WorldWideScience

Sample records for su2 chiral quark-soliton

  1. Axion inflation with an SU(2) gauge field: detectable chiral gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Maleknejad, Azadeh [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. Code. 19538-33511, Tehran (Iran, Islamic Republic of)

    2016-07-20

    We study a single field axion inflation model in the presence of an SU(2) gauge field with a small vev. In order to make the analysis as model-independent as possible, we consider an arbitrary potential for the axion that is able to support the slow-roll inflation. The gauge field is coupled to the axion with a Chern-Simons interaction (λ/f)F{sub μν}{sup a}F̃{sub a}{sup μν} where (λ/f)∼((O(10))/(M{sub pl})). It has a negligible effect on the background evolution, ((ρ{sub YM})/(M{sub pl}{sup 2}H{sup 2}))≲ϵ{sup 2}. However, its quantum fluctuations make a significant contribution to the cosmic perturbation. In particular, the gauge field has a spin-2 fluctuation which explicitly breaks the parity between the left- and right-handed polarization states. The chiral tensor modes are linearly coupled to the gravitational waves and lead to a circularly polarized tensor power spectrum comparable to the unpolarized vacuum power spectrum. Moreover, the scalar sector is modified by the linear scalar fluctuations of the gauge field. Since the spin-0 and spin-2 fluctuations of the SU(2) gauge field are independent, the gauge field can, at the same time, generate a detectable chiral gravitational wave signal and have a negligible contribution to the scalar fluctuations, in agreement with the current CMB observations.

  2. Kramers-Wannier duality and worldline representation for the SU(2) principal chiral model

    Science.gov (United States)

    Gattringer, Christof; Göschl, Daniel; Marchis, Carlotta

    2018-03-01

    In this letter we explore different representations of the SU(2) principal chiral model on the lattice. We couple chemical potentials to two of the conserved charges to induce finite density. This leads to a complex action such that the conventional field representation cannot be used for a Monte Carlo simulation. Using the recently developed Abelian color flux approach we derive a new worldline representation where the partition sum has only real and positive weights, such that a Monte Carlo simulation is possible. In a second step we transform the model to new dual variables in the Kramers-Wannier (KW) sense, such that the constraints are automatically fulfilled, and we obtain a second representation free of the complex action problem. We implement exploratory Monte Carlo simulations for both, the worldline, as well as the KW-dual form, for cross-checking the two dualizations and a first assessment of their potential for dual simulations.

  3. Integrable hydrodynamic equations for initial chiral currents and infinite hydrodynamic chains from WZNW model and string model of WZNW type with SU(2), SO(3), SP(2), SU(∞), SO(∞), SP(∞) constant torsions

    Science.gov (United States)

    Cirilo-Lombardo, D. J.; Gershun, V. D.

    2014-09-01

    The WZNW and string models are considered in terms of the initial and invariant chiral currents assuming that the internal and external torsions coincide (anticoincide) and they are the structure constants of the SU(n), SO(n), SP(n) Lie algebras. These models are the auxiliary problems in order to construct integrable equations of hydrodynamic type. It was shown that the WZNW and string models in terms of invariant chiral currents are integrable for the constant torsion associated with the structure constants of the SU(2), SO(3), SP(2) and SU(3) algebras only. The equation of motion for the density of the first Casimir operator was obtained in the form of the inviscid Burgers equation. The solution of this equation is presented through the Lambert function. Also, a new equation of motion for the initial chiral current was found. The integrable infinite hydrodynamic chains obtained from the WZNW and string models are given in terms of invariant chiral currents with the SU(2), SO(3), SP(2) and with SU(∞), SO(∞), SP(∞) constant torsions. Also, the equations of motion for the density of any Casimir operator and new infinite-dimensional equations of hydrodynamic type for the initial chiral currents through the symmetric structure constant of SU(∞), SO(∞), SP(∞) algebras are obtained.

  4. Gravitational leptogenesis in axion inflation with SU(2) gauge field

    Science.gov (United States)

    Maleknejad, Azadeh

    2016-12-01

    We present an intrinsic leptogenesis mechanism in models of axion inflation with a classical SU(2) gauge field. The gauge field is coupled to the axion with a Chern-Simons interaction and comprises a tiny fraction of the total energy, ρYM/ρtot lesssim epsilon2. However, it has spin-2 fluctuations which breaks the parity and leads to the generation of chiral gravitational waves during inflation. By the gravitational anomaly in SM, it naturally creates a net lepton number density, sufficient to explain the matter asymmetry. We show that this mechanism can generate the observed value of baryon to photon number density in a natural range of parameters and yet has a small chiral tensor power spectrum on large scales.

  5. Finite volume effects in SU(2) with two adjoint fermions

    CERN Document Server

    Patella, Agostino; Lucini, Biagio; Pica, Claudio; Rago, Antonio

    2011-01-01

    Many evidences from lattice simulations support the idea that SU(2) with two Dirac flavors in the adjoint representation (also called Minimal Walking Technicolor) is IR conformal. A possible way to see this is through the behavior of the spectrum of the mass-deformed theory. When fermions are massive, a mass-gap is generated and the theory is confined. IR-conformality is recovered in the chiral limit: masses of particles vanish in the chiral limit, while their ratios stay finite. In order to trust this analysis one has to relay on the infinite volume extrapolation. We will discuss the finite volume effects on the mesonic spectrum, investigated by varying the size of the lattice and by changing the boundary conditions for the fields.

  6. Confinement from semiclassical gluon fields in SU(2) gauge theory

    CERN Document Server

    Langfeld, Kurt

    2010-01-01

    The infrared structure of SU(2) Yang-Mills theory is studied by means of lattice gauge simulations using a new constrained cooling technique. This method reduces the action while all Polyakov lines on the lattice remain unchanged. In contrast to unconstrained cooling, quark confinement is still intact. A study of the Hessian of the Yang-Mills action shows that low action (semi-) classical configurations can be achieved, with a characteristic splitting between collective modes and higher momentum modes. Besides confinement, the semiclassical configurations also support the topological susceptibility and generate spontaneous breakdown of chiral symmetry.We show that they possess a cluster structure of locally mainly (anti-) selfdual objects. By contrast to an instanton or a meron medium, the topological charge of individual clusters is smoothly distributed.

  7. First results for SU(2) Yang-Mills with one adjoint Dirac Fermion

    CERN Document Server

    Athenodorou, Andreas; Bergner, Georg; Lucini, Biagio; Patella, Agostino

    2013-01-01

    We present a first exploratory study of SU(2) gauge theory with one Dirac flavour in the adjoint representation. We provide initial results for the spectroscopy and the anomalous dimension for the chiral condensate. Our investigation indicates that the theory is conformal or near-conformal, with an anomalous dimension of order one. A discussion of the relevance of these findings in relation to walking technicolor scenarios is also presented.

  8. SU(2|2) supersymmetric mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Evgeny [Joint Institute for Nuclear Research,Dubna, Moscow Region, 141980 (Russian Federation); Lechtenfeld, Olaf [Institut für Theoretische Physik and Riemann Center for Geometry and Physics,Leibniz Universität Hannover,Appelstraße 2, 30167 Hannover (Germany); Sidorov, Stepan [Joint Institute for Nuclear Research,Dubna, Moscow Region, 141980 (Russian Federation)

    2016-11-07

    We introduce a new kind of non-relativistic N= 8 supersymmetric mechanics, associated with worldline realizations of the supergroup SU(2|2) treated as a deformation of flat N= 8, d=1 supersymmetry. Various worldline SU(2|2) superspaces are constructed as coset manifolds of this supergroup, and the corresponding superfield techniques are developed. For the off-shell SU(2|2) multiplets (3,8,5), (4,8,4) and (5,8,3), we construct and analyze the most general superfield and component actions. Common features are mass oscillator-type terms proportional to the deformation parameter and a trigonometric realization of the superconformal group OSp(4{sup ∗}|4) in the conformal cases. For the simplest (5,8,3) model the quantization is performed.

  9. Infrared behaviors of SU(2 gauge theory

    Directory of Open Access Journals (Sweden)

    Tuominen Kimmo

    2017-01-01

    Full Text Available We will discuss some recent results in the determination of the location of the conformal window in SU(2 gauge theory with Nf fermions in the fundamental representation of the gauge group. In particular, we will demonstrate that the long distance behavior of the continuum theory with Nf = 6 is governed by an infrared stable fixed point.

  10. Dynamical Generation of the Gauged SU(2) Linear Sigma Model

    Science.gov (United States)

    Delbourgo, R.; Scadron, M. D.

    The fermion and meson sectors of the quark-level SU(2) linear sigma model are dynamically generated from a meson-quark Lagrangian, with the quark (q) and meson (σ, π) fields all treated as elementary, having neither bare masses nor expectation values. In the chiral limit, the masses are predicted to be mq = fπg, mπ = 0, mσ = 2mq, and we also find that the quark-meson coupling is g =2π /√ {Nc}, the three-meson coupling is g' =mσ 2 /2fπ =2gmq and the four-meson coupling is λ = 2g2 = g‧/fπ, where fπ ≃ 90 MeV is the pion decay constant and Nc = 3 is the color number. By gauging this model one can generate the couplings to the vector mesons ρ and A1, including the quark-vector coupling constant gρ = 2π, gρππ, gA1ρπ and the masses mρ 700 MeV, mA1˜= √ {3} mρ ; of course the vector and axial currents remain conserved throughout.

  11. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  12. Chiral algebras

    CERN Document Server

    Beilinson, Alexander

    2004-01-01

    Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the ch

  13. Static solutions of SU(2)-Higgs theory

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, L.G. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (US))

    1989-11-15

    The structure and stability of static spherically symmetric solutions in the SU(2)-Higgs theory are examined using both analytic and numerical methods. Accurate results are presented for the energy and instability growth rates of the sphaleron'' solution as a function of the Higgs-boson mass. The sphaleron is shown to undergo an infinite sequence of bifurcations as the Higgs-boson mass is increased, starting at {ital M}{sub {ital H}}=12M{sub W}. New deformed sphaleron'' solutions emerge from each of these bifurcations. These deformed sphalerons are not charge-conjugation invariant, have non-half-integral winding numbers, and are lower in energy than the original sphaleron. Hence, for sufficiently large Higgs-boson mass, minimal-energy paths connecting inequivalent vacuum states do not pass through the original sphaleron configuration.

  14. Entangled SU(2) and SU(1,1) coherent states

    OpenAIRE

    Wang, Xiao-Guang; Sanders, Barry C.; Pan, Shao-Hua

    2000-01-01

    Entangled SU(2) and SU(1,1) coherent states are developed as superpositions of multiparticle SU(2) and SU(1,1) coherent states. In certain cases, these are coherent states with respect to generalized su(2) and su(1,1) generators, and multiparticle parity states arise as a special case. As a special example of entangled SU(2) coherent states, entangled binomial states are introduced and these entangled binomial states enable the contraction from entangled SU(2) coherent states to entangled har...

  15. Chiral plasmonics

    Science.gov (United States)

    Hentschel, Mario; Schäferling, Martin; Duan, Xiaoyang; Giessen, Harald; Liu, Na

    2017-01-01

    We present a comprehensive overview of chirality and its optical manifestation in plasmonic nanosystems and nanostructures. We discuss top-down fabricated structures that range from solid metallic nanostructures to groupings of metallic nanoparticles arranged in three dimensions. We also present the large variety of bottom-up synthesized structures. Using DNA, peptides, or other scaffolds, complex nanoparticle arrangements of up to hundreds of individual nanoparticles have been realized. Beyond this static picture, we also give an overview of recent demonstrations of active chiral plasmonic systems, where the chiral optical response can be controlled by an external stimulus. We discuss the prospect of using the unique properties of complex chiral plasmonic systems for enantiomeric sensing schemes. PMID:28560336

  16. Spectrum of the QCD Dirac operator and chiral random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Verbaarschot, J. (Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States))

    1994-04-18

    We argue that the spectrum of the QCD Dirac operator near zero virtuality can be described by random matrix theory. As in the case of the classical random matrix ensembles of Dyson we have three different cases: the chiral orthogonal ensemble, the chiral unitary ensemble, and the chiral symplectic ensemble. They correspond to gauge groups SU(2) in the fundamental representation, SU([ital N][sub [ital c

  17. Rho meson decay width in SU(2) gauge theories with 2 fundamental flavours

    CERN Document Server

    Janowski, Tadeusz; Pica, Claudio

    2016-01-01

    SU(2) gauge theories with two quark flavours in the fundamental representation are among the most promising theories of composite dynamics describing the electroweak sector. Three out of five Goldstone bosons in these models become the longitudinal components of the W and Z bosons giving them mass. Like in QCD, we expect a spectrum of excitations which appear as resonances in vector boson scattering, in particular the vector resonance corresponding to the rho-meson in QCD. In this talk I will present the preliminary results of the first calculation of the rho-meson decay width in this theory, which is analogous to rho to two pions decay calculation in QCD. The results presented were calculated in a moving frame with total momentum (0,0,1) on two ensembles. Future plans include using 3 moving frames on a larger set of ensembles to extract the resonance parameters more reliably and also take the chiral and continuum limits.

  18. Confining vs. conformal scenario for SU(2) with adjoint fermions. Gluonic observables

    CERN Document Server

    Patella, Agostino; Lucini, Biagio; Pica, Claudio; Rago, Antonio

    2010-01-01

    Walking technicolor is a mechanism for electroweak symmetry breaking without Higgs field. The Higgs mechanism is provided by chiral symmetry breaking in the technicolor theory. An essential ingredient is the vicinity to an IR fixed point, which could reconcile technicolor with the electroweak precision tests. SU(2) gauge theory with two Dirac adjoint fermions has been proposed as a candidate for walking technicolor. Understanding whether this theory is confining or IR-conformal is a challenging problem, which can be addressed by means of numerical simulations. We have pointed out that a clean signal for the existence of an IR fixed point in this theory can be obtained by comparing the mesonic and gluonic sectors. We review some technical details of our calculations. Possible systematic errors are discussed.

  19. Chiral pinwheel clusters lacking local point chirality.

    Science.gov (United States)

    Sun, Kai; Shao, Ting-Na; Xie, Jia-Le; Lan, Meng; Yuan, Hong-Kuan; Xiong, Zu-Hong; Wang, Jun-Zhong; Liu, Ying; Xue, Qi-Kun

    2012-07-09

    The supramolecular pinwheel cluster is a unique chiral structure with evident handedness. Previous studies reveal that the chiral pinwheels are composed of chiral or achiral molecules with polar groups, which result in strong intermolecular interactions such as hydrogen-bonding or dipole interactions. Herein, it is shown that the simple linear aromatic molecule, pentacene, can be self-assembled into large chiral pinwheel clusters on the semimetal Bi(111) surface, due to enhanced intermolecular interactions. The pentacene pinwheels reveal two levels of organizational chirality: the chiral hexamers resulting from asymmetric shifting along the long molecular axis, and chiral arrangement of six hexamers with a rotor motif. Furthermore, a new relation between the local point chirality and organizational chirality is identified from the pinwheels: the former is not essential for the latter in 2D pinwheel clusters of the pentacene molecule. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. SU(2 color NJL model and EOS of quark-hadron matter at finite temperature and density

    Directory of Open Access Journals (Sweden)

    Weise Wolfram

    2012-02-01

    Full Text Available We study the NJL model with the Polyakov loop in the SU(2-color case for the EOS of quark-hadron matter at finite temperature and density. We consider the spontaneous chiral symmetry breaking and the diquark condensation together with the behavior of the Polyakov loop for the phase diagram of quark-hadron matter. We discuss the spectrum of mesons and diquark baryons (boson at finite temperature and density.We derive also the linear sigma model Lagrangian for diquark baryon and mesons.

  1. SU(2) Flavor Asymmetry of the Proton Sea in Chiral Effective Theory

    Energy Technology Data Exchange (ETDEWEB)

    McKenney, J. R. [North Carolina State Univ., Raleigh, NC (United States); Sato Gonzalez, Nobuo [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ji, Cheung-Ryong [North Carolina State Univ., Raleigh, NC (United States)

    2016-07-01

    We refine the computation of the $\\bar{d}$ - $\\bar{u}$ flavor asymmetry in the proton sea with a complementary effort to reveal the dynamics of pion exchange in high-energy processes. In particular, we discuss the efficacy of pion exchange models to simultaneously describe leading neutron electroproduction at HERA along with the $\\bar{d}$ - $\\bar{u}$ flavor asymmetry in the proton. A detailed χ2 analysis of the ZEUS and H1 data, when combined with constraints on the pion flux from Drell-Yan data, allows regions of applicability of one-pion exchange to be delineated. Based on the fit results, we also address a possible estimate for leading proton structure functions in upcoming tagged deep-inelastic scattering experiments at Jefferson Lab on the deuteron with forward protons.

  2. Punctuated Chirality

    OpenAIRE

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high int...

  3. Chiral streamers

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Dandan; Cao, Xin [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, Xinpei, E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Ostrikov, Kostya [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Comonwealth Scientific and Industrial Research Organization, P.O. Box 218, Sydney, New South Wales 2070 (Australia)

    2015-10-15

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  4. Chiral Nanotubes

    Directory of Open Access Journals (Sweden)

    Andrea Nitti

    2017-07-01

    Full Text Available Organic nanotubes, as assembled nanospaces, in which to carry out host–guest chemistry, reversible binding of smaller species for transport, sensing, storage or chemical transformation purposes, are currently attracting substantial interest, both as biological ion channel mimics, or for addressing tailored material properties. Nature’s materials and machinery are universally asymmetric, and, for chemical entities, controlled asymmetry comes from chirality. Together with carbon nanotubes, conformationally stable molecular building blocks and macrocycles have been used for the realization of organic nanotubes, by means of their assembly in the third dimension. In both cases, chiral properties have started to be fully exploited to date. In this paper, we review recent exciting developments in the synthesis and assembly of chiral nanotubes, and of their functional properties. This review will include examples of either molecule-based or macrocycle-based systems, and will try and rationalize the supramolecular interactions at play for the three-dimensional (3D assembly of the nanoscale architectures.

  5. Effective SU(2) theory for the pseudogap state

    Science.gov (United States)

    Montiel, X.; Kloss, T.; Pépin, C.

    2017-03-01

    This paper exposes in a detailed manner the recent findings about the SU(2) scenario for the underdoped phase of the cuprate superconductors. The SU(2) symmetry is formulated as a rotation between the d -wave superconducting (SC) phase and a d -wave charge order. We define the operators responsible for the SU(2) rotations and we derive the nonlinear σ model associated with it. In this framework, we demonstrate that SU(2) fluctuations are massless in finite portions of the Brillouin zone corresponding to the antinodal regions (0 ,π ) and (π ,0 ). We argue that the presence of SU(2) fluctuations in the antinodal region leads to the opening of Fermi arcs around the Fermi surface and to the formation of the pseudogap. Moreover, we show that SU(2) fluctuations lead, in turn, to the emergence of a finite momentum SC order—or pair density wave (PDW)—and more importantly to a new kind of excitonic particle-hole pairs liquid, the resonant excitonic state (RES), which is made of patches of preformed particle-hole pairs with multiple momenta. When the RES liquid becomes critical, we demonstrate that electronic scattering through the critical modes leads to anomalous transport properties. This new finding can account for the strange metal (SM) phase at finite temperature, on the right-hand side of the SC dome, shedding light on another notoriously mysterious part of the phase diagram of the cuprates.

  6. Supersymmetry Breaking Threshold Corrections in the $SU(4)\\times SU(2)_L\\times SU(2)_R$ Model

    OpenAIRE

    Korakianitis, O.; Tracas, N. D.

    1993-01-01

    We evaluate the SUSY and top threshold effects in the context of the MSSM and the string derived model based on SU(4)$\\times$SU(2)$_L\\times$SU(2)$_R$. In both cases we run the two loop RGEs and determine the lower bounds of the supersymmetric particle masses, dictated by the experimentally accepted regions of the values of the low energy parameters.

  7. Phase diagram of the lattice SU(2) Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Bonati, C., E-mail: bonati@df.unipi.i [Dipartimento di Fisica and INFN, Pisa (Italy); Cossu, G., E-mail: cossu@post.kek.j [Scuola Normale Superiore and INFN, Pisa (Italy); D' Elia, M., E-mail: Massimo.Delia@ge.infn.i [Dipartimento di Fisica and INFN, Genova (Italy); Di Giacomo, A., E-mail: digiaco@df.unipi.i [Dipartimento di Fisica and INFN, Pisa (Italy)

    2010-03-21

    We perform a detailed study of the phase diagram of the lattice Higgs SU(2) model with fixed Higgs field length. Consistently with previsions based on the Fradkin-Shenker theorem we find a first order transition line with an endpoint whose position we determined. The diagram also shows cross-over lines: the cross-over corresponding to the pure SU(2) bulk is also present at nonzero coupling with the Higgs field and merges with the one that continues the line of first order transition beyond the critical endpoint. At high temperature the first order line becomes a crossover, whose position moves by varying the temperature.

  8. Polyakov loop percolation and deconfinement in SU(2) gauge theory

    Science.gov (United States)

    Fortunato, S.; Satz, H.

    2000-03-01

    The deconfinement transition in /SU(2) gauge theory and the magnetization transition in the Ising model belong to the same universality class. The critical behaviour of the Ising model can be characterized either as spontaneous breaking of the Z2 symmetry of spin states or as percolation of appropriately defined spin clusters. We show that deconfinement in /SU(2) gauge theory can be specified as percolation of Polyakov loop clusters with Fortuin-Kasteleyn bond weights, leading to the same (Onsager) critical exponents as the conventional order-disorder description based on the Polykov loop expectation value.

  9. Equivariant spectral triples on the quantum SU(2) group

    OpenAIRE

    Chakraborty, Partha Sarathi; Pal, Arupkumar

    2002-01-01

    We characterize all equivariant odd spectral triples for the quantum SU(2) group acting on its L_2-space and having a nontrivial Chern character. It is shown that the dimension of an equivariant spectral triple is at least three, and given any element of the K-homology group of SU_q(2), there is an equivariant odd spectral triple of dimension 3 inducing that element. The method employed to get equivariant spectral triples in the quantum case is then used for classical SU(2), and we prove that...

  10. 't Hooft loop and the phases of SU(2) LGT

    OpenAIRE

    Burgio, Giuseppe

    2013-01-01

    We analyze the vacuum structure of SU(2) lattice gauge theories in D=2,3,4, concentrating on the stability of 't Hooft loops. High precision calculations have been performed in D=3; similar results hold also for D=4 and D=2. We discuss the impact of our findings on the continuum limit of Yang-Mills theories.

  11. Mass anomalous dimension in SU(2) with six fundamental fermions

    DEFF Research Database (Denmark)

    Bursa, Francis; Del Debbio, Luigi; Keegan, Liam

    2010-01-01

    We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. We measure the running of the coupling and the mass in the Schroedinger Functional scheme. We observe very slow running of the coupling constant. We measure the mass anomalous dimension gamma, and find it is between 0.13...

  12. The SU(2)-Higgs model on asymmetric lattices

    CERN Document Server

    Csikor, Ferenc

    1996-01-01

    We calculate the {\\cal O}(g^2,\\lambda) corrections to the coupling anisotropies of the SU(2)-Higgs model on lattices with asymmetric lattice spacings. These corrections are obtained by a one-loop calculation requiring the rotational invariance of the gauge- and Higgs-boson propagators in the continuum limit.

  13. Large-volume results in SU(2) with adjoint fermions

    CERN Document Server

    Del Debbio, Luigi; Pica, Claudio; Patella, Agostino; Rago, Antonio; Roman, Sabin

    2014-01-01

    Taming finite-volume effects is a crucial ingredient in order to identify the existence of IR fixed points. We present the latest results from our numerical simulations of SU(2) gauge theory with 2 Dirac fermions in the adjoint representation on large volumes. We compare with previous results, and extrapolate to thermodynamic limit when possible.

  14. Finite volume effects in SU(2) with two adjoint fermions

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino

    2011-01-01

    Many evidences from lattice simulations support the idea that SU(2) with two Dirac flavors in the adjoint representation (also called Minimal Walking Technicolor) is IR conformal. A possible way to see this is through the behavior of the spectrum of the mass-deformed theory. When fermions are mas...

  15. Large-volume results in SU(2) with adjoint fermions

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Lucini, Biagio; Pica, Claudio

    2013-01-01

    Taming finite-volume effects is a crucial ingredient in order to identify the existence of IR fixed points. We present the latest results from our numerical simulations of SU(2) gauge theory with 2 Dirac fermions in the adjoint representation on large volumes. We compare with previous results, an...

  16. Compactifications of IIA supergravity on SU(2)-structure manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Spanjaard, B.

    2008-07-15

    In this thesis, we study compactifications of type IIA supergravity on six-dimensional manifolds with an SU(2)-structure. A general study of six-dimensional manifolds with SU(2)-structure shows that IIA supergravity compactified on such a manifold should yield a four-dimensional gauged N=4 supergravity. We explicitly derive the bosonic spectrum, gauge transformations and action for IIA supergravity compactified on two different manifolds with SU(2)-structure, one of which also has an H{sup (3)}{sub 10}-flux, and confirm that the resulting four-dimensional theories are indeed N=4 gauged supergravities. In the second chapter, we study an explicit construction of a set of SU(2)-structure manifolds. This construction involves a Scherk-Schwarz duality twist reduction of the half-maximal six-dimensional supergravity obtained by compactifying IIA supergravity on a K3. This reduction results in a gauged N=4 four-dimensional supergravity, where the gaugings can be divided into three classes of parameters. We relate two of the classes to parameters we found before, and argue that the third class of parameters could be interpreted as a mirror flux. (orig.)

  17. Dynamical Local Chirality and Chiral Symmetry Breaking

    CERN Document Server

    Alexandru, Andrei

    2013-01-01

    We present some of the reasoning and results substantiating the notion that spontaneous chiral symmetry breaking (SChSB) in QCD is encoded in local chiral properties of Dirac eigenmodes. Such association is possible when viewing chirality as a dynamical effect, measured with respect to the benchmark of statistically independent left-right components. Following this rationale leads to describing local chiral behavior by a taylor-made correlation, namely the recently introduced correlation coefficient of polarization C_A. In this language, correlated modes (C_A>0) show dynamical preference for local chirality while anti-correlated modes (C_A<0) favor anti-chirality. Our conclusion is that SChSB in QCD can be viewed as dominance of low-energy correlation (chirality) over anti-correlation (anti-chirality) of Dirac sea. The spectral range of local chirality, chiral polarization scale Lambda_ch, is a dynamically generated scale in the theory associated with SChSB. One implication of these findings is briefly dis...

  18. Mass anomalous dimension in SU(2) with six fundamental fermions

    Energy Technology Data Exchange (ETDEWEB)

    Bursa, Francis, E-mail: fwb22@cam.ac.u [Jesus College, Cambridge, CB5 8BL (United Kingdom); Del Debbio, Luigi; Keegan, Liam [SUPA, School of Astrophysics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); Pica, Claudio [CP3-Origins, University of Southern Denmark Odense, 5230 M (Denmark); Pickup, Thomas [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3NP (United Kingdom)

    2011-02-07

    We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. We measure the running of the coupling and the mass in the Schroedinger Functional scheme. We observe very slow running of the coupling constant. We measure the mass anomalous dimension {gamma}, and find it is between 0.135 and 1.03 in the range of couplings consistent with the existence of an IR fixed point.

  19. SU(2)-monopoles, curves with symmetries and Ramanujan's heritage

    Science.gov (United States)

    Braden, Harry W.; Ènol'skii, Viktor Z.

    2010-08-01

    We develop the Ercolani-Sinha construction of SU(2) monopoles for a five-parameter family of centred charge 3 monopoles. In particular we show how to solve the transcendental constraints arising on the spectral curve. For a class of symmetric curves the transcendental constraints become a number-theoretic problem and a recently proven identity of Ramanujan provides a solution. Bibliography: 36 titles.

  20. Chiral Inorganic Nanostructures.

    Science.gov (United States)

    Ma, Wei; Xu, Liguang; de Moura, André F; Wu, Xiaoling; Kuang, Hua; Xu, Chuanlai; Kotov, Nicholas A

    2017-06-28

    The field of chiral inorganic nanostructures is rapidly expanding. It started from the observation of strong circular dichroism during the synthesis of individual nanoparticles (NPs) and their assemblies and expanded to sophisticated synthetic protocols involving nanostructures from metals, semiconductors, ceramics, and nanocarbons. Besides the well-established chirality transfer from bioorganic molecules, other methods to impart handedness to nanoscale matter specific to inorganic materials were discovered, including three-dimentional lithography, multiphoton chirality transfer, polarization effects in nanoscale assemblies, and others. Multiple chiral geometries were observed with characteristic scales from ångströms to microns. Uniquely high values of chiral anisotropy factors that spurred the development of the field and differentiate it from chiral structures studied before, are now well understood; they originate from strong resonances of incident electromagnetic waves with plasmonic and excitonic states typical for metals and semiconductors. At the same time, distinct similarities with chiral supramolecular and biological systems also emerged. They can be seen in the synthesis and separation methods, chemical properties of individual NPs, geometries of the nanoparticle assemblies, and interactions with biological membranes. Their analysis can help us understand in greater depth the role of chiral asymmetry in nature inclusive of both earth and space. Consideration of both differences and similarities between chiral inorganic, organic, and biological nanostructures will also accelerate the development of technologies based on chiroplasmonic and chiroexcitonic effects. This review will cover both experiment and theory of chiral nanostructures starting with the origin and multiple components of mirror asymmetry of individual NPs and their assemblies. We shall consider four different types of chirality in nanostructures and related physical, chemical, and

  1. Introduction to chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Koch, V.

    1996-01-08

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented.

