WorldWideScience

Sample records for su2 wzw models

  1. Duality between SU(N)k and SU(k)N WZW models

    International Nuclear Information System (INIS)

    Naculich, S.G.; Schnitzer, H.J.

    1990-01-01

    We exhibit a duality of the SU(N) k WZW model under interchange of the group parameter N and the level k. The primary fields of SU(N) k and SU(k) N are related by transposition of their associated Young tableaux. The holomorphic blocks of the four-point functions of the primary fields are in one-to-one correspondence, and satisfy orthogonality and completeness relations with respect to one another. We derive these relations through a path integral realization of the SU(N) k WZW model in terms of a theory of constrained Dirac fermions. (orig.)

  2. Superspace WZW models and black holes

    International Nuclear Information System (INIS)

    Rocek, M.

    1991-10-01

    We show how to write an off-shell action for the SU(2) x U(1) supersymmetric WZW model in terms of N = 2 chiral and twisted chiral multiplets. We discuss the N = 4 supersymmetry of this model and exhibit the N = 4 superconformal current algebra. Finally, we show that the off-shell formulation makes it possible to perform a duality transformation, which leads to a supersymmetric sigma model on a manifold with a black hole type singularity. 23 refs

  3. A matrix model for WZW

    International Nuclear Information System (INIS)

    Dorey, Nick; Tong, David; Turner, Carl

    2016-01-01

    We study a U(N) gauged matrix quantum mechanics which, in the large N limit, is closely related to the chiral WZW conformal field theory. This manifests itself in two ways. First, we construct the left-moving Kac-Moody algebra from matrix degrees of freedom. Secondly, we compute the partition function of the matrix model in terms of Schur and Kostka polynomials and show that, in the large N limit, it coincides with the partition function of the WZW model. This same matrix model was recently shown to describe non-Abelian quantum Hall states and the relationship to the WZW model can be understood in this framework.

  4. On the WZW fields realization of critical models of the minimal series

    International Nuclear Information System (INIS)

    Chair, N.; Saidi, E.H.

    1995-08-01

    Using the Karabali and Schnitzer formula of the G/H gauged WZW theories, we develop the quantum WZW fields realization of cosets of type G k1 , x G k2 /G k1+k2 . The quantum constraints obtained from the gauging of the anomaly free subgroup G of the direct product G x G are solved explicitly for the case G = SU(2). Our results are shown to be in agreement with those obtained by standard methods, in particular the algebraic ones. Special features like the realization of the primary fields in terms of WZW fields as well as links with the topological G/G theory are discussed. Other properties are also given. (author). 28 refs

  5. Nonreductive WZW models and their CFTs, 2: N = 1 and N = 2 cosets

    International Nuclear Information System (INIS)

    Figueroa-O'Farrill, J.

    1996-09-01

    We started a programme devoted to the systematic study of the conformal field theories derived from WZW models based on nonreductive Lie groups. In this, the second part, we continue this programme with a look at the N = 1 and N = 2 superconformal field theories which arise from both gauged and ungauged supersymmetric WZW models. We extend the supersymmetric (affine) Sugawara and coset constructions, as well as the Kazama-Suzuki construction to general self-dual Lie algebras. (author). 29 refs

  6. On the WZW fields realization of critical models of the minimal series

    Energy Technology Data Exchange (ETDEWEB)

    Chair, N [International School of Advanced Studies, Trieste (Italy); Saidi, E H [International Centre for Theoretical Physics, Trieste (Italy)

    1995-08-01

    Using the Karabali and Schnitzer formula of the G/H gauged WZW theories, we develop the quantum WZW fields realization of cosets of type G{sub k1}, x G{sub k2}/G{sub k1+k2}. The quantum constraints obtained from the gauging of the anomaly free subgroup G of the direct product G x G are solved explicitly for the case G = SU(2). Our results are shown to be in agreement with those obtained by standard methods, in particular the algebraic ones. Special features like the realization of the primary fields in terms of WZW fields as well as links with the topological G/G theory are discussed. Other properties are also given. (author). 28 refs.

  7. Differential equations for correlators on the torus: Two-point correlation function of isospin-1 primary fields in the k=3 SU(2) WZW theory

    International Nuclear Information System (INIS)

    Durganandini, P.

    1990-01-01

    We systematize the procedure developed by Mathur, Mukhi and Sen to derive differential equations for correlators in rational conformal field theories on the torus in those cases when it is necessary to study not only leading-order behaviour but also the nonleading behaviour of the solutions in the asymptotic limit Imτ→∞, Imz→∞. As an illustration, we derive the differential equation for the two-point correlator of the isospin-1 primary fields in the k=3 SU(2) WZW model on the torus. (orig.)

  8. Four point functions in the SL(2,R) WZW model

    Energy Technology Data Exchange (ETDEWEB)

    Minces, Pablo [Instituto de Astronomia y Fisica del Espacio (IAFE), C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina)]. E-mail: minces@iafe.uba.ar; Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio (IAFE), C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina) and Physics Department, University of Buenos Aires, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)]. E-mail: carmen@iafe.uba.ar

    2007-04-19

    We consider winding conserving four point functions in the SL(2,R) WZW model for states in arbitrary spectral flow sectors. We compute the leading order contribution to the expansion of the amplitudes in powers of the cross ratio of the four points on the worldsheet, both in the m- and x-basis, with at least one state in the spectral flow image of the highest weight discrete representation. We also perform certain consistency check on the winding conserving three point functions.

  9. Four point functions in the SL(2,R) WZW model

    International Nuclear Information System (INIS)

    Minces, Pablo; Nunez, Carmen

    2007-01-01

    We consider winding conserving four point functions in the SL(2,R) WZW model for states in arbitrary spectral flow sectors. We compute the leading order contribution to the expansion of the amplitudes in powers of the cross ratio of the four points on the worldsheet, both in the m- and x-basis, with at least one state in the spectral flow image of the highest weight discrete representation. We also perform certain consistency check on the winding conserving three point functions

  10. Simple WZW currents

    International Nuclear Information System (INIS)

    Fuchs, J.

    1990-08-01

    A complete classification of simple currents of WZW theory is obtained. The proof is based on an analysis of the quantum dimensions of the primary fields. Simple currents are precisely the primaries with unit quantum dimension; for WZW theories explicit formulae for the quantum dimensions can be derived so that an identification of the fields with unit quantum dimension is possible. (author). 19 refs.; 2 tabs

  11. Duality relations between SU(N)k and SU(k)NWZW models and their braid matrices

    International Nuclear Information System (INIS)

    Naculich, S.G.; Schnitzer, H.J.

    1990-01-01

    Dual relations are found between the primary fields, correlators, and conformal blocks of SU(N) k and SU(k) N WZW models, which in turn imply dual relations between the braid matrices of the two theories. These results are a consequence of the fact that the spaces of conformal blocks of SU(N) k and SU(k) N correlation functions are dual. (orig.)

  12. Affine Poisson Groups and WZW Model

    Directory of Open Access Journals (Sweden)

    Ctirad Klimcík

    2008-01-01

    Full Text Available We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations.

  13. D-branes in a big bang/big crunch universe: Nappi-Witten gauged WZW model

    Energy Technology Data Exchange (ETDEWEB)

    Hikida, Yasuaki [School of Physics and BK-21 Physics Division, Seoul National University, Seoul 151-747 (Korea, Republic of); Nayak, Rashmi R. [Dipartimento di Fisica and INFN, Sezione di Roma 2, ' Tor Vergata' ' , Rome 00133 (Italy); Panigrahi, Kamal L. [Dipartimento di Fisica and INFN, Sezione di Roma 2, ' Tor Vergata' , Rome 00133 (Italy)

    2005-05-01

    We study D-branes in the Nappi-Witten model, which is a gauged WZW model based on (SL(2,R) x SU(2))/(U(1) x U(1)). The model describes a four dimensional space-time consisting of cosmological regions with big bang/big crunch singularities and static regions with closed time-like curves. The aim of this paper is to investigate by D-brane probes whether there are pathologies associated with the cosmological singularities and the closed time-like curves. We first classify D-branes in a group theoretical way, and then examine DBI actions for effective theories on the D-branes. In particular, we show that D-brane metric from the DBI action does not include singularities, and wave functions on the D-branes are well behaved even in the presence of closed time-like curves.

  14. SU(2) Chern-Simons theory at genus zero

    International Nuclear Information System (INIS)

    Gawedzki, K.; Kupiainen, A.

    1991-01-01

    We present a detailed study of the Schroedinger picture space of states in the SU(2) Chern-Simons topological gauge theory in the simplest geometry. The space coincides with that of the solutions of the chiral Ward identities for the WZW model. We prove that its dimension is given by E. Verlinde's formulae. (orig.)

  15. New WZW D-branes from the algebra of Wilson loop operators

    International Nuclear Information System (INIS)

    Monnier, Samuel

    2009-01-01

    We investigate the algebra generated by the topological Wilson loop operators in WZW models. Wilson loops describe the nontrivial fixed points of the boundary renormalization group flows triggered by Kondo perturbations. Their enveloping algebra therefore encodes all the fixed points which can be reached by sequences of Kondo flows. This algebra is easily described in the case of SU(2), but displays a very rich structure for higher rank groups. In the latter case, its action on known D-branes creates a profusion of new and generically non-rational D-branes. We describe their symmetries and the geometry of their worldvolumes. We briefly explain how to extend these results to coset models.

  16. Anomalous dimensions in deformed WZW models on supergroups

    Energy Technology Data Exchange (ETDEWEB)

    Candu, Constantin [Institut fuer Theoretische Physik, Zuerich (Switzerland); Mitev, Vladimir [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2012-11-15

    We investigate a class of current-current, Gross-Neveu like, perturbations of WZW models in which the full left-right affine symmetry is broken to the diagonal global algebra only. Our analysis focuses on those supergroups for which such a perturbation preserves conformal invariance. A detailed calculation of the 2-point functions of affine primary operators to 3-loops is presented. Furthermore, we derive an exact formula for the anomalous dimensions of a large subset of fields to all orders in perturbation theory. Possible applications of our results, including the study of non-perturbative dualities, are outlined.

  17. Higher level WZW sectors from free fermions

    International Nuclear Information System (INIS)

    Boeckenhauer, J.

    1996-02-01

    We introduce a gauge group of internal symmetries of an ambient algebra as a new tool for investigating the superselection structure of WZW theories and the representation theory of the corresponding affine Lie algebras. The relevant ambient algebra arises from the description of these conformal field theories in terms of free fermions. As an illustration we analyze in detail the so(N) WZW theories at level two. In this case there is actually a homorphism from the representation ring of the gauge group to the WZW fusion ring, even though the level-two observable algebra is smaller than the gauge invariant subalgebra of the field algebra. (orig.)

  18. Path representation of su-hat (2){sub k} states I: Operators and particles for k=1,2

    Energy Technology Data Exchange (ETDEWEB)

    Lamy-Poirier, Joel, E-mail: jlamypoirier@perimeterinstitute.c [Departement de physique, de genie physique et d' optique, Universite Laval, Quebec, G1K 7P4 (Canada); Mathieu, Pierre, E-mail: pmathieu@phy.ulaval.c [Departement de physique, de genie physique et d' optique, Universite Laval, Quebec, G1K 7P4 (Canada)

    2011-04-11

    This is the first of two articles devoted to the analysis of the path description of the states in su-hat (2){sub k} WZW models, a representation well suited for constructive derivations of the fermionic characters. In this first article, the cases k=1,2 are treated in detail, emphasizing a different description in each case (operators vs particles). For k=1, we first prove, as a side result, the equivalence of two known path representations for the finitized su-hat (2){sub 1} states by displaying an explicit bijection. An immediate offshoot is the gain of a new and simple weighting for the (Kyoto) path representation that generalizes to level k. The bijection also suggests two operator constructions for the su-hat (2){sub 1} paths, a local and a nonlocal one, both interrelated. These are formal operators that map a path to another path, so that any path can be obtained by successive applications of these operators on a simple reference (ground-state) path. The nonlocal operator description is the starting point for a direct and elementary derivation of the su-hat (2){sub 1} spinon character. The second part presents an extensive study of the su-hat (2){sub 2} paths from their particle point of view, where the particles are defined as the path building blocks. The resulting generating functions appear to provide new (at least superficially) fermionic forms of the characters. In particular, a nice relationship between the sum of the j=0,1 characters at k=2 and the two ones at k=1 is unraveled.

  19. A representation theoretic approach to the WZW Verlinde formula

    CERN Document Server

    Fuchs, J

    1997-01-01

    By exploring the description of chiral blocks in terms of co-invariants, a proof of the Verlinde formula for WZW models is obtained which is entirely based on the representation theory of affine Lie algebras. In contrast to other proofs of the Verlinde formula, this approach works for all untwisted affine Lie algebras. As a by-product we obtain a homological interpretation of the Verlinde multiplicities, as Euler characteristics of complexes built from invariant tensors of finite-dimensional simple Lie algebras.

  20. A{sub ∞}/L{sub ∞} structure and alternative action for WZW-like superstring field theory

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Keiyu [Institute of Physics, University of Tokyo,Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Matsunaga, Hiroaki [Institute of Physics, Academy of Sciences of the Czech Republic,Na Slovance 2, Prague 8 (Czech Republic); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan)

    2017-01-09

    We propose new gauge invariant actions for open NS, heterotic NS, and closed NS-NS superstring field theories. They are based on the large Hilbert space, and have Wess-Zumino-Witten-like expressions which are the ℤ{sub 2}-reversed versions of the conventional WZW-like actions. On the basis of the procedure proposed in https://arxiv.org/abs/1505.01659, we show that our new WZW-like actions are completely equivalent to A{sub ∞}/L{sub ∞} actions proposed in https://arxiv.org/abs/1403.0940 respectively.

  1. S- and T-matrices for the super U(1,1) WZW model application to surgery and 3-manifolds invariants based on the Alexander-Conway polynomial

    International Nuclear Information System (INIS)

    Rozansky, L.; Saleur, H.

    1993-01-01

    We carry on (in a self-contained fashion) the study of the Alexander-Conway invariant from the quantum field theory point of view started earlier. We investigate for that purpose various aspects of WZW models on supergroups. We first discuss in details S- and T-matrices for the U(1,1) super WZW model and obtain, for the level k an integer, new finite-dimensional representations of the modular group. These have the remarkable property that some of the S-matrix elements are infinite (we show how to properly handle such divergences). Moreover, typical and atypical representations as well as indecomposable blocks are mixed: Truncation to maximally atypical representations, as advocated in some recent papers, is not consistent. Using our approach, multivariable Alexander invariants for links in S 3 can now be fully computed by surgery. Examples of torus and cable knots are discussed. Consistency with classical results provides independent checks of the solution of the U(1,1) WZW model. The main topological application of this work is the computation of Alexander invariants for 3-manifolds and more generally for links in 3-manifolds. Invariants of 3-manifolds themselves seem to depend trivially on the level k, but still contain interesting topological information. For Seifer manifolds for instance, they essentially coincide with the order (number of elements) of the first homology group. Examples of invariants of links in 3-manifolds are given. They exhibit interesting arithmetic properties. (orig.)

  2. Path representation of su-hat (2){sub k} states II: Operator construction of the fermionic character and spin-1/2 -RSOS factorization

    Energy Technology Data Exchange (ETDEWEB)

    Lamy-Poirier, Joel, E-mail: jlamypoirier@perimeterinstitute.c [Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, Canada, G1V 0A6 (Canada); Mathieu, Pierre, E-mail: pmathieu@phy.ulaval.c [Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, Canada, G1V 0A6 (Canada)

    2011-06-01

    This is the second of two articles (independent of each other) devoted to the analysis of the path description of the states in su-hat (2){sub k} WZW models. Here we present a constructive derivation of the fermionic character at level k based on these paths. The starting point is the expression of a path in terms of a sequence of nonlocal (formal) operators acting on the vacuum ground-state path. Within this framework, the key step is the construction of the level-k operator sequences out of those at level-1 by the action of a new type of operators. These actions of operators on operators turn out to have a path interpretation: these paths are precisely the finitized RSOS paths related to the unitary minimal models M(k+1,k+2). We thus unravel - at the level of the path representation of the states - a direct factorization into a k=1 spinon part times a RSOS factor. It is also pointed out that since there are two fermionic forms describing these finite RSOS paths, the resulting fermionic su-hat (2){sub k} characters arise in two versions. Finally, the relation between the present construction and the Nagoya spectral decomposition of the path space is sketched.

  3. On the SU(2SU(2) symmetry in the Hubbard model

    Science.gov (United States)

    Jakubczyk, Dorota; Jakubczyk, Paweł

    2012-08-01

    We discuss the one-dimensional Hubbard model, on finite sites spin chain, in context of the action of the direct product of two unitary groups SU(2SU(2). The symmetry revealed by this group is applicable in the procedure of exact diagonalization of the Hubbard Hamiltonian. This result combined with the translational symmetry, given as the basis of wavelets of the appropriate Fourier transforms, provides, besides the energy, additional conserved quantities, which are presented in the case of a half-filled, four sites spin chain. Since we are dealing with four elementary excitations, two quasiparticles called "spinons", which carry spin, and two other called "holon" and "antyholon", which carry charge, the usual spin- SU(2) algebra for spinons and the so called pseudospin-SU(2) algebra for holons and antiholons, provide four additional quantum numbers.

  4. From the harmonic oscillator to the A-D-E classification of conformal models

    International Nuclear Information System (INIS)

    Itzykson, C.

    1988-01-01

    Arithmetical aspects of the solution of systems involving dimensional statistical models and conformal field theory. From this perspective, the analysis of the harmonic oscillator, the free particle in a box, the rational billards is effectuated. Moreover, the description of the classification of minimal conformal models and Weiss-Lumino-Witten models, based on the simplest affine algebra is also given. Attempts to interpret and justify the appearance of A-D-E classification of algebra in W-Z-W model are made. Extensions of W-Z-W model, based on SU(N) level one, and the ways to deal with rank two Lie groups, using the arithmetics of quadratic intergers, are described

  5. An SU(2) x SU(2) symmetric Higgs-Fermion model with staggered fermions

    International Nuclear Information System (INIS)

    Berlin, J.; Heller, U.M.

    1991-01-01

    We have simulated on SU(2)xSU(2) symmetric Higgs-Fermion model with a four component scalar field coupled with a Yukawa type coupling to two flavours of staggered fermions. The results show two qualitatively different behaviours in the broken phase. One for weak coupling where the fermion masses obey the perturbative tree level relation M F =y , and one for strong coupling where the behaviour agrees with a 1/d expansion. (orig.)

  6. Model with a gauged lepton flavor SU(2) symmetry

    Science.gov (United States)

    Chiang, Cheng-Wei; Tsumura, Koji

    2018-05-01

    We propose a model having a gauged SU(2) symmetry associated with the second and third generations of leptons, dubbed SU(2) μτ , of which U{(1)}_{L_{μ }-L_{τ }} is an Abelian subgroup. In addition to the Standard Model fields, we introduce two types of scalar fields. One exotic scalar field is an SU(2) μτ doublet and SM singlet that develops a nonzero vacuum expectation value at presumably multi-TeV scale to completely break the SU(2) μτ symmetry, rendering three massive gauge bosons. At the same time, the other exotic scalar field, carrying electroweak as well as SU(2) μτ charges, is induced to have a nonzero vacuum expectation value as well and breaks mass degeneracy between the muon and tau. We examine how the new particles in the model contribute to the muon anomalous magnetic moment in the parameter space compliant with the Michel decays of tau.

  7. Weak mixing angle and the SU(3)CxSU(3) model on M4xS1/(Z2xZ'2)

    International Nuclear Information System (INIS)

    Li Tianjun; Wei Liao

    2002-05-01

    We show that the desirable weak mixing angle sin 2 θ W =0.2312 at m Z scale can be generated naturally in the SU(3) C xSU(3) model on M 4 xS 1 /(Z 2 x Z 2 ') where the gauge symmetry SU(3) is broken down to SU(2) L xU(1) Y by orbifold projection. For a supersymmetric model with a TeV scale extra dimension, the SU(3) unification scale is about hundreds of TeVs at which the gauge couplings for SU(3) C and SU(3) can also be equal in the mean time. For the non-supersymmetric model, SU(2) L xU(1) Y are unified at order of 10 TeV. These models may serve as good candidates for physics beyond the SM or MSSM. (author)

  8. The XXX spin s quantum chain and the alternating s1, s2 chain with boundaries

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2002-01-01

    The integrable XXX spin s quantum chain and the alternating s 1 , s 2 (s 1 -s 2 =1/2) chain with boundaries are considered. The scattering of their excitations with the boundaries via the Bethe ansatz method is studied, and the exact boundary S matrices are computed in the limit s,s 1,2 →∞. Moreover, the connection of these models with the SU(2) Principal Chiral, WZW and the RSOS models is discussed

  9. SU(5)c color model constraints from UA2

    International Nuclear Information System (INIS)

    Foot, R.; Hernandez, O.F.; Rizzo, T.G.; Ames Lab., IA; Iowa State Univ. of Science and Technology, Ames

    1991-01-01

    We investigate the possibility that the color gauge group SU(3) may arise as a consequence of the spontaneous symmetry breaking of SU(5) c . In an earlier paper we examine the constraints imposed on the SU(5) c color model by recent measurements of the dijet mass distribution at CDF. We found that the CDF data did not exclude any region of parameter space in the model. Here we consider similar data from UA2 and find that it leads to the constraint Msub(Z') > or approx. 280 GeV. (orig.)

  10. String derived exophobic SU(6)×SU(2) GUTs

    International Nuclear Information System (INIS)

    Bernard, Laura; Faraggi, Alon E.; Glasser, Ivan; Rizos, John; Sonmez, Hasan

    2013-01-01

    With the apparent discovery of the Higgs boson, the Standard Model has been confirmed as the theory accounting for all sub-atomic phenomena. This observation lends further credence to the perturbative unification in Grand Unified Theories (GUTs) and string theories. The free fermionic formalism yielded fertile ground for the construction of quasi-realistic heterotic-string models, which correspond to toroidal Z 2 ×Z 2 orbifold compactifications. In this paper we study a new class of heterotic-string models in which the GUT group is SU(6)×SU(2) at the string level. We use our recently developed fishing algorithm to extract an example of a three generation SU(6)×SU(2) GUT model. We explore the phenomenology of the model and show that it contains the required symmetry breaking Higgs representations. We show that the model admits flat directions that produce a Yukawa coupling for a single family. The novel feature of the SU(6)×SU(2) string GUT models is that they produce an additional family universal anomaly free U(1) symmetry, and may remain unbroken below the string scale. The massless spectrum of the model is free of exotic states.

  11. Topological strings from Liouville gravity

    International Nuclear Information System (INIS)

    Ishibashi, N.; Li, M.

    1991-01-01

    We study constrained SU(2) WZW models, which realize a class of two-dimensional conformal field theories. We show that they give rise to topological gravity coupled to the topological minimal models when they are coupled to Liouville gravity. (orig.)

  12. Global analysis of general SU(2)xSU(2)xU(1) models with precision data

    International Nuclear Information System (INIS)

    Hsieh, Ken; Yu, Jiang-Hao; Yuan, C.-P.; Schmitz, Kai

    2010-01-01

    We present the results of a global analysis of a class of models with an extended electroweak gauge group of the form SU(2)xSU(2)xU(1), often denoted as G(221) models, which include as examples the left-right, the leptophobic, the hadrophobic, the fermiophobic, the un-unified, and the nonuniversal models. Using an effective Lagrangian approach, we compute the shifts to the coefficients in the electroweak Lagrangian due to the new heavy gauge bosons, and obtain the lower bounds on the masses of the Z ' and W ' bosons. The analysis of the electroweak parameter bounds reveals a consistent pattern of several key observables that are especially sensitive to the effects of new physics and thus dominate the overall shape of the respective parameter contours.

  13. Global analysis of general SU(2) x SU(2) x U(1) models with precision data

    International Nuclear Information System (INIS)

    Hsieh, Ken; Yu, Jiang-Hao; Yuan, C.P.; Schmitz, Kai; Michigan State Univ., East Lansing, MI

    2010-05-01

    We present the results of a global analysis of a class of models with an extended electroweak gauge group of the form SU(2) x SU(2) x U(1), often denoted as G(221) models, which include as examples the left-right, the lepto-phobic, the hadro-phobic, the fermio-phobic, the un-unified, and the non-universal models. Using an effective Lagrangian approach, we compute the shifts to the coeffcients in the electroweak Lagrangian due to the new heavy gauge bosons, and obtain the lower bounds on the masses of the Z' and W' bosons. The analysis of the electroweak parameter bounds reveals a consistent pattern of several key observables that are especially sensitive to the effects of new physics and thus dominate the overall shape of the respective parameter contours. (orig.)

  14. Global analysis of general SU(2) x SU(2) x U(1) models with precision data

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Ken; Yu, Jiang-Hao; Yuan, C.P. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Schmitz, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy

    2010-05-15

    We present the results of a global analysis of a class of models with an extended electroweak gauge group of the form SU(2) x SU(2) x U(1), often denoted as G(221) models, which include as examples the left-right, the lepto-phobic, the hadro-phobic, the fermio-phobic, the un-unified, and the non-universal models. Using an effective Lagrangian approach, we compute the shifts to the coeffcients in the electroweak Lagrangian due to the new heavy gauge bosons, and obtain the lower bounds on the masses of the Z' and W' bosons. The analysis of the electroweak parameter bounds reveals a consistent pattern of several key observables that are especially sensitive to the effects of new physics and thus dominate the overall shape of the respective parameter contours. (orig.)

  15. Minimal Supersymmetric $SU(4) \\to SU(2)_L \\to SU(2)_R$

    CERN Document Server

    King, S F

    1998-01-01

    We present a minimal string-inspired supersymmetric $SU(4) \\times SU(2)_L potential in this model, based on a generalisation of that recently proposed by Dvali, Lazarides and Shafi. The model contains a global U(1) R-symmetry and reduces to the MSSM at low energies. However it improves on the MSSM since it explains the magnitude of its $\\mu$ term and gives a prediction for $\\tan \\beta both `cold' and `hot' dark matter candidates. A period of hybrid inflation above the symmetry breaking scale is also possible in this model. Finally it suggests the existence of `heavy' charge $\\pm e/6$ (colored) and $\\pm e/2$ (color singlet) states.

  16. SP(6) X SU(2) and SO(8) X SU(2) - symmetric fermion-dynamic model of multinucleon systems

    International Nuclear Information System (INIS)

    Baktybaev, K.

    2007-01-01

    In last years a new approach describing collective states of multinucleon system on the base of their fermion dynamic symmetry was developed. Such fermion model is broad and logical one in comparison with the phenomenological model of interacting bosons. In cut fermion S- and D- pair spaces complicated nucleons interactions are approximating in that way so multinucleon system Hamiltonian becomes a simple function of fermion generators forming corresponding Lie algebra. Correlation fermion pairs are structured in such form so its operators of birth and destruction together with a set multiband operators are formed Sp(6) and SO(8) algebra of these pairs and SU(2)-algebra for so named anomalous pairs. For convenience at the model practical application to concrete systems the dynamical-symmetric Hamiltonian is writing by means of independent Casimir operators of subgroup are reductions of a large group. It is revealed, that observed Hamiltonians besides the known SU 3 , and SO 6 asymptotic borders have also more complicated 'vibration-like' borders SO 7 , SO 5 XSU 2 and SU 2 XSO 3 . In the paper both advantages and disadvantages of these borders and some its applications to specific nuclear systems are discussing

  17. [SU(2)]3 dark matter

    Science.gov (United States)

    Ma, Ernest

    2018-05-01

    An extra SU(2)D gauge factor is added to the well-known left-right extension of the standard model (SM) of quarks and leptons. Under SU(2)L × SU(2)R × SU(2)D, two fermion bidoublets (2 , 1 , 2) and (1 , 2 , 2) are assumed. The resulting model has an automatic dark U (1) symmetry, in the same way that the SM has automatic baryon and lepton U (1) symmetries. Phenomenological implications are discussed, as well as the possible theoretical origins of this proposal.

  18. Superselection sectors of SO(N) Wess-Zumino-Witten models

    International Nuclear Information System (INIS)

    Boeckenhauer, J.

    1996-06-01

    The superselection structure of so(N) WZW models is investigated form the point of view of algebraic quantum field theory. At level 1 it turns out that the observable algebras of the WZW theory can be constructed in terms of even CAR algebras. This fact allows to give a formulation of these models close to the DHR framework. Localized endomorphisms are constructed explicitly in terms of Bogoliubov transformations, and the WZW fusion rules are proven using the DHR sector product. At level 2 it is shown that most of the sectors are realized in H NS =H NS x H NS where H NS is the Neveu-Schwarz sector of the level 1 theory. The level 2 charcters are derived and H NS is decomposed completely into tensor products of the sectors of the WZW chiral algebra and irreducible representation spaces of the coset Virasoro algebra. Crucial for this analysis is the DHR decomposition of H NS into sectors of a gauge invariant fermion algebra since the WZW chiral algebra as well as the coset Virasoro algebra are invariant under the gauge group O(2). (orig.)

  19. Z2 monopoles in the standard SU(2) lattice gauge theory model

    International Nuclear Information System (INIS)

    Mack, G.; Petkova, V.B.

    1979-04-01

    The standard SU(2) lattice gauge theory model without fermions may be considered as a Z 2 model with monopoles and fluctuating coupling constants. At low temperatures β -1 (= small bare coupling constant) the monopoles are confined. (orig.) [de

  20. Phenomenology of an SU(2SU(2)×U(1) model with lepton-flavour non-universality

    Energy Technology Data Exchange (ETDEWEB)

    Boucenna, Sofiane M. [Laboratori Nazionali di Frascati, INFN,Via Enrico Fermi 40, 100044 Frascati (Italy); Celis, Alejandro [Arnold Sommerfeld Center for Theoretical Physics, Fakultät für Physik,Ludwig-Maximilians-Universität München,Theresienstrasse 37, 80333 München (Germany); Fuentes-Martín, Javier; Vicente, Avelino [Instituto de Física Corpuscular, Universitat de València - CSIC,E-46071 València (Spain); Virto, Javier [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,CH-3012 Bern (Switzerland)

    2016-12-14

    We investigate a gauge extension of the Standard Model in light of the observed hints of lepton universality violation in b→cℓν and b→sℓ{sup +}ℓ{sup −} decays at BaBar, Belle and LHCb. The model consists of an extended gauge group SU(2){sub 1}×SU(2){sub 2}×U(1){sub Y} which breaks spontaneously around the TeV scale to the electroweak gauge group. Fermion mixing effects with vector-like fermions give rise to potentially large new physics contributions in flavour transitions mediated by W{sup ′} and Z{sup ′} bosons. This model can ease tensions in B-physics data while satisfying stringent bounds from flavour physics, and electroweak precision data. Possible ways to test the proposed new physics scenario with upcoming experimental measurements are discussed. Among other predictions, the ratios R{sub M}=Γ(B→Mμ{sup +}μ{sup −})/Γ(B→Me{sup +}e{sup −}), with M=K{sup ∗},ϕ, are found to be reduced with respect to the Standard Model expectation R{sub M}≃1.

  1. Topics in two dimensional conformal field theory and three dimensional topological lattice field theory

    International Nuclear Information System (INIS)

    Chung, Stephen-wei.

    1993-01-01

    The authors first construct new parafermions in two-dimensional conformal field theory, generalizing the Z L parafermion theories from integer L to rational L. These non-unitary parafermions have some novel features: an infinite number of currents with negative conformal dimensions for most (if not all) of them. String functions of these new parafermion theories are calculated. They also construct new representations of N = 2 superconformal field theories, whose characters are obtained in terms of these new string functions. They then generalize Felder's BRST cohomology method to construct the characters and branching functions of the SU(2) L x SU(2) K /SU(2) K+L coset theories, where one of the (K,L) is an integer. This method of obtaining the branching functions also serves as a check of their new Z L parafermion theories. The next topic is the Lagrangian formulation of conformal field theory. They construct a chiral gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R , which can be different groups. This new construction is beyond the ordinary vector gauged WZW theory, whose gauge group H is a subgroup of both G L and G R . In the special case where H L = H R , the quantum theory of chiral gauged WZW theory is equivalent to that of the vector gauged WZW theory. It can be further shown that the chiral gauged WZW theory is equivalent to [G L /H L ](z) direct-product [G R /H R ](bar z) coset models in conformal field theory. In the second half of this thesis, they construct topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, they impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two local lattice moves. Invariant solutions are in one-to-one correspondence with Hopf algebras satisfying a certain constraint

  2. Nonabelian N=2 superstrings

    International Nuclear Information System (INIS)

    Isaev, A.P.; Ivanov, E.A.

    1990-04-01

    The Green-Schwarz covariant N=2 superstring action can be consistently deduced as the action of the Wess-Zumino-Witten (WZW) sigma model defined on the direct product of two N=1, D=10 Poincare supertranslation groups. Generalizing this result, we construct new WZW sigma models on the supergroups with a nonabelian even part and interpret them as models of superstrings moving on the supergroup manifolds. We show that these models are completely integrable and in some special cases possess fermionic k-symmetry. (author). 20 refs

  3. Contour integral representations for the characters of rational conformal field theories

    International Nuclear Information System (INIS)

    Mukhi, S.; Panda, S.; Sen, A.

    1989-01-01

    We propose simple Feigin-Fuchs contour integral representations for the characters of a large class of rational conformal field theories. These include the A, D and E series SU(2) WZW theories, the A and D series c<1 minimal theories, and the k=1 SU(N) WZW theories. All these theories are characterized by the absence of the zeroes in the wronskian determinant of the characters in the interior of moduli space. This proposal is verified by several calculations. (orig.)

  4. ɛ '/ ɛ anomaly and neutron EDM in SU(2) L × SU(2) R × U(1) B- L model with charge symmetry

    Science.gov (United States)

    Haba, Naoyuki; Umeeda, Hiroyuki; Yamada, Toshifumi

    2018-05-01

    The Standard Model prediction for ɛ '/ ɛ based on recent lattice QCD results exhibits a tension with the experimental data. We solve this tension through W R + gauge boson exchange in the SU(2) L × SU(2) R × U(1) B- L model with `charge symmetry', whose theoretical motivation is to attribute the chiral structure of the Standard Model to the spontaneous breaking of SU(2) R × U(1) B- L gauge group and charge symmetry. We show that {M_W}{_R}study a correlation between ɛ ' /ɛ and the neutron EDM. We confirm that the model can solve the ɛ ' /ɛ anomaly without conflicting the current bound on the neutron EDM, and further reveal that almost all parameter regions in which the ɛ ' /ɛ anomaly is explained will be covered by future neutron EDM searches, which leads us to anticipate the discovery of the neutron EDM.

  5. Inflation and monopoles in supersymmetric SU(4)c x SU(2)L x SU(2)R

    International Nuclear Information System (INIS)

    Jeannerot, R.; Khalil, S.; Lazarides, G.; Shafi, Q.

    2000-02-01

    We show how hybrid inflation can be successfully realized in a supersymmetric model with gauge group G PS = SU(4) c x SU(2) L x SU(2) R . By including a non-renormalizable superpotential term, we generate an inflationary valley along which G PS is broken to the standard model gauge group. Thus, catastrophic production of the doubly charged magnetic monopoles, which are predicted by the model, cannot occur at the end of inflation. The results of the cosmic background explorer can be reproduced with natural values (of order 10 -3 ) of the relevant coupling constant, and symmetry breaking scale of G PS close to 10 16 GeV. The spectral index of density perturbations lies between unity and 0.94. Moreover, the μ-term is generated via a Peccei-Quinn symmetry and proton is practically stable. Baryogenesis in the universe takes place via leptogenesis. The low deuterium abundance constraint on the baryon asymmetry, the gravitino limit on the reheat temperature and the requirement of almost maximal ν μ - ν τ mixing from SuperKamiokande can be simultaneously met with m νμ , m ντ and heaviest Dirac neutrino mass determined from the large angle MSW resolution of the solar neutrino problem, the SuperKamiokande results and SU(4) c symmetry respectively. (author)

  6. Three-Index Symmetric Matter Representations of SU(2) in F-Theory from Non-Tate Form Weierstrass Models

    CERN Document Server

    Klevers, Denis

    2016-01-01

    We give an explicit construction of a class of F-theory models with matter in the three-index symmetric (4) representation of SU(2). This matter is realized at codimension two loci in the F-theory base where the divisor carrying the gauge group is singular; the associated Weierstrass model does not have the form associated with a generic SU(2) Tate model. For 6D theories, the matter is localized at a triple point singularity of arithmetic genus g=3 in the curve supporting the SU(2) group. This is the first explicit realization of matter in F-theory in a representation corresponding to a genus contribution greater than one. The construction is realized by "unHiggsing" a model with a U(1) gauge factor under which there is matter with charge q=3. The resulting SU(2) models can be further unHiggsed to realize non-Abelian G_2xSU(2) models with more conventional matter content or SU(2)^3 models with trifundamental matter. The U(1) models used as the basis for this construction do not seem to have a Weierstrass real...

  7. Diversity of off-shell twisted (4,4) multiplets in SU(2)xSU(2) harmonic superspace

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Sutulin, A.O.

    2004-01-01

    We elaborate on four different types of twisted N=(4,4) supermultiplets in the SU(2)xSU(2), 2D harmonic superspace. In the conventional N=(4,4), 2D superspace they are described by the superfields q ia , q Ia , q IA , subjected to proper differential constraints, (i, I, a, A) being the doublet indices of four groups SU(2) which form the full R-symmetry group SO(4) L xSO(4) R of N=(4,4) supersymmetry. We construct the torsionful off-shell sigma-model actions for each type of these multiplets, as well as the corresponding invariant mass terms, in an analytic subspace of the SU(2)xSU(2) harmonic superspace. As an instructive example, N=(4,4) superconformal extension of the SU(2)xU(1) WZNW sigma-model action and its massive deformation are presented for the multiplet q iA . We prove that N=(4,4) supersymmetry requires the general sigma-model action of pair of different multiplets to split into a sum of sigma-model actions of each multiplet. This phenomenon also persists if a larger number of non-equivalent multiplets are simultaneously included. We show that different multiplets may interact with each other only through mixed mass terms which can be set up for multiplets belonging to 'self-dual' pairs (q ia , q IA ) and (q Ia , q iA ). The multiplets from different pairs cannot interact at all. For a 'self-dual' pair of the twisted multiplets we give the most general form of the on-shell scalar potential

  8. SU(3)xSU(2) color symmetry and Usub(B)(1)xSUsub(f)(4) quark model of hadrons

    International Nuclear Information System (INIS)

    Khrushchov, V.V.

    1982-01-01

    A quark model with a generalized color group SUsub(c)(3)xSU'sub(c)(2) is treated in the framework of the SUsub(f)(4)xUsub(B)(1) symnetry of strong interactions. The model contains twelve standard u, d, s, c quarks and new quarks belonging to representation 6 of the SU(4) group. The properties of new quarks are considered with respect to the color group and some properties of the exotic states, predicted by the model are presented

  9. Higher spin currents in Wolf space. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Changhyun [Department of Physics, Kyungpook National University,Taegu 702-701 (Korea, Republic of)

    2014-03-20

    For the N=4 superconformal coset theory described by ((SU(N+2))/(SU(N))) (that contains a Wolf space) with N=3, the N=2 WZW affine current algebra with constraints is obtained. The 16 generators of the large N=4 linear superconformal algebra are described by those WZW affine currents explicitly. By factoring out four spin-(1/2) currents and the spin-1 current from these 16 generators, the remaining 11 generators (spin-2 current, four spin-(3/2) currents, and six spin-1 currents) corresponding to the large N=4 nonlinear superconformal algebra are obtained. Based on the recent work by Gaberdiel and Gopakumar on the large N=4 holography, the extra 16 currents, with spin contents (1,(3/2),(3/2),2), ((3/2),2,2,(5/2)), ((3/2),2,2,(5/2)), and (2,(5/2),(5/2),3) described in terms of N=2 multiplets, are obtained and realized by the WZW affine currents. As a first step towards N=4W algebra (which is NOT known so far), the operator product expansions (OPEs) between the above 11 currents and these extra 16 higher spin currents are found explicitly. It turns out that the composite fields with definite U(1) charges, made of above (11+16) currents (which commute with the Wolf space subgroup SU(N=3)×SU(2)×U(1) currents), occur in the right hand sides of these OPEs.

  10. Three-index symmetric matter representations of SU(2) in F-theory from non-Tate form Weierstrass models

    Energy Technology Data Exchange (ETDEWEB)

    Klevers, Denis [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Taylor, Washington [Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue Cambridge, MA 02139 (United States)

    2016-06-29

    We give an explicit construction of a class of F-theory models with matter in the three-index symmetric (4) representation of SU(2). This matter is realized at codimension two loci in the F-theory base where the divisor carrying the gauge group is singular; the associated Weierstrass model does not have the form associated with a generic SU(2) Tate model. For 6D theories, the matter is localized at a triple point singularity of arithmetic genus g=3 in the curve supporting the SU(2) group. This is the first explicit realization of matter in F-theory in a representation corresponding to a genus contribution greater than one. The construction is realized by “unHiggsing” a model with a U(1) gauge factor under which there is matter with charge q=3. The resulting SU(2) models can be further unHiggsed to realize non-Abelian G{sub 2SU(2) models with more conventional matter content or SU(2){sup 3} models with trifundamental matter. The U(1) models used as the basis for this construction do not seem to have a Weierstrass realization in the general form found by Morrison-Park, suggesting that a generalization of that form may be needed to incorporate models with arbitrary matter representations and gauge groups localized on singular divisors.

  11. Vacuum expectation values of Higgs scalars in a SU(2)/sub L/ x SU(2)/sub R/ x U(1) gauge model

    International Nuclear Information System (INIS)

    Kitazoe, T.; Mainland, G.B.; Tanaka, K.

    1979-01-01

    We determine the vacuum expectation values of the Higgs scalars within the framework of a six-quark SU(2)/sub L/ x SU(2)/sub R/ x U(1) gauge model after the imposition of discrete symmetries that are necessary in order to express the Cabibbo angle in terms of quark mass ratios and phases of the vacuum expectation values. We find both real and complex solutions for the vacuum expectation values depending on the relative values of the parameters in the Higgs potential

  12. Vacuum expectation values of Higgs scalars in a SU(2)/sub L/ X SU(2)/sub R/ X U(1) gauge model

    International Nuclear Information System (INIS)

    Kitazoe, T.; Mainland, G.B.; Tanaka, K.

    1978-01-01

    The vacuum expectation values of the Higgs scalars are determined within the framework of a six quark SU(2)/sub L/ x SU(2)/sub R/ x U(1) gauge model after the imposition of discrete symmetrics that are necessary in order to express the Cabibbo angle in terms of quark mass ratios and phases of the vacuum expectation values. Both real and complex solutions are found for the vacuum expectation values depending on the relative values of the parameters in the Higgs potential

  13. Wess-Zumino-Witten term on the lattice

    International Nuclear Information System (INIS)

    Fujiwara, Takanori; Suzuki, Hiroshi; Matsui, Kosuke; Yamamoto, Masaru

    2003-01-01

    We construct the Wess-Zumino-Witten (WZW) term in lattice gauge theory by using a Dirac operator which obeys the Ginsparg-Wilson relation. Topological properties of the WZW term known in the continuum are reproduced on the lattice as a consequence of a non-trivial topological structure of the space of admissible lattice gauge fields. In the course of this analysis, we observe that the gauge anomaly generally implies that there is no basis of a Weyl fermion which leads to a single-valued expectation value in the fermion sector. The lattice Witten term, which carries information of a gauge path along which the gauge anomaly is integrated, is separated from the WZW term and the multivaluedness of the Witten term is shown to be related to the homotopy group π 2n+1 (G). We also discuss the global SU(2) anomaly on the basis of the WZW term. (author)

  14. Classification of three-family grand unification in string theory. II. The SU(5) and SU(6) models

    International Nuclear Information System (INIS)

    Kakushadze, Z.; Tye, S.H.

    1997-01-01

    Requiring that supersymmetric SU(5) and SU(6) grand unifications in the heterotic string theory must have three chiral families, adjoint (or higher representation) Higgs fields in the grand unified gauge group, and a non-Abelian hidden sector, we construct such string models within the framework of free conformal field theory and asymmetric orbifolds. Within this framework, we construct all such string models via Z 6 asymmetric orbifolds that include a Z 3 outerautomorphism, the latter yielding a level-three current algebra for the grand unification gauge group SU(5) or SU(6). We then classify all such Z 6 asymmetric orbifolds that result in models with a non-Abelian hidden sector. All models classified in this paper have only one adjoint (but no other higher representation) Higgs field in the grand unified gauge group. This Higgs field is neutral under all other gauge symmetries. The list of hidden sectors for three-family SU(6) string models are SU(2), SU(3), and SU(2)circle-times SU(2). In addition to these, three-family SU(5) string models can also have an SU(4) hidden sector. Some of the models have an apparent anomalous U(1) gauge symmetry. copyright 1997 The American Physical Society

  15. Creation and annihilation operators for SU(3) in an SO(6,2) model

    International Nuclear Information System (INIS)

    Bracken, A.J.; MacGibbon, J.H.

    1984-01-01

    Creation and annihilation operators are defined which are Wigner operators (tensor shift operators) for SU(3). While the annihilation operators are simply boson operators, the creation operators are cubic polynomials in boson operators. Together they generate under commutation the Lie algebra of SO(6,2). A model for SU(3) is defined. The different SU(3) irreducible representations appear explicitly as manifestly covariant, irreducible tensors, whose orthogonality and normalisation properties are examined. Other Wigner operators for SU(3) can be constructed simply as products of the new creation and annihilation operators, or sums of such products. (author)

  16. The SU(2 vertical stroke 3) spin chain sigma model

    International Nuclear Information System (INIS)

    Hernandez, R.; Lopez, E.

    2005-01-01

    The one-loop planar dilatation operator of N = 4 supersymmetric Yang-Mills is isomorphic to the hamiltonian of an integrable PSU(2,2 vertical stroke 4) spin chain. We construct the non-linear sigma model describing the continuum limit of the SU(2 vertical stroke 3) subsector of the N = 4 chain. We explicitly identify the spin chain sigma model with the one for a superstring moving in AdS 5 x S 5 with large angular momentum along the five-sphere. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  17. SU (2) with fundamental fermions and scalars

    DEFF Research Database (Denmark)

    Hansen, Martin; Janowski, Tadeusz; Pica, Claudio

    2018-01-01

    We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness...... the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90...

  18. On the SU(2 vertical stroke 1) WZNW model and its statistical mechanics applications

    Energy Technology Data Exchange (ETDEWEB)

    Saleur, H [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique; [University of Southern California, Los Angeles, CA (United States). Dept. of Physics; Schomerus, V [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-11-15

    Motivated by a careful analysis of the Laplacian on the supergroup SU(2 vertical stroke 1) we formulate a proposal for the state space of the SU(2 vertical stroke 1) WZNW model. We then use properties of sl(2 vertical stroke 1) characters to compute the partition function of the theory. In the special case of level k=1 the latter is found to agree with the properly regularized partition function for the continuum limit of the integrable sl(2 vertical stroke 1)3- anti 3 super-spin chain. Some general conclusions applicable to other WZNW models (in particular the case k=-1/2) are also drawn. (orig.)

  19. SU(2) with fundamental fermions and scalars

    Science.gov (United States)

    Hansen, Martin; Janowski, Tadeusz; Pica, Claudio; Toniato, Arianna

    2018-03-01

    We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness models featuring strongly interacting scalar fields in addition to fermions. Here we describe the lattice setup for our study of this class of models and a first exploration of the lattice phase diagram. In particular we then investigate how the presence of a strongly coupled scalar field affects the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90

  20. Decoupling of parity- and SU(2)/sub R/-breaking scales: A new approach to left-right symmetric models

    International Nuclear Information System (INIS)

    Chang, D.; Mohapatra, R.N.; Parida, M.K.

    1984-01-01

    A new approach to left-right symmetric models is proposed, where the left-right discrete-symmetry- and SU(2)/sub R/-breaking scales are decoupled from each other. This changes the spectrum of physical Higgs bosons which leads to different patterns for gauge hierarchies in SU(2)/sub L/xSU(2)/sub R/xSU(4)/sub C/ and SO(10) models. Most interesting are two SO(10) symmetry-breaking chains with an intermediate U(1)/sub R/ symmetry. These are such as to provide new motivation to search for ΔB = 2 and right-handed current effects at low energies

  1. Higher spin currents in orthogonal Wolf space

    International Nuclear Information System (INIS)

    Ahn, Changhyun; Paeng, Jinsub

    2015-01-01

    For the N=4 superconformal coset theory by ((SO(N+4))/(SO(N)×SU(2)))×U(1) (that contains an orthogonal Wolf space) with N = 4, the N=2 WZW affine current algebra is obtained. The 16 generators (or 11 generators) of the large N=4 linear (or nonlinear) superconformal algebra are described by these WZW affine currents explicitly. Along the line of large N=4 holography, the extra 16 currents with spins (2,(5/2),(5/2),3), ((5/2),3,3,(7/2)), ((5/2),3,3,(7/2)), and (3,(7/2),(7/2),4) are obtained in terms of the WZW affine currents. The lowest spin of this N=4 multiplet is two rather than one, which is for a unitary Wolf space. The operator product expansions between the above 11 currents and these extra 16 higher spin currents are found explicitly. (paper)

  2. Differential equation for genus-two characters in arbitrary rational conformal field theories

    International Nuclear Information System (INIS)

    Mathur, S.D.; Sen, A.

