are written as a real linear combination of su(2 generators in the form H=ωJ_3+αJ_−+βJ_+, α≠β, is analyzed. The metrics which allows the transition to the equivalent Hermitian Hamiltonian is established. A pseudo-Hermitian supersymmetic extension of such Hamiltonians is performed. They correspond to the pseudo-Hermitian supersymmetric systems of the boson-phermion oscillators. We extend the supercoherent states formalism to such supersymmetic systems via the pseudo-unitary supersymmetric displacement operator method. The constructed family of these supercoherent states consists of two dual subfamilies that form a bi-overcomplete and bi-normal system in the boson-phermion Fock space. The states of each subfamily are eigenvectors of the boson annihilation operator and of one of the two phermion lowering operators.

  16. Phase diagram of SU(2) with 2 flavors of dynamical adjoint quarks

    CERN Document Server

    Catterall, Simon; Sannino, Francesco; Schneible, Joe

    2008-01-01

    We report on numerical simulations of SU(2) lattice gauge theory with two flavors of light dynamical quarks in the adjoint of the gauge group. The dynamics of this theory is thought to be very different from QCD -- the theory exhibiting conformal or near conformal behavior in the infrared. We make a high resolution survey of the phase diagram of this model in the plane of the bare coupling and quark mass on lattices of size 8^3 \\times 16. Our simulations reveal a line of first order phase transitions extending from beta=0 to beta=beta_c \\sim 2.0. For beta > beta_c the line is no longer first order but continues as the locus of minimum meson mass. For beta > 2.0 we observe the critical pion and rho masses to be light, independent of bare coupling and approximately degenerate. We discuss possible interpretations of these observations and corresponding continuum limits.

  17. Supersymmetry and integrability in planar mechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Leonardo P.G. de; Helayel-Neto, Jose A. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]. E-mail: lpgassis@cbpf.br; helayel@cbpf.br; Paschoal, Ricardo C. [Centro de Tecnologia da Industria Quimica e/ Textil (SENAI/CETIQT), Rio de Janeiro, RJ (Brazil)]. E-mail: paschoal@cbpf.br

    2005-05-15

    We present an N = 2-supersymmetric mechanical system whose bosonic sector, with two degrees of freedom, stems from the reduction of an SU(2) Yang-Mills theory with the assumption of spatially homogeneous field configurations and a particular Ansatz imposed on the gauge potentials in the dimensional reduction procedure. The Painleve test is adopted to discuss integrability and we focus on the role of supersymmetry and parity invariance in two space dimensions for the attainment of integrable or chaotic models. Our conclusion is that the relationships among the parameters imposed by supersymmetry seem to drastically reduce the number of possibilities for integrable interaction potentials of the mechanical system under consideration. (author)

  18. Applications of Jarzynski's relation in lattice gauge theories

    CERN Document Server

    Nada, Alessandro; Costagliola, Gianluca; Panero, Marco; Toniato, Arianna

    2016-01-01

    Jarzynski's equality is a well-known result in statistical mechanics, relating free-energy differences between equilibrium ensembles with fluctuations in the work performed during non-equilibrium transformations from one ensemble to the other. In this work, an extension of this relation to lattice gauge theory will be presented, along with numerical results for the $\\mathbb{Z}_2$ gauge model in three dimensions and for the equation of state in $\\mathrm{SU}(2)$ Yang-Mills theory in four dimensions. Then, further applications will be discussed, in particular for the Schr\\"odinger functional and for the study of QCD in strong magnetic fields.

  19. Cartan gravity, matter fields, and the gauge principle

    CERN Document Server

    Westman, H F

    2012-01-01

    Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang-Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: 1) a `contact vector' $V^A$ which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being `rolled' on top of it, and 2) a gauge connection $A_{\\mu}^{\\ph\\mu AB}$, taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the {\\em gauge principle} and {\\em polynomial simplicity}, we show how one can reformulate the standard matter field actions in a way tha...

  20. On the composition of an arbitrary collection of SU(2) spins: an enumerative combinatoric approach

    Science.gov (United States)

    Gyamfi, J. A.; Barone, V.

    2018-03-01

    The whole enterprise of spin compositions can be recast as simple enumerative combinatoric problems. We show here that enumerative combinatorics (Stanley 2011 Enumerative Combinatorics (Cambridge Studies in Advanced Mathematics vol 1) (Cambridge: Cambridge University Press)) is a natural setting for spin composition, and easily leads to very general analytic formulae—many of which hitherto not present in the literature. Based on it, we propose three general methods for computing spin multiplicities; namely, (1) the multi-restricted composition, (2) the generalized binomial and (3) the generating function methods. Symmetric and anti-symmetric compositions of SU(2) spins are also discussed, using generating functions. Of particular importance is the observation that while the common Clebsch–Gordan decomposition—which considers the spins as distinguishable—is related to integer compositions, the symmetric and anti-symmetric compositions (where one considers the spins as indistinguishable) are obtained considering integer partitions. The integers in question here are none other than the occupation numbers of the Holstein–Primakoff bosons. The pervasiveness of q-analogues in our approach is a testament to the fundamental role they play in spin compositions. In the appendix, some new results in the power series representation of Gaussian polynomials (or q-binomial coefficients)—relevant to symmetric and antisymmetric compositions—are presented.

  1. Non-Local effective SU(2) Polyakov-loop models from inverse Monte-Carlo methods

    CERN Document Server

    Bahrampour, Bardiya; von Smekal, Lorenz

    2016-01-01

    The strong-coupling expansion of the lattice gauge action leads to Polyakov-loop models that effectively describe gluodynamics at low temperatures, and together with the hopping expansion of the fermion determinant provides insight into the QCD phase diagram at finite density and low temperatures, although for rather heavy quarks. At higher temperatures the strong-coupling expansion breaks down and it is expected that the interactions between Polyakov loops become non-local. Here, we therefore test how well pure SU(2) gluodynamics can be mapped onto different non-local Polyakov models with inverse Monte-Carlo methods. We take into account Polyakov loops in higher representations and gradually add interaction terms at larger distances. We are particularly interested in extrapolating the range of non-local terms in sufficiently large volumes and higher representations. We study the characteristic fall-off in strength of the non-local couplings with the interaction distance, and its dependence on the gauge coupl...

  2. A nonlinear deformed su(2) algebra with a two-colour quasitriangular Hopf structure

    CERN Document Server

    Bonatsos, Dennis; Kolokotronis, P; Ludu, A; Quesne, C

    1996-01-01

    Nonlinear deformations of the enveloping algebra of su(2), involving two arbitrary functions of J_0 and generalizing the Witten algebra, were introduced some time ago by Delbecq and Quesne. In the present paper, the problem of endowing some of them with a Hopf algebraic structure is addressed by studying in detail a specific example, referred to as ${\\cal A}^+_q(1)$. This algebra is shown to possess two series of (N+1)-dimensional unitary irreducible representations, where N=0, 1, 2, .... To allow the coupling of any two such representations, a generalization of the standard Hopf axioms is proposed by proceeding in two steps. In the first one, a variant and extension of the deforming functional technique is introduced: variant because a map between two deformed algebras, su_q(2) and ${\\cal A}^+_q(1)$, is considered instead of a map between a Lie algebra and a deformed one, and extension because use is made of a two-valued functional, whose inverse is singular. As a result, the Hopf structure of su_q(2) is car...

  3. SU(2) Gauge Theory with Two Fundamental Flavours: a Minimal Template for Model Building

    CERN Document Server

    Arthur, Rudy; Hansen, Martin; Hietanen, Ari; Pica, Claudio; Sannino, Francesco

    2016-01-01

    We investigate the continuum spectrum of the SU(2) gauge theory with $N_f=2$ flavours of fermions in the fundamental representation. This model provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range from composite (Goldstone) Higgs theories to several intriguing types of dark matter candidates, such as the SIMPs. We improve our previous lattice analysis [1] by adding more data at light quark masses, at two additional lattice spacings, by determining the lattice cutoff via a Wilson flow measure of the $w_0$ parameter, and by measuring the relevant renormalisation constants non-perturbatively in the RI'-MOM scheme. Our results for the lightest isovector states in the vector and axial channels, in units of the pseudoscalar decay constant, are $m_V/F_{\\rm{PS}}\\sim 13.1(2.2)$ and $m_A/F_{\\rm{PS}}\\sim 14.5(3.6)$ (combining statistical and systematic errors). In the context of the composite (Goldstone) Higgs models, our result for the spin-...

  4. CKM and PMNS Mixing Matrices from Discrete Subgroups of SU(2

    Directory of Open Access Journals (Sweden)

    Potter F.

    2014-07-01

    Full Text Available One of the greatest challenges in particle physics is to determine the first principles origin of the quark and lepton mixing matrices CKM and PMNS that relate the flavor states to the mass states. This first principles derivation of both the PMNS and CKM matrices utilizes quaternion generators of the three discrete (i.e., finite binary rotational subgroups of SU(2 called [3,3,2], [4,3,2], and [5,3,2] for three lepton families in R 3 and four related discrete binary rotational subgroups [3,3,3], [4,3,3], [3,4,3], and [5,3,3] represented by four quark families in R 4 . The traditional 3 3 CKM matrix is extracted as a submatrix of the 4 4 CKM4 matrix. The predicted fourth family of quarks has not been discovered yet. If these two additional quarks exist, there is the possibility that the Standard Model lagrangian may apply all the way down to the Planck scale.

  5. Topological Objects And Confinement In Non-abelian Lattice Gauge Theory

    CERN Document Server

    Tucker, W W

    2005-01-01

    We use lattice methods to study the connection between topological objects and the confining potential in SU(2) and SU(3) Yang-Mills theories. We use Monte Carlo techniques, generating and performing measurements on sample configurations of SU(2) and SU(3) gauge fields. We isolate topological objects, specifically Abelian monopoles and center vortices, in these configurations. We then measure the contribution to the string tension from these objects, and compare the results to “full” measurements made on the original configurations. In addition we investigate the effects of gauge ambiguities (Gribov effects) and cooling on these sets of measurements. For the case of SU(2) lattice gauge theory, our results from monopoles agree with full values but are somewhat lower when gauge ambiguities are taken into account. The situation is not stable under cooling. When we carry out analogous procedures on sample SU(3) lattice configurations, we find disagreement between full SU(3) values and those fr...

  6. The Infrared behaviour of the gluon propagator in SU(2) and SU(3) without lattice Gribov copies

    CERN Document Server

    Alexandrou, C; Follana, E; De Forcrand, Ph

    2000-01-01

    We present lattice results for the gluon propagator for SU(2) and SU(3) in the Laplacian gauge which avoids lattice Gribov copies. In SU(3) we compare with the most recent lattice calculation in Landau gauge and with various approximate solutions of the Dyson Schwinger equations (DSE).

  7. Z(3)-symmetric effective theory for SU(3) Yang-Mills theory at high temperature

    Science.gov (United States)

    Vuorinen, A.; Yaffe, Laurence G.

    2006-07-01

    A three-dimensional effective theory for high temperature SU(3) gauge theory, which maintains the Z(3) center symmetry of the full theory, is constructed. Such a Z(3) invariant effective theory should be applicable to a wider temperature range than the usual effective theory, known as EQCD, which fails to respect the center symmetry. This center-symmetric effective theory can reproduce domain wall and phase transition properties that are not accessible in EQCD. After identifying a convenient class of Z(3) invariant effective theories, we constrain the coefficients of the various terms in the Lagrangian using leading-order matching to EQCD at high temperature, plus matching of domain wall properties in the full theory. We sketch the expected structure of the phase diagram of the effective theory and briefly discuss the prospects of numerical simulations and the addition of quarks.

  8. The dilatation operator of conformal N=4 super-Yang-Mills theory

    DEFF Research Database (Denmark)

    Beisert, N.; Kristjansen, C.; Staudacher, M.

    2003-01-01

    We argue that existing methods for the perturbative computation of anomalous dimensions and the disentanglement of mixing in N=4 gauge theory can be considerably simplified, systematized and extended by focusing on the theory's dilatation operator. The efficiency of the method is first illustrated...... at the one-loop level for general non-derivative scalar states. We then go on to derive, for pure scalar states, the two-loop structure of the dilatation operator. This allows us to obtain a host of new results. Among these are an infinite number of previously unknown two-loop anomalous dimensions, new...... subtleties concerning 't Hooft's large N expansion due to mixing effects of degenerate single and multiple trace states, two-loop tests of various protected operators, as well as two-loop non-planar results for two-impurity operators in BMN gauge theory. We also put to use the recently discovered integrable...

  9. Poincaré symmetries and the Yang-Mills gradient flow

    CERN Document Server

    Patella, A; Rago, A

    2014-01-01

    The latest developments have shown how to use the gradient flow (or Wilson flow, on the lattice) for the exploration of symmetries, and the definition of the corresponding renormalized Noether currents. In particular infinitesimal translations can be introduced along the gradient flow for gauge theories, and the corresponding Ward identities can be derived. When applied to lattice gauge theories, this approach leads to a possible strategy to renormalize the energy-momentum tensor nonperturbatively, and to study dilatations and scale invariance.

  10. Generalized WDVV equations for F4 pure N=2 Super-Yang-Mills theory

    NARCIS (Netherlands)

    Hoevenaars, L.K.; Kersten, P.H.M.; Martini, Ruud

    2001-01-01

    An associative algebra of holomorphic differential forms is constructed associated with pure N=2 super-Yang–Mills theory for the Lie algebra F4. Existence and associativity of this algebra, combined with the general arguments in the work of Marshakov, Mironov and Morozov, proves that the

  11. On chromoelectronic (super)conductivity of the Yang-Mills vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chernodub, M.N. [Tours Univ. (France). CNRS, Lab. de Mathematiques et Physique Theorique; Gent Univ. (Belgium). Dept. of Physics and Astronomy; Doorsselaere, Jos van; Verschelde, Henri [Gent Univ. (Belgium). Dept. of Physics and Astronomy; Kalaydzhyan, Tigran [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)

    2012-12-15

    We argue that in the Copenhagen (''spaghetti'') picture of the QCD vacuum the chromomagnetic flux tubes exhibit chromoelectric superconductivity. The superconducting chromoelectric currents in the tubes may be induced by the topological charge density.

  12. Nonrelativistic Yang-Mills theory for a naturally light Higgs boson

    Science.gov (United States)

    Berthier, Laure; Grosvenor, Kevin T.; Yan, Ziqi

    2017-11-01

    We continue the study of the nonrelativistic short-distance completions of a naturally light Higgs, focusing on the interplay between the gauge symmetries and the polynomial shift symmetries. We investigate the naturalness of nonrelativistic scalar quantum electrodynamics with a dynamical critical exponent z =3 by computing leading power law divergences to the scalar propagator in this theory. We find that power law divergences exhibit a more refined structure in theories that lack boost symmetries. Finally, in this toy model, we show that it is possible to preserve a fairly large hierarchy between the scalar mass and the high-energy naturalness scale across 7 orders of magnitude, while accommodating a gauge coupling of order 0.1.

  13. Coupled equations for Kähler metrics and Yang-Mills connections

    DEFF Research Database (Denmark)

    Garcia Fernandez, Mario; Alvarez-Consul, Luis; Garcia-Prada, Oscar

    2012-01-01

    We study equations on a principal bundle over a compact complex manifold coupling connections on the bundle with K¨ahler structures in the base. These equations generalize the conditions of constant scalar curvature for a K¨ahler metric and Hermite– Yang–Mills for a connection. We provide a moment...

  14. Electricity and magnetism for mathematicians a guided path from Maxwell to Yang-Mills

    CERN Document Server

    Garrity, Thomas A

    2015-01-01

    This text is an introduction to some of the mathematical wonders of Maxwell's equations. These equations led to the prediction of radio waves, the realization that light is a type of electromagnetic wave, and the discovery of the special theory of relativity. In fact, almost all current descriptions of the fundamental laws of the universe can be viewed as deep generalizations of Maxwell's equations. Even more surprising is that these equations and their generalizations have led to some of the most important mathematical discoveries of the past thirty years. It seems that the mathematics behind Maxwell's equations is endless. The goal of this book is to explain to mathematicians the underlying physics behind electricity and magnetism and to show their connections to mathematics. Starting with Maxwell's equations, the reader is led to such topics as the special theory of relativity, differential forms, quantum mechanics, manifolds, tangent bundles, connections, and curvature.

  15. Demystifying the twistor construction of composite operators in N=4 super-Yang-Mills theory

    CERN Document Server

    Chicherin, Dmitry

    2017-01-01

    We explain some details of the construction of composite operators in N=4 SYM that we have elaborated earlier in the context of Lorentz harmonic chiral (LHC) superspace. We give a step-by-step elementary derivation and show that the result coincides with the recent hypothesis put forward in arXiv:1603.04471 within the twistor approach. We provide the appropriate LHC-to-twistors dictionary.

  16. Spectral triples and associated Connes-de Rham complex for the quantum SU(2) and the quantum sphere

    OpenAIRE

    Chakraborty, Partha Sarathi; Pal, Arupkumar

    2002-01-01

    We construct spectral triples for the C^*-algebra of continuous functions on the quantum SU(2) group and the quantum sphere. There has been various approaches towards building a calculus on quantum spaces, but there seems to be very few instances of computations outlined in chapter~6 of Connes' book. We give detailed computations of the associated Connes-de Rham complex and the space of L_2-forms.

  17. U(1) and SU(2) quantum dissipative systems: the Caldeira–Leggett Versus Ambegaokar–Eckern–Schön approaches

    Energy Technology Data Exchange (ETDEWEB)

    Shnirman, A., E-mail: alexander.shnirman@kit.edu [Karlsruhe Institute of Technology, Institut fur Theorie der Kondensierten Materie (Germany); Saha, A. [Institute of Physics (India); Burmistrov, I. S. [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation); Kiselev, M. N. [International Center for Theoretical Physics (Italy); Altland, A. [Universität zu Köln, Institut für Theoretische Physik (Germany); Gefen, Y. [Weizmann Institute of Science, Department of Condensed Matter Physics (Israel)

    2016-03-15

    There are two paradigmatic frameworks for treating quantum systems coupled to a dissipative environment: the Caldeira–Leggett and Ambegaokar–Eckern–Schön approaches. Here, we recall the differences between them and explain the consequences of applying each to a zero-dimensional spin (having an SU(2) symmetry) in a dissipative environment (a dissipative quantum dot near or beyond the Stoner instability point).