  2. Introduction to Chiral Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.

  3. Orbifolds, fuzzy spheres and chiral fermions

    CERN Document Server

    Chatzistavrakidis, Athanasios; Zoupanos, George

    2010-01-01

    Starting with a N=4 supersymmetric Yang-Mills theory in four dimensions with gauge group SU(3N) we perform an orbifold projection leading to a N=1 supersymmetric SU(N)^3 Yang-Mills theory with matter supermultiplets in bifundamental representations of the gauge group, which is chiral and anomaly free. Subsequently, we search for vacua of the projected theory which can be interpreted as spontaneously generated twisted fuzzy spheres. We show that by adding the appropriate soft supersymmetry breaking terms we can indeed reveal such vacua. Three cases are studied, where the gauge group is spontaneously broken further to the low-energy gauge groups SU(4)xSU(2)xSU(2), SU(4)^3 and SU(3)^3. Such models behave in intermediate scales as higher-dimensional theories with a finite Kaluza-Klein tower, while their low-energy physics is governed by the corresponding zero-modes and exhibit chirality in the fermionic sector. The most interesting case from the phenomenological point of view turns out to be the SU(3)^3 unified t...

  4. On chiral and non chiral 1D supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  5. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  6. Periodic Euclidean solutions of SU(2)-Higgs theory

    Energy Technology Data Exchange (ETDEWEB)

    Frost, K.L.; Yaffe, L.G. [University of Washington, Department of Physics, Seattle, Washington 98105-1560 (United States)

    1999-03-01

    We examine periodic, spherically symmetric, classical solutions of SU(2)-Higgs theory in four-dimensional Euclidean space. Classical perturbation theory is used to construct periodic time-dependent solutions in the neighborhood of the static sphaleron. The behavior of the action, as a function of period, changes character depending on the value of the Higgs boson mass. The required pattern of bifurcations of solutions as a function of the Higgs boson mass is examined, and implications for the temperature dependence of the baryon number violation rate in the standard model are discussed. {copyright} {ital 1999} {ital The American Physical Society}

  7. SU (2) lattice gauge theory simulations on Fermi GPUs

    Science.gov (United States)

    Cardoso, Nuno; Bicudo, Pedro

    2011-05-01

    In this work we explore the performance of CUDA in quenched lattice SU (2) simulations. CUDA, NVIDIA Compute Unified Device Architecture, is a hardware and software architecture developed by NVIDIA for computing on the GPU. We present an analysis and performance comparison between the GPU and CPU in single and double precision. Analyses with multiple GPUs and two different architectures (G200 and Fermi architectures) are also presented. In order to obtain a high performance, the code must be optimized for the GPU architecture, i.e., an implementation that exploits the memory hierarchy of the CUDA programming model. We produce codes for the Monte Carlo generation of SU (2) lattice gauge configurations, for the mean plaquette, for the Polyakov Loop at finite T and for the Wilson loop. We also present results for the potential using many configurations (50,000) without smearing and almost 2000 configurations with APE smearing. With two Fermi GPUs we have achieved an excellent performance of 200× the speed over one CPU, in single precision, around 110 Gflops/s. We also find that, using the Fermi architecture, double precision computations for the static quark-antiquark potential are not much slower (less than 2× slower) than single precision computations.

  8. Mechanical separation of chiral dipoles by chiral light

    CERN Document Server

    Canaguier-Durand, Antoine; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    Optical forces take on a specific form when involving chiral light fields interacting with chiral objects. We show that optical chirality density and flow can have mechanical effects through reactive and dissipative components of chiral forces exerted on chiral dipoles. Remarkably, these force components are directly related to standard observables: optical rotation and circular dichroism, respectively. As a consequence, resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This leads to promising strategies for the mechanical separation of chiral objects using chiral light forces.

  9. Doped Chiral Polymer Metamaterials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  10. SU(2) Gauge Theory with Two Fundamental Flavours

    DEFF Research Database (Denmark)

    Arthur, Rudy; Drach, Vincent; Hansen, Martin

    2016-01-01

    (Goldstone) Higgs theories to several intriguing types of dark matter candidates, such as the SIMPs. We improve our previous lattice analysis [1] by adding more data at light quark masses, at two additional lattice spacings, by determining the lattice cutoff via a Wilson flow measure of the $w_0$ parameter......We investigate the continuum spectrum of the SU(2) gauge theory with $N_f=2$ flavours of fermions in the fundamental representation. This model provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range from composite......, and by measuring the relevant renormalisation constants non-perturbatively in the RI'-MOM scheme. Our results for the lightest isovector states in the vector and axial channels, in units of the pseudoscalar decay constant, are $m_V/F_{\\rm{PS}}\\sim 13.1(2.2)$ and $m_A/F_{\\rm{PS}}\\sim 14.5(3.6)$ (combining...

  11. Dynamic SU(2) structure from seven-branes

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, Ben; McAllister, Liam; /Cornell U., Phys. Dept.; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2010-12-16

    We obtain a family of supersymmetric solutions of type IIB supergravity with dynamic SU(2) structure, which describe the local geometry near a stack of four D7-branes and one O7-plane wrapping a rigid four-cycle. The deformation to a generalized complex geometry is interpreted as a consequence of nonperturbative effects in the seven-brane gauge theory. We formulate the problem for seven-branes wrapping the base of an appropriate del Pezzo cone, and in the near-stack limit in which the four-cycle is flat, we obtain an exact solution in closed form. Our solutions serve to characterize the local geometry of nonperturbatively-stabilized flux compactifications.

  12. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality

    Science.gov (United States)

    Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun

    2017-01-01

    Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction–mediated chirality induction and the intrinsic stereogenic center–controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, (S)-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction–mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.

  13. Chiral magnetic superconductivity

    Directory of Open Access Journals (Sweden)

    Kharzeev Dmitri E.

    2017-01-01

    Full Text Available Materials with charged chiral quasiparticles in external parallel electric and magnetic fields can support an electric current that grows linearly in time, corresponding to diverging DC conductivity. From experimental viewpoint, this “Chiral Magnetic Superconductivity” (CMS is thus analogous to conventional superconductivity. However the underlying physics is entirely different – the CMS does not require a condensate of Cooper pairs breaking the gauge degeneracy, and is thus not accompanied by Meissner effect. Instead, it owes its existence to the (temperature-independent quantum chiral anomaly and the conservation of chirality. As a result, this phenomenon can be expected to survive to much higher temperatures. Even though the chirality of quasiparticles is not strictly conserved in real materials, the chiral magnetic superconductivity should still exhibit itself in AC measurements at frequencies larger than the chirality-flipping rate, and in microstructures of Dirac and Weyl semimetals with thickness below the mean chirality-flipping length that is about 1 – 100 μm. In nuclear physics, the CMS should contribute to the charge-dependent elliptic flow in heavy ion collisions.

  14. Chiral quark model

    Indian Academy of Sciences (India)

    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully ...

  15. Optical chirality breaking in a bilayered chiral metamaterial.

    Science.gov (United States)

    Zhao, Jianxing; Fu, Yuegang; Liu, Zhiying; Zhou, Jianhong

    2017-09-18

    We propose a planar optical bilayered chiral metamaterial, which consists of periodic metallic arrays of two L-shaped structures and a nanorod twisted on both sides of a dielectric slab, to investigate the optical chirality breaking effect by using finite-difference time-domain (FDTD) method. Even the metamaterial is with chiral symmetry, an optical chirality breaking window in the asymmetric transmission pass band is obtained in chiral metamaterial structure. We analyze the plasmonic mode properties and attribute the mechanism of the optical chirality breaking effect to the plasmonic analogue of EIT. The optical chirality breaking window can be modulated by changing the geometric parameters of the nanorods in the structure.

  16. QCD phase transition with chiral quarks and physical quark masses.

    Science.gov (United States)

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.

  17. Chiral separation by capillary electrochromatography.

    Science.gov (United States)

    Gübitz, G; Schmid, M G

    2000-01-01

    The state of art in chiral capillary electrochromatography is reviewed. Chiral separations by capillary electrochromatography were carried out using capillaries packed with chiral stationary phases or achiral stationary phases in combination with a chiral selector added to the mobile phase. Furthermore, the use of open tubular capillaries containing the chiral selector coated to the capillary wall was also reported. Among other separation principles moleculary imprinted polymers represent a challenging approach for chiral capillary electrochromatography. A recent trend is the use of polymeric continuous beds with a chiral selector incorporated.

  18. Type IIA orientifolds on SU(2)-structure manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Danckaert, Thomas

    2010-11-15

    We investigate the possible supersymmetry-preserving orientifold projections of type IIA string theory on a six-dimensional background with SU(2)-structure. We find two categories of projections which preserve half of the low-energy supersymmetry, reducing the effective theory from an N=4 supergravity theory, to an N=2 supergravity. For these two cases, we impose the projection on the low-energy spectrum and reduce the effective N=4 supergravity action accordingly. We can identify the resulting gauged N=2 supergravity theory and bring the action into canonical form. We compute the scalar moduli spaces and characterize the gauged symmetries in terms of the geometry of these moduli spaces. Due to their origin in N=4 supergravity, which is a highly constrained theory, the moduli spaces are of a very simple form. We find that, for suitable background manifolds, isometries in all scalar sectors can become gauged. The obtained gaugings share many features with those of N=2 supergravities obtained previously from other G-structure compactifications. (orig.)

  19. Applications of chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  20. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  1. $b \\to s \\gamma$ Decay in $SU(2)_L \\times SU(2)_R \\times U(1)$ Extensions of the Standard Model

    OpenAIRE

    Cho, Peter; Misiak, Mikolaj

    1993-01-01

    The rare radiative decay $b \\to s \\gamma$ is studied in $SU(2)_L \\times SU(2)_R \\times U(1)$ extensions of the Standard Model. Matching conditions for coefficients of operators appearing in the low energy effective Hamiltonian for this process are derived, and QCD corrections to these coefficients are analyzed. The $b \\to s \\gamma$ decay rate is then calculated and compared with the corresponding Standard Model result. We find that observable deviations from Standard Model predictions can occ...

  2. Chiral Brownian heat pump

    OpenAIRE

    van den Broek, Martijn; Van den Broeck, Christian

    2008-01-01

    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  3. Chiral brownian heat pump.

    Science.gov (United States)

    van den Broek, M; Van den Broeck, C

    2008-04-04

    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  4. Chiral Brownian heat pump

    OpenAIRE

    Broek, M. van den; Broeck, C. Van Den

    2007-01-01

    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  5. Chiral Random Matrix Theory and Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Damgaard, Poul H, E-mail: phdamg@nbi.dk [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)

    2011-04-01

    Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.

  6. Autoamplification of molecular chirality through the induction of supramolecular chirality

    NARCIS (Netherlands)

    van Dijken, Derk Jan; Beierle, John M.; Stuart, Marc C. A.; Szymanski, Wiktor; Browne, Wesley R.; Feringa, Ben L.

    2014-01-01

    The novel concept for the autoamplification of molecular chirality, wherein the amplification proceeds through the induction of supramolecular chirality, is presented. A solution of prochiral, ring-open diarylethenes is doped with a small amount of their chiral, ring-closed counterpart. The

  7. Chiral anomalies and differential geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)

  8. Superconductivity in a chiral nanotube

    Science.gov (United States)

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-02-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  9. Can monoatomic xenon become chiral?

    Science.gov (United States)

    Bartik, K; El Haouaj, M; Luhmer, M; Collet, A; Reisse, J

    2000-12-15

    A chiral host, cryptophane-A (1), makes even a monoatomic noble gas chiral. The interaction of xenon and 1 was monitored by (129) Xe NMR and in the presence of a chiral chemical shift reagent. © 2000 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  10. Doped Chiral Polymer Metamaterials

    Science.gov (United States)

    Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert G. (Inventor)

    2017-01-01

    Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.

  11. Towards racemizable chiral organogelators

    Directory of Open Access Journals (Sweden)

    Jian Bin Lin

    2010-10-01

    Full Text Available A chiral organogelator has been synthesized that can be racemized and self-assembled in apolar solvents whilst at higher concentrations organogels are formed. Field emission scanning and transmission electron microscopy revealed the formation of bundle fibrils that are able to gelate the solvent. 1H NMR studies showed hydrogen-bond interactions between the peptide head groups of neighbouring organogelator molecules. The enantiomerically pure organogelator can be racemized by the base DBU (1,8-diazabicyclo[5.4.0]undec-7-ene as was evident from chiral high-performance liquid chromatography analysis.

  12. Towards racemizable chiral organogelators.

    Science.gov (United States)

    Lin, Jian Bin; Dasgupta, Debarshi; Cantekin, Seda; Schenning, Albertus P H J

    2010-10-06

    A chiral organogelator has been synthesized that can be racemized and self-assembled in apolar solvents whilst at higher concentrations organogels are formed. Field emission scanning and transmission electron microscopy revealed the formation of bundle fibrils that are able to gelate the solvent. ¹H NMR studies showed hydrogen-bond interactions between the peptide head groups of neighbouring organogelator molecules. The enantiomerically pure organogelator can be racemized by the base DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) as was evident from chiral high-performance liquid chromatography analysis.

  13. The finite temperature phase transition in the lattice SU(2)-Higgs model

    CERN Document Server

    Farakos, K; Rummukainen, K; Shaposhnikov, Mikhail E

    1994-01-01

    We study the finite temperature transition of SU(2)-Higgs model with lattice Monte Carlo techniques. We use dimensional reduction to transform the original 4-dimensional SU(2)-gauge + fundamental Higgs theory to an effective 3-dimensional SU(2) + adjoint Higgs + fundamental Higgs model. The simulations were performed with Higgs masses of 35 and 80 GeV; in both cases we observe a stronger first order transition than the perturbation theory predicts, indicating that the dynamics of the transition strongly depend on non-perturbative effects.

  14. Path integrals and coherent states of SU(2) and SU(1,1)

    CERN Document Server

    Inomata, Akira; Kuratsuji, Hiroshi

    1992-01-01

    The authors examine several topical subjects, commencing with a general introduction to path integrals in quantum mechanics and the group theoretical backgrounds for path integrals. Applications of harmonic analysis, polar coordinate formulation, various techniques and path integrals on SU(2) and SU(1, 1) are discussed. Soluble examples presented include particle-flux system, a pulsed oscillator, magnetic monopole, the Coulomb problem in curved space and others.The second part deals with the SU(2) coherent states and their applications. Construction and generalization of the SU(2) coherent sta

  15. Chirality in molecular collision dynamics

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico

    2018-02-01

    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  16. Chiral quark model

    Indian Academy of Sciences (India)

    ingful. In particular, it is interesting to analyze the hadronic tensor that parametrizes the deep inelastic scattering (DIS) and confront the model predictions with empirical data. This picture has led to interesting studies of hadron structure functions in bosonized chiral quark models. Here I will present the results of refs [5–7].

  17. SU(2) Flat Connection on Riemann Surface and Twisted Geometry with Cosmological Constant

    CERN Document Server

    Han, Muxin

    2016-01-01

    SU(2) flat connection on 2D Riemann surface is shown to relate to the generalized twisted geometry in 3D space with cosmological constant. Various flat connection quantities on Riemann surface are mapped to the geometrical quantities in discrete 3D space. We propose that the moduli space of SU(2) flat connections on Riemann surface generalizes the phase space of twisted geometry or Loop Quantum Gravity to include the cosmological constant.

  18. D=4 Chiral String Compactifications from Intersecting Branes

    CERN Document Server

    Aldazabal, G.; Ibanez, Luis E.; Rabadan, R.; Uranga, A.M.

    2001-01-01

    Intersecting Dp-branes often give rise to chiral fermions living on their intersections. We study the construction of four-dimensional chiral theories by considering configurations of type II D(3+n)-branes wrapped on non-trivial n-cycles on T^{2n} x R^{2(3-n)}/Z_N, for $n=1,2,3$. The gauge theories on the four non-compact dimensions of the brane world-volume are generically chiral and non-supersymmetric. We analyze consistency conditions (RR tadpole cancellation) for these models, and their relation to four-dimensional anomaly cancellation. Cancellation of U(1) gauge anomalies involves a Green-Schwarz mechanism mediated by RR partners of untwisted and/or twisted moduli. This class of models is of potential phenomenological interest, and we construct explicit examples of SU(3) x SU(2) x U(1) three-generation models. The models are non-supersymmetric, but the string scale may be lowered close to the weak scale so that the standard hierarchy problem is avoided. We also comment on the presence of scalar tachyons ...

  19. Autoamplification of molecular chirality through the induction of supramolecular chirality.

    Science.gov (United States)

    van Dijken, Derk Jan; Beierle, John M; Stuart, Marc C A; Szymański, Wiktor; Browne, Wesley R; Feringa, Ben L

    2014-05-12

    The novel concept for the autoamplification of molecular chirality, wherein the amplification proceeds through the induction of supramolecular chirality, is presented. A solution of prochiral, ring-open diarylethenes is doped with a small amount of their chiral, ring-closed counterpart. The molecules co-assemble into helical fibers through hydrogen bonding and the handedness of the fibers is biased by the chiral, ring-closed diarylethene. Photochemical ring closure of the open diarylethene yields the ring-closed product, which is enriched in the template enantiomer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chiral logarithms to five loops

    OpenAIRE

    Bissegger, Moritz; Fuhrer, Andreas

    2006-01-01

    We investigate two specific Green functions in the framework of chiral perturbation theory. We show that, using analyticity and unitarity, their leading logarithmic singularities can be evaluated in the chiral limit to any desired order in the chiral expansion, with a modest calculational cost. The claim is illustrated with an evaluation of the leading logarithm for the scalar two-point function to five-loop order.

  1. Chiral Biomarkers in Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  2. Chiral Dynamics 2006

    Science.gov (United States)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4

  3. Chiral algebras of class S

    Energy Technology Data Exchange (ETDEWEB)

    Beem, Christopher [Institute for Advanced Study,Einstein Dr., Princeton, NJ 08540 (United States); Peelaers, Wolfger; Rastelli, Leonardo [C.N. Yang Institute for Theoretical Physics, SUNY,Stony Brook, NY 11794-3840 (United States); Rees, Balt C. van [Theory Group, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland)

    2015-05-05

    Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.

  4. Chiral nanophotonics chiral optical properties of plasmonic systems

    CERN Document Server

    Schäferling, Martin

    2017-01-01

    This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .

  5. Evolution of Hall resistivity and spectral function with doping in the SU(2) theory of cuprates

    Science.gov (United States)

    Morice, C.; Montiel, X.; Pépin, C.

    2017-10-01

    Recent transport experiments in the cuprate superconductors linked the opening of the pseudogap to a change in electronic dispersion [S. Badoux et al., Nature (London) 531, 210 (2015), 10.1038/nature16983]. Transport measurements showed that the carrier density sharply changes from x to 1 +x at the pseudogap critical doping, in accordance with the change from Fermi arcs at low doping to a large hole Fermi surface at high doping. The SU(2) theory of cuprates shows that short-range antiferromagnetic correlations cause the arising of both charge and superconducting orders, which are related by an SU(2) symmetry. The fluctuations associated with this symmetry form a pseudogap phase. Here we derive the renormalized electronic propagator under the SU(2) dome, and calculate the spectral functions and transport quantities of the renormalized bands. We show that their evolution with doping matches both spectral and transport measurements.

  6. On the SU(2 vertical stroke 1) WZNW model and its statistical mechanics applications

    Energy Technology Data Exchange (ETDEWEB)

    Saleur, H. [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[University of Southern California, Los Angeles, CA (United States). Dept. of Physics; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-11-15

    Motivated by a careful analysis of the Laplacian on the supergroup SU(2 vertical stroke 1) we formulate a proposal for the state space of the SU(2 vertical stroke 1) WZNW model. We then use properties of sl(2 vertical stroke 1) characters to compute the partition function of the theory. In the special case of level k=1 the latter is found to agree with the properly regularized partition function for the continuum limit of the integrable sl(2 vertical stroke 1)3- anti 3 super-spin chain. Some general conclusions applicable to other WZNW models (in particular the case k=-1/2) are also drawn. (orig.)

  7. Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study

    DEFF Research Database (Denmark)

    Zohar, Erez; Wahl, Thorsten B.; Burrello, Michele

    2016-01-01

    limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study...... of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation....

  8. Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry

    Science.gov (United States)

    Aoki, S.; Cossu, G.; Feng, X.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.

    2016-02-01

    We study the chiral behavior of the electromagnetic (EM) form factors of pions and kaons in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between Mπ≃290 MeV and 540 MeV and with a strange quark mass ms close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on ms and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy constants and the charge radii, and find reasonable agreement with phenomenological and experimental results.

  9. Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states

    Science.gov (United States)

    Poilblanc, Didier

    2017-09-01

    A simple spin-1/2 frustrated antiferromagnetic Heisenberg model (AFHM) on the square lattice—including chiral plaquette cyclic terms—was argued [A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat. Commun. 4, 2864 (2013), 10.1038/ncomms3864] to host a bosonic Kalmeyer-Laughlin (KL) fractional quantum Hall ground state [V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987), 10.1103/PhysRevLett.59.2095]. Here, we construct generic families of chiral projected entangled pair states (chiral PEPS) with low bond dimension (D =3 ,4 ,5 ) which, upon optimization, provide better variational energies than the KL Ansatz. The optimal D =3 PEPS exhibits chiral edge modes described by the Wess-Zumino-Witten SU(2) 1 model, as expected for the KL spin liquid. However, we find evidence that, in contrast to the KL state, the PEPS spin liquids have power-law dimer-dimer correlations and exhibit a gossamer long-range tail in the spin-spin correlations. We conjecture that these features are genuine to local chiral AFHM on bipartite lattices.

  10. Chiral Crystallization of Ethylenediamine Sulfate

    Science.gov (United States)

    Koby, Lawrence; Ningappa, Jyothi B.; Dakesssian, Maria; Cuccia, Louis A.

    2005-01-01

    The optimal conditions for the crystallization of achiral ethylenediamine sulfate into large chiral crystals that are ideal for polarimetry studies and observation using Polaroid sheets are presented. This experiment is an ideal undergraduate experiment, which clearly demonstrates the chiral crystallization of an achiral molecule.

  11. Thermal evolution of massive strange compact objects in a SU(3) chiral Quark Meson model

    Energy Technology Data Exchange (ETDEWEB)

    Zacchi, Andreas

    2017-07-04

    In this work, thermodynamical properties of strongly interacting matter within a chiral SU(2)- and SU(3) chiral Quark Meson model have been analysed. Both effective models describe the development of the quark masses in media via the corresponding fields through chiral symmetry, which is expected to be restored at high temperatures and/or high densities, and spontaneously broken at low temperatures and/or densities. Spontaneous and explicit chiral symmetry breaking patterns give rise to massive Goldstone bosons, which are associated with the pions. Their chiral partners, the sigma mesons, are expected to be degenerate in mass, which was what we studied and observed at large temperatures/densities. The derivation and computation of thermodynamical quantities and properties in both cases can for instance be used to study relativistic and hydrodynamic Heavy Ion Collisions and the early universe for vanishing baryon number (SU(2)-case). They are also interesting for extreme astrophysical scenarios, such as Supernova explosions and the thermal evolution of their remnants, which has been among the topics of this thesis (SU(3)-case). Inclusion of the zero point energy in the SU(2) model has been carried out separately for the meson sector and for the quark sector as well as in a combined approach, where we learned, that the quark sector is quite dominant and that the vacuum fluctuations of the meson fields have little influence on the order parameter, but affect the relativistic degrees of freedom. In the SU(3) case, the inclusion of the zero point energy in the quark sector is much more computationally complex, but, as in the SU(2) case, is also not negliable, as its influence also changes the thermodynamical quantities at finite temperatures in a nontrivial manner. Here some features of the Supernova equation of state have been studied, which look promising for further investigations for Supernovae (proto neutron stars) and also for compact star mergers. The final

  12. Two-chiral component microemulsion EKC - chiral surfactant and chiral oil. Part 2: diethyl tartrate.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-08-01

    In this second study on dual-chirality microemulsions containing a chiral surfactant and a chiral oil, a less hydrophobic and lower interfacial tension chiral oil, diethyl tartrate, is employed (Part 1, Foley, J. P. et al.., Electrophoresis, DOI: 10.1002/elps.200600551). Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and diethyl tartrate (D, L, or racemic, 0.88% v/v) were examined as pseudostationary phases (PSPs) for the enantioseparation of six chiral pharmaceutical compounds: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Average efficiencies increased with the addition of a chiral oil to R-DDCV PSP formulations. Modest improvements in resolution and enantioselectivity (alpha(enant)) were achieved with two-chiral-component systems over the one-chiral-component microemulsion. Slight enantioselective synergies were confirmed using a thermodynamic model. Results obtained in this study are compared to those obtained in Part 1 as well as those obtained with chiral MEEKC using an achiral, low-interfacial-tension oil (ethyl acetate). Dual-chirality microemulsions with the more hydrophobic oil dibutyl tartrate yielded, relative to diethyl tartrate, higher efficiencies (100,000-134,000 vs. 80,800-94,300), but lower resolution (1.64-1.91 vs. 2.08-2.21) due to lower enantioselectivities (1.060-1.067 vs. 1.078-1.081). Atenolol enantiomers could not be separated with the dibutyl tartrate-based microemulsions but were partially resolved using diethyl tartrate microemulsions. A comparable single-chirality microemulsion based on the achiral oil ethyl acetate yielded, relative to diethyl tartrate, lower efficiency (78 300 vs. 91 600), higher resolution (1.99 vs. 1.83), and similar enantioselectivities.

  13. Quark structure of chiral solitons

    Energy Technology Data Exchange (ETDEWEB)

    Dmitri Diakonov

    2004-05-01

    There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ''chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ''soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.

  14. Applications Of Chiral Perturbation Theory

    CERN Document Server

    Mohta, V

    2005-01-01

    Effective field theory techniques are used to describe the spectrum and interactions of hadrons. The mathematics of classical field theory and perturbative quantum field theory are reviewed. The physics of effective field theory and, in particular, of chiral perturbation theory and heavy baryon chiral perturbation theory are also reviewed. The geometry underlying heavy baryon chiral perturbation theory is described in detail. Results by Coleman et. al. in the physics literature are stated precisely and proven. A chiral perturbation theory is developed for a multiplet containing the recently- observed exotic baryons. A small coupling expansion is identified that allows the calculation of self-energy corrections to the exotic baryon masses. Opportunities in lattice calculations are discussed. Chiral perturbation theory is used to study the possibility of two multiplets of exotic baryons mixed by quark masses. A new symmetry constraint on reduced partial widths is identified. Predictions in the literature based ...

  15. Chiral Nuclear Dynamics II

    CERN Document Server

    Rho, Mannque

    2008-01-01

    This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and

  16. Thermodynamics of SU(2) quantum Yang-Mills theory and CMB anomalies

    CERN Document Server

    Hofmann, Ralf

    2013-01-01

    A brief review of effective SU(2) Yang-Mills thermodynamics in the deconfining phase is given, including the construction of the thermal ground-state estimate in terms of an inert, adjoint scalar field $\\phi$, based on non-propagating (anti)selfdual field configurations of topological charge unity. We explain why the screening physics of an SU(2) photon is subject to an electric-magnetically dual interpretation. Next, we elucidate how a low-frequency excess of line temperature in the Cosmic Microwave Background (CMB) determines the value of the critical temperature of the deconfining-preconfining phase transition of an SU(2) Yang-Mills theory postulated to describe photon propagation, and we describe how, starting at a redshift of about unity, SU(2) photons collectively work 3D temperature depressions into the CMB. Upon projection along a line of sight, a given depression influences the present CMB sky in a cosmologically local way, possibly explaining the large-angle anomalies confirmed recently by the Planc...