    1989-01-01

    We develop a general method for deriving ordinary differential equations for the genus-two ''characters'' of an arbitrary rational conformal field theory using the hyperelliptic representation of the genus-two moduli space. We illustrate our method by explicitly deriving the character differential equations for k=1 SU(2), G 2 , and F 4 WZW models. Our method provides an intrinsic definition of conformal field theories on higher genus Riemann surfaces. (orig.)

  3. Level-rank duality of untwisted and twisted D-branes

    International Nuclear Information System (INIS)

    Naculich, Stephen G.; Schnitzer, Howard J.

    2006-01-01

    Level-rank duality of untwisted and twisted D-branes of WZW models is explored. We derive the relation between D0-brane charges of level-rank dual untwisted D-branes of su-bar (N) K and sp-bar (n) k , and of level-rank dual twisted D-branes of su-bar (2n+1) 2k+1 . The analysis of level-rank duality of twisted D-branes of su-bar (2n+1) 2k+1 is facilitated by their close relation to untwisted D-branes of sp-bar (n) k . We also demonstrate level-rank duality of the spectrum of an open string stretched between untwisted or twisted D-branes in each of these cases

  4. Dark revelations of the [SU(3)]3 and [SU(3)]4 gauge extensions of the standard model

    Science.gov (United States)

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2018-02-01

    Two theoretically well-motivated gauge extensions of the standard model are SU(3)C × SU(3)L × SU(3)R and SU(3)q × SU(3)L × SU(3)l × SU(3)R, where SU(3)q is the same as SU(3)C and SU(3)l is its color leptonic counterpart. Each has three variations, according to how SU(3)R is broken. It is shown here for the first time that a built-in dark U(1)D gauge symmetry exists in all six versions. However, the corresponding symmetry breaking pattern does not reduce properly to that of the standard model, unless an additional Z2‧ symmetry is defined, so that U(1)D ×Z2‧ is broken to Z2 dark parity. The available dark matter candidates in each case include fermions, scalars, as well as vector gauge bosons. This work points to the possible unity of matter with dark matter, the origin of which may not be ad hoc.

  5. Dark revelations of the [SU(3]3 and [SU(3]4 gauge extensions of the standard model

    Directory of Open Access Journals (Sweden)

    Corey Kownacki

    2018-02-01

    Full Text Available Two theoretically well-motivated gauge extensions of the standard model are SU(3C×SU(3L×SU(3R and SU(3q×SU(3L×SU(3l×SU(3R, where SU(3q is the same as SU(3C and SU(3l is its color leptonic counterpart. Each has three variations, according to how SU(3R is broken. It is shown here for the first time that a built-in dark U(1D gauge symmetry exists in all six versions. However, the corresponding symmetry breaking pattern does not reduce properly to that of the standard model, unless an additional Z2′ symmetry is defined, so that U(1D×Z2′ is broken to Z2 dark parity. The available dark matter candidates in each case include fermions, scalars, as well as vector gauge bosons. This work points to the possible unity of matter with dark matter, the origin of which may not be ad hoc.

  6. Comparison of lattice gauge theories with gauge groups Z2 and SU(2)

    International Nuclear Information System (INIS)

    Mack, G.; Petkova, B.

    1978-11-01

    We study a model of a pure Yang Mills theory with gauge group SU(2) on a lattice in Euclidean space. We compare it with the model obtained by restricting varibales to 2 . An inequality relating expectation values of the Wilson loop integral in the two theories is established. It shows that confinement of static quarks is true in our SU(2) model whenever it holds for the corresponding 2 -model. The SU(2) model is shown to have high and low temperature phases that are distinguished by a qualitatively different behavior of the t'Hooft disorder parameter. (orig.) [de

  7. Quantum tunneling in the driven SU(2) model

    International Nuclear Information System (INIS)

    Kaminski, P.; Ploszajczak, M.; Arvieu, R.

    1992-01-01

    The tunneling rate is investigated in the quantum and classical limits using an exactly soluble driven SU(2) model. The tunneling rate is obtained by solving the time-dependent Schroedinger equation and projecting the exact wave-function on the space of coherent states using the Husimi distribution. The presence of the classical chaotic structures leads to the enormous growth in the tunneling rate. The results suggest the existence of a new mechanism of quantum tunneling, involving transport of the wave-function between stable regions of the classical phase-space due to a coupling with 'chaotic' levels. (author) 17 refs., 13 figs

  8. Simulating the SU(2) sector of the standard model with dynamical fermions

    International Nuclear Information System (INIS)

    Lee, I. Hsiu.

    1988-01-01

    The two-generation SU(2) sector of the standard model with zero Yukawa couplings is studied on the lattice. The results from analytic studies and simulations with quenched fermions are reviewed. The methods and results of a Langevin simulation with dynamical fermions are presented. Implications for the strongly coupled standard model are mentioned. 23 refs

  9. Minimal unitary representation of D(2,1;λ) and its SU(2) deformations and d=1, N=4 superconformal models

    International Nuclear Information System (INIS)

    Govil, Karan; Gunaydin, Murat

    2013-01-01

    Quantization of the geometric quasiconformal realizations of noncompact groups and supergroups leads directly to their minimal unitary representations (minreps). Using quasiconformal methods massless unitary supermultiplets of superconformal groups SU(2,2|N) and OSp(8 ⁎ |2n) in four and six dimensions were constructed as minreps and their U(1) and SU(2) deformations, respectively. In this paper we extend these results to SU(2) deformations of the minrep of N=4 superconformal algebra D(2,1;λ) in one dimension. We find that SU(2) deformations can be achieved using n pair of bosons and m pairs of fermions simultaneously. The generators of deformed minimal representations of D(2,1;λ) commute with the generators of a dual superalgebra OSp(2n ⁎ |2m) realized in terms of these bosons and fermions. We show that there exists a precise mapping between symmetry generators of N=4 superconformal models in harmonic superspace studied recently and minimal unitary supermultiplets of D(2,1;λ) deformed by a pair of bosons. This can be understood as a particular case of a general mapping between the spectra of quantum mechanical quaternionic Kähler sigma models with eight super symmetries and minreps of their isometry groups that descends from the precise mapping established between the 4d, N=2 sigma models coupled to supergravity and minreps of their isometry groups.

  10. Operator realization of the SU(2) WZNW model

    International Nuclear Information System (INIS)

    Furlan, P.; Hadjiivanov, L.K.; Todorov, I.T.

    1996-01-01

    Decoupling the chiral dynamics in the canonical approach to the WZNW model requires an extended phase space that includes left and right monodromy variables M and M. Earlier work on the subject, which traced back the quantum group symmetry of the model to the Lie-Poisson symmetry of the chiral symplectic form, left some open questions: - How to reconcile the necessity to set MM -1 =1 (in order to recover the monodromy invariance of the local 2D group valued field g=uu) with the fact the M and M obey different exchange relations? - What is the status of the quantum symmetry in the 2D theory in which the chiral fields u(x-t) and u(x+t) commute? - Is there a consistent operator formalism in the chiral (and the extended 2D) theory in the continuum limit? We propose a constructive affirmative answer to these questions for G=SU(2) by presenting the quantum fields u and u as sums of products of chiral vertex operators and q-Bose creation and annihilation operators. (orig.)

  11. Hyperon resonances in SU(3) soliton models

    International Nuclear Information System (INIS)

    Scoccola, N.N.

    1990-01-01

    Hyperon resonances excited in kaon-nucleon scattering are investigated in the framework of an SU(3) soliton model in which kaon degrees of freedom are treated as small fluctuations around an SU(2) soliton. For partial waves l≥2 the model predicts correctly the quantum numbers and average excitation energies of most of the experimentally observed Λ and Σ resonances. Some disagreements are found for lower partial waves. (orig.)

  12. su(1,2) Algebraic Structure of XYZ Antiferromagnetic Model in Linear Spin-Wave Frame

    International Nuclear Information System (INIS)

    Jin Shuo; Xie Binghao; Yu Zhaoxian; Hou Jingmin

    2008-01-01

    The XYZ antiferromagnetic model in linear spin-wave frame is shown explicitly to have an su(1,2) algebraic structure: the Hamiltonian can be written as a linear function of the su(1,2) algebra generators. Based on it, the energy eigenvalues are obtained by making use of the similar transformations, and the algebraic diagonalization method is investigated. Some numerical solutions are given, and the results indicate that only one group solution could be accepted in physics

  13. SU (N) lattice integrable models and modular invariance

    International Nuclear Information System (INIS)

    Zuber, J.B.; Di Francesco, P.

    1989-01-01

    We first review some recent work on the construction of RSOS SU (N) critical integrable models. The models may be regarded as associated with a graph, extending from SU (2) to SU (N) an idea of Pasquier, or alternatively, with a representation of the fusion algebra over non-negative integer valued matrices. Some consistency conditions that the Boltzmann weights of these models must satisfy are then pointed out. Finally, the algebraic connections between (a subclass of) the admissible graphs and (a subclass of) modular invariants are discussed, based on the theory of C-algebras. The case of G 2 is also treated

  14. Study of Λ parameters and crossover phenomena in SU(N) x SU(N) sigma models in two dimensions

    International Nuclear Information System (INIS)

    Shigemitsu, J.; Kogut, J.B.

    1981-01-01

    The spin system analogues of recent studies of the string tension and Λ parameters of SU(N) gauge theories in 4 dimensions are carried out for the SU(N) x SU(N) and O(N) models in 2 dimensions. The relations between the Λ parameters of both the Euclidean and Hamiltonian formulation of the lattice models and the Λ parameter of the continuum models are obtained. The one loop finite renormalization of the speed of light in the lattice Hamiltonian formulations of the O(N) and SU(N) x SU(N) models is calculated. Strong coupling calculations of the mass gaps of these spin models are done for all N and the constants of proportionality between the gap and the Λ parameter of the continuum models are obtained. These results are contrasted with similar calculations for the SU(N) gauge models in 3+1 dimensions. Identifying suitable coupling constants for discussing the N → infinity limits, the numerical results suggest that the crossover from weak to strong coupling in the lattice O(N) models becomes less abrupt as N increases while the crossover for the SU(N) x SU(N) models becomes more abrupt. The crossover in SU(N) gauge theories also becomes more abrupt with increasing N, however, at an even greater rate than in the SU(N) x SU(N) spin models

  15. Chiral gauged Wess-Zumino-Witten theories and coset models in conformal field theory

    International Nuclear Information System (INIS)

    Chung, S.; Tye, S.H.

    1993-01-01

    The Wess-Zumino-Witten (WZW) theory has a global symmetry denoted by G L direct-product G R . In the standard gauged WZW theory, vector gauge fields (i.e., with vector gauge couplings) are in the adjoint representation of the subgroup H contained-in G. In this paper, we show that, in the conformal limit in two dimensions, there is a gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R where H L and H R can be different groups. In the special case where H L =H R , the theory is equivalent to vector gauged WZW theory. For general groups H L and H R , an examination of the correlation functions (or more precisely, conformal blocks) shows that the chiral gauged WZW theory is equivalent to (G/H L ) L direct-product(G/H R ) R coset models in conformal field theory

  16. Operator realization of the SU(2) WZNW model

    International Nuclear Information System (INIS)

    Furlan, P.; Todorov, I.T.

    1995-12-01

    Decoupling the chiral dynamics in the canonical approach to the WZNW model requires an extended phase space that includes left and right monodromy variables M and M-bar. Earlier work on the subject, which traced back the quantum group symmetry of the model to the Lie-Poisson symmetry of the chiral symplectic form, left some open questions: How to reconcile the necessity to set M M-bar -1 = 1 (in order to recover the monodromy invariance of the local 2D group valued field g = uu-bar) with the fact the M and M-bar obey different exchange relations? What is the status of the quantum symmetry in the 2D theory in which the chiral fields u(x-t) and u-bar(x+t) commute? Is there a consistent operator formalism in the chiral (and the extended 2D) theory in the continuum limit? We propose a constructive affirmative answer to these questions for G = SU(2) by presenting the quantum field u and u-bar as sums of products of chiral vertex operators and q Bose creation and annihilation operators. (author). 17 refs

  17. Wess-Zumino-Witten model as a theory of free fields. Part 4

    International Nuclear Information System (INIS)

    Gerasimov, A.; Morozov, A.; Ol'shanetskij, M.; Marshakov, A.; Shatashvili, S.

    1989-01-01

    The free field representation of Wess-Zumino-Witten (WZW) model is generalized to the case of arbitrary Riemann surface. The multiloop calculations for free fields on Riemann surfaces are discussed. The special attention is attracted to the bosonic βγ-system, which appears in the bosonization scheme for the Kac-Moody current algebras. We consider the general properties of the multiloop blocks of the WZW and in particular we explain, how the one-loop characters are reproduced by our methods. 21 refs.; 2 figs.; 1 tab

  18. Quantum tunneling in the periodically driven SU(2) model

    International Nuclear Information System (INIS)

    Arvieu, R.

    1991-01-01

    The tunneling rate is investigated in the quantum and classical limits using an exactly soluble, periodically driven SU(2) model. The tunneling rate is obtained by solving the time-dependent Schroedinger equation and projecting the exact wave-function on the space of coherent states using the Husimi distribution. The oscillatory, coherent tunneling of the wave-function between two Hartree-Fock minima is observed. The driving plays an important role increasing the tunneling rate by orders of magnitude as compared to the semiclassical results. This is due to the dominant role of excited states in the driven quantum tunneling. (author) 15 refs., 4 figs

  19. Probing neutrino and Higgs sectors in { SU(2) }_1 × { SU(2) }_2 × { U(1) }_Y model with lepton-flavor non-universality

    Science.gov (United States)

    Hue, L. T.; Arbuzov, A. B.; Ngan, N. T. K.; Long, H. N.

    2017-05-01

    The neutrino and Higgs sectors in the { SU(2) }_1 × { SU(2) }_2 × { U(1) }_Y model with lepton-flavor non-universality are discussed. We show that active neutrinos can get Majorana masses from radiative corrections, after adding only new singly charged Higgs bosons. The mechanism for the generation of neutrino masses is the same as in the Zee models. This also gives a hint to solving the dark matter problem based on similar ways discussed recently in many radiative neutrino mass models with dark matter. Except the active neutrinos, the appearance of singly charged Higgs bosons and dark matter does not affect significantly the physical spectrum of all particles in the original model. We indicate this point by investigating the Higgs sector in both cases before and after singly charged scalars are added into it. Many interesting properties of physical Higgs bosons, which were not shown previously, are explored. In particular, the mass matrices of charged and CP-odd Higgs fields are proportional to the coefficient of triple Higgs coupling μ . The mass eigenstates and eigenvalues in the CP-even Higgs sector are also presented. All couplings of the SM-like Higgs boson to normal fermions and gauge bosons are different from the SM predictions by a factor c_h, which must satisfy the recent global fit of experimental data, namely 0.995<|c_h|<1. We have analyzed a more general diagonalization of gauge boson mass matrices, then we show that the ratio of the tangents of the W-W' and Z-Z' mixing angles is exactly the cosine of the Weinberg angle, implying that number of parameters is reduced by 1. Signals of new physics from decays of new heavy fermions and Higgs bosons at LHC and constraints of their masses are also discussed.

  20. Bootstrapping non-commutative gauge theories from L∞ algebras

    Science.gov (United States)

    Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter

    2018-05-01

    Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.

  1. The SU(4), SU(2)xSU(2) chain

    International Nuclear Information System (INIS)

    Partensky, A.; Maguin, C.

    1976-11-01

    The main results of a work concerning the calculation of the matrices of the generators of SU(4) in a given (p,p',p'') irreducible representation, in which the states are labelled by the spin quantum numbers, S, MS, are given. Then the SU(4) algebra is defined, the labelling problem of the states is discussed and the Racah formula transformed, which facilitates the calculation. The semi-reduced matrix elements of the Q, Vsup(Q) and Wsup(Q) vectors are defined. Finally an explicit formulation of the matrix elements of Q is given, in the particular case T=p for any S, or S=p for any T; the example of the (3 2 0) irreducible representation is treated

  2. How supersymmetry naturally suppresses Higgs-boson-mediated baryon-number violation in SU/sub c/(4) x SU/sub L/(2) x SU/sub R/(2) and SO(10)

    International Nuclear Information System (INIS)

    Gipson, J.M.; Marshak, R.E.

    1984-01-01

    The supersymmetric versions of the left-right-symmetric SU/sub C/(4) x SU/sub L/(2) x SU/sub R/(2) Pati-Salam theory and the grand unified SO(10) theory are studied. In the minimal versions of these models the requirement of soft or spontaneous breaking of supersymmetry, together with renormalizibility, leads to an accidental global U(1) symmetry which leads to baryon-number conservation. A necessary condition for this symmetry to be broken is the existence of fields which are antisymmetric in at least two SU/sub C/(4) indices. The introduction of such fields may allow for observable neutron oscillation

  3. Symmetry breaking in a five-dimensional SU(5) model

    International Nuclear Information System (INIS)

    Svetovoi, V.B.; Khariton, N.G.

    1986-01-01

    Two-state symmetry breaking in a SU(5) model in a space with M 4 x S 1 topology is discussed. The scalar 24-plet is a component of a five-vector and acquires a nonzero vacuum expectation value at the quantum level. The vacuum differs substantially from that of the standard SU(5) model. Its orientation in the SU(5) space and absolute magnitude are fixed uniquely. The second stage of the symmetry breaking occurs on account of a five-scalar in the fundamental representation of SU(5) by means of the Weinberg mechanism. The small mass of the scalar SU(2) doublet is not explained

  4. Unconstrained SU(2) and SU(3) Yang-Mills classical mechanics

    International Nuclear Information System (INIS)

    Dahmen, B.; Raabe, B.

    1992-01-01

    A systematic study of contraints in SU(2) and SU(3) Yang-Mills classical mechanics is performed. Expect for the SU(2) case with spatial angular momenta they turn out to be nonholonomic. The complete elimination of the unphysical gauge and rotatinal degrees of freedom is achieved using Dirac's constraint formalism. We present an effective unconstrained formulation of the general SU(2) Yang-Mills classical mechanics as well as for SU(3) in the subspace of vanishing spatial angular momenta that is well suited for further explicit dynamical investigations. (orig.)

  5. Alternative [SU(3]4 model of leptonic color and dark matter

    Directory of Open Access Journals (Sweden)

    Corey Kownacki

    2018-03-01

    Full Text Available The alternative [SU(3]4 model of leptonic color and dark matter is discussed. It unifies at MU∼1014 GeV and has the low-energy subgroup SU(3q×SU(2SU(2SU(2R×U(1X with (u,hR instead of (u,dR as doublets under SU(2R. It has the built-in global U(1 dark symmetry which is generalized B–L. In analogy to SU(3q quark triplets, it has SU(2l hemion doublets which have half-integral charges and are confined by SU(2l gauge bosons (stickons. In analogy to quarkonia, their vector bound states (hemionia are uniquely suited for exploration at a future e−e+ collider.

  6. Alternative [SU(3)]4 model of leptonic color and dark matter

    Science.gov (United States)

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2018-03-01

    The alternative [ SU (3) ] 4 model of leptonic color and dark matter is discussed. It unifies at MU ∼1014 GeV and has the low-energy subgroup SU(3)q × SU(2)l × SU(2)L × SU(2)R × U(1)X with (u , h) R instead of (u , d) R as doublets under SU(2)R. It has the built-in global U (1) dark symmetry which is generalized B- L. In analogy to SU(3)q quark triplets, it has SU(2)l hemion doublets which have half-integral charges and are confined by SU(2)l gauge bosons (stickons). In analogy to quarkonia, their vector bound states (hemionia) are uniquely suited for exploration at a future e-e+ collider.

  7. Spontaneously broken SU(2) gauge invariance and the ΔI=1/2 rule

    International Nuclear Information System (INIS)

    Shito, Okiyasu

    1977-01-01

    A model of nonleptonic weak interactions is proposed which is based on spontaneously broken SU(2) gauge invariance. The SU(2) group is taken analogously to the U-spin. To this scheme, the source of nonleptonic decays consists of only neutral currents, and violation of strangeness stems from weak vector boson mixings. The model can provide a natural explanation of the ΔI=1/2 rule and of the bulk of the ΔI=1/2 nonleptonic amplitude. As a consequence, a picture is obtained that weak interactions originate in spontaneously broken gauge invariance under orthogonal SU(2) groups. Finally, a possibility of unifying weak and electromagnetic interactions is indicated. (auth.)

  8. Quantum SU(2|1) supersymmetric Calogero-Moser spinning systems

    Science.gov (United States)

    Fedoruk, Sergey; Ivanov, Evgeny; Lechtenfeld, Olaf; Sidorov, Stepan

    2018-04-01

    SU(2|1) supersymmetric multi-particle quantum mechanics with additional semi-dynamical spin degrees of freedom is considered. In particular, we provide an N=4 supersymmetrization of the quantum U(2) spin Calogero-Moser model, with an intrinsic mass parameter coming from the centrally-extended superalgebra \\widehat{su}(2\\Big|1) . The full system admits an SU(2|1) covariant separation into the center-of-mass sector and the quotient. We derive explicit expressions for the classical and quantum SU(2|1) generators in both sectors as well as for the total system, and we determine the relevant energy spectra, degeneracies, and the sets of physical states.

  9. Quantum mechanics on space with SU(2) fuzziness

    Energy Technology Data Exchange (ETDEWEB)

    Fatollahi, Amir H.; Shariati, Ahmad; Khorrami, Mohammad [Alzahra University, Department of Physics, Tehran (Iran)

    2009-04-15

    Quantum mechanics of models is considered which are constructed in spaces with Lie algebra type commutation relations between spatial coordinates. The case is specialized to that of the group SU(2), for which the formulation of the problem via the Euler parameterization is also presented. SU(2)-invariant systems are discussed, and the corresponding eigenvalue problem for the Hamiltonian is reduced to an ordinary differential equation, as is the case with such models on commutative spaces. (orig.)

  10. Quantum mechanics on space with SU(2) fuzziness

    International Nuclear Information System (INIS)

    Fatollahi, Amir H.; Shariati, Ahmad; Khorrami, Mohammad

    2009-01-01

    Quantum mechanics of models is considered which are constructed in spaces with Lie algebra type commutation relations between spatial coordinates. The case is specialized to that of the group SU(2), for which the formulation of the problem via the Euler parameterization is also presented. SU(2)-invariant systems are discussed, and the corresponding eigenvalue problem for the Hamiltonian is reduced to an ordinary differential equation, as is the case with such models on commutative spaces. (orig.)

  11. Unconstrained SU(2) and SU(3) Yang-Mills clasical mechanics

    International Nuclear Information System (INIS)

    Dahmen, B.; Raabe, B.

    1992-01-01

    A systematic study of constraints in SU(2) and SU(3) Yang-Mills classical mechanics is performed. Expect for the SU(2) case with vanishing spatial angular momenta they turn out to be non-holonomic. Using Dirac's constraint formalism we achieve a complete elimination of the unphysical gauge and rotational degrees of freedom. This leads to an effective unconstrained formulation both for the full SU(2) Yang-Mills classical mechanics and for the SU(3) case in the subspace of vanishing spatial angular momenta. We believe that our results are well suited for further explicit dynamical investigations. (orig.)

  12. Simulating the electroweak phase transition in the SU(2) Higgs model

    International Nuclear Information System (INIS)

    Fodor, Z.; Hein, J.; Jansen, K.; Jaster, A.; Montvay, I.

    1994-09-01

    Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and its strength is rapidly decreasing with increasing Higgs boson mass. In order to control the systematic errors, we also perform studies of scaling violations and of finite volume effects. (orig.)

  13. Effects of renormalizing the chiral SU(2) quark-meson model

    Science.gov (United States)

    Zacchi, Andreas; Schaffner-Bielich, Jürgen

    2018-04-01

    We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model, where the mean field approximation is compared to the renormalized version for quarks and mesons. In a combined approach at finite temperature, all the renormalized versions show a crossover transition. The inclusion of different renormalization scales leave the order parameter and the mass spectra nearly untouched but strongly influence the thermodynamics at low temperatures and around the phase transition. We find unphysical results for the renormalized version of mesons and the combined one.

  14. Fermionization of strings, and their conformal invariant solutions

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.

    1987-01-01

    The fermionic description of bosonic string theory, which turns out to be a Thirring model, is given. The relation of continuous spin to compactification is discussed, and regular solutions with finitely many fields can be found if the spin is a rational number. The relation between W.Z.W. theory and SU (n) Thirring model is also treated. (Author) [pt

  15. Thermodynamic potential with condensate fields in an SU(2) model of QCD

    International Nuclear Information System (INIS)

    Ebert, D.

    1996-06-01

    We calculate the thermodynamic potential of the quark-gluon plasma in an SU(2) model of QCD, taking into account the gluon condensate configuration with a constant A 4 -potential and a uniform chromomagnetic field H. Within this scheme the interplay of condensate fields, as well as the role of quarks in the possible dynamical stabilization of the system is investigated. (orig.)

  16. The q-deformed SU(2) Heisenberg model in 3-dimensions

    International Nuclear Information System (INIS)

    Lu Zhongyi; Yan Hong.

    1991-07-01

    A q-deformed SU(2) Heisenberg (3-dimensional) spin model is set up, and the q-deformed spin-wave solution is obtained through the q-analogous Holstein-Primakoff transformation. The result is given for small γ = ln q, which is the quantity characterizing the nonlinearity of the Hamiltonian. A mean-field treatment is arranged to preserved (at least some of) the nonlinearity, and the ordinary ferromagnet ground state is shown as the exact ground state of the new system. Interesting results are obtained for this nonlinear model: (i) There is an energy gap between the ground state and the first excited one, thus the ground state is stable under small perturbation of the background; (ii) the specific heat per volume is modified by a small term proportional to the 1/2-th power of temperature and the square of γ, which is qualitatively different from the conventional model, and (iii) the magnetization M(T) is modified by a factor that depends on γ. (author). 16 refs

  17. SU(2)xSU(2) coupling rule and a tensor glueball candidate

    International Nuclear Information System (INIS)

    Lanik, J.

    1984-01-01

    The data on the decay of THETA(1640) particles are considered. It is shown that the SU(2)xSU(2) mechanism for coupling of theta(1640) tensor glueball candidate to pseudoscalar Gold-stone mesons is in a remarkable agreement with existing experimental data

  18. The four point correlations of all primary operators of the d=2 conformally invariant SU(2) sigma-model with Wess-Zumino term

    International Nuclear Information System (INIS)

    Christe, P.; Flume, R.

    1986-05-01

    We derive a contour integral representation for the four point correlations of all primary operators in the conformally invariant two-dimensional SU(2) sigma-model with Wess-Zumino term. The four point functions are identical in structure with those found in some special degenerate operator algebras with central Virasoro charge smaller than one. Using methods of Dotsenko and Fateev we evaluate for irrational values of the central SU(2) Kac-Moody charge the expansion coefficients of the algebra of Lorentz scalar operators. The conformal bootstrap provides in this case a unique determination. All SU(2) representations are non-trivially realised in the operator algebra. (orig.)

  19. Flipped SU(5) times U(1) in superconformal models

    Energy Technology Data Exchange (ETDEWEB)

    Bailin, D.; Katechou, E.K. (Sussex Univ., Brighton (United Kingdom). School of Mathematical and Physical Sciences); Love, A. (London Univ. (United Kingdom))

    1992-01-10

    This paper reports that flipped SU(5) {times} U(1) models are constructed in the framework of tensoring of N = 2 superconformal minimal models quotiented by discrete symmetries. Spontaneous breaking of flipped SU(5) {times} U(1) and extra U(1) factors in the gauge group along F-flat directions of the effective potential is studied.

  20. RG domain wall for the general (su)-hat (2) coset models

    Energy Technology Data Exchange (ETDEWEB)

    Stanishkov, Marian [Institute for Nuclear Research and Nuclear Energy,Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria)

    2016-08-16

    We consider a RG flow in a general (su)-hat (2) coset model induced by the least relevant field. This is done using two different approaches. We first compute the mixing coefficients of certain fields in the UV and IR theories using a conformal perturbation theory. The necessary structure constants are computed. The same coefficients can be calculated using the RG domain wall construction of Gaiotto. We compute the corresponding one-point functions and show that the two approaches give the same result in the leading order.

  1. Quantum critical spin-2 chain with emergent SU(3) symmetry.

    Science.gov (United States)

    Chen, Pochung; Xue, Zhi-Long; McCulloch, I P; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S-K

    2015-04-10

    We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU(3)_{1} Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.

  2. Integrability of the Einstein-nonlinear SU(2) σ-model in a nontrivial topological sector

    Energy Technology Data Exchange (ETDEWEB)

    Paliathanasis, Andronikos [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Durban University of Technology, Institute of Systems Science, Durban (South Africa); Taves, Tim [Centro de Estudios Cientificos (CECS), Valdivia (Chile); Leach, P.G.L. [Durban University of Technology, Department of Mathematics and Institute of Systems Science, Research and Postgraduate Support, Durban (South Africa); University of KwaZulu-Natal, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2017-12-15

    The integrability of the Λ-Einstein-nonlinear SU(2)σ-model with nonvanishing cosmological charge is studied. We apply the method of singularity analysis of differential equations and we show that the equations for the gravitational field are integrable. The first few terms of the solution are presented. (orig.)

  3. SU(2) x U(1) x U'(1) models which are slightly different from the Weinberg-Salam model

    International Nuclear Information System (INIS)

    Gao, C.; Wu, D.

    1981-01-01

    We discuss SU(2) x U(1) x U'(1) models by a uniform formula which is convenient for their comparison with the standard Weinberg-Salam model. As examples, we give three interesting models which are based on different grand unification models. In one model, U'(1) does not contribute to the electromagnetic interaction; in the other two, both U(1) and U'(1) do contribute to the electromagnetic interaction. Also, the first two models can approach the standard Weinberg-Salam model as close as one wants; but the third model has limitations on it

  4. The su(2)α Hahn oscillator and a discrete Fourier-Hahn transform

    International Nuclear Information System (INIS)

    Jafarov, E I; Stoilova, N I; Van der Jeugt, J

    2011-01-01

    We define the quadratic algebra su(2) α which is a one-parameter deformation of the Lie algebra su(2) extended by a parity operator. The odd-dimensional representations of su(2) (with representation label j, a positive integer) can be extended to representations of su(2) α . We investigate a model of the finite one-dimensional harmonic oscillator based upon this algebra su(2) α . It turns out that in this model the spectrum of the position and momentum operator can be computed explicitly, and that the corresponding (discrete) wavefunctions can be determined in terms of Hahn polynomials. The operation mapping position wavefunctions into momentum wavefunctions is studied, and this so-called discrete Fourier-Hahn transform is computed explicitly. The matrix of this discrete Fourier-Hahn transform has many interesting properties, similar to those of the traditional discrete Fourier transform. (paper)

  5. Effective SU(2) theory for the pseudogap state

    Science.gov (United States)

    Montiel, X.; Kloss, T.; Pépin, C.

    2017-03-01

    This paper exposes in a detailed manner the recent findings about the SU(2) scenario for the underdoped phase of the cuprate superconductors. The SU(2) symmetry is formulated as a rotation between the d -wave superconducting (SC) phase and a d -wave charge order. We define the operators responsible for the SU(2) rotations and we derive the nonlinear σ model associated with it. In this framework, we demonstrate that SU(2) fluctuations are massless in finite portions of the Brillouin zone corresponding to the antinodal regions (0 ,π ) and (π ,0 ). We argue that the presence of SU(2) fluctuations in the antinodal region leads to the opening of Fermi arcs around the Fermi surface and to the formation of the pseudogap. Moreover, we show that SU(2) fluctuations lead, in turn, to the emergence of a finite momentum SC order—or pair density wave (PDW)—and more importantly to a new kind of excitonic particle-hole pairs liquid, the resonant excitonic state (RES), which is made of patches of preformed particle-hole pairs with multiple momenta. When the RES liquid becomes critical, we demonstrate that electronic scattering through the critical modes leads to anomalous transport properties. This new finding can account for the strange metal (SM) phase at finite temperature, on the right-hand side of the SC dome, shedding light on another notoriously mysterious part of the phase diagram of the cuprates.

  6. The Kadanoff lower-bound variational renormalization group applied to an SU(2) lattice spin model

    International Nuclear Information System (INIS)

    Thorleifsson, G.; Damgaard, P.H.

    1990-07-01

    We apply the variational lower-bound Renormalization Group transformation of Kadanoff to an SU(2) lattice spin model in 2 and 3 dimensions. Even in the one-hypercube framework of this renormalization group transformation the present model is characterised by having an infinite basis of fundamental operators. We investigate whether the lower-bound variational renormalization group transformation yields results stable under truncations of this operator basis. Our results show that for this particular spin model this is not the case. (orig.)

  7. Parity violations in electron-nucleon scattering and the SU(2)sub(L)xSU(2)sub(R)xU(1)sub(L+R) electroweak symmetry

    International Nuclear Information System (INIS)

    Rajpoot, S.

    1981-07-01

    The SU(2)sub(L) x SU(2)sub(R) x U(1)sub(L+R) model of electroweak interactions is described with the most general gauge couplings gsub(L), gsub(R) and gsub(L+R). The case in which neutrino neutral current interactions are identical to the standard SU(2)sub(L) x U(1)sub(L+R) model is discussed in detail. It is shown that with the weak angle lying in the experimental range sin 2 thetaSUB(w)=0.23+-0.015 and 1 2 /gsub(R) 2 <3 it is possible to explain the amount of parity violation observed at SLAC and at the same time predict values of the ''weak charge'' in bismuth to lie in the range admitted by the controversal data from different experiments. (author)

  8. On grand unified SU(8)sub(L) x SU(8)sub(R) model

    International Nuclear Information System (INIS)

    Pirogov, Yu.F.

    1980-01-01

    In the model of early chiral grand unification SU(8)sub(L)xSU(8)sub(R) with intermediate symmetry hierarchies the radiation corrections for sinsup(2)thetasub(W)(μ) and α(μ) are calculated and unification mass M 8 is found in the one loop approximation with Higgs fields contribution being neglected. It is shown that there exists a natural hierarchy, leading to the decrease of sinsup(2)thetasub(W)(Msub(W)) down to the value sinsup(2)thetasub(W)=1/5-1/4 and simultaneous decrease of M 8 down to M 8 =(10 6 -10 7 ) GeV as compared with the values when there is no hierarchy [ru

  9. SU(3)_C× SU(2)_L× U(1)_Y( × U(1)_X ) as a symmetry of division algebraic ladder operators

    Science.gov (United States)

    Furey, C.

    2018-05-01

    We demonstrate a model which captures certain attractive features of SU(5) theory, while providing a possible escape from proton decay. In this paper we show how ladder operators arise from the division algebras R, C, H, and O. From the SU( n) symmetry of these ladder operators, we then demonstrate a model which has much structural similarity to Georgi and Glashow's SU(5) grand unified theory. However, in this case, the transitions leading to proton decay are expected to be blocked, given that they coincide with presumably forbidden transformations which would incorrectly mix distinct algebraic actions. As a result, we find that we are left with G_{sm} = SU(3)_C× SU(2)_L× U(1)_Y / Z_6. Finally, we point out that if U( n) ladder symmetries are used in place of SU( n), it may then be possible to find this same G_{sm}=SU(3)_C× SU(2)_L× U(1)_Y / Z_6, together with an extra U(1)_X symmetry, related to B-L.

  10. Independent SU(2)-loop variables

    International Nuclear Information System (INIS)

    Loll, R.

    1991-04-01

    We give a reduction procedure for SU(2)-trace variables and introduce a complete set of indepentent, gauge-invariant and almost local loop variables for the configuration space of SU(2)-lattice gauge theory in 2+1 dimensions. (orig.)

  11. Remarks on the Landau-Ginzburg potential and RG-flow for SU(2)-coset models

    International Nuclear Information System (INIS)

    Marzban, C.

    1989-09-01

    The existence of a Landau-Ginzburg (LG)-field for the SU(2)-coset models is motivated and conjectured. The general form of the LG potential for the A-series is found, and the RG-flow pattern suggested by this is shown to agree with that found by other authors, thereby further supporting the conjecture. (author). 17 refs

  12. Semidirect product gauge group [SU(3)cxSU(2)L]xU(1)Y and quantization of hypercharge

    International Nuclear Information System (INIS)

    Hattori, Chuichiro; Matsunaga, Mamoru; Matsuoka, Takeo

    2011-01-01

    In the standard model the hypercharges of quarks and leptons are not determined by the gauge group SU(3) c xSU(2) L xU(1) Y alone. We show that, if we choose the semidirect product group [SU(3) c xSU(2) L ]xU(1) Y as its gauge group, the hyperchages are settled to be n/6 mod Z(n=0,1,3,4). In addition, the conditions for gauge-anomaly cancellation give strong constraints. As a result, the ratios of the hypercharges are uniquely determined and the gravitational anomaly is automatically canceled. The standard charge assignment to quarks and leptons can be properly reproduced. For exotic matter fields their hypercharges are also discussed.

  13. Finite size giant magnons in the SU(2) x SU(2) sector of AdS4 x CP3

    International Nuclear Information System (INIS)

    Lukowski, Tomasz; Sax, Olof Ohlsson

    2008-01-01

    We use the algebraic curve and Luescher's μ-term to calculate the leading order finite size corrections to the dispersion relation of giant magnons in the SU(2) x SU(2) sector of AdS 4 x CP 3 . We consider a single magnon as well as one magnon in each SU(2). In addition the algebraic curve computation is generalized to give the leading order correction for an arbitrary multi-magnon state in the SU(2) x SU(2) sector.

  14. Path integrals and coherent states of SU(2) and SU(1,1)

    CERN Document Server

    Inomata, Akira; Kuratsuji, Hiroshi

    1992-01-01

    The authors examine several topical subjects, commencing with a general introduction to path integrals in quantum mechanics and the group theoretical backgrounds for path integrals. Applications of harmonic analysis, polar coordinate formulation, various techniques and path integrals on SU(2) and SU(1, 1) are discussed. Soluble examples presented include particle-flux system, a pulsed oscillator, magnetic monopole, the Coulomb problem in curved space and others.The second part deals with the SU(2) coherent states and their applications. Construction and generalization of the SU(2) coherent sta

  15. Probing neutrino and Higgs sectors in SU(2){sub 1} x SU(2){sub 2} x U(1){sub Y} model with lepton-flavor non-universality

    Energy Technology Data Exchange (ETDEWEB)

    Hue, L.T. [Duy Tan University, Institute of Research and Development, Da Nang City (Viet Nam); Vietnam Academy of Science and Technology, Institute of Physics, Hanoi (Viet Nam); Arbuzov, A.B. [Joint Institute for Nuclear Researches, Bogoliubov Laboratory for Theoretical Physics, Dubna (Russian Federation); Ngan, N.T.K. [Cantho University, Department of Physics, Cantho (Viet Nam); Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi (Viet Nam); Long, H.N. [Ton Duc Thang University, Theoretical Particle Physics and Cosmology Research Group, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam)

    2017-05-15

    The neutrino and Higgs sectors in the SU(2){sub 1} x SU(2){sub 2} x U(1){sub Y} model with lepton-flavor non-universality are discussed. We show that active neutrinos can get Majorana masses from radiative corrections, after adding only new singly charged Higgs bosons. The mechanism for the generation of neutrino masses is the same as in the Zee models. This also gives a hint to solving the dark matter problem based on similar ways discussed recently in many radiative neutrino mass models with dark matter. Except the active neutrinos, the appearance of singly charged Higgs bosons and dark matter does not affect significantly the physical spectrum of all particles in the original model. We indicate this point by investigating the Higgs sector in both cases before and after singly charged scalars are added into it. Many interesting properties of physical Higgs bosons, which were not shown previously, are explored. In particular, the mass matrices of charged and CP-odd Higgs fields are proportional to the coefficient of triple Higgs coupling μ. The mass eigenstates and eigenvalues in the CP-even Higgs sector are also presented. All couplings of the SM-like Higgs boson to normal fermions and gauge bosons are different from the SM predictions by a factor c{sub h}, which must satisfy the recent global fit of experimental data, namely 0.995 < vertical stroke c{sub h} vertical stroke < 1. We have analyzed a more general diagonalization of gauge boson mass matrices, then we show that the ratio of the tangents of the W-W{sup '} and Z-Z{sup '} mixing angles is exactly the cosine of the Weinberg angle, implying that number of parameters is reduced by 1. Signals of new physics from decays of new heavy fermions and Higgs bosons at LHC and constraints of their masses are also discussed. (orig.)

  16. Baryon number generation in a flipped SU(5) x U(1) model

    International Nuclear Information System (INIS)

    Campbell, B.; Hagelin, J.; Nanopoulos, D.V.; Olive, K.A.

    1988-01-01

    We consider the possibilities for generating a baryon asymmetry in the early universe in a flipped SU(5) x U(1) model inspired by the superstring. Depending on the temperature of the radiation background after inflation we can distinguish between two scenarios for baryogenesis: (1) After reheating the original SU(5) x U(1) symmetry is restored, or there was no inflation at all; (2) reheating after inflation is rather weak and SU(5) x U(1) is broken. In either case the asymmetry is generated by the out-of-equilibrium decays of a massive SU(3) x SU(2) x U(1) singlet field φ m . In the flipped SU(5) x U(1) model, gauge symmetry breaking is triggered by strong coupling phenomena, and is in general accompanied by the production of entropy. We examine constraints on the reheating temperature and the strong coupling scale in each of the scenarios. (orig.)

  17. Fusion algebra and fusing matrices

    International Nuclear Information System (INIS)

    Gao Yihong; Li Miao; Yu Ming.

    1989-09-01

    We show that the Wilson line operators in topological field theories form a fusion algebra. In general, the fusion algebra is a relation among the fusing (F) matrices. In the case of the SU(2) WZW model, some special F matrix elements are found in this way, and the remaining F matrix elements are then determined up to a sign. In addition, the S(j) modular transformation of the one point blocks on the torus is worked out. Our results are found to agree with those obtained from the quantum group method. (author). 24 refs

  18. Perturbation theory around the Wess-Zumino-Witten model

    International Nuclear Information System (INIS)

    Hasseln, H. v.

    1991-05-01

    We consider a perturbation of the Wess-Zumino-Witten model in 2D by a current-current interaction. The β-function is computed to third order in the coupling constant and a nontrivial fixedpoint is found. By non-abelian bosonization, this perturbed WZW-model is shown to have the same β-function (at least to order g 2 ) as the fermionic theory with a four-fermion interaction. (orig.) [de

  19. Some new contributions to neutrinoless double β-decay in an SU(2)xU(1) model

    International Nuclear Information System (INIS)

    Escobar, C.O.

    1982-11-01

    An SU(2) x U(1) model having both Dirac and Majorana mass terms for the neutrinos, with an extended Higgs sector without natural flavor conservation is considered. Under these conditions, it is shown that for a certain range of the mass parameters of the model, some new contributions become important for the neutrinoless double β-decay (ββ)oν. (Author) [pt

  20. Strong self-coupling expansion in the lattice-regularized standard SU(2) Higgs model

    International Nuclear Information System (INIS)

    Decker, K.; Weisz, P.; Montvay, I.

    1985-11-01

    Expectation values at an arbitrary point of the 3-dimensional coupling parameter space in the lattice-regularized SU(2) Higgs-model with a doublet scalar field are expressed by a series of expectation values at infinite self-coupling (lambda=infinite). Questions of convergence of this 'strong self-coupling expansion' (SSCE) are investigated. The SSCE is a potentially useful tool for the study of the lambda-dependence at any value (zero or non-zero) of the bare gauge coupling. (orig.)

  1. Strong self-coupling expansion in the lattice-regularized standard SU(2) Higgs model

    International Nuclear Information System (INIS)

    Decker, K.; Weisz, P.

    1986-01-01

    Expectation values at an arbitrary point of the 3-dimensional coupling parameter space in the lattice-regularized SU(2) Higgs model with a doublet scalar field are expressed by a series of expectation values at infinite self-coupling (lambda=infinite). Questions of convergence of this ''strong self-coupling expansion'' (SSCE) are investigated. The SSCE is a potentially useful tool for the study of the lambda-dependence at any value (zero or non-zero) of the bare gauge coupling. (orig.)

  2. The phase transition in the SU(5) model at high temperatures

    International Nuclear Information System (INIS)

    Daniel, M.; Vayonakis, C.E.

    1981-01-01

    Within the minimum GUT model we have studied the nature of the fluctuation-induced transition between the SU(5) and the SU(3)sub(c) x SU(2) x U(1) phase which occurs at high temperatures. Our analysis is limited to the case when the phase transition occurs outside the critical (fluctuation-dominated) region. For this to happen the SU(5) model has to be in a mode analogous to the type I superconductor. This corresponds to having the scalar quartic couplings in the Higgs sector less than the squared gauge coupling. For generic values of the coupling constants the phase transition is found to be weakly first order. As we approach the boundaries for the region of the SU(3)sub(c) x SU(2) x U(1) phase, however, a strong first-order transition occurs. The SU(5) mode (analogous to the type II superconductor) when the phase transition occurs inside the fluctuation-dominated region has been recently studied by Ginsparg. His results together with ours show that there is a continuous merging of the type I mode into the type II mode. Finally our analysis elucidates some aspects of the monopole problem in grand unified theories. (orig.)

  3. Higgs and confinement phases in the fundamental SU(2) Higgs model: Mean field analysis

    International Nuclear Information System (INIS)

    Damgaard, P.H.; Heller, U.M.

    1985-01-01

    The phase diagram of the four-dimensional SU(2) gauge-Higgs model with Higgs field in the fundamental representation is derived by mean field techniques. When the Higgs field is allowed to fluctuate in. Magnitude, the analytic connection between Higgs and confinement phases breaks down for sufficiently small values of the quark Higgs coupling, indicating that the Higgs and confinement phases for these couplings are strictly distinct phases. (orig.)

  4. Coherent states for polynomial su(2) algebra

    International Nuclear Information System (INIS)

    Sadiq, Muhammad; Inomata, Akira

    2007-01-01

    A class of generalized coherent states is constructed for a polynomial su(2) algebra in a group-free manner. As a special case, the coherent states for the cubic su(2) algebra are discussed. The states so constructed reduce to the usual SU(2) coherent states in the linear limit

  5. Balanced Hermitian metrics from SU(2)-structures

    International Nuclear Information System (INIS)

    Fernandez, M.; Tomassini, A.; Ugarte, L.; Villacampa, R.

    2009-01-01

    We study the intrinsic geometrical structure of hypersurfaces in six-manifolds carrying a balanced Hermitian SU(3)-structure, which we call balanced SU(2)-structure. We provide sufficient conditions, in terms of suitable evolution equations, which imply that a five-manifold with such structure can be isometrically embedded as a hypersurface in a balanced Hermitian SU(3)-manifold. Any five-dimensional compact nilmanifold has an invariant balanced SU(2)-structure, and we show how some of them can be evolved to give new explicit examples of balanced Hermitian SU(3)-structures. Moreover, for n=3,4, we present examples of compact solvmanifolds endowed with a balanced SU(n)-structure such that the corresponding Bismut connection has holonomy equal to SU(n)

  6. Independent SU(2)-loop variables and the reduced configuration space of SU(2)-lattice gauge theory

    International Nuclear Information System (INIS)

    Loll, R.

    1992-01-01

    We give a reduction procedure for SU(2)-trace variables and an explicit description of the reduced configuration sace of pure SU(2)-gauge theory on the hypercubic lattices in two, three and four dimensions, using an independent subset of the gauge-invariant Wilson loops. (orig.)

  7. SU(6) quadrupole phonon model for even and odd nuclei and the SU(3) limit

    Energy Technology Data Exchange (ETDEWEB)

    Paar, V; Brant, S [Zagreb Univ. (Yugoslavia). Prirodoslovno Matematicki Fakultet; Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica; Leander, G [Lund Inst. of Tech. (Sweden). Dept. of Mathematical Physics; Oak Ridge National Lab., TN (USA)); Vouk, M [Zagreb Univ. (Yugoslavia). Computing Centre SRCE

    1982-04-05

    Analogous to the equivalence between the SU(6) quadrupole-phonon model (TQM) and the interacting boson model (IBM), the equivalence is pointed out for odd systems between the SU(6) particle quadrupole-phonon coupling model (PTQM) and the interacting boson-fermion model (IBFM). PTQM is formulated starting from the Dyson representation for the odd system. Different aspects of the SU(3) limit of TQM and PTQM are studied; the quadrupole-phonon block structure of rotational bands in even and odd nuclei and analytic expressions based on the coherent state; signature effects generated in PTQM; electromagnetic properties and correction factors for PTQM; overlaps of the PTQM analogs of Nilsson states with Coriolis-coupled Nilsson states and the relation to the rotational model representation.

  8. On SU(8)sub(L)xSU(8)sub(R) grand unified model

    International Nuclear Information System (INIS)

    Pirogov, Yu.F.