  18. Early Time Dynamics of Gluon Fields in High Energy Nuclear Collisions

    Science.gov (United States)

    Kapusta, Joseph I.; Chen, Guangyao; Fries, Rainer J.; Li, Yang

    2016-12-01

    Nuclei colliding at very high energy create a strong, quasi-classical gluon field during the initial phase of their interaction. We present an analytic calculation of the initial space-time evolution of this field in the limit of very high energies using a formal recursive solution of the Yang-Mills equations. We provide analytic expressions for the initial chromo-electric and chromo-magnetic fields and for their energy-momentum tensor. In particular, we discuss event-averaged results for energy density and energy flow as well as for longitudinal and transverse pressure of this system. Our results are generally applicable if τ field exhibits hydrodynamic-like contributions that follow transverse gradients of the energy density. In addition, a rapidity-odd energy flow also emerges from the non-abelian analog of Gauss' Law and generates non-vanishing angular momentum of the field. We will discuss the space-time picture that emerges from our analysis and its implications for observables in heavy ion collisions.

  19. On gaugino condensation with field-dependent gauge couplings

    CERN Document Server

    Burgess, C P; Quevedo, Fernando; Quirós, Mariano

    1996-01-01

    We study in detail gaugino condensation in globally and locally supersymmetric Yang-Mills theories. We focus on models for which gauge-neutral matter couples to the gauge bosons only through nonminimal gauge kinetic terms, for the cases of one and several condensing gauge groups. Using only symmetry arguments, the low-energy expansion, and general properties of supersymmetry, we compute the low energy Wilson action, as well as the (2PI) effective action for the composite {\\it classical} superfield U\\equiv\\langle \\Tr\\WW \\rangle, with W_\\alpha the supersymmetric gauge field strength. The 2PI effective action provides a firmer foundation for the approach of Veneziano and Yankielowicz, who treated the composite superfield, U, as a quantum degree of freedom. We show how to rederive the Wilson action by minimizing the 2PI action with respect to U. We determine, in both formulations and for global and local supersymmetry, the effective superpotential, W, the non-perturbative contributions to the low-energy K\\"ahler ...

  20. Loops in AdS from conformal field theory

    Science.gov (United States)

    Aharony, Ofer; Alday, Luis F.; Bissi, Agnese; Perlmutter, Eric

    2017-07-01

    We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1 /N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1 /N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for finite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case of ϕ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an infinite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.

  1. Implementation of the SU(2) Hamiltonian symmetry for the DMRG algorithm

    Science.gov (United States)

    Alvarez, Gonzalo

    2012-10-01

    In the Density Matrix Renormalization Group (DMRG) algorithm (White, 1992, 1993) [1,2], Hamiltonian symmetries play an important rôle. Using symmetries, the matrix representation of the Hamiltonian can be blocked. Diagonalizing each matrix block is more efficient than diagonalizing the original matrix. This paper explains how the the DMRG++ code (Alvarez, 2009) [3] has been extended to handle the non-local SU(2) symmetry in a model independent way. Improvements in CPU times compared to runs with only local symmetries are discussed for the one-orbital Hubbard model, and for a two-orbital Hubbard model for iron-based superconductors. The computational bottleneck of the algorithm and the use of shared memory parallelization are also addressed. Program summary Program title: DMRG++ Catalog identifier: AEDJ_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDJ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Special license. See http://cpc.cs.qub.ac.uk/licence/AEDJ_v2_0.html No. of lines in distributed program, including test data, etc.: 211560 No. of bytes in distributed program, including test data, etc.: 10572185 Distribution format: tar.gz Programming language: C++. Computer: PC. Operating system: Multiplatform, tested on Linux. Has the code been vectorized or parallelized?: Yes. 1 to 8 processors with MPI, 2 to 4 cores with pthreads. RAM: 1GB (256MB is enough to run the included test) Classification: 23. Catalog identifier of previous version: AEDJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180(2009)1572 External routines: BLAS and LAPACK Nature of problem: Strongly correlated electrons systems, display a broad range of important phenomena, and their study is a major area of research in condensed matter physics. In this context, model Hamiltonians are used to simulate the relevant interactions of a given compound, and the relevant degrees of freedom. These studies

  2. Studies In Non-anticommutative Gauge Theories, Geometric Dualities, And Twistor Strings

    CERN Document Server

    Robles Llana, D

    2005-01-01

    In this Dissertation we consider three different topics. The first one is the study of instantons in U(2) super Yang-Mills theories defined on non-anticommutative superspace. We extend the ordinary instanton calculus to this class of theories by solving the appropriate equations of motion iteratively in the deformation parameter C. In the case without matter, we solve the equations exactly. We find that the SU(2) part of the instanton is the same as in ordinary SU (2) N = 1 super Yang-Mills, but acquires in addition a non-trivial U(1) part which depends on the fermionic collective coordinates and the deformation parameter C. In the case with matter we solve the equations of motion to leading order in the coupling constant. We find that also the profile of the matter fields is deformed through linear and quadratic corrections in C. The instanton effective action for pure gluodynamics is unaffected by C, but gets a contribution of order C2 in addition to the usual 't Hooft term when the matter is included....

  3. Confining vs. conformal scenario for SU(2) with 2 adjoint fermions. Gluonic observables

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino

    2010-01-01

    Walking technicolor is a mechanism for electroweak symmetry breaking without Higgs field. The Higgs mechanism is provided by chiral symmetry breaking in the technicolor theory. An essential ingredient is the vicinity to an IR fixed point, which could reconcile technicolor with the electroweak...

  4. Spin-k/2-spin-k/2 SU(2) two-point functions on the torus

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Kucharski, Piotr [Warsaw Univ. (Poland). Inst. of Theoretical Physics

    2012-11-15

    We discuss a class of two-point functions on the torus of primary operators in the SU(2) Wess-Zumino-Witten model at integer level k. In particular, we construct an explicit expression for the current blocks of the spin-(k)/(2)-spin-(k)/(2) torus two-point functions for all k. We first examine the factorization limits of the proposed current blocks and test their monodromy properties. We then prove that the current blocks solve the corresponding Knizhnik-Zamolodchikov-like differential equations using the method of Mathur, Mukhi and Sen.

  5. SU(2 color NJL model and EOS of quark-hadron matter at finite temperature and density

    Directory of Open Access Journals (Sweden)

    Weise Wolfram

    2012-02-01

    Full Text Available We study the NJL model with the Polyakov loop in the SU(2-color case for the EOS of quark-hadron matter at finite temperature and density. We consider the spontaneous chiral symmetry breaking and the diquark condensation together with the behavior of the Polyakov loop for the phase diagram of quark-hadron matter. We discuss the spectrum of mesons and diquark baryons (boson at finite temperature and density.We derive also the linear sigma model Lagrangian for diquark baryon and mesons.

  6. A note on open-chain transfer matrices from q-deformed su(2 vertical stroke 2)S-matrices

    Energy Technology Data Exchange (ETDEWEB)

    Murgan, R. [Physics Department, Gustavus Adolphus College, St. Peter, MN (United States)

    2009-09-15

    In this note, we perform Sklyanin's construction of commuting open-chain/boundary transfer matrices to the q-deformed SU(2 vertical stroke 2) bulk S-matrix of Beisert and Koroteev and a corresponding boundary S-matrix. This also includes a corresponding commuting transfer matrix using the graded version of the q-deformed bulk S-matrix. Utilizing the crossing property for the bulk S-matrix, we argue that the transfer matrix for both graded and non-graded versions contains a crucial factor which is essential for commutativity. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. Two-Dimensional Exactly Solvable Quantum Model Obtained from SU(3)/SU(2) Homogenous Space

    Science.gov (United States)

    Panahi, H.; Nemati, M.

    2017-07-01

    In this paper by using of the Euler-angle parametrization of SU(3) Lie group and its symmetry space on S 5≅ S U(3) / S U(2), we obtain one two-dimensional Hamiltonian defined on S 2sphere. We show that the quantum system can be interpreted as the motion of a charged particle in presence of an external electric field. We solve the model and obtain its spectrum.

  8. SU(2 Yang–Mills Theory: Waves, Particles, and Quantum Thermodynamics

    Directory of Open Access Journals (Sweden)

    Ralf Hofmann

    2016-08-01

    Full Text Available We elucidate how Quantum Thermodynamics at temperature T emerges from pure and classical S U ( 2 Yang–Mills theory on a four-dimensional Euclidean spacetime slice S 1 × R 3 . The concept of a (deconfining thermal ground state, composed of certain solutions to the fundamental, classical Yang–Mills equation, allows for a unified addressation of both (classical wave- and (quantum particle-like excitations thereof. More definitely, the thermal ground state represents the interplay between nonpropagating, periodic configurations which are electric-magnetically (antiselfdual in a non-trivial way and possess topological charge modulus unity. Their trivial-holonomy versions—Harrington–Shepard (HS (anticalorons—yield an accurate a priori estimate of the thermal ground state in terms of spatially coarse-grained centers, each containing one quantum of action ℏ localized at its inmost spacetime point, which induce an inert adjoint scalar field ϕ ( | ϕ | spatio-temporally constant. The field ϕ , in turn, implies an effective pure-gauge configuration, a μ gs , accurately describing HS (anticaloron overlap. Spatial homogeneity of the thermal ground-state estimate ϕ , a μ gs demands that (anticaloron centers are densely packed, thus representing a collective departure from (antiselfduality. Effectively, such a “nervous” microscopic situation gives rise to two static phenomena: finite ground-state energy density ρ gs and pressure P gs with ρ gs = − P gs as well as the (adjoint Higgs mechanism. The peripheries of HS (anticalorons are static and resemble (antiselfdual dipole fields whose apparent dipole moments are determined by | ϕ | and T, protecting them against deformation potentially caused by overlap. Such a protection extends to the spatial density of HS (anticaloron centers. Thus the vacuum electric permittivity ϵ 0 and magnetic permeability μ 0 , supporting the propagation of wave-like disturbances in the U ( 1 Cartan

  9. Domain walls and perturbation theory in high temperature gauge theory SU(2) in 2+1 dimensions

    CERN Document Server

    Korthals-Altes, C P; Stephanov, M A; Teper, M; Altes, C Korthals

    1997-01-01

    We study the detailed properties of Z_2 domain walls in the deconfined high temperature phase of the d=2+1 SU(2) gauge theory. These walls are studied both by computer simulations of the lattice theory and by one-loop perturbative calculations. The latter are carried out both in the continuum and on the lattice. We find that leading order perturbation theory reproduces the detailed properties of these domain walls remarkably accurately even at temperatures where the effective dimensionless expansion parameter, g^2/T, is close to unity. The quantities studied include the surface tension, the action density profiles, roughening and the electric screening mass. It is only for the last quantity that we find an exception to the precocious success of perturbation theory. All this shows that, despite the presence of infrared divergences at higher orders, high-T perturbation theory can be an accurate calculational tool.

  10. Holomorphic field realization of SH{sup c} and quantum geometry of quiver gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Bourgine, Jean-Emile [INFN Bologna, Università di Bologna,Via Irnerio 46, 40126 Bologna (Italy); Matsuo, Yutaka [Department of Physics, The University of Tokyo,Hongo 7-3-1, Bunkyo-ku, Tokyo (Japan); Zhang, Hong [Department of Physics and Center for Quantum Spacetime (CQUeST),Sogang University,35 Baekbeom-ro, Mapo-gu, Seoul 04107 (Korea, Republic of)

    2016-04-27

    In the context of 4D/2D dualities, SH{sup c} algebra, introduced by Schiffmann and Vasserot, provides a systematic method to analyse the instanton partition functions of N=2 supersymmetric gauge theories. In this paper, we rewrite the SH{sup c} algebra in terms of three holomorphic fields D{sub 0}(z), D{sub ±1}(z) with which the algebra and its representations are simplified. The instanton partition functions for arbitrary N=2 super Yang-Mills theories with A{sub n} and A{sub n}{sup (1)} type quiver diagrams are compactly expressed as a product of four building blocks, Gaiotto state, dilatation, flavor vertex operator and intertwiner which are written in terms of SH{sup c} and the orthogonal basis introduced by Alba, Fateev, Litvinov and Tarnopolskiy. These building blocks are characterized by new conditions which generalize the known ones on the Gaiotto state and the Carlsson-Okounkov vertex. Consistency conditions of the inner product give algebraic relations for the chiral ring generating functions defined by Nekrasov, Pestun and Shatashvili. In particular we show the polynomiality of the qq-characters which have been introduced as a deformation of the Yangian characters. These relations define a second quantization of the Seiberg-Witten geometry, and, accordingly, reduce to a Baxter TQ-equation in the Nekrasov-Shatashvili limit of the Omega-background.

  11. Hierarchy structure in integrable systems of gauge fields and underlying Lie algebras

    Science.gov (United States)

    Takasaki, K.

    1990-02-01

    An improved version of Nakamura's self-dual Yang-Mills hierarchy is presentd and its symmetry contents are studied. The new hierarchy as well as the previous one represents a set of commuting dynamical flows in an infinite dimensional manifolds of “loop type”, but includes a large set of dependent variables. Because of new degrees of freedom the theory acquires a more symmetric form with richer structures. For example it allows a large symmetry algebra of Riemann-Hilbert type, which is actually a direct sum of two subalgebras (“left” and “right”). This phenomenon is basically the same as observed recently by Avan and Bellon on the case of principal chiral models. In addition to these rather familiar symmeties, a new type of symmetries referred to as “coordinate transformation type” are also introduced. Generators of the above dynamical flows are all included therein. These two types of symmetries altogether form a big Lie algebra, which lead to more satisfactory understanding of symmetry properties of integrable systems of guage fields.

  12. The standard model coupled to quantum gravitodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Aldabe, Fermin

    2017-01-15

    We show that the renormalizable SO(4) x U(1) x SU(2) x SU(3) Yang-Mills coupled to matter and the Higgs field fits all the experimentally observed differential cross sections known in nature. This extended Standard Model reproduces the experimental gravitational differential cross sections without resorting to the graviton field and instead by exchanging SO(4) gauge fields. By construction, each SO(4) generator in quantum gravitodynamics does not commute with the Dirac gamma matrices. This produces additional interactions absent to non-Abelian gauge fields in the Standard Model. The contributions from these new terms yield differential cross sections consistent with the Newtonian and post-Newtonian interactions derived from General Relativity. Dimensional analysis of the Lagrangian shows that all its terms have total dimensionality four or less and therefore that all physical quantities in the theory renormalize by finite amounts. These properties make QGD the only renormalizable four-dimensional theory describing gravitational interactions. (orig.)

  13. Width and string tension of the flux tube in SU(2) lattice gauge theory at high temperature

    Science.gov (United States)

    Chagdaa, S.; Galsandorj, E.; Laermann, E.; Purev, B.

    2018-02-01

    We study the profiles of the flux tube between a static quark and an antiquark in quenched SU(2) lattice gauge theory at temperatures around the deconfinement phase transition. The physical width of the flux tube and the string tension have been determined from the transverse profiles and the q\\bar{q} potential, respectively. Exploiting the computational power of a GPU accelerator in our flux tube investigation, we achieve much higher statistics through which we can increase the signal to noise ratio of our observables in the simulation. This has allowed the investigation of larger lattices as well as larger separations between the quarks than in our previous work. The improved accuracy gives us better results for the width and the string tension. The physical width of the flux tube increases with the temperature up to around T c while keeping its increasing dependence on the q\\bar{q} separation. The string tension results are compared for two different sizes of the lattice. As the lattice becomes larger and finer together with the improved precision, the temperature dependent string tension tends to have a smaller value than the previous one.

  14. Non-Abelian S-term dark energy and inflation

    Science.gov (United States)

    Rodríguez, Yeinzon; Navarro, Andrés A.

    2018-03-01

    We study the role that a cosmic triad in the generalized SU(2) Proca theory, specifically in one of the pieces of the Lagrangian that involves the symmetric version Sμν of the gauge field strength tensor Fμν, has on dark energy and primordial inflation. Regarding dark energy, the triad behaves asymptotically as a couple of radiation perfect fluids whose energy densities are negative for the S term but positive for the Yang-Mills term. This leads to an interesting dynamical fine-tuning mechanism that gives rise to a combined equation of state parameter ω ≃ - 1 and, therefore, to an eternal period of accelerated isotropic expansion for an ample spectrum of initial conditions. Regarding primordial inflation, one of the critical points of the associated dynamical system can describe a prolonged period of isotropic slow-roll inflation sustained by the S term. This period ends up when the Yang-Mills term dominates the energy density leading to the radiation dominated epoch. Unfortunately, in contrast to the dark energy case, the primordial inflation scenario is strongly sensitive to the coupling constants and initial conditions. The whole model, including the other pieces of the Lagrangian that involve Sμν, might evade the recent strong constraints coming from the gravitational wave signal GW170817 and its electromagnetic counterpart GRB 170817A.

  15. (In)dependence of 𝜃 in the Higgs regime without axions

    Science.gov (United States)

    Shifman, Mikhail; Vainshtein, Arkady

    2017-05-01

    We revisit the issue of the vacuum angle 𝜃 dependence in weakly coupled (Higgsed) Yang-Mills theories. Two most popular mechanisms for eliminating physical 𝜃 dependence are massless quarks and axions. Anselm and Johansen noted that the vacuum angle 𝜃EW, associated with the electroweak SU(2) in the Glashow-Weinberg-Salam model (Standard Model, SM), is unobservable although all fermion fields obtain masses through Higgsing and there is no axion. We generalize this idea to a broad class of Higgsed Yang-Mills theories. In the second part, we consider the consequences of Grand Unification. We start from a unifying group, e.g. SU(5), at a high ultraviolet scale and evolve the theory down within the Wilson procedure. If on the way to infrared the unifying group is broken down into a few factors, all factor groups inherit one and the same 𝜃 angle — that of the unifying group. We show that embedding the SM in SU(5) drastically changes the Anselm-Johansen conclusion: the electroweak vacuum angle 𝜃EW, equal to 𝜃QCD becomes in principle observable in ΔB = ΔL = ±1 processes. We also note in passing that if the axion mechanism is set up above the unification scale, we have one and the same axion in the electroweak theory and QCD, and their impacts are interdependent.