  17. SU(2)$_{\\tiny\\mbox{CMB}}$ at high redshifts and the value of $H_0$

    CERN Document Server

    Hahn, Steffen

    2016-01-01

    We investigate a high-$z$ cosmological model to compute the co-moving sound horizon $r_s$ at baryon freeze-out following hydrogen recombination. This model assumes a replacement of the conventional CMB photon gas by SU(2) Yang-Mills thermodynamics, three flavors of massless neutrinos ($N_\

  18. Supersymmetric solutions of SU(2-Fayet–Iliopoulos-gauged N=2, d=4 supergravity

    Directory of Open Access Journals (Sweden)

    Tomás Ortín

    2017-03-01

    Full Text Available We explore the construction of supersymmetric solutions of theories of N=2,d=4 supergravity with a SU(2 gauging and SU(2 Fayet–Iliopoulos terms. In these theories an SU(2 isometry subgroup of the Special-Kähler manifold is gauged together with a SU(2 R-symmetry subgroup. We construct several solutions of the CP‾3 quadratic model directly in four dimensions and of the ST[2,6] model by dimensional reduction of the solutions found by Cariglia and Mac Conamhna in N=(1,0,d=6 supergravity with the same kind of gauging. In the CP‾3 model, we construct an AdS2×S2 solution which is only 1/8 BPS and an R×H3 solutions that also preserves 1 of the 8 possible supersymmetries. We show how to use dimensional reduction as in the ungauged case to obtain Rn×Sm and also AdSn×Sm-type solutions (with different radii in 5- and 4-dimensions from the 6-dimensional AdS3×S3 solution.

  19. Scattering lengths in SU(2) gauge theory with two fundamental fermions

    DEFF Research Database (Denmark)

    Arthur, R.; Drach, V.; Hansen, Martin Rasmus Lundquist

    2014-01-01

    We investigate non perturbatively scattering properties of Goldstone Bosons in an SU(2) gauge theory with two Wilson fermions in the fundamental representation. Such a theory can be used to build extensions of the Standard Model that unifies Technicolor and pseudo Goldstone composite Higgs models...

  20. Mass anomalous dimension and running of the coupling in SU(2) with six fundamental fermions

    DEFF Research Database (Denmark)

    Bursa, Francis; Del Debbio, Luigi; Keegan, Liam

    2010-01-01

    We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. By using the Schr\\"odinger Functional method we measure the running of the coupling and the fermion mass over a wide range of length scales. We observe very slow running of the coupling and construct an estimator for the...

  1. Light Asymmetric Dark Matter on the Lattice: SU(2) Technicolor with Two Fundamental Flavors

    DEFF Research Database (Denmark)

    Lewis, Randy; Pica, Claudio; Sannino, Francesco

    2012-01-01

    The SU(2) gauge theory with two massless Dirac flavors constitutes the building block of several models of Technicolor. Furthermore it has also been used as a template for the construction of a natural light asymmetric, or mixed type, dark matter candidate. We use explicit lattice simulations to ...

  2. A correction to the Immirzi parameter of SU(2 spin networks

    Directory of Open Access Journals (Sweden)

    M. Sadiq

    2015-02-01

    Full Text Available The elegant predictions of loop quantum gravity are obscured by the free Immirzi parameter (γ. Dreyer (2003, considering the asymptotic quasinormal modes spectrum of a black hole, proposed that γ may be fixed by letting the j=1 transitions of spin networks as the dominant processes contributing to the black hole area, as opposed to the expected j=1/2 transitions. This suggested that the gauge group of the theory might be SO(3 rather than SU(2. Corichi (2003, maintaining SU(2 as the underlying gauge group, and invoking the principle of local fermion-number conservation, reported the same value of γ for j=1 processes as obtained by Dreyer. In this note, preserving the SU(2 structure of the theory, and considering j=1 transitions as the dominant processes, we point out that the value of γ is in fact twice the value reported by these authors. We arrive at this result by assuming the asymptotic quasinormal modes themselves as dynamical systems obeying SU(2 symmetry.

  3. Confining vs. conformal scenario for SU(2) with 2 adjoint fermions. Mesonic spectrum

    DEFF Research Database (Denmark)

    Pica, Claudio; Del Debbio, Luigi; Lucini, Biagio

    2010-01-01

    The Minimal Walking Technicolor (MWT) model, based on the SU(2) gauge group with two Dirac adjoint fermions, is expected to lie close to the lower boundary of the conformal window. As such, it is believed to possess a dynamics different enough from QCD to be a viable candidate for a Technicolor t...

  4. Mass anomalous dimension of SU(2) using the spectral density method

    CERN Document Server

    Suorsa, Joni M; Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari; Tuominen, Kimmo; Tähtinen, Sara

    2016-01-01

    SU(2) with N_f = 6 and N_f = 8 are believed to have an infrared conformal fixed point. We use the spectral density method cross referenced with the mass step scaling method to evaluate the coupling constant dependence of the mass anomalous dimension for massless HEX smeared, clover improved Wilson fermions with Schr\\"odinger functional boundary conditions.

  5. On 2D and 3D solitons in SU(2) gluo-dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bogolubskaya, Alla; Bogolubsky, Igor [Joint Institute for Nuclear Research - JINR, Joliot-Curie st., 6, Moskovskaya obl., 141980, Dubna (Russian Federation)

    2010-07-01

    We plan to indicate the possibility of soliton existence in 2D and 3D SU(2) gluo-dynamics. Hamiltonians in terms of radial functions will be presented. Localized in space field distributions which provide local minima to these Hamiltonians are studied. Their physical implications are discussed. (author)

  6. Anatomy of isolated monopole in Abelian projection od SU(2) lattice gauge theory

    CERN Document Server

    Belavin, V A; Veselov, A I

    2001-01-01

    The structure of the isolated static monopolies in the maximum Abelian projection of the SU(2) gluodynamics on the lattice studied. The standard parametrization of the coupling matrix was used by determining the maximum Abelian projection of the R functional maximization relative to all scale transformations. The monopole radius R approx = 0.06 fm is evaluated

  7. Weinberg Angle Derivation from Discrete Subgroups of SU(2 and All That

    Directory of Open Access Journals (Sweden)

    Potter F.

    2015-01-01

    Full Text Available The Weinberg angle W of the Standard Model of leptons and quarks is derived from specific discrete (i.e., finite subgroups of the electroweak local gauge group SU(2 L U(1 Y . In addition, the cancellation of the triangle anomaly is achieved even when there are four quark families and three lepton families!

  8. An SU(2) symmetry of the one-dimensional spin-1 XY model

    CERN Document Server

    Kitazawa, A; Nomura, K

    2003-01-01

    We show that the one-dimensional spin-1 XY model has an additional SU(2) symmetry for the open boundary condition and for an artificial one. We can explain some degeneracies of excitation states which were reported in previous numerical studies. (letter to the editor)

  9. Gradient flow and IR fixed point in SU(2) with Nf=8 flavors

    DEFF Research Database (Denmark)

    Leino, Viljami; Karavirta, Tuomas; Rantaharju, Jarno

    2015-01-01

    We study the running of the coupling in SU(2) gauge theory with 8 massless fundamental representation fermion flavours, using the gradient flow method with the Schr\\"odinger functional boundary conditions. Gradient flow allows us to measure robust continuum limit for the step scaling function...

  10. Running coupling in SU(2) gauge theory with two adjoint fermions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari

    2016-01-01

    We study SU(2) gauge theory with two Dirac fermions in the adjoint representation of the gauge group on the lattice. Using clover improved Wilson fermion action with hypercubic truncated stout smearing we perform simulations at larger coupling than before. We measure the evolution of the coupling...

  11. The gradient flow running coupling in SU2 with 8 flavors

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Karavirta, Tuomas; Leino, Viljami

    2014-01-01

    We present preliminary results of the gradient flow running coupling with Dirichlet boundary condition in the SU(2) gauge theory with 8 fermion flavours. Improvements to the gradient flow measurement allow us to obtain a robust continuum limit. The results are consistent with perturbative running...

  12. Chiral quantum optics.

    Science.gov (United States)

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-25

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  13. Chiral imbalance in QCD

    Directory of Open Access Journals (Sweden)

    Andrianov Alexander

    2017-01-01

    Full Text Available The chiral imbalance (ChI is given by a difference between the numbers of RH and LH quarks which may occur in the fireball after heavy ion collision. To characterize it adiabatically a quark chiral (axial chemical potential must be introduced taking into account emergence of a ChI in such a phase. In this report the phenomenology of formation of Local spatial Parity Breaking (LPB in the hot and dense baryon matter is discussed and its simulation within a number of QCD-inspired models is outlined. The appearance of new states in the spectra of scalar, pseudoscalar and vector particles in such a matter is elucidated. In particular, from the effective vector meson theory in the presence of Chern-Simons interaction it is demonstrated that the spectrum of massive vector mesons splits into three polarization components with different effective masses. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the dilepton invariant mass can serve as a characteristic indication of the LPB in PHENIX, STAR and ALICE experiments.

  14. Chiral imbalance in QCD

    Science.gov (United States)

    Andrianov, Alexander; Andrianov, Vladimir; Espriu, Domenec

    2017-03-01

    The chiral imbalance (ChI) is given by a difference between the numbers of RH and LH quarks which may occur in the fireball after heavy ion collision. To characterize it adiabatically a quark chiral (axial) chemical potential must be introduced taking into account emergence of a ChI in such a phase. In this report the phenomenology of formation of Local spatial Parity Breaking (LPB) in the hot and dense baryon matter is discussed and its simulation within a number of QCD-inspired models is outlined. The appearance of new states in the spectra of scalar, pseudoscalar and vector particles in such a matter is elucidated. In particular, from the effective vector meson theory in the presence of Chern-Simons interaction it is demonstrated that the spectrum of massive vector mesons splits into three polarization components with different effective masses. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the dilepton invariant mass can serve as a characteristic indication of the LPB in PHENIX, STAR and ALICE experiments.

  15. Chiral quantum dot based materials

    Science.gov (United States)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  16. The Kronecker product in terms of Hubbard operators and the Clebsch–Gordan decomposition of SU(2SU(2)

    Energy Technology Data Exchange (ETDEWEB)

    Enríquez, Marco; Rosas-Ortiz, Oscar, E-mail: orosas@fis.cinvestav.mx

    2013-12-15

    We review the properties of the Kronecker (direct, or tensor) product of square matrices A⊗B⊗C⋯ in terms of Hubbard operators. In its simplest form, a Hubbard operator X{sub n}{sup i,j} can be expressed as the n-square matrix which has entry 1 in position (i,j) and zero in all other entries. The algebra and group properties of the observables that define a multipartite quantum system are notably straightforward in such a framework. In particular, we use the Kronecker product in Hubbard notation to get the Clebsch–Gordan decomposition of the product group SU(2SU(2). Finally, the n-dimensional irreducible representations so obtained are used to derive closed forms of the Clebsch–Gordan coefficients that rule the addition of angular momenta. Our results can be further developed in many different directions. -- Highlights: •The Kronecker product is studied in terms of Hubbard operators. •Complicated calculations involving large matrices are reduced to simple relations of subscripts. •The algebraic properties of the quantum observables of multipartite systems are studied. •The Clebsch–Gordan coefficients are given in terms of hypergeometric {sub 3}F{sub 2} functions. •The results can be further developed in many different directions.

  17. N=1 supersymmetric $SU(4) x SU(2)_{L} x SU(2)_{R}$ effective theory from the weakly coupled heterotic superstring

    CERN Document Server

    Leontaris, George K

    1999-01-01

    In the context of the free-fermionic formulation of the heterotic superstring, we construct a three generation N=1 supersymmetric SU(4)xSU(2)LxSU(2)R model supplemented by an SU(8) hidden gauge symmetry and five Abelian factors. The symmetry breaking to the standard model is achieved using vacuum expectation values of a Higgs pair in (4bar,2R)+(4,2R) at a high scale. One linear combination of the Abelian symmetries is anomalous and is broken by vacuum expectation values of singlet fields along the flat directions of the superpotential. All consistent string vacua of the model are completely classified by solving the corresponding system of F- and D-flatness equations including non-renormalizable terms up to sixth order. The requirement of existence of electroweak massless doublets further restricts the phenomenologically viable vacua. The third generation fermions receive masses from the tree-level superpotential. Further, a complete calculation of all non-renormalizable fermion mass terms up to fifth order s...

  18. N = 1 supersymmetric SU(4) x SU(2) sub L x SU (2) sub R effective theory from the weakly coupled heterotic superstring

    CERN Document Server

    Leontaris, George K

    1999-01-01

    In the context of the free-fermionic formulation of the heterotic superstring, we construct a three-generation N = 1 supersymmetric SU(4) x SU(2) sub L x SU(2) sub R model supplemented by an SU(8) hidden gauge symmetry and five Abelian factors. The symmetry breaking to the standard model is achieved using vacuum expectation values of a Higgs pair in (4,2 sub R) + (4-bar,2 sub R) at a high scale. One linear combination of the Abelian symmetries is anomalous and is broken by vacuum expectation values of singlet fields along the flat directions of the superpotential. All consistent string vacua of the model are completely classified by solving the corresponding system of F- and D-flatness equations including non-renormalizable terms up to sixth order. The requirement of existence of electroweak massless doublets imposes further restrictions to the phenomenologically viable vacua. The third generation fermions receive masses from the tree-level superpotential. Further, a complete calculation of all non-renormaliz...

  19. Quarks, baryons and chiral symmetry

    CERN Document Server

    Hosaka, Atsushi

    2001-01-01

    This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w

  20. Resurgence in η-deformed Principal Chiral Models

    Energy Technology Data Exchange (ETDEWEB)

    Demulder, Saskia [Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes,Pleinlaan 2, 1050, Brussels (Belgium); Dorigoni, Daniele [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,Durham DH1 3LE (United Kingdom); Thompson, Daniel C. [Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes,Pleinlaan 2, 1050, Brussels (Belgium)

    2016-07-18

    We study the SU(2) Principal Chiral Model (PCM) in the presence of an integrable η-deformation. We put the theory on ℝ×S{sup 1} with twisted boundary conditions and then reduce the circle to obtain an effective quantum mechanics associated with the Whittaker-Hill equation. Using resurgent analysis we study the large order behaviour of perturbation theory and recover the fracton events responsible for IR renormalons. The fractons are modified from the standard PCM due to the presence of this η-deformation but they are still the constituents of uniton-like solutions in the deformed quantum field theory. We also find novel SL(2,ℂ) saddles, thus strengthening the conjecture that the semi-classical expansion of the path integral gives rise to a resurgent transseries once written as a sum over Lefschetz thimbles living in a complexification of the field space. We conclude by connecting our quantum mechanics to a massive deformation of the N=2 4-d gauge theory with gauge group SU(2) and N{sub f}=2.

  1. Chiral higher spin gravity

    Science.gov (United States)

    Krishnan, Chethan; Raju, Avinash

    2017-06-01

    We construct a candidate for the most general chiral higher spin theory with AdS3 boundary conditions. In the Chern-Simons language, on the left it has the Drinfeld-Sokolov reduced form, but on the right all charges and chemical potentials are turned on. Altogether (for the spin-3 case) these are 19 functions. Despite this, we show that the resulting metric has the form of the "most general" AdS3 boundary conditions discussed by Grumiller and Riegler. The asymptotic symmetry algebra is a product of a W3 algebra on the left and an affine s l (3 )k current algebra on the right, as desired. The metric and higher spin fields depend on all the 19 functions. We compare our work with previous results in the literature.

  2. Amino Acids and Chirality

    Science.gov (United States)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  3. Thermodynamics of SU(2 quantum Yang-Mills theory and CMB anomalies

    Directory of Open Access Journals (Sweden)

    Hofmann Ralf

    2014-04-01

    Full Text Available A brief review of effective SU(2 Yang-Mills thermodynamics in the deconfining phase is given, including the construction of the thermal ground-state estimate in terms of an inert, adjoint scalar field φ, based on non-propagating (antiselfdual field configurations of topological charge unity. We also discuss kinematic constraints on interacting propagating gauge fields implied by the according spatial coarse-graining, and we explain why the screening physics of an SU(2 photon is subject to an electric-magnetically dual interpretation. This argument relies on the fact that only (anticalorons of scale parameter ρ ∼ |φ|−1 contribute to the coarse-graining required for thermal-ground-state emergence at temperature T. Thus, use of the effective gauge coupling e in the (anticaloron action is justified, yielding the value ħ for the latter at almost all temperatures. As a consequence, the indeterministic transition of initial to final plane waves caused by an effective, pointlike vertex is fundamentally mediated in Euclidean time by a single (anticaloron being part of the thermal ground state. Next, we elucidate how a low-frequency excess of line temperature in the Cosmic Microwave Background (CMB determines the value of the critical temperature of the deconfining-preconfining phase transition of an SU(2 Yang-Mills theory postulated to describe photon propagation, and we describe how, starting at a redshift of about unity, SU(2 photons collectively work 3D temperature depressions into the CMB. Upon projection along a line of sight, a given depression influences the present CMB sky in a cosmologically local way, possibly explaining the large-angle anomalies confirmed recently by the Planck collaboration. Finally, six relativistic polarisations residing in the SU(2 vector modes roughly match the number of degrees of freedom in cosmic neutrinos (Planck which would disqualify the latter as radiation. Indeed, if interpreted as single center

  4. Confining vs. conformal scenario for SU(2) with 2 adjoint fermions. Gluonic observables

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino

    2010-01-01

    Walking technicolor is a mechanism for electroweak symmetry breaking without Higgs field. The Higgs mechanism is provided by chiral symmetry breaking in the technicolor theory. An essential ingredient is the vicinity to an IR fixed point, which could reconcile technicolor with the electroweak...

  5. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    Abstract. A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  6. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  7. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  8. Meta-Chirality: Fundamentals, Construction and Applications

    Directory of Open Access Journals (Sweden)

    Xiaoliang Ma

    2017-05-01

    Full Text Available Chiral metamaterials represent a special type of artificial structures that cannot be superposed to their mirror images. Due to the lack of mirror symmetry, cross-coupling between electric and magnetic fields exist in chiral mediums and present unique electromagnetic characters of circular dichroism and optical activity, which provide a new opportunity to tune polarization and realize negative refractive index. Chiral metamaterials have attracted great attentions in recent years and have given rise to a series of applications in polarization manipulation, imaging, chemical and biological detection, and nonlinear optics. Here we review the fundamental theory of chiral media and analyze the construction principles of some typical chiral metamaterials. Then, the progress in extrinsic chiral metamaterials, absorbing chiral metamaterials, and reconfigurable chiral metamaterials are summarized. In the last section, future trends in chiral metamaterials and application in nonlinear optics are introduced.

  9. Chiral behaviour of the pion decay constant in N{sub f}=2 QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lottini, Stefano [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Collaboration: ALPHA Collaboration

    2013-11-15

    As increased statistics and new ensembles with light pions have become available within the CLS effort, we complete previous work by inspecting the chiral behaviour of the pion decay constant. We discuss the validity of Chiral Perturbation Theory ({chi}PT) and examine the results concerning the pion decay constant and the ensuing scale setting, the pion mass squared in units of the quark mass, and the ratio of decay constants f{sub K}=f{sub {pi}}; along the way, the relevant low-energy constants of SU(2) {chi}PT are estimated. All simulations were performed with two dynamical flavours of nonperturbatively O(a)-improved Wilson fermions, on volumes with m{sub {pi}}L{>=}4, pion masses{>=}192 MeV and lattice spacings down to 0.048 fm. Our error analysis takes into account the effect of slow modes on the autocorrelations.

  10. Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study

    Energy Technology Data Exchange (ETDEWEB)

    Zohar, Erez, E-mail: erez.zohar@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Wahl, Thorsten B. [Rudolf Peierls Centre for Theoretical Physics, Oxford, 1 Keble Road, OX1 3NP (United Kingdom); Burrello, Michele, E-mail: michele.burrello@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Cirac, J. Ignacio [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany)

    2016-11-15

    Over the last years, Projected Entangled Pair States have demonstrated great power for the study of many body systems, as they naturally describe ground states of gapped many body Hamiltonians, and suggest a constructive way to encode and classify their symmetries. The PEPS study is not only limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation.

  11. Probing neutrino and Higgs sectors in SU(2){sub 1} x SU(2){sub 2} x U(1){sub Y} model with lepton-flavor non-universality

    Energy Technology Data Exchange (ETDEWEB)

    Hue, L.T. [Duy Tan University, Institute of Research and Development, Da Nang City (Viet Nam); Vietnam Academy of Science and Technology, Institute of Physics, Hanoi (Viet Nam); Arbuzov, A.B. [Joint Institute for Nuclear Researches, Bogoliubov Laboratory for Theoretical Physics, Dubna (Russian Federation); Ngan, N.T.K. [Cantho University, Department of Physics, Cantho (Viet Nam); Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi (Viet Nam); Long, H.N. [Ton Duc Thang University, Theoretical Particle Physics and Cosmology Research Group, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam)

    2017-05-15

    The neutrino and Higgs sectors in the SU(2){sub 1} x SU(2){sub 2} x U(1){sub Y} model with lepton-flavor non-universality are discussed. We show that active neutrinos can get Majorana masses from radiative corrections, after adding only new singly charged Higgs bosons. The mechanism for the generation of neutrino masses is the same as in the Zee models. This also gives a hint to solving the dark matter problem based on similar ways discussed recently in many radiative neutrino mass models with dark matter. Except the active neutrinos, the appearance of singly charged Higgs bosons and dark matter does not affect significantly the physical spectrum of all particles in the original model. We indicate this point by investigating the Higgs sector in both cases before and after singly charged scalars are added into it. Many interesting properties of physical Higgs bosons, which were not shown previously, are explored. In particular, the mass matrices of charged and CP-odd Higgs fields are proportional to the coefficient of triple Higgs coupling μ. The mass eigenstates and eigenvalues in the CP-even Higgs sector are also presented. All couplings of the SM-like Higgs boson to normal fermions and gauge bosons are different from the SM predictions by a factor c{sub h}, which must satisfy the recent global fit of experimental data, namely 0.995 < vertical stroke c{sub h} vertical stroke < 1. We have analyzed a more general diagonalization of gauge boson mass matrices, then we show that the ratio of the tangents of the W-W{sup '} and Z-Z{sup '} mixing angles is exactly the cosine of the Weinberg angle, implying that number of parameters is reduced by 1. Signals of new physics from decays of new heavy fermions and Higgs bosons at LHC and constraints of their masses are also discussed. (orig.)

  12. Probing neutrino and Higgs sectors in { SU(2) }_1 × { SU(2) }_2 × { U(1) }_Y model with lepton-flavor non-universality

    Science.gov (United States)

    Hue, L. T.; Arbuzov, A. B.; Ngan, N. T. K.; Long, H. N.

    2017-05-01

    The neutrino and Higgs sectors in the { SU(2) }_1 × { SU(2) }_2 × { U(1) }_Y model with lepton-flavor non-universality are discussed. We show that active neutrinos can get Majorana masses from radiative corrections, after adding only new singly charged Higgs bosons. The mechanism for the generation of neutrino masses is the same as in the Zee models. This also gives a hint to solving the dark matter problem based on similar ways discussed recently in many radiative neutrino mass models with dark matter. Except the active neutrinos, the appearance of singly charged Higgs bosons and dark matter does not affect significantly the physical spectrum of all particles in the original model. We indicate this point by investigating the Higgs sector in both cases before and after singly charged scalars are added into it. Many interesting properties of physical Higgs bosons, which were not shown previously, are explored. In particular, the mass matrices of charged and CP-odd Higgs fields are proportional to the coefficient of triple Higgs coupling μ . The mass eigenstates and eigenvalues in the CP-even Higgs sector are also presented. All couplings of the SM-like Higgs boson to normal fermions and gauge bosons are different from the SM predictions by a factor c_h, which must satisfy the recent global fit of experimental data, namely 0.995Z-Z' mixing angles is exactly the cosine of the Weinberg angle, implying that number of parameters is reduced by 1. Signals of new physics from decays of new heavy fermions and Higgs bosons at LHC and constraints of their masses are also discussed.

  13. From instantons to sphalerons: Time-dependent periodic solutions of SU(2)-Higgs theory

    Energy Technology Data Exchange (ETDEWEB)

    Frost, K.L.; Yaffe, L.G. [Department of Physics, University of Washington, Seattle, Washington 98105-1560 (United States)

    1999-11-01

    We solve numerically for periodic, spherically symmetric, classical solutions of SU(2)-Higgs theory in four-dimensional Euclidean space. In the limit of short periods the solutions approach tiny instanton{endash}anti-instanton superpositions while, for longer periods, the solutions merge with the static sphaleron. A previously predicted bifurcation point, where two branches of periodic solutions meet, appears for Higgs boson masses larger than 3.091M{sub W}. {copyright} {ital 1999} {ital The American Physical Society}

  14. Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buividovich, P.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Polikarpov, M.I. [Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2011-11-15

    We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)

  15. Template Composite Dark Matter : SU(2) gauge theory with 2 fundamental flavours

    CERN Document Server

    Drach, Vincent; Pica, Claudio; Rantaharju, Jarno; Sannino, Francesco

    2015-11-13

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon exchange computing the electric polarizability of the DM candidate. Finally, we briefly discuss the viability of the model given the present experimental constraints.

  16. Quantum entanglement in the one-dimensional spin-orbital SU (2 )⊗XXZ model

    Science.gov (United States)

    You, Wen-Long; Horsch, Peter; Oleś, Andrzej M.

    2015-08-01

    We investigate the phase diagram and the spin-orbital entanglement of a one-dimensional SU (2 )⊗XXZ model with SU(2) spin exchange and anisotropic XXZ orbital exchange interactions and negative exchange coupling constant. As a unique feature, the spin-orbital entanglement entropy in the entangled ground states increases here linearly with system size. In the case of Ising orbital interactions, we identify an emergent phase with long-range spin-singlet dimer correlations triggered by a quadrupling of correlations in the orbital sector. The peculiar translational-invariant spin-singlet dimer phase has finite von Neumann entanglement entropy and survives when orbital quantum fluctuations are included. It even persists in the isotropic SU (2 )⊗SU (2) limit. Surprisingly, for finite transverse orbital coupling, the long-range spin-singlet correlations also coexist in the antiferromagnetic spin and alternating orbital phase making this phase also unconventional. Moreover, we also find a complementary orbital singlet phase that exists in the isotropic case but does not extend to the Ising limit. The nature of entanglement appears essentially different from that found in the frequently discussed model with positive coupling. Furthermore, we investigate the collective spin and orbital wave excitations of the disentangled ferromagnetic-spin/ferro-orbital ground state and explore the continuum of spin-orbital excitations. Interestingly, one finds among the latter excitations two modes of exciton bound states. Their spin-orbital correlations differ from the remaining continuum states and exhibit logarithmic scaling of the von Neumann entropy with increasing system size. We demonstrate that spin-orbital excitons can be experimentally explored using resonant inelastic x-ray scattering, where the strongly entangled exciton states can be easily distinguished from the spin-orbital continuum.

  17. Light Kaluza Klein States in Randall-Sundrum Models with Custodial SU(2)

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela; /Fermilab; Ponton, Eduardo; /Columbia U.; Santiago, Jose; /Fermilab; Wagner, Carlos E.M.; /Argonne /Chicago U., EFI /KICP, Chicago

    2006-07-01

    We consider Randall-Sundrum scenarios based on SU(2){sub L} x SU(2){sub R} and a discrete parity exchanging L with R. The custodial and parity symmetries can be used to make the tree level contribution to the T parameter and the anomalous couplings of the bottom quark to the Z very small. We show that the resulting quantum numbers typically induce a negative T parameter at one loop that, together with the positive value of the S parameter, restrict considerably these models. There are nevertheless regions of parameter space that successfully reproduce the fit to electroweak precision observables with light Kaluza-Klein excitations accessible at colliders. We consider models of gauge-Higgs unification that implement the custodial and parity symmetries and find that the electroweak data singles out a very well defined region in parameter space. In this region one typically finds light gauge boson Kaluza-Klein excitations as well as light SU(2){sub L} singlet, and sometimes also doublet, fermionic states, that mix with the top quark, and that may yield interesting signatures at future colliders.

  18. Systematic construction of spin liquids on the square lattice from tensor networks with SU(2) symmetry

    CERN Document Server

    Mambrini, Matthieu; Poilblanc, Didier

    2016-01-01

    We elaborate a simple classification scheme of all rank-5 SU(2)-spin rotational symmetric tensors according to i) the on-site physical spin-$S$, (ii) the local Hilbert space $V^{\\otimes 4}$ of the four virtual (composite) spins attached to each site and (iii) the irreducible representations of the $C_{4v}$ point group of the square lattice. We apply our scheme to draw a complete list of all SU(2)-symmetric translationally and rotationally-invariant Projected Entangled Pair States (PEPS) with bond dimension $D\\leqslant 6$. All known SU(2)-symmetric PEPS on the square lattice are recovered and simple generalizations are provided in some cases. More generally, to each of our symmetry class can be associated a $({\\cal D}-1)$-dimensional manifold of spin liquids (potentially) preserving lattice symmetries and defined in terms of ${\\cal D}$ independent tensors of a given bond dimension $D$. In addition, generic (low-dimensional) families of PEPS explicitly breaking either (i) particular point-group lattice symmetri...

  19. Effect of SU(2) symmetry on many-body localization and thermalization

    Science.gov (United States)

    Protopopov, Ivan V.; Ho, Wen Wei; Abanin, Dmitry A.