    1981-01-01

    A set of general propositions is considered which ground the choice of the SU(8)sub(L)xSU(8)sub(R) group as a unified symmetry group. According to these propositions the group SU(8)sub(L)xSU(8)sub(R) is the most natural unified group, it is the maximal symmetry group of the kinetic term of the lagrangian single family which conserves the fermion number. A new principle is introduced. According to this principle, the mirror doubling of the fermion spectrum, necessary for renormalizability of the given unified model is, on the other hand, a manifestation of the extended conformal invariance at short distances [ru

  9. Continuum limit of the integrable sl(2/1)3-3-bar superspin chain

    International Nuclear Information System (INIS)

    Essler, Fabian H.L.; Frahm, Holger; Saleur, Hubert

    2005-01-01

    By a combination of analytical and numerical techniques, we analyze the continuum limit of the integrable 3 x 3-bar x 3 x 3-bar ...sl(2/1) superspin chain. We discover profoundly new features, including a continuous spectrum of conformal weights, whose numerical evidence is infinite degeneracies of the scaled gaps in the thermodynamic limit. This indicates that the corresponding conformal field theory has a non compact target space (even though our lattice model involves only finite-dimensional representations). We argue that our results are compatible with this theory being the level k=1, 'SU(2/1) WZW model' (whose precise definition requires some care). In doing so, we establish several new results for this model. With regard to potential applications to the spin quantum Hall effect, we conclude that the continuum limit of the 3 x 3-bar x 3 x 3-bar ...sl(2/1) integrable superspin chain is not the same as (and is in fact very different from) the continuum limit of the corresponding chain with two-superspin interactions only, which is known to be a model for the spin quantum Hall effect. The study of possible RG flows between the two theories is left for further study

  10. SU(2) and SU(1,1) squeezing of interacting radiation modes

    International Nuclear Information System (INIS)

    Abdalla Sebawe, M.; Faisal El-Orany, A.A.; Perina, J.

    2000-01-01

    In this communication we discuss SU(1,1) and SU(2) squeezing of an interacting system of radiation modes in a quadratic medium in the framework of Lie algebra. We show that regardless of which state being initially considered, squeezing can be periodically generated. (authors)

  11. On grand unified SU(8)sub(L)xSU(8)sub(R) model

    International Nuclear Information System (INIS)

    Pirogov, Yu.F.

    1980-01-01

    A set of general prjnciples justifying the choice of the group SU(N)sub(L)xSU(N)sub(R) with N=8 as the grand unified symmetry group is considered. Accordjng to these principles the group SU(N)sub(L)xSU(N)sub(R) is one of the most natural unified groups. Namely this group is maximum symmetry group of kinetic term of the Lagrangian of one family, which conserves fermion number. A new principle has been introduced according to which one of the manifestations of extended conformal invariance at small distances is mirror doubling of set of fermions, which is necessary on the other hand for renormalizability of the given unified model

  12. Contraction of graded su(2) algebra

    International Nuclear Information System (INIS)

    Patra, M.K.; Tripathy, K.C.

    1989-01-01

    The Inoenu-Wigner contraction scheme is extended to Lie superalgebras. The structure and representations of extended BRS algebra are obtained from contraction of the graded su(2) algebra. From cohomological consideration, we demonstrate that the graded su(2) algebra is the only superalgebra which, on contraction, yields the full BRS algebra. (orig.)

  13. Precision electroweak tests of the minimal and flipped SU(5) supergravity models

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L.; Nanopoulos, D.V.; Park, G.T.; Pois, H.; Yuan, K. (Center for Theoretical Physics, Department of Physics, Texas A M University, College Station, Texas 77843-4242 (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, Texas 77381 (United States))

    1993-10-01

    We explore the one-loop electroweak radiative corrections in the minimal SU(5) and the no-scale flipped SU(5) supergravity models via explicit calculation of vacuum polarization contributions to the [epsilon][sub 1,2,3] parameters. Experimentally, [epsilon][sub 1,2,3] are obtained from a global fit to the CERN LEP observables, and [ital M][sub [ital W

  14. SU(2 color NJL model and EOS of quark-hadron matter at finite temperature and density

    Directory of Open Access Journals (Sweden)

    Weise Wolfram

    2012-02-01

    Full Text Available We study the NJL model with the Polyakov loop in the SU(2-color case for the EOS of quark-hadron matter at finite temperature and density. We consider the spontaneous chiral symmetry breaking and the diquark condensation together with the behavior of the Polyakov loop for the phase diagram of quark-hadron matter. We discuss the spectrum of mesons and diquark baryons (boson at finite temperature and density.We derive also the linear sigma model Lagrangian for diquark baryon and mesons.

  15. Supersymmetric Racah basis, family of infinite-dimensional superalgebras, SU(∞ + 1|∞) and related 2D models

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Linetsky, V.Ya.

    1990-10-01

    The irreducible Racah basis for SU(N + 1|N) is introduced. An analytic continuation with respect to N leads to infinite-dimensional superalgebras su(υ + 1|υ). Large υ limit su(∞ + 1|∞) is calculated. The higher spin Sugawara construction leading to generalizations of the Virasoro algebra with infinite tower of higher spin currents is proposed and related WZNW and Toda models as well as possible applications in string theory are discussed. (author). 32 refs

  16. Entropy of entangled states and SU(1,1) and SU(2) symmetries

    International Nuclear Information System (INIS)

    Santana, A.E.; Khanna, F.C.; Revzen, M.

    2002-01-01

    Based on a recent definition of a measure for entanglement [Plenio and Vedral, Contemp. Phys. 39, 431 (1998)], examples of maximum entangled states are presented. The construction of such states, which have symmetry SU(1,1) and SU(2), follows the guidance of thermofield dynamics formalism

  17. Non linear realizations of SU(2) x U(1) in the MSSM model independent analysis and g - 2 of W bosons

    CERN Document Server

    Ferrara, Sergio; Porrati, Massimo; Ferrara, Sergio; Masiero, Antonio; Porrati, Massimo

    1993-01-01

    We perform a model-independent analysis of the spontaneously broken phase of an $SU(2)\\times U(1)$ supersymmetric gauge theory, by using a non-linear parametrization of the Goldstone sector of the theory. The non-linear variables correspond to an $SL(2,C)$ superfield matrix in terms of which a non-linear Lagrangian can be constructed, and the pattern of supersymmetry breaking investigated. The supersymmetric order parameter is the V.E.V. of the neutral pseudo-Goldstone boson. Some applications of this technique are considered, in relation to the minimal supersymmetric standard model, and to determine the $g-2$ of the $W$-bosons in the limit of large top mass.

  18. sdg boson model in the SU(3) scheme

    Science.gov (United States)

    Akiyama, Yoshimi

    1985-02-01

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15) ⊃ SU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the 168Er nucleus.

  19. Is neutralino dark matter compatible with flipped SU(5) models

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.

    1989-07-13

    We consider the possibility that the lightest supersymmetric particle in flipped SUSY SU(5)xU(1) models is cosmologically stable and corresponds to a neutralino. Previous studies of dark matter in flipped SUSY SU(5) models have suggested that the decay of the oscillations of the SU(5) breaking scalar field would result in too many neutralinos, if they are stable. We show that it is possible for an acceptable density of neutralinos to occur in the case where the neutralino corresponds to a light photino, if the temperature at the end of the oscillation dominated period is SU(5) models. Direct detection of dark matter in forthcoming experiments will therefore not eliminate this class of models. (orig.).

  20. Neutrino masses in the SU(5) x (lower case x) SU(5)' mirror symmetric model

    International Nuclear Information System (INIS)

    Collie, M.; Foot, R.

    1998-02-01

    Motivated by the atmospheric and solar neutrino anomalies, we study neutrino masses in a parity invariant SU(5) x SU(5)' grand unified model. Two distinct ways of incorporating neutrino masses into this model are envisaged. One way involves adding a gauge singlet fermion to each generation. The other way, is to extend the scalar sector. This possibility suggests that photon - mirror photon kinetic mixing is non-zero since is generated radiatively. It is argued that the kinetic mixing is such models may well be close to the experimental limit

  1. Exact scattering in the SU(n) supersymmetric principal chiral model

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1997-01-01

    The complete spectrum of states in the supersymmetric principal chiral model based on SU(n) is conjectured, and an exact factorizable S-matrix is proposed to describe scattering amongst these states. The SU(n)_L*SU(n)_R symmetry of the lagrangian is manifest in the S-matrix construction. The supersymmetries, on the other hand, are incorporated in the guise of spin-1/2 charges acting on a set of RSOS kinks associated with su(n) at level n. To test the proposed S-matrix, calculations of the change in the ground-state energy in the presence of a coupling to a background charge are carried out. The results derived from the lagrangian using perturbation theory and from the S-matrix using the TBA are found to be in complete agreement for a variety of background charges which pick out, in turn, the highest weight states in each of the fundamental representations of SU(n). In particular, these methods rule out the possibility of additional CDD factors in the S-matrix. Comparison of the expressions found for the free-...

  2. Sdg boson model in the SU(3) scheme

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Y.

    1985-02-11

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15)containsSU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the /sup 168/Er nucleus.

  3. sdg boson model in the SU(3) scheme

    International Nuclear Information System (INIS)

    Akiyama, Y.

    1985-01-01

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15)containsSU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the 168 Er nucleus. (orig.)

  4. sdg interacting-boson model in the SU(3) scheme and its application to 168Er

    Science.gov (United States)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1988-07-01

    The sdg interacting-boson model is presented in the SU(3) tensor formalism. The interactions are decomposed according to their SU(3) tensor character. The existence of the SU(3)-seniority preserving operator is found to be important. The model is applied to 168Er. Energy levels and electromagnetic transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first Kπ=4+ band relative to that of the first Kπ=2+ one. E4 transitions are calculated to give different predictions from those by the quasiparticle-phonon nuclear model.

  5. On the SU2 unit tensor

    International Nuclear Information System (INIS)

    Kibler, M.; Grenet, G.

    1979-07-01

    The SU 2 unit tensor operators tsub(k,α) are studied. In the case where the spinor point group G* coincides with U 1 , then tsub(k α) reduces up to a constant to the Wigner-Racah-Schwinger tensor operator tsub(kqα), an operator which produces an angular momentum state. One first investigates those general properties of tsub(kα) which are independent of their realization. The tsub(kα) in terms of two pairs of boson creation and annihilation operators are realized. This leads to look at the Schwinger calculus relative to one angular momentum of two coupled angular momenta. As a by-product, a procedure is given for producing recursion relationships between SU 2 Wigner coefficients. Finally, some of the properties of the Wigner and Racah operators for an arbitrary compact group and the SU 2 coupling coefficients are studied

  6. Flipped SU(5)xU(1){sub X} models from F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jing [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Li Tianjun, E-mail: tjli@physics.rutgers.ed [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece); Xie Dan [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)

    2010-05-01

    We systematically construct flipped SU(5)xU(1){sub X} models without and with bulk vector-like particles from F-theory. To realize the decoupling scenario, we introduce sets of vector-like particles in complete SU(5)xU(1) multiplets at the TeV scale, or at the intermediate scale, or at the TeV scale and high scale. To avoid the Landau pole problem for the gauge couplings, we can only introduce five sets of vector-like particles around the TeV scale. These vector-like particles can couple to the Standard Model singlet fields, and obtain suitable masses by Higgs mechanism. We study gauge coupling unification in detail. We show that the U(1){sub X} flux contributions to the gauge couplings preserve the SU(5)xU(1){sub X} gauge coupling unification. We calculate the SU(3){sub C}xSU(2){sub L} unification scales, and the SU(5)xU(1){sub X} unification scales and unified couplings. In most of our models, the high-scale or bulk vector-like particles can be considered as string-scale threshold corrections since their masses are close to the string scale. Furthermore, we discuss the phenomenological consequences of our models. In particular, in the models with TeV-scale vector-like particles, the vector-like particles can be observed at the Large Hadron Collider, the proton decay is within the reach of the future Hyper-Kamiokande experiment, the lightest CP-even Higgs boson mass can be increased, the hybrid inflation can be naturally realized, and the correct cosmic primordial density fluctuations can be generated.

  7. Symmetry breaking and asymptotic freedom in colour SU(3) gauge models

    International Nuclear Information System (INIS)

    Ma, E.

    1976-01-01

    A class of quark models based on the colour gauge group SU(3) is shown to be asymptotically free despite the complete breakdown of local symmetry to guarantee infrared stability. The symmetry breakdown is achieved by the presence of elementary scalar fields either through the Higgs mechanism or dynamically as first proposed by Coleman and Weinberg. Asymptotic freedom is preserved by imposing eigenvalue conditions on the coupling constants as first proposed by Chang. New quark species must be present, but below their production threshold, colour can still be a global symmetry which is approximate under SU(3), but exact under SU(2). Among the many implications of this class of models is the possibility of producing isolated quarks and gluons of non-zero mass without altering the short-distance behaviour of the superstrong interaction which binds them. (Auth.)

  8. Static properties of baryons in the SU(3) Skyrme model

    International Nuclear Information System (INIS)

    Sriram, M.S.; Mani, H.S.; Ramachandran, R.

    1984-01-01

    We study the SU(3) x SU(3) Skyrme model with explicit chiral- and flavor-symmetry-breaking terms. We evaluate the SU(3)-symmetric meson-baryon coupling-constant ratio α, SU(3) mass breaking in the octet and decuplet, and the ΔI = 1 part of the electromagnetic mass splitting in baryons. The theoretical numbers are in reasonable agreement with the experimental values

  9. Vector coherent state representations of SO5 contains SU2 + SU2 contains U1 + U1 and SO5 contains U1 + U1

    International Nuclear Information System (INIS)

    Pan Feng

    1991-01-01

    VCS representations of SO 5 contains SU 2 + SU 2 contains U 1 + U 1 and SO 5 contains U 1 + U 1 are discussed. Reduced matrix elements for SO 5 contains SU 2 + SU 2 are derived. The multiplicity of a weight for SO 5 is determined by using the K-matrix technique

  10. the Simple Centern Projection of SU (2) Gauge Theory

    NARCIS (Netherlands)

    Bakker, B.L.G.; Veselov, A.I.; Zubkov, M.A.

    2001-01-01

    We consider the SU(2) lattice gauge model. We propose a new gauge invariant definition of center projection, which we call the Simple Center Projection. We demonstrate the center dominance, i.e., the coincidence of the projected potential with the full potential up to the mass renormalization term

  11. A separate SU(2) for the third family: Topflavor

    International Nuclear Information System (INIS)

    Muller, D.J.; Nandi, S.; Univ. of Texas, Austin, TX

    1996-01-01

    The authors consider the extended electroweak gauge group SU(2) 1 xSU(2) x xU(1) Y where the first and second families of fermions couple to SU(2) 1 while the third family couples to SU(2) 2 . Bounds based on precision electroweak observables and heavy gauge boson searches are placed on the new parameters of the theory. The extra gauge bosons can be as light as about a TeV and can be discovered at future colliders such as the NLC and LHC for a wide range of the parameter space. FCNC interactions are also considered

  12. Random SU(2) invariant tensors

    Science.gov (United States)

    Li, Youning; Han, Muxin; Ruan, Dong; Zeng, Bei

    2018-04-01

    SU(2) invariant tensors are states in the (local) SU(2) tensor product representation but invariant under the global group action. They are of importance in the study of loop quantum gravity. A random tensor is an ensemble of tensor states. An average over the ensemble is carried out when computing any physical quantities. The random tensor exhibits a phenomenon known as ‘concentration of measure’, which states that for any bipartition the average value of entanglement entropy of its reduced density matrix is asymptotically the maximal possible as the local dimensions go to infinity. We show that this phenomenon is also true when the average is over the SU(2) invariant subspace instead of the entire space for rank-n tensors in general. It is shown in our earlier work Li et al (2017 New J. Phys. 19 063029) that the subleading correction of the entanglement entropy has a mild logarithmic divergence when n  =  4. In this paper, we show that for n  >  4 the subleading correction is not divergent but a finite number. In some special situation, the number could be even smaller than 1/2, which is the subleading correction of random state over the entire Hilbert space of tensors.

  13. SU(2) Gauge Theory with Two Fundamental Flavours

    DEFF Research Database (Denmark)

    Arthur, Rudy; Drach, Vincent; Hansen, Martin

    2016-01-01

    We investigate the continuum spectrum of the SU(2) gauge theory with $N_f=2$ flavours of fermions in the fundamental representation. This model provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range from composite...... (Goldstone) Higgs theories to several intriguing types of dark matter candidates, such as the SIMPs. We improve our previous lattice analysis [1] by adding more data at light quark masses, at two additional lattice spacings, by determining the lattice cutoff via a Wilson flow measure of the $w_0$ parameter...

  14. Center-vortex dominance after dimensional reduction of SU(2) lattice gauge theory

    OpenAIRE

    Gattnar, J.; Langfeld, K.; Schafke, A.; Reinhardt, H.

    2000-01-01

    The high-temperature phase of SU(2) Yang-Mills theory is addressed by means of dimensional reduction with a special emphasis on the properties of center vortices. For this purpose, the vortex vacuum which arises from center projection is studied in pure 3-dimensional Yang-Mills theory as well as in the 3-dimensional adjoint Higgs model which describes the high temperature phase of the 4-dimensional SU(2) gauge theory. We find center-dominance within the numerical accuracy of 10%.

  15. The hidden SO(4) symmetry of general SU(2) Thirring models

    International Nuclear Information System (INIS)

    Curci, G.; Paffuti, G.; Rossi, P.

    1988-01-01

    General four-fermion interactions in two dimensions with SU(2) invariance are shown to possess a hidden SO(4) symmetry. As a consequence physical states belong to irreducible representations of the two commuting O(3) subgroups and their interactions decouple accordingly. Two independent stable trajectories of the renormalization group are shown to exist perturbatively and are consistently reproduced by abelian bosonization. (orig.)

  16. Phase-structure of SU(3) lattice gauge-higgs model

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Mitrjushkin, V.K.; Zadorozhny, A.M.

    1985-01-01

    Phase structure is investigated of SU(3) symmetric gauge-Higgs theory with a defrost radial mode. The Higgs fields are considered in the fundamental representation of SU(3) group. It is shown that the phase structures of SU(3) and SU(2) symmetric coincide qualitatively

  17. Electric/magnetic deformations of S3 and AdS3, and geometric cosets

    International Nuclear Information System (INIS)

    Israel, D.; Kounnas, C.; Marios Petropoulos, P.; Orlando, D.

    2005-01-01

    We analyze asymmetric marginal deformations of SU(2) k and SL(2,R) k WZW models. These appear in heterotic string backgrounds with non-vanishing Neveu-Schwarz three-forms plus electric or magnetic fields, depending on whether the deformation is elliptic, hyperbolic or parabolic. Asymmetric deformations create new families of exact string vacua. The geometries which are generated in this way, deformed S 3 or AdS 3 , include in particular geometric cosets such as S 2 , AdS 2 or H 2 . Hence, the latter are consistent, exact conformal sigma models, with electric or magnetic backgrounds. We discuss various geometric and symmetry properties of the deformations at hand as well as their spectra and partition functions, with special attention to the supersymmetric AdS 2 x S 2 background. We also comment on potential holographic applications. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  18. Geometry and time scales of self-consistent orbits in a modified SU(2) model

    International Nuclear Information System (INIS)

    Jezek, D.M.; Hernandez, E.S.; Solari, H.G.

    1986-01-01

    We investigate the time-dependent Hartree-Fock flow pattern of a two-level many fermion system interacting via a two-body interaction which does not preserve the parity symmetry of standard SU(2) models. The geometrical features of the time-dependent Hartree-Fock energy surface are analyzed and a phase instability is clearly recognized. The time evolution of one-body observables along self-consistent and exact trajectories are examined together with the overlaps between both orbits. Typical time scales for the determinantal motion can be set and the validity of the time-dependent Hartree-Fock approach in the various regions of quasispin phase space is discussed

  19. Sdg interacting-boson model in the SU(3) scheme and its application to /sup 168/Er

    International Nuclear Information System (INIS)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1988-01-01

    The sdg interacting-boson model is presented in the SU(3) tensor formalism. The interactions are decomposed according to their SU(3) tensor character. The existence of the SU(3)-seniority preserving operator is found to be important. The model is applied to /sup 168/Er. Energy levels and electromagnetic transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first K/sup π/ = 4 + band relative to that of the first K/sup π/ = 2 + one. E4 transitions are calculated to give different predictions from those by the quasiparticle-phonon nuclear model

  20. Symmetry hierarchies and radiative corrections in the grand unified model SU(8)/sub L/ x SU(8)/sub R/

    International Nuclear Information System (INIS)

    Pirogov, Y.F.

    1982-01-01

    In the SU(8)/sub L/ x SU(8)/sub R/ model of precocious chiral unification, radiative corrections for the effective parameters sin 2 theta/sub W/(μ) and α(μ) are calculated in the one-loop approximation, neglecting contributions of the Higgs fields, and the unification mass M 8 is determined in the presence of a hierarchy of intermediate symmetries. It is shown that a natural hierarchy exists which leads to a decrease in sin 2 theta/sub W/(M/sub W/L) down to the value sin 2 theta/sub W/ = (1/5)--(1/4) together with a decrease in M 8 down to M 8 = 10 6 --10 7 GeV in comparison with the values in the absence of a hierarchy

  1. On symmetry hierarchy and radiative corrections in the grand unified model SU(8)sub(L)xSU(8)sub(R)

    International Nuclear Information System (INIS)

    Pirogov, Yu.F.

    1982-01-01

    In the model of precocious chiral unification SU(8)sub(L)xSU(8)sub(R) radiative corrections are calculated for the effective parameters sin 2 thetaw(μ) and α(μ) and the unification mass M 8 is determifed in presence of a hierarchy of intermediate symmetries. The one-loop approximation is used and contributions from the Higgs fields are neglected. It is shown that a natural hierarchy exists leading to a decrease of sinsup(2)thetasub(w)(Msub(wsub(L))) up to sinsup(2)thetasub(w)=1/5-1/4 together with a decrease of M 8 up to M 8 =10 6 -10 7 GeV, as compared with the magnitudes without the hierarchy [ru

  2. Towards a world-sheet description of doubled geometry in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Bakas, Ioannis [Department of Physics, School of Applied Mathematics and Physical Sciences, National Technical University, Athens (Greece); Luest, Dieter [Max-Planck-Institut fuer Physik, Muenchen (Germany); Arnold-Sommerfeld-Center fuer Theoretische Physik, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen (Germany); Plauschinn, Erik [Arnold-Sommerfeld-Center fuer Theoretische Physik, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2016-10-15

    Starting from a sigma-model for a doubled target-space geometry, we show that the number of target-space dimensions can be reduced by half through a gauging procedure. We apply this formalism to a class of backgrounds relevant for double field theory, and illustrate how choosing different gaugings leads to string-theory configurations T-dual to each other. We furthermore discuss that given a conformal doubled theory, the reduced theories are conformal as well. As an example we consider the three-dimensional SU(2) WZW model and show that the only possible reduced backgrounds are the cigar and trumpet CFTs in two dimensions, which are indeed T-dual to each other. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Strong coupling and quasispinor representations of the SU(3) rotor model

    International Nuclear Information System (INIS)

    Rowe, D.J.; De Guise, H.

    1992-01-01

    We define a coupling scheme, in close parallel to the coupling scheme of Elliott and Wilsdon, in which nucleonic intrinsic spins are strongly coupled to SU(3) spatial wave functions. The scheme is proposed for shell-model calculations in strongly deformed nuclei and for semimicroscopic analyses of rotations in odd-mass nuclei and other nuclei for which the spin-orbit interaction is believed to play an important role. The coupling scheme extends the domain of utility of the SU(3) model, and the symplectic model, to heavy nuclei and odd-mass nuclei. It is based on the observation that the low angular-momentum states of an SU(3) irrep have properties that mimic those of a corresponding irrep of the rotor algebra. Thus, we show that strongly coupled spin-SU(3) bands behave like strongly coupled rotor bands with properties that approach those of irreducible representations of the rigid-rotor algebra in the limit of large SU(3) quantum numbers. Moreover, we determine that the low angular-momentum states of a strongly coupled band of states of half-odd integer angular momentum behave to a high degree of accuracy as if they belonged to an SU(3) irrep. These are the quasispinor SU(3) irreps referred to in the title. (orig.)

  4. SU(2) X SU(2) X U(1) basis for symmetric SO(6) representations: matrix elements of the generators

    International Nuclear Information System (INIS)

    Piepenbring, R.; Silvestre-Brac, B.; Szymanski, Z.

    1987-01-01

    Matrix elements of the group generators for the symmetric irreducible representations of SO(6) are explicitly calculated in a closed form employing thedecomposition chain SO(6) is contained in SU(2) X SU(2) X U(1) (which is different from the well known Wigner supermultiplet scheme). The relation to the Gel'fand Tsetlin method using SO(6) contained in SO(5) up to ... SO(2) is indicated. An example of a physical application is given

  5. Generation of Control by SU(2) Reduction for the Anisotropic Ising Model

    International Nuclear Information System (INIS)

    Delgado, F

    2016-01-01

    Control of entanglement is fundamental in Quantum Information and Quantum Computation towards scalable spin-based quantum devices. For magnetic systems, Ising interaction with driven magnetic fields modifies entanglement properties of matter based quantum systems. This work presents a procedure for dynamics reduction on SU(2) subsystems using a non-local description. Some applications for Quantum Information are discussed. (paper)

  6. SU(n)c x SU(m)L x U(1)N generalizations of the standard model

    International Nuclear Information System (INIS)

    Pleitez, V.

    1993-01-01

    Generalizations of the Standard Model which are based on the gauge symmetry SU(n) c x SU(m) L x U(1) N are considered. Although the most interesting possibility occurs when n = 3, it will be considered also the cases n = 4,5, both with m = 3,4. It will also be given possible grand unification scenarios. (author). 18 refs

  7. Radiative corrections in SU2 x U1 LEP/SLC

    International Nuclear Information System (INIS)

    Lynn, B.W.; Peskin, M.E.; Stuart, R.G.

    1985-06-01

    We show the sensitivity of various experimental measurements to one-loop radiative corrections in SU 2 x U 1 . Models considered are the standard GSW model as well as extensions of it which include extra quarks and leptons, SUSY and certain technicolor models. The observation of longitudinal polarization is a great help in seeing these effects in asymmetries in e + e - → μ + μ - , tau + tau - on Z 0 resonance. 25 refs., 22 figs., 10 tabs

  8. Relationship between harmonic analysis on SU(2) and on SL(2,C)/SU(2)

    International Nuclear Information System (INIS)

    Healy, D.M. Jr.

    1986-01-01

    A topic of interest in harmonic analysis is the comparison of Fourier transforms on compact and noncompact spaces. The Poisson summation formula provides a classical example of this idea by providing an explicit relationship between harmonic analysis on the real line R and on the circle S 1 . This dissertation provides a new geometric proof of this formula, and then generalizes this approach to obtain a relationship between Fourier transforms on Upsilon, the space of positive matrices in SL(2,C), and Fourier transforms on SU(2)

  9. Spin-k/2-spin-k/2 SU(2) two-point functions on the torus

    International Nuclear Information System (INIS)

    Kirsch, Ingo; Kucharski, Piotr

    2012-11-01

    We discuss a class of two-point functions on the torus of primary operators in the SU(2) Wess-Zumino-Witten model at integer level k. In particular, we construct an explicit expression for the current blocks of the spin-(k)/(2)-spin-(k)/(2) torus two-point functions for all k. We first examine the factorization limits of the proposed current blocks and test their monodromy properties. We then prove that the current blocks solve the corresponding Knizhnik-Zamolodchikov-like differential equations using the method of Mathur, Mukhi and Sen.

  10. Spin-k/2-spin-k/2 SU(2) two-point functions on the torus

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Kucharski, Piotr [Warsaw Univ. (Poland). Inst. of Theoretical Physics

    2012-11-15

    We discuss a class of two-point functions on the torus of primary operators in the SU(2) Wess-Zumino-Witten model at integer level k. In particular, we construct an explicit expression for the current blocks of the spin-(k)/(2)-spin-(k)/(2) torus two-point functions for all k. We first examine the factorization limits of the proposed current blocks and test their monodromy properties. We then prove that the current blocks solve the corresponding Knizhnik-Zamolodchikov-like differential equations using the method of Mathur, Mukhi and Sen.

  11. Strongly coupled SU(2v boson and LEP1 versus LEP2

    Directory of Open Access Journals (Sweden)

    M. Bilenky

    1993-10-01

    Full Text Available If new strong interactions exist in the electroweak bosonic sector (e.g., strong Higgs sector, dynamical electroweak breaking, etc., it is natural to expect new resonances, with potentially strong couplings. We consider an additional vector-boson triplet, V+-, V0, associated with an SU(2v local symmetry under the specific (but rather natural assumption that ordinary fermions are SU(2v singlets. Mixing of the V triplet with the W+-, Z0 bosons effectively leads to an SU(2L×U(1Y violating vector-boson-fermion interaction which is strongly bounded by LEP1 data. In contrast, the potentially large deviation of the Z0W+W- coupling from its SU(2L×U(1Y value is hardly constrained by LEP1 data. Results from experiments with direct access to the trilinear Z0W+W− coupling (LEP200, NLC are urgently needed.

  12. Vortices in the SU(N) x SU(N) spin systems in two dimensions

    International Nuclear Information System (INIS)

    Kares, R.J.D.

    1982-01-01

    The SU(N) x SU(N) or chiral spin systems in two dimensions with spin variables in both the fundamental and the adjoint representations of SU(N) are considered. In the adjoint representation the chiral models are found to possess topologically stable, classical vortex solutions which carry a Z(N) topological charge. A relationship is established between the chiral models and massive Yang-Mills theory in two dimensions. This relationship is exploited to prove the asymptotic freedom of the chiral models and to find their weak coupling mass gap. The connection between the vortices of the chiral models and those of the massive Yang-Mills theory is discussed. The behavior of a gas of vortices in the SU(2) chiral model is considered. This gas is converted to an equivalent field theory and studied using the renormalization group. It is shown that the SU(2) vortex gas does not undergo a Kosterlitz-Thouless phase transition. This behavior probably persists for the higher SU(N) groups as well. Finally, using the massive Yang-Mills theory the effect of the coupling of vortices to spin wave fluctuations is investigated. It is argued that as a result of the vortex-spin wave interaction the vortices acquire a mass scale dynamically. A self consistency condition is derived for the vortex scale and used to compute the mass gap for the chiral models in the presence of vortices. The mass gap obtained in this way is found to be in agreement with the weak coupling result suggesting that vortices may be responsible for generating the mass gap in the chiral models near T = 0

  13. Monopole gas in three dimensional SU(2) gluodynamics

    International Nuclear Information System (INIS)

    Chernodub, M.N.; Ishiguro, Katsuya; Suzuki, Tsuneo

    2004-01-01

    We study properties of the Abelian monopoles in the Maximal Abelian projection of the three dimensional pure SU(2) gauge model. We match the lattice monopole dynamics with the continuum Coulomb gas model using a method of blocking from continuum. We obtain the Debye screening length and the monopole density in continuum using numerical results for the density to the (squared) monopole charges and for the monopole action. The monopoles treated within our blocking method provide about 75% contribution to the non-Abelian Debye screening length. We also find that monopoles form a Coulomb plasma which is not dilute. (author)

  14. Spin dependence of intra-ground-state-band E2 transitions in the SU(3) limit of the sdg interacting boson model

    Science.gov (United States)

    Long, G. L.; Ji, H. Y.

    1998-04-01

    B(E2, L+2-->L) transitions in the sdg interacting boson model SU(3) limit are studied with a general E2 transition operator. Analytical expressions are obtained using a group theoretic method. It is found that when using transition operators of the form (d†g~+g†d~)2 or (g†g~)2, the B(E2, L+2-->L) values in the ground-state band have an L(L+3) dependent term. As L increases, the B(E2) values can be larger than the rigid rotor model value. Application to 236,238U is discussed.

  15. Quantization of the Poisson SU(2) and its Poisson homogeneous space - the 2-sphere

    International Nuclear Information System (INIS)

    Sheu, A.J.L.

    1991-01-01

    We show that deformation quantizations of the Poisson structures on the Poisson Lie group SU(2) and its homogeneous space, the 2-sphere, are compatible with Woronowicz's deformation quantization of SU(2)'s group structure and Podles' deformation quantization of 2-sphere's homogeneous structure, respectively. So in a certain sense the multiplicativity of the Lie Poisson structure on SU(2) at the classical level is preserved under quantization. (orig.)

  16. Thermal evolution of massive strange compact objects in a SU(3) chiral Quark Meson model

    Energy Technology Data Exchange (ETDEWEB)

    Zacchi, Andreas

    2017-07-04

    In this work, thermodynamical properties of strongly interacting matter within a chiral SU(2)- and SU(3) chiral Quark Meson model have been analysed. Both effective models describe the development of the quark masses in media via the corresponding fields through chiral symmetry, which is expected to be restored at high temperatures and/or high densities, and spontaneously broken at low temperatures and/or densities. Spontaneous and explicit chiral symmetry breaking patterns give rise to massive Goldstone bosons, which are associated with the pions. Their chiral partners, the sigma mesons, are expected to be degenerate in mass, which was what we studied and observed at large temperatures/densities. The derivation and computation of thermodynamical quantities and properties in both cases can for instance be used to study relativistic and hydrodynamic Heavy Ion Collisions and the early universe for vanishing baryon number (SU(2)-case). They are also interesting for extreme astrophysical scenarios, such as Supernova explosions and the thermal evolution of their remnants, which has been among the topics of this thesis (SU(3)-case). Inclusion of the zero point energy in the SU(2) model has been carried out separately for the meson sector and for the quark sector as well as in a combined approach, where we learned, that the quark sector is quite dominant and that the vacuum fluctuations of the meson fields have little influence on the order parameter, but affect the relativistic degrees of freedom. In the SU(3) case, the inclusion of the zero point energy in the quark sector is much more computationally complex, but, as in the SU(2) case, is also not negliable, as its influence also changes the thermodynamical quantities at finite temperatures in a nontrivial manner. Here some features of the Supernova equation of state have been studied, which look promising for further investigations for Supernovae (proto neutron stars) and also for compact star mergers. The final

  17. Linked cluster expansion in the SU(2) lattice Higgs model at strong gauge coupling

    International Nuclear Information System (INIS)

    Wagner, C.E.M.

    1989-01-01

    A linked cluster expansion is developed for the β=0 limit of the SU(2) Higgs model. This method, when combined with strong gauge coupling expansions, is used to obtain the phase transition surface and the behaviour of scalar and vector masses in the lattice regularized theory. The method, in spite of the low order of truncation of the series applied, gives a reasonable agreement with Monte Carlo data for the phase transition surface and a qualitatively good picture of the behaviour of Higgs, glueball and gauge vector boson masses, in the strong coupling limit. Some limitations of the method are discussed, and an intuitive picture of the different behaviour for small and large bare self-coupling λ is given. (orig.)

  18. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  19. Superspace conformal field theory

    International Nuclear Information System (INIS)

    Quella, Thomas

    2013-07-01

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  20. Nuclear collective rotation in the SU3 model, 2

    International Nuclear Information System (INIS)

    Kinouchi, Shin-ichi; Kishimoto, Teruo; Kammuri, Tetsuo.

    1989-05-01

    The collective rotation of a nuclear system with the SU 3 Hamiltonian is described by the quantal dynamical nuclear field theory. An angular frequency in the Coriolis interaction of the driving Hamiltonian is replaced by a total angular momentum operator divided by the corresponding moment of inertia. We consider here the low spin states for a triaxial intrinsic configuration. The rotational effect is taken into account by using the effective quadrupole and angular momentum operators, whose expressions are different depending on whether they refer to the laboratory frame or the body-fixed one. Effective forms of the total Hamiltonian and the particle angular momentum are compared with the exact SU 3 energy and the rotor's angular momentum, respectively. In order to dissolve the disagreement for the effective operators, the perturbing interaction should be supplemented by a residual part of the quadrupole-quadrupole interaction, which restores the rotational invariance of the intrinsic Hamiltonian. (author)

  1. Utilizing the Updated Gamma-Ray Bursts and Type Ia Supernovae to Constrain the Cardassian Expansion Model and Dark Energy

    Directory of Open Access Journals (Sweden)

    Jun-Jie Wei

    2015-01-01

    Full Text Available We update gamma-ray burst (GRB luminosity relations among certain spectral and light-curve features with 139 GRBs. The distance modulus of 82 GRBs at z>1.4 can be calibrated with the sample at z≤1.4 by using the cubic spline interpolation method from the Union2.1 Type Ia supernovae (SNe Ia set. We investigate the joint constraints on the Cardassian expansion model and dark energy with 580 Union2.1 SNe Ia sample (z<1.4 and 82 calibrated GRBs’ data (1.42. In ΛCDM, we find that adding 82 high-z GRBs to 580 SNe Ia significantly improves the constraint on Ωm-ΩΛ plane. In the Cardassian expansion model, the best fit is Ωm=0.24-0.15+0.15 and n=0.16-0.52+0.30  (1σ, which is consistent with the ΛCDM cosmology (n=0 in the 1σ confidence region. We also discuss two dark energy models in which the equation of state w(z is parameterized as w(z=w0 and w(z=w0+w1z/(1+z, respectively. Based on our analysis, we see that our universe at higher redshift up to z=8.2 is consistent with the concordance model within 1σ confidence level.

  2. Static forces in d=2+1 SU(N) gauge theories

    International Nuclear Information System (INIS)

    Meyer, H.B.

    2006-07-01

    Using a three-level algorithm we perform a high-precision lattice computation of the static force up to 1fm in the 2+1 dimensional SU(5) gauge theory. Discretization errors and the continuum limit are discussed in detail. By comparison with existing SU(2) and SU(3) data it is found that σr 2 0 =1.65-(π)/(24) holds at an accuracy of 1% for all N≥2, where r 0 is the Sommer reference scale. The effective central charge c(r) is obtained and an intermediate distance r s is defined via the property c(r s )=(π)/(24). It separates in a natural way the short-distance regime governed by perturbation theory from the long-distance regime described by an effective string theory. The ratio τ s /τ 0 decreases significantly from SU(2) to SU(3) to SU(5), where r s 0 . We give a preliminary estimate of its value in the large-N limit. The static force in the smallest representation of N-ality 2, which tends to the k=2 string tension as r→∞, is also computed up to 0.7 fm. The deviation from Casimir scaling is positive and grows from 0.1% to 1% in that range. (Orig.)

  3. Dimensional reduction of U(1) x SU(2) Chern-Simons bosonization: Application to the t - J model

    International Nuclear Information System (INIS)

    Marchetti, P.A.

    1996-09-01

    We perform a dimensional reduction of the U(1) x SU(2) Chern-Simons bosonization and apply it to the t - J model, relevant for high T c superconductors. This procedure yields a decomposition of the electron field into a product of two ''semionic'' fields, i.e. fields obeying Abelian braid statistics with statistics parameter θ = 1/4, one carrying the charge and the other the spin degrees of freedom. A mean field theory is then shown to reproduce correctly the large distance behaviour of the correlation functions of the 1D t - J model at >> J. This result shows that to capture the essential physical properties of the model one needs a specific ''semionic'' form of spin-charge separation. (author). 31 refs

  4. Z(2) vortices and the SU(2) string tension

    International Nuclear Information System (INIS)

    Goepfert, M.

    1981-01-01

    Topologically determined Z(2) variables in pure SU(2) lattice gauge theory are discussed. They count the number of 'vortex souls'. The high temperature expansion for the corresponding Z(2) loops is examined. They obey an area law. The coefficient of the area is shown to be equal to the string tension to all orders of the high temperature expansion. This shows that the string tension is determined by the probability distribution of the vortex souls, at least in the high temperature region. The dependence of the string tension α(β,h) on an external field h that is coupled to the Z(2) field strength is calculated to lowest order of the high temperature expansion. In this approximation, α(β,h) is determined by the free energy of a 2-dimensional Ising model in an external magnetic field 1/2log(β/4tanhh) at an inverse temperature 1/2log3/4π = 0.429. (orig.)

  5. SO(2N) and SU(N) gauge theories

    OpenAIRE

    Lau, Richard; Teper, Michael

    2013-01-01

    We present our preliminary results of SO(2N) gauge theories, approaching the large-N limit. SO(2N) theories may help us to understand QCD at finite chemical potential since there is an orbifold equivalence between SO(2N) and SU(N) gauge theories at large-N and SO(2N) theories do not have the sign problem present in QCD. We consider the string tensions, mass spectra, and deconfinement temperatures in the SO(2N) pure gauge theories in 2+1 dimensions, comparing them to their corresponding SU(N) ...

  6. A K-theory anomaly free supersymmetric flipped SU(5) model from intersecting branes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-M. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: cchen@physics.tamu.edu; Kraniotis, G.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: kraniotis@physics.tamu.edu; Mayes, V.E. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: eric@physics.tamu.edu; Nanopoulos, D.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States) and Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States) and Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)]. E-mail: dimitri@physics.tamu.edu; Walker, J.W. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: jwalker@physics.tamu.edu

    2005-10-06

    We construct an N=1 supersymmetric three-family flipped SU(5) model from type IIA orientifolds on T{sup 6}/(Z{sub 2}xZ{sub 2}) with D6-branes intersecting at general angles. The model is constrained by the requirement that Ramond-Ramond tadpoles cancel, the supersymmetry conditions, and that the gauge boson coupled to the U(1){sub X} factor does not get a string-scale mass via a generalised Green-Schwarz mechanism. The model is further constrained by requiring cancellation of K-theory charges. The spectrum contains a complete grand unified and electroweak Higgs sector, however the latter in a non-minimal number of copies. In addition, it contains extra matter both in bi-fundamental and vector-like representations as well as two copies of matter in the symmetric representation of SU(5)

  7. 8D oscillator as a hidden SU(2)-monopole

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Sisakyan, A.N.; Ter-Antonyan, V.M.

    1998-01-01

    In the framework of an analytical approach and with the help of the generalized version of the Hurwitz transformation the five-dimensional SU(2)-monopole model is constructed from the eight-dimensional quantum oscillator. The Clebsch-Gordan expansion stimulated by the space-gauge coupling, the hyperangle and the radial parts of the total wave function, the energy spectrum of the charge-monopole bound system and the corresponding degeneracy are calculated

  8. Asymptotically free SU(5) models

    International Nuclear Information System (INIS)

    Kogan, Ya.I.; Ter-Martirosyan, K.A.; Zhelonkin, A.V.

    1981-01-01

    The behaviour of Yukawa and Higgs effective charges of the minimal SU(5) unification model is investigated. The model includes ν=3 (or more, up to ν=7) generations of quarks and leptons and, in addition, the 24-plet of heavy fermions. A number of solutions of the renorm-group equations are found, which reproduce the known data about quarks and leptons and, due to a special choice of the coupling constants at the unification point are asymptotically free in all charges. The requirement of the asymptotical freedom leads to some restrictions on the masses of particles and on their mixing angles [ru

  9. SU(1,2) invariance in two-dimensional oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Krivonos, Sergey [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nersessian, Armen [Yerevan State University,1 Alex Manoogian St., Yerevan, 0025 (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

    2017-02-01

    Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756, with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written in terms of the oscillator variables.

  10. Effect of multiple Higgs fields on the phase structure of the SU(2)-Higgs model

    International Nuclear Information System (INIS)

    Wurtz, Mark; Steele, T. G.; Lewis, Randy

    2009-01-01

    The SU(2)-Higgs model, with a single Higgs field in the fundamental representation and a quartic self-interaction, has a Higgs region and a confinement region which are analytically connected in the parameter space of the theory; these regions thus represent a single phase. The effect of multiple Higgs fields on this phase structure is examined via Monte Carlo lattice simulations. For the case of N≥2 identical Higgs fields, there is no remaining analytic connection between the Higgs and confinement regions, at least when Lagrangian terms that directly couple different Higgs flavors are omitted. An explanation of this result in terms of enhancement from overlapping phase transitions is explored for N=2 by introducing an asymmetry in the hopping parameters of the Higgs fields. It is found that an enhancement of the phase transitions can still occur for a moderate (10%) asymmetry in the resulting hopping parameters.

  11. Supersymmetric flipped SU(5) revitalized

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I.; Ellis, J.; Hagelin, J.S.; Nanopoulos, D.V.

    1987-08-06

    We describe a simple N = 1 supersymmetric GUT based on the group SU(5) x U(1) which has the following virtues: the gauge group is broken down to the SU(3)/sub C/ x SU(2)/sub L/ x U(1)/sub y/ of the standard model using just 10, 10 Higgs representations, and the doublet-triplet mass splitting problem is solved naturally by a very simple missing-partner mechanism. The successful supersymmetric GUT prediction for sin/sup 2/theta/sub w/ can be maintained, whilst there are no fermion mass relations. The gauge group and representation structure of the model may be obtainable from the superstring.

  12. Regular behaviors in SU(2) Yang-Mills classical mechanics

    International Nuclear Information System (INIS)

    Xu Xiaoming

    1997-01-01

    In order to study regular behaviors in high-energy nucleon-nucleon collisions, a representation of the vector potential A i a is defined with respect to the (a,i)-dependence in the SU(2) Yang-Mills classical mechanics. Equations of the classical infrared field as well as effective potentials are derived for the elastic or inelastic collision of two plane wave in a three-mode model and the decay of an excited spherically-symmetric field

  13. Scattering lengths in SU(2) gauge theory with two fundamental fermions

    DEFF Research Database (Denmark)

    Arthur, R.; Drach, V.; Hansen, Martin Rasmus Lundquist

    2014-01-01

    We investigate non perturbatively scattering properties of Goldstone Bosons in an SU(2) gauge theory with two Wilson fermions in the fundamental representation. Such a theory can be used to build extensions of the Standard Model that unifies Technicolor and pseudo Goldstone composite Higgs models...... the expected chiral symmetry breaking pattern. We then discuss how to compute them on the lattice and give preliminary results using finite size methods....

  14. SU2 nonstandard bases: the case of mutually unbiased bases

    International Nuclear Information System (INIS)

    Olivier, Albouy; Kibler, Maurice R.

    2007-02-01

    This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of SU 2 corresponding to an irreducible representation of SU 2 . The representation theory of SU 2 is reconsidered via the use of two truncated deformed oscillators. This leads to replace the familiar scheme [j 2 , j z ] by a scheme [j 2 , v ra ], where the two-parameter operator v ra is defined in the universal enveloping algebra of the Lie algebra su 2 . The eigenvectors of the commuting set of operators [j 2 , v ra ] are adapted to a tower of chains SO 3 includes C 2j+1 (2j belongs to N * ), where C 2j+1 is the cyclic group of order 2j + 1. In the case where 2j + 1 is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices. (authors)

  15. Neutrino masses in the flipped SU(5) x U(1) and the SU(4) x O(4) GUT models

    Energy Technology Data Exchange (ETDEWEB)

    Ranfone, S.; Papageorgiu, E.

    1992-03-01

    We classify the different neutrino-mass pattern arising in string-inspired Grand Universal Theory (GUT) and supersymmetric GUT models based on the flipped SU(5)xU(1) and the SU(4)xO(4) gauge groups. Phenomenologically interesting spectra are obtained through the interplay of the two seesaw mechanisms present, with typical neutrino masses {approx}10{sup -3} eV in the supersymmetric GUT models and of order 0.1 - 10 KeV in the ordinary GUTs. (author).

  16. Neutrino masses in the flipped SU(5)xU(1) and the SU(4)xO(4) GUT models

    Energy Technology Data Exchange (ETDEWEB)

    Papageorgiu, E.; Ranfone, S. (Rutherford Appleton Lab., Chilton (United Kingdom))

    1992-05-21

    We classify the different neutrino-mass patterns arising in string-inspired GUT and supersymmetric GUT models based on the flipped SU(5)xU(1) and the SU(4)xO(4) gauge groups. Phenomenologically interesting spectra are obtained through the interplay of the two seesaw mechanisms present, with typical neutrino masses {proportional to}10{sup -3} eV in the supersymmetric GUT models and of order 0.1-10 keV in the ordinary GUTs. (orig.).

  17. On quantization of the SU(2) Skyrmions

    International Nuclear Information System (INIS)

    Jurčiukonis, D.; Norvaišas, E.

    2013-01-01

    There are two known approaches for quantizing the SU(2) Skyrme model, the semiclassical and canonical quantization. The semiclassical approach does not take into account the non-commutativity of velocity of quantum coordinates and the stability of the semiclassical soliton is conveniently ensured by the symmetry breaking term. The canonical quantum approach leads to quantum mass correction that is not obtained in the semiclassical approach. In this Letter we argue that these two approaches are not equivalent and lead to different results. We show that the resulting profile functions have the same asymptotic behaviour, however their shape in the region close to the origin is different

  18. A low-energy compatible SU(4)-type model for vector leptoquarks of mass ≤ 1 TeV

    Science.gov (United States)

    Blumhofer, A.; Lampe, B.

    1999-02-01

    The Standard Model is extended by a SU(2)_L singlet of vector leptoquarks. An additional SU(4) gauge symmetry between right-handed up quarks and right-handed leptons is introduced to render the model renormalizable. The arrangement is made in such a way that no conflict with low energy restrictions is encountered. The SU(2)_L singlet mediates interactions between the right-handed leptons and up type quarks for which only moderate low energy restrictions M_{LQ}/g_{LQ} > few hundred GeV exist. However, it is not a candidate to explain the anomalous HERA data at large Q^2 because theoretical reasons imply that g_{LQ} ≥ g_s which would give a much stronger anomalous HERA effect. We furthermore argue that the inequality g_{LQ} ≥ g_s is a general feature of consistent vector leptoquark models. Although our model is not relevant for HERA, it is interesting per se as a description of leptoquarks of mass ≤ 1 TeV consistent with all low-energy requirements.