  16. Non-Abellian field dynamics in the early stage of ultrarelativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Rischke, D.H. [Brookhaven National Lab., Upton, NY (United States)

    1997-09-22

    It was argued that the gluon field of a large, ultrarelativistic nucleus can be considered as a classical field for small values of the longitudinal momentum fraction x and on transverse momentum scales {Lambda}{sup 2}{sub QCD} << k{sup 2}{perpendicular} << {mu}{sup 2}, where {mu}{sup 2} is the transverse area density of color charges. The authors estimated {mu} {approx} 0.4 GeV for collisions of Au-nuclei at RHIC energies. Based on this argument, the gluon field produced in a collision of two ultrarelativistic nuclei is computed perturbatively by solving the classical Yang-Mills equations order by order in the strong coupling constant g. It is shown that to first order in g, the spectrum of produced gluons is identical to that obtained in a perturbative quantum calculation of gluon Bremsstrahlung. It is also identical with that of a coherent quantum state generated by independent collisions between the (classical) color charges in the two nuclei. The perturbative solution is unstable under perturbations. The instabilities arise from the non-Abelian terms in the equations of motion for the gluon field, which enter only at higher order in the perturbative solution scheme. The decay rate of the perturbative solution is shown to be of order {mu}. Since the non-Abelian terms describe the self-interaction of the produced gluon field, and since such interactions lead to thermalization, the decay rate provides an estimate for the thermalization time scale of classical color fields in ultrarelativistic nuclear collisions. For Au-nuclei, this time scale is therefore of order 0.5 fm/c, in agreement with results for the kinetic thermalization time scale.

  17. Transition between vortex rings and MAP solutions for electrically charged magnetic solutions

    Science.gov (United States)

    Wong, Khai-Ming; Soltanian, Amin; Teh, Rosy

    2014-03-01

    We consider the bifurcation and transition of axially symmetric monopole-antimonopole pair (MAP) and vortex ring solutions in the presence of electric charge for the SU(2) Yang-Mills-Higgs field theory. Here we investigate the properties of MAP/vortex ring solutions with n = 3,η = 0.65, for different Higgs field strength λ. For λ ring solution, but at the critical value of λb = 4.93, branching happens and 2 sets of new solutions appeared. The new branch with less energy is a full MAP solution while the branch with higher energy contains MAP at the beginning and separation between poles of MAP on the z-axis reduces gradually and at another critical value of λt = 14.852, they merge together at z = 0. Beyond this point the solutions change to the vortex ring solutions and a transitions between MAP and vortex ring solutions happens at this branch.

  18. Generalized WDVV equations for B_r and C_r pure N=2 Super-Yang-Mills theory

    NARCIS (Netherlands)

    Hoevenaars, L.K.; Martini, Ruud

    2001-01-01

    A proof that the prepotential for pure N = 2 Super-Yang–Mills theory associated with Lie algebras B r and C r satisfies the generalized WDVV (Witten–Dijkgraaf–Verlinde–Verlinde) system was given by Marshakov, Mironov, and Morozov. Among other things, they use an associative algebra of holomorphic

  19. Low-energy. beta. -function in a finite super-Yang-Mills model with multiple mass scales

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.; Helayel-Neto, J.A. (International Centre for Theoretical Physics, Trieste (Italy))

    1985-02-14

    We compute the one-loop contribution to the low-energy light-fermion gauge coupling in a finite supersymmetric gauge theory with two mass scales: a heavy mass that breaks an initial N=4 supersymmetry down to N=2, but respects the finiteness, and a light mass that, for simplicity, is set to zero. We find that coupling grows with the mass of the heavy intermediate states. Hence the latter do not decouple at low energies, leading to large logarithms that invalidate low-energy perturbation theory. Consequently, further manipulations are required to obtain a meaningful perturbative expansion. Enforcing decoupling through finite renormalizations, that absorb the heavy mass effects into a redefinition of the parameters of the lagrangian, introduces an arbitrary subtraction mass ..mu... The requirement that the S-matrix elements be independent of ..mu.. leads to a non-trivial renormalization-group equation for the low-energy theory, with a non-vanishing ..beta..-function.

  20. Improved Spectroscopy of Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Kerrane, Eoin; Del Debbio, Luigi; Pica, Claudio

    2010-01-01

    We present an improved study of spectroscopic observables in the $SU(2)$ Yang-Mills theory with two adjoint fermions. We make an improvement on the precision of previous results which clarify the scale of finite volume effects present. This analysis adds to the evidence for near-conformal dynamic...

  1. Finite-size scaling of interface free energies in the 3d Ising model

    CERN Document Server

    Pepé, M; Forcrand, Ph. de

    2002-01-01

    We perform a study of the universality of the finite size scaling functions of interface free energies in the 3d Ising model. Close to the hot/cold phase transition, we observe very good agreement with the same scaling functions of the 4d SU(2) Yang--Mills theory at the deconfinement phase transition.

  2. Quantum field theories coupled to supergravity. AdS/CFT and local couplings

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, J.

    2006-08-03

    This dissertation is devoted to the investigation of the interplay of supersymmetric Yang-Mills theories (SYM) and supergravity (SUGRA). The topic is studied from two points of view: Firstly from the point of view of AdS/CFT correspondence, which realises the coupling of four dimensional superconformal N=4 SYM theory and ten dimensional type IIB SUGRA in a holographic way. In order to arrive at theories that resemble quantum chromodynamics (QCD) more closely, fundamental fields are introduced using probe D7-branes and nontrivial background configuration are considered. In particular supergravity solutions that are only asymptotically anti-de Sitter and break supersymmetry are used. This allows the description of spontaneous chiral symmetry breaking. The meson spectrum is calculated and the existence of an associated Goldstone mode is demonstrated. Moreover it is shown that highly radially excited mesons are not degenerate. Additionally instanton configurations on the D7-branes are investigated, which lead to a holographic description of the dual field theory's Higgs branch. Finally a holographic description of heavy-light mesons is developed, which are mesons consisting of quarks with a large mass difference, such that a treatment of B mesons can be achieved. The second approach to the topic of this thesis is the technique of socalled space-time dependent couplings (also known as ''local couplings''), where coupling constants are promoted to external sources. This allows to explore the conformal anomaly of quantum field theories coupled to a classical gravity background. The technique is extended to the superfield description of N=1 supergravity, a complete basis for the anomaly is given and the consistency conditions that arise from a cohomological treatment are calculated. Possible implications for an extension of Zamolodchikov's c-theorem to four dimensional supersymmetric quantum field theories are discussed. (orig.)

  3. A comparison of updating algorithms for large $N$ reduced models

    CERN Document Server

    Pérez, Margarita García; Keegan, Liam; Okawa, Masanori; Ramos, Alberto

    2015-01-01

    We investigate Monte Carlo updating algorithms for simulating $SU(N)$ Yang-Mills fields on a single-site lattice, such as for the Twisted Eguchi-Kawai model (TEK). We show that performing only over-relaxation (OR) updates of the gauge links is a valid simulation algorithm for the Fabricius and Haan formulation of this model, and that this decorrelates observables faster than using heat-bath updates. We consider two different methods of implementing the OR update: either updating the whole $SU(N)$ matrix at once, or iterating through $SU(2)$ subgroups of the $SU(N)$ matrix, we find the same critical exponent in both cases, and only a slight difference between the two.

  4. SU(3) monopoles and their fields

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, P. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver St., Cambridge CB3 9EW (United Kingdom)

    1997-10-01

    Some aspects of the fields of charge two SU(3) monopoles with minimal symmetry breaking are discussed. A certain class of solutions look like SU(2) monopoles embedded in SU(3) with a transition region or {open_quotes}cloud{close_quotes} surrounding the monopoles. For large cloud size the relative moduli space metric splits as a direct product AH{times}R{sup 4} where AH is the Atiyah-Hitchin metric for SU(2) monopoles and R{sup 4} has the flat metric. Thus the cloud is parametrized by R{sup 4} which corresponds to its radius and SU(2) orientation. We solve for the long-range fields in this region, and examine the energy density and rotational moments of inertia. The moduli space metric for these monopoles, given by Dancer, is also expressed in a more explicit form. {copyright} {ital 1997} {ital The American Physical Society}

  5. The Gauging of Five-dimensional, N=2 Maxwell-Einstein Supergravity Theories coupled to Tensor Multiplets

    CERN Document Server

    Günaydin, M; Gunaydin, Murat; Zagermann, Marco

    2000-01-01

    We study the general gaugings of N=2 Maxwell-Einstein supergravity theories (MESGT) in five dimensions, extending and generalizing previous work. The global symmetries of these theories are of the form SU(2)_R X G, where SU(2)_R is the R-symmetry group of the N=2 Poincare superalgebra and G is the group of isometries of the scalar manifold that extend to symmetries of the full action. We first gauge a subgroup K of G by turning some of the vector fields into gauge fields of K while dualizing the remaining vector fields into tensor fields transforming in a non-trivial representation of K. Surprisingly, we find that the presence of tensor fields transforming non-trivially under the Yang-Mills gauge group leads to the introduction of a potential which does not admit an AdS ground state. Next we give the simultaneous gauging of the U(1)_R subgroup of SU(2)_R and a subgroup K of G in the presence of K-charged tensor multiplets. The potential introduced by the simultaneous gauging is the sum of the potentials intro...

  6. Magnetized color superconducting quark matter under compact star conditions: Phase structure within the SU(2 ) f NJL model

    Science.gov (United States)

    Coppola, M.; Allen, P.; Grunfeld, A. G.; Scoccola, N. N.

    2017-09-01

    The properties of magnetized color superconducting cold dense quark matter under compact star conditions are investigated using an S U (2 )f Nambu Jona-Lasinio (NJL)-type model in which the divergences are treated using a magnetic field independent regularization scheme in order to avoid unphysical oscillations. We study the phase diagram for several model parametrizations. The features of each phase are analyzed through the behavior of the chiral and superconducting condensates together with the different particle densities for increasing chemical potential or magnetic field. While confirming previous results derived for the zero magnetic field or isospin symmetric matter case, we show how the phases are modified in the presence of β -equilibrium as well as color and electric charge neutrality conditions.

  7. From exceptional field theory to heterotic double field theory via K3

    Science.gov (United States)

    Malek, Emanuel

    2017-03-01

    In this paper we show how to obtain heterotic double field theory from exceptional field theory by breaking half of the supersymmetry. We focus on the SL(5) exceptional field theory and show that when the extended space contains a generalised SU(2)-structure manifold one can define a reduction to obtain the heterotic SO(3 , n) double field theory. In this picture, the reduction on the SU(2)-structure breaks half of the supersymmetry of the exceptional field theory and the gauge group of the heterotic double field theory is given by the embedding tensor of the reduction used. Finally, we study the example of a consistent truncation of M-theory on K3 and recover the duality with the heterotic string on T 3. This suggests that the extended space can be made sense of even in the case of non-toroidal compactifications.

  8. On the interplay between string theory and field theory

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, I.

    1998-07-08

    In this thesis, we have discussed various aspects of branes in string theory and M-theory. In chapter 2 we were able to construct six-dimensional chiral interacting eld theories from Hanany-Witten like brane setups. The field theory requirement that the anomalies cancel was reproduced by RR-charge conservation in the brane setup. The data of the Hanany-Witten setup, which consists of brane positions, was mapped to instanton data. The orbifold construction can be extended to D and E type singularities. In chapter 3 we discussed a matrix conjecture, which claims that M-theory in the light cone gauge is described by the quantum mechanics of D0 branes. Toroidal compactifications of M-theory have a description in terms of super Yang-Mills theory an the dual torus. For more than three compactified dimensions, more degrees of freedom have to be added. In some sense, the philosophy in this chapter is orthogonal to the previous chapter: Here, we want to get M-theory results from eld theory considerations, whereas in the previous chapter we obtained eld theory results by embedding the theories in string theory. Our main focus was on the compactification on T{sup 6}, which leads to complications. Here, the Matrix model is again given by an eleven dimensional theory, not by a lower dimensional field theory. Other problems and possible resolutions of Matrix theory are discussed at the end of chapter 3. In the last chapter we considered M- and F-theory compactifications on Calabi-Yau fourfolds. After explaining some basics of fourfolds, we showed that the web of fourfolds is connected by singular transitions. The two manifolds which are connected by the transition are different resolutions of the same singular manifold. The resolution of the singularities can lead to a certain type of divisors, which lead to non-perturbative superpotentials, when branes wrap them. The vacua connected by the transitions can be physically very different. (orig.)

  9. Superconformal quantum field theories in string. Gauge theory dualities

    Energy Technology Data Exchange (ETDEWEB)

    Wiegandt, Konstantin

    2012-08-14

    In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investigated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop/amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N=4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.

  10. Topological field theories and quantum mechanics on commutative space; Theories des champs topologiques et mecanique quantique en espace non-commutatif

    Energy Technology Data Exchange (ETDEWEB)

    Lefrancois, M

    2005-12-15

    In particle physics, the Standard Model describes the interactions between fundamental particles. However, it was not able till now to unify quantum field theory and general relativity. This thesis focuses on two different unification approaches, though they might show some compatibility: topological field theories and quantum mechanics on non-commutative space. Topological field theories have been introduced some twenty years ago and have a very strong link to mathematics: their observables are topological invariants of the manifold they are defined on. In this thesis, we first give interest to topological Yang-Mills. We develop a superspace formalism and give a systematic method for the determination of the observables. This approach allows, once projected on a particular super gauge (of Wess-Zumino type), to recover the existing results but it also gives a generalisation to the case of an unspecified super-gauge. We have then be able to show that the up-to-now known observables correspond to the most general form of the solutions. This superspace formalism can be applied to more complex models; the case of topological gravity is given here in example. Quantum mechanics on noncommutative space provides an extension of the Heisenberg algebra of ordinary quantum mechanics. What differs here is that the components of the position or momentum operators do not commute with each other anymore. This implies to introduce a fundamental length. The second part of this thesis focuses on the description of the commutation algebra. Applications are made to low-dimensional quantum systems (Landau system, harmonic oscillator...) and to supersymmetric systems. (author)

  11. Relaxation, turbulence, and non-equilibrium dynamics of matter fields. From quantum fluids to high-energy physics RETUNE. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The following topics were dealt with: Superfluidity and quantum turbulence, quantum vortices and their reconnections, quantum hydrodynamics and turbulence in Bose-Einstein condensates, phase transitions in turbulence, perfect fluidity in relativistic heavy ion collisions, off-shell dynamical approach for relativistic heavy ion collisions, turbulence in the early universe, a superfluid universe, superfluidity and hydrodynamic excitations in out-of-equilibrium polariton condensates, two-dimensional quantum turbulence in Bose-Einstein condensates, nonequilibrium Bose gases with classical fields, turbulence in superfluid {sup 4}He in the T=0 limit, condensation, superfluidity and lasing of coupled light-matter systems, tachyon condensation in Bose-Einstein condensates, Bose-Einstein condensation of magnons in superfluid {sup 3}He-B and its application to vortex studies, wave turbulence in Bose-Einstein condensates, instability in an expanding non-Abelian system, nonabelian plasma instabilities, quantum turbulence in an atomic trapped superfluid, nonthermal fixed points and superfluid turbulence, macroscopic quantum tunneling in Bose-Einstein condensates, pair coherence in many-body quenches, sound waves in non-stationary media, thermalization induced by chaotic behavior in classical Yang-Mills dynamics, chiral superfluidity of the quark-gluon plasma, functional renormalization-group flow for Burger's equation, anomalous scaling in the random-force-driven Burger's equation, Kadanoff-Baym approach to thermalization, many-body resonant tunneling in the Wannier system, generalized Boltzmann equation in ultrasoft region, dynamical view of the Schwinger mechanism, parity violation in hydrogen and squeezing. (HSI)

  12. Cosmic Microwave Background as a Thermal Gas of SU(2 Photons: Implications for the High-z Cosmological Model and the Value of H0

    Directory of Open Access Journals (Sweden)

    Steffen Hahn

    2017-01-01

    Full Text Available Presently, we are facing a 3σ tension in the most basic cosmological parameter, the Hubble constant H0. This tension arises when fitting the Lambda-cold-dark-matter model (ΛCDM to the high-precision temperature-temperature (TT power spectrum of the Cosmic Microwave Background (CMB and to local cosmological observations. We propose a resolution of this problem by postulating that the thermal photon gas of the CMB obeys an SU(2 rather than U(1 gauge principle, suggesting a high-z cosmological model which is void of dark-matter. Observationally, we rely on precise low-frequency intensity measurements in the CMB spectrum and on a recent model independent (low-z extraction of the relation between the comoving sound horizon rs at the end of the baryon drag epoch and H0 (rsH0=const. We point out that the commonly employed condition for baryon-velocity freeze-out is imprecise, judged by a careful inspection of the formal solution to the associated Euler equation. As a consequence, the above-mentioned 3σ tension actually transforms into a 5σ discrepancy. To make contact with successful low-z  ΛCDM cosmology we propose an interpolation based on percolated/depercolated vortices of a Planck-scale axion condensate. For a first consistency test of such an all-z model we compute the angular scale of the sound horizon at photon decoupling.

  13. Anti-inflammatory properties of fermented soy milk with Lactococcus lactis subsp. lactis S-SU2 in murine macrophage RAW264.7 cells and DSS-induced IBD model mice.