    2017-07-01

    The many-body localized (MBL) phase is characterized by a complete set of quasilocal integrals of motion and area-law entanglement of excited eigenstates. We study the effect of non-Abelian continuous symmetries on MBL, considering the case of SU(2 ) symmetric disordered spin chains. The SU(2 ) symmetry imposes strong constraints on the entanglement structure of the eigenstates, precluding conventional MBL. We construct a fixed-point Hamiltonian, which realizes a nonergodic (but non-MBL) phase characterized by eigenstates having logarithmic scaling of entanglement with the system size, as well as an incomplete set of quasilocal integrals of motion. We study the response of such a phase to local symmetric perturbations, finding that even weak perturbations induce multispin resonances. We conclude that the nonergodic phase is generally unstable and that SU(2 ) symmetry implies thermalization. The approach introduced in this Rapid Communication can be used to study dynamics in disordered systems with non-Abelian symmetries, and provides a starting point for searching nonergodic phases beyond conventional MBL.

  20. Chirality in adsorption on solid surfaces.

    Science.gov (United States)

    Zaera, Francisco

    2017-12-07

    In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral

  1. Chiral Ramachandran Plots I: Glycine.

    Science.gov (United States)

    Baruch-Shpigler, Yael; Wang, Huan; Tuvi-Arad, Inbal; Avnir, David

    2017-10-24

    Ramachandran plots (RPs) map the wealth of conformations of the polypeptide backbone and are widely used to characterize protein structures. A limitation of the RPs is that they are based solely on two dihedral angles for each amino acid residue and provide therefore only a partial picture of the conformational richness of the protein. Here we extend the structural RP analysis of proteins from a two-dimensional (2D) map to a three-dimensional map by adding the quantitative degree of chirality-the continuous chirality measure (CCM)-of the amino acid residue at each point in the RP. This measure encompasses all bond angles and bond lengths of an amino acid residue. We focus in this report on glycine (Gly) because, due to its flexibility, it occupies a large portion of the 2D map, thus allowing a detailed study of the chirality measure, and in order to evaluate the justification of classically labeling Gly as the only achiral amino acid. We have analyzed in detail 4366 Gly residues extracted from high resolution crystallographic data of 160 proteins. This analysis reveals not only that Gly is practically always conformationally chiral, but that upon comparing with the backbone of all amino acids, the quantitative chirality values of Gly are of similar magnitudes to those of the (chiral) amino acids. Structural trends and energetic considerations are discussed in detail. Generally we show that adding chirality to Ramachandran plots creates far more informative plots that highlight the sensitivity of the protein structure to minor conformational changes.

  2. Amplification of chirality in liquid crystals

    NARCIS (Netherlands)

    Eelkema, Rienk; Feringa, Ben L.

    2006-01-01

    The amplification of molecular chirality by liquid crystalline systems is widely applied in investigations towards enantioselective solvent - solute interactions, chiral supramolecular assemblies, smart materials, and the development of liquid crystal displays. Here we present an overview of recent

  3. Reagent controlled addition of chiral sulfur ylides to chiral aldehydes

    Directory of Open Access Journals (Sweden)

    Bi Jie

    2005-08-01

    Full Text Available Abstract The degree of reagent and substrate control in the reaction of chiral sulfur ylides with chiral aldehydes has been investigated. Specifically, the reactions of the two enantiomers of the chiral benzyl sulfonium salt 1 with glyceraldehyde acetonide were studied in detail. Of the two new stereogenic centers created, it was found that the C1 stereochemistry was largely controlled by the reagent, whereas control at the C2 center was dependent on the aldehyde used. In one case, the trans isomer was produced via reversible formation of the intermediate betaine, whereas in the alternative case, the C2 center was under Felkin Anh/Cornforth control through non-reversible formation of the betaine. Thus, the aldehyde stereocenter influenced the degree of reversibility in betaine formation, which impacted on the stereocontrol at the C2 position.

  4. Magnetic chirality as probed by neutron scattering

    Science.gov (United States)

    Simonet, V.; Loire, M.; Ballou, R.

    2012-11-01

    We review the concept of chirality, at first briefly in a general context then in the specific framework of the spin networks. We next discuss to what extent neutron scattering appears as an unconvertible tool to probe magnetic chirality in the static and dynamical regimes of the spins. The remarkable chiral ground state and excitations of the Fe-langasite compound finally serves to illustrate the use of neutron polarimetry in the experimental studies of the magnetic chirality.

  5. Quantum oscillations in the chiral magnetic conductivity

    Science.gov (United States)

    Kaushik, Sahal; Kharzeev, Dmitri E.

    2017-06-01

    In strong magnetic field, the longitudinal magnetoconductivity in three-dimensional chiral materials is shown to exhibit a new type of quantum oscillations arising from the chiral magnetic effect (CME). These quantum CME oscillations are predicted to dominate over the Shubnikov-de Haas (SdH) ones in chiral materials with an approximately conserved chirality of quasiparticles at strong magnetic fields. The phase of quantum CME oscillations differs from the phase of the conventional SdH oscillations by π /2 .

  6. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  7. Viscoelastic modes in chiral liquid crystals

    Indian Academy of Sciences (India)

    amit@fs.rri.local.net (Amit Kumar Agarwal)

    our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic modes corresponding to the C director fluctuations in the chiral smectic C phase and the behaviour of the Goldstone-mode near the chiral smectic C–smectic A phase transition. In cholesteric liquid ...

  8. Covariant perturbation theory and chiral superpropagators

    CERN Document Server

    Ecker, G

    1972-01-01

    The authors use a covariant formulation of perturbation theory for the non-linear chiral invariant pion model to define chiral superpropagators leading to S-matrix elements which are independent of the choice of the pion field coordinates. The relation to the standard definition of chiral superpropagators is discussed. (11 refs).

  9. Introduction to chiral symmetry in QCD

    Directory of Open Access Journals (Sweden)

    Sazdjian H.

    2017-01-01

    Full Text Available The main aspects of chiral symmetry in QCD are presented. The necessity of its spontaneous breakdown is explained. Some low-energy theorems are reviewed. The role of chiral effective Lagrangians in the formulation and realization of chiral perturbation theory is emphasized. The consequences of the presence of anomalies are sketched.

  10. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.

  11. Aspects of finite field-dependent symmetry in SU(2) Cho–Faddeev–Niemi decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com

    2013-11-25

    In this Letter we consider SU(2) Yang–Mills theory analyzed in Cho–Faddeev–Niemi variables which remains invariant under local gauge transformations. The BRST symmetries of this theory are generalized by making the infinitesimal parameter finite and field-dependent. Further, we show that under appropriate choices of finite and field-dependent parameter, the gauge-fixing and ghost terms corresponding to Landau as well as maximal Abelian gauge for such Cho–Faddeev–Niemi decomposed theory appear naturally within functional integral through Jacobian calculation.

  12. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Stefan

    2008-07-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  13. Thermodynamics of SU(2) mathcal{N} =2 supersymmetric Yang-Mills theory

    Science.gov (United States)

    Paik, Steve; Yaffe, Laurence G.

    2010-01-01

    The thermodynamics of four-dimensional SU(2) mathcal{N} =2 super-Yang-Mills theory is examined in both high and low temperature regimes. At low temperatures, compelling evidence is found for two distinct equilibrium states related by a spontaneously broken discrete R-symmetry. These equilibrium states exist because the quantum moduli space of the theory has two singular points where extra massless states appear. At high temperature, a unique R-symmetry-preserving equilibrium state is found. Discrepancies with previous results in the literature are explained.

  14. Spherically symmetric classical solutions in SU(2) gauge theory with a Higgs field

    Energy Technology Data Exchange (ETDEWEB)

    Ratra, B.; Yaffe, L.G.

    1988-04-21

    A consistent ansatz for time dependent classical solutions in an SU(2) gauge theory with a doublet Higgs field is presented. The (3+1)-dimensional field equations are reduced to those of an effective (1+1)-dimensional theory. This ansatz describes solutions which travel between topologically distinct classical vacua of the non-abelian gauge theory. The real time version of these solutions describes the creation and decay of the unstable static 'sphaleron', the imaginary time version describes a euclidean instanton. (orig.)

  15. Machine learning of explicit order parameters: From the Ising model to SU(2) lattice gauge theory

    Science.gov (United States)

    Wetzel, Sebastian J.; Scherzer, Manuel

    2017-11-01

    We present a solution to the problem of interpreting neural networks classifying phases of matter. We devise a procedure for reconstructing the decision function of an artificial neural network as a simple function of the input, provided the decision function is sufficiently symmetric. In this case one can easily deduce the quantity by which the neural network classifies the input. The method is applied to the Ising model and SU(2) lattice gauge theory. In both systems we deduce the explicit expressions of the order parameters from the decision functions of the neural networks. We assume no prior knowledge about the Hamiltonian or the order parameters except Monte Carlo-sampled configurations.

  16. Representations of the deformed U(su(2)) and U(osp(1,2)) algebras

    CERN Document Server

    Bonatsos, Dennis; Kolokotronis, P; Lenis, D; Bonatsos, Dennis

    1996-01-01

    The polynomial deformations of the Witten extensions of the U(su(2)) and U(osp(1,2)) algebras are three generator algebras with normal ordering, admitting a two generator subalgebra. The modules and the representations of these algebras are based on the construction of Verma modules, which are quotient modules, generated by ideals of the original algebra. This construction unifies a large number of the known algebras under the same scheme. The finite dimensional representations show new features such as the multiplicity of representations of the same dimensionality, or the existence of finite dimensional representations only for some dimensions.

  17. From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.

    Science.gov (United States)

    Pepe, M; Wiese, U-J

    2009-05-15

    We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.

  18. Monopoles in the Plaquette Formulation of the 3D SU(2) Lattice Gauge Theory

    CERN Document Server

    Borisenko, O; Boháčik, J

    2011-01-01

    Using a plaquette formulation for lattice gauge models we describe monopoles of the three dimensional SU(2) theory which appear as configurations in the complete axial gauge and violate the continuum Bianchi identity. Furthemore we derive a dual formulation for the Wilson loop in arbitrary representation and calculate the form of the interaction between generated electric flux and monopoles in the region of a weak coupling relevant for the continuum limit. The effective theory which controls the interaction is of the sine-Gordon type model. The string tension is calculated within the semiclassical approximation.

  19. Hagedorn spectrum and thermodynamics of SU(2) and SU(3) Yang-Mills theories

    CERN Document Server

    Caselle, Michele; Panero, Marco

    2015-01-01

    We present a high-precision lattice calculation of the equation of state in the confining phase of SU(2) Yang-Mills theory. We show that the results are described very well by a gas of massive, non-interacting glueballs, provided one assumes an exponentially growing Hagedorn spectrum. The latter can be derived within an effective bosonic closed-string model, leading to a parameter-free theoretical prediction, which is in perfect agreement with our lattice results. Furthermore, when applied to SU(3) Yang-Mills theory, this effective model accurately describes the lattice results reported by Bors\\'anyi et al. in JHEP 07 (2012) 056.

  20. Correlation functions of the energy-momentum tensor in SU(2) gauge theory at finite temperature

    DEFF Research Database (Denmark)

    Huebner, K.; Karsch, F.; Pica, Claudio

    2008-01-01

    We calculate correlation functions of the energy-momentum tensor in the vicinity of the deconfinement phase transition of (3+1)-dimensional SU(2) gauge theory and discuss their critical behavior in the vicinity of the second order deconfinement transition. We show that correlation functions...... of the trace of the energy momentum tensor diverge uniformly at the critical point in proportion to the specific heat singularity. Correlation functions of the pressure, on the other hand, stay finite at the critical point. We discuss the consequences of these findings for the analysis of transport...

  1. An Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System

    Energy Technology Data Exchange (ETDEWEB)

    Bernevig, Andrei

    2010-02-10

    Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constant (the ReD model), and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions, and is generated by operators whose wavevector depends on the coupling strength. It renders the spin lifetime infinite at this wavevector, giving rise to a Persistent Spin Helix (PSH). We obtain the spin fluctuation dynamics at, and away, from the symmetry point, and suggest experiments to observe the PSH.

  2. An Exact SU(2) Symmetry and Persistent Spin Helix ina Spin-orbit Coupled System

    Energy Technology Data Exchange (ETDEWEB)

    Bernevig, B.A.; /Stanford U., Phys. Dept. /Santa Barbara, KITP; Orenstein, J.; /LBL, Berkeley /UC, Berkeley; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2007-01-22

    Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constant (the ReD model), and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions, and is generated by operators whose wavevector depends on the coupling strength. It renders the spin lifetime infinite at this wavevector, giving rise to a Persistent Spin Helix (PSH). We obtain the spin fluctuation dynamics at, and away, from the symmetry point, and suggest experiments to observe the PSH.

  3. Chiral symmetry in light-front QCD

    Science.gov (United States)

    Wu, Menh-Hsiu; Zhang, Wei-Min

    2004-04-01

    The definition of chiral transformations in light-front field theory is very different from the conventional form in equal-time formalism. We study the consistency of chiral transformations and chiral symmetry in light-front QCD and derive a complete new light-front axial-vector current for QCD. The breaking of chiral symmetry in light-front QCD is only associated with helicity flip interaction between quarks and gluons. Remarkably, the new axial-vector current does not contain the pion pole part so that the associate chiral charge smoothly describes pion transitions for various hadronic processes.

  4. Numerical Results for SU(4) and SU(2) Kondo Effect in Carbon Nanotubes

    Science.gov (United States)

    Martins, George; Busser, Carlos

    2006-03-01

    New numerical results are presented for the Kondo effect in Carbon Nanotube (CNT) quantum dots (QDs). As recently reported by P. Jarillo-Herrero et al. (Nature 434, 484 (2005)), the Kondo effect in CNTs presents an SU(4) symmetry, which arises from the entanglement of orbital and spin degrees of freedom. As the number of co-tunneling processes increases, thanks to the extra (orbital) degree of freedom, the Kondo temperature reaches a high value of TK=7.7K. Interesting considerations can be drawn regarding the change from SU(4) to SU(2) symmetries depending on the hopping matrix elements between the leads and the CNT QD. Our results will analyze the transition between the SU(4) and the so-called two-level SU(2) (2LSU(2)) Kondo regimes induced by the variation of the coupling of the QD to the leads. The effect of an external magnetic field along the tube direction will also be analyzed. Our results will be compared with available Numerical Renormalization Group (NRG) results by M-S Choi et al. (Phys. Rev. Lett. 95, 067204 (2005)). A comparison with the experimental results will be made to gauge the adequacy of the model and approximations made.

  5. Infrared conformality and bulk critical points: SU(2) with heavy adjoint quarks

    CERN Document Server

    Lucini, Biagio; Rago, Antonio; Rinaldi, Enrico

    2013-01-01

    The lattice phase structure of a gauge theory can be a serious obstruction to Monte Carlo studies of its continuum behaviour. This issue is particularly delicate when numerical studies are performed to determine whether a theory is in a (near-)conformal phase. In this work we investigate the heavy mass limit of the SU(2) gauge theory with Nf=2 adjoint fermions and its lattice phase diagram, showing the presence of a critical point ending a line of first order bulk phase transition. The relevant gauge observables and the low-lying spectrum are monitored in the vicinity of the critical point with very good control over different systematic effects. The scaling properties of masses and susceptibilities open the possibility that the effective theory at criticality is a scalar theory in the universality class of the four-dimensional Gaussian model. This behaviour is clearly different from what is observed for SU(2) gauge theory with two dynamical adjoint fermions, whose (near-)conformal numerical signature is henc...

  6. Fundamental fermion interactions via vector bosons of unified SU(2 x SU(4 gauge fields

    Directory of Open Access Journals (Sweden)

    Eckart eMarsch

    2016-02-01

    Full Text Available Employing the fermion unification model based on the intrinsic SU(8 symmetry of a generalized Dirac equation, we discuss the fundamental interactions under the SU(8=SU(2$otimes$SU(4 symmetry group. The physics involved can describe all fermions, the leptons (electron and neutrino, and the coloured up and down quarks of the first generation in the standard model (SM by a complex SU(8 octet of Dirac spinor fields. The fermion interactions are found to be mediated by the unified SU(4 and SU(2 vector gauge boson fields, which include the photon, the gluons, and the bosons $Z$ and $W$ as well known from the SM, but also comprise new ones, namely three coloured $X$ bosons carrying a fractional hypercharge of $pm4/3$ and transmuting leptons into quarks and vice versa. The full covariant derivative of the model is derived and discussed. The Higgs mechanism gives mass to the $Z$ and $W$ bosons, but also permits one to derive the mass of the coloured $X$ boson, for which depending on the choice of the values of the coupling constant, the estimates are 35~GeV or 156~GeV, values that are well within reach of the LHC. The scalar Higgs field can also lend masses to the fermions and fix their physical values for given appropriate coupling constants to that field.

  7. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate

    Science.gov (United States)

    Jiang, Wenge; Pacella, Michael S.; Athanasiadou, Dimitra; Nelea, Valentin; Vali, Hojatollah; Hazen, Robert M.; Gray, Jeffrey J.; McKee, Marc D.

    2017-04-01

    Chirality is ubiquitous in biology, including in biomineralization, where it is found in many hardened structures of invertebrate marine and terrestrial organisms (for example, spiralling gastropod shells). Here we show that chiral, hierarchically organized architectures for calcium carbonate (vaterite) can be controlled simply by adding chiral acidic amino acids (Asp and Glu). Chiral, vaterite toroidal suprastructure having a `right-handed' (counterclockwise) spiralling morphology is induced by L-enantiomers of Asp and Glu, whereas `left-handed' (clockwise) morphology is induced by D-enantiomers, and sequentially switching between amino-acid enantiomers causes a switch in chirality. Nanoparticle tilting after binding of chiral amino acids is proposed as a chiral growth mechanism, where a `mother' subunit nanoparticle spawns a slightly tilted, consequential `daughter' nanoparticle, which by amplification over various length scales creates oriented mineral platelets and chiral vaterite suprastructures. These findings suggest a molecular mechanism for how biomineralization-related enantiomers might exert hierarchical control to form extended chiral suprastructures.

  8. Mesoscale structure of chiral nematic shells.

    Science.gov (United States)

    Zhou, Ye; Guo, Ashley; Zhang, Rui; Armas-Perez, Julio C; Martínez-González, José A; Rahimi, Mohammad; Sadati, Monirosadat; de Pablo, Juan J

    2016-11-09

    There is considerable interest in understanding and controlling topological defects in nematic liquid crystals (LCs). Confinement, in the form of droplets, has been particularly effective in that regard. Here, we employ a Landau-de Gennes formalism to explore the geometrical frustration of nematic order in shell geometries, and focus on chiral materials. By varying the chirality and thickness in uniform shells, we construct a phase diagram that includes tetravalent structures, bipolar structures (BS), bent structures and radial spherical structures (RSS). It is found that, in uniform shells, the BS-to-RSS structural transition, in response to both chirality and shell geometry, is accompanied by an abrupt change of defect positions, implying a potential use for chiral nematic shells as sensors. Moreover, we investigate thickness heterogeneity in shells and demonstrate that non-chiral and chiral nematic shells exhibit distinct equilibrium positions of their inner core that are governed by shell chirality c.

  9. Chiral flat bands: Existence, engineering, and stability

    Science.gov (United States)

    Ramachandran, Ajith; Andreanov, Alexei; Flach, Sergej

    2017-10-01

    We study flat bands in bipartite tight-binding networks with discrete translational invariance. Chiral flat bands with chiral symmetry eigenenergy E =0 and host compact localized eigenstates for finite range hopping. For a bipartite network with a majority sublattice chiral flat bands emerge. We present a simple generating principle of chiral flat-band networks and as a showcase add to the previously observed cases a number of new potentially realizable chiral flat bands in various lattice dimensions. Chiral symmetry respecting network perturbations—including disorder and synthetic magnetic fields—preserve both the flat band and the modified compact localized states. Chiral flat bands are spectrally protected by gaps and pseudogaps in the presence of disorder due to Griffiths effects.

  10. Three-Index Symmetric Matter Representations of SU(2) in F-Theory from Non-Tate Form Weierstrass Models

    CERN Document Server

    Klevers, Denis

    2016-01-01

    We give an explicit construction of a class of F-theory models with matter in the three-index symmetric (4) representation of SU(2). This matter is realized at codimension two loci in the F-theory base where the divisor carrying the gauge group is singular; the associated Weierstrass model does not have the form associated with a generic SU(2) Tate model. For 6D theories, the matter is localized at a triple point singularity of arithmetic genus g=3 in the curve supporting the SU(2) group. This is the first explicit realization of matter in F-theory in a representation corresponding to a genus contribution greater than one. The construction is realized by "unHiggsing" a model with a U(1) gauge factor under which there is matter with charge q=3. The resulting SU(2) models can be further unHiggsed to realize non-Abelian G_2xSU(2) models with more conventional matter content or SU(2)^3 models with trifundamental matter. The U(1) models used as the basis for this construction do not seem to have a Weierstrass real...

  11. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b...

  12. Single chirality through crystal grinding

    NARCIS (Netherlands)

    Noorduin, W.L.

    2010-01-01

    The properties of chiral molecules in living organisms can be different for left- and right-handed molecules. Therefore, ways to produce molecules of single handedness are of paramount importance, especially for economical, high yielding processes to synthesize pharmaceutical compounds that must be

  13. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    the CLEO Collaboration. Other sources could be the decay τ →ππν. In the modern context, a fresh Roy equation analysis with the view of combining dis- persion relations with chiral perturbation theory has been carried out [20]. The evaluation of the inhomogeneous terms, the so-called 'driving terms' for the Roy equations ...

  14. Chiral phosphines in nucleophilic organocatalysis

    Directory of Open Access Journals (Sweden)

    Yumei Xiao

    2014-09-01

    Full Text Available This review discusses the tertiary phosphines possessing various chiral skeletons that have been used in asymmetric nucleophilic organocatalytic reactions, including annulations of allenes, alkynes, and Morita–Baylis–Hillman (MBH acetates, carbonates, and ketenes with activated alkenes and imines, allylic substitutions of MBH acetates and carbonates, Michael additions, γ-umpolung additions, and acylations of alcohols.

  15. Baryon and chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Gorsky, A. [Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia and Moscow Institute of Physics and Technology (MIPT), Dolgoprudny (Russian Federation); Krikun, A. [NORDITA, KTH Royal Institute of Technology and Stockholm University Stockholm, Sweden and Institute for Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation)

    2014-07-23

    We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.

  16. Algebraic study of chiral anomalies

    Indian Academy of Sciences (India)

    2012-06-14

    Jun 14, 2012 ... †Reproduced with kind permission from Springer Science+Business Media: Algebraic study of chiral anoma- lies, Juan Mañes, Raymond Stora and Bruno Zumino, Communications in Mathematical Physics 102, 157–174. (1985) Springer-Verlag. Even though at variance with normal Pramana policy, we ...

  17. Chiral Induction with Chiral Conformational Switches in the Limit of Low "Sergeants to Soldiers" Ratio

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli; Bombis, Christian; Knudsen, Martin Markvard

    2014-01-01

    Molecular-level insights into chiral adsorption phenomena are highly relevant within the fields of asymmetric heterogeneous catalysis or chiral separation and may contribute to understand the origins of homochirality in nature. Here, we investigate chiral induction by the "sergeants and soldiers......" mechanism for an oligo(phenylene ethynylene) based chiral conformational switch by coadsorbing it with an intrinsically chiral seed on Au(111). Through statistical analysis of scanning tunneling microscopy (STM) data we demonstrate successful chiral induction with a very low concentration of seeding...

  18. SU(4)-SU(2) crossover and spin-filter properties of a double quantum dot nanosystem

    Science.gov (United States)

    Lopes, V.; Padilla, R. A.; Martins, G. B.; Anda, E. V.

    2017-06-01

    The SU(4)-SU(2) crossover, driven by an external magnetic field h , is analyzed in a capacitively coupled double quantum dot device connected to independent leads. As one continuously charges the dots from empty to quarter filled, by varying the gate potential Vg, the crossover starts when the magnitude of the spin polarization of the double quantum dot, as measured by - , becomes finite. Although the external magnetic field breaks the SU(4) symmetry of the Hamiltonian, the ground state preserves it in a region of Vg, where - =0 . Once the spin polarization becomes finite, it initially increases slowly until a sudden change occurs, in which (polarization direction opposite to the magnetic field) reaches a maximum and then decreases to negligible values abruptly, at which point an orbital SU(2) ground state is fully established. This crossover from one Kondo state, with emergent SU(4) symmetry, where spin and orbital degrees of freedom all play a role, to another, with SU(2) symmetry, where only orbital degrees of freedom participate, is triggered by a competition between g μBh , the energy gain by the Zeeman-split polarized state and the Kondo temperature TKS U (4 ), the gain provided by the SU(4) unpolarized Kondo-singlet state. At fixed magnetic field, the knob that controls the crossover is the gate potential, which changes the quantum dots occupancies. If one characterizes the occurrence of the crossover by Vgmax, the value of Vg where reaches a maximum, one finds that the function f relating the Zeeman splitting, Bmax, which corresponds to Vgmax, i.e., Bmax=f (Vgmax) , has a similar universal behavior to that of the function relating the Kondo temperature to Vg. In addition, our numerical results show that near the SU(4) Kondo temperature and for relatively small magnetic fields the device has a ground state that restricts the electronic population at the dots to be spin polarized along the magnetic field. These two facts introduce very efficient spin

  19. REVIEW ARTICLE: Chiral metamaterials: simulations and experiments

    Science.gov (United States)

    Wang, Bingnan; Zhou, Jiangfeng; Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.

    2009-11-01

    Electromagnetic metamaterials are composed of periodically arranged artificial structures. They show peculiar properties, such as negative refraction and super-lensing, which are not seen in natural materials. The conventional metamaterials require both negative epsilon and negative μ to achieve negative refraction. Chiral metamaterial is a new class of metamaterials offering a simpler route to negative refraction. In this paper, we briefly review the history of metamaterials and the developments on chiral metamaterials. We study the wave propagation properties in chiral metamaterials and show that negative refraction can be realized in chiral metamaterials with a strong chirality, with neither epsilon nor μ negative required. We have developed a retrieval procedure, adopting a uniaxial bi-isotropic model to calculate the effective parameters such as n ± , κ, epsilon and μ of the chiral metamaterials. Our work on the design, numerical calculations and experimental measurements of chiral metamaterials is introduced. Strong chiral behaviors such as optical activity and circular dichroism are observed and negative refraction is obtained for circularly polarized waves in these chiral metamaterials. We show that 3D isotropic chiral metamaterials can eventually be realized.

  20. Timoshenko beam model for chiral materials

    Science.gov (United States)

    Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H.

    2017-12-01

    Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.

  1. Extended Soliton Solutions in an Effective Action for SU(2 Yang-Mills Theory

    Directory of Open Access Journals (Sweden)

    Nobuyuki Sawado

    2006-01-01

    Full Text Available The Skyrme-Faddeev-Niemi (SFN model which is an O(3 σ model in three dimensional space up to fourth-order in the first derivative is regarded as a low-energy effective theory of SU(2 Yang-Mills theory. One can show from the Wilsonian renormalization group argument that the effective action of Yang-Mills theory recovers the SFN in the infrared region. However, the theory contains an additional fourth-order term which destabilizes the soliton solution. We apply the perturbative treatment to the second derivative term in order to exclude (or reduce the ill behavior of the original action and show that the SFN model with the second derivative term possesses soliton solutions.

  2. More on the SU(2) deconfinement transition in the mixed action

    Energy Technology Data Exchange (ETDEWEB)

    Gavai, R.V. [Theoretical Physics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Mathur, M. [Dipartimento di Fisica dell Universita and INFN, Piazza Torricelli 2 Pisa-56100 (Italy)

    1997-07-01

    We examine certain issues related to the universality of the SU(2) lattice gauge theory at nonzero temperatures. Using Monte Carlo simulations and strong coupling expansions, we study the behavior of the deconfinement transition in an extended coupling plane ({beta},{beta}{sub A}) around the tricritical point where the deconfinement transition changes from second to first order. Our numerical results on N{sub {tau}}=2,4,6,8 lattices show that the tricritical point first moves down towards the Wilson axis and then moves slowly upwards, if at all, as the lattice spacing is reduced. Lattices with very large N{sub {tau}} seem to be, therefore, necessary for the mixed action to exhibit the critical exponents of the three-dimensional Ising model for positive values of the adjoint coupling. {copyright} {ital 1997} {ital The American Physical Society}

  3. $SU(2)$ gauge theory with two fundamental flavours: scalar and pseudoscalar spectrum

    CERN Document Server

    Arthur, Rudy; Hietanen, Ari; Pica, Claudio; Sannino, Francesco

    2016-01-01

    We investigate the scalar and pseudoscalar spectrum of the $SU(2)$ gauge theory with $N_f=2$ flavours of fermions in the fundamental representation using non perturbative lattice simulations. We provide first benchmark estimates of the mass of the lightest $0(0^{+})$ ($\\sigma$), $0(0^{-})$ ($\\eta'$) and $1(0^+)$ ($a_0$) states, including estimates of the relevant disconnected contributions. We find $m_{a_0}/F_{\\rm{PS}}= 16.7(4.9)$, $m_\\sigma/F_{\\rm{PS}}=19.2(10.8)$ and $m_{\\eta'}/F_{\\rm{PS}} = 12.8(4.7)$. These values for the masses of light scalar states provide crucial information for composite extensions of the Standard Model from the unified Fundamental Composi te Higgs-Technicolor theory \\cite{Cacciapaglia:2014uja} to models of composite dark matter.