  19. MSSM-like from SU5×D4 models

    Directory of Open Access Journals (Sweden)

    R. Ahl Laamara

    2016-05-01

    Full Text Available Using finite discrete group characters and symmetry breaking by hyperflux as well as constraints on top-quark family, we study minimal low energy effective theory following from SU5×D4 models embedded in F-theory with non-abelian flux. Matter curves spectrum of the models is obtained from SU5×S5 theory with monodromy S5 by performing two breakings: first from symmetric group S5 to S4 subsymmetry, and next to dihedral D4 subgroup. As a consequence, and depending on the ways of decomposing triplets of S4, we end with three types of D4-models. Explicit constructions of these theories are given and a MSSM-like spectrum is derived.

  20. BPS spectrum on AdS{sub 3}×S{sup 3}×S{sup 3}×S{sup 1}

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, Lorenz; Gaberdiel, Matthias R. [Institut für Theoretische Physik, ETH Zurich,CH-8093 Zürich (Switzerland); Gopakumar, Rajesh [International Centre for Theoretical Sciences-TIFR,Survey No. 151, Shivakote, Hesaraghatta Hobli,Bengaluru North, 560 089 (India); Li, Wei [Institute of Theoretical Physics, Chinese Academy of Science,100190 Beijing (China)

    2017-03-23

    The BPS spectrum of string theory on AdS{sub 3}×S{sup 3}×S{sup 3}×S{sup 1} is determined using a world-sheet description in terms of WZW models. It is found that the theory only has BPS states with j{sup +}=j{sup −} where j{sup ±} refer to the spins of the su(2) algebras of the large N=4 superconformal algebra. We then re-examine the BPS spectrum of the corresponding supergravity and find that, contrary to previous claims in the literature, also in supergravity only the states with j{sup +}=j{sup −} are BPS. This resolves a number of long-standing puzzles regarding the BPS spectrum of string theory and supergravity in this background.

  1. Thermodynamics of SU(2 quantum Yang-Mills theory and CMB anomalies

    Directory of Open Access Journals (Sweden)

    Hofmann Ralf

    2014-04-01

    -vortex loops in confining phases of SU(2 Yang-Mills theories neutrino mass mν solely arises by interactions with an environment. Cosmologically, the CMB represents this environment, and thus one would expect that mν = ξT where ξ = O(1. In this model cosmic neutrinos are a small dark-matter contribution, conserved only together with the CMB fluid, influencing Baryonic Acoustic Oscillations during CMB decoupling.

  2. Thermodynamics of SU(2) quantum Yang-Mills theory and CMB anomalies

    Science.gov (United States)

    Hofmann, Ralf

    2014-04-01

    confining phases of SU(2) Yang-Mills theories neutrino mass mν solely arises by interactions with an environment. Cosmologically, the CMB represents this environment, and thus one would expect that mν = ξT where ξ = O(1). In this model cosmic neutrinos are a small dark-matter contribution, conserved only together with the CMB fluid, influencing Baryonic Acoustic Oscillations during CMB decoupling.

  3. Renormalization of a tensorial field theory on the homogeneous space SU(2)/U(1)

    Science.gov (United States)

    Lahoche, Vincent; Oriti, Daniele

    2017-01-01

    We study the renormalization of a general field theory on the homogeneous space (SU(2)/ ≤ft. U(1)\\right){{}× d} with tensorial interaction and gauge invariance under the diagonal action of SU(2). We derive the power counting for arbitrary d. For the case d  =  4, we prove perturbative renormalizability to all orders via multi-scale analysis, study both the renormalized and effective perturbation series, and establish the asymptotic freedom of the model. We also outline a general power counting for the homogeneous space {{≤ft(SO(D)/SO(D-1)\\right)}× d} , of direct interest for quantum gravity models in arbitrary dimension, and point out the obstructions to the direct generalization of our results to these cases.

  4. SU(5) without SU(5): why B-L is conserved and baryon number not in unified models of quarks and leptons

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1980-09-01

    Quark-lepton unification is examined without assuming higher symmetries on more general gauge theories. In particular, properties are sought which are generally attributed to SU(5) models which are already present without the assumption of SU(5)

  5. Broken SU(3) antidecuplet for Θ+ and Ξ3/2

    International Nuclear Information System (INIS)

    Pakvasa, Sandip; Suzuki, Mahiko

    2004-01-01

    If the narrow exotic baryon resonances Θ + (1540) and Ξ 3/2 are members of the J P = 1/2 + antidecuplet with N*(1710), the octet-antidecuplet mixing is required not only by the mass spectrum but also by the decay pattern of N*(1710). This casts doubt on validity of the Θ + mass prediction by the chiral soliton model. While all pieces of the existing experimental information point to a small octet-decuplet mixing, the magnitude of mixing required by the mass spectrum is not consistent with the value needed to account for the hadronic decay rates. The discrepancy is not resolved even after the large experimental uncertainty is taken into consideration. We fail to find an alternative SU(3) assignment even with different spin-parity assignment. When we extend the analysis to mixing with a higher SU(3) multiplet, we find one experimentally testable scenario in the case of mixing with a 27-plet

  6. New grand unified models with intersecting D6-branes, neutrino masses, and flipped SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Cvetic, Mirjam [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104-6396 (United States)]. E-mail: cvetic@cvetic.hep.upenn.edu; Langacker, Paul [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104-6396 (United States); School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2007-07-30

    We construct new supersymmetric SU(5) grand unified models based on Z{sub 4}xZ{sub 2} orientifolds with intersecting D6-branes. Unlike constructions based on Z{sub 2}xZ{sub 2} orientifolds, the orbifold images of the three-cycles wrapped by D6-branes correspond to new configurations and thus allow for models in which, in addition to the chiral sector in 10 and 5-bar representations of SU(5), only, there can be new sectors with (15+15-bar) and (10+10-bar) vector-pairs. We construct an example of such a globally consistent, supersymmetric model with four-families, two Standard Model Higgs pair-candidates and the gauge symmetry U(5)xU(1)xSp(4). In an N=2 sector, there are 5x(15+15-bar) and 1x(10+10-bar) vector-pairs, while another N=1 sector contains one vector-pair of 15-plets. The N=2 vector-pairs can obtain a large mass dynamically by parallel D6-brane splitting in a particular two-torus. The 15-vector-pairs provide, after symmetry breaking to the Standard Model (via parallel D-brane splitting), triplet pair candidates which can in principle play a role in generating Majorana-type masses for left-handed neutrinos, though the necessary Yukawa couplings are absent in the specific construction. This model can also be interpreted as a flipped SU(5)xU(1){sub X} grand unified model where the 10-vector-pairs can play the role of Higgs fields, though again there are phenomenological difficulties for the specific construction.

  7. Compactifications of IIA supergravity on SU(2)-structure manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Spanjaard, B.

    2008-07-15

    In this thesis, we study compactifications of type IIA supergravity on six-dimensional manifolds with an SU(2)-structure. A general study of six-dimensional manifolds with SU(2)-structure shows that IIA supergravity compactified on such a manifold should yield a four-dimensional gauged N=4 supergravity. We explicitly derive the bosonic spectrum, gauge transformations and action for IIA supergravity compactified on two different manifolds with SU(2)-structure, one of which also has an H{sup (3)}{sub 10}-flux, and confirm that the resulting four-dimensional theories are indeed N=4 gauged supergravities. In the second chapter, we study an explicit construction of a set of SU(2)-structure manifolds. This construction involves a Scherk-Schwarz duality twist reduction of the half-maximal six-dimensional supergravity obtained by compactifying IIA supergravity on a K3. This reduction results in a gauged N=4 four-dimensional supergravity, where the gaugings can be divided into three classes of parameters. We relate two of the classes to parameters we found before, and argue that the third class of parameters could be interpreted as a mirror flux. (orig.)

  8. A finite size scaling test of an SU(2) gauge-spin system

    International Nuclear Information System (INIS)

    Tomiya, M.; Hattori, T.

    1984-01-01

    We calculate the correlation functions in the SU(2) gauge-spin system with spins in the fundamental representation. We analyze the result making use of finite size scaling. There is a possibility that there are no second order phase transition lines in this model, contrary to previous assertions. (orig.)

  9. Unified SU(4) color models in ten dimensions

    International Nuclear Information System (INIS)

    Hanlon, B.E.; Joshi, G.C.

    1992-01-01

    Some aspects of constructing unified models with SU(4) as the color group via a unifying group defined in ten dimensions are examined. Four dimensional theories are recovered using the Coset Space Dimensional Reduction scheme. Candidate models are considered in order to highlight some of the difficulties in constructing realistic four dimensional theories. 30 refs

  10. The search for a realistic flipped SU(5) string model

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L. (Center for Theoretical Physics, Texas A and M Univ., College Station, TX (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, TX (United States)); Nanopoulos, D.V. (Center for Theoretical Physics, Texas A and M Univ., College Station, TX (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, TX (United States)); Yuan, K. (Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States))

    1993-07-05

    We present an extensive search for a class of flipped SU(5) models built within the free fermionic formulation of the heterotic string. We describe a set of algorithms which constitute the basis for a computer program capable of generating systematically the massless spectrum and the superpotential of all possible models within the class we consider. Our search through the huge parameter space to be explored is simplified considerably by the constraint of N=1 spacetime supersymmetry and the need for extra Q, anti Q representations beyond the standard ones in order to possibly achieve string gauge coupling unification at scales of O(10[sup 18] GeV). Our results are remarkably simple and evidence the large degree of redundancy in this kind of constructions. We find one model with gauge group SU(5)xU(1)sub(Y tilde)xSO(10)[sub h]xSU(4)[sub h]xU(1)[sup 5] and fairly acceptable phenomenological properties. We study the D- and F-flatness constraints and the symmetry breaking pattern in this model and conclude that string gauge coupling unification is quite possible. (orig.)

  11. Model independent approach to studies of the confining dual Abrikosov vortex in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Haymaker, Richard W.; Matsuki, Takayuki

    2007-01-01

    We address the problem of determining the type I, type II or borderline dual superconductor behavior in maximal Abelian gauge SU(2) through the study of the dual Abrikosov vortex. We find that significant electric currents in the simulation data call into question the use of the dual Ginzburg-Landau Higgs model in interpreting the data. Further, two definitions of the penetration depth parameter take two different values. The splitting of this parameter into two is intricately connected to the existence of electric currents. It is important in our approach that we employ definitions of flux and electric and magnetic currents that respect Maxwell equations exactly for lattice averages independent of lattice spacings. Applied to specific Wilson loop sizes, our conclusions differ from those that use the dual GLH model

  12. Testable flipped SU(5)xU(1){sub X} models

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jing [Institute of Theoretical Science, University of Oregon, Eugene, OR 97403 (United States); Li Tianjun [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States) and Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080 (China) and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)]. E-mail: tjli@physics.rutgers.edu; Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)

    2007-06-11

    The little hierarchy between the GUT scale and the string scale may give us some hints that can be tested at the LHC. To achieve string-scale gauge coupling unification, we introduce additional vector-like particles. We require that these vector-like particles be standard, form complete GUT multiplets, and have masses around the TeV scale or close to the string scale. Interestingly, only the flipped SU(5)xU(1){sub X} models can work elegantly. We consider all possible sets of vector-like particles with masses around the TeV scale. And we introduce vector-like particles with masses close to the string scale which can mimic the string-scale threshold corrections. We emphasize that all of these vector-like particles can be obtained in the interesting flipped SU(5)xU(1){sub X} string models from the four-dimensional free fermionic string construction. Assuming the low-energy supersymmetry, high-scale supersymmetry, and split supersymmetry, we show that the string-scale gauge coupling unification can indeed be achieved in the flipped SU(5)xU(1){sub X} models. These models can be tested at the LHC by observing simple sets of vector-like particles at the TeV scale. Moreover, we discuss a simple flipped SU(5)xU(1){sub X} model with string-scale gauge coupling unification and high-scale supersymmetry by introducing only one pair of the vector-like particles at the TeV scale, and we predict the corresponding Higgs boson masses. Also, we briefly comment on the string-scale gauge coupling unification in the model with low-energy supersymmetry by introducing only one pair of the vector-like particles at the intermediate scale. And we briefly comment on the mixings among the SM fermions and the corresponding extra vector-like particles.

  13. Minimal Regge model for meson--baryon scattering: duality, SU(3) and phase-modified absorptive cuts

    International Nuclear Information System (INIS)

    Egli, S.E.

    1975-10-01

    A model is presented which incorporates economically all of the modifications to simple SU(3)-symmetric dual Regge pole theory which are required by existing data on 0 -1 / 2 + → -1 / 2 + processes. The basic assumptions are no-exotics duality, minimally broken SU(3) symmetry, and absorptive Regge cuts phase-modified by the Ringland prescription. First it is described qualitatively how these assumptions suffice for the description of all measured reactions, and then the results of a detailed fit to 1987 data points are presented for 18 different reactions. (auth)

  14. SU (2) lattice gauge theory simulations on Fermi GPUs

    International Nuclear Information System (INIS)

    Cardoso, Nuno; Bicudo, Pedro

    2011-01-01

    In this work we explore the performance of CUDA in quenched lattice SU (2) simulations. CUDA, NVIDIA Compute Unified Device Architecture, is a hardware and software architecture developed by NVIDIA for computing on the GPU. We present an analysis and performance comparison between the GPU and CPU in single and double precision. Analyses with multiple GPUs and two different architectures (G200 and Fermi architectures) are also presented. In order to obtain a high performance, the code must be optimized for the GPU architecture, i.e., an implementation that exploits the memory hierarchy of the CUDA programming model. We produce codes for the Monte Carlo generation of SU (2) lattice gauge configurations, for the mean plaquette, for the Polyakov Loop at finite T and for the Wilson loop. We also present results for the potential using many configurations (50,000) without smearing and almost 2000 configurations with APE smearing. With two Fermi GPUs we have achieved an excellent performance of 200x the speed over one CPU, in single precision, around 110 Gflops/s. We also find that, using the Fermi architecture, double precision computations for the static quark-antiquark potential are not much slower (less than 2x slower) than single precision computations.

  15. SU{sub 2} nonstandard bases: the case of mutually unbiased bases

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Albouy; Kibler, Maurice R. [Universite de Lyon, Institut de Physique Nucleaire de Lyon, Universite Lyon, CNRS/IN2P3, 43 bd du 11 novembre 1918, F-69622 Villeurbanne Cedex (France)

    2007-02-15

    This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of SU{sub 2} corresponding to an irreducible representation of SU{sub 2}. The representation theory of SU{sub 2} is reconsidered via the use of two truncated deformed oscillators. This leads to replace the familiar scheme [j{sub 2}, j{sub z}] by a scheme [j{sup 2}, v{sub ra}], where the two-parameter operator v{sub ra} is defined in the universal enveloping algebra of the Lie algebra su{sub 2}. The eigenvectors of the commuting set of operators [j{sup 2}, v{sub ra}] are adapted to a tower of chains SO{sub 3} includes C{sub 2j+1} (2j belongs to N{sup *}), where C{sub 2j+1} is the cyclic group of order 2j + 1. In the case where 2j + 1 is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices. (authors)

  16. String threshold corrections and flipped SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I. (Ecole Polytechnique, Centre de Physique Theorique, 91 - Palaiseau (France) Theory Div., CERN, Geneva (Switzerland)); Ellis, J. (Theory Div., CERN, Geneva (Switzerland)); Lacaze, R. (Service de Physique Theorique, CEN-Saclay, 91 - Gif-sur-Yvette (France)); Nanopoulos, D.V. (Center for Theoretical Physics, Dept. of Physics, Texas A and M Univ., College Station, TX (United States) Astroparticle Physics Group, HARC, The Woodlands, TX (United States) Theory Div., CERN, Geneva (Switzerland))

    1991-10-10

    We revise previous calculations of the effective unification scale m{sub SU} at which the extrapolated low-energy gauge couplings should appear to become equal, and we show explicitly how to calculate m{sub SU} in the fermionic construction of four-dimensional strings. In the case of the flipped SU(5) GUT derived from the string, the SU(5) and U(1) couplings defined in the anti Danti R scheme become equal to g{sub SU} at m{sub SU} {approx equal} 1.76 x g{sub SU} x 10{sup 18} GeV. This scale is significantly larger than m{sub GUT}, the scale at which the low-energy SU(3) and SU(2) couplings become equal if extrapolated using the renormalization group equations of the minimal supersymmetric extension of the standard model. The existence of an intermediate SU(5) x U(1) phase could have an observable effect on the calculated value of sin{sup 2}{theta}{sub w}. (orig.).

  17. W algebra in the SU(3) parafermion model

    International Nuclear Information System (INIS)

    Ding, X.; Fan, H.; Shi, K.; Wang, P.; Zhu, C.

    1993-01-01

    A construction of W 3 algebra for the SU(3) parafermion model is proposed, in which a Z algebra technique is used instead of the popular free-field realization. The central charge of the underlying algebra is different from known W algebras

  18. Entanglement criteria via the uncertainty relations in su(2) and su(1,1) algebras: Detection of non-Gaussian entangled states

    International Nuclear Information System (INIS)

    Nha, Hyunchul; Kim, Jaewan

    2006-01-01

    We derive a class of inequalities, from the uncertainty relations of the su(1,1) and the su(2) algebra in conjunction with partial transposition, that must be satisfied by any separable two-mode states. These inequalities are presented in terms of the su(2) operators J x =(a † b+ab † )/2, J y =(a † b-ab † )/2i, and the total photon number a +N b >. They include as special cases the inequality derived by Hillery and Zubairy [Phys. Rev. Lett. 96, 050503 (2006)], and the one by Agarwal and Biswas [New J. Phys. 7, 211 (2005)]. In particular, optimization over the whole inequalities leads to the criterion obtained by Agarwal and Biswas. We show that this optimal criterion can detect entanglement for a broad class of non-Gaussian entangled states, i.e., the su(2) minimum-uncertainty states. Experimental schemes to test the optimal criterion are also discussed, especially the one using linear optical devices and photodetectors

  19. Critical behaviour of SU(n) quantum chains and topological non-linear σ-models

    International Nuclear Information System (INIS)

    Affleck, I.; British Columbia Univ., Vancouver

    1988-01-01

    The critical behaviour of SU(n) quantum ''spin'' chains, Wess-Zumino-Witten σ-models and grassmanian σ-models at topological angle θ = π (of possible relevance to the quantum Hall effect) is reexamined. It is argued that an additional Z n symmetry is generally necessary to stabilize the massless phase. This symmetry is not present for the σ-models for n>2 and is only present for certain representations of ''spin'' chains. (orig.)

  20. Weinberg Angle Derivation from Discrete Subgroups of SU(2 and All That

    Directory of Open Access Journals (Sweden)

    Potter F.

    2015-01-01

    Full Text Available The Weinberg angle W of the Standard Model of leptons and quarks is derived from specific discrete (i.e., finite subgroups of the electroweak local gauge group SU(2 L U(1 Y . In addition, the cancellation of the triangle anomaly is achieved even when there are four quark families and three lepton families!

  1. Phenomenology of the SU(3)cxSU(3)LxU(1)X model with exotic charged leptons

    International Nuclear Information System (INIS)

    Salazar, Juan C.; Ponce, William A.; Gutierrez, Diego A.

    2007-01-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3) c xSU(3) L xU(1) X with exotic charged leptons, is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produce quark and charged lepton mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions to achieve a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model

  2. Geometrical theory of ghost and Higgs fields and SU(2/1)

    International Nuclear Information System (INIS)

    Ne'eman, Y.; Thierry-Mieg, J.

    1979-10-01

    That a Principal Fiber Bundle provides a precise geometrical representation of Yang-Mills gauge theories has been known since 1963 and used since 1975. This work presents an entirely new domain of applications. The Feynman-DeWitt-Fadeev-Popov ghost-fields required in the renormalization procedure are identified with geometrical objects in the Principal Bundle. This procedure directly yields the BRS equations guaranteeing unitarity and Slavnov-Taylor invariance of the quantum effective Lagrangian. Except for one ghost field and its variation, this entire symmetry thus corresponds to classical notions, in that it is geometrical, and completely independent of the gauge-fixing procedure, which determines the quantized Lagrangian. These results may be used to fix the signs associated with the various ghost loops of quantum supergravity. The result is based upon the identification of a geometrical Z(2) x Z(2) double-gradation of the generalized fields in supergravity: [physical/ghost] fields and [integer/half integer] spins. Then the case of a supergroup as an internal symmetry gauge is considered. Ghosts geometrically associated to odd generators may be identified with the Goldstone-Nambu Higgs-Kibble scalar fields of conventional models with spontaneous symmetry breakdown. As an example, the chiral SU(3)/sub L/ x SU(3)/sub R/ flavor symmetry is realized by gauging the supergroup Q(3).Lastly, the main results concerning asthenodynamics (Weak-EM Unification) as given by the ghost-gauge SU(2/1) supergroup are recalled. 1 table

  3. Large (g-2)$_{\\mu}$ in SU(5) x U(1) supergravity models

    CERN Document Server

    López, J L; Wang, X

    1994-01-01

    We compute the supersymmetric contribution to the anomalous magnetic moment of the muon within the context of $SU(5)\\times U(1)$ supergravity models. The largest possible contributions to $a^{susy}_\\mu$ occur for the largest allowed values of $\\tan\\beta$ and can easily exceed the present experimentally allowed range, even after the LEP lower bounds on the sparticle masses are imposed. Such $\\tan\\beta$ enhancement implies that $a^{susy}_\\mu$ can greatly exceed both the electroweak contribution ($\\approx1.95\\times10^{-9}$) and the present hadronic uncertainty ($\\approx\\pm1.75\\times10^{-9}$). Therefore, the new E821 Brookhaven experiment (with an expected accuracy of $0.4\\times10^{-9}$) should explore a large fraction (if not all) of the parameter space of these models, corresponding to slepton, chargino, and squarks masses as high as 200, 300, and 1000 GeV respectively. Moreover, contrary to popular belief, the $a^{susy}_\\mu$ contribution can have either sign, depending on the sign of the Higgs mixing parameter...

  4. Difficulties for SU(N) quark models of the new particles

    International Nuclear Information System (INIS)

    Colglazier, E.W.; Barnes, K.J.; Hey, A.J.; Zia, R.K.

    1975-01-01

    If preliminary experimental results on the new particles are confirmed and if conventional theoretical prejudices are accepted, it is shown that Harari's SU(6) model is the minimal N-quark model (with hidden color) which can accommodate these constraints. (author)

  5. Infrared conformality and bulk critical points: SU(2) with heavy adjoint quarks

    CERN Document Server

    Lucini, Biagio; Rago, Antonio; Rinaldi, Enrico

    2013-01-01

    The lattice phase structure of a gauge theory can be a serious obstruction to Monte Carlo studies of its continuum behaviour. This issue is particularly delicate when numerical studies are performed to determine whether a theory is in a (near-)conformal phase. In this work we investigate the heavy mass limit of the SU(2) gauge theory with Nf=2 adjoint fermions and its lattice phase diagram, showing the presence of a critical point ending a line of first order bulk phase transition. The relevant gauge observables and the low-lying spectrum are monitored in the vicinity of the critical point with very good control over different systematic effects. The scaling properties of masses and susceptibilities open the possibility that the effective theory at criticality is a scalar theory in the universality class of the four-dimensional Gaussian model. This behaviour is clearly different from what is observed for SU(2) gauge theory with two dynamical adjoint fermions, whose (near-)conformal numerical signature is henc...

  6. A minimal spontaneous CP violation model with small neutrino mass and SU(2) x U(1) x Z3 symmetry

    International Nuclear Information System (INIS)

    Geng, C.Q.; Ng, J.N.

    1988-04-01

    It is shown that spontaneous CP violation and natural flavor conservation can occur in the SU(2) L x U(1) Y model based on two Higgs doublet and one Higgs singlet fields with a Z 3 discrete symmetry. Physical CP nonconservation is purely due to scalar-pseudoscalar mixings. In order for this to be a major source of CP violation a light spin-O boson of mass less than 10 GeV is required. The see-saw mechanism can be implemented to generate small neutrino masses. The model implies a relatively large electric dipole moment for charged leptons and small value for ε'/ε

  7. Families and degenerations of conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Roggenkamp, D.

    2004-09-01

    In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)

  8. Nonperturbative flipped SU(5) vacua in heterotic M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, Alon E. E-mail: faraggi@thphys.ox.ac.uk; Garavuso, Richard E-mail: garavuso@thphys.ox.ac.uk; Isidro, Jose M. E-mail: isidro@thphys.ox.ac.uk

    2002-10-07

    The evidence for neutrino masses in atmospheric and solar neutrino experiments provides further support for the embedding of the Standard Model fermions in the chiral 16 SO(10) representation. Such an embedding is afforded by the realistic free fermionic heterotic-string models. In this paper we advance the study of these string models toward a nonperturbative analysis by generalizing the work of Donagi, Pantev, Ovrut and Waldram from the case of G=SU(2n+1) to G=SU(2n) stable holomorphic vector bundles on elliptically fibered Calabi-Yau manifolds with fundamental group Z{sub 2}. We demonstrate existence of G=SU(4) solutions with three generations and SO(10) observable gauge group over Hirzebruch base surface, whereas we show that certain classes of del Pezzo base surface do not admit such solutions. The SO(10) symmetry is broken to SU(5)xU(1) by a Wilson line. The overlap with the realistic free fermionic heterotic-string models is discussed.

  9. Neutrino bilarge mixing and flavor physics in the flipped SU(5) model

    Energy Technology Data Exchange (ETDEWEB)

    Huang Chaoshang; Li Tianjun; Liao Wei E-mail: liaow@ictp.trieste.it

    2003-11-24

    We have constructed a specific supersymmetric flipped SU(5) GUT model in which bilarge neutrino mixing is incorporated. Because the up-type and down-type quarks in the model are flipped in the representations ten and five with respect to the usual SU(5), the radiatively generated flavor mixing in squark mass matrices due to the large neutrino mixing has a pattern different from those in the conventional SU(5) and SO(10) supersymmetric GUTs. This leads to phenomenological consequences quite different from SU(5) or SO(10) supersymmetric GUT models. That is, it has almost no impact on B physics. On the contrary, the model has effects in top and charm physics as well as lepton physics. In particular, it gives promising prediction on the mass difference, {delta}M{sub D}, of the D-D-bar mixing which for some ranges of the parameter space with large tan{beta} can be at the order of 10{sup 9} {Dirac_h} s{sup -1}, one order of magnitude smaller than the experimental upper bound. In some regions of the parameter space {delta}M{sub D} can saturate the present bound. For these ranges of parameter space, t{yields}u,c+h{sup 0} can reach 10{sup -5}-10{sup -6} which would be observed at the LHC and future {gamma}-{gamma} colliders.

  10. Strong coupling expansion for scattering phases in hamiltonian lattice field theories. Pt. 2. SU(2) gauge theory in (2+1) dimensions

    International Nuclear Information System (INIS)

    Dahmen, B.

    1994-12-01

    A recently proposed method for a strong coupling analysis of scattering phenomena in hamiltonian lattice field theories is applied to the SU(2) Yang-Mills model in (2 + 1) dimensions. The calculation is performed up to second order in the hopping parameter. All relevant quantities that characterize the collision between the lightest glueballs in the elastic region - cross section, phase shifts, resonance parameters - are determined. (orig.)

  11. Neutralino constraints on the flipped SU(5) model

    Energy Technology Data Exchange (ETDEWEB)

    Abel, S.A.; Cottingham, W.N. (Bristol Univ. (UK). H.H. Wills Physics Lab.); Whittingham, I. (James Cook Univ. of North Queensland, Townsville (Australia). Dept. of Physics)

    1990-07-19

    We examine the decay width of Z{yields}neutral invisibles in the supersymmetric flipped SU(5) model. It is found that these processes would give contributions to the Z width leading to the inference of a non-integer number of generations between close to three and {approx equal} 3.5, and we argue that an accurate determination of this quantity could lead to significant restrictions on the allowable parameter space in this model. (orig.).

  12. Evaluation of physical constants and operators in the SU(2) and SU(3) lattice gauge theory

    International Nuclear Information System (INIS)

    Tsuchida, R.H.

    1987-01-01

    Wilson loops and Wilson lines in the fundamental and the adjoint representations of SU(2) on the lattice are measured using the icosahedral subgroup and a noise reduction technique. The string tension was evaluated by fitting the expectation value of loops of all sizes to a 6-parameter curve. From the Wilson lines in the adjoint representation of SU(2), two kinds of gluon potentials were measured: the gluon-gluon interaction potential and the gluon-image interaction potential. The effective mass of the gluon was evaluated on each of those potentials and compared. In SU(3), the contribution of s anti σ/sub μnu/F/sub μnu/d operator to the correction of effective weak four-quark operator in the measurement of ΔI = 1/2 amplitude of kaon decay is examined. The renormalization of the critical hopping parameter is calculated perturbatively and compared with the Monte Carlo results. The VEV of psi anti psi operator is measured on the lattice. In the hopping parameter renormalization calculation and the psi anti psi measurements, the effects of expanding of Feynman diagrams in power of a, the lattice spacing, are examined

  13. Unifying flipped SU(5) in five dimensions

    International Nuclear Information System (INIS)

    Barr, S.M.; Dorsner, Ilja

    2002-01-01

    It is shown that embedding a four-dimensional flipped SU(5) model in a five-dimensional SO(10) model preserves the best features of both flipped SU(5) and SO(10). The missing partner mechanism, which naturally achieves both doublet-triplet splitting and suppression of d=5 proton decay operators, is realized as in flipped SU(5), while the gauge couplings are unified as in SO(10). The masses of down quarks and charged leptons, which are independent in flipped SU(5), are related by the SO(10). Distinctive patterns of quark and lepton masses can result. The gaugino mass M 1 is independent of M 3 and M 2 , which are predicted to be equal

  14. Semiclassical description of quantum rotator in terms of SU(2) coherent states

    International Nuclear Information System (INIS)

    Gitman, D M; Petrusevich, D A; Shelepin, A L

    2013-01-01

    We introduce coordinates of the rigid body (rotator) using mutual positions between body-fixed and space-fixed reference frames. Wave functions that depend on such coordinates can be treated as scalar functions of the group SU(2). Irreducible representations of the group SU(2) × SU(2) in the space of such functions describe their possible transformations under independent rotations of the both reference frames. We construct sets of the corresponding group SU(2) × SU(2) Perelomov coherent states (CS) with a fixed angular momentum j of the rotator as special orbits of the latter group. Minimization of different uncertainty relations is discussed. The classical limit corresponds to the limit j → ∞. Considering Hamiltonians of rotators with different characteristics, we study the time evolution of the constructed CS. In some cases, the CS time evolution is completely or partially reduced to their parameter time evolution. If these parameters are chosen as Euler angles, then they obey the Euler equations in the classical limit. Quantum corrections to the motion of the quantum rotator can be found from exact equations on the CS parameters. (paper)

  15. Systematic construction of spin liquids on the square lattice from tensor networks with SU(2) symmetry

    Science.gov (United States)

    Mambrini, Matthieu; Orús, Román; Poilblanc, Didier

    2016-11-01

    We elaborate a simple classification scheme of all rank-5 SU(2) spin rotational symmetric tensors according to (i) the onsite physical spin S , (ii) the local Hilbert space V⊗4 of the four virtual (composite) spins attached to each site, and (iii) the irreducible representations of the C4 v point group of the square lattice. We apply our scheme to draw a complete list of all SU(2)-symmetric translationally and rotationally invariant projected entangled pair states (PEPS) with bond dimension D ≤6 . All known SU(2)-symmetric PEPS on the square lattice are recovered and simple generalizations are provided in some cases. More generally, to each of our symmetry class can be associated a (D -1 )-dimensional manifold of spin liquids (potentially) preserving lattice symmetries and defined in terms of D -independent tensors of a given bond dimension D . In addition, generic (low-dimensional) families of PEPS explicitly breaking either (i) particular point-group lattice symmetries (lattice nematics) or (ii) time-reversal symmetry (chiral spin liquids) or (iii) SU(2) spin rotation symmetry down to U(1 ) (spin nematics or Néel antiferromagnets) can also be constructed. We apply this framework to search for new topological chiral spin liquids characterized by well-defined chiral edge modes, as revealed by their entanglement spectrum. In particular, we show how the symmetrization of a double-layer PEPS leads to a chiral topological state with a gapless edge described by a SU (2) 2 Wess-Zumino-Witten model.

  16. Heavy charged leptons in an SU(3)L x U(1)N model

    International Nuclear Information System (INIS)

    Pleitez, V.; Tonasse, M.D.

    1992-12-01

    An SU(3) L x U(1) N model for the electroweak interactions which includes additional heavy charged leptons is considered. These leptons have not strong constraints on their masses since they do not couple in the same way as the lightest leptons to the neutral-currents and also because new contributions to the muon g-2 factor already suppressed because of the massive new vector boson present in this model. (author)

  17. Integrable theories that are asymptotically CFT

    CERN Document Server

    Evans, J M; Jonathan M Evans; Timothy J Hollowood

    1995-01-01

    A series of sigma models with torsion are analysed which generate their mass dynamically but whose ultra-violet fixed points are non-trivial conformal field theories -- in fact SU(2) WZW models at level k. In contrast to the more familiar situation of asymptotically free theories in which the fixed points are trivial, the sigma models considered here may be termed ``asymptotically CFT''. These theories have previously been conjectured to be quantum integrable; we confirm this by proposing a factorizable S-matrix to describe their infra-red behaviour and then carrying out a stringent test of this proposal. The test involves coupling the theory to a conserved charge and evaluating the response of the free-energy both in perturbation theory to one loop and directly from the S-matrix via the Thermodynamic Bethe Ansatz with a chemical potential at zero temperature. Comparison of these results provides convincing evidence in favour of the proposed S-matrix; it also yields the universal coefficients of the beta-func...

  18. Relations between the SU(2|4) symmetric theories and the gauge gravity correspondence

    International Nuclear Information System (INIS)

    Tsuchiya, Asato

    2008-01-01

    We study theories with SU(2|4) symmetry, which include N=4 SYM on R x S 3 /Z k , 2+1 SYM on R x S 2 and the plane wave matrix model. All these theories possess many vacua. From Lin-Maldacena's method which gives the gravity dual of each vacuum, it is suggested that the theory around each vacuum of N=4 SYM on R x S 3 /Z k and 2+1 SYM on R x S 2 is equivalent to the theory around a certain vacuum of the plane wave matrix model. We show this directly on the gauge theory side. We realize theories around multi-monopole backgrounds in matrix model, and extend Taylor's matrix T-duality to that on spheres. (author)

  19. N-anti N oscillation in SO(10) and SU(6) supersymmetric grand unified models

    International Nuclear Information System (INIS)

    Fujimoto, Y.; Zhiyong, Z.

    1982-06-01

    N-anti N oscillation in SO(10) and SU(6) S.G.U.M. is considered. We find a new type of diagram leading to a faster oscillation rate than in non-supersymmetric case. It is also noted that in SO(10) S.G.U.M. with intermediate SU(4)sub(C)xSU(2)sub(L)xSU(2)sub(R) symmetry N-anti N oscillation would be highly suppressed, which may not necessarily be the case for SU(6) S.G.U.M. (author)

  20. Experimental consequences of SU(3) symmetry in an sdg boson model

    International Nuclear Information System (INIS)

    Akiyama, Y.; Brentano, P. von; Gelberg, A.

    1987-01-01

    Energies of collective levels in 178 Hf and 234 U are compared wth predictions of the SU(3) limiz of the sdg interacting boson model. All known positive parity states of 178 Hf below 1.8 MeV (with the expection of a 0 + band) have been satisfactorily reproduced. Most of the bands in 234 U are also described by the model. However, a few predicted states have no experimental counterpart. The introduction of the g-basons strongly reduces the previously observed discrepancies between experimental B(E2)'s in 238 U and the sd-IBM calculation. (orig.)

  1. The flipped SU(5)xU(1) string model revamped

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I.; Ellis, J.; Hagelin, J.S.; Nanopoulos, D.V. (European Organization for Nuclear Research, Geneva (Switzerland))

    1989-11-02

    We present a refined version of our three-generation flipped SU(5)xU(1) string model with the following properties. The complete massless spectrum is derived and shown to be free of all gauge and mixed anomalies apart from a single anomalous U(1). The imaginary part of the dilaton supermultiplet is eaten by the anomalous U(1) gauge boson, and the corresponding D-term is cancelled by large VEVs for singlet fields that break surplus U(1) gauge factors, leaving a supersymmetric vacuum with an SU(5)xU(1) visible gauge group and an SO(10)xSO(6) hidden gauge group. There are sufficient Higgs multiplets to break the visible gauge symmetry down to the standard model in an essentially unique way. All trilinear superpotential couplings have been calculated and there are in particular some giving m{sub t}, m{sub b}, m{sub tau}ne0. A renormalization group analysis shows that m{sub t}<190 GeV and m{sub b}{approx equal}3m{sub tau}. Light Higgs doublets are split automatically from heavy Higgs triplets, leaving no residual dimension-five operators for baryon decay, and the baryon lifetime tau{sub B} {approx equal} 2x10{sup 34{plus minus}2} yr. There are no tree-level flavour-changing neutral currents, but muyieldsegamma may occur at a detectable level: B(muyieldsegamma){proportional to} 10{sup -11}-10{sup -14}. (orig.).

  2. Signature effect in the SU(3) limit of SU(6) particle-quadrupole phonon coupling model (PTQM)

    International Nuclear Information System (INIS)

    Paar, V.; Brant, S.

    1981-09-01

    Systematic deviations from the J(J + 1) energy rule in the SU(3) limit of PTQM are studied and interpreted in terms of signature from the rotational model. The signature effect, which is in the rotational mode introduced via the Coriolis force, is generated here by the correlation of PTQM. (author)

  3. Quantum molecular dynamics study of the Su-Schrieffer-Heeger model

    NARCIS (Netherlands)

    Michielsen, Kristel; Raedt, Hans De

    A quantum molecular dynamics technique is presented to compute the static and dynamic properties of a system of fermions coupled to classical degrees of freedom. The method is employed to investigate the properties of the Su-Schrieffer-Heeger model, an electron-phonon model which is often used to

  4. Building a SuAVE browse interface to R2R's Linked Data

    Science.gov (United States)

    Clark, D.; Stocks, K. I.; Arko, R. A.; Zaslavsky, I.; Whitenack, T.

    2017-12-01

    The Rolling Deck to Repository program (R2R) is creating and evaluating a new browse portal based on the SuAVE platform and the R2R linked data graph. R2R manages the underway sensor data collected by the fleet of US academic research vessels, and provides a discovery and access point to those data at its website, www.rvdata.us. R2R has a database-driven search interface, but seeks a more capable and extensible browse interface that could be built off of the substantial R2R linked data resources. R2R's Linked Data graph organizes its data holdings around key concepts (e.g. cruise, vessel, device type, operator, award, organization, publication), anchored by persistent identifiers where feasible. The "Survey Analysis via Visual Exploration" or SuAVE platform (suave.sdsc.edu) is a system for online publication, sharing, and analysis of images and metadata. It has been implemented as an interface to diverse data collections, but has not been driven off of linked data in the past. SuAVE supports several features of interest to R2R, including faceted searching, collaborative annotations, efficient subsetting, Google maps-like navigation over an image gallery, and several types of data analysis. Our initial SuAVE-based implementation was through a CSV export from the R2R PostGIS-enabled PostgreSQL database. This served to demonstrate the utility of SuAVE but was static and required reloading as R2R data holdings grew. We are now working to implement a SPARQL-based ("RDF Query Language") service that directly leverages the R2R Linked Data graph and offers the ability to subset and/or customize output.We will show examples of SuAVE faceted searches on R2R linked data concepts, and discuss our experience to date with this work in progress.

  5. Topological Quantization of Instantons in SU(2) Yang–Mills Theory

    International Nuclear Information System (INIS)

    Wo-Jun, Zhong; Yi-Shi, Duan

    2008-01-01

    By decomposing SU(2) gauge potential in four-dimensional Euclidean SU(2) Yang–Mills theory in a new way, we find that the instanton number related to the isospin defects of a doublet order parameter can be topologically quantized by the Hopf index and Brouwer degree. It is also shown that the instanton number is just the sum of the topological charges of the isospin defects in the non-trivial sector of Yang–Mills theory. (general)

  6. SU(4)

    Indian Academy of Sciences (India)

    Abstract. We introduce in this paper embedded Gaussian unitary ensemble of random matrices, for m fermions in Ω number of single particle orbits, generated by random two- body interactions that are SU(4) scalar, called EGUE(2)-SU(4). Here the SU(4) algebra corresponds to Wigner's supermultiplet SU(4) symmetry in ...

  7. Naturally light neutrinos in the flipped SU(5)xU(1) superstring model

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I.; Rizos, J. (Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France)); Tamvakis, K. (Physics Dept., Univ. Ioannina (Greece))

    1992-04-16

    We analyze the SU(5)xU(1)'xU(1){sup 4}xSO(10)xSU(4) superstring model, taking into account non-renormalizable superpotential interactions up to sixth order, and find that all neutrinos stay naturally light within the experimental mass bounds. (orig.).

  8. Center vortex model for the infrared sector of SU(4) Yang-Mills theory: String tensions and deconfinement transition

    International Nuclear Information System (INIS)

    Engelhardt, M.

    2006-01-01

    A random vortex world-surface model for the infrared sector of SU(4) Yang-Mills theory is constructed, focusing on the confinement properties and the behavior at the deconfinement phase transition. Although the corresponding data from lattice Yang-Mills theory can be reproduced, the model requires a more complex action and considerably more tuning than the SU(2) and SU(3) cases studied previously. Its predictive capabilities are accordingly reduced. This behavior has a definite physical origin, which is elucidated in detail in the present work. As the number of colors is raised in Yang-Mills theory, the corresponding infrared effective vortex description cannot indefinitely continue to rely on dynamics determined purely by vortex world-surface characteristics; additional color structures present on the vortices begin to play a role. As evidenced by the modeling effort reported here, definite signatures of this behavior appear in the case of four colors

  9. A comment on the quark mixing in the supersymmetric SU(4)xO(4) GUT model

    International Nuclear Information System (INIS)

    Ranfone, S.

    1992-08-01

    The SU(4) x O(4) and the ''flipped'' SU(5) x U(1) models seem to be the only possible Grand Universal Theories (GUT's) derivable from string theories with Kac-Moody level K=1. Naively, the SU(4) x O(4) model, at least in its minimal GUT version, is characterized by the lack of any mixing in the quark sector. In this ''Comment'' we show that, although some mixing may be generated as a consequence of large vacuum-expectation-values for the scalar partners of the right-handed neutrinos, it turns out to be too small by several orders of magnitude, in net contrast with our experimental information concerning the Cabibbo mixing. Our result, which therefore rules out the minimal SU(4) x O(4) GUT model, also applies to ''flipped'' SU(5) x U(1) in the case of the embedding in SO(10). (Author)

  10. The end point of the first-order phase transition of the SU(2) gauge-Higgs model on a four-dimensional isotropic lattice

    International Nuclear Information System (INIS)

    Aoki, Y.; Csikor, F.; Fodor, Z.; Ukawa, A.

    1999-01-01

    We report results of a study of the end point of the electroweak phase transition of the SU(2) gauge-Higgs model defined on a four-dimensional isotropic lattice with N t = 2. Finite-size scaling study of Lee-Yang zeros yields λ c = 0.00116(16) for the end point. Combined with a zero-temperature measurement of Higgs and W boson masses, this leads to M H,c = 68.2 ± 6.6 GeV for the critical Higgs boson mass. An independent analysis of Binder cumulant gives a consistent value λ c = 0.00102(3) for the end point

  11. Coupled SU(3) models of rotational states in nuclei and quasi-dynamical symmetry

    International Nuclear Information System (INIS)

    Thiamova, G.; Rowe, D. J.

    2007-01-01

    This contribution reports a first step towards the development of a model of low-lying nuclear collective states based on the progression from weak to strong coupling of a combination of systems in multiple SU(3) irreps. The motivation for such a model comes partly from the remarkable persistence of rotational structure observed experimentally and in many model calculations. This work considers the spectra obtainable by coupling just two SU(3) irreps by means of a quadrupole-quadrupole interaction. For a particular value of this interaction, the two irreps combine to form strongly-coupled irreps while for zero interaction the weakly-coupled results are mixtures of many such strongly-coupled irreps. A notable result is the persistence of the rotor character of the low-energy states for a wide range of the interaction strength. Also notable is the fact that, for very weak interaction strengths, the energy levels of the yrast band resemble those of a vibrational sequence while the B(E2) transition strengths remain close to those of an axially symmetric rotor, as observed in many nuclei. (Author)

  12. The SU(3) structure of rotational states in heavy deformed nuclei

    International Nuclear Information System (INIS)

    Jarrio, M.; Wood, J.L.; Rowe, D.J.

    1991-01-01

    The SU(3) coupling scheme provides an informative basis for the expansion of shell-model wave functions and their interpretation in collective-model terms. We show in this paper that it is possible, using the coupled-rotor-vibrator model, to infer averages of the distributions of SU(3) representation labels in heavy rotational nuclei by direct interpretation of physically observed E2 transition rates and quadrupole moments. We find that the distributions of SU(3) representation labels have nearly constant average values for states belonging to some well-defined rotational bands. These are bands of states having B(E2) values and quadrupole moments that follow the predictions of the rotor model. Such bands are interpreted as soft SU(3) bands in parallel with the concept of a soft rotor band with vibrational-shape fluctuations. The concept of a soft SU(3) band and its implications for beta-vibrational excited bands is developed. The average SU(3) representation labels inferred from experiment are interpreted by calculating those implied by the Nilsson model. An analysis of the SU(3) content of Nilsson wave functions also leads to two remarkable predictions. The first is that, in the asymptotic limit, the Nilsson model implies intrinsic states for a rotor band that are beta rigid. The second is that, although the intrinsic Nilsson state is axially symmetric, it generates a sequence of K=0, 2, 4,...bands. (orig.)

  13. New solutions of euclidean SU(2) gauge theory

    International Nuclear Information System (INIS)

    Khan, I.

    1983-08-01

    New solutions of the Euclidean SU(2) gauge theory having finite field strength everywhere are presented. The solutions are self dual or antidual and constitute a two-parameter family which includes the instantons. (author)

  14. The SU(2|3) dynamic two-loop form factors

    International Nuclear Information System (INIS)

    Brandhuber, A.; Kostacińska, M.; Penante, B.; Travaglini, G.; Young, D.

    2016-01-01

    We compute two-loop form factors of operators in the SU(2|3) closed subsector of N = 4 supersymmetric Yang-Mills. In particular, we focus on the non-protected, dimension-three operators Tr(X[Y,Z]) and Tr(ψψ) for which we compute the four possible two-loop form factors, and corresponding remainder functions, with external states 〈X̄ȲZ̄| and 〈ψ̄ψ̄|. Interestingly, the maximally transcendental part of the two-loop remainder of 〈X̄ȲZ̄|Tr(X[Y,Z])|0〉 turns out to be identical to that of the corresponding known quantity for the half-BPS operator Tr(X"3). We also find a surprising connection between the terms subleading in transcendentality and certain a priori unrelated remainder densities introduced in the study of the spin chain Hamiltonian in the SU(2) sector. Next, we use our calculation to resolve the mixing, recovering anomalous dimensions and eigenstates of the dilatation operator in the SU(2|3) sector at two loops. We also speculate on potential connections between our calculations in N = 4 super Yang-Mills and Higgs + multi-gluon amplitudes in QCD in an effective Lagrangian approach.

  15. The SU(2|3) dynamic two-loop form factors

    Energy Technology Data Exchange (ETDEWEB)

    Brandhuber, A.; Kostacińska, M. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom); Penante, B. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom); Institut für Physik und IRIS Adlershof, Humboldt Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Travaglini, G.; Young, D. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom)

    2016-08-23

    We compute two-loop form factors of operators in the SU(2|3) closed subsector of N = 4 supersymmetric Yang-Mills. In particular, we focus on the non-protected, dimension-three operators Tr(X[Y,Z]) and Tr(ψψ) for which we compute the four possible two-loop form factors, and corresponding remainder functions, with external states 〈X̄ȲZ̄| and 〈ψ̄ψ̄|. Interestingly, the maximally transcendental part of the two-loop remainder of 〈X̄ȲZ̄|Tr(X[Y,Z])|0〉 turns out to be identical to that of the corresponding known quantity for the half-BPS operator Tr(X{sup 3}). We also find a surprising connection between the terms subleading in transcendentality and certain a priori unrelated remainder densities introduced in the study of the spin chain Hamiltonian in the SU(2) sector. Next, we use our calculation to resolve the mixing, recovering anomalous dimensions and eigenstates of the dilatation operator in the SU(2|3) sector at two loops. We also speculate on potential connections between our calculations in N = 4 super Yang-Mills and Higgs + multi-gluon amplitudes in QCD in an effective Lagrangian approach.

  16. Spontaneous compactification of D=10 Maxwell-Einstein theory leads to SU(3) X SU(2) X U(1) gauge symmetry

    International Nuclear Information System (INIS)

    Watamura, S.

    1983-01-01

    Solutions of ten-dimensional Maxwell-Einstein theory and a bosonic part of N = 2, D = 10 supergravity theory are examined. It is shown that there is a solution for which six-dimensional internal space is compactified into CP 2 x S 2 . The gauge symmetry of the effective four-dimensional theory is SU(3) x SU(2) x U(1). The introduction of fermions is also considered. The requirement of consistency in introducing a spinsup(C) structure on CP 2 results in a U(1) charge quantization condition. (orig.)