    Science.gov (United States)

    Kawahara, Miho; Nemoto, Maki; Nakata, Toru; Kondo, Saya; Takahashi, Hajime; Kimura, Bon; Kuda, Takashi

    2015-06-01

    Six lactic acid bacteria strains (four Lactobacillus plantarum strains and one each of Lactococcus lactis subsp. lactis and Pediococcus pentosaceus) have been isolated and shown to possess anti-oxidant activity. In this study, we determined their acid, bile, salt resistance, and adhesion activity on human enterocyte-like HT-29-Luc and Caco-2 cells. An isolate Lc. lactis S-SU2 showed highest bile resistance and adhesion activity compared to type strains. S-SU2 could ferment both 10% skimmed milk and soy milk while the type strain could not ferment soy milk. Soy milk fermented with S-SU2 showed an increased nitric oxide (NO) secretion in the mouse macrophage RAW264.7 cells without bacterial lipopolysaccharide (LPS). Furthermore, the inhibitory effects of the fermented soy milk on Escherichia coli O111 LPS-induced NO secretion were higher than those of fresh soy milk. Inflammatory bowel disease (IBD) was induced in mice fed either 5% (w/v) dextran sodium sulfate (DSS) in drinking water or 50% soy milk in drinking water. Shortening of colon length, breaking of epithelial cells, lowering liver and thymus weights, and enlargement of spleen are some of the characteristics observed in the IBD, which were prevented by the use of soy milk fermented with Lc. lactis S-SU2. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Higher-dimensional analogue of the Blau-Thompson model and N{sub T}=8, D=2 Hodge-type cohomological gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, B. E-mail: geyer@itp.uni-leipzig.de; Muelsch, D. E-mail: muelsch@informatik.uni-leipzig.de

    2003-07-14

    The higher-dimensional analogue of the Blau-Thompson model in D=5 is constructed by a N{sub T}=1 topological twist of N=2, D=5 super-Yang-Mills theory. Its dimensional reduction to D=4 and D=3 gives rise to the B-model and the N{sub T}=4 equivariant extension of the Blau-Thompson model, respectively. A further dimensional reduction to D=2 provides another example of a N{sub T}=8 Hodge-type cohomological theory with global symmetry group SU(2)xSU(2)-bar. Moreover, it is shown that this theory possesses actually a larger global symmetry group SU(4) and that it agrees with the N{sub T}=8 topological twisting of N=16, D=2 super-Yang-Mills theory.

  15. Higher-dimensional analogue of the Blau-Thompson model and NT=8, /D=2 Hodge-type cohomological gauge theories

    Science.gov (United States)

    Geyer, B.; Mülsch, D.

    2003-07-01

    The higher-dimensional analogue of the Blau-Thompson model in D=5 is constructed by a NT=1 topological twist of N=2, D=5 super-Yang-Mills theory. Its dimensional reduction to D=4 and D=3 gives rise to the B-model and the NT=4 equivariant extension of the Blau-Thompson model, respectively. A further dimensional reduction to D=2 provides another example of a NT=8 Hodge-type cohomological theory with global symmetry group SU(2)⊗ overlineSU(2). Moreover, it is shown that this theory possesses actually a larger global symmetry group SU(4) and that it agrees with the NT=8 topological twisting of N=16, D=2 super-Yang-Mills theory.

  16. Improved Spectroscopy of Minimal Walking Technicolor

    CERN Document Server

    Kerrane, Eoin; Pica, Claudio; Patella, Agostino; Rago, Antonio; Lucini, Biagio; Bursa, Francis; Pickup, Thomas; Henty, David

    2010-01-01

    We present an improved study of spectroscopic observables in the $SU(2)$ Yang-Mills theory with two adjoint fermions. We make an improvement on the precision of previous results which clarify the scale of finite volume effects present. This analysis adds to the evidence for near-conformal dynamics of this theory, while indicating a preference for a low anomalous mass dimension of the massless theory.

  17. Matrix model of QCD: Edge localized glueballs and phase transitions

    Science.gov (United States)

    Acharyya, Nirmalendu; Balachandran, A. P.

    2017-10-01

    In a matrix model of pure SU(2) Yang-Mills theory, boundaries emerge in the space of Mat3(R ) and the Hamiltonian requires boundary conditions. We show the existence of edge localized glueball states that can have negative energies. These edge levels can be lifted to positive energies if the gluons acquire a London-like mass. This suggests a new phase of QCD with an incompressible bulk.

  18. Discrete θ and the 5d superconformal index

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, Oren [Department of Physics, Technion, Israel Institute of Technology,Haifa, 32000 (Israel); Rodríguez-Gómez, Diego [Department of Physics, Universidad de Oviedo,Avda. Calvo Sotelo 18, 33007, Oviedo (Spain); Zafrir, Gabi [Department of Physics, Technion, Israel Institute of Technology,Haifa, 32000 (Israel)

    2014-01-16

    5d Yang-Mills theory with an Sp(N) gauge group admits a discrete analog of the θ parameter. We describe the origin of this parameter in N=1 theories from Type I’ string theory, and study its effect on the 5d superconformal fixed point theories with an Sp(1)=SU(2) gauge group by computing the superconformal index. Our result confirms the lack of global symmetry enhancement in the so-called E-tilde{sub 1} theory.

  19. On Vanishing Theorems for Vector Bundle Valued p-Forms and their Applications

    Science.gov (United States)

    Dong, Yuxin; Wei, Shihshu Walter

    2011-06-01

    Let F : [0, ∞) → [0, ∞) be a strictly increasing C 2 function with F(0) = 0. We unify the concepts of F-harmonic maps, minimal hypersurfaces, maximal spacelike hypersurfaces, and Yang-Mills Fields, and introduce F-Yang-Mills fields, F-degree, F-lower degree, and generalized Yang-Mills-Born-Infeld fields (with the plus sign or with the minus sign) on manifolds. When {F(t)=t, frac 1p(2t)^{frac p2}, sqrt{1+2t} -1,} and {1-sqrt{1-2t},} the F-Yang-Mills field becomes an ordinary Yang-Mills field, p-Yang-Mills field, a generalized Yang-Mills-Born-Infeld field with the plus sign, and a generalized Yang-Mills-Born-Infeld field with the minus sign on a manifold respectively. We also introduce the E F, g -energy functional (resp. F-Yang-Mills functional) and derive the first variational formula of the E F, g -energy functional (resp. F-Yang-Mills functional) with applications. In a more general frame, we use a unified method to study the stress-energy tensors that arise from calculating the rate of change of various functionals when the metric of the domain or base manifold is changed. These stress-energy tensors are naturally linked to F-conservation laws and yield monotonicity formulae, via the coarea formula and comparison theorems in Riemannian geometry. Whereas a "microscopic" approach to some of these monotonicity formulae leads to celebrated blow-up techniques and regularity theory in geometric measure theory, a "macroscopic" version of these monotonicity inequalities enables us to derive some Liouville type results and vanishing theorems for p-forms with values in vector bundles, and to investigate constant Dirichlet boundary value problems for 1-forms. In particular, we obtain Liouville theorems for F-harmonic maps (which include harmonic maps, p-harmonic maps, exponentially harmonic maps, minimal graphs and maximal space-like hypersurfaces, etc.), F-Yang-Mills fields, extended Born-Infeld fields, and generalized Yang-Mills-Born-Infeld fields (with the plus

  20. Quark-antiquark potential in defect conformal field theory

    Science.gov (United States)

    Preti, Michelangelo; Trancanelli, Diego; Vescovi, Edoardo

    2017-10-01

    We consider antiparallel Wilson lines in N = 4 super Yang-Mills in the presence of a codimension-1 defect. We compute the Wilson lines' expectation value both at weak coupling, in the gauge theory, and at strong coupling, by finding the string configurations which are dual to this operator. These configurations display a Gross-Ooguri transition between a connected, U-shaped string phase and a phase in which the string breaks into two disconnected surfaces. We analyze in detail the critical configurations separating the two phases and compare the string result with the gauge theory one in a certain double scaling limit.

  1. Maximally Supersymmetric Theories In Light-cone Superspace

    CERN Document Server

    Ananth, S

    2005-01-01

    Reduced supersymmetric field theories retain a great deal of information regarding their higher-dimensional progenitors. In this dissertation, we describe how the ( N = 4, d = 4) SuperYang-Mills theory may be 'oxidized' into its parent theory, the fully ten- dimensional N = 1 Yang- Mills. Remarkably, this is achieved by adding a single term to the four-dimensional transverse space derivatives. We work in light-cone superspace which is entirely free of auxiliary fields. Very similar in structure to ( N = 4, d = 4) Yang-Mills is the maximally supersymmetric ( N = 8, d = 4) Supergravity. This theory is obtained by reduction from eleven-dimensional N = 1 Supergravity. We show that this four-dimensional Supergravity theory may be restored to eleven dimensions in a very similar fashion.

  2. Quantized gauge theory on the fuzzy sphere as random matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold E-mail: harold.steinacker@physik.uni-muenchen.de

    2004-02-16

    U(n) Yang-Mills theory on the fuzzy sphere S{sup 2}{sub N} is quantized using random matrix methods. The gauge theory is formulated as a matrix model for a single Hermitian matrix subject to a constraint, and a potential with two degenerate minima. This allows to reduce the path integral over the gauge fields to an integral over eigenvalues, which can be evaluated for large N. The partition function of U(n) Yang-Mills theory on the classical sphere is recovered in the large N limit, as a sum over instanton contributions. The monopole solutions are found explicitly.

  3. Two-Field Born-Infeld with Diverse Dualities

    CERN Document Server

    Ferrara, S; Yeranyan, A

    2016-01-01

    We elaborate on how to build, in a systematic fashion, two-field Abelian extensions of the Born-Infeld Lagrangian. These models realize the non-trivial duality groups that are allowed in this case, namely U(2), SU(2) and U(1)xU(1). For each class, we also construct an explicit example. They all involve an overall square root and reduce to the Born-Infeld model if the two fields are identified, but differ in quartic and higher interactions. The U(1)xU(1) and SU(2) examples recover some recent results obtained with different techniques, and we show that the U(1)xU(1) model admits an N=1 supersymmetric completion. The U(2) example includes some unusual terms that are not analytic at the origin of field space.

  4. Domain walls in thermal gauge field theories - myth or reality?

    Energy Technology Data Exchange (ETDEWEB)

    Smilga, A.V. [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik]|[Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Teoreticheskoj i Ehksperimental`noj Fiziki

    1994-01-01

    We argue different Z{sub N} thermal vacua of hot pure Yang-Mills theory distinguished in the standard approach by different values of Polyakov loop average

    {sub T} corresponds actually to one and the same physical state. A critical discussion of the argument which are usually put forward in favor of the opposite conclusion (that, in pure continuum Yang-Mills theory, distinct Z{sub N}-phases may coexist in the physical space being separated by the domain walls finite surface energy) is given. In particular, we note that the same arguments can be applied with an equal ease to Abelian theories and would lead to the existence of the walls in the high-T 4-dim QED and to appearance of the queer high-T solitons with the mass {approx} T{sup 2}/e in the Schwinger model. We emphasize that these configurations may be relevant for the Euclidean path integral but whether they correspond to Minkowski space objects is unclear. (author). 16 refs, 2 figs.

  5. Noncontractible hyperloops in gauge models with Higgs fields in the fundamental representation

    Science.gov (United States)

    Burzlaff, Jürgen

    1984-11-01

    We study finite-energy configurations in SO( N) gauge theories with Higgs fields in the fundamental representation. For all winding numbers, noncontractible hyperloops are constructed. The corresponding energy density is spherically symmetric, and the configuration with maximal energy on each hyperloop can be determined. Noncontractible hyperloops with an arbitrary winding number for SU(2) gauge theory are also given.

  6. Noncontractible hyperloops in gauge models with Higgs fields in the fundamental representation

    Energy Technology Data Exchange (ETDEWEB)

    Burzlaff, J. (Dublin Inst. for Advanced Studies (Ireland). School of Theoretical Physics)

    1984-11-01

    We study finite-energy configurations in SO(N) gauge theories with Higgs fields in the fundamental representation. For all winding numbers, noncontractible hyperloops are constructed. The corresponding energy density is spherically symmetric, and the configuration with maximal energy on each hyperloop can be determined. Noncontractible hyperloops with an arbitrary winding number for SU(2) gauge theory are also given.

  7. Integrable hydrodynamic equations for initial chiral currents and infinite hydrodynamic chains from WZNW model and string model of WZNW type with SU(2), SO(3), SP(2), SU(∞), SO(∞), SP(∞) constant torsions

    Science.gov (United States)

    Cirilo-Lombardo, D. J.; Gershun, V. D.

    2014-09-01

    The WZNW and string models are considered in terms of the initial and invariant chiral currents assuming that the internal and external torsions coincide (anticoincide) and they are the structure constants of the SU(n), SO(n), SP(n) Lie algebras. These models are the auxiliary problems in order to construct integrable equations of hydrodynamic type. It was shown that the WZNW and string models in terms of invariant chiral currents are integrable for the constant torsion associated with the structure constants of the SU(2), SO(3), SP(2) and SU(3) algebras only. The equation of motion for the density of the first Casimir operator was obtained in the form of the inviscid Burgers equation. The solution of this equation is presented through the Lambert function. Also, a new equation of motion for the initial chiral current was found. The integrable infinite hydrodynamic chains obtained from the WZNW and string models are given in terms of invariant chiral currents with the SU(2), SO(3), SP(2) and with SU(∞), SO(∞), SP(∞) constant torsions. Also, the equations of motion for the density of any Casimir operator and new infinite-dimensional equations of hydrodynamic type for the initial chiral currents through the symmetric structure constant of SU(∞), SO(∞), SP(∞) algebras are obtained.

  8. One-point Functions in AdS/dCFT and Integrability

    DEFF Research Database (Denmark)

    Buhl-Mortensen, Isak

    Super Yang-Mills with a co-dimension one defect is studied, in particular, the field theory setup that arises in the D3-probe-D5 brane construction of the Karch-Randal idea. We look at the case where k ≥ 2 D3-branes are absorbed by the D5, giving rise to a domain wall defect that separates...

  9. 1/4-BPS states on noncommutative tori

    OpenAIRE

    Konechny, A.; Schwarz, A

    1999-01-01

    We give an explicit expression for classical 1/4-BPS fields in supersymmetric Yang-Mills theory on noncommutative tori. We use it to study quantum 1/4-BPS states. In particular we calculate the degeneracy of 1/4-BPS energy levels.

  10. A quantum check of AdS/dCFT

    DEFF Research Database (Denmark)

    Buhl-Mortensen, Isak; de Leeuw, Marius; Ipsen, Asger C.

    2017-01-01

    We build the framework for performing loop computations in the defect version of N = 4 super Yang-Mills theory which is dual to the probe D5-D3 brane system with background gauge-field flux. In this dCFT, a codimension-one defect separates two regions of space-time with different ranks of the gauge...

  11. Applied Gravity

    Indian Academy of Sciences (India)

    Shiraz Minwalla

    Scattering amplitudes are fundamental observables in quatnum field theories, and are of great interest to high energy phenomenologists, because they are directly measurable in particle accelerators. N = 4 Yang Mills is a theory of massless gluons. Natural question: can one use gravity to compute the S matrix of.

  12. Bloch Waves in Minimal Landau Gauge and the Infinite-Volume Limit of Lattice Gauge Theory.

    Science.gov (United States)

    Cucchieri, Attilio; Mendes, Tereza

    2017-05-12

    By exploiting the similarity between Bloch's theorem for electrons in crystalline solids and the problem of Landau gauge fixing in Yang-Mills theory on a "replicated" lattice, we show that large-volume results can be reproduced by simulations performed on much smaller lattices. This approach, proposed by Zwanziger [Nucl. Phys. B412, 657 (1994)NUPBBO0550-321310.1016/0550-3213(94)90396-4], corresponds to taking the infinite-volume limit for Landau-gauge field configurations in two steps: first for the gauge transformation alone, while keeping the lattice volume finite, and second for the gauge-field configuration itself. The solutions to the gauge-fixing condition are then given in terms of Bloch waves. Applying the method to data from Monte Carlo simulations of pure SU(2) gauge theory in two and three space-time dimensions, we are able to evaluate the Landau-gauge gluon propagator for lattices of linear extent up to 16 times larger than that of the simulated lattice. This approach is reminiscent of the Fisher-Ruelle construction of the thermodynamic limit in classical statistical mechanics.

  13. Bloch Waves in Minimal Landau Gauge and the Infinite-Volume Limit of Lattice Gauge Theory

    Science.gov (United States)

    Cucchieri, Attilio; Mendes, Tereza

    2017-05-01

    By exploiting the similarity between Bloch's theorem for electrons in crystalline solids and the problem of Landau gauge fixing in Yang-Mills theory on a "replicated" lattice, we show that large-volume results can be reproduced by simulations performed on much smaller lattices. This approach, proposed by Zwanziger [Nucl. Phys. B412, 657 (1994), 10.1016/0550-3213(94)90396-4], corresponds to taking the infinite-volume limit for Landau-gauge field configurations in two steps: first for the gauge transformation alone, while keeping the lattice volume finite, and second for the gauge-field configuration itself. The solutions to the gauge-fixing condition are then given in terms of Bloch waves. Applying the method to data from Monte Carlo simulations of pure SU(2) gauge theory in two and three space-time dimensions, we are able to evaluate the Landau-gauge gluon propagator for lattices of linear extent up to 16 times larger than that of the simulated lattice. This approach is reminiscent of the Fisher-Ruelle construction of the thermodynamic limit in classical statistical mechanics.

  14. Gauge/gravity duality applied to condensed matter systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Martin Matthias

    2010-07-07

    DE024486693In the present thesis by means of the AdS/CFT correspondence phenomena of strongly coupled quantum critical systems are studied. Hereby the assumption developed 1997 by Maldacena puts four-dimensional N=4 supersymmetric Yang-Mills theory and type IIB supergravity in the five-dimensional anti-de Sitter space in relation. This assumption can be generalized in different ways. So on the gauge-theory side states with finite temperature and density can be considered or degrees of freedom added, which transform in the fundamental representation of the gauge group, the so-called flavor degrees of freedom. These deformations of the correspondence are applied in the present thesis in order to understand better strongly coupled systems in the neighbourhood of quantum-critical points. We approximate hereby the field theory at the quantum-critical point by N=4 supersymmetric Yang-Mills theory. The charge carriers of the system are introduced by supersymmetric flavor fields. For instance in the present thesis in the case of two flavor fields, which have the same mass, a chemical potential for the isospin is considered and the phase diagram studied. The isospin-chemical potential breaks hereby the non-Abelian part of the flavor symmetry SU(2) to U(1). If a critical value of the isospin-chemical potential is exceeded, so shows our calculation, that the strongly coupled system becomes unstable against fluctuations. A new thermodynamically favorized state is formed. This state breaks the residual U(1) flavor symmetry spontaneously and can therefore be considered as a superfluid. If U(1) is gauged, by this way a superconductor is obtained. The AC conductivity goes in the superconducting phase for small frequencies to zero. The DC conductivity however is infinite. Furthermore we calculate the Fermi surface in the superconducting phase. Furthermore a holographic method for the calculation of the DC conductivity in arbitrarily constant electric and magnetic fields is further

  15. On irregular singularity wave functions and superconformal indices

    Science.gov (United States)

    Buican, Matthew; Nishinaka, Takahiro

    2017-09-01

    We generalize, in a manifestly Weyl-invariant way, our previous expressions for irregular singularity wave functions in two-dimensional SU(2) q-deformed Yang-Mills theory to SU( N). As an application, we give closed-form expressions for the Schur indices of all ( A N - 1 , A N ( n - 1)-1) Argyres-Douglas (AD) superconformal field theories (SCFTs), thus completing the computation of these quantities for the ( A N , A M ) SCFTs. With minimal effort, our wave functions also give new Schur indices of various infinite sets of "Type IV" AD theories. We explore the discrete symmetries of these indices and also show how highly intricate renormalization group (RG) flows from isolated theories and conformal manifolds in the ultraviolet to isolated theories and (products of) conformal manifolds in the infrared are encoded in these indices. We compare our flows with dimensionally reduced flows via a simple "monopole vev RG" formalism. Finally, since our expressions are given in terms of concise Lie algebra data, we speculate on extensions of our results that might be useful for probing the existence of hypothetical SCFTs based on other Lie algebras. We conclude with a discussion of some open problems.