  4. Study of shear viscosity of SU(2)-gluodynamics within lattice simulation

    Energy Technology Data Exchange (ETDEWEB)

    Astrakhantsev, N.Yu. [Institute for Theoretical and Experimental Physics,Moscow, 117218 (Russian Federation); Moscow Institute of Physics and Technology,Dolgoprudny, 141700 (Russian Federation); Braguta, V.V. [Institute for Theoretical and Experimental Physics,Moscow, 117218 (Russian Federation); Institute for High Energy Physics NRC “Kurchatov Institute”,Protvino, 142281 Russian Federation (Russian Federation); Far Eastern Federal University, School of Biomedicine,Vladivostok, 690950 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),Kashirskoe highway, 31, Moscow, 115409 (Russian Federation); Kotov, A.Yu. [Institute for Theoretical and Experimental Physics,Moscow, 117218 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),Kashirskoe highway, 31, Moscow, 115409 (Russian Federation)

    2015-09-14

    This paper is devoted to the study of two-point correlation function of the energy-momentum tensor 〈T{sub 12}T{sub 12}〉 for SU(2)-gluodynamics within lattice simulation of QCD. Using multilevel algorithm we carried out the measurement of the correlation function at the temperature T/T{sub c}≃1.2. It is shown that lattice data can be described by spectral functions which interpolate between hydrodynamics at low frequencies and asymptotic freedom at high frequencies. The results of the study of spectral functions allowed us to estimate the ratio of shear viscosity to the entropy density η/s=0.134±0.057.

  5. Effective geometric phases and topological transitions in SO(3) and SU(2) rotations.

    Science.gov (United States)

    Saarikoski, Henri; Baltanás, José Pablo; Vázquez-Lozano, J Enrique; Nitta, Junsaku; Frustaglia, Diego

    2016-04-27

    We address the development of geometric phases in classical and quantum magnetic moments (spin-1/2) precessing in an external magnetic field. We show that nonadiabatic dynamics lead to a topological phase transition determined by a change in the driving field topology. The transition is associated with an effective geometric phase which is identified from the paths of the magnetic moments in a spherical geometry. The topological transition presents close similarities between SO(3) and SU(2) cases but features differences in, e.g. the adiabatic limits of the geometric phases, being 2π and π in the classical and the quantum case, respectively. We discuss possible experiments where the effective geometric phase would be observable.

  6. Scaling properties of SU(2) gauge theory with mixed fundamental-adjoint action

    CERN Document Server

    Rinaldi, Enrico; Lucini, Biagio; Patella, Agostino; Rago, Antonio

    2012-01-01

    We study the phase diagram of the SU(2) lattice gauge theory with fundamental-adjoint Wilson plaquette action. We confirm the presence of a first order bulk phase transition and we estimate the location of its end-point in the bare parameter space. If this point is second order, the theory is one of the simplest realizations of a lattice gauge theory admitting a continuum limit at finite bare couplings. All the relevant gauge observables are monitored in the vicinity of the fixed point with very good control over finite-size effects. The scaling properties of the low-lying glueball spectrum are studied while approaching the end-point in a controlled manner.

  7. Couplings in D(2,1;α) superconformal mechanics from the SU(2) perspective

    Energy Technology Data Exchange (ETDEWEB)

    Galajinsky, Anton [Laboratory of Mathematical Physics, Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

    2017-03-09

    Dynamical realizations of the most general N=4 superconformal group in one dimension D(2,1;α) are reconsidered from the perspective of the R-symmetry subgroup SU(2). It is shown that any realization of the R-symmetry subalgebra in some phase space can be extended to a representation of the Lie superalgebra corresponding to D(2,1;α). Novel couplings of arbitrary number of supermultiplets of the type (1,4,3) and (0,4,4) to a single supermultiplet of either the type (3,4,1), or (4,4,0) are constructed. D(2,1;α) superconformal mechanics describing superparticles propagating near the horizon of the extreme Reissner-Nordström-AdS-dS black hole in four and five dimensions is considered. The parameter α is linked to the cosmological constant.

  8. Drinfeld Doubles for Finite Subgroups of SU(2 and SU(3 Lie Groups

    Directory of Open Access Journals (Sweden)

    Robert Coquereaux

    2013-05-01

    Full Text Available Drinfeld doubles of finite subgroups of SU(2 and SU(3 are investigated in detail. Their modular data – S, T and fusion matrices – are computed explicitly, and illustrated by means of fusion graphs. This allows us to reexamine certain identities on these tensor product or fusion multiplicities under conjugation of representations that had been discussed in our recent paper [J. Phys. A: Math. Theor. 44 (2011, 295208, 26 pages], proved to hold for simple and affine Lie algebras, and found to be generally wrong for finite groups. It is shown here that these identities fail also in general for Drinfeld doubles, indicating that modularity of the fusion category is not the decisive feature. Along the way, we collect many data on these Drinfeld doubles which are interesting for their own sake and maybe also in a relation with the theory of orbifolds in conformal field theory.

  9. Supersymmetric Extension of Non-Hermitian su(2 Hamiltonian and Supercoherent States

    Directory of Open Access Journals (Sweden)

    Omar Cherbal

    2010-12-01

    Full Text Available A new class of non-Hermitian Hamiltonians with real spectrum, which are written as a real linear combination of su(2 generators in the form H=ωJ_3+αJ_−+βJ_+, α≠β, is analyzed. The metrics which allows the transition to the equivalent Hermitian Hamiltonian is established. A pseudo-Hermitian supersymmetic extension of such Hamiltonians is performed. They correspond to the pseudo-Hermitian supersymmetric systems of the boson-phermion oscillators. We extend the supercoherent states formalism to such supersymmetic systems via the pseudo-unitary supersymmetric displacement operator method. The constructed family of these supercoherent states consists of two dual subfamilies that form a bi-overcomplete and bi-normal system in the boson-phermion Fock space. The states of each subfamily are eigenvectors of the boson annihilation operator and of one of the two phermion lowering operators.

  10. Phase diagram of SU(2) with 2 flavors of dynamical adjoint quarks

    CERN Document Server

    Catterall, Simon; Sannino, Francesco; Schneible, Joe

    2008-01-01

    We report on numerical simulations of SU(2) lattice gauge theory with two flavors of light dynamical quarks in the adjoint of the gauge group. The dynamics of this theory is thought to be very different from QCD -- the theory exhibiting conformal or near conformal behavior in the infrared. We make a high resolution survey of the phase diagram of this model in the plane of the bare coupling and quark mass on lattices of size 8^3 \\times 16. Our simulations reveal a line of first order phase transitions extending from beta=0 to beta=beta_c \\sim 2.0. For beta > beta_c the line is no longer first order but continues as the locus of minimum meson mass. For beta > 2.0 we observe the critical pion and rho masses to be light, independent of bare coupling and approximately degenerate. We discuss possible interpretations of these observations and corresponding continuum limits.

  11. Progress gauge symmetry breaking in SU(6) x SU(2) sub R model

    CERN Document Server

    Hayashi, T; Matsuda, M; Matsuoka, T

    2003-01-01

    In the SU(6) x SU(2) sub R string-inspired model, we describe the evolution of the couplings and the masses down from the string scale M sub s using the renormalization group equations and minimize the effective potential. This model possesses the flavor symmetry, including the binary dihedral group D tilde sub 4. We show that the scalar mass squared of the gauge non-singlet matter field possibly becomes negative slightly below the string scale. As a consequence, the precocious radiative breaking of the gauge symmetry down to the standard model gauge group can be realized. In the present model, the large Yukawa coupling, which plays an important role in the symmetry breaking, is identical to the colored Higgs coupling related to the longevity of the proton. (author)

  12. Hagedorn spectrum and thermodynamics of SU(2) and SU(3) Yang-Mills theories

    Energy Technology Data Exchange (ETDEWEB)

    Caselle, Michele; Nada, Alessandro; Panero, Marco [Department of Physics, University of Turin & INFN,Via Pietro Giuria 1, I-10125 Turin (Italy)

    2015-07-27

    We present a high-precision lattice calculation of the equation of state in the confining phase of SU(2) Yang-Mills theory. We show that the results are described very well by a gas of massive, non-interacting glueballs, provided one assumes an exponentially growing Hagedorn spectrum. The latter can be derived within an effective bosonic closed-string model, leading to a parameter-free theoretical prediction, which is in perfect agreement with our lattice results. Furthermore, when applied to SU(3) Yang-Mills theory, this effective model accurately describes the lattice results reported by Borsányi et al. in http://dx.doi.org/10.1007/JHEP07(2012)056.

  13. SU(2)CMB at high redshifts and the value of H0

    Science.gov (United States)

    Hahn, Steffen; Hofmann, Ralf

    2017-07-01

    We investigate a high-z cosmological model to compute the comoving sound horizon rs at baryon-velocity freeze-out towards the end of hydrogen recombination. This model assumes a replacement of the conventional cosmic microwave background (CMB) photon gas by deconfining SU(2) Yang-Mills thermodynamics, three flavours of massless neutrinos (Nν = 3) and a purely baryonic matter sector [no cold dark-matter (CDM)]. The according SU(2) temperature-redshift relation of the CMB is contrasted with recent measurements appealing to the thermal Sunyaev-Zel'dovich effect and CMB-photon absorption by molecular rotation bands or atomic hyperfine levels. Relying on a realistic simulation of the ionization history throughout recombination, we obtain z* = 1693.55 ± 6.98 and zdrag = 1812.66 ± 7.01. Due to considerable widths of the visibility functions in the solutions to the associated Boltzmann hierarchy and Euler equation, we conclude that z* and zdrag overestimate the redshifts for the respective photon and baryon-velocity freeze-out. Realistic decoupling values turn out to be zlf,* = 1554.89 ± 5.18 and zlf, drag = 1659.30 ± 5.48. With rs(zlf, drag) = (137.19 ± 0.45) Mpc and the essentially model independent extraction of rsH0 = constant from low-z data in Bernal, Verde & Riess, we obtain a good match with the value H0 = (73.24 ± 1.74) km s-1 Mpc-1 extracted in Riess et al. by appealing to Cepheid-calibrated Type Ia supernovae, new parallax measurements, stronger constraints on the Hubble flow and a refined computation of distance to NGC 4258 from maser data. We briefly comment on a possible interpolation of our high-z model, invoking percolated and unpercolated U(1) topological solitons of a Planck-scale axion field, to the phenomenologically successful low-z ΛCDM cosmology.

  14. Chiral fullerenes from asymmetric catalysis.

    Science.gov (United States)

    Maroto, Enrique E; Izquierdo, Marta; Reboredo, Silvia; Marco-Martínez, Juan; Filippone, Salvatore; Martín, Nazario

    2014-08-19

    Fullerenes are among the most studied molecules during the last three decades, and therefore, a huge number of chemical reactions have been tested on these new carbon allotropes. However, the aim of most of the reactions carried out on fullerenes has been to afford chemically modified fullerenes that are soluble in organic solvents or even water in the search for different mechanical, optical, or electronic properties. Therefore, although a lot of effort has been devoted to the chemical functionalization of these molecular allotropes of carbon, important aspects in the chemistry of fullerenes have not been properly addressed. In particular, the synthesis of chiral fullerenes at will in an efficient manner using asymmetric catalysis has not been previously addressed in fullerene science. Thus, despite the fact that the chirality of fullerenes has always been considered a fundamental issue, the lack of a general stereoselective synthetic methodology has restricted the use of enantiopure fullerene derivatives, which have usually been obtained only after highly expensive HPLC isolation on specific chiral columns or prepared from a pool of chiral starting materials. In this Account, we describe the first stereodivergent catalytic enantioselective syntheses in fullerene science, which have allowed the highly efficient synthesis of enantiomerically pure derivatives with total control of the stereochemical result using metallic catalysts and/or organocatalysts under very mild conditions. Density functional theory calculations strongly support the experimental findings for the assignment of the absolute configuration of the new stereocenters, which has also been ascertained by application of the sector rule and single-crystal X-ray diffraction. The use of the curved double bond of fullerene cages as a two-π-electron component in a variety of stereoselective cycloaddition reactions represents a challenging goal considering that, in contrast to most of the substituted

  15. An analytic analysis of the pion decay constant in three-flavoured chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayan, B.; Ghosh, Shayan [Indian Institute of Science, Centre for High Energy Physics, Bangalore, Karnataka (India); Bijnens, Johan [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden)

    2017-07-15

    A representation of the two-loop contribution to the pion decay constant in SU(3) chiral perturbation theory is presented. The result is analytic up to the contribution of the three (different) mass sunset integrals, for which an expansion in their external momentum has been taken. We also give an analytic expression for the two-loop contribution to the pion mass based on a renormalized representation and in terms of the physical eta mass. We find an expansion of F{sub π} and M{sub π}{sup 2} in the strange-quark mass in the isospin limit, and we perform the matching of the chiral SU(2) and SU(3) low-energy constants. A numerical analysis demonstrates the high accuracy of our representation, and the strong dependence of the pion decay constant upon the values of the low-energy constants, especially in the chiral limit. Finally, we present a simplified representation that is particularly suitable for fitting with available lattice data. (orig.)

  16. Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media

    Energy Technology Data Exchange (ETDEWEB)

    Chernodub, M.N. [CNRS, Laboratoire de Mathématiques et Physique Théorique,Université de Tours, 37200 (France); Soft Matter Physics Laboratory, Far Eastern Federal University,Sukhanova 8, Vladivostok (Russian Federation); Department of Physics and Astronomy, University of Gent,Krijgslaan 281, S9, Gent (Belgium)

    2016-01-18

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves — which are coherent fluctuations of the vector, axial and energy currents — have generally different velocities compared to the velocities of the individual waves.

  17. Chiral nanoparticles in singular light fields

    Science.gov (United States)

    Vovk, Ilia A.; Baimuratov, Anvar S.; Zhu, Weiren; Shalkovskiy, Alexey G.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2017-04-01

    The studying of how twisted light interacts with chiral matter on the nanoscale is paramount for tackling the challenging task of optomechanical separation of nanoparticle enantiomers, whose solution can revolutionize the entire pharmaceutical industry. Here we calculate optical forces and torques exerted on chiral nanoparticles by Laguerre-Gaussian beams carrying a topological charge. We show that regardless of the beam polarization, the nanoparticles are exposed to both chiral and achiral forces with nonzero reactive and dissipative components. Longitudinally polarized beams are found to produce chirality densities that can be 109 times higher than those of transversely polarized beams and that are comparable to the chirality densities of beams polarized circularly. Our results and analytical expressions prove useful in designing new strategies for mechanical separation of chiral nanoobjects with the help of highly focussed beams.

  18. Duality and symmetry in chiral Potts model

    Science.gov (United States)

    Roan, Shi-shyr

    2009-08-01

    We discover an Ising-type duality in the general N-state chiral Potts model, which is the Kramers-Wannier duality of a planar Ising model when N = 2. This duality relates the spectrum and eigenvectors of one chiral Potts model at a low temperature (of small k') to those of another chiral Potts model at a high temperature (of k'-1). The τ(2) model and chiral Potts model on the dual lattice are established alongside of the dual chiral Potts models. With the aid of this duality relation, we exact a precise relationship between the Onsager-algebra symmetry of a homogeneous superintegrable chiral Potts model and the sl2-loop-algebra symmetry of its associated spin- (N-1)/2 XXZ chain through the identification of their eigenstates.

  19. Objects of maximum electromagnetic chirality

    CERN Document Server

    Fernandez-Corbaton, Ivan

    2015-01-01

    We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. The upper bound is attained if and only if the object is transparent for fields of one handedness (helicity). Additionally, electromagnetic duality symmetry, i.e. helicity preservation upon scattering, turns out to be a necessary condition for reciprocal scatterers to attain the upper bound. We use these results to provide requirements for the design of such extremal scatterers. The requirements can be formulated as constraints on the polarizability tensors for dipolar scatterers or as material constitutive relations. We also outline two applications for objects of maximum electromagnetic chirality: A twofold resonantly enhanced and background free circular dichroism measurement setup, and angle independent helicity filtering glasses.

  20. Chiral vortical effect for bosons

    Science.gov (United States)

    Avkhadiev, Artur; Sadofyev, Andrey V.

    2017-08-01

    The thermal contribution to the chiral vortical effect is believed to be related to the axial anomaly in external gravitational fields. We use the universality of the spin-gravity interaction to extend this idea to a wider set of phenomena. We consider the Kubo formula at weak coupling for the spin current of a vector field and derive a novel anomalous effect caused by the medium rotation: the chiral vortical effect for bosons. The effect consists in a spin current of vector bosons along the angular velocity of the medium. We argue that it has the same anomalous nature as in the fermionic case and show that this effect provides a mechanism for helicity transfer, from flow helicity to magnetic helicity.

  1. Symmetries of Ginsparg-Wilson Chiral Fermions

    OpenAIRE

    Mandula, Jeffrey E.

    2009-01-01

    The group structure of the variant chiral symmetry discovered by Luscher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter invariant subgroup, and the factor group, wh...

  2. CHIRALITY IN NONLINEAR OPTICS AND OPTICAL SWITCHING

    OpenAIRE

    Meijer, E. W.; Feringa, B. L.

    1993-01-01

    Chirality in molecular opto-electronics is limited sofar to the use of optically active liquid crystals and a number of optical phenomena are related to the helical macroscopic structure obtained by using one enantiomer, only. In this paper, the use of chirality in nonlinear optics and optical switching is demonstrated. The additional options offered by the combination of circularly polarized light and chiral molecules gives rise to the observation of Second Harmonic Generation from centrosym...

  3. Staggered chiral random matrix theory

    OpenAIRE

    Osborn, James C.

    2010-01-01

    We present a random matrix theory (RMT) for the staggered lattice QCD Dirac operator. The staggered RMT is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  4. Chiral methyl-branched pheromones.

    Science.gov (United States)

    Ando, Tetsu; Yamakawa, Rei

    2015-07-01

    Insect pheromones are some of the most interesting natural products because they are utilized for interspecific communication between various insects, such as beetles, moths, ants, and cockroaches. A large number of compounds of many kinds have been identified as pheromone components, reflecting the diversity of insect species. While this review deals only with chiral methyl-branched pheromones, the chemical structures of more than one hundred non-terpene compounds have been determined by applying excellent analytical techniques. Furthermore, their stereoselective syntheses have been achieved by employing trustworthy chiral sources and ingenious enantioselective reactions. The information has been reviewed here not only to make them available for new research but also to understand the characteristic chemical structures of the chiral pheromones. Since biosynthetic studies are still limited, it might be meaningful to examine whether the structures, particularly the positions and configurations of the branched methyl groups, are correlated with the taxonomy of the pheromone producers and also with the function of the pheromones in communication systems.

  5. Chiral Symmetry in Light-front QCD

    OpenAIRE

    Wu, Meng-Hsiu; Zhang, Wei-Min

    2003-01-01

    The definition of chiral transformations in light-front field theory is very different from the conventional form in equal-time formalism. We study the consistency of chiral transformations and chiral symmetry in light-front QCD and derive a complete new light-front axial-vector current for QCD. The breaking of chiral symmetry in light-front QCD is only associated with helicity flip interaction between quarks and gluons. Remarkably, the new axial-vector current does not contain the pion pole ...

  6. Laser Writing of Multiscale Chiral Polymer Metamaterials

    Directory of Open Access Journals (Sweden)

    E. P. Furlani

    2012-01-01

    Full Text Available A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.

  7. The Optical Chirality Flux as a Useful Far-Field Probe of Chiral Near Fields

    CERN Document Server

    Poulikakos, Lisa V; McPeak, Kevin M; Burger, Sven; Niegemann, Jens; Hafner, Christian; Norris, David J

    2016-01-01

    To optimize the interaction between chiral matter and highly twisted light, quantities that can help characterize chiral electromagnetic fields near nanostructures are needed. Here, by analogy with Poynting's theorem, we formulate the time-averaged conservation law of optical chirality in lossy dispersive media and identify the optical chirality flux as an ideal far-field observable for characterizing chiral optical near fields. Bounded by the conservation law, we show that it provides precise information, unavailable from circular dichroism spectroscopy, on the magnitude and handedness of highly twisted fields near nanostructures.

  8. On the composition of an arbitrary collection of SU(2) spins: an enumerative combinatoric approach

    Science.gov (United States)

    Gyamfi, J. A.; Barone, V.

    2018-03-01

    The whole enterprise of spin compositions can be recast as simple enumerative combinatoric problems. We show here that enumerative combinatorics (Stanley 2011 Enumerative Combinatorics (Cambridge Studies in Advanced Mathematics vol 1) (Cambridge: Cambridge University Press)) is a natural setting for spin composition, and easily leads to very general analytic formulae—many of which hitherto not present in the literature. Based on it, we propose three general methods for computing spin multiplicities; namely, (1) the multi-restricted composition, (2) the generalized binomial and (3) the generating function methods. Symmetric and anti-symmetric compositions of SU(2) spins are also discussed, using generating functions. Of particular importance is the observation that while the common Clebsch–Gordan decomposition—which considers the spins as distinguishable—is related to integer compositions, the symmetric and anti-symmetric compositions (where one considers the spins as indistinguishable) are obtained considering integer partitions. The integers in question here are none other than the occupation numbers of the Holstein–Primakoff bosons. The pervasiveness of q-analogues in our approach is a testament to the fundamental role they play in spin compositions. In the appendix, some new results in the power series representation of Gaussian polynomials (or q-binomial coefficients)—relevant to symmetric and antisymmetric compositions—are presented.

  9. Non-Local effective SU(2) Polyakov-loop models from inverse Monte-Carlo methods

    CERN Document Server

    Bahrampour, Bardiya; von Smekal, Lorenz

    2016-01-01

    The strong-coupling expansion of the lattice gauge action leads to Polyakov-loop models that effectively describe gluodynamics at low temperatures, and together with the hopping expansion of the fermion determinant provides insight into the QCD phase diagram at finite density and low temperatures, although for rather heavy quarks. At higher temperatures the strong-coupling expansion breaks down and it is expected that the interactions between Polyakov loops become non-local. Here, we therefore test how well pure SU(2) gluodynamics can be mapped onto different non-local Polyakov models with inverse Monte-Carlo methods. We take into account Polyakov loops in higher representations and gradually add interaction terms at larger distances. We are particularly interested in extrapolating the range of non-local terms in sufficiently large volumes and higher representations. We study the characteristic fall-off in strength of the non-local couplings with the interaction distance, and its dependence on the gauge coupl...

  10. A nonlinear deformed su(2) algebra with a two-colour quasitriangular Hopf structure

    CERN Document Server

    Bonatsos, Dennis; Kolokotronis, P; Ludu, A; Quesne, C

    1996-01-01

    Nonlinear deformations of the enveloping algebra of su(2), involving two arbitrary functions of J_0 and generalizing the Witten algebra, were introduced some time ago by Delbecq and Quesne. In the present paper, the problem of endowing some of them with a Hopf algebraic structure is addressed by studying in detail a specific example, referred to as ${\\cal A}^+_q(1)$. This algebra is shown to possess two series of (N+1)-dimensional unitary irreducible representations, where N=0, 1, 2, .... To allow the coupling of any two such representations, a generalization of the standard Hopf axioms is proposed by proceeding in two steps. In the first one, a variant and extension of the deforming functional technique is introduced: variant because a map between two deformed algebras, su_q(2) and ${\\cal A}^+_q(1)$, is considered instead of a map between a Lie algebra and a deformed one, and extension because use is made of a two-valued functional, whose inverse is singular. As a result, the Hopf structure of su_q(2) is car...

  11. SU(2) Gauge Theory with Two Fundamental Flavours: a Minimal Template for Model Building

    CERN Document Server

    Arthur, Rudy; Hansen, Martin; Hietanen, Ari; Pica, Claudio; Sannino, Francesco

    2016-01-01

    We investigate the continuum spectrum of the SU(2) gauge theory with $N_f=2$ flavours of fermions in the fundamental representation. This model provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range from composite (Goldstone) Higgs theories to several intriguing types of dark matter candidates, such as the SIMPs. We improve our previous lattice analysis [1] by adding more data at light quark masses, at two additional lattice spacings, by determining the lattice cutoff via a Wilson flow measure of the $w_0$ parameter, and by measuring the relevant renormalisation constants non-perturbatively in the RI'-MOM scheme. Our results for the lightest isovector states in the vector and axial channels, in units of the pseudoscalar decay constant, are $m_V/F_{\\rm{PS}}\\sim 13.1(2.2)$ and $m_A/F_{\\rm{PS}}\\sim 14.5(3.6)$ (combining statistical and systematic errors). In the context of the composite (Goldstone) Higgs models, our result for the spin-...

  12. CKM and PMNS Mixing Matrices from Discrete Subgroups of SU(2

    Directory of Open Access Journals (Sweden)

    Potter F.

    2014-07-01

    Full Text Available One of the greatest challenges in particle physics is to determine the first principles origin of the quark and lepton mixing matrices CKM and PMNS that relate the flavor states to the mass states. This first principles derivation of both the PMNS and CKM matrices utilizes quaternion generators of the three discrete (i.e., finite binary rotational subgroups of SU(2 called [3,3,2], [4,3,2], and [5,3,2] for three lepton families in R 3 and four related discrete binary rotational subgroups [3,3,3], [4,3,3], [3,4,3], and [5,3,3] represented by four quark families in R 4 . The traditional 3 3 CKM matrix is extracted as a submatrix of the 4 4 CKM4 matrix. The predicted fourth family of quarks has not been discovered yet. If these two additional quarks exist, there is the possibility that the Standard Model lagrangian may apply all the way down to the Planck scale.

  13. Chirally-modified metal surfaces: energetics of interaction with chiral molecules.

    Science.gov (United States)

    Dementyev, Petr; Peter, Matthias; Adamovsky, Sergey; Schauermann, Swetlana

    2015-09-21

    Imparting chirality to non-chiral metal surfaces by adsorption of chiral modifiers is a highly promising route to create effective heterogeneously catalyzed processes for the production of enantiopure pharmaceuticals. One of the major current challenges in heterogeneous chiral catalysis is the fundamental-level understanding of how such chirally-modified surfaces interact with chiral and prochiral molecules to induce their enantioselective transformations. Herein we report the first direct calorimetric measurement of the adsorption energy of chiral molecules onto well-defined chirally-modified surfaces. Two model modifiers 1-(1-naphthyl)ethylamine and 2-methylbutanoic acid were used to impart chirality to Pt(111) and their interaction with propylene oxide was investigated by means of single-crystal adsorption calorimetry. Differential adsorption energies and absolute surface uptakes were obtained for the R- and S-enantiomers of propylene oxide under clean ultrahigh vacuum conditions. Two types of adsorption behavior were observed for different chiral modifiers, pointing to different mechanisms of imparting chirality to metal surfaces. The results are analyzed and discussed in view of previously reported stereoselectivity of adsorption processes.

  14. Evaluation of Dalbavancin as chiral selector for HPLC and comparison with Teicoplanin based chiral stationary phases

    Science.gov (United States)

    ZHANG, XIAOTONG; BAO, YE; HUANG, KE; BARNETT-RUNDLETT, KIMBER L.; ARMSTRONG, DANIEL W.

    2015-01-01

    Dalbavancin is a new compound of the macrocyclic glycopeptide family. It was covalently linked to 5μm silica particles by using two different binding chemsitries. Approximately two hundred and fifty racemates including (A) heterocyclic compounds; (B) chiral acids; (C) chiral amines; (D) chiral alcohols; (E) chiral sulfoxides and sulfilimines; (F) amino acids and amino acid derivatives; and (G) other chiral compounds were tested on the two new chiral stationary phases (CSP) using three different mobile phases. As dalbavancin is structurally related to teicoplanin, the same set of chiral compounds was screened on two commercially available teicoplanin CSPs for comparison. The dalbavancin CSPs were able to separate some enantiomers that were not separated by the teicoplanin CSPs and also showed improved separations for many racemates. However, there were other compounds only separated or better separated on teicoplanin CSPS. Therefore, the dalbavancin CSPs are complementary to the teicoplanin CSPs. PMID:19676111

  15. A spectral route to determining chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We show how one-dimensional structured media can be used to measure chirality, via the spectral shift of the photonic band gap edges. Analytically, we show that a chiral contrast can, in some cases, be mapped unto an index contrast, thereby greatly simplifying the analysis of such structures. Usi...

  16. CHIRALITY IN NONLINEAR OPTICS AND OPTICAL SWITCHING

    NARCIS (Netherlands)

    Meijer, E.W.; Feringa, B.L.