  17. Infrared fixed point of SU(2) gauge theory with six flavors

    Science.gov (United States)

    Leino, Viljami; Rummukainen, Kari; Suorsa, Joni; Tuominen, Kimmo; Tähtinen, Sara

    2018-06-01

    We compute the running of the coupling in SU(2) gauge theory with six fermions in the fundamental representation of the gauge group. We find strong evidence that this theory has an infrared stable fixed point at strong coupling and measure also the anomalous dimension of the fermion mass operator at the fixed point. This theory therefore likely lies close to the boundary of the conformal window and will display novel infrared dynamics if coupled with the electroweak sector of the Standard Model.

  18. Gauge hierarchy problem and a nonscaling SU(5) model

    International Nuclear Information System (INIS)

    Tajnov, Eh.A.

    1987-01-01

    It is shown that the problems of gauge hierarchy anf Higgs hierarchy have a common origin, and a way is proposed for their combined solution in a no-scale supersymmetric SU(5) gauge model, related to the N=1 supergravity. A reason of appearance of the grand unification scale, M G , is the dimensional transmutation owing to quantum corrections to the classical potential. In this model, the Higgs hierarchy is established automatically by means of the singlet mechanism, which does not require a fine tuning of the superpotential parameters. The effective potential for the singlet field X has a minimum at =M G =2.2x10 16 GeV. The scale parameter M G does not depend on the gravitino mass and initial values of the Yukawa coupling constants but depends on initial values of the gauge constant α -1 (0)=22.7 and on the trilinear supergravity constant A=1.84 at a scale M=M p /√8π=2.43x10 18 GeV

  19. Flipped SU(5) predicts {delta}T/T

    Energy Technology Data Exchange (ETDEWEB)

    Kyae, Bumseok [School of Physics, Korea Institute for Advanced Study, 207-43, Cheongnyangni-Dong, Dongdaemun-Gu, Seoul 130-722 (Korea, Republic of)]. E-mail: bkyae@kias.re.kr; Shafi, Qaisar [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)]. E-mail: shafi@bartol.udel.edu

    2006-04-20

    We discuss hybrid inflation in supersymmetric flipped SU(5) model such that the cosmic microwave anisotropy {delta}T/T is essentially proportional to (M/M{sub P}){sup 2}, where M denotes the symmetry breaking scale and M{sub P} (=2.4x10{sup 18} GeV) is the reduced Planck mass. The magnitude of M determined from {delta}T/T measurements can be consistent with the value inferred from the evolution of SU(3) and SU(2) gauge couplings. In other words, one could state that flipped SU(5) predicts (more precisely 'postdicts') {delta}T/T. The scalar spectral index n{sub s}=0.993+/-0.007, the scalar to tensor ratio satisfies r-bar 10{sup -6}, while dn{sub s}/dlnk-bar 4x10{sup -4}.

  20. Identity of the SU(3) model phenomenological hamiltonian and the hamiltonian of nonaxial rotator

    International Nuclear Information System (INIS)

    Filippov, G.F.; Avramenko, V.I.; Sokolov, A.M.

    1984-01-01

    Interpretation of nonspheric atomic nuclei spectra on the basis of phenomenological hamiltonians of SU(3) model showed satisfactory agreement of simulation calculations with experimental data. Meanwhile physical sense of phenomenological hamiltonians was not yet discussed. It is shown that phenomenological hamiltonians of SU(3) model are reduced to hamiltonian of nonaxial rotator but with additional items of the third and fourth powers angular momentum operator of rotator

  1. SU(2) Yang-Mills solitons in R2 gravity

    Science.gov (United States)

    Perapechka, I.; Shnir, Ya.

    2018-05-01

    We construct new family of spherically symmetric regular solutions of SU (2) Yang-Mills theory coupled to pure R2 gravity. The particle-like field configurations possess non-integer non-Abelian magnetic charge. A discussion of the main properties of the solutions and their differences from the usual Bartnik-McKinnon solitons in the asymptotically flat case is presented. It is shown that there is continuous family of linearly stable non-trivial solutions in which the gauge field has no nodes.

  2. Verification of the gauge-boson self-interaction in the reaction e+ e- →Z 0 νi bar νi

    International Nuclear Information System (INIS)

    Borisov, G.V.; Larin, V.N.; Tikhonin, F.F.

    1989-01-01

    THE WZW vertex in the production of a neutrino-antineutrino pair and Z from the electron-positron annihilation is studied. The production cross section is maximal in the energy range 1--2 Tev. This will give a way of measuring the parameters of the WZW vertex

  3. Phenomenology of the SU(3)c x SU(3)L x U(1)X model with right-handed neutrinos

    International Nuclear Information System (INIS)

    Gutierrez, D.A.; Ponce, W.A.; Sanchez, L.A.

    2006-01-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3) c x SU(3) L x U(1) X with right-handed neutrinos is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produces a quark mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions for achieving a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model. (orig.)

  4. Experimental consequences of SU(3) symmetry in an sdg boson model

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Y.; Brentano, P. von; Gelberg, A.

    1987-05-01

    Energies of collective levels in /sup 178/Hf and /sup 234/U are compared wth predictions of the SU(3) limiz of the sdg interacting boson model. All known positive parity states of /sup 178/Hf below 1.8 MeV (with the expection of a 0/sup +/ band) have been satisfactorily reproduced. Most of the bands in /sup 234/U are also described by the model. However, a few predicted states have no experimental counterpart. The introduction of the g-basons strongly reduces the previously observed discrepancies between experimental B(E2)'s in /sup 238/U and the sd-IBM calculation.

  5. On the exact S-matrix from CP sup(n-1) and SU(n) chiral Thirring model

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.

    1980-03-01

    The S-matrix of CP sub(n-1) and SU(n) Thirring model is calculated, perturbatively, up to 2 loops. The calculation shows striking similarities, but the S -matrix has some deviations from the expected exact one. (Author) [pt

  6. A SU(3) x U(1) model for electroweak interactions

    International Nuclear Information System (INIS)

    Pisano, F.; Pleitez, V.

    1992-01-01

    We consider a gauge model based on a SU(3) vector U(1) symmetry in which the lepton number is violated explicitly by charged scalar and gauge boson, including a vector field with double electric charge. (author)

  7. Valence bond solids for SU(n) spin chains: Exact models, spinon confinement, and the Haldane gap

    International Nuclear Information System (INIS)

    Greiter, Martin; Rachel, Stephan

    2007-01-01

    To begin with, we introduce several exact models for SU(3) spin chains: First is a translationally invariant parent Hamiltonian involving four-site interactions for the trimer chain, with a threefold degenerate ground state. We provide numerical evidence that the elementary excitations of this model transform under representation 3 of SU(3) if the original spins of the model transform under representation 3. Second is a family of parent Hamiltonians for valence bond solids of SU(3) chains with spin representations 6, 10, and 8 on each lattice site. We argue that of these three models, only the latter two exhibit spinon confinement and, hence, a Haldane gap in the excitation spectrum. We generalize some of our models to SU(n). Finally, we use the emerging rules for the construction of valence bond solid states to argue that models of antiferromagnetic chains of SU(n) spins, in general, possess a Haldane gap if the spins transform under a representation corresponding to a Young tableau consisting of a number of boxes λ which is divisible by n. If λ and n have no common divisor, the spin chain will support deconfined spinons and not exhibit a Haldane gap. If λ and n have a common divisor different from n, it will depend on the specifics of the model including the range of the interaction

  8. Phase structure and phase transition of the SU(2) Higgs model in three dimensions

    International Nuclear Information System (INIS)

    Buchmueller, W.; Philipsen, O.

    1994-11-01

    We derive a set of gauge independent gap equations for Higgs boson and vector boson masses for the SU(2) Higgs model in three dimensions. The solutions can be associated with the Higgs phase and the symmetric phase, respectively. In the Higgs phase the calculated masses are in agreement with results from perturbation theory. In the symmetric phase a non-perturbative vector boson mass is generated by the non-abelian gauge interactions, whose value is rather independent of the scalar self-coupling λ. For small values of λ the phase transition is first-order. Its strength decreases with increasing λ, and at a critical value λ c the first-order transition changes to a crossover. Based on a perturbative matching the three-dimensional theory is related to the four-dimensional theory at high temperatures. The critical Higgs mass m H c , corresponding to the critical coupling λ c , is estimated to be below 100 GeV. The ''symmetric phase'' of the theory can be interpreted as a Higgs phase whose parameters are determined non-perturbatively. The obtained Higgs boson and vector boson masses are compared with recent results from lattice Monte Carlo simulations. (orig.)

  9. Sign of the neutron-proton mass difference in an SU(2)xU(1) supersymmetric toy model: A possible scenario for solving the old puzzle

    International Nuclear Information System (INIS)

    Desai, B.R.; Xu, G.

    1990-01-01

    Based on the idea that electromagnetism is responsible for mass differences within isotopic multiplets (e.g., pointlike neutron and proton or u and d quarks), we generalize an SU(2)xU(1) model in a toy field theory of vectors to a supersymmetric model and investigate the finite mass difference within the isotopic doublet. It is found that under soft-supersymmetry breaking, a positive n-p mass difference can be obtained under reasonable assumptions for the parameters involved

  10. Pseudo SU(3) shell model: Normal parity bands in odd-mass nuclei

    International Nuclear Information System (INIS)

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2000-01-01

    A pseudo shell SU(3) model description of normal parity bands in 159 Tb is presented. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms. A systematic parametrization is introduced, accompanied by a detailed discussion of the effect each term in the Hamiltonian has on the energy spectrum. Yrast and excited band wavefunctions are analyzed together with their B(E2) values

  11. Sharpening the flipped SU(5) string model

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L. (Center for Theoretical Physics, Dept. of Physics, Texas A and M Univ., College Station, TX (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, TX (United States)); Nanopoulos, D.V. (Center for Theoretical Physics, Dept. of Physics, Texas A and M Univ., College Station, TX (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, TX (United States) Theoretical Physics Div., CERN, Geneva (Switzerland))

    1991-10-17

    We present an improved version of the flipped SU(5) string model which accommodates numerous existing and expected features of the low-energy physics world, such as (i) two Higgs doublets with adequate mixing between them; (ii) hierarchy of quark and lepton masses, including relations such as m{sub s}/m{sub b}{proportional to}m{sub {mu}}/m{sub {tau}}, and m{sub c}/m{sub t}{sup 1/2.}, (iii) sufficiently suppressed proton decay operators, with gauge-boson mediated decays favoring p{yields}anti {nu}{sub {tau}}{pi}{sup +} and n{yields}anti {nu}{sub {tau}}, {pi}{sup 0}, (iv) nearly massless {nu}{sub {mu}} and {nu}{sub {tau}}, and {nu}{sub e} in the eV range; (v) heavy top quark (m{sub t} < or approx. 170 GeV) and large ratio of vacuum expectation values (tan {beta} < or approx. 33). (orig.).

  12. Mixed global anomalies and boundary conformal field theories

    OpenAIRE

    Numasawa, Tokiro; Yamaguchi, Satoshi

    2017-01-01

    We consider the relation of mixed global gauge gravitational anomalies and boundary conformal field theory in WZW models for simple Lie groups. The discrete symmetries of consideration are the centers of the simple Lie groups. These mixed anomalies prevent to gauge them i.e, take the orbifold by the center. The absence of anomalies impose conditions on the levels of WZW models. Next, we study the conformal boundary conditions for the original theories. We consider the existence of a conformal...

  13. Notes on TQFT wire models and coherence equations for SU(3) triangular cells

    CERN Document Server

    Coquereaux, R.; Schieber, G.

    2010-01-01

    After a summary of the TQFT wire model formalism we bridge the gap from Kuperberg equations for SU(3) spiders to Ocneanu coherence equations for systems of triangular cells on fusion graphs that describe modules associated with the fusion category of SU(3) at level k. We show how to solve these equations in a number of examples.

  14. SU(5) unification revisited

    International Nuclear Information System (INIS)

    Giveon, A.; Sarid, U.; Hall, L.J.; California Univ., Berkeley, CA

    1991-01-01

    Model-independent criteria for unification in the SU(5) framework are studied. These are applied to the minimal supersymmetric standard model and to the standard model with a split 45 Higgs representation. Although the former is consistent with SU(5) unification, the superpartner masses can vary over a wide range, and may even all lie well beyond the reach of planned colliders. Adding a split 45 to the standard model can also satisfy the unification criteria, so supersymmetric SU(5) is far from unique. Furthermore, we learn that separate Higgs doublets must couple to the top and bottom quarks in order to give a correct m b /m τ prediction. (orig.)

  15. Fermion unification model based on the intrinsic SU(8 symmetry of a generalized Dirac equation

    Directory of Open Access Journals (Sweden)

    Eckart eMarsch

    2015-10-01

    Full Text Available A natural generalization of the original Dirac spinor into a multi-component spinor is achieved, which corresponds to the single lepton and the three quarks of the first family of the standard model of elementary particle physics. Different fermions result from similarity transformations of the Dirac equation, but apparently there can be no more fermions according to the maximal multiplicity revealed in this study. Rotations in the fermion state space are achieved by the unitary generators of the U(1 and the SU(3 groups, corresponding to quantum electrodynamics (QED based on electric charge and chromodynamics (QCD based on colour charge. In addition to hypercharge the dual degree of freedom of hyperspin emerges, which occurs due to the duplicity implied by the two related (Weyl and Dirac representations of the Dirac equation. This yields the SU(2 symmetry of the weak interaction, which can be married to U(1 to generate the unified electroweak interaction as in the standard model. Therefore, the symmetry group encompassing all the three groups mentioned above is SU(8, which can accommodate and unify the observed eight basic stable fermions.

  16. On the topological structure of the vacuum in SU(2) and SU(3) lattice gauge theories

    International Nuclear Information System (INIS)

    Ishikawa, K.; Schierholz, G.; Schneider, H.; Teper, M.

    1983-01-01

    We present Monte Carlo measurements of the net topological charge of the vacuum in SU(2) and SU(3) lattice gauge theories. In both cases there is no evidence of any topological structure, and the values obtained are a factor of 0(100) smaller than expectations based on analyses of the U(1) problem. Moreover we find a strong sensitivity to the lattice size and to the boundary conditions imposed on the lattice. We comment on the physical significance of these results, establish criteria for the reliable performance of such calculations, and remark on the possibly detrimental impact of these findings on the calculation of hadron spectra

  17. Experimentally verifiable Yang-Mills spin 2 gauge theory of gravity with group U(1) x SU(2)

    International Nuclear Information System (INIS)

    Peng, H.

    1988-01-01

    In this work, a Yang-Mills spin 2 gauge theory of gravity is proposed. Based on both the verification of the helicity 2 property of the SU(2) gauge bosons of the theory and the agreement of the theory with most observational and experimental evidence, the authors argues that the theory is truly a gravitational theory. An internal symmetry group, the eigenvalues of its generators are identical with quantum numbers, characterizes the interactions of a given class. The author demonstrates that the 4-momentum P μ of a fermion field generates the U(1) x SU(2) internal symmetry group for gravity, but not the transformation group T 4 . That particles are classified by mass and spin implies that the U(1) x SU(2), instead of the Poincare group, is a symmetry group of gravity. It is shown that the U(1) x SU(2) group represents the time displacement and rotation in ordinary space. Thereby internal space associated with gravity is identical with Minkowski spacetime, so a gauge potential of gravity carries two space-time indices. Then he verifies that the SU(2) gravitational boson has helicity 2. It is this fact, spin from internal spin, that explains alternatively why the gravitational field is the only field which is characterized by spin 2. The Physical meaning of gauge potentials of gravity is determined by comparing theory with the results of experiments, such as the Collella-Overhauser-Werner (COW) experiment and the Newtonian limit, etc. The gauge potentials this must identify with ordinary gravitational potentials

  18. Path integral quantization of the Symplectic Leaves of the SU(2)*Poisson-Lie Group

    International Nuclear Information System (INIS)

    Morariu, B.

    1997-01-01

    The Feynman path integral is used to quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of Uq(su(2)). This is achieved by finding explicit Darboux coordinates and then using a phase space path integral. I discuss the *-structure of SU(2)* and give a detailed description of its leaves using various parameterizations and also compare the results with the path integral quantization of spin

  19. Phenomenological constraints imposed by the hidden sector in the flipped SU(5)xU(1) superstring model

    Energy Technology Data Exchange (ETDEWEB)

    Leontaris, G.K.; Rizos, J.; Tamvakis, K. (Ioannina Univ. (Greece). Theoretical Physics Div.)

    1990-06-28

    We calculate the trilinear superpotential of the hidden sector of the three generation flipped SU(5)xU(1)xU(1){sup 4}xSO(10)xSU(4) superstring model. We perform a renormalization group analysis of the model taking into account the hidden sector. We find that, in all relevant cases, fractionally charged tetraplets of the hidden SO(6) gauge group are confined at a high scale. Nevertheless, their contribution to the observable U(1) gauge coupling evolution results in a drastic reduction of the available freedom in the values of a{sub 3}(m{sub w}), sin{sup 2}{theta}{sub w} and M{sub x} that allow superunification. (orig.).

  20. $SU(2)$ gauge theory with two fundamental flavours: scalar and pseudoscalar spectrum

    CERN Document Server

    Arthur, Rudy; Hietanen, Ari; Pica, Claudio; Sannino, Francesco

    2016-01-01

    We investigate the scalar and pseudoscalar spectrum of the $SU(2)$ gauge theory with $N_f=2$ flavours of fermions in the fundamental representation using non perturbative lattice simulations. We provide first benchmark estimates of the mass of the lightest $0(0^{+})$ ($\\sigma$), $0(0^{-})$ ($\\eta'$) and $1(0^+)$ ($a_0$) states, including estimates of the relevant disconnected contributions. We find $m_{a_0}/F_{\\rm{PS}}= 16.7(4.9)$, $m_\\sigma/F_{\\rm{PS}}=19.2(10.8)$ and $m_{\\eta'}/F_{\\rm{PS}} = 12.8(4.7)$. These values for the masses of light scalar states provide crucial information for composite extensions of the Standard Model from the unified Fundamental Composi te Higgs-Technicolor theory \\cite{Cacciapaglia:2014uja} to models of composite dark matter.

  1. Hamiltonian reduction of SU(2) Yang-Mills field theory

    International Nuclear Information System (INIS)

    Khvedelidze, A.M.; Pavel, H.-P.

    1998-01-01

    The unconstrained system equivalent to SU (2) Yang-Mills field theory is obtained in the framework of the generalized Hamiltonian formalism using the method of Hamiltonian reduction. The reduced system is expressed in terms of fields with 'nonrelativistic' spin-0 and spin-2

  2. A natural flipped SU(6) three-generation Calabi-Yau superstring model

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotakopoulos, C. (Theory Div., CERN, Geneva (Switzerland))

    1991-10-24

    We construct a realistic three-generation Calabi-Yau superstring model is which the gauge group SU(6) XU (1) breaks down spontaneously to the standard model group at the compactification scale. Its most remarkable property is the adequate suppression of the proton decay rate without any small trilinear superpotential couplings. (orig.).

  3. Universality in the mixed SU(2) lattice gauge theory. Nonperturbative approach to the ratio of Λ parameters

    International Nuclear Information System (INIS)

    Makeenko, Yu.M.; Polikarpov, M.I.; Zhelonkin, A.V.

    1983-01-01

    The mixed SU(2) lattice gauge theory (LGT) is approximately represented as an effective SU(2) LGT with Wilson's action. This approach is applied to the nonperturbative calculation of the ratio of Λ-parameters in the mixed SU(2) LGT. It is shown that the formulas obtained fairly describe the Monte Carlo data so that universality holds in the mixed SU(2) LGT

  4. Exact boson mappings for nuclear neutron (proton) shell-model algebras having SU(3) subalgebras

    International Nuclear Information System (INIS)

    Bonatsos, D.; Klein, A.

    1986-01-01

    In this paper the commutation relations of the fermion pair operators of identical nucleons coupled to spin zero are given for the general nuclear major shell in LST coupling. The associated Lie algebras are the unitary symplectic algebras Sp(2M). The corresponding multipole subalgebras are the unitary algebras U(M), which possess SU(3) subalgebras. Number conserving exact boson mappings of both the Dyson and hermitian form are given for the nuclear neutron (proton) s--d, p--f, s--d--g, and p--f--h shells, and their group theoretical structure is emphasized. The results are directly applicable in the case of the s--d shell, while in higher shells the experimentally plausible pseudo-SU(3) symmetry makes them applicable. The final purpose of this work is to provide a link between the shell model and the Interacting Boson Model (IBM) in the deformed limit. As already implied in the work of Draayer and Hecht, it is difficult to associate the boson model developed here with the conventional IBM model. The differences between the two approaches (due mainly to the effects of the Pauli principle) as well as their physical implications are extensively discussed

  5. Strongest experimental constraints on SU(5)xU(1) supergravity models

    International Nuclear Information System (INIS)

    Lopez, J.L.; Nanopoulos, D.V.; Park, G.T.; Zichichi, A.

    1994-01-01

    We consider a class of well-motivated string-inspired flipped SU(5) supergravity models which include four supersymmetry-breaking scenarios: no-scale, strict no-scale, dilaton, and special dilaton, such that only three parameters are needed to describe all new phenomena (m t ,tanβ,m g ). We show that the CERN LEP precise measurements of the electroweak parameters in the form of the ε 1 variable and the CLEO II allowed range for B(b→sγ) are at present the most important experimental constraints on this class of models. For m t approx-gt 155 (165) GeV, the ε 1 constraint [at 90 (95)% C.L.] requires the presence of light charginos (m χ1 ± approx-lt 50--100 GeV depending on m t ). Since all sparticle masses are proportional to m g , m χ1 ± approx-lt 100 GeV implies m χ1 0 approx-lt 55 GeV, m χ2 0 approx-lt 100 GeV, m g approx-lt 360 GeV, m q approx-lt 350 (365) GeV, m e R approx-lt 80 (125) GeV, m e L approx-lt 120 (155) GeV, and m n u approx-lt 100 (140) GeV in the no-scale (dilaton) flipped SU(5) supergravity model. The B(b→sγ) constraint excludes a significant fraction of the otherwise allowed region in the (m χ1 ± ,tanβ) plane (irrespective of the magnitude of the chargino mass), while future experimental improvements will result in decisive tests of these models

  6. Infrared behaviors of SU(2 gauge theory

    Directory of Open Access Journals (Sweden)

    Tuominen Kimmo

    2017-01-01

    Full Text Available We will discuss some recent results in the determination of the location of the conformal window in SU(2 gauge theory with Nf fermions in the fundamental representation of the gauge group. In particular, we will demonstrate that the long distance behavior of the continuum theory with Nf = 6 is governed by an infrared stable fixed point.

  7. Reason for SU(6) grand unification

    International Nuclear Information System (INIS)

    Kim, J.E.

    1981-08-01

    An SU(6) model can naturally guarantee strong CP invariance. This also includes Georgi and Glashow's SU(5) model. The axion in this model can be either invisible or visible, depending on the symmetry breaking scheme. The invisible axion is identical to a Majoron. Also, there exists a relationship between 24sub(H) and 45sub(H) of SU(5). (author)

  8. The Effective Prepotential of N=2 Supersymmetric $SU(N_c)$ Gauge Theories

    CERN Document Server

    D'Hoker, Eric; Phong, D.H.; D'Hoker, Eric

    1996-01-01

    We determine the effective prepotential for N=2 supersymmetric SU(N_c) gauge theories with an arbitrary number of flavors N_f < 2N_c, from the exact solution constructed out of spectral curves. The prepotential is the same for the several models of spectral curves proposed in the literature. It has to all orders the logarithmic singularities of the one-loop perturbative corrections, thus confirming the non-renormalization theorems from supersymmetry. In particular, the renormalized order parameters and their duals have all the correct monodromy transformations prescribed at weak coupling. We evaluate explicitly the contributions of one- and two-instanton processes.

  9. Electromagnetic mass differences in the SU(3) x U(1) gauge model

    International Nuclear Information System (INIS)

    Maharana, K.; Sastry, C.V.

    1975-01-01

    In this note we point out that the electromagnetic mass differences of the pion and kaon in the SU(3) times U(1) model are the same as in Weinberg's model except for the differences in the masses of the gauge bosons

  10. Qq(Q-bar)(q-bar)' states in chiral SU(3) quark model

    International Nuclear Information System (INIS)

    Zhang Haixia; Zhang Min; Zhang Zongye

    2007-01-01

    We study the masses of Qq(Q-bar)(q-bar)' states with J PC =0 ++ , 1 ++ , 1 +- and 2 ++ in the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q(q') is the light quark (u,d or s). According to our numerical results, it is improbable to make the interpretation of [cn(c-bar)(n-bar)] 1 ++ and [cn(c-bar)(n-bar)] 2 ++ (n=u,d) states as X(3872) and Y(3940), respectively. However, it is interesting to find the tetraquarks in the bq(b-bar)(q-bar)' system. (authors)

  11. Nucleon spin-flavor structure in the SU(3)-breaking chiral quark model

    International Nuclear Information System (INIS)

    Song, X.; McCarthy, J.S.; Weber, H.J.

    1997-01-01

    The SU(3) symmetric chiral quark model, which describes interactions between quarks, gluons, and the Goldstone bosons, explains reasonably well many aspects of the flavor and spin structure of the proton, except for the values of f 3 /f 8 and Δ 3 /Δ 8 . Introducing the SU(3)-breaking effect suggested by the mass difference between the strange and nonstrange quarks, we find that this discrepancy can be removed and better overall agreement obtained. copyright 1997 The American Physical Society

  12. Two- and four-quasiparticle states in the interacting boson model: Strong-coupling and decoupled band patterns in the SU(3) limit

    International Nuclear Information System (INIS)

    Vretenar, D.; Paar, V.; Bonsignori, G.; Savoia, M.

    1990-01-01

    An extension of the interacting boson approximation model is proposed by allowing for two- and four-quasiparticle excitations out of the boson space. The formation of band patterns based on two- and four-quasiparticle states is investigated in the SU(3) limit of the model. For hole-type (particle-type) fermions coupled to the SU(3) prolate (oblate) core, it is shown that the algebraic K-representation basis, which is the analog of the strong-coupling basis of the geometrical model, provides an appropriate description of the low-lying two-quasiparticle bands. In the case of particle-type (hole-type) fermions coupled to the SU(3) prolate (oblate) core, a new algebraic decoupling basis is derived that is equivalent in the geometrical limit to Stephens' rotation-aligned basis. Comparing the wave functions that are obtained by diagonalization of the model Hamiltonian to the decoupling basis, several low-lying two-quasiparticle bands are identified. The effects of an interaction that conserves only the total nucleon number, mixing states with different number of fermions, are investigated in both the strong-coupling and decoupling limits. All calculations are performed for an SU(3) boson core and the h11/2 fermion orbital

  13. Hadronic bound states in SU(2) from Dyson-Schwinger equations

    Energy Technology Data Exchange (ETDEWEB)

    Vujinovic, Milan [Karl-Franzens-Universitaet Graz, Institut fuer Physik, Graz (Austria); Williams, Richard [Justus-Liebig-Universitaet Giessen, Institut fuer Theoretische Physik, Giessen (Germany)

    2015-03-01

    By using the Dyson-Schwinger/Bethe-Salpeter formalism in Euclidean spacetime, we calculate the ground state spectrum of J ≤ 1 hadrons in an SU(2) gauge theory with two fundamental fermions. We show that the rainbow-ladder truncation, commonly employed in QCD studies, is unsuitable for a description of an SU(2) theory. This we remedy by truncating at the level of the quark-gluon vertex Dyson-Schwinger equation in a diagrammatic expansion. Results obtained within this novel approach show good agreement with lattice studies. These findings emphasize the need to use techniques more sophisticated than rainbow-ladder when investigating generic strongly interacting gauge theories. (orig.)

  14. Self-interacting dark matter and Higgs bosons in the SU(3)C x SU(3)L x U(1)N model with right-handed neutrinos

    International Nuclear Information System (INIS)

    Hoang Ngoc Long; Nguyen Quynh Lan

    2003-05-01

    We show that the SU(3) C x SU(3) L x U(1) N (3-3-1) model with right-handed neutrinos can provide candidates for self-interacting dark matter, namely they are the CP-even and odd Higgs bosons. These dark matters are stable without imposing of new symmetry and should be weak-interacting. (author)

  15. A 2D Inspired 4D Theory of Gravity

    OpenAIRE

    Rodgers, V. G. J.

    1994-01-01

    Coadjoint orbits of the Virasoro and Kac-Moody algebras provide geometric actions for matter coupled to gravity and gauge fields in two dimensions. However, the Gauss' law constraints that arise from these actions are not necessarily endemic to two-dimensional topologies. Indeed the constraints associated with Yang-Mills naturally arise from the coadjoint orbit construction of the WZW model. One may in fact use a Yang-Mills theory to provide dynamics to the otherwise fixed coadjoint vectors t...

  16. Top and Higgs mass predictions in supersymmetric SU(5) model with big top quark Yukawa coupling constant

    International Nuclear Information System (INIS)

    Krasnikov, N.V.; Rodenberg, R.

    1993-01-01

    From the requirement of the absence of the Landau pole singularity for the effective top quark Yukawa coupling constant up to Planck scale in SU(5) supersymmetric model we find an upper bound m t ≤ 187 GeV for the top quark mass. For the SU(5) fixed point renormalization group solution for top quark Yukawa coupling constant which can be interpreted as the case of composite superhiggs we find that m t ≥ 140 GeV. Similar bound takes place in all models with big anti h t (m t ). For m t ≤ 160 GeV we find also that the Higgs boson is lighter than m Z and hence it can be discovered at LEP2

  17. On exact correlation functions in SU(N) $ \\mathcal{N}=2 $ superconformal QCD

    CERN Document Server

    Baggio, Marco; Papadodimas, Kyriakos

    2015-01-01

    We consider the exact coupling constant dependence of extremal correlation functions of ${\\cal N} = 2$ chiral primary operators in 4d ${\\cal N} = 2$ superconformal gauge theories with gauge group SU(N) and N_f=2N massless fundamental hypermultiplets. The 2- and 3-point functions, viewed as functions of the exactly marginal coupling constant and theta angle, obey the tt* equations. In the case at hand, the tt* equations form a set of complicated non-linear coupled matrix equations. We point out that there is an ad hoc self-consistent ansatz that reduces this set of partial differential equations to a sequence of decoupled semi-infinite Toda chains, similar to the one encountered previously in the special case of SU(2) gauge group. This ansatz requires a surprising new non-renormalization theorem in ${\\cal N} = 2$ superconformal field theories. We derive a general 3-loop perturbative formula for 2- and 3-point functions in the ${\\cal N} = 2$ chiral ring of the SU(N) theory, and in all explicitly computed exampl...

  18. Topological charge and cooling scales in pure SU(2) lattice gauge theory

    OpenAIRE

    Berg, Bernd A.; Clarke, David A.

    2018-01-01

    Using Monte Carlo simulations with overrelaxation, we have equilibrated lattices up to β=2.928, size 604, for pure SU(2) lattice gauge theory with the Wilson action. We calculate topological charges with the standard cooling method and find that they become more reliable with increasing β values and lattice sizes. Continuum limit estimates of the topological susceptibility χ are obtained of which we favor χ1/4/Tc=0.643(12), where Tc is the SU(2) deconfinement temperature. Differences between ...

  19. Three-generation flipped SU(5) string models on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Burwick, T.T. (Zurich Univ. (Switzerland). Inst. fuer Theoretische Physik); Kaiser, R.K.; Mueller, H.F. (ETH-Hoenggerberg, Zurich (Switzerland). Inst. fuer Theoretische Physik)

    1991-09-16

    We construct four-dimensional twisted string models on non-prime orbifolds which have as gauge group flipped SU(5) with a phenomenologically interesting matter spectrum of k generations plus (k-3) antigenerations. Using generalized selection rules for Yukawa couplings on non-prime orbifolds, we analyse one model in greater detail and obtain the following phenomenologically promising features: We find one pair of H and anti H GUT Higgs fields which break the GUT gauge group into the standard model, and in addition generate large mass terms for the unwanted triplet parts of the standard model Higgs fields, plus one pair of standard model Higgs fields. Moreover, we obtain couplings of the standard model Higgs to quark and lepton fields in all families. (orig.).

  20. From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.

    Science.gov (United States)

    Pepe, M; Wiese, U-J

    2009-05-15

    We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.

  1. Phase structure of the SU(5) Coleman-Weinberg theory

    International Nuclear Information System (INIS)

    Tkachev, I.I.

    1984-01-01

    The phase structure of the SU(5) Coleman-Weinberg theory in the one-loop approximation is obtained with account of temperature and space-time curvature. We show that the most essential contribution is that from the interaction between 5 and 24 scalar fields which reflects the existence of two strongly different mass scales in the model. A stability boundary of the SU(3) x SU(2) x U(1) phase is found. It is shown that the SU(4) x U(1) phase in the Coleman-Weinberg theory is unstable. (orig.)

  2. Pushing the pseudo-SU(3) model towards its limits: Excited bands in even-even Dy isotopes

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Hirsch, Jorge G.

    2004-01-01

    The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands. A realistic Hamiltonian is employed. Both the success of model and its limitations are discussed

  3. White dwarf axions, PAMELA data, and flipped-SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyu Jung [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Huh, Ji-Haeng [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of)], E-mail: jhhuh@phya.snu.ac.kr; Kim, Jihn E. [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of)], E-mail: jekim@ctp.snu.ac.kr; Kyae, Bumseok [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of)], E-mail: bskyae@gmail.com; Viollier, Raoul D. [Institute of Theoretical Physics and Astrophysics, Department of Physics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa)

    2009-08-11

    Recently, there are two hints arising from physics beyond the standard model. One is a possible energy loss mechanism due to emission of very weakly interacting light particles from white dwarf stars, with a coupling strength {approx}0.7x10{sup -13}, and another is the high energy positrons observed by the PAMELA satellite experiment. We construct a supersymmetric flipped-SU(5) model, SU(5)xU(1){sub X} with appropriate additional symmetries, [U(1){sub H}]{sub gauge}x[U(1){sub R}xU(1){sub {gamma}}]{sub global}xZ{sub 2}, such that these are explained by a very light electrophilic axion of mass 0.5 meV from the spontaneously broken U(1){sub {gamma}} and two component cold dark matters from Z{sub 2} parity. We show that in the flipped-SU(5) there exists a basic mechanism for allowing excess positrons through the charged SU(5) singlet leptons, but not allowing antiproton excess due to the absence of the SU(5) singlet quarks. We show the discovery potential of the charged SU(5) singlet E at the LHC experiments by observing the electron and positron spectrum. With these symmetries, we also comment on the mass hierarchy between the top and bottom quarks.

  4. Hilbert Space Inner Products for PJ-symmetric Su-Schrieffer-Heeger Models

    Czech Academy of Sciences Publication Activity Database

    Růžička, František

    2015-01-01

    Roč. 54, č. 11 (2015), s. 4154-4163 ISSN 0020-7748 Institutional support: RVO:61389005 Keywords : Su-Schrieffer-Heeger model * physical inner products * complete set of pseudometrics * exceptional points Subject RIV: BE - Theoretical Physics Impact factor: 1.041, year: 2015

  5. SU(2)CMB at high redshifts and the value of H0

    Science.gov (United States)

    Hahn, Steffen; Hofmann, Ralf

    2017-07-01

    We investigate a high-z cosmological model to compute the comoving sound horizon rs at baryon-velocity freeze-out towards the end of hydrogen recombination. This model assumes a replacement of the conventional cosmic microwave background (CMB) photon gas by deconfining SU(2) Yang-Mills thermodynamics, three flavours of massless neutrinos (Nν = 3) and a purely baryonic matter sector [no cold dark-matter (CDM)]. The according SU(2) temperature-redshift relation of the CMB is contrasted with recent measurements appealing to the thermal Sunyaev-Zel'dovich effect and CMB-photon absorption by molecular rotation bands or atomic hyperfine levels. Relying on a realistic simulation of the ionization history throughout recombination, we obtain z* = 1693.55 ± 6.98 and zdrag = 1812.66 ± 7.01. Due to considerable widths of the visibility functions in the solutions to the associated Boltzmann hierarchy and Euler equation, we conclude that z* and zdrag overestimate the redshifts for the respective photon and baryon-velocity freeze-out. Realistic decoupling values turn out to be zlf,* = 1554.89 ± 5.18 and zlf, drag = 1659.30 ± 5.48. With rs(zlf, drag) = (137.19 ± 0.45) Mpc and the essentially model independent extraction of rsH0 = constant from low-z data in Bernal, Verde & Riess, we obtain a good match with the value H0 = (73.24 ± 1.74) km s-1 Mpc-1 extracted in Riess et al. by appealing to Cepheid-calibrated Type Ia supernovae, new parallax measurements, stronger constraints on the Hubble flow and a refined computation of distance to NGC 4258 from maser data. We briefly comment on a possible interpolation of our high-z model, invoking percolated and unpercolated U(1) topological solitons of a Planck-scale axion field, to the phenomenologically successful low-z ΛCDM cosmology.

  6. Flipped SU(5) from Z{sub 12-I} orbifold with Wilson line

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihn E. [Department of Physics and Astronomy, and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of)]. E-mail: jekim@phyp.snu.ac.kr; Kyae, Bumseok [School of Physics, Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)]. E-mail: bkyae@kias.re.kr

    2007-05-14

    We construct a three family flipped SU(5) model from the heterotic string theory compactified on the Z{sub 12-I} orbifold with one Wilson line. The gauge group is SU(5)xU(1){sub X}xU(1){sup 3}x[SU(2)xSO(10)xU(1){sup 2}]{sup '}. This model does not derive any non-Abelian group except SU(5) from E{sub 8}, which is possible only for two cases in case of one shift V, one in Z{sub 12-I} and the other in Z{sub 12-II}. We present all possible Yukawa couplings. We place the third quark family in the twisted sectors and two light quark families in the untwisted sector. From the Yukawa couplings, the model provides the R-parity, the doublet-triplet splitting, and one pair of Higgs doublets. It is also shown that quark and lepton mixings are possible. So far we have not encountered a serious phenomenological problem. There exist vector-like flavor SU(5) exotics (including Q{sub em}=+/-16 color exotics and Q{sub em}=+/-12 electromagnetic exotics) and SU(5) vector-like singlet exotics with Q{sub em}=+/-12 which can be removed near the GUT scale. In this model, sin{sup 2}{theta}{sub W}{sup 0}=38 at the full unification scale.

  7. Transport coefficients from SU(3) Polyakov linear-σ model

    International Nuclear Information System (INIS)

    Tawfik, A.; Diab, A.

    2015-01-01

    In the mean field approximation, the grand potential of SU(3) Polyakov linear-σ model (PLSM) is analyzed for the order parameter of the light and strange chiral phase-transitions, σ l and σ s , respectively, and for the deconfinement order parameters φ and φ*. Furthermore, the subtracted condensate Δ l,s and the chiral order-parameters M b are compared with lattice QCD calculations. By using the dynamical quasiparticle model (DQPM), which can be considered as a system of noninteracting massive quasiparticles, we have evaluated the decay width and the relaxation time of quarks and gluons. In the framework of LSM and with Polyakov loop corrections included, the interaction measure Δ/T 4 , the specific heat c v and speed of sound squared c s 2 have been determined, as well as the temperature dependence of the normalized quark number density n q /T 3 and the quark number susceptibilities χ q /T 2 at various values of the baryon chemical potential. The electric and heat conductivity, σ e and κ, and the bulk and shear viscosities normalized to the thermal entropy, ζ/s and η/s, are compared with available results of lattice QCD calculations.

  8. Metal-insulator transition and Frohlich conductivity in the Su-Schrieffer-Heeger model

    NARCIS (Netherlands)

    Michielsen, K.F L; de Raedt, H.A.

    1996-01-01

    A quantum molecular dynamics technique is used to study the single-particle density of states, Drude weight, optical conductivity and flux quantization in the Su-Schrieffer-Heeger (SSH) model. Our simulation data show that the SSH model has a metal-insulator transition away from half-filling. In the

  9. The su(2 vertical bar 3) dynamic spin chain

    International Nuclear Information System (INIS)

    Beisert, Niklas

    2004-01-01

    The complete one-loop, planar dilatation operator of the N=4 superconformal gauge theory was recently derived and shown to be integrable. Here, we present further compelling evidence for a generalisation of this integrable structure to higher orders of the coupling constant. For that we consider the su(2 vertical bar 3) subsector and investigate the restrictions imposed on the spin chain Hamiltonian by the symmetry algebra. This allows us to uniquely fix the energy shifts up to the three-loop level and thus prove the correctness of a conjecture in hep-th/0303060. A novel aspect of this spin chain model is that the higher-loop Hamiltonian, as for N=4 SYM in general, does not preserve the number of spin sites. Yet this dynamic spin chain appears to be integrable

  10. Extended Soliton Solutions in an Effective Action for SU(2 Yang-Mills Theory

    Directory of Open Access Journals (Sweden)

    Nobuyuki Sawado

    2006-01-01

    Full Text Available The Skyrme-Faddeev-Niemi (SFN model which is an O(3 σ model in three dimensional space up to fourth-order in the first derivative is regarded as a low-energy effective theory of SU(2 Yang-Mills theory. One can show from the Wilsonian renormalization group argument that the effective action of Yang-Mills theory recovers the SFN in the infrared region. However, the theory contains an additional fourth-order term which destabilizes the soliton solution. We apply the perturbative treatment to the second derivative term in order to exclude (or reduce the ill behavior of the original action and show that the SFN model with the second derivative term possesses soliton solutions.

  11. The Wilson loop expectation values in 2-and 3-dimensional SU(2) LGT

    International Nuclear Information System (INIS)

    Li Zhibing; Zheng Weihong; Guo Shuohong

    1989-01-01

    An improved Monte Carlo scheme is applied to the computation of expectation values of nxm Wilson loops in both 2-and 3-dimensional SU(2) lattice gauge theories. The results are compared with those simulated by the discrete group Y 120 and the exact results in two dimensions

  12. Isospin Mass Splittings and the $\\ms$ Corrections in the Semibosonized SU(3)-NJL-Model

    OpenAIRE

    Blotz, Andree; Goeke, K.; Praszalowicz, M.

    1994-01-01

    The mass splittings of hyperons including the isospin splittings are calculated with $O(\\ms^2)$ and $O(\\ms \\dm)$ accuracy respectively within the semibosonized SU(3)-NJL model. The pattern of the isospin splittings is not spoiled by the terms of the order $O(\\ms \\dm)$, and both splittings between the different isospin multiplets and within the same multiplet are well reproduced for acceptable values of $\\ms$ and $\\dm$.

  13. Probing the dynamics of dark energy with novel parametrizations

    International Nuclear Information System (INIS)

    Ma Jingzhe; Zhang Xin

    2011-01-01

    We point out that the CPL parametrization has a problem that the equation of state w(z) diverges in the far future, so that this model can only properly describe the past evolution but cannot depict the future evolution. To overcome such a difficulty, in this Letter we propose two novel parametrizations for dark energy, the logarithm form w(z)=w 0 +w 1 ((ln(2+z))/(1+z) -ln2) and the oscillating form w(z)=w 0 +w 1 ((sin(1+z))/(1+z) -sin(1)), successfully avoiding the future divergency problem in the CPL parametrization, and use them to probe the dynamics of dark energy in the whole evolutionary history. Our divergency-free parametrizations are proven to be very successful in exploring the dynamical evolution of dark energy and have powerful prediction capability for the ultimate fate of the universe. Constraining the CPL model and the new models with the current observational data, we show that the new models are more favored. The features and the predictions for the future evolution in the new models are discussed in detail.

  14. Substantial protection against MPTP-associated Parkinson's neurotoxicity in vitro and in vivo by anti-cancer agent SU4312 via activation of MEF2D and inhibition of MAO-B.

    Science.gov (United States)

    Guo, Baojian; Hu, Shengquan; Zheng, Chengyou; Wang, Hongyu; Luo, Fangcheng; Li, Haitao; Cui, Wei; Yang, Xifei; Cui, Guozhen; Mak, Shinghung; Choi, Tony Chung-Lit; Ma, Edmond Dik-Lung; Wang, Yuqiang; Lee, Simon Ming Yuen; Zhang, Zaijun; Han, Yifan

    2017-11-01

    We have previously demonstrated the unexpected neuroprotection of the anti-cancer agent SU4312 in cellular models associated with Parkinson's disease (PD). However, the precise mechanisms underlying its neuroprotection are still unknown, and the effects of SU4312 on rodent models of PD have not been characterized. In the current study, we found that the protection of SU4312 against 1-methyl-4-phenylpyridinium ion (MPP + )-induced neurotoxicity in PC12 cells was achieved through the activation of transcription factor myocyte enhancer factor 2D (MEF2D), as evidenced by the fact that SU4312 stimulated myocyte enhancer factor 2 (MEF2) transcriptional activity and prevented the inhibition of MEF2D protein expression caused by MPP + , and that short hairpin RNA (ShRNA)-mediated knockdown of MEF2D significantly abolished the neuroprotection of SU4312. Additionally, Western blotting analysis revealed that SU4312 potentiated pro-survival PI3-K/Akt pathway to down-regulate MEF2D inhibitor glycogen synthase kinase-3beta (GSK3β). Furthermore, using the in vivo PD model of C57BL/6 mice insulted with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we found that intragastrical administration of SU4312 (0.2 and 1 mg/kg) greatly ameliorated Parkinsonian motor defects, and restored protein levels of MEF2D, phosphorylated-Ser473-Akt and phosphorylated-Ser9-GSK3β. Meanwhile, SU4312 effectively reversed the decrease in protein expression of tyrosine hydroxylase in substantia nigra pars compacta dopaminergic neurons, inhibited oxidative stress, maintained mitochondrial biogenesis and partially prevented the depletion of dopamine and its metabolites. Very encouragingly, SU4312 was able to selectively inhibit monoamine oxidase-B (MAO-B) activity both in vitro and in vivo, with an IC 50 value of 0.2 μM. These findings suggest that SU4312 provides therapeutic benefits in cellular and animal models of PD, possibly through multiple mechanisms including enhancement of MEF2D

  15. A supersymmetric flipped SU(5) intersecting brane world

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-M. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: cchen@physics.tamu.edu; Kraniotis, G.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: kraniotis@physics.tamu.edu; Mayes, V.E. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: eric@physics.tamu.edu (and others)

    2005-03-31

    We construct an N=1 supersymmetric three-family flipped SU(5) model from type IIA orientifolds on T{sup 6}/(Z{sub 2}xZ{sub 2}) with D6-branes intersecting at general angles. The spectrum contains a complete grand unified and electroweak Higgs sector. In addition, it contains extra exotic matter both in bi-fundamental and vector-like representations as well as two copies of matter in the symmetric representation of SU(5)

  16. Thick vortices in SU(2) lattice gauge theory

    OpenAIRE

    Cheluvaraja, Srinath

    2004-01-01

    Three dimensional SU(2) lattice gauge theory is studied after eliminating thin monopoles and the smallest thick monopoles. Kinematically this constraint allows the formation of thick vortex loops which produce Z(2) fluctuations at longer length scales. The thick vortex loops are identified in a three dimensional simulation. A condensate of thick vortices persists even after the thin vortices have all disappeared. The thick vortices decouple at a slightly lower temperature (higher beta) than t...

  17. Averaging in SU(2) open quantum random walk

    International Nuclear Information System (INIS)

    Ampadu Clement

    2014-01-01

    We study the average position and the symmetry of the distribution in the SU(2) open quantum random walk (OQRW). We show that the average position in the central limit theorem (CLT) is non-uniform compared with the average position in the non-CLT. The symmetry of distribution is shown to be even in the CLT

  18. Averaging in SU(2) open quantum random walk

    Science.gov (United States)

    Clement, Ampadu

    2014-03-01

    We study the average position and the symmetry of the distribution in the SU(2) open quantum random walk (OQRW). We show that the average position in the central limit theorem (CLT) is non-uniform compared with the average position in the non-CLT. The symmetry of distribution is shown to be even in the CLT.

  19. Closed flux tubes in D=2+1SU(N) gauge theories: dynamics and effective string description

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, Andreas [Department of Physics, University of Cyprus,POB 20537, 1678 Nicosia (Cyprus); Computation-based Science and Technology Research Center, The Cyprus Institute,20 Kavafi Str., Nicosia 2121 (Cyprus); Teper, Michael [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2016-10-18

    We extend our earlier calculations of the spectrum of closed flux tubes in SU(N) gauge theories in 2+1 dimensions, with a focus on questions raised by recent theoretical progress on the effective string action of long flux tubes and the world-sheet action for flux tubes of moderate lengths. Our new calculations in SU(4) and SU(8) provide evidence that the leading O(1/l{sup γ}) non-universal correction to the flux tube ground state energy does indeed have a power γ≥7. We perform a study in SU(2), where we can traverse the length at which the Nambu-Goto ground state becomes tachyonic, to obtain an all-N view of the spectrum. Our comparison of the k=2 flux tube excitation energies in SU(4) and SU(6) suggests that the massive world sheet excitation associated with the k=2 binding has a scale that knows about the group and hence the theory in the bulk, and we comment on the potential implications of world sheet massive modes for the bulk spectrum. We provide a quantitative analysis of the surprising (near-)orthogonality of flux tubes carrying flux in different SU(N) representations, which implies that their screening by gluons is highly suppressed even at small N.