  16. Dyonic black holes at arbitrary locations

    Science.gov (United States)

    Meessen, Patrick; Ortín, Tomás; Ramírez, Pedro F.

    2017-10-01

    We construct and study stationary, asymptotically flat multicenter solutions describing regular black holes with non-Abelian hair (colored magnetic-monopole and dyon fields) in two models of N=2 , d = 4 Super-Einstein-Yang-Mills theories: the quadratic model \\overline{CP}^3 and the cubic model ST[2, 6], which can be embedded in 10-dimensional Heterotic Supergravity. These solutions are based on the multicenter dyon recently discovered by one of us, which solves the SU(2) Bogomol'nyi and dyon equations on E^3 . In contrast to the well-known Abelian multicenter solutions, the relative positions of the non-Abelian black-hole centers are unconstrained. We study necessary conditions on the parameters of the solutions that ensure the regularity of the metric. In the case of the \\overline{CP}^3 model we show that it is enough to require the positivity of the "masses" of the individual black holes, the finiteness of each of their entropies and their superadditivity. In the case of the ST[2, 6] model we have not been able to show that analogous conditions are sufficient, but we give an explicit example of a regular solution describing thousands of non-Abelian dyonic black holes in equilibrium at arbitrary relative positions. We also construct non-Abelian solutions that interpolate smoothly between just two aDS2×S2 vacua with different radii ( dumbbell solutions).

  17. New vortex ring configurations for the MAP dyon solutions

    Science.gov (United States)

    Soltanian, Amin; Teh, Rosy; Wong, Khai-Ming

    2014-03-01

    Electrically charged magnetic solutions of SU(2) Yang-Mills-Higgs theory with net zero topological charge has been obtained as axially symmetric saddle-point solutions in Ref. [1]. These solutions are characterized by an integer, the winding number n of their azimuthal angle, φ, and an electric charge parameter, 0ring configuration with n=2, η=0.65 and varying Higgs field strength. Our observations showed that beside the fundamental solution which is an electrically charged MAP solution, there also exist two other branches of eclectically charged vortex ring solutions which both appear at λ=20.45. The difference in total energy between these two branches of solution is very small but the difference in diameter of vortex rings of the two branches is quite significant. Finding of a branching phenomena in presence of a fundamental MAP solution has been for the first time. In Ref. [2], new branching solutions occur for the electrically neutral case in presence of fundamental vortex ring solutions but not for the fundamental MAP solution.

  18. P-wave holographic superconductor/insulator phase transitions affected by dark matter sector

    Energy Technology Data Exchange (ETDEWEB)

    Rogatko, Marek; Wysokinski, Karol I. [Institute of Physics, Maria Curie-Skłodowska University,20-031 Lublin, pl. Marii Curie-Skłodowskiej 1 (Poland)

    2016-03-31

    The holographic approach to building the p-wave superconductors results in three different models: the Maxwell-vector, the SU(2) Yang-Mills and the helical. In the probe limit approximation, we analytically examine the properties of the first two models in the theory with dark matter sector. It turns out that the effect of dark matter on the Maxwell-vector p-wave model is the same as on the s-wave superconductor studied earlier. For the non-Abelian model we study the phase transitions between p-wave holographic insulator/superconductor and metal/superconductor. Studies of marginally stable modes in the theory under consideration allow us to determine features of p-wave holographic droplet in a constant magnetic field. The dependence of the superconducting transition temperature on the coupling constant α to the dark matter sector is affected by the dark matter density ρ{sub D}. For ρ{sub D}>ρ the transition temperature is a decreasing function of α. The critical chemical potential μ{sub c} for the quantum phase transition between insulator and metal depends on the chemical potential of dark matter μ{sub D} and for μ{sub D}=0 is a decreasing function of α.

  19. Adjoint SU(2) with four fermion interactions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Drach, Vincent; Pica, Claudio

    2016-01-01

    Four fermion interactions appear in many models of Beyond Standard Model physics. In Technicolour and composite Higgs models Standard Model fermion masses can be generated by four fermion terms. They are also expected to modify the dynamics of the new strongly interacting sector. In particular in...

  20. SU(2) Non-Abelian Photon

    Science.gov (United States)

    Wu, Xiang-Yao; Liu, Xiao-Jing; Li, Hong; Zhang, Si-Qi; Ma, Ji; Liu, Ji-Ping; Liang, Yu

    2017-10-01

    In this paper, we have proposed S U(2) non-Abelian electromagnetism gauge theory. In the theory, photon has self-interaction and interaction between them, which can explain photon entanglement phenomenon in quantum information. Otherwise, we find there are three kinds photons γ +, γ - and γ 0, they have electric charge + e γ , - e γ and 0, respectively, these prediction are accordance with some experiment results.

  1. Geometric phase and gauge connection in polyatomic molecules.

    Science.gov (United States)

    Wittig, Curt

    2012-05-14

    Geometric phase is an interesting topic that is germane to numerous and varied research areas: molecules, optics, quantum computing, quantum Hall effect, graphene, and so on. It exists only when the system of interest interacts with something it perceives as exterior. An isolated system cannot display geometric phase. This article addresses geometric phase in polyatomic molecules from a gauge field theory perspective. Gauge field theory was introduced in electrodynamics by Fock and examined assiduously by Weyl. It yields the gauge field A(μ), particle-field couplings, and the Aharonov-Bohm phase, while Yang-Mills theory, the cornerstone of the standard model of physics, is a template for non-Abelian gauge symmetries. Electronic structure theory, including nonadiabaticity, is a non-Abelian gauge field theory with matrix-valued covariant derivative. Because the wave function of an isolated molecule must be single-valued, its global U(1) symmetry cannot be gauged, i.e., products of nuclear and electron functions such as χ(n)ψ(n) are forbidden from undergoing local phase transformation on R, where R denotes nuclear degrees of freedom. On the other hand, the synchronous transformations (first noted by Mead and Truhlar): ψ(n)→ψ(n)e(iζ) and simultaneously χ(n)→χ(n)e(-iζ), preserve single-valuedness and enable wave functions in each subspace to undergo phase transformation on R. Thus, each subspace is compatible with a U(1) gauge field theory. The central mathematical object is Berry's adiabatic connection i, which serves as a communication link between the two subsystems. It is shown that additions to the connection according to the gauge principle are, in fact, manifestations of the synchronous (e(iζ)/e(-iζ)) nature of the ψ(n) and χ(n) phase transformations. Two important U(1) connections are reviewed: qA(μ) from electrodynamics and Berry's connection. The gauging of SU(2) and SU(3) is reviewed and then used with molecules. The largest gauge group

  2. Electromagnetic superconductivity of vacuum induced by strong magnetic field: Numerical evidence in lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, V.V. [IHEP, Protvino, Moscow region, 142284 (Russian Federation); ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218 (Russian Federation); Buividovich, P.V. [ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218 (Russian Federation); JINR, Joliot-Curie str. 6, Dubna, Moscow region, 141980 (Russian Federation); Institute of Theoretical Physics, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Chernodub, M.N., E-mail: maxim.chernodub@lmpt.univ-tours.fr [CNRS, Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Parc de Grandmont, 37200 Tours (France); Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); Kotov, A.Yu.; Polikarpov, M.I. [ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218 (Russian Federation); MIPT, Institutskii per. 9, Dolgoprudny, Moscow region, 141700 (Russian Federation)

    2012-12-05

    Using numerical simulations of quenched SU(2) gauge theory we demonstrate that an external magnetic field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged {rho} mesons if the strength of the magnetic field exceeds the critical value eB{sub c}=0.927(77) GeV{sup 2} or B{sub c}=(1.56{+-}0.13) Dot-Operator 10{sup 16} Tesla. The condensation of the charged {rho} mesons in strong magnetic field is a key feature of the magnetic-field-induced electromagnetic superconductivity of the vacuum.

  3. Rigid supersymmetry from conformal supergravity in five dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Pini, Alessandro [Department of Physics, Universidad de Oviedo, Avda. Calvo Sotelo 18, 33007, Oviedo (Spain); Centre for Research in String Theory, School of Physics, Queen Mary University of London,Mile End Road, London, E1 4NS (United Kingdom); Rodriguez-Gomez, Diego; Schmude, Johannes [Department of Physics, Universidad de Oviedo, Avda. Calvo Sotelo 18, 33007, Oviedo (Spain)

    2015-09-17

    We study the rigid limit of 5d conformal supergravity with minimal supersymmetry on Riemannian manifolds. The necessary and sufficient condition for the existence of a solution is the existence of a conformal Killing vector. Whenever a certain SU(2) curvature becomes abelian the backgrounds define a transversally holomorphic foliation. Subsequently we turn to the question under which circumstances these backgrounds admit a kinetic Yang-Mills term in the action of a vector multiplet. Here we find that the conformal Killing vector has to be Killing. We supplement the discussion with various appendices.

  4. BOOK REVIEW: Quantum Field Theory in a Nutshell (2nd edn) Quantum Field Theory in a Nutshell (2nd edn)

    Science.gov (United States)

    Peskin, Michael E.

    2011-04-01

    and topology, and applications to condensed matter systems including the Peierls instability and the quantum Hall fluid. It is a large amount of territory to cover in a single volume. Few derivations are more than one page long. Those that fit in that space are very smooth, but others are too abbreviated to be fully comprehensible. The prose that accompanies the derivations, though, is always enticing. Zee misses no opportunity to point out that an argument he gives opens the door to some deeper subject that he encourages the reader to explore. I do warn students that it is easy to learn from this book how to talk quantum field theory without understanding it. To avoid this pitfall, it is important (as Zee emphasizes) to fill in the steps of his arguments with hard calculation. One topic from which Zee does not restrain himself is the quantum theory of gravity. In the first hundred pages we find a `concise introduction to curved spacetime' that includes a very pretty derivation of the Christoffel symbol from the geodesic equation. Toward the end of the book, there is a set of chapters devoted to the quantization of the gravitational field. The structure of the graviton propagator is worked out carefully. The van Dam-Veltman discontinuity between massless and massive spin 2 exchange is explained clearly. But after this Zee runs out of steam in presenting fully worked arguments. Still, there is room for more prose on connections to the great mysteries of the subject: the ultraviolet behavior, the cosmological constant, and the unification of forces. A new chapter added to the second edition discusses `Is Einstein Gravity The Square Of Yang-Mills Theory?' and suggests an affirmative answer, based on brand-new developments in perturbative quantum field theory. Quantum field theory is a large subject that still has not reached its definitive form. As such, there is room for many textbooks of complementary character. Zee states frankly, `It is not the purpose of this book

  5. Enhanced gauge symmetry and winding modes in double field theory

    Energy Technology Data Exchange (ETDEWEB)

    Aldazabal, G. [Centro Atómico Bariloche,8400 S.C. de Bariloche (Argentina); Instituto Balseiro (CNEA-UNC) and CONICET,8400 S.C. de Bariloche (Argentina); Graña, M. [Institut de Physique Théorique, CEA/ Saclay,91191 Gif-sur-Yvette Cedex (France); Iguri, S. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Universidad de Buenos Aires,1428 Buenos Aires (Argentina); Mayo, M. [Centro Atómico Bariloche,8400 S.C. de Bariloche (Argentina); Instituto Balseiro (CNEA-UNC) and CONICET,8400 S.C. de Bariloche (Argentina); Nuñez, C. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Universidad de Buenos Aires,1428 Buenos Aires (Argentina); Departamento de Física, FCEN, Universidad de Buenos Aires,C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina); Rosabal, J.A. [Departamento de Física, FCEN, Universidad de Buenos Aires,C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina)

    2016-03-15

    We provide an explicit example of how the string winding modes can be incorporated in double field theory. Our guiding case is the closed bosonic string compactified on a circle of radius close to the self-dual point, where some modes with non-zero winding or discrete momentum number become massless and enhance the U(1)×U(1) symmetry to SU(2SU(2). We compute three-point string scattering amplitudes of massless and slightly massive states, and extract the corresponding effective low energy gauge field theory. The enhanced gauge symmetry at the self-dual point and the Higgs-like mechanism arising when changing the compactification radius are examined in detail. The extra massless fields associated to the enhancement are incorporated into a generalized frame with ((O(d+3,d+3))/(O(d+3)×O(d+3))) structure, where d is the number of non-compact dimensions. We devise a consistent double field theory action that reproduces the low energy string effective action with enhanced gauge symmetry. The construction requires a truly non-geometric frame which explicitly depends on both the compact coordinate along the circle and its dual.

  6. Heavy dark matter annihilation from effective field theory.

    Science.gov (United States)

    Ovanesyan, Grigory; Slatyer, Tracy R; Stewart, Iain W

    2015-05-29

    We formulate an effective field theory description for SU(2)_{L} triplet fermionic dark matter by combining nonrelativistic dark matter with gauge bosons in the soft-collinear effective theory. For a given dark matter mass, the annihilation cross section to line photons is obtained with 5% precision by simultaneously including Sommerfeld enhancement and the resummation of electroweak Sudakov logarithms at next-to-leading logarithmic order. Using these results, we present more accurate and precise predictions for the gamma-ray line signal from annihilation, updating both existing constraints and the reach of future experiments.

  7. Mean field theory and boson expansion at finite temperature on the basis of the thermo field dynamics

    Science.gov (United States)

    Hatsuda, Tetsuo

    1989-02-01

    Thermo field dynamics (TFD) is applied to the general hamiltonian with two-body interaction. The Hartree-Fock-Bogoliubov (HFB) equation and RPA at finite temperature are derived by the approximate diagonalization of the time translational operator of TFD. A boson expansion theory at finite temperature is developed by introducing duplicated boson spaces as the image of the boson mapping. These methods are applied to the two-level Lipkin model in which the basic group is shown to become O(5) at finite temperature in place of SU(2).

  8. Time-reversal-based SU(2) x Sn scalar invariants as (Lie Algebraic) group measures: a structured overview of generalised democratic-recoupled, uniform non-Abelian [AX]n NMR spin systems, as abstract [Formula: see text] chain networks.

    Science.gov (United States)

    Temme, F P

    2004-03-01

    The physics of dual group scalar invariants (SIs) as (Lie algebraic) group measures (L-GMs) and its significance to non-Abelian NMR spin systems motivates this overview of uniform general-2n [AX](2n) spin evolution, which represents an extensive addendum to Corio's earlier (essentially restricted) view of Abelian spin system SU(2)-based SI-cardinalities. The [Formula: see text] values in [J. Magn. Reson., 134 (1998) 131] arise from strictly linear recoupled time-reversal invariance (TRI) models. In contrast, here we discuss the physical significance of an alternative polyhedral combinatorics approach to democratic recoupling (DR), a property inherent in both the TRI and statistical sampling. Recognition of spin ensemble SIs as being L-GMs over isomorphic algebras is invaluable in many DR-based NMR problems. Various [AX]n model spin systems, including the [AX]3 bis odd-odd parity spin system, are examined as direct applications of these L-GM- and combinatorial-based SI ideas. Hence in place of /SI/=15 (implied by Corio's [Formula: see text] approach), the bis 3-fold spin system cardinality is seen now as constrained to a single invariant on an isomorphic product algebra under L-GMs, in accord with the subspectral analysis of Jones et al. [Canad. J. Chem., 43 (1965) 683]. The group projective ideas cited here for DR (as cf. to graph theoretic views) apply to highly degenerate non-Abelian problems. Over dual tensorial bases, they define models of spin dynamical evolution whose (SR) quasiparticle superboson carrier (sub)spaces are characterised by SIs acting as explicit auxiliary labels [Physica, A198 (1993) 245; J. Math. Chem., 31 (2002) 281]. A deeper [Formula: see text] network-based view of spin-alone space developed in Balasubramanian's work [J. Chem. Phys., 78 (1983) 6358] is especially important, (e.g.) in the study of spin waves [J. Math. Chem., 31 (2002) 363]. Beyond the specific NMR SIs derived here, there are DR applications where a sporadic, still higher, 2

  9. Electromagnetic superconductivity of vacuum induced by strong magnetic field: numerical evidence in lattice gauge theory

    CERN Document Server

    Braguta, V V; Chernodub, M N; Polikarpov, M I

    2011-01-01

    Using numerical simulations of SU(2) lattice gauge theory we demonstrate from first principles that an external magnetic field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged rho mesons if the strength of the magnetic field exceeds the critical value eB_c = 0.927(77) GeV^2 or B_c =(1.56 \\pm 0.13) 10^{16} Tesla. The condensation of the charged $\\rho$ mesons in strong magnetic field is a key feature of the recently proposed electromagnetic superconductivity of the vacuum.

  10. Visual field

    Science.gov (United States)

    Perimetry; Tangent screen exam; Automated perimetry exam; Goldmann visual field exam; Humphrey visual field exam ... Confrontation visual field exam. This is a quick and basic check of the visual field. The health care provider ...