    1993-01-01

    Chirality in molecular opto-electronics is limited sofar to the use of optically active liquid crystals and a number of optical phenomena are related to the helical macroscopic structure obtained by using one enantiomer, only. In this paper, the use of chirality in nonlinear optics and optical

  17. Orientation-Dependent Handedness and Chiral Design

    Directory of Open Access Journals (Sweden)

    Efi Efrati

    2014-01-01

    Full Text Available Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in the paradox of chiral connectedness. In this work, we put forward a quantification scheme in which the handedness of an object depends on the direction in which it is viewed. While consistent with familiar chiral notions, such as the right-hand rule, this framework allows objects to be simultaneously right and left handed. We demonstrate this orientation dependence in three different systems—a biomimetic elastic bilayer, a chiral propeller, and optical metamaterial—and find quantitative agreement with chirality pseudotensors whose form we explicitly compute. The use of this approach resolves the existing paradoxes and naturally enables the design of handed metamaterials from symmetry principles.

  18. Chiral magnetic effect in condensed matter systems

    Science.gov (United States)

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].

  19. High harmonic generation from axial chiral molecules.

    Science.gov (United States)

    Wang, Dian; Zhu, Xiaosong; Liu, Xi; Li, Liang; Zhang, Xiaofan; Lan, Pengfei; Lu, Peixiang

    2017-09-18

    Axial chiral molecules, whose stereogenic element is an axis rather than a chiral center, have attracted widespread interest due to their important application, such as asymmetric synthesis and chirality transfer. We investigate high harmonic generation from axial chiral molecules with bichromatic counterrotating circularly polarized laser fields. High harmonic generation from three typical molecules: (Sa)-3-chloropropa-1,2-dien-1-ol, propadiene, and (Ra)-2,3-pentadiene is simulated with time-dependent density-functional theory and strong field approximation. We found that harmonic spectra for 3D oriented axial chiral molecules exhibit obvious circular dichroism. However, the circular dichroism of High harmonic generation from an achiral molecule is much trivial. Moreover, the dichroism of high harmonic generation still exists when axial chiral molecules are 1D oriented,such as (Sa) -3-chloropropa-1,2-dien-1-ol. For a special form of axial chiral molecules with the formula abC=C=Cab (a, b are different substituents), like (Ra)-2,3-pentadiene, the dichroism discriminations disappear when the molecules are only in 1D orientation. The circular dichroism of high harmonic generation from axial chiral molecules is well explained by the trajectory analysis based on the semiclassical three-step mechanism.

  20. On infinite regular and chiral maps

    OpenAIRE

    Arredondo, John A.; Valdez, Camilo Ramírez y Ferrán

    2015-01-01

    We prove that infinite regular and chiral maps take place on surfaces with at most one end. Moreover, we prove that an infinite regular or chiral map on an orientable surface with genus can only be realized on the Loch Ness monster, that is, the topological surface of infinite genus with one end.

  1. Chiral gauge theories with domain wall fermions

    OpenAIRE

    Golterman, M.; Jansen, K.; Petcher, D.; Vink, J.

    1993-01-01

    We have investigated a proposal to construct chiral gauge theories on the lattice using domain wall fermions. The model contains two opposite chirality zeromodes, which live on two domain walls. We couple only one of them to a gauge field, but find that mirror fermions which also couple to the gauge field always seem to exist.

  2. Pentaquarks in chiral color dielectric model

    Indian Academy of Sciences (India)

    Abstract. Recent experiments indicate that a narrow baryonic state having strangeness. +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is ...

  3. Pentaquarks in chiral color dielectric model

    Indian Academy of Sciences (India)

    Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV.

  4. Transport properties of chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Puhr, Matthias

    2017-04-26

    Anomalous transport phenomena have their origin in the chiral anomaly, the anomalous non-conservation of the axial charge, and can arise in systems with chiral fermions. The anomalous transport properties of free fermions are well understood, but little is known about possible corrections to the anomalous transport coefficients that can occur if the fermions are strongly interacting. The main goal of this thesis is to study anomalous transport effects in media with strongly interacting fermions. In particular, we investigate the Chiral Magnetic Effect (CME) in a Weyl Semimetal (WSM) and the Chiral Separation Effect (CSE) in finite-density Quantum Chromodynamics (QCD). The recently discovered WSMs are solid state crystals with low-energy excitations that behave like Weyl fermions. The inter-electron interaction in WSMs is typically very strong and non-perturbative calculations are needed to connect theory and experiment. To realistically model an interacting, parity-breaking WSM we use a tight-binding lattice Hamiltonian with Wilson-Dirac fermions. This model features a non-trivial phase diagram and has a phase (Aoki phase/axionic insulator phase) with spontaneously broken CP symmetry, corresponding to the phase with spontaneously broken chiral symmetry for interacting continuum Dirac fermions. We use a mean-field ansatz to study the CME in spatially modulated magnetic fields and find that it vanishes in the Aoki phase. Moreover, our calculations show that outside of the Aoki phase the electron interaction has only a minor influence on the CME. We observe no enhancement of the magnitude of the CME current. For our non-perturbative study of the CSE in QCD we use the framework of lattice QCD with overlap fermions. We work in the quenched approximation to avoid the sign problem that comes with introducing a finite chemical potential on the lattice. The overlap operator calls for the evaluation of the sign function of a matrix with a dimension proportional to the volume

  5. The Infrared behaviour of the gluon propagator in SU(2) and SU(3) without lattice Gribov copies

    CERN Document Server

    Alexandrou, C; Follana, E; De Forcrand, Ph

    2000-01-01

    We present lattice results for the gluon propagator for SU(2) and SU(3) in the Laplacian gauge which avoids lattice Gribov copies. In SU(3) we compare with the most recent lattice calculation in Landau gauge and with various approximate solutions of the Dyson Schwinger equations (DSE).

  6. Microwave chirality discrimination in enantiomeric liquids

    Science.gov (United States)

    Hollander, E.; Kamenetskii, E. O.; Shavit, R.

    2017-07-01

    Chirality discrimination is of fundamental interest in biology, chemistry, and metamaterial studies. In optics, near-field plasmon-resonance spectroscopy with superchiral probing fields is effectively applicable for analyses of large biomolecules with chiral properties. We show possibility for microwave near-field chirality discrimination analysis based on magnon-resonance spectroscopy. Newly developed capabilities in microwave sensing using magnetoelectric (ME) probing fields originated from multiresonance magnetic-dipolar-mode oscillations in quasi-2D yttrium-iron-garnet disks provide potential for unprecedented measurements of chemical and biological objects. We report on microwave near-field chirality discrimination for aqueous D- and L-glucose solutions. The shown ME-field sensing is addressed to deepen our understanding of microwave-biosystem interactions. It can also be important for an analysis and design of microwave chiral metamaterials.

  7. Centre vortex removal restores chiral symmetry

    Science.gov (United States)

    Trewartha, Daniel; Kamleh, Waseem; Leinweber, Derek B.

    2017-12-01

    The influence of centre vortices on dynamical chiral symmetry breaking is investigated through the light hadron spectrum on the lattice. Recent studies of the quark propagator and other quantities have provided evidence that centre vortices are the fundamental objects underpinning dynamical chiral symmetry breaking in {SU}(3) gauge theory. For the first time, we use the chiral overlap fermion action to study the low-lying hadron spectrum on lattice ensembles consisting of Monte Carlo, vortex-removed, and vortex-projected gauge fields. We find that gauge field configurations consisting solely of smoothed centre vortices are capable of reproducing all the salient features of the hadron spectrum, including dynamical chiral symmetry breaking. The hadron spectrum on vortex-removed fields shows clear signals of chiral symmetry restoration at light values of the bare quark mass, while at heavy masses the spectrum is consistent with a theory of weakly interacting constituent quarks.

  8. Enantioselective environmental toxicology of chiral pesticides.

    Science.gov (United States)

    Ye, Jing; Zhao, Meirong; Niu, Lili; Liu, Weiping

    2015-03-16

    The enantioselective environmental toxic effect of chiral pesticides is becoming more important. As the industry develops, increasing numbers of chiral insecticides and herbicides will be introduced into use, potentially posing toxic effects on nontarget living beings. Chiral pesticides, including herbicides such as acylanilides, phenoxypropanoic acids, and imidazolinones, and insecticides such as synthetic pyrethroids, organophosphates, and DDT often behave enantioselectively during agricultural use. These compounds also pose unpredictable enantioselective ecological threats to nontarget living beings and/or humans, affecting the food chain and entire ecosystems. Thus, to investigate the enantioselective toxic effects of chiral insecticides and herbicides is necessary during environmental protection. The environmental toxicology of chiral pesticides, especially the findings obtained from studies conducted in our laboratory during the past 10 years, is reviewed.

  9. Genetically programmed chiral organoborane synthesis

    Science.gov (United States)

    Kan, S. B. Jennifer; Huang, Xiongyi; Gumulya, Yosephine; Chen, Kai; Arnold, Frances H.

    2017-12-01

    Recent advances in enzyme engineering and design have expanded nature’s catalytic repertoire to functions that are new to biology. However, only a subset of these engineered enzymes can function in living systems. Finding enzymatic pathways that form chemical bonds that are not found in biology is particularly difficult in the cellular environment, as this depends on the discovery not only of new enzyme activities, but also of reagents that are both sufficiently reactive for the desired transformation and stable in vivo. Here we report the discovery, evolution and generalization of a fully genetically encoded platform for producing chiral organoboranes in bacteria. Escherichia coli cells harbouring wild-type cytochrome c from Rhodothermus marinus (Rma cyt c) were found to form carbon–boron bonds in the presence of borane–Lewis base complexes, through carbene insertion into boron–hydrogen bonds. Directed evolution of Rma cyt c in the bacterial catalyst provided access to 16 novel chiral organoboranes. The catalyst is suitable for gram-scale biosynthesis, providing up to 15,300 turnovers, a turnover frequency of 6,100 h–1, a 99:1 enantiomeric ratio and 100% chemoselectivity. The enantiopreference of the biocatalyst could also be tuned to provide either enantiomer of the organoborane products. Evolved in the context of whole-cell catalysts, the proteins were more active in the whole-cell system than in purified forms. This study establishes a DNA-encoded and readily engineered bacterial platform for borylation; engineering can be accomplished at a pace that rivals the development of chemical synthetic methods, with the ability to achieve turnovers that are two orders of magnitude (over 400-fold) greater than those of known chiral catalysts for the same class of transformation. This tunable method for manipulating boron in cells could expand the scope of boron chemistry in living systems.

  10. Chiral discrimination in nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Lazzeretti, Paolo

    2017-11-01

    Chirality is a fundamental property of molecules whose spatial symmetry is characterized by the absence of improper rotations, making them not superimposable to their mirror image. Chiral molecules constitute the elementary building blocks of living species and one enantiomer is favoured in general (e.g. L-aminoacids and D-sugars pervade terrestrial homochiral biochemistry) because most chemical reactions producing natural substances are enantioselective. Since the effect of chiral chemicals and drugs on living beings can be markedly different between enantiomers, the quest for practical spectroscopical methods to scrutinize chirality is an issue of great importance and interest. Nuclear magnetic resonance (NMR) is a topmost analytical technique, but spectrometers currently used are ‘blind’ to chirality, i.e. unable to discriminate the two mirror-image forms of a chiral molecule, because, in the absence of a chiral solvent, the spectral parameters, chemical shifts and spin-spin coupling constants are identical for enantiomers. Therefore, the development of new procedures for routine chiral recognition would offer basic support to scientists. However, in the presence of magnetic fields, a distinction between true and false chirality is mandatory. The former epitomizes natural optical activity, which is rationalized by a time-even pseudoscalar, i.e. the trace of a second-rank tensor, the mixed electric dipole/magnetic dipole polarizability. The Faraday effect, magnetic circular dichroism and magnetic optical activity are instead related to a time-odd axial vector. The present review summarizes recent theoretical and experimental efforts to discriminate enantiomers via NMR spectroscopy, with the focus on the deep connection between chirality and symmetry properties under the combined set of fundamental discrete operations, namely charge conjugation, parity (space inversion) and time (motion) reversal.

  11. Lattice simulation of a center symmetric three dimensional effective theory for SU(2) Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Dominik

    2010-11-17

    We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for theWilson line which includes a ''fuzzy'' bag term to generate non-perturbative fluctuations between Z(2) degenerate ground states. The model is studied in the limit where the gauge fields are set to zero as well as the full model with gauge fields. We confirm that, at moderately weak coupling, the ''fuzzy'' bag term leads to eigenvalue repulsion in a finite region above the deconfining phase transition which shrinks in the extreme weak-coupling limit. A non-trivial Z(N) symmetric vacuum arises in the confined phase. The effective potential for the Polyakov loop in the theory with gauge fields is extracted from the simulations including all modes of the loop as well as for cooled configurations where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram. Other results include the exact location of the phase boundary in the plane spanned by the coupling parameters, correlation lengths of several operators in the magnetic and electric sectors and the spatial string tension. We also present results from simulations of the full 4D Yang-Mills theory and attempt to make a qualitative comparison to the 3D effective theory. (orig.)

  12. Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS2Nanostructures.

    Science.gov (United States)

    Purcell-Milton, Finn; McKenna, Robert; Brennan, Lorcan J; Cullen, Conor P; Guillemeney, Lilian; Tepliakov, Nikita V; Baimuratov, Anvar S; Rukhlenko, Ivan D; Perova, Tatiana S; Duesberg, Georg S; Baranov, Alexander V; Fedorov, Anatoly V; Gun'ko, Yurii K

    2018-02-27

    Two-dimensional (2D) nanomaterials have been intensively investigated due to their interesting properties and range of potential applications. Although most research has focused on graphene, atomic layered transition metal dichalcogenides (TMDs) and particularly MoS 2 have gathered much deserved attention recently. Here, we report the induction of chirality into 2D chiral nanomaterials by carrying out liquid exfoliation of MoS 2 in the presence of chiral ligands (cysteine and penicillamine) in water. This processing resulted in exfoliated chiral 2D MoS 2 nanosheets showing strong circular dichroism signals, which were far past the onset of the original chiral ligand signals. Using theoretical modeling, we demonstrated that the chiral nature of MoS 2 nanosheets is related to the presence of chiral ligands causing preferential folding of the MoS 2 sheets. There was an excellent match between the theoretically calculated and experimental spectra. We believe that, due to their high aspect ratio planar morphology, chiral 2D nanomaterials could offer great opportunities for the development of chiroptical sensors, materials, and devices for valleytronics and other potential applications. In addition, chirality plays a key role in many chemical and biological systems, with chiral molecules and materials critical for the further development of biopharmaceuticals and fine chemicals, and this research therefore should have a strong impact on relevant areas of science and technology such as nanobiotechnology, nanomedicine, and nanotoxicology.

  13. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.

    2016-06-22

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  14. Chirality controlled responsive self-assembled nanotubes in water

    NARCIS (Netherlands)

    van Dijken, D. J.; Stacko, P.; Stuart, M. C. A.; Browne, W. R.; Feringa, B. L.

    2017-01-01

    The concept of using chirality to dictate dimensions and to store chiral information in self-assembled nanotubes in a fully controlled manner is presented. We report a photoresponsive amphiphile that co-assembles with its chiral counterpart to form nanotubes and demonstrate how chirality can be used

  15. Chlorophylls, Symmetry, Chirality, and Photosynthesis

    Directory of Open Access Journals (Sweden)

    Mathias O. Senge

    2014-09-01

    Full Text Available Chlorophylls are a fundamental class of tetrapyrroles and function as the central reaction center, accessory and photoprotective pigments in photosynthesis. Their unique individual photochemical properties are a consequence of the tetrapyrrole macrocycle, the structural chemistry and coordination behavior of the phytochlorin system, and specific substituent pattern. They achieve their full potential in solar energy conversion by working in concert in highly complex, supramolecular structures such as the reaction centers and light-harvesting complexes of photobiology. The biochemical function of these structures depends on the controlled interplay of structural and functional principles of the apoprotein and pigment cofactors. Chlorophylls and bacteriochlorophylls are optically active molecules with several chiral centers, which are necessary for their natural biological function and the assembly of their supramolecular complexes. However, in many cases the exact role of chromophore stereochemistry in the biological context is unknown. This review gives an overview of chlorophyll research in terms of basic function, biosynthesis and their functional and structural role in photosynthesis. It highlights aspects of chirality and symmetry of chlorophylls to elicit further interest in their role in nature.

  16. Static hyperon properties in a linearized SU(3)-chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Klimt, S.; Weise, W.

    1988-12-01

    We use a linearized Chiral Bag model to describe the strange octet and decuplet baryons. The approach is canonically extended to spontaneously broken chiral SU(3)/sub L/xSU(3)/sub R/, and the corresponding Goldstone Bosons are identified with the pseudoscalar meson octet. We include explicit symmetry breaking corrections both for baryons and mesons. The linearized quark-meson intraction is applied in a self-consistent calculation of the masses and, for ..delta.., ..sigma../sup */ and ..gamma../sup */, of the decay widths. Our special interest is in the influence of the K- and eta-cloud (in addition to the ..pi..) on hyperon static properties. We show results for radii, masses, decay widths and renormalization constants as obtained by a fit to the experimental hyperon spectra. The effects of the K- and eta-mesons are found to be non-negligible, although supressed by symmetry breaking effects. The effective gluon coupling ..cap alpha.. is reduced in comparison to the SU(2)/sub L/xSU(2)/sub R/ case. In addition, we discuss the dependence on the bag constant B. It turns out that the lightest hyperon states, ..lambda.. and ..sigma.. are well described and stable for B/sup 1/4/ < 130 MeV. The heavier strange baryons have stable solutions also for larger values of B. The bag radii determined at the minimal energies are R/sub 0/ approx. = 1.15 fm for the octet and R/sub 0/ approx. = 1.25 fm for the decuplet baryons.

  17. Enhanced Chiral Discriminatory van der Waals Interactions Mediated by Chiral Surfaces

    Science.gov (United States)

    Barcellona, Pablo; Safari, Hassan; Salam, A.; Buhmann, Stefan Yoshi

    2017-05-01

    We predict a discriminatory interaction between a chiral molecule and an achiral molecule which is mediated by a chiral body. To achieve this, we generalize the van der Waals interaction potential between two ground-state molecules with electric, magnetic, and chiral response to nontrivial environments. The force is evaluated using second-order perturbation theory with an effective Hamiltonian. Chiral media enhance or reduce the free interaction via many-body interactions, making it possible to measure the chiral contributions to the van der Waals force with current technology. The van der Waals interaction is discriminatory with respect to enantiomers of different handedness and could be used to separate enantiomers. We also suggest a specific geometric configuration where the electric contribution to the van der Waals interaction is zero, making the chiral component the dominant effect.

  18. Enhanced Chiral Discriminatory van der Waals Interactions Mediated by Chiral Surfaces.

    Science.gov (United States)

    Barcellona, Pablo; Safari, Hassan; Salam, A; Buhmann, Stefan Yoshi

    2017-05-12

    We predict a discriminatory interaction between a chiral molecule and an achiral molecule which is mediated by a chiral body. To achieve this, we generalize the van der Waals interaction potential between two ground-state molecules with electric, magnetic, and chiral response to nontrivial environments. The force is evaluated using second-order perturbation theory with an effective Hamiltonian. Chiral media enhance or reduce the free interaction via many-body interactions, making it possible to measure the chiral contributions to the van der Waals force with current technology. The van der Waals interaction is discriminatory with respect to enantiomers of different handedness and could be used to separate enantiomers. We also suggest a specific geometric configuration where the electric contribution to the van der Waals interaction is zero, making the chiral component the dominant effect.

  19. Enhancing circular dichroism by super chiral hot spots from a chiral metasurface with apexes

    Science.gov (United States)

    Wang, Zeng; Teh, Bing Hong; Wang, Yue; Adamo, Giorgio; Teng, Jinghua; Sun, Handong

    2017-05-01

    Manipulating light spin (or circular polarization) is an important research field and may find broad applications from sensors, display technology, to quantum computing and communication. To this end, planar metasurfaces with larger circular dichroism are strongly demanded. However, current planar chiral metasurface structures suffer from either fabrication challenge, especially from near-infrared to visible spectrum, or insufficient circular dichroism. Here, we report a chiral metasurface composed of achiral nanoholes which allow for precisely creating apexes in the designed structure. Our investigation indicates that the apexes act as super chiral hot spots and enable the highly concentrated near-field optical chirality leading to a remarkable enhancement of circular dichroism in the far-field. A 4-fold enhancement of the circular dichroism and a strong optical activity of ˜15 degrees have been experimentally achieved. Besides the enhanced chirality, our design genuinely overcomes the nanofabrication challenge faced in existing planar chiral metasurfaces.

  20. Potential-driven chirality manifestations and impressive enantioselectivity by inherently chiral electroactive organic films.

    Science.gov (United States)

    Sannicolò, Francesco; Arnaboldi, Serena; Benincori, Tiziana; Bonometti, Valentina; Cirilli, Roberto; Dunsch, Lothar; Kutner, Włodzimierz; Longhi, Giovanna; Mussini, Patrizia R; Panigati, Monica; Pierini, Marco; Rizzo, Simona

    2014-03-03

    The typical design of chiral electroactive materials involves attaching chiral pendants to an electroactive polyconjugated backbone and generally results in modest chirality manifestations. Discussed herein are electroactive chiral poly-heterocycles, where chirality is not external to the electroactive backbone but inherent to it, and results from a torsion generated by the periodic presence of atropisomeric, conjugatively active biheteroaromatic scaffolds, (3,3'-bithianaphthene). As the stereogenic element coincides with the electroactive one, films of impressive chiroptical activity and outstanding enantiodiscrimination properties are obtained. Moreover, chirality manifestations can be finely and reversibly tuned by the electric potential, as progressive injection of holes forces the two thianaphthene rings to co-planarize to favor delocalization. Such deformations, revealed by CD spectroelectrochemistry, are elastic and reversible, thus suggesting a breathing system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Instantons, vortices and confinement in SU(2) Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, A.L.L. de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Oxman, L.E.; Teixeira, B.F.I. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    Full text: In this work, we derive a recently proposed Abelian model to describe the interaction of correlated instantons, center vortices, and dual fields in three dimensional SU(2) Yang-Mills theory. Correlated monopoles and center vortices are believed to play a relevant role in accommodating the different properties of the confining string in Yang-Mills theories, receiving support from lattice simulations. In fact, scenarios based on either monopoles or closed center vortices are only partially successful to describe the expected behavior of the potential between quarks. At asymptotic distances, this potential should be linear and depend on the representation of the subgroup Z(N) of SU(N) (N-ality). At intermediate scales, it should posses Casimir scaling. The Cho-Faddeev- Niemi representation (CFN) can be used to associate monopoles with defects of the local color frame used to decompose the gauge fields. This possible frame defects can be extended to describe not only monopoles but also center vortices, correlated or not. In these scenarios, one of the difficulties is how to deal with the integration over an ensemble of extended objects, after considering a phenomenological parametrization of their properties, such as stiffness, interactions with dual fields, and interactions between them. This is particularly severe in four dimensional theories where center vortices generate two dimensional extended world surfaces. However, in three dimensions center vortices are stringlike and an ensemble of world lines is naturally associated with a second quantized field theory. The aim of this work is presenting a careful derivation of an effective model, considering instantons and center vortices in D=3 SU(3) theory, after parameterizing some intrinsic physical properties that these objects could present. One of the fundamental ingredients will be the adoption of recent techniques borrowed from polymer physics, where the extended objects are also one dimensional. This

  2. Model for chiral symmetry breaking in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Govaerts, J.; Weyers, J.; Mandula, J.E.

    1984-04-30

    A recently proposed model for dynamical breaking of chiral symmetry in QCD is extended and developed for the calculation of pion and chiral symmetry breaking parameters. The pion is explicitly realized as a massless Goldstone boson and as a bound state of the constituent quarks. We compute, in the limit of exact chiral symmetry, Msub(Q), the constituent quark mass, fsub(..pi..), the pion decay coupling, , the constituent quark loop density, ..mu..sub(..pi..)/sup 2//msub(q), the ratio of the Goldstone boson mass squared to the bare quark mass, and sub(..pi..), the pion electromagnetic charge radius squared.

  3. Partial restoration of chiral symmetry inside hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Iritani, Takumi [Yukawa Institute for Theoretical Physics (YITP) (Japan); Cossu, Guido [High Energy Accelerator Research Organization (KEK) (Japan); Hashimoto, Shoji [High Energy Accelerator Research Organization (KEK) (Japan); School of High Energy Accelerator Science, The Graduate University for Advanced Studies (Sokendai) (Japan)

    2016-01-22

    We investigate the spatial distribution of the chiral condensate around static color sources for both quark-antiquark and three-quark systems. In the QCD vacuum a tube-like structure of chromo fields appears between color sources, which leads to a linearly confining potential. We show that the magnitude of the condensate is reduced inside the flux-tube, which suggests that chiral symmetry is partially restored inside the hadrons. By using a static baryon source in a periodic box as a model of the nuclear matter, we estimate the restoration of chiral symmetry with finite baryon number density.

  4. Partial restoration of chiral symmetry inside hadrons

    Science.gov (United States)

    Iritani, Takumi; Cossu, Guido; Hashimoto, Shoji

    2016-01-01

    We investigate the spatial distribution of the chiral condensate around static color sources for both quark-antiquark and three-quark systems. In the QCD vacuum a tube-like structure of chromo fields appears between color sources, which leads to a linearly confining potential. We show that the magnitude of the condensate is reduced inside the flux-tube, which suggests that chiral symmetry is partially restored inside the hadrons. By using a static baryon source in a periodic box as a model of the nuclear matter, we estimate the restoration of chiral symmetry with finite baryon number density.

  5. Enhanced Chiral Recognition by Cyclodextrin Dimers

    Directory of Open Access Journals (Sweden)

    Bart Jan Ravoo

    2011-07-01

    Full Text Available In this article we investigate the effect of multivalency in chiral recognition. To this end, we measured the host-guest interaction of a β-cyclodextrin dimer with divalent chiral guests. We report the synthesis of carbohydrate-based water soluble chiral guests functionalized with two borneol, menthol, or isopinocampheol units in either (+ or (– configuration. We determined the interaction of these divalent guests with a β-cyclodextrin dimer using isothermal titration calorimetry. It was found that—in spite of a highly unfavorable conformation—the cyclodextrin dimer binds to guest dimers with an increased enantioselectivity, which clearly reflects the effect of multivalency.

  6. Exploring chiral dynamics with overlap fermions

    CERN Document Server

    Fukaya, Hidenori

    2010-01-01

    This talk presents a lattice study of spontaneous chiral symmetry breaking performed by the JLQCD and TWQCD collaborations with dynamical overlap fermions. Our lattice configurations are generated in a fixed topological sector. Since finite volume effects, partly due to the fixed global topology, are mainly induced by pion fields, the dependence on the lattice volume, topological charge and quark masses can be analytically predicted using chiral perturbation theory (ChPT). We find a good agreement of Dirac operator spectrum calculated on the lattice with the ChPT prediction including its finite size scalings, through which the chiral condensate is determined with good accuracy.

  7. N = 3 chiral supergravity compatible with the reality condition and higher N chiral Lagrangian density

    OpenAIRE

    Tsuda, Motomu

    2000-01-01

    We obtain N = 3 chiral supergravity (SUGRA) compatible with the reality condition by applying the prescription of constructing the chiral Lagrangian density from the usual SUGRA. The $N = 3$ chiral Lagrangian density in first-order form, which leads to the Ashtekar's canonical formulation, is determined so that it reproduces the second-order Lagrangian density of the usual SUGRA especially by adding appropriate four-fermion contact terms. We show that the four-fermion contact terms added in t...

  8. Review of aqueous chiral electrokinetic chromatography (EKC) with an emphasis on chiral microemulsion EKC.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-08-01

    The separation of enantiomers using electrokinetic chromatography (EKC) with chiral microemulsions is comprehensively reviewed through December 1, 2006. Aqueous chiral EKC separations based on other pseudostationary phases such as micelles and vesicles or on other chiral selectors such as CDs, crown ethers, glycopeptides, ligand exchange moeities are also reviewed from both mechanistic and applications perspective for the period of January 2005 to December 1, 2006.

  9. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    Science.gov (United States)

    Kalaydzhyan, Tigran; Murchikova, Elena

    2017-06-01

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark-gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  10. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran, E-mail: tigran@caltech.edu [Department of Physics, University of Illinois, 845 W Taylor Street, Chicago, IL 60607 (United States); Jet Propulsion Laboratory, 4800 Oak Grove Dr, M/S 298, Pasadena, CA 91109 (United States); Murchikova, Elena [TAPIR, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States)

    2017-06-15

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium {sup 3}He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  11. Space inversion of spinors revisited: A possible explanation of chiral behavior in weak interactions

    Science.gov (United States)

    Pavšič, Matej

    2010-08-01

    We investigate a model in which spinors are considered as being embedded within the Clifford algebra that operates on them. In Minkowski space M1,3, we have four independent 4-component spinors, each living in a different minimal left ideal of Cl(1,3). We show that under space inversion, a spinor of one left ideal transforms into a spinor of another left ideal. This brings novel insight to the role of chirality in weak interactions. We demonstrate the latter role by considering an action for a generalized spinor field ψ that has not only a spinor index α but also an extra index i running over four ideals. The covariant derivative of ψ contains the generalized spin connection, the extra components of which are interpreted as the SU(2) gauge fields of weak interactions and their generalization. We thus arrive at a system that is left-right symmetric due to the presence of a “parallel sector”, postulated a long time ago, that contains mirror particles coupled to mirror SU(2) gauge fields.