  20. Closed flux tubes in D=2+1SU(N) gauge theories: dynamics and effective string description

    International Nuclear Information System (INIS)

    Athenodorou, Andreas; Teper, Michael

    2016-01-01

    We extend our earlier calculations of the spectrum of closed flux tubes in SU(N) gauge theories in 2+1 dimensions, with a focus on questions raised by recent theoretical progress on the effective string action of long flux tubes and the world-sheet action for flux tubes of moderate lengths. Our new calculations in SU(4) and SU(8) provide evidence that the leading O(1/l"γ) non-universal correction to the flux tube ground state energy does indeed have a power γ≥7. We perform a study in SU(2), where we can traverse the length at which the Nambu-Goto ground state becomes tachyonic, to obtain an all-N view of the spectrum. Our comparison of the k=2 flux tube excitation energies in SU(4) and SU(6) suggests that the massive world sheet excitation associated with the k=2 binding has a scale that knows about the group and hence the theory in the bulk, and we comment on the potential implications of world sheet massive modes for the bulk spectrum. We provide a quantitative analysis of the surprising (near-)orthogonality of flux tubes carrying flux in different SU(N) representations, which implies that their screening by gluons is highly suppressed even at small N.

  1. Intersecting Branes Flip SU(5)

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John

    2002-01-01

    Within a toroidal orbifold framework, we exhibit intersecting brane-world constructions of flipped SU(5) \\times U(1) GUT models with various numbers of generations, other chiral matter representations and Higgs representations. We exhibit orientifold constructions with integer winding numbers that yield 8 or more conventional SU(5) generations, and orbifold constructions with fractional winding numbers that yield flipped SU(5) \\times U(1) models with just 3 conventional generations. Some of these models have candidates for the 5 and {\\bar 5} Higgs representations needed for electroweak symmetry breaking, but not for the 10 and {\\bar 10} representations needed for GUT symmetry breaking, or vice-versa.

  2. Plaquette-plaquette correlations in the SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Berg, B.

    1980-09-01

    Monte Carlo measurements of plaquette-plaquette correlations in the 4-dimensional SU(2) lattice gauge theory are reported. For low temperatures the glue ball mass (= inverse correlation length) is estimated to be msub(g) = (3.7 +- 1.2) √K, where K is the string tension. (orig.)

  3. Some approximate calculations in SU2 lattice mean field theory

    International Nuclear Information System (INIS)

    Hari Dass, N.D.; Lauwers, P.G.

    1981-12-01

    Approximate calculations are performed for small Wilson loops of SU 2 lattice gauge theory in mean field approximation. Reasonable agreement is found with Monte Carlo data. Ways of improving these calculations are discussed. (Auth.)

  4. Could a Weak Coupling Massless SU(5) Theory Underly the Standard Model S-Matrix

    Science.gov (United States)

    White, Alan R.

    2011-04-01

    The unitary Critical Pomeron connects to a unique massless left-handed SU(5) theory that, remarkably, might provide an unconventional underlying unification for the Standard Model. Multi-regge theory suggests the existence of a bound-state high-energy S-Matrix that replicates Standard Model states and interactions via massless fermion anomaly dynamics. Configurations of anomalous wee gauge boson reggeons play a vacuum-like role. All particles, including neutrinos, are bound-states with dynamical masses (there is no Higgs field) that are formed (in part) by anomaly poles. The contributing zero-momentum chirality transitions break the SU(5) symmetry to vector SU(3)⊗U(1) in the S-Matrix. The high-energy interactions are vector reggeon exchanges accompanied by wee boson sums (odd-signature for the strong interaction and even-signature for the electroweak interaction) that strongly enhance couplings. The very small SU(5) coupling, αQUD ≲ 1/120, should be reflected in small (Majorana) neutrino masses. A color sextet quark sector, still to be discovered, produces both Dark Matter and Electroweak Symmetry Breaking. Anomaly color factors imply this sector could be produced at the LHC with large cross-sections, and would be definitively identified in double pomeron processes.

  5. SU(8) family unification with boson-fermion balance

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Grand unification has been intensively investigated for over forty years, and many different approaches have been tried. In this talk I propose a model that involves three ingredients that do not appear in the usual constructions: (1) boson--fermion balance without full supersymmetry, (2) canceling the spin 1/2 fermion gauge anomalies against the anomaly from a gauged spin 3/2 gravitino, and (3) using a scalar field representation with non-zero U(1) generator to break the SU(8) gauge symmetry through a ground state which, before dynamical symmetry breaking, has a periodic U(1) generator structure. The model has a number of promising features: (1) natural incorporation of three families, (2) incorporation of the experimentally viable flipped SU(5) model, (3) a symmetry breaking pathway to the standard model using the scalar field required by boson-fermion balance, together with a stage of most attractive channel dynamical symmetry breaking, without postulating additional Higgs fields, (4) vanishing of bare Yuk...

  6. SU(N) Irreducible Schwinger Bosons

    OpenAIRE

    Mathur, Manu; Raychowdhury, Indrakshi; Anishetty, Ramesh

    2010-01-01

    We construct SU(N) irreducible Schwinger bosons satisfying certain U(N-1) constraints which implement the symmetries of SU(N) Young tableaues. As a result all SU(N) irreducible representations are simple monomials of $(N-1)$ types of SU(N) irreducible Schwinger bosons. Further, we show that these representations are free of multiplicity problems. Thus all SU(N) representations are made as simple as SU(2).

  7. Broken SU(5) x SU(5) chiral symmetry and the classification of B mesons

    International Nuclear Information System (INIS)

    Hatzis, M.

    1984-01-01

    We consider broken SU(5) x SU(5) chiral summetry and we assume that the vacuum is SU(5)-symmetric. Using the observed mass spectrum of pseudoscalar mesons, and setting the bu mass in the range 5.2 +- 0.06 GeV, we predict the masses of bs, bc, and etasub(b) states as well as axial current couplings fsub(i)/fsub(π). SU(5) x SU(5) is found to be consistent with SU(4) x SU(4) breaking. The problem of eta - eta' - eta sub(c) - eta sub(b) mixing is also discussed

  8. Riemann monodromy problem and conformal field theories

    International Nuclear Information System (INIS)

    Blok, B.

    1989-01-01

    A systematic analysis of the use of the Riemann monodromy problem for determining correlators (conformal blocks) on the sphere is presented. The monodromy data is constructed in terms of the braid matrices and gives a constraint on the noninteger part of the conformal dimensions of the primary fields. To determine the conformal blocks we need to know the order of singularities. We establish a criterion which tells us when the knowledge of the conformal dimensions of primary fields suffice to determine the blocks. When zero modes of the extended algebra are present the analysis is more difficult. In this case we give a conjecture that works for the SU(2) WZW case. (orig.)

  9. More flipped SU(5) x U(1) baryosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Hagelin, J.S.; Nanopoulos, D.V.; Olive, K.A.

    1988-06-30

    We supplement a previous discussion of baryosynthesis in flipped SU(5)xU(1) GUTs by including (1) the large incoherent field energy density which is likely when SU(5) is broken, and (2) the possibility of additional Higgs triplet fields suggested by four-dimensional string model-building. We consider strong (weak) reheating scenarios in which the Universe is (is not) SU(5) symmetric after inflation. We find an adequate baryon asymmetry subsequent to strong reheating, whatever the number of Higgs triplets (although beware of possible difficulties with quasi-stable relic particles), whereas weak reheating requires at least two Higgs triplets.

  10. A generalized Wigner function for quantum systems with the SU(2) dynamical symmetry group

    International Nuclear Information System (INIS)

    Klimov, A B; Romero, J L

    2008-01-01

    We introduce a Wigner-like quasidistribution function to describe quantum systems with the SU(2) dynamic symmetry group. This function is defined in a three-dimensional group manifold and can be used to represent the states defined in several SU(2) invariant subspaces. The explicit differential Moyal-like form of the star product is found and analyzed in the semiclassical limit

  11. Chiral Lagrangian calculation of nucleon branching ratios in the supersymmetric SU(5) model

    International Nuclear Information System (INIS)

    Chadha, S.; Daniel, M.

    1983-12-01

    The branching ratios are calculated for the two body nucleon decay modes involving pseudoscalars in the minimal SU(5) supersymmetric model with three generations using the techniques of chiral dynamics. (author)

  12. Open strings on AdS2 branes

    International Nuclear Information System (INIS)

    Lee, Peter; Ooguri, Hirosi.; Park, Jongwon; Tannenhauser, Jonathan

    2001-01-01

    We study the spectrum of open strings on AdS 2 branes in AdS 3 in an NS-NS background, using the SL(2,R) WZW model. When the brane carries no fundamental string charge, the open string spectrum is the holomorphic square root of the spectrum of closed strings in AdS 3 . It contains short and long strings, and is invariant under spectral flow. When the brane carries fundamental string charge, the open string spectrum again contains short and long strings in all winding sectors. However, branes with fundamental string charge break half the spectral flow symmetry. This has different implications for short and long strings. As the fundamental string charge increases, the brane approaches the boundary of AdS 3 . In this limit, the induced electric field on the worldvolume reaches its critical value, producing noncommutative open string theory on AdS 2

  13. Modulated mass-transfer model for superhumps in SU Ursae Majoris stars

    Science.gov (United States)

    Mineshige, Shin

    1988-01-01

    The response of a circular accretion disk to rapid modulation of the mass-transfer rate into the disk is explored in order to model superhumps in SU UMa stars. It is proposed that periodically enhanced flow may disrupt or heat up the outer disk and produce the dips noted just before the superhump peaks. The elliptical accretion-disk model with extended vertical disk structure can account for the observed characteristics of superhumps in these stars.

  14. Integrable multi parametric SU(N) chain

    International Nuclear Information System (INIS)

    Foerster, Angela; Roditi, Itzhak; Rodrigues, Ligia M.C.S.

    1996-03-01

    We analyse integrable models associated to a multi parametric SU(N) R-matrix. We show that the Hamiltonians describe SU(N) chains with twisted boundary conditions and that the underlying algebraic structure is the multi parametric deformation of SU(N) enlarged by the introduction of a central element. (author). 15 refs

  15. CKM and PMNS Mixing Matrices from Discrete Subgroups of SU(2

    Directory of Open Access Journals (Sweden)

    Potter F.

    2014-07-01

    Full Text Available One of the greatest challenges in particle physics is to determine the first principles origin of the quark and lepton mixing matrices CKM and PMNS that relate the flavor states to the mass states. This first principles derivation of both the PMNS and CKM matrices utilizes quaternion generators of the three discrete (i.e., finite binary rotational subgroups of SU(2 called [3,3,2], [4,3,2], and [5,3,2] for three lepton families in R 3 and four related discrete binary rotational subgroups [3,3,3], [4,3,3], [3,4,3], and [5,3,3] represented by four quark families in R 4 . The traditional 3 3 CKM matrix is extracted as a submatrix of the 4 4 CKM4 matrix. The predicted fourth family of quarks has not been discovered yet. If these two additional quarks exist, there is the possibility that the Standard Model lagrangian may apply all the way down to the Planck scale.

  16. CKM and PMNS mixing matrices from discrete subgroups of SU(2)

    International Nuclear Information System (INIS)

    Potter, Franklin

    2015-01-01

    Remaining within the realm of the Standard Model(SM) local gauge group, this first principles derivation of both the PMNS and CKM matrices utilizes quaternion generators of the three discrete (i.e., finite) binary rotational subgroups of SU(2) called [3,3,2], [4,3,2], and [5,3,2] for three lepton families in R 3 and four related discrete binary rotational subgroups [3,3,3], [4,3,3], [3,4,3], and [5,3,3] represented by four quark families in R 4 . The traditional 3x3 CKM matrix is extracted as a submatrix of the 4x4 CKM4 matrix. If these two additional quarks b' and t' of a 4th quark family exist, there is the possibility that the SM lagrangian may apply all the way down to the Planck scale. There are then numerous other important consequences. The Weinberg angle is derived using these same quaternion generators, and the triangle anomaly cancellation is satisfied even though there is an obvious mismatch of three lepton families to four quark families. In a discrete space, one can also use these generators to derive a unique connection from the electroweak local gauge group SU(2) L x U(1) Y acting in R 4 to the discrete group Weyl E 8 in R 8 . By considering Lorentz transformations in discrete (3,1)-D spacetime, one obtains another Weyl E 8 discrete symmetry group in R 8 , so that the combined symmetry is Weyl E 8 x Weyl E 8 = 'discrete' SO(9,1) in 10-D spacetime. This unique connection is in direct contrast to the 10 500 possible connections for superstring theory! (paper)

  17. Bosonization of the generalized SU(3) Nambu-Jona-Lasinio model in the 1/N expansion

    International Nuclear Information System (INIS)

    Campos, Francisco Antonio Pena

    1995-01-01

    The present work consists in a 1/N expansion of extended version of the SU(3) Nambu-Jona-Lasinio model in the context of the Functional Integral. The gap equations, meson propagators, triangle diagram, etc, appear quite naturally as different orders in the expansion. The new features of this approach is the inclusion of high order corrections in the 1/N leading orders, which have never included in the previous one. The method also allows for the construction of a chiral Lagrangian of interacting mesons based on the SU(3) NJL model, here obtained for the first time. (author)

  18. Non-Commutative Integration, Zeta Functions and the Haar State for SU{sub q}(2)

    Energy Technology Data Exchange (ETDEWEB)

    Matassa, Marco, E-mail: marco.matassa@gmail.com [SISSA (Italy)

    2015-12-15

    We study a notion of non-commutative integration, in the spirit of modular spectral triples, for the quantum group SU{sub q}(2). In particular we define the non-commutative integral as the residue at the spectral dimension of a zeta function, which is constructed using a Dirac operator and a weight. We consider the Dirac operator introduced by Kaad and Senior and a family of weights depending on two parameters, which are related to the diagonal automorphisms of SU{sub q}(2). We show that, after fixing one of the parameters, the non-commutative integral coincides with the Haar state of SU{sub q}(2). Moreover we can impose an additional condition on the zeta function, which also fixes the second parameter. For this unique choice the spectral dimension coincides with the classical dimension.

  19. Modulated mass-transfer model for superhumps in SU Ursae Majoris stars

    International Nuclear Information System (INIS)

    Mineshige, S.

    1988-01-01

    The response of a circular accretion disk to rapid modulation of the mass-transfer rate into the disk is explored in order to model superhumps in SU UMa stars. It is proposed that periodically enhanced flow may disrupt or heat up the outer disk and produce the dips noted just before the superhump peaks. The elliptical accretion-disk model with extended vertical disk structure can account for the observed characteristics of superhumps in these stars. 52 references

  20. SU(2) x U(1) unified theory for charge, orbit and spin currents

    International Nuclear Information System (INIS)

    Jin Peiqing; Li Youquan; Zhang Fuchun

    2006-01-01

    Spin and charge currents in systems with Rashba or Dresselhaus spin-orbit couplings are formulated in a unified version of four-dimensional SU(2) x U(1) gauge theory, with U(1) being the Maxwell field and SU(2) being the Yang-Mills field. While the bare spin current is non-conserved, it is compensated by a contribution from the SU(2) gauge field, which gives rise to a spin torque in the spin transport, consistent with the semi-classical theory of Culcer et al. Orbit current is shown to be non-conserved in the presence of electromagnetic fields. Similar to the Maxwell field inducing forces on charge and charge current, we derive forces acting on spin and spin current induced by the Yang-Mills fields such as the Rashba and Dresselhaus fields and the sheer strain field. The spin density and spin current may be considered as a source generating Yang-Mills field in certain condensed matter systems

  1. SU(2 and SU(1,1 Approaches to Phase Operators and Temporally Stable Phase States: Applications to Mutually Unbiased Bases and Discrete Fourier Transforms

    Directory of Open Access Journals (Sweden)

    Maurice R. Kibler

    2010-07-01

    Full Text Available We propose a group-theoretical approach to the generalized oscillator algebra Aκ recently investigated in J. Phys. A: Math. Theor. 2010, 43, 115303. The case κ ≥ 0 corresponds to the noncompact group SU(1,1 (as for the harmonic oscillator and the Pöschl-Teller systems while the case κ < 0 is described by the compact group SU(2 (as for the Morse system. We construct the phase operators and the corresponding temporally stable phase eigenstates for Aκ in this group-theoretical context. The SU(2 case is exploited for deriving families of mutually unbiased bases used in quantum information. Along this vein, we examine some characteristics of a quadratic discrete Fourier transform in connection with generalized quadratic Gauss sums and generalized Hadamard matrices.

  2. Comment on the confinement mechanism in CP(n)2 models

    International Nuclear Information System (INIS)

    Flume, R.

    1980-10-01

    Using a non-redundant parametrization for the 1/n-expansion of CP(n) 2 models we re-interpret the mechanism of n-ality confinement. States of non-zero n-ality carry a singular representation of SU(n+1) and can therefor not communicate with zero n-ality states which transform regularly under SU(n+1). (orig.)

  3. Electromagnetic properties in {sup 160-170}Dy nuclei. A microscopic description by the pseudo-SU(3) shell model

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Carlos E.; Bagatella-Flores, Norma [Universidad Veracruzana, Facultad de Fisica, Veracruz (Mexico); Velazquez, Victor [Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Mexico D.F. (Mexico); Lerma-Hernandez, Sergio [Universidad Veracruzana, Facultad de Fisica, Veracruz (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico D.F. (Mexico)

    2017-04-15

    The large collectivity observed in the rare-earth region of the nuclear landscape is well known. The microscopic studies are difficult to perform in this region due to the enormous size of the valence spaces, a problem that can be avoided by means of the use of symmetry-based models. Here we present calculations for electromagnetic properties of {sup 160-170}Dy nuclei within the pseudo-SU(3) scheme. The model Hamiltonian includes the preserving symmetry Q.Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized for all members of the chain. The model is used to calculate B(E2) and B(M1) inter-band transition strengths between the ground state, γ and β-bands. In addition, we present results for quadrupole moments and g factors in these rotational bands. The results show that the pseudo-SU(3) shell model is a powerful microscopic theory for a description of electromagnetic properties of states in the normal parity sector in heavy deformed nuclei. (orig.)

  4. Salud Para Su Corazon (Health for Your Heart) Community Health Worker Model

    Science.gov (United States)

    Balcazar, H.; Alvarado, M.; Ortiz, G.

    2012-01-01

    This article describes 6 Salud Para Su Corazon (SPSC) family of programs that have addressed cardiovascular disease risk reduction in Hispanic communities facilitated by community health workers (CHWs) or Promotores de Salud (PS). A synopsis of the programs illustrates the designs and methodological approaches that combine community-based participatory research for 2 types of settings: community and clinical. Examples are provided as to how CHWs can serve as agents of change in these settings. A description is presented of a sustainability framework for the SPSC family of programs. Finally, implications are summarized for utilizing the SPSC CHW/PS model to inform ambulatory care management and policy. PMID:21914992

  5. Evidence for SU(3) symmetry breaking from hyperon production

    International Nuclear Information System (INIS)

    Yang Jianjun

    2002-01-01

    We examine the SU(3) symmetry breaking in hyperon semileptonic decays (HSD) by considering two typical sets of quark contributions to the spin content of the octet baryons: set 1 with SU(3) flavor symmetry and set 2 with SU(3) flavor symmetry breaking in the HSD. The quark distributions of the octet baryons are calculated with a successful statistical model. Using an approximate relation between the quark fragmentation functions and the quark distributions, we predict the polarizations of the octet baryons produced in e + e - annihilation and semi-inclusive deep lepton-nucleon scattering in order to reveal the SU(3) symmetry breaking effect on the spin structure of the octet baryons. We find that the SU(3) symmetry breaking significantly affects the hyperon polarization. The available experimental data on the Λ polarization seem to favor the theoretical predictions with SU(3) symmetry breaking. We conclude that there is a possibility to get collateral evidence for SU(3) symmetry breaking from hyperon production. The theoretical errors for our predictions are discussed

  6. Diffusion of water into SU-8 microcantilevers

    DEFF Research Database (Denmark)

    Liu, C.J.; Liu, Y.; Sokuler, M.

    2010-01-01

    We present a method to monitor the diffusion of liquid molecules in polymers. A microdrop of water is deposited by a piezoelectric drop generator onto the upper surface of a cantilever made of SU-8 based photoresist. In response, the cantilever bends in the opposite direction. We find...... sophisticated finite element model the diffusion coefficient of water in the SU-8 polymer can be determined quantitatively from the dynamics of cantilever bending....... that this bending is mainly caused by the diffusion of water into the cantilever and the consequent swelling of SU-8. Using a one-dimensional diffusion model and assuming a simple swelling law, we qualitatively model the bending of the cantilever during in and out diffusion of water in SU-8. With a more...

  7. A new class of integrable deformations of CFTs

    International Nuclear Information System (INIS)

    Georgiou, George; Sfetsos, Konstantinos

    2017-01-01

    We construct a new class of integrable σ-models based on current algebra theories for a general semisimple group G by utilizing a left-right asymmetric gauging. Their action can be thought of as the all-loop effective action of two independent WZW models for G both at level k, perturbed by current bilinears mixing the different WZW models. A non-perturbative symmetry in the couplings parametric space is revealed. We perform the Hamiltonian analysis of the action and demonstrate integrability in several cases. We extend our construction to deformations of G/H CFTs and show integrability when G/H is a symmetric space. Our method resembles that used for constructing the λ-deformed integrable σ-models, but the results are distinct and novel.

  8. A new class of integrable deformations of CFTs

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, George [Institute of Nuclear and Particle Physics, National Center for Scientific Research Demokritos, Ag. Paraskevi, GR-15310 Athens (Greece); Sfetsos, Konstantinos [Department of Nuclear and Particle Physics, Faculty of Physics, National and Kapodistrian University of Athens, Athens 15784 (Greece)

    2017-03-15

    We construct a new class of integrable σ-models based on current algebra theories for a general semisimple group G by utilizing a left-right asymmetric gauging. Their action can be thought of as the all-loop effective action of two independent WZW models for G both at level k, perturbed by current bilinears mixing the different WZW models. A non-perturbative symmetry in the couplings parametric space is revealed. We perform the Hamiltonian analysis of the action and demonstrate integrability in several cases. We extend our construction to deformations of G/H CFTs and show integrability when G/H is a symmetric space. Our method resembles that used for constructing the λ-deformed integrable σ-models, but the results are distinct and novel.

  9. Multiple multi-orbit fermionic and bosonic pairing and rotational SU(3) algebras

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    2017-01-01

    In nuclei with valence nucleons that are identical nucleons and occupy r number of j-orbits, there will be 2 r-1 number of multiple pairing (quasi-spin) SU(2) algebras with the generalized pair creation operator S + being a sum of single-j pair creation operators with arbitrary phases. Also, for each set of phases there will be a corresponding Sp(2Ω) algebra in U(2Ω) ⊃ Sp(2Ω); Ω = ∑ (2j+1)/2. Using this correspondence, derived is the condition for a general one-body operator of angular momentum rank k to be a quasi-spin scalar or a vector vis-a-vis the phases in S + . These will give special seniority selection rules for electromagnetic transitions. We found that the phase choice advocated by Arvieu and Moszkowski gives pairing Hamiltonians having maximum correlation with well known effective interactions. All the results derived for identical fermion systems are shown to extend to identical boson systems such as sd, sp, sdg and sdpf interacting boson models (IBM's) with SU(2) → SU(1,1) and Sp(2/Omega) → SO(2Ω). Going beyond pairing, for a given set of oscillator orbits, there are multiple rotational SU(3) algebras both in shell model and IBM's. Different SU(3) algebras in IBM's are shown, using sdg IBM as an example, to give different geometric shapes.

  10. Departures from scaling in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Gutbrod, F.

    1987-01-01

    High statistics Monte Carlo Data in SU(2) lattice gauge theory are presented. At β = 2.6 and β = 2.7 large deviations form scaling are observed for Creutz ratios, when 12 4 and 24 4 lattice data are compared. There is a trend towards a restauration of asymptotic scaling with increasing β, which vanishes if at the higher value of β larger loops are considered than at lower β. The static qanti q-potential and an upper limit for the string tension are given. (orig.)

  11. Self-consistent calculation of the weak constants in the parity nonconserving nuclear forces. Effective PNC hamiltonian in SU(2)sub(L)xU(1)xSU(3)sub(c). PNC in the πNN vertex

    International Nuclear Information System (INIS)

    Dubovik, V.M.; Zenkin, S.V.

    1983-01-01

    On the basis of the total effective Hamiltonian of the parity nonconserving (PNC) hadron-hadron interactions found within the standard model SU(2)sUb(L)XU(1)xSU(3)sub(c) in all orders of the leading logarithms allowing for the difference of quark mass scales (msub(c)>>msub(u, d, s)) the PNC πNN vertex generating the long-range part of the PNC nuclear forces is considered. The origin and the methods of calculation of various contributions to this vertex with a special attention to possible artifacts of these methods is anatyzed. Within the self-consistence calculational framework partly including the MIT bag model the total value of the constant hsub(π) determining the PNC πNN vertex is evaluated. Value of hsub(π) (approximately 1.3x10 -7 ) is 2-4 times as small as previous estimates and does not contradict the experimental data

  12. Deconfinement phase transition and finite-size scaling in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Mogilevskij, O.A.

    1988-01-01

    Calculation technique for deconfinement phase transition parameters based on application of finite-size scaling theory is suggested. The essence of the technique lies in plotting of universal scaling function on the basis of numerical data obtained at different-size final lattices and discrimination of phase transition parameters for infinite lattice system. Finite-size scaling technique was developed as applied to spin system theory. β critical index for Polyakov loop and SU(2) deconfinement temperature of lattice gauge theory are calculated on the basis of finite-size scaling technique. The obtained value agrees with critical index of magnetization in Ising three-dimensional model

  13. SUSY signals at DESY HERA in the no-scale flipped SU(5) supergravity model

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L.; Nanopoulos, D.V.; Wang, X.; Zichichi, A. (Center for Theoretical Physics, Department of Physics, Texas A M University, College Station, Texas 77843-4242 (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, Texas 77381 (United States) CERN, Geneva (Switzerland))

    1993-11-01

    Sparticle production and detection at DESY HERA are studied within the recently proposed no-scale flipped SU(5) supergravity model. Among the various reaction channels that could lead to sparticle production at HERA, only the following are within its limit of sensitivity in this model: [ital e][sup [minus

  14. Gauge-Higgs Unification Models in Six Dimensions with S2/Z2 Extra Space and GUT Gauge Symmetry

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Chiang

    2012-01-01

    Full Text Available We review gauge-Higgs unification models based on gauge theories defined on six-dimensional spacetime with S2/Z2 topology in the extra spatial dimensions. Nontrivial boundary conditions are imposed on the extra S2/Z2 space. This review considers two scenarios for constructing a four-dimensional theory from the six-dimensional model. One scheme utilizes the SO(12 gauge symmetry with a special symmetry condition imposed on the gauge field, whereas the other employs the E6 gauge symmetry without requiring the additional symmetry condition. Both models lead to a standard model-like gauge theory with the SU(3×SU(2L×U(1Y(×U(12 symmetry and SM fermions in four dimensions. The Higgs sector of the model is also analyzed. The electroweak symmetry breaking can be realized, and the weak gauge boson and Higgs boson masses are obtained.

  15. Closing the SU(3)LxU(1)X symmetry at the electroweak scale

    International Nuclear Information System (INIS)

    Dias, Alex G.; Montero, J. C.; Pleitez, V.

    2006-01-01

    We show that some models with SU(3) C xSU(3) L xU(1) X gauge symmetry can be realized at the electroweak scale and that this is a consequence of an approximate global SU(2) L+R symmetry. This symmetry implies a condition among the vacuum expectation value of one of the neutral Higgs scalars, the U(1) X 's coupling constant, g X , the sine of the weak mixing angle sinθ W , and the mass of the W boson, M W . In the limit in which this symmetry is valid it avoids the tree level mixing of the Z boson of the standard model with the extra Z ' boson. We have verified that the oblique T parameter is within the allowed range indicating that the radiative corrections that induce such a mixing at the 1-loop level are small. We also show that a SU(3) L+R custodial symmetry implies that in some of the models we have to include sterile (singlets of the 3-3-1 symmetry) right-handed neutrinos with Majorana masses, since the seesaw mechanism is mandatory to obtain light active neutrinos. Moreover, the approximate SU(2) L+R subset of SU(3) L+R symmetry implies that the extra nonstandard particles of these 3-3-1 models can be considerably lighter than it had been thought before so that new physics can be really just around the corner

  16. Low scale composite Higgs model and 1.8 ˜2 TeV diboson excess

    Science.gov (United States)

    Bian, Ligong; Liu, Da; Shu, Jing

    2018-04-01

    We consider a simple solution to explain the recent diboson excess observed by ATLAS and CMS Collaborations in models with custodial symmetry SU(2)L × SU(2)R → SU(2)c. The SU(2)L triplet vector boson ρ with mass range of 1.8 ˜ 2 TeV would be produced through the Drell-Yan process with sizable diboson decay branching to account for the excess. The other SU(2)L × SU(2)R bidoublet axial vector boson a would cancel all deviations of electroweak obervables induced by ρ even if the SM fermions mix with some heavy vector-like (composite) fermions which couple to ρ (“nonuniversally partially composite”), therefore allows arbitrary couplings between each SM fermion and ρ. We present our model in the “General Composite Higgs” framework with SO(5) × U(1)X → SO(4) × U(1)X breaking at scale f and demand the first Weinberg sum rule and positive gauge boson form factors as the theoretical constraints. We find that our model can fit the diboson excess very well if the left-handed SM light quarks, charged leptons and tops have zero, zero/moderately small and moderate/large composite components for reasonable values of gρ and f. The correlation between tree level S parameter and the h → Zγ suggest a large a contribution to h → Zγ and it is indeed a 𝒪(1) effect in our parameter space which provides a strong hint for our scenario if this diboson excess is confirmed by the 13 ˜ 14 TeV LHC Run II.

  17. Baryon spectroscopy and SU(6)

    International Nuclear Information System (INIS)

    Litchfield, P.

    1977-09-01

    An elementary account of the SU(6) formalism for baryons is given. The assignment of the known resonances to SU(6) multiplets is discussed and an experimental scheme given for the spectrum of SU(6) x 0(2) multiplets. (author)

  18. SU(N ) fermions in a one-dimensional harmonic trap

    Science.gov (United States)

    Laird, E. K.; Shi, Z.-Y.; Parish, M. M.; Levinsen, J.

    2017-09-01

    We conduct a theoretical study of SU (N ) fermions confined by a one-dimensional harmonic potential. First, we introduce a numerical approach for solving the trapped interacting few-body problem, by which one may obtain accurate energy spectra across the full range of interaction strengths. In the strong-coupling limit, we map the SU (N ) Hamiltonian to a spin-chain model. We then show that an existing, extremely accurate ansatz—derived for a Heisenberg SU(2) spin chain—is extendable to these N -component systems. Lastly, we consider balanced SU (N ) Fermi gases that have an equal number of particles in each spin state for N =2 ,3 ,4 . In the weak- and strong-coupling regimes, we find that the ground-state energies rapidly converge to their expected values in the thermodynamic limit with increasing atom number. This suggests that the many-body energetics of N -component fermions may be accurately inferred from the corresponding few-body systems of N distinguishable particles.

  19. Deep-inelastic lepton scattering in an SU(3) x U(1) gauge model

    International Nuclear Information System (INIS)

    Maharana, K.; Sastry, C.V.

    1976-01-01

    Linear relations and sum rules for deep-inelastic lepton scattering are derived in the light-cone algebra approach from a set of weak, neutral, and electromagnetic currents based on an SU(3) x U(1) gauge model proposed by Schechter and Ueda

  20. SU (N ) spin-wave theory: Application to spin-orbital Mott insulators

    Science.gov (United States)

    Dong, Zhao-Yang; Wang, Wei; Li, Jian-Xin

    2018-05-01

    We present the application of the SU (N ) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both spin and orbital degrees of freedom into account rather than projecting Hilbert space onto the Kramers doublet, which is the lowest spin-orbital locked energy levels, the SU (N ) spin-wave theory should take the place of the SU (2 ) one due to the inevitable spin-orbital multipole exchange interactions. To implement the application, we introduce an efficient general local mean-field method, which involves all local fluctuations, and develop the SU (N ) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU (4 ) antiferromagnetic model. Then, we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-1 /2 picture when the spin-orbital coupling is not large enough. We further carry out the SU (N ) spin-wave calculations of two materials, α -RuCl3 and Sr2IrO4 , and find that the magnonic and spin-orbital excitations are consistent with experiments.

  1. Rho meson decay width in SU(2) gauge theories with 2 fundamental flavours

    CERN Document Server

    Janowski, Tadeusz; Pica, Claudio

    2016-01-01

    SU(2) gauge theories with two quark flavours in the fundamental representation are among the most promising theories of composite dynamics describing the electroweak sector. Three out of five Goldstone bosons in these models become the longitudinal components of the W and Z bosons giving them mass. Like in QCD, we expect a spectrum of excitations which appear as resonances in vector boson scattering, in particular the vector resonance corresponding to the rho-meson in QCD. In this talk I will present the preliminary results of the first calculation of the rho-meson decay width in this theory, which is analogous to rho to two pions decay calculation in QCD. The results presented were calculated in a moving frame with total momentum (0,0,1) on two ensembles. Future plans include using 3 moving frames on a larger set of ensembles to extract the resonance parameters more reliably and also take the chiral and continuum limits.

  2. Mass anomalous dimension in SU(2) with six fundamental fermions

    DEFF Research Database (Denmark)

    Bursa, Francis; Del Debbio, Luigi; Keegan, Liam

    2010-01-01

    We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. We measure the running of the coupling and the mass in the Schroedinger Functional scheme. We observe very slow running of the coupling constant. We measure the mass anomalous dimension gamma, and find it is between 0.13...

  3. A massive quasi-particle model of the SU(3) gluon plasma

    International Nuclear Information System (INIS)

    Peshier, A.; Technische Univ. Dresden; Kaempfer, B.; Technische Univ. Dresden; Pavlenko, O.P.; AN Ukrainskoj SSR, Kiev; Soff, G.

    1995-09-01

    Recent SU(3) gauge field lattice data for the equation of state are interpreted by a quasi-particle model with effective thermal gluon masses. The model is motivated by lowest-order perturbative QCD and describes very well the data. The proposed quasi-particle approach can be applied to study color excitations in the non-perturbative regime. As an example we estimate the temperature dependence of the Debye screening mass and find that it declines sharply when approaching the confinement temperature from above, while the thermal mass continuously rises. (orig.)

  4. Particle-hole excitations in the interacting boson model; 4, the U(5)-SU(3) coupling

    CERN Document Server

    De Coster, C; Heyde, Kris L G; Jolie, J; Lehmann, H; Wood, J L

    1999-01-01

    In the extended interacting boson model (EIBM) both particle- and hole-like bosons are incorporated to encompass multi-particle-multi-hole excitations at and near to closed shells.We apply the group theoretical concepts of the EIBM to the particular case of two coexisting systems in the same nucleus exhibiting a U(5) (for the regular configurations) and an SU(3) symmetry (for the intruder configurations).Besides the description of ``global'' symmetry aspects in terms of I-spin , also the very specific local mixing effects characteristic for the U(5)-SU(3) symmetry coupling are studied.The model is applied to the Po isotopes and a comparison with a morerealistic calculation is made.

  5. Flipped SU(5) from D-branes with type IIB fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chingming [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: cchen@physics.tamu.edu; Mayes, V.E. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: eric@physics.tamu.edu; Nanopoulos, D.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States) and Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States) and Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)]. E-mail: dimitri@physics.tamu.edu

    2006-02-16

    We construct flipped SU(5) GUT models as type IIB flux vacua on Z{sub 2}xZ{sub 2} orientifolds. Turning on supergravity self-dual NSNS and RR three-form fluxes fixes the toroidal complex structure moduli and the dilaton. We give a specific example of a three-generation flipped SU(5) model with a complete Higgs sector where supersymmetry is softly broken by the supergravity fluxes in the closed string sector. All of the required Yukawa couplings are present if global U(1) factors resulting from a generalized Green-Schwarz mechanism are broken spontaneously or by world-sheet instantons. In addition, the model contains extra chiral and vector-like matter, potentially of mass O(M{sub string}) via trilinear superpotential couplings.

  6. Critical acceleration of finite temperature SU(2) gauge simulations

    International Nuclear Information System (INIS)

    Ben-Av, R.; Marcu, M.; Hamburg Univ.; Solomon, S.

    1991-04-01

    We present a cluster algorithm that strongly reduces critical slowing down for the SU(2) gauge theory on one time slice. The idea that underlies the new algorithm is to perform efficient flips for the signs of Polyakov loops. Ergodicity is ensured by combining it with a standard local algorithm. We show how to quantify critical slowing down for such a mixed algorithm. At the finite temperature transition, the dynamical critical exponent z is ≅0.5, whereas for the purely local algoirthm z ≅ 2. (orig.)

  7. Super-No-Scale F-SU(5): A dynamic determination of M{sub 1/2} and tan{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Li Tianjun, E-mail: junlt@physics.tamu.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Maxin, James A., E-mail: jmaxin@physics.tamu.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Nanopoulos, Dimitri V., E-mail: dimitri@physics.tamu.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece); Walker, Joel W., E-mail: jwalker@shsu.edu [Department of Physics, Sam Houston State University, Huntsville, TX 77341 (United States)

    2011-09-20

    We study the Higgs potential in No-Scale F-SU(5), a model built on the tripodal foundations of the F-lipped SU(5)xU(1){sub X} Grand Unified Theory, extra F-theory derived TeV scale vector-like particle multiplets, and the high scale boundary conditions of no-scale supergravity. V{sub min}, the minimum of the potential following radiative electroweak symmetry breaking, is a function at fixed Z-boson mass of the universal gaugino boundary mass M{sub 1/2} and tan{beta}, the ratio of Higgs vacuum expectation values. The so-scale nullification of the bilinear Higgs soft term B{sub {mu}} at the boundary reduces V{sub min}(M{sub 1/2}) to a one-dimensional dependency, which may be secondarily minimized. This 'Super-No-Scale' condition dynamically fixes tan{beta} and M{sub 1/2} at the local minimum minimorum of V{sub min}. Fantastically, the walls of this theoretically established secondary potential coalesce in descent to a striking concurrency with the previously phenomenologically favored 'Golden Point' and 'Golden Strip'.

  8. SU(4) x U(1) gauge theory. II. CP nonconservation

    International Nuclear Information System (INIS)

    Deshpande, N.G.; Hwa, R.C.; Mannheim, P.D.

    1979-01-01

    We exploit the higher symmetry inherent in an SU(4) x U(1) gauge theory to construct a spontaneously broken theory of CP nonconservation. Higgs multiplets in the adjoint representation of SU(4) contain both even and odd CP fields; thus, requiring the simultaneous nonvanishing of the vacuum expectation values of these fields leads to CP noninvariance of the vacuum. We find that all the CP-nonconserving effects are mediated in our theory by the superheavy gauge bosons of the broken SU(4) x U(1) symmetry. In fact, the very existence of CP violation sets an upper limit on the masses of these bosons. In our model the dominant CP effect lies in the neutral kaon system and is found to arise through a direct (ΔS = 2) K 1 -K 2 transition. The model has all the features of a superweak theory, with a neutron electric dipole moment substantially smaller than 10 -24 e cm

  9. All unitary ray representations of the conformal group SU(2,2) with positive energy

    International Nuclear Information System (INIS)

    Mack, G.

    1975-12-01

    We find all those unitary irreducible representations of the infinitely - sheeted covering group G tilde of the conformal group SU(2,2)/Z 4 which have positive energy P 0 >= O. They are all finite component field representations and are labelled by dimension d and a finite dimensional irreducible representation (j 1 , j 2 ) of the Lorentz group SL(2C). They all decompose into a finite number of unitary irreducible representations of the Poincare subgroup with dilations. (orig.) [de

  10. Improved thermodynamics of SU(2) gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Giudice, Pietro [University of Muenster, Institute for Theoretical Physics, Muenster (Germany); Piemonte, Stefano [University of Regensburg, Institute for Theoretical Physics, Regensburg (Germany)

    2017-12-15

    In this work we present the results of our investigation of the thermodynamics of SU(2) gauge theory. We employ a Symanzik improved action to reduce strongly the discretisations effects, and we use the scaling relations to take into account the finite volume effects close to the critical temperature. We determine the β-function for this particular theory and we use it in the determination of different thermodynamic observables. Finally we compare our results with previous work where only the standard Wilson action was considered. We confirm the relevance of using the improved action to access easily the correct continuum thermodynamics of the theory. (orig.)

  11. Analytic study of SU(3) lattice gauge theory

    International Nuclear Information System (INIS)

    Zheng Xite; Xu Yong

    1989-01-01

    The variational-cumulant expansion method has been extended to the case of lattice SU(3) Wilson model. The plaquette energy as an order paramenter has been calculated to the 2nd order expansion. No 1st order phase transition in the D = 4 case is found which is in agreement with the monte Carlo results, and the 1st order phase transition in the d = 5 case is clearly seen. The method can be used in the study of problems in LGT with SU(3) gauge group

  12. BPS Center Vortices in Nonrelativistic SU(N) Gauge Models with Adjoint Higgs Fields

    International Nuclear Information System (INIS)

    Oxman, L. E.

    2015-01-01

    We propose a class of SU(N) Yang-Mills models, with adjoint Higgs fields, that accept BPS center vortex equations. The lack of a local magnetic flux that could serve as an energy bound is circumvented by including a new term in the energy functional. This term tends to align, in the Lie algebra, the magnetic field and one of the adjoint Higgs fields. Finally, a reduced set of equations for the center vortex profile functions is obtained (for N=2,3). In particular, Z(3) BPS vortices come in three colours and three anticolours, obtained from an ansatz based on the defining representation and its conjugate.

  13. T-expansion and its application to SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Karliner, M.

    1984-01-01

    A scheme allowing systematic improvement of variational calculations has been developed at SLAC. This paper contains an outline of the method, as well as some preliminary results of its application to two dimensional spin systems and four dimensional SU(2) lattice guage theory

  14. Ω{sub c} excited states within a SU(6){sub lsf} x HQSS model

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, J.; Pavao, R. [Instituto de Fisica Corpuscular (Centro mixto CSIC-UV), Institutos de Investigacion de Paterna, Valencia (Spain); Tolos, L. [University of Frankfurt, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); University of Frankfurt, Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, Barcelona (Spain); Institut d' Estudis Espacials de Catalunya (IEEC), Barcelona (Spain)

    2018-02-15

    We have reviewed the renormalization procedure used in the unitarized coupled-channel model of Romanets et al. (Phys Rev D 85:114032, 2012), and its impact in the C = 1, S = -2, and I = 0 sector, where five Ω{sub c}{sup (*)} states have been recently observed by the LHCb Collaboration. The meson-baryon interactions used in the model are consistent with both chiral and heavy-quark spin symmetries, and lead to a successful description of the observed lowest-lying odd parity resonances Λ{sub c}(2595) and Λ{sub c}(2625), and Λ{sub b}(5912) and Λ{sub b}(5920) resonances. We show that some (probably at least three) of the states observed by LHCb will also have odd parity and J = 1/2 or J = 3/2, belonging two of them to the same SU(6){sub light-spin-flavor} x HQSS multiplets as the latter charmed and beauty Λ baryons. (orig.)

  15. Singular Minkowski and Euclidean solutions for SU(2) Yang-Mills theory

    International Nuclear Information System (INIS)

    Singleton, D.

    1996-01-01

    In this paper it is examined a solution to the SU(2) Yang-Mills-Higgs system, which is a trivial mathematical extension of recently discovered Schwarzschild- like solutions (Singleton D., Phys. Rev. D, 51 (1955) 5911). Physically, however, this new solution has drastically different properties from the Schwarzschild-like solutions. It is also studied a new classical solution for Euclidean SU(2) Yang-Mills theory. Again this new solution is a mathematically trivial extension of the Belavin-Polyakov-Schwartz-Tyupkin (BPST) (Belavin A. A. et al., Phys. Lett. B, 59 (1975) 85) instanton, but is physically very different. Unlike the usual instanton solution, the present solution is singular on a sphere of arbitrary radius in Euclidean space. Both of these solutions are infinite-energy solutions, so their practical value is somewhat unclear. However, they may be useful in exploring some of the mathematical aspects of classical Yang-Mills theory

  16. B8B8 interaction in the SU6 quark model and its applications to few-body systems

    International Nuclear Information System (INIS)

    Fujiwara, Y.; Miyagawa, K.; Kohno, M.; Suzuki, Y.; Nakamoto, C.

    2004-01-01

    The recent QCD-inspired spin-flavor SU 6 quark model for the baryon-baryon interaction, proposed by the Kyoto-Niigata group, is a unified model for the complete baryon octet (B 8 =N, Λ, Σ and Ξ), which has achieved very accurate description of the NN and YN interactions. These quark-model interactions are now applied to realistic calculations of few-body systems in a new three-cluster Faddeev formalism which uses the 2-cluster resonating-group method kernel explicitly. We review the essential features of the most recent models, fss2 and FSS, and their predictions to few-body systems in confrontation with the available experimental data. As the few-body systems, we discuss the three-nucleon bound states, 2αΛ system for Λ 9 Be, and 2Λα system for ΛΛ 6 He. (author)

  17. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Stefan

    2008-07-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  18. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Solbrig, Stefan

    2008-01-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  19. The gradient flow running coupling in SU2 with 8 flavors

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Karavirta, Tuomas; Leino, Viljami

    2014-01-01

    We present preliminary results of the gradient flow running coupling with Dirichlet boundary condition in the SU(2) gauge theory with 8 fermion flavours. Improvements to the gradient flow measurement allow us to obtain a robust continuum limit. The results are consistent with perturbative running...

  20. Generalized permutation symmetry and the flavour problem in SU(2)sub(L)xU(1)

    International Nuclear Information System (INIS)

    Ecker, G.

    1984-01-01

    A generalized permutation group is introduced as a possible horizontal symmetry for SU(2)sub(L)xU(1) gauge theories. It leads to the unique two generation quark mass matrices with a correct prediction for the Cabibbo angle. For three generations the model exhibits spontaneous CP violation, correlates the Kobayashi-Maskawa mixing parameters s 1 and s 3 and predicts an upper bound for the running top quark mass of approximately 45 GeV. The hierarchy of generations is due to a hierarchy of vacuum expectation values rather than of Yukawa coupling constants. (orig.)

  1. Bosonization of the generalized SU(3) Nambu-Jona-Lasinio model in the 1/N expansion; Bosonizacao do modelo de Nambu-Jona-Lasinio SU(3) generalizado na expansao 1/N

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Francisco Antonio Pena

    1995-12-31

    The present work consists in a 1/N expansion of extended version of the SU(3) Nambu-Jona-Lasinio model in the context of the Functional Integral. The gap equations, meson propagators, triangle diagram, etc, appear quite naturally as different orders in the expansion. The new features of this approach is the inclusion of high order corrections in the 1/N leading orders, which have never included in the previous one. The method also allows for the construction of a chiral Lagrangian of interacting mesons based on the SU(3) NJL model, here obtained for the first time. (author) 32 refs., 11 figs., 5 tabs.

  2. Entanglement in SU(2)-invariant quantum systems: The positive partial transpose criterion and others

    International Nuclear Information System (INIS)

    Schliemann, John

    2005-01-01

    We study entanglement in mixed bipartite quantum states which are invariant under simultaneous SU(2) transformations in both subsystems. Previous results on the behavior of such states under partial transposition are substantially extended. The spectrum of the partial transpose of a given SU(2)-invariant density matrix ρ is entirely determined by the diagonal elements of ρ in a basis of tensor-product states of both spins with respect to a common quantization axis. We construct a set of operators which act as entanglement witnesses on SU(2)-invariant states. A sufficient criterion for ρ having a negative partial transpose is derived in terms of a simple spin correlator. The same condition is a necessary criterion for the partial transpose to have the maximum number of negative eigenvalues. Moreover, we derive a series of sum rules which uniquely determine the eigenvalues of the partial transpose in terms of a system of linear equations. Finally we compare our findings with other entanglement criteria including the reduction criterion, the majorization criterion, and the recently proposed local uncertainty relations

  3. 3D gauged supergravity from SU(2) reduction of $N=1$ 6D supergravity

    CERN Document Server

    Gava, Edi; Narain, K S

    2010-01-01

    We obtain Yang-Mills $SU(2)\\times G$ gauged supergravity in three dimensions from $SU(2)$ group manifold reduction of (1,0) six dimensional supergravity coupled to an anti-symmetric tensor multiplet and gauge vector multiplets in the adjoint of $G$. The reduced theory is consistently truncated to $N=4$ 3D supergravity coupled to $4(1+\\textrm{dim}\\, G)$ bosonic and $4(1+\\textrm{dim}\\, G)$ fermionic propagating degrees of freedom. This is in contrast to the reduction in which there are also massive vector fields. The scalar manifold is $\\mathbf{R}\\times \\frac{SO(3,\\, \\textrm{dim}\\, G)}{SO(3)\\times SO(\\textrm{dim}\\, G)}$, and there is a $SU(2)\\times G$ gauge group. We then construct $N=4$ Chern-Simons $(SO(3)\\ltimes \\mathbf{R}^3)\\times (G\\ltimes \\mathbf{R}^{\\textrm{dim}G})$ three dimensional gauged supergravity with scalar manifold $\\frac{SO(4,\\,1+\\textrm{dim}G)}{SO(4)\\times SO(1+\\textrm{dim}G)}$ and explicitly show that this theory is on-shell equivalent to the Yang-Mills $SO(3)\\times G$ gauged supergravity the...

  4. Interpolating Lagrangians and SU(2) gauge theory on the lattice

    International Nuclear Information System (INIS)

    Buckley, I.R.C.; Jones, H.F.