  11. arXiv Global $SU(2)_L \\otimes$BRST symmetry and its LSS theorem: Ward-Takahashi identities governing Green's functions, on-shell T-Matrix elements, and $V_{eff}$, in the scalar-sector of certain spontaneously broken non-Abelian gauge theories

    CERN Document Server

    Güngör, Özenç; Starkman, Glenn D.; Stora, Raymond

    This work is dedicated to the memory of Raymond Stora (1930-2015). $SU(2)_L$ is the simplest spontaneous symmetry breaking (SSB) non-Abelian gauge theory: a complex scalar doublet $\\phi =\\frac{1}{\\sqrt{2}}\\begin{bmatrix}H+i\\pi_3 -\\pi_2 + i\\pi_1\\end{bmatrix}\\equiv \\frac{1}{\\sqrt{2}}\\tilde{H}e^{2i\\tilde{t}\\cdot\\tilde{\\vec{\\pi}}/}\\begin{bmatrix}1 0\\end{bmatrix}$ and a vector $\\vec{W}^\\mu$. In Landau gauge, $\\vec{W}^\\mu$ is transverse, $\\vec{\\tilde{\\pi}}$ are massless derivatively coupled Nambu-Goldstone bosons (NGB). A global shift symmetry enforces $m^{2}_{\\tilde{\\pi}}=0$. We observe that on-shell T-matrix elements of physical states ${\\vec W}^\\mu$,$\\phi$ are independent of global $SU(2)_{L}$ transformations, and that the associated global current is exactly conserved for amplitudes of physical states. We identify two towers of "1-soft-pion" global Ward-Takahashi Identities (WTI), which govern the $\\phi$-sector, and represent a new global symmetry which we call $SU(2)_L\\otimes$BRST, a symmetry not of the Lagran...

  12. Towards the Two-Loop Lcc Vertex in Landau Gauge

    Science.gov (United States)

    Cvetič, Gorazd; Kondrashuk, Igor; Kotikov, Anatoly; Schmidt, Ivan

    We are interested in the structure of the Lcc vertex in the Yang-Mills theory, where c is the ghost field and L the corresponding BRST auxiliary field. This vertex can give us information on other vertices, and the possible conformal structure of the theory should be reflected in the structure of this vertex. There are five two-loop contributions to the Lcc vertex in the Yang-Mills theory. We present here calculation of the first of the five contributions. The calculation has been performed in the position space. One main feature of the result is that it does not depend on any scale, ultraviolet or infrared. The result is expressed in terms of logarithms and Davydychev integral J(1, 1, 1) that are functions of the ratios of the intervals between points of effective fields in the position space. To perform the calculation we apply Gegenbauer polynomial technique and uniqueness method.

  13. Phase Field

    Science.gov (United States)

    Koyama, Toshiyuki

    The term phase field has recently become known across many fields of materials science. The meaning of phase field is the spatial and temporal order parameter field defined in a continuum-diffused interface model. By using the phase field order parameters, many types of complex microstructure changes observed in materials science are described effectively. This methodology has been referred to as the phase field method, phase field simulation, phase field modeling, phase field approach, etc. In this chapter, the basic concept and theoretical background for the phase field approach is explained in Sects. 21.1 and 21.2. The overview of recent applications of the phase field method is demonstrated in Sects. 21.3 to 21.6.

  14. Minimal Super Technicolor

    DEFF Research Database (Denmark)

    Antola, M.; Di Chiara, S.; Sannino, F.

    2011-01-01

    We introduce novel extensions of the Standard Model featuring a supersymmetric technicolor sector (supertechnicolor). As the first minimal conformal supertechnicolor model we consider N=4 Super Yang-Mills which breaks to N=1 via the electroweak interactions. This is a well defined, economical......, between unparticle physics and Minimal Walking Technicolor. We consider also other N =1 extensions of the Minimal Walking Technicolor model. The new models allow all the standard model matter fields to acquire a mass....

  15. A Gauge Invariant Regulator for the ERG

    Science.gov (United States)

    Arnone, S.; Kubyshin, Yu. A.; Morris, T. R.; Tighe, J. F.

    A gauge invariant regularisation for dealing with pure Yang-Mills theories within the exact renormalization group approach is proposed. It is based on the regularisation via covariant higher derivatives and includes auxiliary Pauli-Villars fields which amounts to a spontaneously broken SU(N|N) super-gauge theory. We demonstrate perturbatively that the extended theory is ultra-violet finite in four dimensions and argue that it has a sensible limit when the regularization cutoff is removed.

  16. GENERAL RELATIVITY AND DYNAMICAL MODEL OF ELECTROMAGNETIC DRIVE

    OpenAIRE

    Trunev A. P.

    2016-01-01

    The article discusses the dynamic model of the rocket motor electromagnetic type, consisting of a source of electromagnetic waves of radio frequency band and a conical cavity in which electromagnetic waves are excited. The processes of excitation of electromagnetic oscillations in a cavity with conducting walls, as well as the waves of the YangMills field are investigated. The multi-dimensional transient numerical model describing the processes of electromagnetic oscillations in a cavity with...

  17. Large-Spin Expansions of Giant Magnons

    OpenAIRE

    Linardopoulos, Georgios

    2015-01-01

    This is a talk delivered at the Workshop on Quantum Fields and Strings of the 2014 Corfu Summer Institute. We discuss how giant magnons emerge in the context of the AdS5/CFT4 correspondence as the gravity duals of N = 4 super Yang-Mills magnon excitations. Then we present a new analytic expression for the dispersion relation of classical finite-size giant magnons with Lambert's W-function.

  18. How Unstable Are Fundamental Quantum Supermembranes?

    OpenAIRE

    Kaku, Michio

    1996-01-01

    String duality requires the presence of solitonic $p$-branes. By contrast, the existence of fundamental supermembranes is problematic, since they are probably unstable. In this paper, we re-examine the quantum stability of fundamental supermembranes in 11 dimensions. Previously, supermembranes were shown to be unstable by approximating them with SU(n) super Yang-Mills fields as $n \\rightarrow \\infty$. We show that this instability persists even if we quantize the continuum theory from the ver...

  19. Gauge theory: form Physics to Geometry

    OpenAIRE

    Bruzzo, Ugo

    2010-01-01

    Maxwell theory may be regarded as a prototype of gauge theory and generalized to nonabelian gauge theory. We briefly sketch the history of gauge theories, from Maxwell to Yang-Mills theory, and the identification of gauge fields with connections on fibre bundles. We introduce the notion of instanton and consider the moduli spaces of such objects. Finally, we discuss some modern techniques for studying the topology of these moduli spaces.

  20. Induced QCD I: theory

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Bastian B. [Institute for Theoretical Physics, Goethe-University of Frankfurt,60438 Frankfurt (Germany); Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany); Lohmayer, Robert; Wettig, Tilo [Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany)

    2016-11-14

    We explore an alternative discretization of continuum SU(N{sub c}) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N{sub b} auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N{sub b} can be as small as N{sub c}. In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U(N{sub c}) to SU(N{sub c}), (ii) derive refined bounds on N{sub b} for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.

  1. Orbifolds, fuzzy spheres and chiral fermions

    CERN Document Server

    Chatzistavrakidis, Athanasios; Zoupanos, George

    2010-01-01

    Starting with a N=4 supersymmetric Yang-Mills theory in four dimensions with gauge group SU(3N) we perform an orbifold projection leading to a N=1 supersymmetric SU(N)^3 Yang-Mills theory with matter supermultiplets in bifundamental representations of the gauge group, which is chiral and anomaly free. Subsequently, we search for vacua of the projected theory which can be interpreted as spontaneously generated twisted fuzzy spheres. We show that by adding the appropriate soft supersymmetry breaking terms we can indeed reveal such vacua. Three cases are studied, where the gauge group is spontaneously broken further to the low-energy gauge groups SU(4)xSU(2)xSU(2), SU(4)^3 and SU(3)^3. Such models behave in intermediate scales as higher-dimensional theories with a finite Kaluza-Klein tower, while their low-energy physics is governed by the corresponding zero-modes and exhibit chirality in the fermionic sector. The most interesting case from the phenomenological point of view turns out to be the SU(3)^3 unified t...

  2. Dimensional deconstruction and Wess-Zumino-Witten terms

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T.; /Fermilab; Zachos, Cosmas K.; /Argonne

    2004-11-01

    A new technique is developed for the derivation of the Wess-Zumino-Witten terms of gauged chiral lagrangians. We start in D = 5 with a pure (mesonless) Yang-Mills theory, which includes relevant gauge field Chern-Simons terms. The theory is then compactified, and the effective D = 4 lagrangian is derived using lattice techniques, or ''deconstruction'', where pseudoscalar mesons arise from the lattice Wilson links. This yields the WZW term with the correct Witten coefficient by way of a simple heuristic argument. We discover a novel WZW term for singlet currents, that yields the full Goldstone-Wilczek current, and a U(1) axial current for the skyrmion, with the appropriate anomaly structures. A more detailed analysis is presented of the dimensional compactification of Yang-Mills in D = 5 into a gauged chiral lagrangian in D = 4, heeding the consistency of the D = 4 and D = 5 Bianchi identities. These dictate a novel covariant derivative structure in the D = 4 gauge theory, yielding a field strength modified by the addition of commutators of chiral currents. The Chern-Simons term of the pure D = 5 Yang-Mills theory then devolves into the correct form of the Wess-Zumino-Witten term with an index (the analogue of N{sub colors} = 3) of N = D = 5. The theory also has a Skyrme term with a fixed coefficient.

  3. Formulation of the low-energy effective theory of electroweak symmetry-breaking without a Higgs particle; Formulation de la theorie effective a basse energie du secteur electrofaible sans particule de Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Hirn, J

    2004-07-01

    The low-energy effective theory of electroweak symmetry-breaking without a Higgs particle is constructed using the methods of Chiral Perturbation Theory. Weinberg's power-counting formula demonstrates the consistency of the loop expansion, with the corresponding renormalization. We find that the suppression of effective operators by a mass scale, which was automatic in the case of the Standard Model, no longer holds in the Higgs-less case. Moreover, the incriminated operators appear at leading order in the chiral expansion, at variance with experiments. To account for their suppression, invariance under a larger symmetry is required, corresponding to the composite sector (which produces the three Goldstone modes) being decoupled from the elementary sector (quarks, leptons and Yang-Mills fields). The couplings are introduced via spurions: this reduces the symmetry to SU(2) x U(1). In the simultaneous expansion in powers of momenta and spurions, the aforementioned operators are relegated to higher orders. In addition, the method allows for a systematic treatment of weak isospin breaking. The Weinberg power-counting formula can be recovered, and small neutrino masses accounted for. The three right-handed neutrinos (lighter than the TeV), which are introduced in connection with the custodial symmetry, are quasi-sterile and stable. A constraint on the underlying theory is obtained by studying the anomaly-matching in the composite sector and generalizing the Wess-Zumino construction. The spurion formalism is also applied to open linear moose models, for which generalized Weinberg sum rules are derived. (author)

  4. Symmetries and groups in particle physics; Symmetrien und Gruppen in der Teilchenphysik

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Stefan [Mainz Univ. (Germany)

    2016-07-01

    The aim of this book consists of a didactic introduction to the group-theoretical considerations and methods, which have led to an ever deeper understanding of the interactions of the elementary particles. The first three chapters deal primarily with the foundations of the representation theory of primarily finite groups, whereby many results are also transferable to compact Lie groups. In the third chapter we discuss the concept of Lie groups and their connection with Lie algebras. In the remaining chapter it is mainly about the application of group theory in physics. Chapter 4 deals with the groups SO(3) and SU(2), which occur in connection with the description of the angular momentum in quantum mechanics. We discuss the Wigner-Eckar theorem together with some applications. In chapter 5 we are employed to the composition properties of strongly interacting systems, so called hadrons, and discuss extensively the transformation properties of quarks with relation to the special unitary groups. The Noether theorem is generally treated in connection to the conservation laws belonging to the Galilei group and the Poincare group. We confine us in chapter 6 to internal symmetries, but explain for that extensively the application to quantum field theory. Especially an outlook on the effect of symmetries in form of so called Ward identities is granted. In chapter 7 we turn towards the gauge principle and discuss first the construction of quantum electrodynamics. In the following we generalize the gauge principle to non-Abelian groups (Yang-Mills theories) and formulate the quantum chromodynamics (QCD). Especially we take a view of ''random'' global symmetries of QCD, especially the chiral symmetry. In chapter 8 we illuminate the phenomenon of spontaneous symmetry breaking both for global and for local symmetries. In the final chapter we work out the group-theoretical structure of the Standard Model. Finally by means of the group SU(5) we take a view to

  5. Non-Abelian, supersymmetric black holes and strings in 5 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Meessen, Patrick [HEP Theory Group, Departamento de Física, Universidad de Oviedo,Avda. Calvo Sotelo s/n, E-33007 Oviedo (Spain); Ortín, Tomás; Ramírez, Pedro F. [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera, 13-15, C.University Cantoblanco, E-28049 Madrid (Spain)

    2016-03-16

    We construct and study the first supersymmetric black-hole and black-string solutions of non-Abelian-gauged N=1,d=5 supergravity (N=1,d=5 Super-Einstein-Yang-Mills theory) with non-trivial SU(2) gauge fields: BPST instantons for black holes and BPS monopoles of different kinds (’t Hooft-Polyakov, Wu-Yang and Protogenov) for black strings and also for certain black holes that are well defined solutions only for very specific values of all the moduli. Instantons, as well as colored monopoles do not contribute to the masses and tensions but do contribute to the entropies. The construction is based on the characterization of the supersymmetric solutions of gauged N=1,d=5 supergravity coupled to vector multiplets achieved in ref. http://dx.doi.org/10.1088/1126-6708/2007/08/096 which we elaborate upon by finding the rules to construct supersymmetric solutions with one additional isometry, both for the timelike and null classes. These rules automatically connect the timelike and null non-Abelian supersymmetric solutions of N=1,d=5 SEYM theory with the timelike ones of N=2,d=4 SEYM theory http://dx.doi.org/10.1103/PhysRevD.78.065031; http://dx.doi.org/10.1088/1126-6708/2008/09/099 by dimensional reduction and oxidation. In the timelike-to-timelike case the singular Kronheimer reduction recently studied in ref. http://dx.doi.org/10.1016/j.physletb.2015.04.065 plays a crucial role.

  6. Two-colour QCD at finite fundamental quark-number density and related theories

    Energy Technology Data Exchange (ETDEWEB)

    Hands, S. J.; Kogut, J. B.; Morrison, S. E.; Sinclair, D. K.

    2000-11-15

    We are simulating SU(2) Yang-Mills theory with four flavours of dynamical quarks in the fundamental representation of SU(2) colour at finite chemical potential, p for quark number, as a model for QCD at finite baryon number density. In particular we observe that for p large enough this theory undergoes a phase transition to a state with a diquark condensate which breaks quark-number symmetry. In this phase we examine the spectrum of light scalar and pseudoscalar bosons and see evidence for the Goldstone boson associated with this spontaneous symmetry breaking. This theory is closely related to QCD at finite chemical potential for isospin, a theory which we are now studying for SU(3) colour.

  7. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced......he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  8. Soft-collinear supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Elor, Gilly [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Larkoski, Andrew J. [Physics Department, Reed College,Portland, OR 97202 (United States); Center for Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)

    2017-03-03

    Soft-Collinear Effective Theory (SCET) is a framework for modeling the infrared structure of theories whose long distance behavior is dominated by soft and collinear divergences. This paper demonstrates that SCET can be made compatible with supersymmetry (SUSY). Explicitly, the effective Lagrangian for N=1 SUSY Yang-Mills is constructed and shown to be a complete description for the infrared of this model. For contrast, we also construct the effective Lagrangian for chiral SUSY theories with Yukawa couplings, specifically the single flavor Wess-Zumino model. Only a subset of the infrared divergences are reproduced by the Lagrangian — to account for the complete low energy description requires the inclusion of local operators. SCET is formulated by expanding fields along a light-like direction and then subsequently integrating out degrees-of-freedom that are away from the light-cone. Defining the theory with respect to a specific frame obfuscates Lorentz invariance — given that SUSY is a space-time symmetry, this presents a possible obstruction. The cleanest language with which to expose the congruence between SUSY and SCET requires exploring two novel formalisms: collinear fermions as two-component Weyl spinors, and SCET in light-cone gauge. By expressing SUSY Yang-Mills in “collinear superspace', a slice of superspace derived by integrating out half the fermionic coordinates, the light-cone gauge SUSY SCET theory can be written in terms of superfields. As a byproduct, bootstrapping up to the full theory yields the first algorithmic approach for determining the SUSY Yang-Mills on-shell superspace action. This work paves the way toward discovering the effective theory for the collinear limit of N=4 SUSY Yang-Mills.

  9. Soft-collinear supersymmetry

    Science.gov (United States)

    Cohen, Timothy; Elor, Gilly; Larkoski, Andrew J.

    2017-03-01

    Soft-Collinear Effective Theory (SCET) is a framework for modeling the infrared structure of theories whose long distance behavior is dominated by soft and collinear divergences. This paper demonstrates that SCET can be made compatible with super-symmetry (SUSY). Explicitly, the effective Lagrangian for N=1 SUSY Yang-Mills is cconstructed and shown to be a complete description for the infrared of this model. For contrast, we also construct the effective Lagrangian for chiral SUSY theories with Yukawa couplings, specifically the single flavor Wess-Zumino model. Only a subset of the infrared divergences are reproduced by the Lagrangian — to account for the complete low energy description requires the inclusion of local operators. SCET is formulated by expanding fields along a light-like direction and then subsequently integrating out degrees-of-freedom that are away from the light-cone. Defining the theory with respect to a specific frame obfuscates Lorentz invariance — given that SUSY is a space-time symmetry, this presents a possible obstruction. The cleanest language with which to expose the congruence be-tween SUSY and SCET requires exploring two novel formalisms: collinear fermions as two-component Weyl spinors, and SCET in light-cone gauge. By expressing SUSY Yang-Mills in "collinear superspace", a slice of superspace derived by integrating out half the fermionic coordinates, the light-cone gauge SUSY SCET theory can be written in terms of superfields. As a byproduct, bootstrapping up to the full theory yields the first algorithmic approach for determining the SUSY Yang-Mills on-shell superspace action. This work paves the way toward discovering the effective theory for the collinear limit of N=4 SUSY Yang-Mills.

  10. Gauge fields

    CERN Document Server

    Itzykson, C

    1978-01-01

    Some background on the theory of gauge fields, a subject of increasing popularity among particle physicists, is provided. The aim will be to stress those aspects which suggest that gauge fields may play some role in a future theory of strong interactions. (8 refs).