  12. Spectral triples and associated Connes-de Rham complex for the quantum SU(2) and the quantum sphere

    OpenAIRE

    Chakraborty, Partha Sarathi; Pal, Arupkumar

    2002-01-01

    We construct spectral triples for the C^*-algebra of continuous functions on the quantum SU(2) group and the quantum sphere. There has been various approaches towards building a calculus on quantum spaces, but there seems to be very few instances of computations outlined in chapter~6 of Connes' book. We give detailed computations of the associated Connes-de Rham complex and the space of L_2-forms.

  13. U(1) and SU(2) quantum dissipative systems: the Caldeira–Leggett Versus Ambegaokar–Eckern–Schön approaches

    Energy Technology Data Exchange (ETDEWEB)

    Shnirman, A., E-mail: alexander.shnirman@kit.edu [Karlsruhe Institute of Technology, Institut fur Theorie der Kondensierten Materie (Germany); Saha, A. [Institute of Physics (India); Burmistrov, I. S. [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation); Kiselev, M. N. [International Center for Theoretical Physics (Italy); Altland, A. [Universität zu Köln, Institut für Theoretische Physik (Germany); Gefen, Y. [Weizmann Institute of Science, Department of Condensed Matter Physics (Israel)

    2016-03-15

    There are two paradigmatic frameworks for treating quantum systems coupled to a dissipative environment: the Caldeira–Leggett and Ambegaokar–Eckern–Schön approaches. Here, we recall the differences between them and explain the consequences of applying each to a zero-dimensional spin (having an SU(2) symmetry) in a dissipative environment (a dissipative quantum dot near or beyond the Stoner instability point).

  14. Chiral extrapolations for nucleon electric charge radii

    CERN Document Server

    Hall, J M M; Young, R D

    2013-01-01

    Lattice simulations for the electromagnetic form factors of the nucleon yield insights into the internal structure of hadrons. The logarithmic divergence of the charge radius in the chiral limit poses an interesting challenge in achieving reliable predictions from finite-volume lattice simulations. Recent results near the physical pion mass are examined in order to confront the issue of how the chiral regime is approached. The electric charge radius of the nucleon presents a forum for achieving consistent finite-volume corrections. Newly-developed techniques within the framework of chiral effective field theory are used to achieve a robust extrapolation of the electric charge radius to the physical pion mass, and to infinite volume. The chiral extrapolations exhibit considerable finite-volume dependence; lattice box sizes of L > 7 fm are required in order to achieve a direct lattice simulation result within 2% of the infinite-volume value at the physical point. Predictions of the volume-dependence are provide...

  15. Chirality and angular momentum in optical radiation

    CERN Document Server

    Coles, Matt M

    2012-01-01

    This paper develops, in precise quantum electrodynamic terms, photonic attributes of the "optical chirality density", one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive "superchiral" phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multi-mode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin angular momentum of light is engaged in such...

  16. Odd viscosity in chiral active fluids.

    Science.gov (United States)

    Banerjee, Debarghya; Souslov, Anton; Abanov, Alexander G; Vitelli, Vincenzo

    2017-11-17

    We study the hydrodynamics of fluids composed of self-spinning objects such as chiral grains or colloidal particles subject to torques. These chiral active fluids break both parity and time-reversal symmetries in their non-equilibrium steady states. As a result, the constitutive relations of chiral active media display a dissipationless linear-response coefficient called odd (or equivalently, Hall) viscosity. This odd viscosity does not lead to energy dissipation, but gives rise to a flow perpendicular to applied pressure. We show how odd viscosity arises from non-linear equations of hydrodynamics with rotational degrees of freedom, once linearized around a non-equilibrium steady state characterized by large spinning speeds. Next, we explore odd viscosity in compressible fluids and suggest how our findings can be tested in the context of shock propagation experiments. Finally, we show how odd viscosity in weakly compressible chiral active fluids can lead to density and pressure excess within vortex cores.

  17. Organometallic chemistry of chiral diphosphazane ligands ...

    Indian Academy of Sciences (India)

    Unknown

    Organometallic chemistry of chiral diphosphazane ligands: Synthesis and structural characterisation. KANNAN RAGHURAMAN, SWADHIN K MANDAL,. T S VENKATAKRISHNAN, SETHARAMPATTU S. KRISHNAMURTHY* and MUNIRATHINAM NETHAJI. Department of Inorganic and Physical Chemistry, Indian Institute of ...

  18. Controlling and imaging chiral spin textures

    Science.gov (United States)

    Chen, Gong

    Chirality in magnetic materials is fundamentally interesting and holds potential for logic and memory applications. Using spin-polarized low-energy electron microscopy at National Center for Electron Microscopy, we recently observed chiral domain walls in thin films. We developed ways to tailor the Dzyaloshinskii-Moriya interaction, which drives the chirality, by interface engineering and by forming ternary superlattices. We find that spin-textures can be switched between left-handed, right-handed, cycloidal, helical and mixed domain wall structures by controlling uniaxial strain in magnetic films. We also demonstrate an experimental approach to stabilize skyrmions in magnetic multilayers without external magnetic field. These results exemplify the rich physics of chirality associated with interfaces of magnetic materials

  19. Chiral Spin Pairing in Helical Magnets

    Science.gov (United States)

    Onoda, Shigeki; Nagaosa, Naoto

    2007-07-01

    A concept of chiral spin pairing is introduced to describe a vector-chiral liquid-crystal order in frustrated spin systems. It is found that the chiral spin pairing is induced by the coupling to phonons through the Dzyaloshinskii-Moriya interaction and the four-spin exchange interaction of the Coulomb origin under the edge-sharing network of magnetic and ligand ions. This produces two successive second-order phase transitions upon cooling: an O(2) chiral spin nematic, i.e., spin cholesteric, order appears with an either parity, and then the O(2) symmetry is broken to yield a helical magnetic order. Possible candidate materials are also discussed as new multiferroic systems.

  20. Light front distribution of the chiral condensate

    National Research Council Canada - National Science Library

    Chang, Lei; Roberts, Craig D; Schmidt, Sebastian M

    2013-01-01

    The pseudoscalar projection of the pionE1/4s Poincare-covariant Bethe-Salpeter amplitude onto the light-front may be understood to provide the probability distribution of the chiral condensate within the pion...

  1. Biocatalytic Synthesis of Chiral Pharmaceutical Intermediates

    Directory of Open Access Journals (Sweden)

    Ramesh N. Patel

    2004-01-01

    Full Text Available The production of single enantiomers of drug intermediates has become increasingly important in the pharmaceutical industry. Chiral intermediates and fine chemicals are in high demand from both the pharmaceutical and agrochemical industries for the preparation of bulk drug substances and agricultural products. The enormous potential of microorganisms and enzymes for the transformation of synthetic chemicals with high chemo-, regio- and enantioselectivities has been demonstrated. In this article, biocatalytic processes are described for the synthesis of chiral pharmaceutical intermediates.

  2. Chiral Plasmonic Nanostructures on Achiral Nanopillars

    Science.gov (United States)

    2013-10-10

    substrates via hydrothermal synthesis33 (Figure 1a). The first Au layer is then deposited on the ZnO nanopillars. Note that the substrate is inclined...Nano Lett. 2013, 13, 5277−52835279 7 optical extinction of ZnO nanopillars (Figure 3b). ZnO nanopillars and NPs grown by hydrothermal methods do not...generates chiral absorption of the achiral ZnO nanopillars. Similar phenomena have been observed for achiral nano- particles when chiral organic

  3. Lattice quantum chromodynamics with approximately chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hierl, Dieter

    2008-05-15

    In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)

  4. Switching chiral solitons for algebraic operation of topological quaternary digits

    Science.gov (United States)

    Kim, Tae-Hwan; Cheon, Sangmo; Yeom, Han Woong

    2017-02-01

    Chiral objects can be found throughout nature; in condensed matter chiral objects are often excited states protected by a system's topology. The use of chiral topological excitations to carry information has been demonstrated, where the information is robust against external perturbations. For instance, reading, writing, and transfer of binary information have been demonstrated with chiral topological excitations in magnetic systems, skyrmions, for spintronic devices. The next step is logic or algebraic operations of such topological bits. Here, we show experimentally the switching between chiral topological excitations or chiral solitons of different chirality in a one-dimensional electronic system with Z4 topological symmetry. We found that a fast-moving achiral soliton merges with chiral solitons to switch their handedness. This can lead to the realization of algebraic operation of Z4 topological charges. Chiral solitons could be a platform for storage and operation of robust topological multi-digit information.

  5. Analysis of rainbow scattering by a chiral sphere.

    Science.gov (United States)

    Shang, Qing-Chao; Wu, Zhen-Sen; Qu, Tan; Li, Zheng-Jun; Bai, Lu; Gong, Lei

    2013-09-23

    Based on the scattering theory of a chiral sphere, rainbow phenomenon of a chiral sphere is numerically analyzed in this paper. For chiral spheres illuminated by a linearly polarized wave, there are three first-order rainbows, with whose rainbow angles varying with the chirality parameter. The spectrum of each rainbow structure is presented and the ripple frequencies are found associated with the size and refractive indices of the chiral sphere. Only two rainbow structures remain when the chiral sphere is illuminated by a circularly polarized plane wave. Finally, the rainbows of chiral spheres with slight chirality parameters are found appearing alternately in E-plane and H-plane with the variation of the chirality.

  6. Implementation of the SU(2) Hamiltonian symmetry for the DMRG algorithm

    Science.gov (United States)

    Alvarez, Gonzalo

    2012-10-01

    In the Density Matrix Renormalization Group (DMRG) algorithm (White, 1992, 1993) [1,2], Hamiltonian symmetries play an important rôle. Using symmetries, the matrix representation of the Hamiltonian can be blocked. Diagonalizing each matrix block is more efficient than diagonalizing the original matrix. This paper explains how the the DMRG++ code (Alvarez, 2009) [3] has been extended to handle the non-local SU(2) symmetry in a model independent way. Improvements in CPU times compared to runs with only local symmetries are discussed for the one-orbital Hubbard model, and for a two-orbital Hubbard model for iron-based superconductors. The computational bottleneck of the algorithm and the use of shared memory parallelization are also addressed. Program summary Program title: DMRG++ Catalog identifier: AEDJ_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDJ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Special license. See http://cpc.cs.qub.ac.uk/licence/AEDJ_v2_0.html No. of lines in distributed program, including test data, etc.: 211560 No. of bytes in distributed program, including test data, etc.: 10572185 Distribution format: tar.gz Programming language: C++. Computer: PC. Operating system: Multiplatform, tested on Linux. Has the code been vectorized or parallelized?: Yes. 1 to 8 processors with MPI, 2 to 4 cores with pthreads. RAM: 1GB (256MB is enough to run the included test) Classification: 23. Catalog identifier of previous version: AEDJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180(2009)1572 External routines: BLAS and LAPACK Nature of problem: Strongly correlated electrons systems, display a broad range of important phenomena, and their study is a major area of research in condensed matter physics. In this context, model Hamiltonians are used to simulate the relevant interactions of a given compound, and the relevant degrees of freedom. These studies

  7. Chiral Symmetry Restoration, Naturalness and the Absence of Fine-Tuning I: Global Theories

    CERN Document Server

    Lynn, Bryan W.

    2013-01-01

    The Standard Model (SM), and the scalar sector of its zero-gauge-coupling limit -- the chiral-symmetric limit of the Gell Mann-Levy Model (GML) -- have been shown not to suffer from a Higgs Fine-Tuning (FT) problem. All ultraviolet quadratic divergences (UVQD) are absorbed into the mass-squared of pseudo Nambu-Goldstone (pNGB) bosons, in GML. Since chiral SU(2)_{L-R} symmetry is restored as the pNGB mass-squared or as the Higgs vacuum expectation value (VEV) are taken to 0, small values of these quantities and of the Higgs mass are natural, and therefore not Fine-Tuned. In this letter, we extend our results on the absence of FT to a wide class of high-mass-scale (M_{Heavy}>>m_{Higgs}) extensions to a simplified SO(2) version of GML. We explicitly demonstrate naturalness and no-FT for two examples of heavy physics, both SO(2) singlets: a heavy (M_S >> m_{Higgs}) real scalar field (with or without a VEV); and a right-handed Type 1 See-Saw Majorana neutrino with M_R >> m_{Higgs}. We prove that for |q^2| <<...

  8. Chiral Four-Dimensional N=1 Supersymmetric Type IIA Orientifolds from Intersecting D6-Branes

    CERN Document Server

    Cvetic, M; Uranga, Angel M; Cvetic, Mirjam; Shiu, Gary; Uranga, Angel M.

    2001-01-01

    We construct N=1 supersymmetric four-dimensional orientifolds of type IIA on T^6/(Z_2 x Z_2) with D6-branes intersecting at angles. The use of D6-branes not fully aligned with the O6-planes in the model allows for a construction of many supersymmetric models with chiral matter, including those with the Standard Model and grand unified gauge groups. We perform a search for realistic gauge sectors, and construct the first example of a supersymmetric type II orientifold with SU(3)_C x SU(2)_L x U(1)_Y gauge group and three quark-lepton families. In addition to the supersymmetric Standard Model content, the model contains right-handed neutrinos, a (chiral but anomaly-free) set of exotic multiplets, and diverse vector-like multiplets. The general class of these constructions are related to familiar type II orientifolds by small instanton transitions, which in some cases change the number of generations, as discussed in specific models. These constructions are supersymmetric only for special choices of untwisted mo...

  9. Universality in random matrix theory and chiral symmetry breaking in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Akemann, G.

    2000-05-01

    In this work we review the topic of random matrix model universality with particular stress on its application to the study of chiral symmetry breaking in QCD. We highlight the role of microscopic and macroscopic matrix model correlation functions played in the description of the deep infrared eigenvalue spectrum of the Dirac operator. The universal microscopic correlation functions are presented for all three chiral symmetry breaking patterns, and the corresponding random matrix universality proofs are given for massless and massive fermions in a unified way. These analytic results have been widely confirmed from QCD lattice data and we present a comparison with the most recent analytic calculations describing data for dynamical SU(2) staggered fermions. The microscopic matrix model results are then re-expressed in terms of the finite-volume partition functions of Leutwyler and Smilga, where some of these expressions have been recently obtained using field theory only. The macroscopic random matrix universality is reviewed for the most simplest examples of bosonic and supersymmetric models. We also give an example for a non-universal deformation of a random matrix model - the restricted trace ensemble. (orig.)

  10. Dynamical time-reversal symmetry breaking and photo-induced chiral spin liquids in frustrated Mott insulators.

    Science.gov (United States)

    Claassen, Martin; Jiang, Hong-Chen; Moritz, Brian; Devereaux, Thomas P

    2017-10-30

    The search for quantum spin liquids in frustrated quantum magnets recently has enjoyed a surge of interest, with various candidate materials under intense scrutiny. However, an experimental confirmation of a gapped topological spin liquid remains an open question. Here, we show that circularly polarized light can provide a knob to drive frustrated Mott insulators into a chiral spin liquid, realizing an elusive quantum spin liquid with topological order. We find that the dynamics of a driven Kagome Mott insulator is well-captured by an effective Floquet spin model, with heating strongly suppressed, inducing a scalar spin chirality S i · (S j  × S k ) term which dynamically breaks time-reversal while preserving SU(2) spin symmetry. We fingerprint the transient phase diagram and find a stable photo-induced chiral spin liquid near the equilibrium state. The results presented suggest employing dynamical symmetry breaking to engineer quantum spin liquids and access elusive phase transitions that are not readily accessible in equilibrium.

  11. Symmetries of Ginsparg-Wilson chiral fermions

    Science.gov (United States)

    Mandula, Jeffrey E.

    2009-10-01

    The group structure of the variant chiral symmetry discovered by Lüscher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter invariant subgroup, and the factor group, whose elements are its cosets, is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, noncommuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example, free overlap fermions, these noncanonical elements of lattice chiral symmetry are related to complex energy singularities that violate reflection positivity and impede continuation to Minkowski space.

  12. Enantioselective separation on chiral Au nanoparticles.

    Science.gov (United States)

    Shukla, Nisha; Bartel, Melissa A; Gellman, Andrew J

    2010-06-30

    The surfaces of chemically synthesized Au nanoparticles have been modified with d- or l-cysteine to render them chiral and enantioselective for adsorption of chiral molecules. Their enantioselective interaction with chiral compounds has been probed by optical rotation measurements during exposure to enantiomerically pure and racemic propylene oxide. The ability of optical rotation to detect enantiospecific adsorption arises from the fact that the specific rotation of polarized light by (R)- and (S)-propylene oxide is enhanced by interaction with Au nanoparticles. This effect is related to previous observations of enhanced circular dichroism by Au nanoparticles modified by chiral adsorbates. More importantly, chiral Au nanoparticles modified with either d- or l-cysteine selectively adsorb one enantiomer of propylene oxide from a solution of racemic propylene oxide, thus leaving an enantiomeric excess in the solution phase. Au nanoparticles modified with l-cysteine (d-cysteine) selectively adsorb the (R)-propylene oxide ((S)-propylene oxide). A simple model has been developed that allows extraction of the enantiospecific equilibrium constants for (R)- and (S)-propylene oxide adsorption on the chiral Au nanoparticles.

  13. Synthesis of chiral amino epoxyaziridines: useful intermediates for the preparation of chiral trisubstituted piperidines.

    Science.gov (United States)

    Concellón, José M; Riego, Estela; Rivero, Ignacio A; Ochoa, Adrián

    2004-09-17

    Chiral aminoalkyl epoxyaziridine 1 is synthesized in high yield and diastereoselectivity from L-serine. Ring opening of epoxyaziridine 1 with primary amines is carried out with total chemo- and regioselectivity, affording chiral polyfunctionalized piperidines 8. The structure of these trisubstituted piperidines is established by NMR studies.

  14. Chiral polymerization in open systems from chiral-selective reaction rates.

    Science.gov (United States)

    Gleiser, Marcelo; Nelson, Bradley J; Walker, Sara Imari

    2012-08-01

    We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. We are thus investigating how rare a set of chiral-selective reaction rates needs to be in order to generate a reasonable amount of chiral bias. We quantify our results adopting a statistical approach: varying both the mean value and the rms dispersion of the relevant reaction rates, we show that moderate to high levels of chiral excess can be achieved with fairly small chiral bias, below 10%. Considering the various unknowns related to prebiotic chemical networks in early Earth and the dependence of reaction rates to environmental properties such as temperature and pressure variations, we argue that homochirality could have been achieved from moderate amounts of chiral selectivity in the reaction rates.

  15. Chiral dynamics and peripheral transverse densities

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  16. Enantioselective catalytic syntheses of alpha-branched chiral amines

    DEFF Research Database (Denmark)

    Brase, S.; Baumann, T.; Dahmen, S.

    2007-01-01

    Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials.......Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials....

  17. Spin-k/2-spin-k/2 SU(2) two-point functions on the torus

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Kucharski, Piotr [Warsaw Univ. (Poland). Inst. of Theoretical Physics

    2012-11-15

    We discuss a class of two-point functions on the torus of primary operators in the SU(2) Wess-Zumino-Witten model at integer level k. In particular, we construct an explicit expression for the current blocks of the spin-(k)/(2)-spin-(k)/(2) torus two-point functions for all k. We first examine the factorization limits of the proposed current blocks and test their monodromy properties. We then prove that the current blocks solve the corresponding Knizhnik-Zamolodchikov-like differential equations using the method of Mathur, Mukhi and Sen.

  18. A note on open-chain transfer matrices from q-deformed su(2 vertical stroke 2)S-matrices

    Energy Technology Data Exchange (ETDEWEB)

    Murgan, R. [Physics Department, Gustavus Adolphus College, St. Peter, MN (United States)

    2009-09-15

    In this note, we perform Sklyanin's construction of commuting open-chain/boundary transfer matrices to the q-deformed SU(2 vertical stroke 2) bulk S-matrix of Beisert and Koroteev and a corresponding boundary S-matrix. This also includes a corresponding commuting transfer matrix using the graded version of the q-deformed bulk S-matrix. Utilizing the crossing property for the bulk S-matrix, we argue that the transfer matrix for both graded and non-graded versions contains a crucial factor which is essential for commutativity. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. Chiral liquid phase of simple quantum magnets

    Science.gov (United States)

    Wang, Zhentao; Feiguin, Adrian E.; Zhu, Wei; Starykh, Oleg A.; Chubukov, Andrey V.; Batista, Cristian D.

    2017-11-01

    We study a T =0 quantum phase transition between a quantum paramagnetic state and a magnetically ordered state for a spin S =1 XXZ Heisenberg antiferromagnet on a two-dimensional triangular lattice. The transition is induced by an easy-plane single-ion anisotropy D . At the mean-field level, the system undergoes a direct transition at a critical D =Dc between a paramagnetic state at D >Dc and an ordered state with broken U(1 ) symmetry at D field the phase diagram is very different and includes an intermediate, partially ordered chiral liquid phase. Specifically, we find that inside the paramagnetic phase the Ising (Jz) component of the Heisenberg exchange binds magnons into a two-particle bound state with zero total momentum and spin. This bound state condenses at D >Dc , before single-particle excitations become unstable, and gives rise to a chiral liquid phase, which spontaneously breaks spatial inversion symmetry, but leaves the spin-rotational U(1 ) and time-reversal symmetries intact. This chiral liquid phase is characterized by a finite vector chirality without long-range dipolar magnetic order. In our analytical treatment, the chiral phase appears for arbitrarily small Jz because the magnon-magnon attraction becomes singular near the single-magnon condensation transition. This phase exists in a finite range of D and transforms into the magnetically ordered state at some D calculations.

  20. Influence of microemulsion chirality on chromatographic figures of merit in EKC: results with novel three-chiral-component microemulsions and comparison with one- and two-chiral-component microemulsions.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-08-01

    Novel microemulsion formulations containing all chiral components are described for the enantioseparation of six pairs of pharmaceutical enantiomers (atenolol, ephedrine, metoprolol, N-methyl ephedrine, pseudoephedrine, and synephrine). The chiral surfactant dodecoxycarbonylvaline (DDCV, R- and S-), the chiral cosurfactant S-2-hexanol, and the chiral oil diethyl tartrate (R- and S-) were combined to create four different chiral microemulsions, three of which were stable. Results obtained for enantioselectivity, efficiency, and resolution were compared for the triple-chirality systems and the single-chirality system that contained chiral surfactant only. Improvements in enantioselectivity and resolution were achieved by simultaneously incorporating three chiral components into the aggregate. The one-chiral-component microemulsion provided better efficiencies. Enantioselective synergies were identified for the three-chiral-component nanodroplets using a thermodynamic model. Additionally, two types of dual-chirality systems, chiral surfactant/chiral cosurfactant and chiral surfactant/chiral oil, were examined in terms of chromatographic figures of merit, with the former providing much better resolution. The two varieties of two-chiral-component microemulsions gave similar values for enantioselectivity and efficiency. Lastly, the microemulsion formulations were divided into categories based on the number of chiral microemulsion reagents and the average results for each pair of enantiomers were analyzed for trends. In general, enantioselectivity and resolution were enhanced while efficiency was decreased as more chiral components were used to create the pseudostationary phase (PSP).

  1. New chiral ligand exchange capillary electrophoresis system with chiral amino amide ionic liquids as ligands.

    Science.gov (United States)

    Jiang, Junfang; Mu, Xiaoyu; Qiao, Juan; Su, Yuan; Qi, Li

    2017-12-01

    Using chiral amino amide ionic liquids as the ligands, a new chiral ligand exchange capillary electrophoresis method with Cu(II) as the central ion was constructed for enantioseparation of labeled D,L-amino acids. The effects of key parameters, including pH value of the running buffer, the ratio of Cu(II) to chiral amino amide ionic liquids, the concentration of complexes based on Cu(II)-chiral amino amide ionic liquids were investigated. It has been observed that eight pairs of labeled D,L-amino acids could be baseline-separated with a running buffer of 15.0mM ammonium acetate, 10.0mM Cu(II) and 20.0mML-phenylalaninamide based ionic liquid at pH 5.0. The quantitation of D,L-amino acids was conducted and good linearity (r2 ≥ 0.964) was obtained. Furthermore, an assay for determining the enantiomeric purity of D,L-amino acids was developed and the possible enantiorecognition mechanism was discussed briefly. The results indicated that the chiral amino amide ionic liquids could play the role of ligands in chiral ligand exchange capillary electrophoresis system and exhibit great potential in chiral analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Review on Chiral Chromatography and its Application to the ...

    African Journals Online (AJOL)

    MoZarD

    overview of chiral separations to researchers who are versed in the area of ... This review highlights significant issues of the chiral separations and provides salient examples from specific classes of chiral selectors where appropriate. Terms and Definitions ..... molecule. This three-point interaction rule is generally valid for ...

  3. Magnetic test of chiral dynamics in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Simonov, Yu.A. [Institute of Theoretical and Experimental Physics,117118, Moscow, B. Cheremushkinskaya 25 (Russian Federation)

    2014-01-22

    Strong magnetic fields in the range eB≫m{sub π}{sup 2} effectively probe internal quark structure of chiral mesons and test basic parameters of the chiral theory, such as 〈q-barq〉,f{sub π}. We argue on general grounds that 〈q-barq〉 should grow linearly with eB when charged quark degrees of freedom come into play. To make explicit estimates we extend the previously formulated chiral theory, including quark degrees of freedom, to the case of strong magnetic fields and show that the quark condensate |〈q-barq〉|{sub u,d} grows quadratically with eB for eB<0.2 GeV{sup 2} and linearly for higher field values. These results agree quantitatively with recent lattice data and differ from χPT predictions.

  4. Chiral light by symmetric optical antennas

    CERN Document Server

    Mekonnen, Addis; Zubritskaya, Irina; Jönsson, Gustav Edman; Dmitriev, Alexandre

    2014-01-01

    Chirality is at the origin of life and is ubiquitous in nature. An object is deemed chiral if it is non-superimposable with its own mirror image. This relates to how circularly polarized light interacts with such object, a circular dichroism, the differential absorption of right and left circularly polarized light. According to the common understanding in biology, chemistry and physics, the circular dichroism results from an internal chiral structure or external symmetry breaking by illumination. We show that circular dichroism is possible with simple symmetric optical nanoantennas at symmetric illumination. We experimentally and theoretically demonstrate that two electromagnetic dipole-like modes with a phase lag, in principle, suffice to produce circular dichroism in achiral structure. Examples of the latter are all visible spectrum optical nanoantennas, symmetric nanoellipses and nanodimers. The simplicity and generality of this finding reveal a whole new significance of the electromagnetic design at a nan...

  5. On chiral-odd Generalized Parton Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France); UPMC Univ. Paris 6, Paris (France); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France); Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland)

    2010-07-01

    The chiral-odd transversity generalized parton distributions of the nucleon can be accessed experimentally through the exclusive photoproduction process {gamma} + N {yields} {pi} + {rho} + N', in the kinematics where the meson pair has a large invariant mass and the final nucleon has a small transverse momentum, provided the vector meson is produced in a transversally polarized state. Estimated counting rates show that the experiment is feasible with real or quasi real photon beams expected at JLab at 12 GeV and in the COMPASS experiment. (Phys Letters B688,154,2010) In addition, a consistent classification of the chiral-odd pion GPDs beyond the leading twist 2 is presented. Based on QCD equations of motion and on the invariance under rotation on the light-cone of any scattering amplitude involving such GPDs, we reduce the basis of these chiral-odd GPDs to a minimal set. (author)

  6. Chiral Perturbation Theory With Lattice Regularization

    CERN Document Server

    Ouimet, P P A

    2005-01-01

    In this work, alternative methods to regularize chiral perturbation theory are discussed. First, Long Distance Regularization will be considered in the presence of the decuplet of the lightest spin 32 baryons for several different observables. This serves motivation and introduction to the use of the lattice regulator for chiral perturbation theory. The mesonic, baryonic and anomalous sectors of chiral perturbation theory will be formulated on a lattice of space time points. The consistency of the lattice as a regulator will be discussed in the context of the meson and baryon masses. Order a effects will also be discussed for the baryon masses, sigma terms and magnetic moments. The work will close with an attempt to derive an effective Wess-Zumino-Witten Lagrangian for Wilson fermions at non-zero a. Following this discussion, there will be a proposal for a phenomenologically useful WZW Lagrangian at non-zero a.

  7. Chiral geometry in symmetry-restored states: Chiral doublet bands in 128Cs

    Science.gov (United States)

    Chen, F. Q.; Chen, Q. B.; Luo, Y. A.; Meng, J.; Zhang, S. Q.