    1992-01-01

    We apply the linear δ expansion to non-Abelian gauge theory on the lattice, with SU(2) as the gauge group. We establish an appropriate parametrization and evaluate the average plaquette energy E P to O(δ). As a check on our results, we recover the large-β expansion up to O(1/β 2 ), which involves some O(δ 2 ) contributions. Using these contributions we construct a variant of the 1/β expansion which gives a good fit to the data down to the transition region

  5. Phenomenological Hamiltonian of Sp(2,R) model for heavy deformed nuclei

    International Nuclear Information System (INIS)

    Avramenko, V.I.; Asherova, R.M.; Filippov, G.F.; Smirnov, Yu.F.; Zajtsev, S.A.

    1985-01-01

    In the frame of the symplectic collective model, operating with the microscopical basic functions of irraducible representation of SU(3) groups the energy spectrum of collective excitation in 164 Kr nucleus is calculated. Also the aOsolute and relative values of probabilities E2-transitions between collective states are obtained. The indexes of SU(3) symmetry are chosen in correspondence with rules of Nillsson orbital occupation

  6. Flipped SU(6) from ten dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotakopoulos, C. (Bartol Research Inst., Univ. of Delaware, Newark, DE (US))

    1990-06-20

    The authors study the compactification of the heterotic supersting on the only known three generation Calabi-Yau space with flux breakings leading to SU(6) {times} U(1) as the gauge group in four dimensions. We compute the massless spectrum and identify the discrete symmetries of the internal space that survive flux breaking. The possible four-dimensional models are classified according to their honest discrete symmetries. The allowed breaking chains of SU(6) {times} U(1) are listed. Model building with SU(6) {times} U(1) is discussed in general and a concrete realistic model is constructed which does not suffer from the gauge hierarchy problem, fast proton decay or any other obvious phenomenological disaster. A distinct experimental signature of this class of models is the presence in the low energy spectrum of vector-like quarks and antiquarks, outside the three known families, with masses of the order of the supersymmetry breaking scale.

  7. Filling-driven Mott transition in SU(N ) Hubbard models

    Science.gov (United States)

    Lee, Seung-Sup B.; von Delft, Jan; Weichselbaum, Andreas

    2018-04-01

    We study the filling-driven Mott transition involving the metallic and paramagnetic insulating phases in SU (N ) Fermi-Hubbard models, using the dynamical mean-field theory and the numerical renormalization group as its impurity solver. The compressibility shows a striking temperature dependence: near the critical end-point temperature, it is strongly enhanced in the metallic phase close to the insulating phase. We demonstrate that this compressibility enhancement is associated with the thermal suppression of the quasiparticle peak in the local spectral functions. We also explain that the asymmetric shape of the quasiparticle peak originates from the asymmetry in the dynamics of the generalized doublons and holons.

  8. Remarks on broken chiral SU(5) x SU(5) symmetry and B mesons

    International Nuclear Information System (INIS)

    Kim, D.Y.; Sinha, S.N.

    1985-01-01

    In a recent paper, Hatzis has estimated the masses and weak decay constants of b-flavored pseudoscalar mesons in a broken chiral SU(5) x SU(5) symmetry method. The estimated weak decay constant of B meson, f sub(B) f sub(K)(f sub(B)/f sub(K) approximately equal to 1.4) evaluated by Mathur et al. with the quantum chromodynamics (QCD) sum-rule model. We re-examined the problem applying the broken chiral SU(5) x SU(5) symmetry approach using a set of mass formulae. With this method we estimate the symmetry-breaking parameters and decay constants of pseudoscalar mesons. We found a consistent result for the decay constant: f sub(K) < or approximately equal to f sub(D) < or approximately equal to f sub(B). The explicit numerical value of these constants, however, are lower than that of the QCD sum rule. This may be due to the limited validity of the broken chiral symmetry approach for heavy mesons

  9. Superconformal geometry from the Grassmann and harmonic analyticities II: The N=4SU(2) conformal case

    International Nuclear Information System (INIS)

    Saidi, E.H.; Zakkari, M.

    1990-05-01

    N=4SU(2) conformal invariance is studied in harmonic superspace. It is shown that the N=4SU(2) conformal structure is equivalent to the harmonic analyticity. The solutions of the superconformal constraints are worked out in detail and the conformal properties of all objects of interests are given. A realization of the N=4 current in terms of the free (F.S.) hypermultiplet is obtained. (author). 10 refs

  10. Vector-like quarks and leptons, SU(5) ⊗ SU(5) grand unification, and proton decay

    International Nuclear Information System (INIS)

    Lee, Chang-Hun; Mohapatra, Rabindra N.

    2017-01-01

    SU(5) ⊗ SU(5) provides a minimal grand unification scheme for fermions and gauge forces if there are vector-like quarks and leptons in nature. We explore the gauge coupling unification in a non-supersymmetric model of this type, and study its implications for proton decay. The properties of vector-like quarks and intermediate scales that emerge from coupling unification play a central role in suppressing proton decay. We find that in this model, the familiar decay mode p→e + π 0 may have a partial lifetime within the reach of currently planned experiments.

  11. Introduction to unified theories of weak, electromagnetic and strong interactions - SU(5)

    International Nuclear Information System (INIS)

    Billoire, Alain; Morel, Andre.

    1980-11-01

    These notes correspond to a series of lectures given at Salay during winter 1979-1980. They are meant to be an introduction to the so-called grand unified theories of weak, electromagnetic and strong interactions. In a first part, we recall in a very elementary way the standard SU(2) model of electroweak interactions, putting the emphasis on the questions which are left open by this model and which unified theories help to answer. In part II, we explain in a systematic way how unified theories can be constructed, and develop the SU(5) model in great detail. Other models, like SO(10) and E 6 , are not presented, because SU(5) is the simplest one and has been subject to the deepest investigations up to now. Also it appears that most concepts and general results are not specific to any particular symmetry group [fr

  12. Phase transitions and flux distributions of SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Peng, Yingcai.

    1993-01-01

    The strong interactions between quarks are believed to be described by Quantum Chromodynamics (QCD), which is a non-abelian SU(3) gauge theory. It is known that QCD undergoes a deconfining phase transition at very high temperatures, that is, at low temperatures QCD is in confined phase, at sufficient high temperatures it is in an unconfined phase. Also, quark confinement is believed to be due to string formation. In this dissertation the authors studied SU(2) gauge theory using numerical methods of LGT, which will provide some insights about the properties of QCD because SU(2) is similar to SU(3). They measured the flux distributions of a q bar q pair at various temperatures in different volumes. They find that in the limit of infinite volumes the flux distribution is different in the two phases. In the confined phase strong evidence is found for the string formation, however, in the unconfined phase there is no string formation. On the other hand, in the limit of zero temperature and finite volumes they find a clear signal for string formation in the large volume region, however, the string tension measured in intermediate volumes is due to finite volume effects, there is no intrinsic string formation. The color flux energies (action) of the q bar q pair are described by Michael sum rules. The original Michael sum rules deal with a static q bar q pair at zero temperature in infinite volumes. To check these sum rules with flux data at finite temperatures, they present a complete derivation for the sum rules, thus generalizing them to account for finite temperature effects. They find that the flux data are consistent with the prediction of generalized sum rules. The study elucidates the rich structures of QCD, and provides evidence for quark confinement and string formation. This supports the belief that QCD is a correct theory for strong interactions, and quark confinement can be explained by QCD

  13. An N = 2 worldsheet approach to D-branes in bihermitian geometries: I. Chiral and twisted chiral fields

    International Nuclear Information System (INIS)

    Sevrin, Alexander; Staessens, Wieland; Wijns, Alexander

    2008-01-01

    We investigate N = (2, 2) supersymmetric nonlinear σ-models in the presence of a boundary. We restrict our attention to the case where the bulk geometry is described by chiral and twisted chiral superfields corresponding to a bihermitian bulk geometry with two commuting complex structures. The D-brane configurations preserving an N = 2 worldsheet supersymmetry are identified. Duality transformations interchanging chiral for twisted chiral fields and vice versa while preserving all supersymmetries are explicitly constructed. We illustrate our results with various explicit examples such as the WZW-model on the Hopf surface S 3 x S 1 . The duality transformations provide e.g new examples of coisotropic A-branes on Kaehler manifolds (which are not necessarily hyper-Kaehler). Finally, by dualizing a chiral and a twisted chiral field to a semi-chiral multiplet, we initiate the study of D-branes in bihermitian geometries where the cokernel of the commutator of the complex structures is non-empty.

  14. Phases and density of states in a generalized Su-Schrieffer-Heeger model

    International Nuclear Information System (INIS)

    Voo, K.-K.; Mou, C.-Y.

    2004-01-01

    Self-consistent solutions of a generalized Su-Schrieffer-Heeger model on the two-dimensional square lattice are investigated. Away from half-filling, spatially inhomogeneous phases are found. These phases may have topological structures on the flux order, large-unit-cell bond order, localized bipolarons, or they are simply short-range ordered and glassy. They have an universal feature of possessing a gapped Fermi level

  15. New hierarchy in GUTs based on SU(n,1)/SU(n)U(1) SUGRA

    International Nuclear Information System (INIS)

    Hayashi, M.J.; Murayama, Akihiro

    1985-01-01

    Grand unified theories (GUTs) in the framework of SU(n, 1)/SU(n) x U(1) supergravity are discussed which naturally generate a new hierarchy, Msub(P) (Planck mass): Msub(X) (GUT scale):msub(3/2) (gravitino mass):m (explicit supersymmetry breaking scale)=1:epsilon:epsilon 3 :epsilon 5 α(Msub(X)) with Msub(P) as the only input mass scale. The SUSY breaking scale m is expected to be fixed radiatively as mproportionalMsub(W), i.e., epsilonproportional10 -3 . Our method would be applicable to any GUT based on SU(n, 1)/SU(n) x U(1) supergravity. (orig.)

  16. Generalized metric formulation of double field theory on group manifolds

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Bosque, Pascal du; Hassler, Falk; Lüst, Dieter

    2015-01-01

    We rewrite the recently derived cubic action of Double Field Theory on group manifolds http://dx.doi.org/10.1007/JHEP02(2015)001 in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar and a generalized Ricci tensor. Compared to the generalized metric formulation of DFT derived from tori, all these quantities receive additional contributions related to the non-trivial background. It is shown that the action is invariant under its generalized diffeomorphisms and 2D-diffeomorphisms. Imposing additional constraints relating the background and fluctuations around it, the precise relation between the proposed generalized metric formulation of DFT WZW and of original DFT from tori is clarified. Furthermore, we show how to relate DFT WZW of the WZW background with the flux formulation of original DFT.

  17. Anti-inflammatory properties of fermented soy milk with Lactococcus lactis subsp. lactis S-SU2 in murine macrophage RAW264.7 cells and DSS-induced IBD model mice.

    Science.gov (United States)

    Kawahara, Miho; Nemoto, Maki; Nakata, Toru; Kondo, Saya; Takahashi, Hajime; Kimura, Bon; Kuda, Takashi

    2015-06-01

    Six lactic acid bacteria strains (four Lactobacillus plantarum strains and one each of Lactococcus lactis subsp. lactis and Pediococcus pentosaceus) have been isolated and shown to possess anti-oxidant activity. In this study, we determined their acid, bile, salt resistance, and adhesion activity on human enterocyte-like HT-29-Luc and Caco-2 cells. An isolate Lc. lactis S-SU2 showed highest bile resistance and adhesion activity compared to type strains. S-SU2 could ferment both 10% skimmed milk and soy milk while the type strain could not ferment soy milk. Soy milk fermented with S-SU2 showed an increased nitric oxide (NO) secretion in the mouse macrophage RAW264.7 cells without bacterial lipopolysaccharide (LPS). Furthermore, the inhibitory effects of the fermented soy milk on Escherichia coli O111 LPS-induced NO secretion were higher than those of fresh soy milk. Inflammatory bowel disease (IBD) was induced in mice fed either 5% (w/v) dextran sodium sulfate (DSS) in drinking water or 50% soy milk in drinking water. Shortening of colon length, breaking of epithelial cells, lowering liver and thymus weights, and enlargement of spleen are some of the characteristics observed in the IBD, which were prevented by the use of soy milk fermented with Lc. lactis S-SU2. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Baryon axial-vector couplings and SU(3)-symmetry breaking in chiral quark models

    International Nuclear Information System (INIS)

    Horvat, D.; Ilakovac, A.; Tadic, D.

    1986-01-01

    SU(3)-symmetry breaking is studied in the framework of the chiral bag models. Comparisons are also made with the MIT bag model and the harmonic-oscillator quark model. An important clue for the nature of the symmetry breaking comes from the isoscalar axial-vector coupling constant g/sub A//sup S/ which can be indirectly estimated from the Bjorken sum rules for deep-inelastic scattering. The chiral bag model with two radii reasonably well accounts for the empirical values of g/sub A//sup S/ and of the axial-vector coupling constants measured in hyperon semileptonic decays

  19. Hyperon interaction in free space and nuclear matter within a SU(3) based meson exchange model

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Madhumita

    2016-06-15

    To establish the connection between free space and in-medium hyperon-nucleon interactions is the central issue of this thesis. The guiding principle is flavor SU(3) symmetry which is exploited at various levels. In first step hyperon-nucleon and hyperon- hyperon interaction boson exchange potential in free space are introduced. A new parameter set applicable for the complete baryon octet has been derived leading to an updated one-boson- exchange model, utilizing SU(3) flavor symmetry, optimizing the number of free parameters involved, and revising the set of mesons included. The scalar, pseudoscalar, and vector SU(3) meson octets are taken into account. T-matrices are calculated by solving numerically coupled linear systems of Lippmann-Schwinger equations obtained from a 3-D reduced Bethe-Salpeter equation. Coupling constants were determined by χ{sup 2} fits to the world set of scattering data. A good description of the few available data is achieved within the imposed SU(3) constraints. Having at hand a consistently derived vacuum interaction we extend the approach next to investigations of the in-medium properties of hyperon interaction, avoiding any further adjustments. Medium effect in infinite nuclear matter are treated microscopically by recalculating T-matrices by an medium-modified system of Lippmann-Schwinger equations. A particular important role is played by the Pauli projector accounting for the exclusion principle. The presence of a background medium induces a weakening of the vacuum interaction amplitudes. Especially coupled channel mixing is found to be affected sensitively by medium. Investigation on scattering lengths and effective range parameters are revealing the density dependence of the interaction on a quantitative level.

  20. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Stefan

    2008-07-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  1. Kink-induced symmetry breaking patterns in brane-world SU(3)3 trinification models

    International Nuclear Information System (INIS)

    Demaria, Alison; Volkas, Raymond R.

    2005-01-01

    The trinification grand unified theory (GUT) has gauge group SU(3) 3 and a discrete symmetry permuting the SU(3) factors. In common with other GUTs, the attractive nature of the fermionic multiplet assignments is obviated by the complicated multiparameter Higgs potential apparently needed for phenomenological reasons, and also by vacuum expectation value (VEV) hierarchies within a given multiplet. This motivates the rigorous consideration of Higgs potentials, symmetry breaking patterns, and alternative symmetry breaking mechanisms in models with this gauge group. Specifically, we study the recently proposed 'clash of symmetries' brane-world mechanism to see if it can help with the symmetry breaking conundrum. This requires a detailed analysis of Higgs potential global minima and kink or domain wall solutions interpolating between the disconnected global minima created through spontaneous discrete symmetry breaking. Sufficiently long-lived metastable kinks can also be considered. We develop what we think is an interesting, albeit speculative, brane-world scheme whereby the hierarchical symmetry breaking cascade, trinification to left-right symmetry to the standard model to color cross electromagnetism, may be induced without an initial hierarchy in vacuum expectation values. Another motivation for this paper is simply to continue the exploration of the rich class of kinks arising in models that are invariant under both discrete and continuous symmetries

  2. Phenomenology of SU(5 low-energy realizations: The diphoton excess and Higgs flavor violation

    Directory of Open Access Journals (Sweden)

    Andrea Di Iura

    2016-10-01

    Full Text Available We discuss different SU(5 low-energy realizations and illustrate their use with the diphoton excess and Higgs flavor violation, which require new physics at the TeV scale. In particular, we study two scenarios for a 750 GeV resonance: in the first one the resonance belongs to the adjoint of SU(5, being either an SU(2L singlet or a triplet, while in the second case the signal is due to the CP-even and CP-odd states of a new SU(2L Higgs doublet belonging to a 45H or a 70H representations, giving rise to a two-Higgs doublet model at low energies. We study the fine-tuning needed for the desired members of the multiplets to be light enough, while having the rest at the GUT scale. In these scenarios, the production and decay into photons of the new resonance are mediated by the leptoquarks (LQ present in these large SU(5 representations. We analyze the phenomenology of such scenarios, focusing on the most relevant predictions that can help to disentangle the different models, like decays into gauge bosons, Standard Model (SM fermions and LQs pair production. In the case of the 45H (the Georgi–Jarlskog model, we also study the possibility to have Higgs flavor violation. We find that Bs mixing limits (in addition to τ→μγ always imply that Br(h→τμ,bs≲10−5.

  3. SU(3) limit of the IBM as a 1/N expansion

    International Nuclear Information System (INIS)

    Kuyucak, S.; Morrison, I.

    1990-01-01

    The SU(3) limit of the interacting boson model is considered from the perspective of the 1/N expansion. It is shown that truncation of the E2 matrix elements in the spirit of the 1/N expansion and the Mikhailov plots greatly simplifies the complicated exact results and leads to some new insights. A list of E2 transitions among the ground, β and γ bands, both in the SU(3) limit and in more general cases, is given, and some errors in the previous literature are pointed out. 13 refs

  4. The Topological Structure of the SU(2) Chern–Simons Topological Current in the Four-Dimensional Quantum Hall Effect

    International Nuclear Information System (INIS)

    Xiu-Ming, Zhang; Yi-Shi, Duan

    2010-01-01

    In the light of the decomposition of the SU(2) gauge potential for I = 1/2, we obtain the SU(2) Chern-Simons current over S 4 , i.e. the vortex current in the effective field for the four-dimensional quantum Hall effect. Similar to the vortex excitations in the two-dimensional quantum Hall effect (2D FQH) which are generated from the zero points of the complex scalar field, in the 4D FQH, we show that the SU(2) Chern–Simons vortices are generated from the zero points of the two-component wave functions Ψ, and their topological charges are quantized in terms of the Hopf indices and Brouwer degrees of φ-mapping under the condition that the zero points of field Ψ are regular points. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  5. On the phase structure of lattice SU(2) Gauge-Higgs theory

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Mitryushkin, V.K.; Zadorozhnyj, A.M.; Ilchev, A.S.

    1985-01-01

    The results on the phase structure of SU(2) gauge theory coupled with radially active Higgs fields are iscussed. It is shown that obtained results are not in contradiction with the known ones. The first order phase transitions observed are confirmed by the Monte Carlo calcUlations and by the analysis of an approximate effective potential

  6. Heavy Higgs boson with a light sneutrino next-to-lightest supersymmetric particle in the MSSM with enhanced SU(2) D-terms

    International Nuclear Information System (INIS)

    Medina, Anibal D.; Shah, Nausheen R.; Wagner, Carlos E. M.

    2009-01-01

    The minimal supersymmetric extension of the standard model provides a solution to the hierarchy problem and leads to the presence of a light Higgs. A Higgs boson with mass above the present experimental bound may only be obtained for relatively heavy third generation squarks, requiring a precise, somewhat unnatural balance between different contributions to the effective Higgs mass parameter. It was recently noticed that somewhat heavier Higgs bosons, which are naturally beyond the CERN LEP bound, may be obtained by enhanced weak SU(2) D-terms. Such contributions appear in models with an enhanced electroweak gauge symmetry, provided the supersymmetry breaking masses associated with the scalars responsible for the breakdown of the enhanced gauge symmetry group to the standard model one are larger than the enhanced symmetry breaking scale. In this article we emphasize that the enhanced SU(2) D-terms will not only raise the Higgs boson mass but also affect the spectrum of the nonstandard Higgs bosons, sleptons, and squarks, which therefore provide a natural contribution to the T parameter, compensating for the negative one coming from the heavy Higgs boson. The sleptons and nonstandard Higgs bosons of these models, in particular, may act in a way similar to the so-called inert Higgs doublet. The phenomenological properties of these models are emphasized, and possible cosmological implications as well as collider signatures are described.

  7. Finite subgroups of SU(3)

    International Nuclear Information System (INIS)

    Bovier, A.; Lueling, M.; Wyler, D.

    1980-12-01

    We present a new class of finite subgroups of SU(3) of the form Zsub(m) s zsub(n) (semidirect product). We also apply the methods used to investigate semidirect products to the known SU(3) subgroups Δ(3n 2 ) and Δ(6n 2 ) and give analytic formulae for representations (characters) and Clebsch-Gordan coefficients. (orig.)

  8. The Lipkin-Meshkov-Glick model from the perspective of the SU(1,1) Richardson-Gaudin models

    International Nuclear Information System (INIS)

    Lerma-H, Sergio; Dukelsky, Jorge

    2014-01-01

    Originally introduced in nuclear physics as a numerical laboratory to test different many-body approximation methods, the Lipkin-Meshkov-Glick (LMG) model has received much attention as a simple enough but non-trivial model with many interesting features for areas of physics beyond the nuclear one. In this contribution we look at the LMG model as a particular example of an SU(1,1) Richardson-Gaudin model. The characteristics of the model are analyzed in terms of the behavior of the spectral-parameters or pairons which determine both eigenvalues and eigenfunctions of the model Hamiltonian. The problem of finding these pairons is mathematically equivalent to obtain the equilibrium positions of a set of electric charges moving in a two dimensional space. The electrostatic problems for the different regions of the model parameter space are discussed and linked to the different energy density of states already identified in the LMG spectrum.

  9. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    International Nuclear Information System (INIS)

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2001-01-01

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of 20,22 Ne, 24 Mg and 28 Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed

  10. Generalized metric formulation of double field theory on group manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Bosque, Pascal du [Arnold-Sommerfeld-Center für Theoretische Physik,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Hassler, Falk [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Lüst, Dieter [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Arnold-Sommerfeld-Center für Theoretische Physik,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); CERN, PH-TH,1211 Geneva 23 (Switzerland)

    2015-08-13

    We rewrite the recently derived cubic action of Double Field Theory on group manifolds http://dx.doi.org/10.1007/JHEP02(2015)001 in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar and a generalized Ricci tensor. Compared to the generalized metric formulation of DFT derived from tori, all these quantities receive additional contributions related to the non-trivial background. It is shown that the action is invariant under its generalized diffeomorphisms and 2D-diffeomorphisms. Imposing additional constraints relating the background and fluctuations around it, the precise relation between the proposed generalized metric formulation of DFT{sub WZW} and of original DFT from tori is clarified. Furthermore, we show how to relate DFT{sub WZW} of the WZW background with the flux formulation of original DFT.

  11. Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions II. The Deconfined phase

    CERN Document Server

    Caselle, Michele; Feo, Alessandra; Gliozzi, Ferdinando; Gursoy, Umut; Panero, Marco; Schafer, Andreas

    2012-01-01

    We present a non-perturbative study of the equation of state in the deconfined phase of Yang-Mills theories in D=2+1 dimensions. We introduce a holographic model, based on the improved holographic QCD model, from which we derive a non-trivial relation between the order of the deconfinement phase transition and the behavior of the trace of the energy-momentum tensor as a function of the temperature T. We compare the theoretical predictions of this holographic model with a new set of high-precision numerical results from lattice simulations of SU(N) theories with N=2, 3, 4, 5 and 6 colors. The latter reveal that, similarly to the D=3+1 case, the bulk equilibrium thermodynamic quantities (pressure, trace of the energy-momentum tensor, energy density and entropy density) exhibit nearly perfect proportionality to the number of gluons, and can be successfully compared with the holographic predictions in a broad range of temperatures. Finally, we also show that, again similarly to the D=3+1 case, the trace of the en...

  12. Stable monopole-antimonopole string background in SU(2) QCD

    International Nuclear Information System (INIS)

    Cho, Y.M.; Pak, D.G.

    2006-01-01

    Motivated by the instability of the Savvidy-Nielsen-Olesen (SNO) vacuum we make a systematic search for a stable magnetic background in pure SU(2) QCD. It is shown that a pair of axially symmetric monopole and antimonopole strings is stable, provided that the distance between the two strings is less than a critical value. The existence of a stable monopole-antimonopole string background strongly supports that a magnetic condensation of monopole-antimonopole pairs can generate a dynamical symmetry breaking, and thus the magnetic confinement of color in QCD

  13. String completion of an SU(3c⊗SU(3L⊗U(1X electroweak model

    Directory of Open Access Journals (Sweden)

    Andrea Addazi

    2016-08-01

    Full Text Available The extended electroweak SU(3c⊗SU(3L⊗U(1X symmetry framework “explaining” the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (unoriented open strings, on Calabi–Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron–antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden.

  14. Likelihood analysis of supersymmetric SU(5) GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Bagnaschi, E.; Weiglein, G. [DESY, Hamburg (Germany); Costa, J.C.; Buchmueller, O.; Citron, M.; Richards, A.; De Vries, K.J. [Imperial College, High Energy Physics Group, Blackett Laboratory, London (United Kingdom); Sakurai, K. [University of Durham, Science Laboratories, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); Borsato, M.; Chobanova, V.; Lucio, M.; Martinez Santos, D. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); University of Illinois at Chicago, Physics Department, Chicago, IL (United States); Roeck, A. de [CERN, Experimental Physics Department, Geneva (Switzerland); Antwerp University, Wilrijk (Belgium); Dolan, M.J. [University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Parkville (Australia); Ellis, J.R. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Theoretical Physics Department, CERN, Geneva 23 (Switzerland); Flaecher, H. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Heinemeyer, S. [Campus of International Excellence UAM+CSIC, Cantoblanco, Madrid (Spain); Instituto de Fisica Teorica UAM-CSIC, Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Isidori, G. [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Olive, K.A. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States)

    2017-02-15

    We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has seven parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R} - χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub τ} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC. (orig.)

  15. Likelihood analysis of supersymmetric SU(5) GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Bagnaschi, E. [DESY, Hamburg (Germany); Costa, J.C. [Imperial College, London (United Kingdom). Blackett Lab.; Sakurai, K. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomonology; Warsaw Univ. (Poland). Inst. of Theoretical Physics; Collaboration: MasterCode Collaboration; and others

    2016-10-15

    We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and avour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets+E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R}-χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub T} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC.

  16. On sums of q-independent SU[sub q](2) quantum variables

    Energy Technology Data Exchange (ETDEWEB)

    Lenczewski, R. (Politechnika Wroclawska, Wroclaw (Poland). Hugo Steinhaus Center for Stochastic Methods)

    1993-05-01

    A representation-free approach to the q-analog of the quantum central limit theorem for C=SU[sub 1](2) is presented. It is shown that for certain functions [phi][epsilon]-C* one can derive a version of a quantum central limit theorem (qclt) with [radical][N] as a scaling parameter, which may be viewed as a q-analog of qclt. (orig.).

  17. Charge commutation relation approach to composite vector bosons in SU(2)sub(L)xU(1)sub(Y)

    International Nuclear Information System (INIS)

    Yasue, Masaki; Oneda, Sadao.

    1984-09-01

    Under the assumption that the local SU(2)sub(L)xU(1)sub(Y) symmetry is a good symmetry for new resonances, we predict that msub(W)msub(W*)=costhetamsub(Z)msub(Z*) where theta represents the mixing angle between neutral gauge bosons and msub(W), msub(Z), msub(W*) and msub(Z*) are the masses of W, Z, W* and Z*, respectively. W* and Z* are the lowest lying spin one resonances, whose pure states belong to a triplet of SU(2)sub(L). Possible SU(2)sub(L)-singlet state is assumed to be much heavier than W* and Z*. Low energy phenomenology of weak interactions indicates msub(W)--costhetamsub(Z), suggesting msub(W*)--msub(Z*). (author)

  18. An approach to gauge hierarchy in the minimal SU(5) model of grand unification

    International Nuclear Information System (INIS)

    Ghose, P.

    1982-08-01

    It is shown that if all mass generation through spontaneous symmetry breaking is predominantly caused by scalar loops in the minimal SU(5) model of grand unification, it is possible to have an arbitrarily large gauge hierarchy msub(x) >> msub(w) with all Higgs bosons superheavy. No fine tuning is necessary in every order. (author)

  19. Condensates near the Argyres-Douglas point in SU (2) gauge theory with broken Ν = 2 supersymmetry

    International Nuclear Information System (INIS)

    Gorsky, A.

    2002-01-01

    The behaviour of the chiral condensates in the SU(2) gauge theory with broken N = 2 supersymmetry is reviewed. The calculation of monopole, dyon, and charge condensates is described. It is shown that the monopole and charge condensates vanish at the Argyres-Douglas point where the monopole and charge vacua collide. This phenomenon is interpreted as a deconfinement of electric and magnetic charges at the Argyres-Douglas point. (authors)

  20. D-term contributions and CEDM constraints in E6 × SU(2)F × U(1)A SUSY GUT model

    Science.gov (United States)

    Shigekami, Yoshihiro

    2017-11-01

    We focus on E6 × SU(2)F × U(1)A supersymmetric (SUSY) grand unified theory (GUT) model. In this model, realistic Yukawa hierarchies and mixings are realized by introducing all allowed interactions with 𝓞(1) coefficients. Moreover, we can take stop mass is smaller than the other sfermion masses. This type of spectrum called by natural SUSY type sfermion mass spectrum can suppress the SUSY contributions to flavor changing neutral current (FCNC) and stabilize weak scale at the same time. However, light stop predicts large up quark CEDM and stop contributions are not decoupled. Since there is Kobayashi-Maskawa phase, stop contributions to the up quark CEDM is severely constrained even if all SUSY breaking parameters and Higgsino mass parameter μ are real. In this model, real up Yukawa couplings are realized at the GUT scale because of spontaneous CP violation. Therefore CEDM bounds are satisfied, although up Yukawa couplings are complex at the SUSY scale through the renormalization equation group effects. We calculated the CEDMs and found that EDM constraints can be satisfied even if stop mass is 𝓞(1) TeV. In addition, we investigate the size of D-terms in this model. Since these D-term contributions is flavor dependent, the degeneracy of sfermion mass spectrum is destroyed and the size of D-term is strongly constrained by FCNCs when SUSY breaking scale is the weak scale. However, SUSY breaking scale is larger than 1 TeV in order to obtain 125 GeV Higgs mass, and therefore sizable D-term contribution is allowed. Furthermore, we obtained the non-trivial prediction for the difference of squared sfermion mass.

  1. Classification of flipped SU(5) heterotic-string vacua

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, Alon E., E-mail: alon.faraggi@liv.ac.uk [Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL (United Kingdom); Rizos, John, E-mail: irizos@uoi.gr [Department of Physics, University of Ioannina, GR45110 Ioannina (Greece); Sonmez, Hasan, E-mail: Hasan.Sonmez@liv.ac.uk [Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL (United Kingdom)

    2014-09-15

    We extend the classification of free fermionic heterotic-string vacua to models in which the SO(10) GUT symmetry is reduced at the string level to the flipped SU(5) subgroup. In our classification method the set of boundary condition basis vectors is fixed and the enumeration of string vacua is obtained in terms of the Generalised GSO (GGSO) projection coefficients entering the one-loop partition function. We derive algebraic expressions for the GGSO projections for all the physical states appearing in the sectors generated by the set of basis vectors. This enables the programming of the entire spectrum analysis in a computer code. For that purpose we developed two independent codes, based on FORTRAN95 and JAVA, and all results presented are confirmed by the two independent routines. We perform a statistical sampling in the space of 2{sup 44}∼10{sup 13} flipped SU(5) vacua, and scan up to 10{sup 12} GGSO configurations. Contrary to the corresponding Pati–Salam classification results, we do not find exophobic flipped SU(5) vacua with an odd number of generations. We study the structure of exotic states appearing in the three generation models, that additionally contain a viable Higgs spectrum, and demonstrate the existence of models in which all the exotic states are confined by a hidden sector non-Abelian gauge symmetry, as well as models that may admit the racetrack mechanism.

  2. Rare B-meson decays in SU(2)LxSU(2)RxU(1) model

    International Nuclear Information System (INIS)

    Asatryan, H.M.; Ioannissian, A.N.

    1989-01-01

    Rare B-meson decays are investigated in the left-right synmmetric models. The scalar particle contribution to the amplitude of the b → s γ decay is calculated. It is shown that this contribution can be essential even for the scalar particles masses of about several TeV. The effects due to the left-right symmetry and scalar particles can be detected by measuring the photon polarization in the decay B → K * γ. 9 refs.; 1 fig.; 1 tab

  3. Likelihood Analysis of Supersymmetric SU(5) GUTs

    CERN Document Server

    Bagnaschi, E.

    2017-01-01

    We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass $m_{1/2}$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $m_5$ and $m_{10}$, and for the $\\mathbf{5}$ and $\\mathbf{\\bar 5}$ Higgs representations $m_{H_u}$ and $m_{H_d}$, a universal trilinear soft SUSY-breaking parameter $A_0$, and the ratio of Higgs vevs $\\tan \\beta$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringi...

  4. T expansion and SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Horn, D.; Karliner, M.; Weinstein, M.

    1985-01-01

    This paper presents the results obtained by applying the t expansion to the case of an SU(2) lattice gauge theory in 3+1 space-time dimensions. We compute the vacuum energy density, specific heat, string tension sigma, mass M of the lowest-lying 0 ++ glueball, and the ratio R = M 2 /sigma. Our computations converge best for the energy density, specific heat, and R, and these quantities exhibit behavior which agrees with what we expect on general grounds and what is known from Euclidean Monte Carlo calculations. In particular we see a broad lump in the specific heat and determine √R to be √R = 3.5 +- 0.2, a value which lies in the ballpark of values obtained from Monte Carlo calculations. Our direct computations of the mass of the 0 ++ glueball and string tension cannot be easily compared to the results of Monte Carlo calculations, but appear to be consistent with what one would expect

  5. CKM and Tri-bimaximal MNS Matrices in a SU(5) x (d)T Model

    International Nuclear Information System (INIS)

    Chen, Mu-Chun; UC, Irvine; Mahanthappa, K.T.

    2007-01-01

    We propose a model based on SU(5) x (d) T which successfully gives rise to near tri-bimaximal leptonic mixing as well as realistic CKM matrix elements for the quarks. The Georgi-Jarlskog relations for three generations are also obtained. Due to the (d) T transformation property of the matter fields, the b-quark mass can be generated only when the (d) T symmetry is broken, giving a dynamical origin for the hierarchy between m b and m t . There are only nine operators allowed in the Yukawa sector up to at least mass dimension seven due to an additional Z 12 x Z(prime) 12 symmetry, which also forbids, up to some high orders, operators that lead to proton decay. The resulting model has a total of nine parameters in the charged fermion and neutrino sectors, and hence is very predictive. In addition to the prediction for θ 13 ∼θ c /3√2, the model gives rise to a sum rule, tan 2 θ # circle d ot∼#tan 2 θ # circle d ot# ,TBM - 1/2 θ c cosβ, which is a consequence of the Georgi-Jarlskog relations in the quark sector. This deviation could account for the difference between the experimental best fit value for the solar mixing angle and the value predicted by the tri-bimaximal mixing matrix

  6. Gauge symmetry breaking in the hidden sector of the flipped SU(5)xU(1) superstring model

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I.; Rizos, J. (Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France)); Tamvakis, K. (Theoretical Physics Div., Univ. Ioannina (Greece))

    1992-03-26

    We analyze the SU(5)xU(1)'xU(1){sup 4}xSO(10)xSU(4) superstring model with a spontaneously broken hidden sector down to SO(7)xSO(5) taking into account non-renormalizable superpotential terms up to eight order. As a result of the hidden sector breaking the 'exotic' states get a mass and the 'observable' spectrum is composed of the standard three families. In addition, Cabibbo mixing arises at sixth order and an improved fermion mass hierarchy emerges. (orig.).

  7. Couplings in D(2,1;α) superconformal mechanics from the SU(2) perspective

    Energy Technology Data Exchange (ETDEWEB)

    Galajinsky, Anton [Laboratory of Mathematical Physics, Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

    2017-03-09

    Dynamical realizations of the most general N=4 superconformal group in one dimension D(2,1;α) are reconsidered from the perspective of the R-symmetry subgroup SU(2). It is shown that any realization of the R-symmetry subalgebra in some phase space can be extended to a representation of the Lie superalgebra corresponding to D(2,1;α). Novel couplings of arbitrary number of supermultiplets of the type (1,4,3) and (0,4,4) to a single supermultiplet of either the type (3,4,1), or (4,4,0) are constructed. D(2,1;α) superconformal mechanics describing superparticles propagating near the horizon of the extreme Reissner-Nordström-AdS-dS black hole in four and five dimensions is considered. The parameter α is linked to the cosmological constant.

  8. Variational estimates for the mass gap of SU(2) Euclidean lattice gauge theory

    International Nuclear Information System (INIS)

    Hari Dass, N.D.

    1984-10-01

    The purpose of this letter is to report on the progress made in our understanding of series expansions for the masses in lattice gauge theories by the application of variational techniques to the Euclidean SU(2) lattice gauge theory. (Auth.)

  9. Masses and mixing angles in SU(5) gauge model

    International Nuclear Information System (INIS)

    Nandi, S.; Tanaka, K.

    1979-01-01

    Georgi and Jarlskog mass relations m/sub μ/m/sub e/ = 9m/sub s//m/sub d/, m/sub b/ = m/sub tau/ are obtained above the grand unification mass M = 10 15 GeV with two approx. 5's and one approx. 45 Higgs representations of SU(5) and a discrete symmetry. In the lowest order, the Kobayashi-Maskawa angles are found to be s 2 = -(m/sub c//m/sub t/) /sup 1/2/ and s 3 = -(m/sub u//m/sub t/) /sup 1/2//s 1 , where s 1 is the sine of the Cabibbo angle. The CP violation is considered, and the b quark decays predominantly into c quarks with lifetime of tau/sub b/ approx. equal to 10 -13 s for m/sub t/ = 25 GeV

  10. Few-baryon systems in the SU(2)-Skyrme model

    International Nuclear Information System (INIS)

    Nikolaev, V.A.; Tkachev, O.G.

    1989-01-01

    The classically stable solitons with baryon number 1, 2, 3, 4 have been investigated in the framework of the very general assumption about the form of the solutions for the Skyrme model equations. Some of the solitons have the toroidal structure and some of them are more complicated. The effective quantum-mechanical Hamiltonian and its spectrum are obtained by using the collective variable method. All the states with quantum numbers of light nuclei have the binding energy greater than the experimental one. Some of the calculated states containing antibaryons as substructure units should appear in the experiments with stopped antibaryons as compound nuclear states. 16 refs.; 7 figs.; 5 tabs

  11. Observing long colour flux tubes in SU(2) lattice gauge theory

    CERN Document Server

    Bali, G S; Schlichter, C; Bali, G S; Schilling, K; Schlichter, C

    1995-01-01

    We present results of a high statistics study of the chromo field distribution between static quarks in SU(2) gauge theory on lattices of volumes 16^4, 32^4, and 48^3*64, with physical extent ranging from 1.3 fm up to 2.7 fm at beta=2.5, beta=2.635, and beta=2.74. We establish string formation over physical distances as large as 2 fm. The results are tested against Michael's sum rules. A detailed investigation of the transverse action and energy flux tube profiles is provided. As a by-product, we obtain the static lattice potential in unpreceded accuracy.

  12. U(1) x SU(2) Chern-Simons gauge theory of underdoped cuprate superconductors

    International Nuclear Information System (INIS)

    Marchetti, P.A.; Su Zhao-Bin; Yu Lu

    1998-05-01

    The Chern-Simons bosonization with U(1)xSU(2) gauge field is applied to the 2-D t-J model in the limit t>>J, to study the normal state properties of underdoped cuprate superconductors. We prove the existence of an upper bound on the partition function for holons in a spinon background, and we find the optimal spinon configuration saturating the upper bound on average - a coexisting flux phase and s+id-like RVB state. After neglecting the feedback of holon fluctuations on the U(1) field B and spinon fluctuations on the SU(2) field V, the holon field is a fermion and the spinon field is a hard-core boson. Within this approximation we show that the B field produces a π flux phase for the holons, converting them into Dirac-like fermions, while the V field, taking into account the feedback of holons produces a gap for the spinons vanishing in the zero doping limit. The nonlinear σ-model with a mass term describes the crossover from the short-ranged antiferromagnetic (AF) state in doped samples to long range AF order in reference compounds. Moreover, we derive a low-energy effective action in terms of spinons holons and a self-generated U(1) gauge field. Neglecting the gauge fluctuations, the holons are described by the Fermi liquid theory with a Fermi surface consisting of 4 ''half-pockets'' centered at (+-π/2,+-π/2) and one reproduces the results for the electron spectral function obtained in the mean field approximation, in agreement with the photoemission data on underdoped cuprates. The gauge fluctuations are not confining due to coupling to holons, but nevertheless yield an attractive interaction between spinons and holons leading to a bound state with electron quantum numbers. The renormalisation effects due to gauge fluctuations give rise to non-Fermi liquid behaviour for the composite electron, in certain temperature range showing the linear in T resistivity. This formalism provides a new interpretation of the spin gap in the underdoped superconductors

  13. Broken SU(8) symmetry and the new particles

    International Nuclear Information System (INIS)

    Kramer, G.; Schiller, D.H.

    1976-05-01

    We study the mass spectra and wave functions for vector and pseudoscalar mesons in broken SU(8) (SU(8) is contained in SU(4)F * SU(2)J), where F stands for flavour and J for usual spin. The connection with the standard mass breaking in SU(4)F is worked out. We find that even in the presence of strong SU(8) breaking the ideal mixing scheme for the vector mesons can be approximately retained. For the pseudoscalar mesons the mixing of the singlet with the 63-plet representation of SU(8) turns out to be essential and stongly nonideal. (orig.) [de

  14. Avoiding domain wall problem in SU(N) grand unified theories

    International Nuclear Information System (INIS)

    Fujimoto, Y.; Zhiyong, Z.

    1982-08-01

    We look for the possibility of embedding the discrete sub-group of U(1)-Pecci-Quinn symmetry into the continuous one to avoid the domain wall problem. We find, within some restricted context, among various SU(N) models only one-family SU(5) and SU(6). (author)

  15. Onset of chaos in the classical SU(2) Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Toyoaki

    1988-12-28

    Chaotic behaviors of color electric and magnetic fields are numerically demonstrated in the classical SU(2) Yang-Mills system in the case that the field configuration depends only on one spatial coordinate and time. We show that the homogeneous color fields evolve into the disordered one as time passes. Power spectra of the color fields are investigated and the maximum Lyapunov exponent is evaluated.

  16. Q-creation and annihilation tensors for the two parameters deformation of U(SU(2))

    International Nuclear Information System (INIS)

    Wehrhahn, R.F.; Vraceanu, D.

    1993-03-01

    The Jordan-Schwinger construction for the Hopf algebra U qp (su(2)) is realized. The creation and annihilation tensor operators together with their tensor products including the Casimir operators are calculated. (orig.)

  17. Phenomenological implications of the flipped SU(5) x U(1) superstring model

    Energy Technology Data Exchange (ETDEWEB)

    Tamvakis, K. (Physics Dept., Univ. of Ioannina (Greece))

    1991-07-01

    We study in detail gauge symmetry breaking in the SU(5)xU(1)'xU(1){sup 4}xSO(10)xSO(6) superstring model, solving the D and F-flatness conditions and taking into account quartic and quintic superpotential terms. We find that, to this order, the model describes two massive generations of quarks and leptons as well as a massless generation expected to receive naturally suppressed masses from higher order non-renormalizable terms. D and F-flatness restricts the number of massless isodoublets to four. We solve the coupled renormalization group equations for the gauge and Yukawa couplings in the two-loop approximation and obtain the top-quark mass as a function of two parameters of the model which could be chosen to be ratios of singlet v.e.v's associated with the surplus (U(1)){sup 4} breaking. We obtain a heavy top-quark with 150GeV {<=} m{sub 1} < 200GeV, for most part of the parameter space, while lower values are possible only in a very small extermal region. We also compute the allowed range of unification parameters (M{sub x}, sin{sup 2} {theta}{sub w}, {alpha}{sub 3}(M{sub w})) in the presence of a heavy top quark. (orig.).

  18. Type IIA orientifolds on SU(2)-structure manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Danckaert, Thomas

    2010-11-15

    We investigate the possible supersymmetry-preserving orientifold projections of type IIA string theory on a six-dimensional background with SU(2)-structure. We find two categories of projections which preserve half of the low-energy supersymmetry, reducing the effective theory from an N=4 supergravity theory, to an N=2 supergravity. For these two cases, we impose the projection on the low-energy spectrum and reduce the effective N=4 supergravity action accordingly. We can identify the resulting gauged N=2 supergravity theory and bring the action into canonical form. We compute the scalar moduli spaces and characterize the gauged symmetries in terms of the geometry of these moduli spaces. Due to their origin in N=4 supergravity, which is a highly constrained theory, the moduli spaces are of a very simple form. We find that, for suitable background manifolds, isometries in all scalar sectors can become gauged. The obtained gaugings share many features with those of N=2 supergravities obtained previously from other G-structure compactifications. (orig.)

  19. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, C.E. E-mail: cvargas@fis.cinvestav.mx; Hirsch, J.G. E-mail: hirsch@nuclecu.unam.mx; Draayer, J.P. E-mail: draayer@lsu.edu

    2001-07-30

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of {sup 20,22}Ne, {sup 24}Mg and {sup 28}Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed.

  20. The SU(3)-Nambu-Jona-Lasinio soliton in the collective quantization formulation

    International Nuclear Information System (INIS)

    Blotz, A.; Goeke, K.; Diakonov, D.; Petrov, V.; Pobylitsa, P.V.; Park, N.W.

    1992-01-01

    On grounds of a semibosonized Nambu-Jona-Lasinio model, which has SU(3) R circle-times SU(3) L -symmetry in the chiral limit, mass splittings for spin 1/2 and spin 3/2 baryons are studied in the presence of an explicit chiral symmetry breaking strange quark mass. To this aim these strangeness carrying baryons are understood as SU(3)-rotational excitations of an SU(2)-embedded soliton solution. Therefore, within the framework of collective quantization, the fermion determinant with the strange quark mass is expanded up to the second order in the flavor rotation velocity and up to the first order in this quark mass. Besides the strange and non-strange moments of inertia, which have some counterparts within the Skyrme model, some so-called anomalous moments of inertia are obtained. These call be related to the imaginary part of the effective Euclidian action and contain among others the anomalous baryon current. This is shown in a gradient expansion up to the first non-vanishing order. Together with the Σ-commutator these are the solitonic ingredients of the collective hamiltonian, which is then diagonalized by means of strict perturbation theory in the strange quark mass and by the Yabu-Audo method. Both methods yield very good results for the masses of the spin 1/2 and 3/2 baryons. The former one reproduces some interesting mass formulas of Gell-Mann Okubo and Guadagnini and the latter one is able to describe the mass splittings up to a few MeV

  1. Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study

    Energy Technology Data Exchange (ETDEWEB)

    Zohar, Erez, E-mail: erez.zohar@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Wahl, Thorsten B. [Rudolf Peierls Centre for Theoretical Physics, Oxford, 1 Keble Road, OX1 3NP (United Kingdom); Burrello, Michele, E-mail: michele.burrello@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Cirac, J. Ignacio [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany)

    2016-11-15

    Over the last years, Projected Entangled Pair States have demonstrated great power for the study of many body systems, as they naturally describe ground states of gapped many body Hamiltonians, and suggest a constructive way to encode and classify their symmetries. The PEPS study is not only limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation.

  2. A nonlinear deformed su(2) algebra with a two-color quasitriangular Hopf structure

    International Nuclear Information System (INIS)

    Bonatsos, D.; Daskaloyannis, C.; Kolokotronis, P.; Ludu, A.; Quesne, C.