  11. Field Report

    DEFF Research Database (Denmark)

    Gorm Hansen, Louise Lyngfeldt

    2012-01-01

    This field report expresses perfectly the kind of confusion almost all of us experience when entering the field. How do we know whether what we’re doing is “right” or not? What in particular should we record when we don’t have time to write down everything among all the myriad impressions thrusting...

  12. Field Notes

    Data.gov (United States)

    US Agency for International Development — This is a mobile application for capturing images , data, and geolocation for USAID projects in the field. The data is then stored on a server in AllNet. The...

  13. Tachyonic field interacting with scalar (phantom) field

    OpenAIRE

    Chattopadhyay, Surajit; Debnath, Ujjal

    2009-01-01

    In this letter, we have considered the universe is filled with the mixture of tachyonic field and scalar or phantom field. If the tachyonic field interacts with scalar or phantom field, the interaction term decays with time and the energy for scalar field is transferred to tachyonic field or the energy for phantom field is transferred to tachyonic field. The tachyonic field and scalar field potentials always decrease, but phantom field potential always increases.

  14. Aspects of AdS, CFT. Black solutions in gauged supergravity and holographic conductivities

    Energy Technology Data Exchange (ETDEWEB)

    Barisch-Dick, Susanne

    2013-04-26

    We have met some interesting results within the wide subject of the AdS/CFT correspondence. We have seen how to apply AdS/CFT techniques to calculate the frequency dependent conductivity tensor for field theories dual to a black hole in Einstein-Yang-Mills theory with SU(2) gauge group. Further, we have constructed several new black solutions in N=2 U(1) gauged supergravity in four and five dimensions. The larger part of these solutions behave asymptotically like AdS which makes them interesting within the AdS/CFT context. In addition we found extremal black branes with zero entropy density - the Nernst branes. Nonetheless we are left with some yet unsolved problems. It is very interesting to see what causes the negative entropy production rate we found in chapter 4 for the normal state of the field theory. The next task is to see whether we can find an instability on the gravity side looking at the full Einstein-Yang-Mills equations. Also our work on supergravity solutions in four and five dimension exhibits some ''loose ends''. Since all our four-dimensional Nernst solutions were axion-free it would be nice to find one with axions excited. Moreover, it would be interesting to see whether the singular solutions with flowing γ could be cured by taking into account higher derivative corrections or whether there exist non-singular solutions with non-constant γ. In five dimensions we met problems when adding electric charge. At present we could not find a dyonic solution and we had the impression that having electric charges and having magnetic fields seemed to be somehow complementary to each other. We saw these difficulties even at the beginning when we performed the first-order rewriting since the first-order rewriting in chapter 6 leads to flow equations for the scalars X{sup A} which only contain magnetic fields and fluxes but no electric charges. The latter only influence the equations of motion for the X{sup A} in an indirect way. However

  15. Topological fields

    CERN Document Server

    Warner, S

    1989-01-01

    Aimed at those acquainted with basic point-set topology and algebra, this text goes up to the frontiers of current research in topological fields (more precisely, topological rings that algebraically are fields).The reader is given enough background to tackle the current literature without undue additional preparation. Many results not in the text (and many illustrations by example of theorems in the text) are included among the exercises. Sufficient hints for the solution of the exercises are offered so that solving them does not become a major research effort for the reader. A comprehensive bibliography completes the volume.

  16. Field theory

    CERN Document Server

    Roman, Steven

    2006-01-01

    Intended for graduate courses or for independent study, this book presents the basic theory of fields. The first part begins with a discussion of polynomials over a ring, the division algorithm, irreducibility, field extensions, and embeddings. The second part is devoted to Galois theory. The third part of the book treats the theory of binomials. The book concludes with a chapter on families of binomials - the Kummer theory. This new edition has been completely rewritten in order to improve the pedagogy and to make the text more accessible to graduate students.  The exercises have also been im

  17. Field Note

    African Journals Online (AJOL)

    Field Note. First Observation of the Slow Dragonet Callionymus aagilis Fricke,. 1999 in Its Natural Environment. M. Pinault1,2, A. Daydé3, R. Fricke4. 1USR 3278 CNRS-EPHE, CRIOBE & CBETM, University of Perpignan. 66860 Perpignan, France; 2Laboratory of Marine Ecology (ECOMAR), University of Reunion Island, ...

  18. Field Notes

    Science.gov (United States)

    Parrone, Edward G.; Montalto, Michael P.

    2008-01-01

    The importance of athletic fields has increased in today's society because of the popularity of sporting events. As a result, education administrators face challenges when dealing with their athletic facilities. Decisionmakers constantly are being second-guessed in regard to outdated, overused facilities and lack of budget. In this article, the…

  19. Field theory

    CERN Multimedia

    1999-11-08

    In these lectures I will build up the concept of field theory using the language of Feynman diagrams. As a starting point, field theory in zero spacetime dimensions is used as a vehicle to develop all the necessary techniques: path integral, Feynman diagrams, Schwinger-Dyson equations, asymptotic series, effective action, renormalization etc. The theory is then extended to more dimensions, with emphasis on the combinatorial aspects of the diagrams rather than their particular mathematical structure. The concept of unitarity is used to, finally, arrive at the various Feynman rules in an actual, four-dimensional theory. The concept of gauge-invariance is developed, and the structure of a non-abelian gauge theory is discussed, again on the level of Feynman diagrams and Feynman rules.

  20. Field Centipedes

    OpenAIRE

    Ignacio Palacios-Huerta; Oscar Volij

    2009-01-01

    In the centipede game, all standard equilibrium concepts dictate that the player who decides first must stop the game immediately. There is vast experimental evidence, however, that this rarely occurs. We first conduct a field experiment in which highly ranked chess players play this game. Contrary to previous evidence, our results show that69 percent of chess players stop immediately. When we restrict attention to Grandmasters, this percentage escalates to 100 percent. We then conduct a labo...

  1. Thermodynamic limit and boundary energy of the SU(3) spin chain with non-diagonal boundary fields

    OpenAIRE

    Wen, Fakai; Yang, Tao; Yang, Zhanying; Cao, Junpeng; Hao, Kun; Yang, Wen-Li

    2016-01-01

    We investigate the thermodynamic limit of the su(n) -invariant spin chain models with unparallel boundary fields. It is found that the contribution of the inhomogeneous term in the associated T – Q relation to the ground state energy does vanish in the thermodynamic limit. This fact allows us to calculate the boundary energy of the system. Taking the su(2) (or the XXX) spin chain and the su(3) spin chain as concrete examples, we have studied the corresponding boundary energies of the models. ...

  2. Gauge fields and gauge symmetry at high temperature: Possibility of a vacuum expectation value of O ( g sup 2 T )

    Energy Technology Data Exchange (ETDEWEB)

    Sawayanagi, H. (Kushiro National College of Technology, Kushiro, 084 (Japan))

    1992-05-15

    SU(2) gauge theory without fermions is studied at high temperature. The possibility that the temporal component of the gauge field {ital A}{sub 4} acquires a vacuum expectation value is considered. It is shown that in order to avoid tachyonic poles in a new vacuum, the magnitude of the vacuum expectation value {l angle}{ital gA}{sub 4}{r angle} is of order {ital g}{sup 2}{ital T}. We also consider an effective potential under the assumption that the effect of magneto- static gluons converges. We show that it is difficult to generate a vacuum expectation value of that order.

  3. Free field realization of superstring theory on AdS3

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, Diego M. E-mail: dmhof@yahoo.com.ar; Nunez, Carmen A

    2004-07-01

    The Coulomb gas representation of expectation values in SU(2) conformal field theory developed by Dotsenko is extended to the SL(2,R) WZW model and applied to bosonic string theory on AdS3 and to Type II superstrings on AdS3 x N. The spectral flow symmetry is included in the free field realization of vertex operators creating superstring states of both Ramond and Neveu-Schwarz sectors. Conjugate representations for these operators are constructed and a background charge prescription is designed to compute correlation functions. Two and three point functions of bosonic and fermionic string states in arbitrary winding sectors are calculated. Scattering amplitudes that violate winding number conservation are also discussed. (author)

  4. Free-field realisations of the BMS{sub 3} algebra and its extensions

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Nabamita [Indian Institute of Science Education and Research,Homi Bhabha Rd, Pashan, Pune 411 008 (India); Jatkar, Dileep P. [Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad 211019 (India); Mukhi, Sunil; Neogi, Turmoli [Indian Institute of Science Education and Research,Homi Bhabha Rd, Pashan, Pune 411 008 (India)

    2016-06-06

    We construct an explicit realisation of the BMS{sub 3} algebra with nonzero central charges using holomorphic free fields. This can be extended by the addition of chiral matter to a realisation having arbitrary values for the two independent central charges. Via the introduction of additional free fields, we extend our construction to the minimally supersymmetric BMS{sub 3} algebra and to the nonlinear higher-spin BMS{sub 3}-W{sub 3} algebra. We also describe an extended system that realises both the SU(2) current algebra as well as BMS{sub 3} via the Wakimoto representation, though in this case introducing a central extension also brings in new non-central operators.

  5. Non-Abelian gauge field localization on walls and geometric Higgs mechanism

    Science.gov (United States)

    Arai, Masato; Blaschke, Filip; Eto, Minoru; Sakai, Norisuke

    2017-05-01

    Combining the semiclassical localization mechanism for gauge fields with N domain wall background in a simple SU(N) gauge theory in 5 space-time dimensions, we investigate the geometric Higgs mechanism, where a spontaneous breakdown of the gauge symmetry comes from splitting of domain walls. The mass spectra are investigated in detail for the phenomenologically interesting case SU(5) \\to SU(3)× SU(2)× U(1), which is realized on a split configuration of coincident triplet and doublet of domain walls. We derive a low-energy effective theory in a generic background using the moduli approximation, where all nonlinear interactions between effective fields are captured up to 2 derivatives. We observe novel similarities between domain walls in our model and D-branes in superstring theories.

  6. Constituent quark-light vector mesons effective couplings in a weak background magnetic field

    Science.gov (United States)

    Braghin, Fábio L.

    2018-01-01

    Effective couplings between light SU(2) vector and axial mesons and constituent quarks are calculated in the presence of a background electromagnetic field by considering a one dressed gluon exchange quark-quark interaction. The effective coupling constants, obtained from a large quark mass expansion, are expressed in terms of the Lagrangian parameters of the initial model and of components of the quark and nonperturbative gluon propagators. In spite of many possible couplings, only a few coupling constants emerge. As a second step, constituent quark-vector and axial mesons effective coupling constants are redefined to show explicit dependence on a weak background magnetic field. Ratios between the effective coupling constants are found in the limit of large quark effective mass and numerical estimates are presented.

  7. Coset space compactification of the field theory limit of a heterotic string

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.; Helayel-Neto, J.A.

    1986-07-01

    The D = 10 - E/sub 8/xE/sub 8/ field theory limit of the heterotic string is compactified on the non-symmetric coset space Sp(4)/SU(2) xU(1) that is known in the limit of decoupled gravity to give three standard fermion generations, with SU(5)xSU(3)sub(F)xU(1)sub(F) as a gauge group in D = 4. Allowing for non-vanishing fermion bilinear condensates, and assuming the conventional form of the supersymmetry transformations, the presence of a family of N = 1 supersymmetric background field configurations is proved. This requires the non-compact space to be flat: (Minkowski)/sup 4/, while the 3-form Hsub(MNP) is non-vanishing and proportional to the torsion on the internal manifold. All equations of motion, including that of the dilation, are satisfied.

  8. Wilson lines in the MHV action

    Science.gov (United States)

    Kotko, P.; Stasto, A. M.

    2017-09-01

    The MHV action is the Yang-Mills action quantized on the light-front, where the two explicit physical gluonic degrees of freedom have been canonically transformed to a new set of fields. This transformation leads to the action with vertices being off-shell continuations of the MHV amplitudes. We show that the solution to the field transformation expressing one of the new fields in terms of the Yang-Mills field is a certain type of the Wilson line. More precisely, it is a straight infinite gauge link with a slope extending to the light-cone minus and the transverse direction. One of the consequences of that fact is that certain MHV vertices reduced partially on-shell are gauge invariant — a fact discovered before using conventional light-front perturbation theory. We also analyze the diagrammatic content of the field transformations leading to the MHV action. We found that the diagrams for the solution to the transformation (given by the Wilson line) and its inverse differ only by light-front energy denominators. Further, we investigate the coordinate space version of the inverse solution to the one given by the Wilson line. We find an explicit expression given by a power series in fields. We also give a geometric interpretation to it by means of a specially defined vector field. Finally, we discuss the fact that the Wilson line solution to the transformation is directly related to the all-like helicity gluon wave function, while the inverse functional is a generating functional for solutions of self-dual Yang-Mills equations.

  9. Applications of gauge/gravity dualities with charged Anti-de Sitter black holes

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Viviane Theresa

    2010-05-17

    extremal black holes in string theory. The second system to explore here is a conformal fluid propagating on a three-sphere. Due to the finite volume of the three-sphere the total energy again contains a subextensive Casimir contribution. We investigate possible corrections to the famous ratio of shear viscosity to entropy density {eta}/s={Dirac_h}(4{pi}k{sub B}) in case of fluids on a three-sphere. For this purpose, we construct different deformed black hole solutions on the basis of the AdS-STU black holes of N=2 gauged supergravity. These new black hole solutions are dual to different fluids with a specified fluid flow. Then, we compute the corresponding fluid energy-momentum tensors. It turns out that the shear viscosity receives a positive correction at third order in the derivative expansion of the energy-momentum tensor which is proportional to the curvature of the three-sphere. The third system, which we investigate, is a p-wave superfluid. For this purpose, we numerically construct the dual non-Abelian AdS black hole solution with a at horizon in SU(2) Einstein-Yang-Mills theory, taking the full back-reaction of the gauge fields on the geometry into account. For sufficiently low temperature, this black hole solution develops vector hair which in the dual field theory corresponds to a phase transition to a superfluid state with spontaneously broken rotational symmetry. The bulk theory has a single free parameter, the ratio of the five-dimensional gravitational constant to the Yang-Mills coupling constant, which we denote as {alpha}. We find that for values of {alpha} above a critical value {alpha}{sub c}=0.365{+-}0.001, the transition changes from second to first order. (orig.)

  10. Low-energy effective field theory of superfluid 3He-B and its gyromagnetic and Hall responses

    CERN Document Server

    Fujii, Keisuke

    2016-01-01

    The low-energy physics of a superfluid 3He-B is governed by Nambu-Goldstone bosons resulting from its characteristic symmetry breaking pattern. Here we construct an effective field theory at zero temperature consistent with all available symmetries in curved space, which are the U(1) phase x SU(2) spin x SO(3) orbital gauge invariance and the nonrelativistic general coordinate invariance, up to the next-to-leading order in a derivative expansion. The obtained low-energy effective field theory is capable of predicting gyromagnetic responses of the superfluid 3He-B, such as a magnetization generated by a rotation and an orbital angular momentum generated by a magnetic field, in a model-independent and nonperturbative way. We furthermore show that the stress tensor exhibits a dissipationless Hall viscosity with coefficients uniquely fixed by the orbital angular momentum density, which manifests itself as an elliptical polarization of sound wave with an induced transverse component.

  11. Higher spins and holography

    Science.gov (United States)

    Kraus, Per; Ross, Simon F.

    2013-05-01

    The principles of quantum mechanics and relativity impose rigid constraints on theories of massless particles with nonzero spin. Indeed, Yang-Mills theory and General Relativity are the unique solution in the case of spin-1 and spin-2. In asymptotically flat spacetime, there are fundamental obstacles to formulating fully consistent interacting theories of particles of spin greater than 2. However, indications are that such theories are just barely possible in asymptotically anti-de Sitter or de Sitter spacetimes, where the non-existence of an S-matrix provides an escape from the theorems restricting theories in Minkowski spacetime. These higher spin gravity theories are therefore of great intrinsic interest, since they, along with supergravity, provide the only known field theories generalizing the local invariance principles of Yang-Mills theory and General Relativity. While work on higher spin gravity goes back several decades, the subject has gained broader appeal in recent years due to its appearance in the AdS/CFT correspondence. In three and four spacetime dimensions, there exist duality proposals linking higher spin gravity theories to specific conformal field theories living in two and three dimensions respectively. The enlarged symmetry algebra of the conformal field theories renders them exactly soluble, which makes them excellent laboratories for understanding in detail the holographic mechanism behind AdS/CFT duality. Steady progress is also being made on better understanding the space of possible higher spin gravity theories and their physical content. This work includes classifying the possible field multiplets and their interactions, constructing exact solutions of the nonlinear field equations, and relating higher spin theories to string theory. A full understanding of these theories will involve coming to grips with the novel symmetry principles that enlarge those of General Relativity and Yang-Mills theory, and one can hope that this will provide

  12. SU(3)-Equivariant Quiver Gauge Theories and Nonabelian Vortices

    CERN Document Server

    Lechtenfeld, Olaf; Szabo, Richard J

    2008-01-01

    We consider SU(3)-equivariant dimensional reduction of Yang-Mills theory on Kaehler manifolds of the form M x SU(3)/H, with H = SU(2) x U(1) or H = U(1) x U(1). The induced rank two quiver gauge theories on M are worked out in detail for representations of H which descend from a generic irreducible SU(3)-representation. The reduction of the Donaldson-Uhlenbeck-Yau equations on these spaces induces nonabelian quiver vortex equations on M, which we write down explicitly. When M is a noncommutative deformation of the space C^d, we construct explicit BPS and non-BPS solutions of finite energy for all cases. We compute their topological charges in three different ways and propose a novel interpretation of the configurations as states of D-branes. Our methods and results generalize from SU(3) to any compact Lie group.

  13. Donaldson-Witten theory and indefinite theta functions

    Science.gov (United States)

    Korpas, Georgios; Manschot, Jan

    2017-11-01

    We consider partition functions with insertions of surface operators of topologically twisted N=2 , SU(2) supersymmetric Yang-Mills theory, or Donaldson-Witten theory for short, on a four-manifold. If the metric of the compact four-manifold has positive scalar curvature, Moore and Witten have shown that the partition function is completely determined by the integral over the Coulomb branch parameter a, while more generally the Coulomb branch integral captures the wall-crossing behavior of both Donaldson polynomials and Seiberg-Witten invariants. We show that after addition of a \\overlineQ -exact surface operator to the Moore-Witten integrand, the integrand can be written as a total derivative to the anti-holomorphic coordinate ā using Zwegers' indefinite theta functions. In this way, we reproduce Göttsche's expressions for Donaldson invariants of rational surfaces in terms of indefinite theta functions for any choice of metric.

  14. Bianchi-IX, Darboux-Halphen and Chazy-Ramanujan

    Science.gov (United States)

    Chanda, Sumanto; Guha, Partha; Roychowdhury, Raju

    2016-02-01

    Bianchi-IX four metrics are SU(2) invariant solutions of vacuum Einstein equation, for which the connection-wise self-dual case describes the Euler top, while the curvature-wise self-dual case yields the Ricci flat classical Darboux-Halphen system. It is possible to see such a solution exhibiting Ricci flow. The classical Darboux-Halphen system is a special case of the generalized one that arises from a reduction of the self-dual Yang-Mills equation and the solutions to the related homogeneous quadratic differential equations provide the desired metric. A few integrable and near-integrable dynamical systems related to the Darboux-Halphen system and occurring in the study of Bianchi-IX gravitational instanton have been listed as well. We explore in details whether self-duality implies integrability.

  15. Three-point functions in N=4 SYM: the hexagon proposal at three loops

    Energy Technology Data Exchange (ETDEWEB)

    Eden, Burkhard [Institut für Mathematik & Institut für Physik, Humboldt-Universität zu Berlin,Zum großen Windkanal 6, D-12489 Berlin (Germany); Sfondrini, Alessandro [Institut für Theoretische Physik, ETH Zürich,Wolfgang-Pauli-Str. 27, CH-8093 Zürich (Switzerland)

    2016-02-24

    Basso, Komatsu and Vieira recently proposed an all-loop framework for the computation of three-point functions of single-trace operators of N=4 super-Yang-Mills, the “hexagon program”. This proposal results in several remarkable predictions, including the three-point function of two protected operators with an unprotected one in the SU(2) and SL(2) sectors. Such predictions consist of an “asymptotic” part — similar in spirit to the asymptotic Bethe Ansatz of Beisert and Staudacher for two-point functions — as well as additional finite-size “wrapping” Lüscher-like corrections. The focus of this paper is on such wrapping corrections, which we compute at three-loops in the SL(2) sector. The resulting structure constants perfectly match the ones obtained in the literature from four-point correlators of protected operators.

  16. Group Approach to the Quantization of Non-Abelian Stueckelberg Models

    Energy Technology Data Exchange (ETDEWEB)

    Aldaya, V; Lopez-Ruiz, F F [Instituto de Astrofisica de AndalucIa (IAA-CSIC), Apartado Postal 3004, 18080 Granada (Spain); Calixto, M, E-mail: valdaya@iaa.es, E-mail: Manuel.Calixto@upct.es, E-mail: flopez@iaa.es [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain)

    2011-03-01

    The quantum field theory of Non-Linear Sigma Models on coadjoint orbits of a semi-simple group G are formulated in the framework of a Group Approach to Quantization. In this scheme, partial-trace Lagrangians are recovered from two-cocycles defined on the infinite-dimensional group of sections of the jet-gauge group J{sup 1} (G). This construction is extended to the entire physical system coupled to Yang-Mills fields, thus constituting an algebraic formulation of the Non-Abelian Stueckelgerg formalism devoid of the unitarity/renormalizability obstruction that this theory finds in the standard Lagrangian formalism under canonical quantization.

  17. Applications of noncovariant gauges in the algebraic renormalization procedure

    CERN Document Server

    Boresch, A; Schweda, Manfred

    1998-01-01

    This volume is a natural continuation of the book Algebraic Renormalization, Perturbative Renormalization, Symmetries and Anomalies, by O Piguet and S P Sorella, with the aim of applying the algebraic renormalization procedure to gauge field models quantized in nonstandard gauges. The main ingredient of the algebraic renormalization program is the quantum action principle, which allows one to control in a unique manner the breaking of a symmetry induced by a noninvariant subtraction scheme. In particular, the volume studies in-depth the following quantized gauge field models: QED, Yang-Mills t

  18. Quantum Field Theories with Symmetries in the Wilsonian Exact Renormalization Group

    Science.gov (United States)

    Vian, F.

    1999-05-01

    The purpose of the present thesis is the implementation of symmetries in the Wilsonian Exact Renormalization Group (ERG) approach. After recalling how the ERG can be introduced in a general theory (i.e. containing both bosons and fermions, scalars and vectors) and having applied it to the massless scalar theory as an example of how the method works, we discuss the formulation of the Quantum Action Principle (QAP) in the ERG and show that the Slavnov-Taylor identities can be directly derived for the cutoff effective action at any momentum scale. Firstly the QAP is exploited to analyse the breaking of dilatation invariance occurring in the scalar theory in this approach. Then we address SU(N) Yang-Mills theory and extensively treat the key issue of the boundary conditions of the flow equation which, in this case, have also to ensure restoration of symmetry for the physical theory. In case of a chiral gauge theory, we show how the chiral anomaly can be obtained in the ERG. Finally, we extend the ERG formulation to supersymmetric (gauge) theories. It is emphasized regularization is implemented in such a way that supersymmetry is preserved.

  19. Unified Field Theory and Principle of Representation Invariance

    CERN Document Server

    Ma, Tian

    2012-01-01

    This is part of a research program to establish a unified field model for interactions in nature. The aim of this article is to postulate a new principle of representation invariance (PRI), to provide a needed mathematical foundation for PRI, and to use PRI to refine the unified field equations of four interactions. Intuitively, PRI amounts to saying that all SU(N) gauge theories should be invariant under transformations of different representations of SU(N). With PRI, we are able to substantially reduce the number of to-be-determined parameters in the unified model to two SU(2) and SU(3) constant vectors $\\{\\alpha^1_\\mu \\}$ and $\\{\\alpha^2_k\\}$, containing 11 parameters, which represent the portions distributed to the gauge potentials by the weak and strong charges. Furthermore, both PRI and PID can be directly applied to individual interactions, leading to a unified theory for dark matter and dark energy, and theories on strong and weak interaction potentials. As a direct application of the strong interacti...

  20. Cosmological Bounds on Non-Abelian Dark Forces

    OpenAIRE

    Forestell, Lindsay; Morrissey, David E.; Sigurdson, Kris

    2017-01-01

    Non-Abelian dark gauge forces that do not couple directly to ordinary matter may be realized in nature. The minimal form of such a dark force is a pure Yang-Mills theory. If the dark sector is reheated in the early universe, it will be realized as a set of dark gluons at high temperatures and as a collection of dark glueballs at lower temperatures, with a cosmological phase transition from one form to the other. Despite being dark, the gauge fields of the new force can connect indirectly to t...

  1. Holography and off-center collisions of localized shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Chesler, Paul M. [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Yaffe, Laurence G. [Department of Physics, University of Washington,Seattle, WA 98195 (United States)

    2015-10-12

    Using numerical holography, we study the collision, at non-zero impact parameter, of bounded, localized distributions of energy density chosen to mimic relativistic heavy ion collisions, in strongly coupled N=4 supersymmetric Yang-Mills theory. Both longitudinal and transverse dynamics in the dual field theory are properly described. Using the gravitational description, we solve 5D Einstein equations with no dimensionality reducing symmetry restrictions to find the asymptotically anti-de Sitter spacetime geometry. Implications of our results on the understanding of early stages of heavy ion collisions, including the development of transverse radial flow, are discussed.

  2. Holography and off-center collisions of localized shock waves

    Science.gov (United States)

    Chesler, Paul M.; Yaffe, Laurence G.

    2015-10-01

    Using numerical holography, we study the collision, at non-zero impact parameter, of bounded, localized distributions of energy density chosen to mimic relativistic heavy ion collisions, in strongly coupled N=4 supersymmetric Yang-Mills theory. Both longitudinal and transverse dynamics in the dual field theory are properly described. Using the gravitational description, we solve 5D Einstein equations with no dimensionality reducing symmetry restrictions to find the asymptotically anti-de Sitter spacetime geometry. Implications of our results on the understanding of early stages of heavy ion collisions, including the development of transverse radial flow, are discussed.

  3. Towards 4-loop NSPT result for a 3-dimensional condensate-contribution to hot QCD pressure

    CERN Document Server

    Torrero, C.; Schroder, Y.; Di Renzo, F.; Miccio, V.

    2007-01-01

    Thanks to dimensional reduction, the contributions to the hot QCD pressure coming from so-called soft modes can be studied via an effective three-dimensional theory named Electrostatic QCD (spatial Yang-Mills fields plus an adjoint Higgs scalar). The poor convergence of the perturbative series within EQCD suggests to perform lattice measurements of some of the associated gluon condensates. These turn out, however, to be plagued by large discretization artifacts. We discuss how Numerical Stochastic Perturbation Theory can be exploited to determine the full lattice spacing dependence of one of these condensates up to 4-loop order, and sharpen our tools on a concrete 2-loop example.

  4. Numerical computation of the beta function of large N SU(N) gauge theory coupled to an adjoint Dirac fermion

    DEFF Research Database (Denmark)

    Hietanen, A.; Narayanan, R.

    2012-01-01

    We use a single site lattice in four dimensions to study the scaling of large N Yang-Mills field coupled to a single massless Dirac fermion in the adjoint representation. We use the location of the strong to the weak coupling transition defined through the eigenvalues of the folded Wilson loop...... operator to set a scale. We do not observe perturbative scaling in the region studied in this paper. Instead, we observe that the scale changes very slowly with the bare coupling. The lowest eigenvalue of the overlap Dirac operator is another scale that shows similar behavior as a function of the lattice...

  5. Semiclassical strings in AdS5 × S5 and automorphic functions.

    Science.gov (United States)

    Pawellek, Michael

    2011-06-17

    Using anti-de Sitter-space/conformal-field-theory correspondence we derive from the folded spinning string ordinary differential equations for the anomalous dimension of the dual N=4 super Yang-Mills theory twist-two operators at strong coupling. We show that for large spin the asymptotic solutions have the Gribov-Lipatov reciprocity property. To obtain this result we use a hidden modular invariance of the energy-spin relation of the folded spinning string. Furthermore, we identify the Moch-Vermaseren-Vogt relations, which were first recognized in plain QCD calculations, as the recurrence relations of the asymptotic series ansatz.

  6. Advanced electromagnetism foundations, theory and applications

    CERN Document Server

    Barrett, Terence W

    1995-01-01

    Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electro

  7. Electromagnetic fields from two potential fields

    Science.gov (United States)

    Chauca, J.; Doria, R.; Soares, W.

    2012-10-01

    Maxwell electromagnetism is generalized through a model that includes N-potential fields in a same group. Anew rule for the photon field is defined from a fourth interpretation to the light invariance. It becomes a directive particle while others potential fields appears as circumstance particles. Its most primitive coupling is not more with electric charge but with the Noether systemic charge. Studying the case with two potential fields, one derives the corresponding granular and collective electromagnetic fields with antisymmetric and symmetric nature. As a first feature, differently from Maxwell equation such systemic photon field does not follow the expression inversely proportional to the distance. This work calculates the subsequent branch of elecromagnetic fields {→EI-→BI,→e-→b;ɛI,→ɛI,βIij,s,→s,sij}.

  8. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  9. How fields vary.

    Science.gov (United States)

    Krause, Monika

    2017-04-06

    Field theorists have long insisted that research needs to pay attention to the particular properties of each field studied. But while much field-theoretical research is comparative, either explicitly or implicitly, scholars have only begun to develop the language for describing the dimensions along which fields can be similar to and different from each other. In this context, this paper articulates an agenda for the analysis of variable properties of fields. It discusses variation in the degree but also in the kind of field autonomy. It discusses different dimensions of variation in field structure: fields can be more or less contested, and more or less hierarchical. The structure of symbolic oppositions in a field may take different forms. Lastly, it analyses the dimensions of variation highlighted by research on fields on the sub- and transnational scale. Post-national analysis allows us to ask how fields relate to fields of the same kind on different scales, and how fields relate to fields on the same scale in other national contexts. It allows us to ask about the role resources from other scales play in structuring symbolic oppositions within fields. A more fine-tuned vocabulary for field variation can help us better describe particular fields and it is a precondition for generating hypotheses about the conditions under which we can expect to observe fields with specified characteristics. © London School of Economics and Political Science 2017.

  10. Phase Field Approach

    Science.gov (United States)

    Koyama, Toshiyuki

    The term phase field has recently become known across many fields of materials science. The meaning of phase field is the spatial and temporal order parameter field defined in a continuum-diffused interface model. By using the phase field order parameters, many types of complex microstructure changes observed in materials science are described effectively. This methodology has been referred to as the phase field method, phase field simulation, phase field modeling, phase field approach, etc. In this chapter, the basic concept and theoretical background for the phase field approach is explained in Sects. 21.1 and 21.2. The overview of recent applications of the phase field method is demonstrated in Sects. 21.3 to 21.6.

  11. Field Campaign Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, J. W. [DOE ARM Climate Research Facility, Washington, DC (United States); Chapman, L. A. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-12-01

    This document establishes a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking System and are specifically tailored to meet the scope of each field campaign.

  12. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    Science.gov (United States)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-08-08

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  13. Engineering field theory

    CERN Document Server

    Baden Fuller, A J

    2014-01-01

    Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation

  14. Dualities in M-theory and Born-Infeld Theory

    Energy Technology Data Exchange (ETDEWEB)

    Brace, Daniel M. [Univ. of California, Berkeley, CA (United States)

    2001-01-01

    We discuss two examples of duality. The first arises in the context of toroidal compactification of the discrete light cone quantization of M-theory. In the presence of nontrivial moduli coming from the M-theory three form, it has been conjectured that the system is described by supersymmetric Yang-Mills gauge theory on a noncommutative torus. We are able to provide evidence for this conjecture, by showing that the dualities of this M-theory compactification, which correspond to T-duality in Type IIA string theory, are also dualities of the noncommutative supersymmetric Yang-Mills description. One can also consider this as evidence for the accuracy of the Matrix Theory description of M-theory in this background. The second type of duality is the self-duality of theories with U(1) gauge fields. After discussing the general theory of duality invariance for theories with complex gauge fields, we are able to find a generalization of the well known U(1) Born-Infeld theory that contains any number of gauge fields and which is invariant under the maximal duality group. We then find a supersymmetric extension of our results, and also show that our results can be extended to find Born-Infeld type actions in any even dimensional spacetime.

  15. Free fields and new cosets of current algebra

    Energy Technology Data Exchange (ETDEWEB)

    Bars, I. (University of Southern California, Los Angeles (USA). Dept. of Physics)

    1991-02-14

    We introduce a new free field representation of current algebras by considering the affine compact and non-compact groups G{sub k}=SU(N+M){sub k}, SU(N, M){sub k} and supergroups SU(N/M){sub k} using cosets of the form G{sub k}/(SU(N){sub k+etaM}xSU(M){sub etak+etaN}), where eta=+- for group/supergroup respectively. The subgroup H=SU(N)xSU(M) does not include a U(1) factor. Because of the subgroup levels k+etaM, (k+N)eta these cosets differ from GKO cosets of the type G{sub k}/H{sub k}. We discuss simultaneously compact, non-compact and supergroup current algebras all in the same formalism. Borrowing ideas from induced representation theory of Lie groups we puerovide a basis in which we split the currents into 'orbital' and 'intrinsic spin' parts. The 'orbital' part is constructed from NM canonical pairs of complex free fields (analogous to position and momentum) classified in G/(HxU(1)). These provide a new generalization of Wakimoto's SU(2){beta}-{gamma} system. There is also a single free scalar field phi in a background charge which is associated with the remaining (twisted) U(1). The 'intrinsic spin' part corresponds to currents in H=SU(N)xSU(M). The resulting expressions for the currents are simple and elegant and they are reminiscent of Wigner's constructiion of the Poincare group generators in terms of orbital and intrinsic spin variables. The Sugawara stress tensor splits into four commuting parts T{sub G}=T{sub (G/HxU(1))}+T{sub U(1)}+T{sub H} where the first two terms are constructed only from the free fields ({beta}-{gamma}), phi respectively, while T{sub H}=T{sub SU(N)}+T{sub SU(M)} is the Sugawara stress tensor for the 'intrinsic spin' currents belonging to H. By iterating our G/H method, the 'intrinsic spin' part H may, in turn, be written in terms of new free fields, thus reducing the entire current algebra of G to a free field theory. (orig.).

  16. Global effective-field-theory analysis of new-physics effects in (semi)leptonic kaon decays

    Energy Technology Data Exchange (ETDEWEB)

    González-Alonso, Martín [IPN de Lyon/CNRS, Universite Lyon 1,Villeurbanne (France); Camalich, Jorge Martin [CERN, Theoretical Physics Department,Geneva (Switzerland)

    2016-12-14

    We analyze the decays K→πℓν and P→ℓν (P=K,π, ℓ=e, μ) using a low-energy Effective-Field-Theory approach to parametrize New Physics and study the complementarity with baryon β decays. We then provide a road map for a global analysis of the experimental data, with all the Wilson coefficients simultaneously, and perform a fit leading to numerical bounds for them and for V{sub us}. A prominent result of our analysis is a reinterpretation of the well-known V{sub ud}−V{sub us} diagram as a strong constraint on new physics. Finally, we reinterpret our bounds in terms of the SU(2){sub L}× U(1){sub Y}-invariant operators, provide bounds to the corresponding Wilson coefficients at the TeV scale and compare our results with collider searches at the LHC.

  17. Cosmological magnetic fields

    Science.gov (United States)

    Kunze, Kerstin E.

    2013-12-01

    Magnetic fields are observed on nearly all scales in the Universe, from stars and galaxies up to galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early Universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early Universe and might therefore be able to tell us whether cosmic magnetic fields are of a primordial cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large-scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  18. Terahertz field induced electromigration

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Zalkovskij, Maksim; Iwaszczuk, Krzysztof

    We report the first observation of THz-field-induced electromigration in sub-wavelength metallic gap structures after exposure to intense single-cycle, sub-picosecond electric field transients of amplitude up to 400 kV/cm....

  19. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  20. Electric Field Imaging Project

    Science.gov (United States)

    Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward

    2016-01-01

    NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.