    1997-01-01

    Nonlinear deformations of the enveloping algebra of su(2), involving two arbitrary functions of J 0 and generalizing the Witten algebra, were introduced some time ago by Delbecq and Quesne. In the present paper, the problem of endowing some of them with a Hopf algebraic structure is addressed by studying in detail a specific example, referred to as scr(A) q + (1). This algebra is shown to possess two series of (N+1)-dimensional unitary irreducible representations, where N=0,1,2,hor-ellipsis. To allow the coupling of any two such representations, a generalization of the standard Hopf axioms is proposed by proceeding in two steps. In the first one, a variant and extension of the deforming functional technique is introduced: variant because a map between two deformed algebras, su q (2) and scr(A) q + (1), is considered instead of a map between a Lie algebra and a deformed one, and extension because use is made of a two-valued functional, whose inverse is singular. As a result, the Hopf structure of su q (2) is carried over to scr(A) q + (1), thereby endowing the latter with a double Hopf structure. In the second step, the definition of the coproduct, counit, antipode, and scr(R)-matrix is extended so that the double Hopf algebra is enlarged into a new algebraic structure. The latter is referred to as a two-color quasitriangular Hopf algebra because the corresponding scr(R)-matrix is a solution of the colored Yang endash Baxter equation, where the open-quotes colorclose quotes parameters take two discrete values associated with the two series of finite-dimensional representations. copyright 1997 American Institute of Physics

  3. Coupling coefficients for tensor product representations of quantum SU(2)

    International Nuclear Information System (INIS)

    Groenevelt, Wolter

    2014-01-01

    We study tensor products of infinite dimensional irreducible * -representations (not corepresentations) of the SU(2) quantum group. We obtain (generalized) eigenvectors of certain self-adjoint elements using spectral analysis of Jacobi operators associated to well-known q-hypergeometric orthogonal polynomials. We also compute coupling coefficients between different eigenvectors corresponding to the same eigenvalue. Since the continuous spectrum has multiplicity two, the corresponding coupling coefficients can be considered as 2 × 2-matrix-valued orthogonal functions. We compute explicitly the matrix elements of these functions. The coupling coefficients can be considered as q-analogs of Bessel functions. As a results we obtain several q-integral identities involving q-hypergeometric orthogonal polynomials and q-Bessel-type functions

  4. Coupling coefficients for tensor product representations of quantum SU(2)

    Science.gov (United States)

    Groenevelt, Wolter

    2014-10-01

    We study tensor products of infinite dimensional irreducible *-representations (not corepresentations) of the SU(2) quantum group. We obtain (generalized) eigenvectors of certain self-adjoint elements using spectral analysis of Jacobi operators associated to well-known q-hypergeometric orthogonal polynomials. We also compute coupling coefficients between different eigenvectors corresponding to the same eigenvalue. Since the continuous spectrum has multiplicity two, the corresponding coupling coefficients can be considered as 2 × 2-matrix-valued orthogonal functions. We compute explicitly the matrix elements of these functions. The coupling coefficients can be considered as q-analogs of Bessel functions. As a results we obtain several q-integral identities involving q-hypergeometric orthogonal polynomials and q-Bessel-type functions.

  5. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems

    Science.gov (United States)

    Wang, Jiao; Gong, Jiangbin

    2010-02-01

    A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev. A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein condensate. A class of driven systems without a link with the Harper-model context is shown to have an intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the known Hofstadter’s butterfly. In addition, the level crossings between Floquet states of the same parity and between Floquet states of different parities are studied and highlighted. The results are relevant to studies of fractal statistics, quantum chaos, and coherent destruction of tunneling, as well as the validity of mean-field descriptions of Bose-Einstein condensates.

  6. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems

    International Nuclear Information System (INIS)

    Wang Jiao; Gong Jiangbin

    2010-01-01

    A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev. A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein condensate. A class of driven systems without a link with the Harper-model context is shown to have an intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the known Hofstadter's butterfly. In addition, the level crossings between Floquet states of the same parity and between Floquet states of different parities are studied and highlighted. The results are relevant to studies of fractal statistics, quantum chaos, and coherent destruction of tunneling, as well as the validity of mean-field descriptions of Bose-Einstein condensates.

  7. Topological strings and quantum curves

    NARCIS (Netherlands)

    Hollands, L.

    2009-01-01

    This thesis presents several new insights on the interface between mathematics and theoretical physics, with a central role for Riemann surfaces. First of all, the duality between Vafa-Witten theory and WZW models is embedded in string theory. Secondly, this model is generalized to a web of

  8. Thermodynamics of one-dimensional SU(4) and SU(6) fermions with attractive interactions

    Science.gov (United States)

    Hoffman, M. D.; Loheac, A. C.; Porter, W. J.; Drut, J. E.

    2017-03-01

    Motivated by advances in the manipulation and detection of ultracold atoms with multiple internal degrees of freedom, we present a finite-temperature lattice Monte Carlo calculation of the density and pressure equations of state, as well as Tan's contact, of attractively interacting SU(4)- and SU(6)-symmetric fermion systems in one spatial dimension. We also furnish a nonperturbative proof of a universal relation whereby quantities computable in the SU(2) case completely determine the virial coefficients of the SU(Nf) case. These one-dimensional systems are appealing because they can be experimentally realized in highly constrained traps and because of the dominant role played by correlations. The latter are typically nonperturbative and are crucial for understanding ground states and quantum phase transitions. While quantum fluctuations are typically overpowered by thermal ones in one and two dimensions at any finite temperature, we find that quantum effects do leave their imprint in thermodynamic quantities. Our calculations show that the additional degrees of freedom, relative to the SU(2) case, provide a dramatic enhancement of the density and pressure (in units of their noninteracting counterparts) in a wide region around vanishing β μ , where β is the inverse temperature and μ the chemical potential. As shown recently in experiments, the thermodynamics we explore here can be measured in a controlled and precise fashion in highly constrained traps and optical lattices. Our results are a prediction for such experiments in one dimension with atoms of high nuclear spin.

  9. The muon magnetic moment in flipped SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Abel, S.A.; Cottingham, W.N. (Bristol Univ. (UK). H.H. Wills Physics Lab.); Whittingham, I.B. (James Cook Univ. of North Queensland, Townsville (Australia). Dept. of Physics)

    1991-04-25

    The magnetic moment of the muon is examined for the no-scale supersymmetric flipped SU(5) theory, and it is found that supersymmetric contributions to (g-2){sub {mu}} are (-7{+-}2)x10{sup -9} and within this range are predominantly dependent on the scale of supersymmetry breaking. It is therefore suggested that experiments to measure this quantity may serve to limit the parameters of this model. (orig.).

  10. Gradient flow and IR fixed point in SU(2) with Nf=8 flavors

    DEFF Research Database (Denmark)

    Leino, Viljami; Karavirta, Tuomas; Rantaharju, Jarno

    2015-01-01

    We study the running of the coupling in SU(2) gauge theory with 8 massless fundamental representation fermion flavours, using the gradient flow method with the Schr\\"odinger functional boundary conditions. Gradient flow allows us to measure robust continuum limit for the step scaling function...

  11. A unified model of the strong and electroweak interactions based on the gauge group SU(18)L x SU(18)R

    International Nuclear Information System (INIS)

    Kim Il Kang

    1986-01-01

    On the basis of semi-simple gauge group G=SU(18) L x SU(18) R the unified theory of strong, weak and electromagnetic fields is constructed, and it is shown that the Weinberg angle and the energy of unification are in good agreement with the experimental values. (author)

  12. SU(2) gauge theory in the maximally Abelian gauge without monopoles

    International Nuclear Information System (INIS)

    Shmakov, S.Yu.; Zadorozhnyj, A.M.

    1995-01-01

    We present an algorithm for simulation of SU(2) lattice gauge theory under the maximally Abelian (MA) gauge and first numerical results for the theory without Abelian monopoles. The results support the idea that nonperturbative interaction arises between monopoles and residual Abelian field and the other interactions are perturbative. It is shown that the Gribov region for the theory with the MA gauge fixed is non-connected. 12 refs., 1 tab

  13. SU(N) multi-Skyrmions at finite volume

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio [Centro de Estudios Cientificos (CECS), Casilla, Valdivia (Chile); Di Mauro, Marco; Naddeo, Adele [Universita di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Fisciano, SA (Italy); Kurkov, Maxim A. [Universita di Napoli Federico II, Dipartimento di Matematica e Applicazioni ' ' R. Caccioppoli' ' , Napoli (Italy)

    2015-09-15

    We study multi-soliton solutions of the fourdimensional SU(N) Skyrme model by combining the hedgehog ansatz for SU(N) based on the harmonic maps of S{sup 2} into CP{sup N-1} and a geometrical trick which allows to analyze explicitly finite-volume effects without breaking the relevant symmetries of the ansatz. The geometric set-up allows to introduce a parameter which is related to the ft Hooft coupling of a suitable large N limit, in which N → ∞ and the curvature of the background metric approaches zero, in such a way that their product is constant. The relevance of such a parameter to the physics of the system is pointed out. In particular, we discuss how the discrete symmetries of the configurations depend on it. (orig.)

  14. Model podataka Hrvatskog topografsko informacijskog sustava CROTIS 2.0

    Directory of Open Access Journals (Sweden)

    Ivan Landek

    2014-06-01

    Full Text Available U članku je opisan razvoj modela podataka u Republici Hrvatskoj te detaljno izmijenjeni model podataka CROTIS 2.0. Za usporedbu je dan prikaz modela podataka iz dviju europskih zemalja. Uzeti su primjeri Danske i Nizozemske s obzirom na to da obje imaju temeljne topografske baze u mjerilu 1:10 000, a površinom su slične Republici Hrvatskoj. Pretpostavlja se da površina države utječe na cikluse i vrijeme potrebno za prikupljanje i obradu podataka, pa je namjera bila izložiti kako su ti modeli i procesi organizirani u europskim državama koje raspolažu sa sličnim količinama podataka. TOP10DK je vektorska topografska baza koja je iz baze za proizvodnju topografskih karata prerasla u izvornik za druge prostorne registre u Danskoj. Drugi primjer je Nizozemski TOP10NL s posebnim osvrtom na njegovu dostupnost široj javnosti putem web portala. U Hrvatskoj se model podataka CROTIS razvija od 1997. godine, od 2000. je u službenoj upotrebi, a od tada se kontinuirano nadograđuje i poboljšava prateći tehnološki napredak i, u posljednje vrijeme, zahtjeve koje postavlja Europska unija. Opisane su i komponente interoperabilnosti Generičkog konceptualnog modela (GCM INSPIRE-a, budući da je ispunjavanjem tih zahtjeva bilo koji skup podataka moguće uskladiti s INSPIRE-om.

  15. Nonthermal leptogenesis via direct inflaton decay without SU(2)L triplets

    International Nuclear Information System (INIS)

    Dent, Thomas; Lazarides, George; Ruiz de Austri, Roberto

    2005-01-01

    We present a nonthermal leptogenesis scenario following standard supersymmetric hybrid inflation, in the case where light neutrinos acquire mass via the usual seesaw mechanism and inflaton decay to heavy right-handed neutrino superfields is kinematically disallowed, or the right-handed neutrinos which can be decay products of the inflaton are unable to generate sufficient baryon asymmetry via their subsequent decay. The primordial lepton asymmetry is generated through the decay of the inflaton into light particles by the interference of one-loop diagrams with exchange of different right-handed neutrinos. The mechanism requires superpotential couplings explicitly violating a U(1) R-symmetry and R-parity. We take into account the constraints from neutrino masses and mixing and the preservation of the primordial asymmetry. We consider two models, one without and one with SU(2) R gauge symmetry. We show that the former is viable, whereas the latter is ruled out. Although the broken R-parity need not have currently observable low-energy signatures, some R-parity-violating slepton decays may be detectable in the future colliders

  16. N = 1 SU(2) supersymmetric Yang-Mills theory on the lattice with light dynamical Wilson gluinos

    International Nuclear Information System (INIS)

    Demmouche, Kamel

    2009-01-01

    The supersymmetric Yang-Mills (SYM) theory with one supercharge (N=1) and one additional Majorana matter-field represents the simplest model of supersymmetric gauge theory. Similarly to QCD, this model includes gauge fields, gluons, with color gauge group SU(N c ) and fermion fields, describing the gluinos. The non-perturbative dynamical features of strongly coupled supersymmetric theories are of great physical interest. For this reason, many efforts are dedicated to their formulation on the lattice. The lattice regularization provides a powerful tool to investigate non-perturbatively the phenomena occurring in SYM such as confinement and chiral symmetry breaking. In this work we perform numerical simulations of the pure SU(2) SYM theory on large lattices with small Majorana gluino masses down to about m g approx 115 MeV with lattice spacing up to a ≅0.1 fm. The gluino dynamics is simulated by the Two-Step Multi-Boson (TSMB) and the Two-Step Polynomial Hybrid Monte Carlo (TS-PHMC) algorithms. Supersymmetry (SUSY) is broken explicitly by the lattice and the Wilson term and softly by the presence of a non-vanishing gluino mass m g ≠0. However, the recovery of SUSY is expected in the infinite volume continuum limit by tuning the bare parameters to the SUSY point in the parameter space. This scenario is studied by the determination of the low-energy mass spectrum and by means of lattice SUSY Ward-Identities (WIs). (orig.)

  17. Functionalization of SU-8 Photoresist Surfaces with IgG Proteins

    DEFF Research Database (Denmark)

    Blagoi, Gabriela; Keller, Stephan Urs; Johansson, Alicia

    2008-01-01

    immunoassays were employed to characterize the binding efficiency of model proteins to bare SU-8 surface, SU-8 treated with cerium ammonium nitrate (CAN) etchant and CAN treated surfaces modified by aminosilanization. The highest binding capacity of antibodies was observed on bare SU-8. This explains why bare...... SU-8 in a functional fluorescent sandwich immunoassay detecting C-reactive protein (CRP) gave twice as high signal as compared with the other two surfaces. Immunoassays performed on bare SU-8 and CAN treated SU-8 resulted in detection limits of CRP of 30 and 80 ng/ml respectively which is sufficient...... for detecting CRP in clinical samples, where concentrations of 3–10 μg/ml are normal for healthy individuals. In conclusion, bare SU-8 and etched SU-8 can be modified with antibodies by a simple adsorption procedure which simplifies building lab-on-a-chip systems in SU-8. Additionally, we report the fabrication...

  18. Micromechanical testing of SU-8 cantilevers

    OpenAIRE

    Hopcroft, M; Kramer, T; Kim, G; Takashima, K; Higo, Y; Moore, D; Brugger, J

    2005-01-01

    SU-8 is a photoplastic polymer with a wide range of possible applications in microtechnology. Cantilevers designed for atomic force microscopes were fabricated in SU-8. The mechanical properties of these cantilevers were investigated using two microscale testing techniques: contact surface profilometer beam deflection and static load deflection at a point on the beam using a specially designed test machine. The SU-8 Young's modulus value from the microscale test methods is approximately 2-3 GPa.

  19. An algebraic formulation of level one Wess-Zumino-Witten models

    International Nuclear Information System (INIS)

    Boeckenhauer, J.

    1995-07-01

    The highest weight modules of the chiral algebra of orthogonal WZW models at level one possess a realization in fermionic representation spaces; the Kac-Moody and Virasoro generators are represented as unbounded limits of even CAR algebras. It is shown that the representation theory of the underlying even CAR algebras reproduces precisely the sectors of the chiral algebra. This fact allows to develop a theory of local von Neumann algebras on the punctured circle, fitting nicely in the Doplicher-Haag-Roberts framework. The relevant localized endomorphisms which generate the charged sectors are explicitly constructed by means of Bogoliubov transformations. Using CAR theory, the fusion rules in terms of sector equivalence classes are proven. (orig.)

  20. The structure of the vacuum, 2

    International Nuclear Information System (INIS)

    Iwasaki, Yoiti

    1982-01-01

    Assuming parallelism between CP sup(n-1) model in two dimensions and SU(N) gauge model in four dimensions, we conclude: i) The vacuum of an SU(N) gauge model is two-fold degenerate and a topological symmetry breaking occurs. ii) In a lattice gauge model a new kind of phase transition occurs at the crossover point g sub(T) from strong to weak coupling. Although the system is disordered both for g >= g sub(T) and g = g sub(T) vortices with finite thickness disorder the system, while for g <= g sub(T) half-instanton gas disorders the system (for SU(2)). For SU(3), one-third-instanton gas disorders the system. The relation between an instanton and a Z(2) monopole as well as the relation between SU(2) theory and SU(2)/Z(2) theory is discussed. We also derive constraints on the number of flavor from requirement of stability of half (one-third)-instanton gas. (author)

  1. Fermion Mass Textures in an M-Inspired Flipped SU(5) Model Derived from String

    CERN Document Server

    Ellis, Jonathan Richard; Lola, S; Nanopoulos, Dimitri V

    1998-01-01

    We are inspired by the facts that M-theory may reconcile the supersymmetric GUT scale with that of quantum gravity, and that it provides new avenues for low-energy supersymmetry breaking, to re-examine a flipped SU(5) model that has been derived from string and may possess an elevation to a fully-fledged M-phenomenological model. Using a complete analysis of all superpotential terms through the sixth order, we explore in this model a new flat potential direction that provides a pair of light Higgs doublets, yields realistic textures for the fermion mass matrices, and is free of R-violating interactions and dimension-five proton decay operators.

  2. Superstring-inspired models

    International Nuclear Information System (INIS)

    Aguila, F. del; Blair, G.; Daniel, M.; Ross, G.G.

    1986-01-01

    We discuss the structure of low-energy groups arising from compactified models based on the heterotic string. Particular regard is paid to the possibility of intermediate scale breaking which may change the low-energy gauge structure and may naturally lead to doublet-triplet splitting and the suppression of proton decay. We present an illustrative example of such a model with a low-energy gauge group structure SU 3 sup(c)xSU 2 sup(L)xSU 2 sup(R)xU 1 sup(B-L) which may be compatible with low-energy phenomena including limits on neutrino masses and sin 2 thetasub(W). Mechanisms leading to the minimal SU 3 sup(c)xSU 2 sup(L)xU 1 sup(Y) low-energy gauge group are also presented. (orig.)

  3. Retracing the phenomenology of the flipped SU(5)xU(1) superstring model

    Energy Technology Data Exchange (ETDEWEB)

    Rizos, J.; Tamvakis, K. (Ioannina Univ. (Greece). Dept. of Physics)

    1990-11-22

    We study in detail gauge symmetry breaking in the SU(5)xU(1)'xU(1){sup 4}xSO(10)xSO(6) superstring model, solving the D- and F-flatness conditions and taking into account quartic and quintic superpotential terms. We find that, to this order, the model describes two massive generations of quarks and leptons as well as a massless generation expected to receive naturally suppressed masses from higher order non-renormalizable terms. We show that D-flatness restricts the number of massless isodoublets to four. We also extract an inequality relating the top quark mass to M{sub W}. (orig.).

  4. SU(5) monopoles, magnetic symmetry and confinement

    International Nuclear Information System (INIS)

    Daniel, M.; Lazarides, G.; Shafi, Q.

    1980-01-01

    The monopoles of the unified SU(5) gauge theory broken down to Hsub(E) = SU(3)sub(c) x U(1)sub(EM) [or to Ksub(E) = SU(3)sub(c) x SU(2) x U(1)sub(γ)], are classified. They belong to representations of a magnetic group Hsub(M)(Ksub(M)), which is found to be isomorphic to Hsub(E)(Ksub(E)). For SU(5) broken down to Hsub(E), there exists a regular and stable monopole which is a colour magnetic triplet, and carries a non-zero abelian magnetic charge. It is suggested that composite operators made out of this monopole and its antiparticle fields develop a non-zero vacuum expectation value, and so lead to a squeezing of the colour electric flux. Finally, we comment on the cosmological production of SU(5) monopoles. (orig.)

  5. Calculation of the top quark mass in the flipped SU(5)xU(1) superstring model

    Energy Technology Data Exchange (ETDEWEB)

    Leontaris, G.K.; Rizos, J.; Tamvakis, K. (Ioannina Univ. (Greece). Dept. of Physics)

    1990-11-08

    We present a complete renormalization group calculation of the top-quark mass in the SU(5)xU(1) superstring model. We solve the coupled renormalization group equations for the gauge and Yukawa couplings in the two-loop approximation and obtain the top-quark mass as a function of two parameters of the model which could be chosen to be ratios of singlet VEVs associated with the surplus (U(1)){sup 4} breaking. We obtain a heavy top-quark with 150 GeV{le}m{sub t}<200 GeV, for most part of the parameter space, while lower values are possible only in a very small extremal region. We also compute the allowed range of unification parameters (M{sub x}, sin{sup 2}{theta}{sub w}, {alpha}{sub 3}(M{sub W})) in the presence of a heavy top-quark. (orig.).

  6. Constant self-dual Abelian gauge fields and fermions in SU(2) gauge theory

    International Nuclear Information System (INIS)

    Kay, D.; Parthasarathy, R.; Viswanathan, K.S.

    1983-01-01

    Fermion one-loop corrections to the effective action in a self-dual Abelian background field are calculated for an SU(2) gauge theory. It is found that these corrections for massless fermions tend to destabilize the vacuum. The quantitative and qualitative features of such corrections for the case of massive fermions are discussed

  7. Study of degenerate four-quark states with SU(2) lattice Monte Carlo techniques

    International Nuclear Information System (INIS)

    Green, A.M.; Lukkarinen, J.; Pennanen, P.; Michael, C.

    1996-01-01

    The energies of four-quark states are calculated for geometries in which the quarks are situated on the corners of a series of tetrahedra and also for geometries that correspond to gradually distorting these tetrahedra into a plane. The interest in tetrahedra arises because they are composed of three degenerate partitions of the four quarks into two two-quark color singlets. This is an extension of earlier work showing that geometries with two degenerate partitions (e.g., squares) experience a large binding energy. It is now found that even larger binding energies do not result, but that for the tetrahedra the ground and first excited states become degenerate in energy. The calculation is carried out using SU(2) for static quarks in the quenched approximation with Β=2.4 on a 16 3 x32 lattice. The results are analyzed using the correlation matrix between different Euclidean times and the implications of these results are discussed for a model based on two-quark potentials. copyright 1995 The American Physical Society

  8. SU(6)-strong breaking: structure functions and small momentum transfer properties of the nucleon

    International Nuclear Information System (INIS)

    Le Yaouanc, A.; Oliver, L.; Pene, O.; Raynal, J.C.

    1975-01-01

    A new approach in the study of the SU(6) symmetry breaking (in particular in deep inelastic electron-nucleon scattering) is presented. It is shown that there is a connection between deep inelastic and low momentum transfer or static properties of the nucleon, which extends much beyond the common SU(6) 56-assignments of the nucleon in both cases. This connection is provided by the realistic quark model (in which quarks are considered as real entities moving inside the hadron). Using this connection it is shown that the breaking of the prediction Fsub(2)sup(en)/Fsub(2)sup(ep)=2/3 is not truly related to chiral configuration mixings. An alternative solution, based on a true modification of the 56-assignment of the nucleon to a (56,L=0)+(70,L=0) mixing (called SU(6) strong mixing) is proposed. It is shown that the 'good' predictions of SU(6) are not much changed by this mixing. A complete description of the deep inelastic scattering including gluons and pairs is presented

  9. Adhesive pad differentiation in Drosophila melanogaster depends on the Polycomb group gene Su(z)2.

    Science.gov (United States)

    Hüsken, Mirko; Hufnagel, Kim; Mende, Katharina; Appel, Esther; Meyer, Heiko; Peisker, Henrik; Tögel, Markus; Wang, Shuoshuo; Wolff, Jonas; Gorb, Stanislav N; Paululat, Achim

    2015-04-15

    The ability of many insects to walk on vertical smooth surfaces such as glass or even on the ceiling has fascinated biologists for a long time, and has led to the discovery of highly specialized adhesive organs located at the distal end of the animals' legs. So far, research has primarily focused on structural and ultrastructural investigations leading to a deeper understanding of adhesive organ functionality and to the development of new bioinspired materials. Genetic approaches, e.g. the analysis of mutants, to achieve a better understanding of adhesive organ differentiation have not been used so far. Here, we describe the first Drosophila melanogaster mutant that develops malformed adhesive organs, resulting in a complete loss of climbing ability on vertical smooth surfaces. Interestingly, these mutants fail to make close contact between the setal tips and the smooth surface, a crucial condition for wet adhesion mediated by capillary forces. Instead, these flies walk solely on their claws. Moreover, we were able to show that the mutation is caused by a P-element insertion into the Su(z)2 gene locus. Remobilization of the P-element restores climbing ability. Furthermore, we provide evidence that the P-element insertion results in an artificial Su(z)2 transcript, which most likely causes a gain-of-function mutation. We presume that this transcript causes deregulation of yet unknown target genes involved in pulvilli differentiation. Our results nicely demonstrate that the genetically treatable model organism Drosophila is highly suitable for future investigations on adhesive organ differentiation. © 2015. Published by The Company of Biologists Ltd.

  10. Three particle Poincare states and SU(6) x SU(3) as a classification group for baryons

    International Nuclear Information System (INIS)

    Buccella, F.; Sciarrino, A.; Sorba, P.

    1975-05-01

    A complete set of democratic quantum numbers is introduced to classify the states of an irreducible unitary representation (IUR) of the Poincare group obtained from the decomposition of the direct products of three I.U.R. Such states are identified with the baryon states constituted of three free relativistic quarks. The transformation from current to constituent quarks is then easily reobtained. Moreover, the group SU(6) x SU(3) appears naturally as a collinear classification group for baryons. Results similar to those of the symmetric harmonic oscillator quark model are obtained [fr

  11. Flat connection, conformal field theory and quantum group

    International Nuclear Information System (INIS)

    Kato, Mitsuhiro.

    1989-07-01

    General framework of linear first order differential equation for four-point conformal block is studied by using flat connection. Integrability and SL 2 invariance restrict possible form of flat connection. Under a special ansatz classical Yang-Baxter equation appears as an integrability condition and the WZW model turns to be unique conformal field theory in that case. Monodromy property of conformal block can be easily determined by the flat connection. 11 refs

  12. Thirring strings: use of generalized non abelian bosonization techniques

    International Nuclear Information System (INIS)

    Abdalla, E.

    1988-02-01

    A discussion of compactified bosonic string theory is presented, with a thorough use of conformal invariance in order to relate the theory to the WZW model and U(n) invariant Thirring model at critical coupling. The quantization of these theories is discussed, as well as the definition of vertex operators in the various equivalent models above. (author) [pt

  13. Mass anomalous dimension of SU(2) with Nf=8 using the spectral density method

    DEFF Research Database (Denmark)

    Suorsa, Joni M.; Leino, Viljami; Rantaharju, Jarno

    2015-01-01

    SU(2) with Nf=8 is believed to have an infrared conformal fixed point. We use the spectral density method to evaluate the coupling constant dependence of the mass anomalous dimension for massless HEX smeared, clover improved Wilson fermions with Schr\\"odinger functional boundary conditions....

  14. Constraints from proton decay in the flipped SU(5)xU(1) superstring model

    Energy Technology Data Exchange (ETDEWEB)

    Leontaris, G.K.; Tamvakis, K. (Ioannina Univ. (Greece). Theoretical Physics Div.)

    1991-05-16

    We discuss the constraints the emerge from the existence of dimension-5 baryon-violating operators in the flipped SU(5) x U(1) superstring model. These are constraints on matter field assignments and on singlet VEV values. Although baryon-violating dimension-5 operators that appear as quintic non-renormalizable terms vanish as has been proven before and as we verify here, effective dimension-5 operators resulting from Higgs exchange put non-trivial but feasible constraints on the model. Constraints are also extracted from the presence of higher order non-renormalizable terms that generate such operators which do not a priori vanish. (orig.).

  15. Superstring sigma models from spin chains: the SU(1,1 vertical bar 1) case

    International Nuclear Information System (INIS)

    Bellucci, S.; Casteill, P.-Y.; Morales, J.F.

    2005-01-01

    We derive the coherent state representation of the integrable spin chain Hamiltonian with non-compact supersymmetry group G=SU(1,1 vertical bar 1). By passing to the continuous limit, we find a spin chain sigma model describing a string moving on the supercoset G/H, H being the stabilizer group. The action is written in a manifestly G-invariant form in terms of the Cartan forms and the string coordinates in the supercoset. The spin chain sigma model is shown to agree with that following from the Green-Schwarz action describing two-charged string spinning on AdS 5 xS 5

  16. Coherent states related with SU(N) and SU(N,1) groups

    International Nuclear Information System (INIS)

    Gitman, D.M.; Shelepin, A.L.

    1990-01-01

    The basis of coherent state (CS) for symmetric presentations of groups SU(N) and SU(N,1) is plotted, its properties being investigated. Evolution of CS is considered. Relation between CS of groups SU(N) and Glauber is ascertained

  17. Functionalization of SU-8 photoresist surfaces with IgG proteins

    International Nuclear Information System (INIS)

    Blagoi, Gabriela; Keller, Stephan; Johansson, Alicia; Boisen, Anja; Dufva, Martin

    2008-01-01

    The negative epoxy-based photoresist SU-8 has a variety of applications within microelectromechanical systems (MEMS) and lab-on-a-chip systems. Here, several methods to functionalize SU-8 surfaces with IgG proteins were investigated. Fluorescent labeled proteins and fluorescent sandwich immunoassays were employed to characterize the binding efficiency of model proteins to bare SU-8 surface, SU-8 treated with cerium ammonium nitrate (CAN) etchant and CAN treated surfaces modified by aminosilanization. The highest binding capacity of antibodies was observed on bare SU-8. This explains why bare SU-8 in a functional fluorescent sandwich immunoassay detecting C-reactive protein (CRP) gave twice as high signal as compared with the other two surfaces. Immunoassays performed on bare SU-8 and CAN treated SU-8 resulted in detection limits of CRP of 30 and 80 ng/ml respectively which is sufficient for detecting CRP in clinical samples, where concentrations of 3-10 μg/ml are normal for healthy individuals. In conclusion, bare SU-8 and etched SU-8 can be modified with antibodies by a simple adsorption procedure which simplifies building lab-on-a-chip systems in SU-8. Additionally, we report the fabrication process and use of microwells created in a SU-8 layer with the same dimensions as a standard microscope glass slide that could fit into fluorescent scanners. The SU-8 microwells minimize the reagent consumption and are straightforward to handle compared to SU-8 coated microscope slides

  18. Running coupling in SU(2) gauge theory with two adjoint fermions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari

    2016-01-01

    We study SU(2) gauge theory with two Dirac fermions in the adjoint representation of the gauge group on the lattice. Using clover improved Wilson fermion action with hypercubic truncated stout smearing we perform simulations at larger coupling than before. We measure the evolution of the coupling...... with the existence of a fixed point in the interval 2.2g∗23. We also measure the anomalous dimension and find that its value at the fixed point is γ∗≃0.2±0.03....... constant using the step scaling method with the Schrödinger functional and study the remaining discretization effects. At weak coupling we observe significant discretization effects, which make it difficult to obtain a fully controlled continuum limit. Nevertheless, the data remains consistent...

  19. Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics

    International Nuclear Information System (INIS)

    Buividovich, P.V.; Kalaydzhyan, T.; Polikarpov, M.I.

    2011-11-01

    We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)

  20. Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buividovich, P.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Polikarpov, M.I. [Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2011-11-15

    We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)

  1. Anatomy of isolated monopole in Abelian projection od SU(2) lattice gauge theory

    CERN Document Server

    Belavin, V A; Veselov, A I

    2001-01-01

    The structure of the isolated static monopolies in the maximum Abelian projection of the SU(2) gluodynamics on the lattice studied. The standard parametrization of the coupling matrix was used by determining the maximum Abelian projection of the R functional maximization relative to all scale transformations. The monopole radius R approx = 0.06 fm is evaluated

  2. Avoiding the secondary magnetic monopole problem in the inflation theories: The 75 of SU(5)

    International Nuclear Information System (INIS)

    Kim, C.W.; Kim, J.E.; Kim, J.S.

    1985-01-01

    A class of inflation models suffer from the secondary monopole problem which cannot be diluted by inflation. Using the Coleman-Weinberg potential for the 75-dimensional representation of SU(5), we suggest a group theoretical way to avoid the problem. It is shown that the vacuum, when released from the origin, starts to evolve and roll down along the Sp(4) . U(1) direction. It is noticed that the 75 provides an option for the vacuum to roll down to the SU(3) . SU(2) . U(1) vacuum without causing the secondary cosmological monopole problem. (orig.)

  3. A representation basis for the quantum integrable spin chain associated with the su(3) algebra

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Kun [Institute of Modern Physics, Northwest University, Xian 710069 (China); Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Li, Guang-Liang [Department of Applied Physics, Xian Jiaotong University, Xian 710049 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2016-05-20

    An orthogonal basis of the Hilbert space for the quantum spin chain associated with the su(3) algebra is introduced. Such kind of basis could be treated as a nested generalization of separation of variables (SoV) basis for high-rank quantum integrable models. It is found that all the monodromy-matrix elements acting on a basis vector take simple forms. With the help of the basis, we construct eigenstates of the su(3) inhomogeneous spin torus (the trigonometric su(3) spin chain with antiperiodic boundary condition) from its spectrum obtained via the off-diagonal Bethe Ansatz (ODBA). Based on small sites (i.e. N=2) check, it is conjectured that the homogeneous limit of the eigenstates exists, which gives rise to the corresponding eigenstates of the homogenous model.

  4. Infiltration SuDS Map

    OpenAIRE

    Dearden, Rachel

    2012-01-01

    Infiltration SuDS are sustainable drainage systems (SuDS) that allow surface water to infiltrate to the ground. Examples include soakaways, infiltration basins, infiltration trenches and permeable pavements. Before planning to install Infiltration SuDS, the suitability of the ground should be assessed. The British Geological Survey has developed a bespoke Infiltration SuDS Map that enables a preliminary assessment of the suitability of the ground for infiltration SuDS. Th...

  5. Strongest experimental constraints on SU(5)×U(1) supergravity models

    Science.gov (United States)

    Lopez, Jorge L.; Nanopoulos, D. V.; Park, Gye T.; Zichichi, A.

    1994-01-01

    We consider a class of well-motivated string-inspired flipped SU(5) supergravity models which include four supersymmetry-breaking scenarios: no-scale, strict no-scale, dilaton, and special dilaton, such that only three parameters are needed to describe all new phenomena (mt,tanβ,mg~). We show that the CERN LEP precise measurements of the electroweak parameters in the form of the ɛ1 variable and the CLEO II allowed range for B(b-->sγ) are at present the most important experimental constraints on this class of models. For mt>~155 (165) GeV, the ɛ1 constraint [at 90 (95)% C.L.] requires the presence of light charginos (m+/-χ1360 GeV, mq~sγ) constraint excludes a significant fraction of the otherwise allowed region in the (m+/-χ1,tanβ) plane (irrespective of the magnitude of the chargino mass), while future experimental improvements will result in decisive tests of these models. In light of the ɛ1 constraint, we conclude that the outlook for chargino and selectron detection at LEP II and at DESY HERA is quite favorable in this class of models.

  6. Study of shear viscosity of SU(2)-gluodynamics within lattice simulation

    Energy Technology Data Exchange (ETDEWEB)

    Astrakhantsev, N.Yu. [Institute for Theoretical and Experimental Physics,Moscow, 117218 (Russian Federation); Moscow Institute of Physics and Technology,Dolgoprudny, 141700 (Russian Federation); Braguta, V.V. [Institute for Theoretical and Experimental Physics,Moscow, 117218 (Russian Federation); Institute for High Energy Physics NRC “Kurchatov Institute”,Protvino, 142281 Russian Federation (Russian Federation); Far Eastern Federal University, School of Biomedicine,Vladivostok, 690950 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),Kashirskoe highway, 31, Moscow, 115409 (Russian Federation); Kotov, A.Yu. [Institute for Theoretical and Experimental Physics,Moscow, 117218 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),Kashirskoe highway, 31, Moscow, 115409 (Russian Federation)

    2015-09-14

    This paper is devoted to the study of two-point correlation function of the energy-momentum tensor 〈T{sub 12}T{sub 12}〉 for SU(2)-gluodynamics within lattice simulation of QCD. Using multilevel algorithm we carried out the measurement of the correlation function at the temperature T/T{sub c}≃1.2. It is shown that lattice data can be described by spectral functions which interpolate between hydrodynamics at low frequencies and asymptotic freedom at high frequencies. The results of the study of spectral functions allowed us to estimate the ratio of shear viscosity to the entropy density η/s=0.134±0.057.

  7. Einstein model for elementary particles

    International Nuclear Information System (INIS)

    Sharma, N.K.

    1975-01-01

    A group theoretical model unifying a space-time group (E) and an internal symmetry group (I) for strongly interacting particles is worked out. The space-time group is the one that pertains to the group of motions of static Einstein cosmological model implying the symmetry of the group E = O 4 logical operation of multiplication R. With the use of Gueret and Vigier prescription, the left coset R logical operation of multiplication O 4 is identified with the internal symmetry group I = U 1 β logical operation of multiplication (SU(2) logical operation of multiplication SU(2)) contains SU(4). The complete dynamical group (D) is then found to be D = E logical operation of multiplication I = (O logical operation of multiplication R) logical operation of multiplication U 1 β logical operation of multiplication (SU(2) logical operation of multiplication SU(2) contains SO(4,2). Physically useful representations of the space-time group (E) are worked out by solving the eigenvalue problem of Laplace-Beltmi operator. The internal quantum numbers are prescribed in accordance with the SU(2) logical operation of multiplication SU(2) model of Nakamura and Sato. A general mass formula is derived and its use for known baryons and mesons is discussed. (author)

  8. The algebra and geometry of SU(3) matrices

    International Nuclear Information System (INIS)

    Mallesh, K.S.; Mukunda, N.

    1997-01-01

    We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of multiplying two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed as a generalization of that for SU(2), and the specifically new features are brought out. Application to the dynamics of three-level system is outlined. (author)

  9. Stringy horizons and generalized FZZ duality in perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Giribet, Gaston [Martin Fisher School of Physics, Brandeis University,Waltham, Massachusetts 02453 (United States); Departamento de Física, Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET,Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)

    2017-02-14

    We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n−2 winding modes actually coincide with the correlation functions in the SL(2,ℝ)/U(1) gauged WZW model that include n−2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference https://www.doi.org/10.1007/JHEP10(2016)157. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.

  10. Project ANSICHT. Final repository concept and backfilling and sealing concept for the final repository site model SUeD; Projekt ANSICHT. Endlagerkonzept sowie Verfuell- und Verschlusskonzept fuer das Endlagerstandortmodell SUeD. Technischer Bericht

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, Michael; Lommerzheim, Andree

    2015-08-03

    In the frame of ANSICHT the methodology for the demonstration of safe enclosure for high-level heat generating radioactive wastes is described. The report is based on the safety requirements for final repository concepts and shows a first backfilling and sealing concept that was developed for the final repository site model SUeD. The final repository model SUeD is based on a horizontal line storage concept, the Gorleben (VSG) and ERATO container concept and the mine layout were adopted and adapted to the given conditions. The backfill and sealing concept includes migration barriers, line closures and shaft closures in the frame of a redundant and diverse enclosure system. For all technical and geotechnical barrier components the long-term functional requirements were defined. The backfilling concept of underground cavities considers the variety of possible cavities in the line and infrastructure areas.

  11. Breaking of SU(4) symmetry and interplay between strongly-correlated phases in the Hubbard model

    Czech Academy of Sciences Publication Activity Database

    Golubeva, A.; Sotnikov, A.; Cichy, A.; Kuneš, Jan; Hofstetter, W.

    2017-01-01

    Roč. 95, č. 12 (2017), s. 1-7, č. článku 125108. ISSN 2469-9950 EU Projects: European Commission(XE) 646807 - EXMAG Institutional support: RVO:68378271 Keywords : Hubbard model * SU(4) Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 3.836, year: 2016

  12. Model for extended Pati-Salam gauge symmetry

    International Nuclear Information System (INIS)

    Foot, R.; Lew, H.; Volkas, R.R.

    1990-11-01

    The possibility of constructing non-minimal models of the Pati-Salam type is investigated. The most interesting examples are found to have an SU(6) x SU(2) L x SU(2) R guage invariance. Two interesting symmetry breaking patterns are analysed: one leading to the theory of SU(5) colour at an intermediate scale, the other to the quark-lepton symmetric model. 15 refs

  13. Cosmic Microwave Background as a Thermal Gas of SU(2 Photons: Implications for the High-z Cosmological Model and the Value of H0

    Directory of Open Access Journals (Sweden)

    Steffen Hahn

    2017-01-01

    Full Text Available Presently, we are facing a 3σ tension in the most basic cosmological parameter, the Hubble constant H0. This tension arises when fitting the Lambda-cold-dark-matter model (ΛCDM to the high-precision temperature-temperature (TT power spectrum of the Cosmic Microwave Background (CMB and to local cosmological observations. We propose a resolution of this problem by postulating that the thermal photon gas of the CMB obeys an SU(2 rather than U(1 gauge principle, suggesting a high-z cosmological model which is void of dark-matter. Observationally, we rely on precise low-frequency intensity measurements in the CMB spectrum and on a recent model independent (low-z extraction of the relation between the comoving sound horizon rs at the end of the baryon drag epoch and H0 (rsH0=const. We point out that the commonly employed condition for baryon-velocity freeze-out is imprecise, judged by a careful inspection of the formal solution to the associated Euler equation. As a consequence, the above-mentioned 3σ tension actually transforms into a 5σ discrepancy. To make contact with successful low-z  ΛCDM cosmology we propose an interpolation based on percolated/depercolated vortices of a Planck-scale axion condensate. For a first consistency test of such an all-z model we compute the angular scale of the sound horizon at photon decoupling.

  14. Necrotic enterocolitis in pigs naturally infected by porcine circovirus type 2 Enterocolite necrótica em suínos naturalmente infectados por circovírus suíno tipo 2

    Directory of Open Access Journals (Sweden)

    Priscila Zlotowski

    2009-09-01

    Full Text Available Samples of intestine with necrotic enteritis from 63 pigs naturally infected with porcine circovirus type 2 (PCV2 were studied. Colon was the main target of PCV2 associated necrotic enteritis in 60 cases. Immunohistological investigations were carried out to detect the presence of PCV2 in necrotic lesions and to identify the type of cells infected by the virus. Crypt epithelial cells had positive labelling for PCV2 in 17 cases. Depletion of goblet cells occurred in 10 cases. In 24 necrotic enteritis cases, co-infection of PCV2 and Salmonella was identified. An increased rate of apoptosis in the crypt epithelial cells of the large intestine from PCV2 of naturally infected pigs was observed. Immunohistochemical findings confirmed the presence of PCV2 within cells from necrotic intestinal tissue, suggesting that PCV2 may play a role in the development of those lesions. Diagnosis of necrotic enteritis associated with PCV2 should be based on the detection of PCV2 antigen or DNA in the necrotizing lesions. However, bacteriological examination should be performed to rule out the presence of bacterial agents, since co-infections are likely to occur in PCV2 affected pigs.Foram selecionadas amostras intestinais com enterite necrótica de 63 suínos naturalmente infectados pelo circovírus suíno tipo 2 (PCV2. Enterite necrótica associada com PCV2 ocorreu principalmente no cólon, em 60 casos. Análise imuno-histoquímica foi realizada para identificar a presença de PCV2 em lesões necróticas e o tipo de células infectadas pelo vírus. Células epiteliais das criptas apresentaram marcação positiva para PCV2 em 17 casos. Depleção de células caliciformes ocorreu em 10 casos. Em 24 casos de enterite necrótica, observou-se co-infecção por PCV2 e Salmonella. Foi observado um aumento no índice de apoptose nas células das criptas do intestino grosso de suínos naturalmente infectados com PCV2. Os achados imuno-histoquímicos e histopatol

  15. SU(3) chiral symmetry for baryons

    International Nuclear Information System (INIS)

    Dmitrasinovic, V.

    2011-01-01

    Three-quark nucleon interpolating fields in QCD have well-defined SU L (3)xSU R (3) and U A (1) chiral transformation properties, viz. [(6,3)+(3,6)], [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] and their 'mirror' images. It has been shown (phenomenologically) in Ref. [2] that mixing of the [(6,3)+(3,6)] chiral multiplet with one ordinary ('naive') and one 'mirror' field belonging to the [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] multiplets can be used to fit the values of the isovector (g A (3) ) and the flavor-singlet (isoscalar) axial coupling (g A (0) ) of the nucleon and then predict the axial F and D coefficients, or vice versa, in reasonable agreement with experiment. In an attempt to derive such mixing from an effective Lagrangian, we construct all SU L (3)xSU R (3) chirally invariant non-derivative one-meson-baryon interactions and then calculate the mixing angles in terms of baryons' masses. It turns out that there are (strong) selection rules: for example, there is only one non-derivative chirally symmetric interaction between J 1/2 fields belonging to the [(6,3)+(3,6)] and the [(3,3-bar)+(3-bar,3)] chiral multiplets, that is also U A (1) symmetric. We also study the chiral interactions of the [(3,3-bar)+(3-bar,3)] and [(8,1)+(1,8)] nucleon fields. Again, there are selection rules that allow only one off-diagonal non-derivative chiral SU L (3)xSU R (3) interaction of this type, that also explicitly breaks the U A (1) symmetry. We use this interaction to calculate the corresponding mixing angles in terms of baryon masses and fit two lowest lying observed nucleon (resonance) masses, thus predicting the third (J = 1/2, I = 3/2)Δ resonance, as well as one or two flavor-singlet Λ hyperon(s), depending on the type of mixing. The effective chiral Lagrangians derived here may be applied to high density matter calculations.

  16. Supersymmetric models of weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Egoryan, Eh.; Slavnov, A.A.

    1978-01-01

    Examples of realistic supergauge lepton models based on the SU(2)xU(1) and SU(2)xSU(2)xU(1) groups are considered. These models do not contradict to up-to-date experimental data, give a natural explanation for the Higgs mechanism and predict the existence of heavy leptons. The first model predicts the conservation of parity, the second one predicts parity breaking in atomic processes

  17. Neutrinoless double beta decay in an SU(3)L x U(1)N model

    International Nuclear Information System (INIS)

    Pleitez, V.; Tonasse, M.D.

    1993-01-01

    A model for the electroweak interactions with SU (3) L x U(1) N gauge symmetry is considered. It is shown that, it is the conservation of F = L + B which forbids massive neutrinos and the neutrinoless double beta decay, (β β) On u. Explicit and spontaneous breaking of F imply that the neutrinos have an arbitrary mass and (β β) On u proceeds also with some contributions that do not depend explicitly on the neutrino mass. (author)

  18. The $SU(\\infty)$ twisted gradient flow running coupling

    CERN Document Server

    Pérez, Margarita García; Keegan, Liam; Okawa, Masanori

    2015-01-01

    We measure the running of the $SU(\\infty)$ 't Hooft coupling by performing a step scaling analysis of the Twisted Eguchi-Kawai (TEK) model, the SU($N$) gauge theory on a single site lattice with twisted boundary conditions. The computation relies on the conjecture that finite volume effects for SU(N) gauge theories defined on a 4-dimensional twisted torus are controlled by an effective size parameter $\\tilde l = l \\sqrt{N}$, with $l$ the torus period. We set the scale for the running coupling in terms of $\\tilde l$ and use the gradient flow to define a renormalized 't Hooft coupling $\\lambda(\\tilde l)$. In the TEK model, this idea allows the determination of the running of the coupling through a step scaling procedure that uses the rank of the group as a size parameter. The continuum renormalized coupling constant is extracted in the zero lattice spacing limit, which in the TEK model corresponds to the large $N$ limit taken at fixed value of $\\lambda(\\tilde l)$. The coupling constant is thus expected to coinc...

  19. SU9516 Increases α7β1 Integrin and Ameliorates Disease Progression in the mdx Mouse Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Sarathy, Apurva; Wuebbles, Ryan D; Fontelonga, Tatiana M; Tarchione, Ashley R; Mathews Griner, Lesley A; Heredia, Dante J; Nunes, Andreia M; Duan, Suzann; Brewer, Paul D; Van Ry, Tyler; Hennig, Grant W; Gould, Thomas W; Dulcey, Andrés E; Wang, Amy; Xu, Xin; Chen, Catherine Z; Hu, Xin; Zheng, Wei; Southall, Noel; Ferrer, Marc; Marugan, Juan; Burkin, Dean J

    2017-06-07

    Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by mutations in the dystrophin gene, resulting in a complete loss of the dystrophin protein. Dystrophin is a critical component of the dystrophin glycoprotein complex (DGC), which links laminin in the extracellular matrix to the actin cytoskeleton within myofibers and provides resistance to shear stresses during muscle activity. Loss of dystrophin in DMD patients results in a fragile sarcolemma prone to contraction-induced muscle damage. The α7β1 integrin is a laminin receptor protein complex in skeletal and cardiac muscle and a major modifier of disease progression in DMD. In a muscle cell-based screen for α7 integrin transcriptional enhancers, we identified a small molecule, SU9516, that promoted increased α7β1 integrin expression. Here we show that SU9516 leads to increased α7B integrin in murine C2C12 and human DMD patient myogenic cell lines. Oral administration of SU9516 in the mdx mouse model of DMD increased α7β1 integrin in skeletal muscle, ameliorated pathology, and improved muscle function. We show that these improvements are mediated through SU9516 inhibitory actions on the p65-NF-κB pro-inflammatory and Ste20-related proline alanine rich kinase (SPAK)/OSR1 signaling pathways. This study identifies a first in-class α7 integrin-enhancing small-molecule compound with potential for the treatment of DMD. Copyright © 2017 The American Society of Gene and Cell Therapy. All rights reserved.

  20. BTZ black hole from Poisson–Lie T-dualizable sigma models with spectators

    Directory of Open Access Journals (Sweden)

    A. Eghbali

    2017-09-01

    Full Text Available The non-Abelian T-dualization of the BTZ black hole is discussed in detail by using the Poisson–Lie T-duality in the presence of spectators. We explicitly construct a dual pair of sigma models related by Poisson–Lie symmetry. The original model is built on a 2+1-dimensional manifold M≈O×G, where G as a two-dimensional real non-Abelian Lie group acts freely on M, while O is the orbit of G in M. The findings of our study show that the original model indeed is canonically equivalent to the SL(2,R Wess–Zumino–Witten (WZW model for a given value of the background parameters. Moreover, by a convenient coordinate transformation we show that this model describes a string propagating in a spacetime with the BTZ black hole metric in such a way that a new family of the solutions to low energy string theory with the BTZ black hole vacuum metric, constant dilaton field and a new torsion potential is found. The dual model is built on a 2+1-dimensional target manifold M˜ with two-dimensional real Abelian Lie group G˜ acting freely on it. We further show that the dual model yields a three-dimensional charged black string for which the mass M and axion charge Q per unit length are calculated. After that, the structure and asymptotic nature of the dual space–time including the horizon and singularity are determined.