    2017-11-01

    The pairing-plus-quadrupole Hamiltonian is diagonalized in a symmetry-restored basis, i.e., the triaxial quasiparticle states with angular momentum and particle number projections, and applied for chiral doublet bands in 128Cs. The observed energy spectra and electromagnetic transition probabilities are reproduced well without introducing any parameters. The orientation of the angular momentum in the intrinsic frame is investigated by the distributions of its components on the three principle axes (K plot) and those of its tilted angles (azimuthal plot). The evolution of the chirality with spin is illustrated, and the chiral geometry is demonstrated in the angular momentum projected model for the first time.

  8. Unphysical states in staggered chiral perturbation theory

    CERN Document Server

    Aubin, Christopher; Davila, George

    2015-01-01

    We study the extended phase diagram for staggered quarks using chiral perturbation theory. Recent beyond-the-standard-model simulations have shown that broken phases occur for coarse enough lattice spacing, so long as the number of quark flavors in the simulation is large enough (greater than eight). One of the phases seen in these simulations can be studied in depth using chiral perturbation theory. We also show that there are only three broken phases for staggered quarks that can arise, at least for lattice spacings in the regime a^2<< Lambda^2_{QCD}.

  9. Chiral Surface Waves for Enhanced Circular Dichroism

    CERN Document Server

    Pellegrini, Giovanni; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2016-01-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  10. Chiral edge fluctuations of colloidal membranes

    Science.gov (United States)

    Jia, Leroy; Zakhary, Mark; Dogic, Zvonimir; Pelcovits, Robert; Powers, Thomas

    Using experiments and theory we study chiral fluctuations of the edge of a nearly flat colloidal membrane, consisting of rod-like viruses held together by the depletion interaction. Our measurements show an anomalous peak in the power spectrum around 1 inverse micron. Using an effective theory to describe the liquid crystal degrees of freedom by geometric properties of the edge, such as length, geodesic torsion, and curvature, we calculate the spectrum of out-of-plane edge fluctuations. The peak arises for sufficiently strong chirality, and corresponds to the instability of a flat membrane to a shape with helical, rippled edges.

  11. Probing Chiral Interactions in Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nogga, A; Barrett, B R; Meissner, U; Witala, H; Epelbaum, E; Kamada, H; Navratil, P; Glockle, W; Vary, J P

    2004-01-08

    Chiral two- and three-nucleon interactions are studied in a few-nucleon systems. We investigate the cut-off dependence and convergence with respect to the chiral expansion. It is pointed out that the spectra of light nuclei are sensitive to the three-nucleon force structure. As an example, we present calculations of the 1{sup +} and 3{sup +} states of {sup 6}Li using the no-core shell model approach. The results show contributions of the next-to-next-to-leading order terms to the spectra, which are not correlated to the three-nucleon binding energy prediction.

  12. Isotropic Chiral Objects With Zero Backscattering

    CERN Document Server

    Karilainen, Antti O

    2012-01-01

    In this paper we study electrically small chiral objects with isotropic response and zero backscattering. A bi-isotropic sphere is used as a simple example and its zero-backscattering conditions are studied. A theoretical model of an object composed of three orthogonal chiral particles made of conducting wire is presented as an analog of the zero-backscattering bi-isotropic sphere. A potential application of the object as a receiving antenna or a sensor with the ability to receive power from an arbitrary direction without backscattering is discussed.

  13. Heavy-tailed chiral random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Takuya [iTHES Research Group and Quantum Hadron Physics Laboratory, RIKEN,Wako, Saitama, 351-0198 (Japan)

    2016-05-27

    We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.

  14. Heavy-tailed chiral random matrix theory

    Science.gov (United States)

    Kanazawa, Takuya

    2016-05-01

    We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.

  15. Chiral pesticides: Identification, description, and environmental implications

    Science.gov (United States)

    Ulrich, Elin M.; Morrison, Candice N.; Goldsmith, Michael R.; Foreman, William T.

    2012-01-01

    Anthropogenic chemicals, including pesticides, are a major source of contamination and pollution in the environment. Pesticides have many positive uses: increased food production, decreased damage to crops and structures, reduced disease vector populations, and more. Nevertheless, pesticide exposure can pose risks to humans and the environment, so various mitigation strategies are exercised to make them safer, minimize their use, and reduce their unintended environment effects. One strategy that may help achieve these goals relies on the unique properties of chirality or molecular asymmetry. Some common terms related to chirality are defined in Table 1.

  16. Phenomenology of chiral damping in noncentrosymmetric magnets

    KAUST Repository

    Akosa, Collins Ashu

    2016-06-21

    A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.

  17. Rotating optical microcavities with broken chiral symmetry

    CERN Document Server

    Sarma, Raktim; Wiersig, Jan; Cao, Hui

    2014-01-01

    We demonstrate in open microcavities with broken chiral symmetry, quasi-degenerate pairs of co-propagating modes in a non-rotating cavity evolve to counter-propagating modes with rotation. The emission patterns change dramatically by rotation, due to distinct output directions of CW and CCW waves. By tuning the degree of spatial chirality, we maximize the sensitivity of microcavity emission to rotation. The rotation-induced change of emission is orders of magnitude larger than the Sagnac effect, pointing to a promising direction for ultrasmall optical gyroscopes.

  18. Speciation and gene flow between snails of opposite chirality.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Left-right asymmetry in snails is intriguing because individuals of opposite chirality are either unable to mate or can only mate with difficulty, so could be reproductively isolated from each other. We have therefore investigated chiral evolution in the Japanese land snail genus Euhadra to understand whether changes in chirality have promoted speciation. In particular, we aimed to understand the effect of the maternal inheritance of chirality on reproductive isolation and gene flow. We found that the mitochondrial DNA phylogeny of Euhadra is consistent with a single, relatively ancient evolution of sinistral species and suggests either recent "single-gene speciation" or gene flow between chiral morphs that are unable to mate. To clarify the conditions under which new chiral morphs might evolve and whether single-gene speciation can occur, we developed a mathematical model that is relevant to any maternal-effect gene. The model shows that reproductive character displacement can promote the evolution of new chiral morphs, tending to counteract the positive frequency-dependent selection that would otherwise drive the more common chiral morph to fixation. This therefore suggests a general mechanism as to how chiral variation arises in snails. In populations that contain both chiral morphs, two different situations are then possible. In the first, gene flow is substantial between morphs even without interchiral mating, because of the maternal inheritance of chirality. In the second, reproductive isolation is possible but unstable, and will also lead to gene flow if intrachiral matings occasionally produce offspring with the opposite chirality. Together, the results imply that speciation by chiral reversal is only meaningful in the context of a complex biogeographical process, and so must usually involve other factors. In order to understand the roles of reproductive character displacement and gene flow in the chiral evolution of Euhadra, it will be

  19. Liquid Phases in SU(3) Chiral Perturbation Theory: Drops of Strange Chiral Nucleon Liquid & Ordinary Chiral Heavy Nuclear Liquid

    CERN Document Server

    Lynn, Bryan W.

    2010-01-01

    Chiral SU(3) Perturbation Theory (SU3XPT) identifies hadrons as the building blocks of strongly interacting matter at low densities and temperatures. We show that it admits two co-existing chiral nucleon liquid phases at zero external pressure with well-defined surfaces: 1) ordinary microscopic chiral heavy nuclear liquid drops (XNL) and 2) a new Strange Chiral Nucleon Liquid (SXNL) phase with both microscopic and macroscopic drop sizes. Liquid drops of both XNL and SXNL are simultaneously solutions to the SU3XPT semi-classical equations of motion and obey all relevant CVC and PCAC equations. Axial-vector currents are conserved inside macroscopic drops of SXNL, a new form of baryonic matter with zero electric charge density, which is by nature "dark". The numerical values of all SU3XPT coefficients are used to fit current scattering experiments and ordinary XNL drops (identified with the ground state of ordinary even-even spin-zero spherical closed-shell nuclei). SXNL then also emerges (i.e. without new adjus...

  20. Characteristic monomials with chirality fittingness for combinatorial enumeration of isomers with chiral and achiral ligands

    Science.gov (United States)

    Fujita

    2000-09-01

    A new method of combinatorial enumeration based on characteristic monomials with chirality fittingness (CM-CFs) has been proposed in order to enumerate isomers with chiral ligands as well as with achiral ones. The CM-CFs have been defined as monomials that consist of three kinds of dummy variables in light of the subduction of the Q-conjugacy representations for chiral and achiral cyclic groups. A procedure of calculating CM-CFs for cyclic groups and finite groups has been discribed so as to tabulate them as CM-CF tables. Then the CM-CF method has been applied to the enumeration of isomers with achiral ligands as well as chiral ones.

  1. HPLC SEPARATION OF CHIRAL ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES

    Science.gov (United States)

    High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) were obtained on polysaccharide chiral HPLC columns using an alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, dyfonate, fenamiphos, ...

  2. Chiral vortical effect generated by chiral anomaly in vortex-skyrmions

    Science.gov (United States)

    Volovik, G. E.

    2017-03-01

    We discuss the type of the general macroscopic parity-violating effects, when there is the current along the vortex, which is concentrated in the vortex core. We consider vortices in chiral superfluids with Weyl points. In the vortex core, the positions of the Weyl points form the skyrmion structure. We show that the mass current concentrated in such a core is provided by the spectral flow through the Weyl points according to the Adler-Bell-Jackiw equation for chiral anomaly.

  3. Synthesis of Chiral Building Blocks for Use in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Rustum S. Boyce

    2004-05-01

    Full Text Available In the past decade there has been a significant growth in the sales of pharmaceutical drugs worldwide, but more importantly there has been a dramatic growth in the sales of single enantiomer drugs. The pharmaceutical industry has a rising demand for chiral intermediates and research reagents because of the continuing imperative to improve drug efficacy. This in turn impacts on researchers involved in preclinical discovery work. Besides traditional chiral pool and resolution of racemates as sources of chiral building blocks, many new synthetic methods including a great variety of catalytic reactions have been developed which facilitate the production of complex chiral drug candidates for clinical trials. The most ambitious technique is to synthesise homochiral compounds from non-chiral starting materials using chiral metal catalysts and related chemistry. Examples of the synthesis of chiral building blocks from achiral materials utilizing asymmetric hydrogenation and asymmetric epoxidation are presented.

  4. Chiral spiral induced by a strong magnetic field

    Directory of Open Access Journals (Sweden)

    Abuki Hiroaki

    2016-01-01

    Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  5. Supramolecular Nanostructures of Chiral Perylene Diimides with Amplified Chirality for High-Performance Chiroptical Sensing.

    Science.gov (United States)

    Shang, Xiaobo; Song, Inho; Ohtsu, Hiroyoshi; Lee, Yoon Ho; Zhao, Tianming; Kojima, Tatsuhiro; Jung, Ji Hyung; Kawano, Masaki; Oh, Joon Hak

    2017-06-01

    Chiral supramolecular nanostructures with optoelectronic functions are expected to play a central role in many scientific and technological fields but their practical use remains in its infancy. Here, this paper reports photoconductive chiral organic semiconductors (OSCs) based on perylene diimides with the highest electron mobility among the chiral OSCs and investigates the structure and optoelectronic properties of their homochiral and heterochiral supramolecular assemblies from bottom-up self-assembly. Owing to the well-ordered supramolecular packing, the homochiral nanomaterials exhibit superior charge transport with significantly higher photoresponsivity and dissymmetry factor compared with those of their thin film and monomeric equivalents, which enables highly selective detection of circularly polarized light, for the first time, in visible spectral range. Interestingly, the heterochiral nanostructures assembled from co-self-assembly of racemic mixtures show extraordinary chiral self-discrimination phenomenon, where opposite enantiomeric molecules are packed alternately into heterochiral architectures, leading to completely different optoelectrical performances. In addition, the crystal structures of homochiral and heterochiral nanostructures have first been studied by ab initio X-ray powder diffraction analysis. These findings give insights into the structure-chiroptical property relationships of chiral supramolecular self-assemblies and demonstrate the feasibility of supramolecular chirality for high-performance chiroptical sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Chiral symmetry breaking and chiral polarization: Tests for finite temperature and many flavors

    Directory of Open Access Journals (Sweden)

    Andrei Alexandru

    2015-02-01

    Full Text Available It was recently conjectured that, in SU(3 gauge theories with fundamental quarks, valence spontaneous chiral symmetry breaking is equivalent to condensation of local dynamical chirality and appearance of chiral polarization scale Λch. Here we consider more general association involving the low-energy layer of chirally polarized modes which, in addition to its width (Λch, is also characterized by volume density of participating modes (Ω and the volume density of total chirality (Ωch. Few possible forms of the correspondence are discussed, paying particular attention to singular cases where Ω emerges as the most versatile characteristic. The notion of finite-volume “order parameter”, capturing the nature of these connections, is proposed. We study the effects of temperature (in Nf=0 QCD and light quarks (in Nf=12, both in the regime of possible symmetry restoration, and find agreement with these ideas. In Nf=0 QCD, results from several volumes indicate that, at the lattice cutoff studied, the deconfinement temperature Tc is strictly smaller than the overlap–valence chiral transition temperature Tch in real Polyakov line vacuum. Somewhat similar intermediate phase (in quark mass is also seen in Nf=12. It is suggested that deconfinement in Nf=0 is related to indefinite convexity of absolute X-distributions.

  7. From Ostwald Ripening to Single Chirality

    NARCIS (Netherlands)

    Noorduin, Wim L.; Vlieg, Elias; Kellogg, Richard M.; Kaptein, Bernard

    2009-01-01

    A century ago Wilhelm Ostwald received the Nobel Prize for Chemistry. Although Ostwald was never significantly involved with the phenomenon of chirality, one of his discoveries, Ostwald ripening, is thought to be involved in a recently discovered method in which grinding-induced attrition is used to

  8. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué, Emilie

    2015-12-21

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  9. Optimization of enantioselective production of chiral epichlorohydrin ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis. Biotechnol. Tech. 12: 225-228. Choi WJ, Lee EY, Yoon SJ, Yang ST, Choi CY (1999). Biocatalytic production of chiral epichlorohydrin in organic solvents. J. Biosci. Bioeng. 88: 339-341. De Vries EJ, Janssen DB (2003).

  10. Wave propagation retrieval method for chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2010-01-01

    In this paper we present the wave propagation method for the retrieving of effective properties of media with circularly polarized eigenwaves, in particularly for chiral metamaterials. The method is applied for thick slabs and provides bulk effective parameters. Its strong sides are the absence...

  11. Chiral perturbation theory and nucleon polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Babusci, D.; Giordano, G.; Matone, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1996-10-01

    The available experimental data concerning the unpolarized cross section for the Compton scattering on the nucleon at low energy are compared with the predictions of the heavy baryon chiral perturbation theory (HBChPT) at the order q{sup 3}.

  12. Insights on some chiral smectic phases

    Indian Academy of Sciences (India)

    journal of. August 2003 physics pp. 285–295. Insights on some chiral smectic phases. B PANSU. Laboratoire de Physique des Solides, Bt 510, UMR 8502, Universit ..... volve complex organizations of small SmCA grains, small meaning that the width of each grain is ... The colours of the platelets are due to low birefringence.

  13. Functional polypedes—chiral nematic fullerenes

    OpenAIRE

    Campidelli, Stéphane; Eng, Carine; Saez, Isabel M.; Goodby, John W.; Deschenaux, Robert

    2006-01-01

    Self-organising, functional materials created by bottom-up synthesis represent important steps forward in the development of novel materials, here we report on the preparation and properties of a chiral nematic tetrapedal liquid crystal that has been functionalised with C60.

  14. Quantization of massive chiral electrodynamics reexamined

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, C.; Montemayor, R. (Centro Atomico Bariloche, Comision Nacional de Energia Atomica and Instituto Balseiro, Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche, Rio Negro (Argentina))

    1993-05-15

    We show that the models considered by Andrianov [ital et] [ital al]. [Phys. Rev. Lett. 63, 1554 (1989); and Phys. Rev. D 44, 2602 (1991)] are equivalent to other models where it is easily proved that the anomaly decouples and consequently the value of the chiral triangles amplitude is irrelvant for the unitarity of the [ital S] matrix.

  15. Polar Superhelices in Ferroelectric Chiral Nanosprings

    Science.gov (United States)

    Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jian-Shan; Wang, Jie; Kitamura, Takayuki

    2016-10-01

    Topological objects of nontrivial spin or dipolar field textures, such as skyrmions, merons, and vortices, interacting with applied external fields in ferroic materials are of great scientific interest as an intriguing playground of unique physical phenomena and novel technological paradigms. The quest for new topological configurations of such swirling field textures has primarily been done for magnets with Dzyaloshinskii-Moriya interactions, while the absence of such intrinsic chiral interactions among electric dipoles left ferroelectrics aside in this quest. Here, we demonstrate that a helical polarization coiled into another helix, namely a polar superhelix, can be extrinsically stabilized in ferroelectric nanosprings. The interplay between dipolar interactions confined in the chiral geometry and the complex strain field of mixed bending and twisting induces the superhelical configuration of electric polarization. The geometrical structure of the polar superhelix gives rise to electric chiralities at two different length scales and the coexistence of three order parameters, i.e., polarization, toroidization, and hypertoroidization, both of which can be manipulated by homogeneous electric and/or mechanical fields. Our work therefore provides a new geometrical configuration of swirling dipolar fields, which offers the possibility of multiple order-parameters, and electromechanically controllable dipolar chiralities and associated electro-optical responses.

  16. Dihyperons in chiral color dielectric model

    Indian Academy of Sciences (India)

    The mass of the dibaryon having spin, parity =0+, isospin = 0 and strangeness -2 is computed using chiral color dielectric model. The bare wave function is constructed as a product of two color-singlet three-quark clusters and then it is properly antisymmetrized by considering appropriate exchange operators for spin, ...

  17. ISOSPIN BREAKING AND THE CHIRAL CONDENSATE.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ, M.

    2005-07-25

    With two degenerate quarks, the chiral condensate exhibits a jump as the quark masses pass through zero. I discuss how this single transition splits into two Ising like transitions when the quarks are made non-degenerate. The order parameter is the expectation of the neutral pion field. The transitions represent long distance coherent phenomena occurring without the Dirac operator having vanishingly small eigenvalues.

  18. Topological Order in Spin Liquids with Chirality

    OpenAIRE

    Scharfenberger, Burkhard

    2011-01-01

    We use the Kalmeyer-Laughlin Chiral Spin Liquid as building block to construct a hierarchy of higher-spin spin liquids and determine numerically their topological properties. We compute the entanglement spectra of some of these liquids as well as of ground states of critically frustrated quantum magnets. From the comparison, we find preliminary evidence for a topological phase transition in these systems.

  19. Domain walls and perturbation theory in high temperature gauge theory SU(2) in 2+1 dimensions

    CERN Document Server

    Korthals-Altes, C P; Stephanov, M A; Teper, M; Altes, C Korthals

    1997-01-01

    We study the detailed properties of Z_2 domain walls in the deconfined high temperature phase of the d=2+1 SU(2) gauge theory. These walls are studied both by computer simulations of the lattice theory and by one-loop perturbative calculations. The latter are carried out both in the continuum and on the lattice. We find that leading order perturbation theory reproduces the detailed properties of these domain walls remarkably accurately even at temperatures where the effective dimensionless expansion parameter, g^2/T, is close to unity. The quantities studied include the surface tension, the action density profiles, roughening and the electric screening mass. It is only for the last quantity that we find an exception to the precocious success of perturbation theory. All this shows that, despite the presence of infrared divergences at higher orders, high-T perturbation theory can be an accurate calculational tool.

  20. Chiral liquid chromatography-circular dichroism-NMR for estimating separation conditions of chiral HPLC without authentic samples.

    Science.gov (United States)

    Tokunaga, Takashi; Okamoto, Masahiko; Tanaka, Kozo; Tode, Chisato; Sugiura, Makiko

    2010-05-15

    Chiral separation by high performance liquid chromatography (Chiral HPLC) is one of the most powerful methods for estimating optical and chemical purity of chiral compounds. However, it has a weakness in that much time and effort are required to prepare authentic samples. A novel chiral liquid chromatography-circular dichroism-NMR (LC-CD-NMR) technique, on the other hand, requires only crude chiral compounds that include enantiomers as minor impurities. In this study, chiral LC-CD-NMR was constructed by connecting a conventional LC-NMR system with a CD detector. A pyridylalanine derivative mixture was prepared to mimic technical grade material in an early phase of development. By chiral LC-CD-NMR, the enantiomer peak is identified by an opposite sign of the CD Cotton effect curve and an identical (1)H NMR spectrum to that of the main component. Using NMR as a detector, this method is superior in ability to discriminate enantiomers from other isomers indistinguishable by MS. Furthermore, this method is also applicable for selecting the best separation conditions of chiral HPLC. The degrees of separation (Rs) between the main component and its enantiomer in several chiral columns were compared. Even with modern chromatographic methods, establishing the best chiral HPLC conditions in an early phase of development is difficult: chiral LC-CD-NMR is a suitable solution.

  1. Nuclear chirality, a model and the data

    Science.gov (United States)

    Starosta, K.; Koike, T.

    2017-09-01

    In the last decade, the manifestation of chirality in atomic nuclei has become the subject of numerous experimental and theoretical studies. The common feature of current model calculations is that the chiral geometry of angular momentum coupling is extracted from expectation values of orientation operators, rather than being a starting point in construction of a model. However, using the particle-hole coupling model for triaxial odd-odd nuclei it is possible to construct a basis which contains right-handed, left-handed and planar states of angular momentum coupling. If this basis is used, the chirality is an explicit rather than an extracted feature as in any other models with non-chiral bases. The time-reversal symmetry, which relates the basis states of opposite handedness, can be used to reduce the dimension of matrices for diagonalization of the model Hamiltonian, proving the effectiveness of this approach. Moreover, the final model eigenstate wave functions show a concentration of amplitudes among a relatively small number (˜1%) of components compared to the full model space. In that sense, the ‘chiral’ basis provides a useful tool to examine model predictions providing direct insight into the structure of doublet states. In this work, similarities and differences between the rotational behaviour of an axial and triaxial body provide a starting point for derivation of the basis optimal for valence nucleon coupling to an axial and a triaxial core. The derived ‘chiral’ basis is optimal for coupling of a valence particle and hole to the triaxial core. Model predictions are presented and discussed. A comprehensive review of current experimental data on observed chiral band candidates is also provided.

  2. Programs for generating Clebsch-Gordan coefficients of SU(3) in SU(2) and SO(3) bases

    Science.gov (United States)

    Bahri, C.; Rowe, D. J.; Draayer, J. P.

    2004-05-01

    Computer codes are developed to calculate Clebsch-Gordan coefficients of SU(3) in both SU(2)- and SO(3)-coupled bases. The efficiency of this code derives from the use of vector coherent state theory to evaluate the required coefficients directly without recursion relations. The approach extends to other compact semi-simple Lie groups. The codes are given in subroutine form so that users can incorporate the codes into other programs. Program summaryTitle of program: SU3CGVCS Catalogue identifier: ADTN Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTN Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: Persons requesting the program must sign the standard CPC non-profit use license Computers for which the program is designed and others on which it is operable: SGI Origin 2000, HP Apollo 9000, Sun, IBM SP, Pentium Operating systems under which the program has been tested: IRIX 6.5, HP UX 10.01, SunOS, AIX, Linux Programming language used: FORTRAN 77 Memory required to execute with typical data: On the HP system, it requires about 732 KBytes. Disk space used for output: 2100+2460 bytes No. of bits in a word: 32 bit integer and 64 bit floating point numbers. No. of processors used: 1 Has the code been vectorized: No No. of bytes in distributed program, including test data, etc.: 26 309 No. of lines in distributed program, including test data, etc.: 3969 Distribution format: tar gzip file Nature of physical problem: The group SU(3) and its Lie algebra su(3) have important applications, for example, in elementary particle physics, nuclear physics, and quantum optics [1-3]. The code presented is particularly relevant for the last two fields. Clebsch-Gordan (CG) coefficients are required whenever the symmetries of many-body systems are used for the evaluation of matrix elements of tensor operators. Moreover, the construction of CG coefficients for SU(3) serves as a nontrivial prototype for larger compact

  3. Baryons in the chiral regime

    Energy Technology Data Exchange (ETDEWEB)

    Knippschild, Bastian

    2012-03-05

    Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. The only known theoretical, non-perturbative and ab initio method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises wether these deviations can be explained by systematic effects in lattice QCD simulations. This thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses. First of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be m{sub ud}{sup MS}(2 GeV)=3.03(17)(38) MeV. This value is in good agreement with values from experiments and other lattice determinations. Electro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass. Finally we perform a continuum extrapolation and chiral extrapolations to the physical point

  4. Magnetized color superconducting quark matter under compact star conditions: Phase structure within the SU(2 ) f NJL model

    Science.gov (United States)

    Coppola, M.; Allen, P.; Grunfeld, A. G.; Scoccola, N. N.

    2017-09-01

    The properties of magnetized color superconducting cold dense quark matter under compact star conditions are investigated using an S U (2 )f Nambu Jona-Lasinio (NJL)-type model in which the divergences are treated using a magnetic field independent regularization scheme in order to avoid unphysical oscillations. We study the phase diagram for several model parametrizations. The features of each phase are analyzed through the behavior of the chiral and superconducting condensates together with the different particle densities for increasing chemical potential or magnetic field. While confirming previous results derived for the zero magnetic field or isospin symmetric matter case, we show how the phases are modified in the presence of β -equilibrium as well as color and electric charge neutrality conditions.

  5. Chiral spin density wave order on the frustrated honeycomb and bilayer triangle lattice hubbard model at half-filling.

    Science.gov (United States)

    Jiang, Kun; Zhang, Yi; Zhou, Sen; Wang, Ziqiang

    2015-05-29

    We study the Hubbard model on the frustrated honeycomb lattice with nearest-neighbor hopping t_{1} and second nearest-neighbor hopping t_{2}, which is isomorphic to the bilayer triangle lattice, using the SU(2)-invariant slave boson theory. We show that the Coulomb interaction U induces antiferromagnetic (AF) chiral spin density wave (χSDW) order in a wide range of κ=t_{2}/t_{1} where both the two-sublattice AF order at small κ and the decoupled three-sublattice 120° order at large κ are strongly frustrated, leading to three distinct phases with different anomalous Hall responses. We find a continuous transition from a χSDW semimetal with the anomalous Hall effect to a topological chiral Chern insulator exhibiting the quantum anomalous Hall effect, followed by a discontinuous transition to a χSDW insulator with a zero total Chern number but an anomalous ac Hall effect. The χSDW is likely a generic phase of strongly correlated and highly frustrated hexagonal lattice electrons.

  6. Molecular-Level Design of Heterogeneous Chiral Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Zaera

    2012-03-21

    The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration

  7. Chiral assembly of weakly curled hard rods: Effect of steric chirality and polarity

    Energy Technology Data Exchange (ETDEWEB)

    Wensink, H. H., E-mail: wensink@lps.u-psud.fr; Morales-Anda, L. [Laboratoire de Physique des Solides–UMR 8502, Université Paris-Sud & CNRS, 91405 Orsay (France)

    2015-10-14

    We theoretically investigate the pitch of lyotropic cholesteric phases composed of slender rods with steric chirality transmitted via a weak helical deformation of the backbone. In this limit, the model is amenable to analytical treatment within Onsager theory and a closed expression for the pitch versus concentration and helical shape can be derived. Within the same framework, we also briefly review the possibility of alternative types of chiral order, such as twist-bend or screw-like nematic phases, finding that cholesteric order dominates for weakly helical distortions. While long-ranged or “soft” chiral forces usually lead to a pitch decreasing linearly with concentration, steric chirality leads to a much steeper decrease of quadratic nature. This reveals a subtle link between the range of chiral intermolecular interaction and the pitch sensitivity with concentration. A much richer dependence on the thermodynamic state is revealed for polar helices where parallel and anti-parallel pair alignments along the local director are no longer equivalent. It is found that weak temperature variations may lead to dramatic changes in the pitch, despite the lyotropic nature of the assembly.

  8. Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab

    Science.gov (United States)

    Bassiri, S.; Papas, C. H.; Engheta, N.

    1988-01-01

    The reflection from and transmission through a semiinfinite chiral medium are analyzed by obtaining the Fresnel equations in terms of parallel- and perpendicular-polarized modes, and a comparison is made with results reported previously. The chiral medium is described electromagnetically by the constitutive relations D = (epsilon)E+i(gamma)B and H = i(gamma)E+(1/mu)B. The constants epsilon, mu and gamma are real and have values that are fixed by the size, the shape, and the spatial distribution of the elements that collectively compose the medium. The conditions are obtained for the total internal reflection of the incident wave from the interface and for the existence of the Brewster angle. The effects of the chirality on the polarization and the intensity of the reflected wave from the chiral half-space are discussed and illustrated by using the Stokes parameters. The propagation of electromagnetic wave through an infinite slab of chiral medium is formulated for oblique incidence and solved analytically for the case of normal incidence.

  9. Chiral separation of new designer drugs (Cathinones) on chiral ion-exchange type stationary phases.

    Science.gov (United States)

    Wolrab, Denise; Frühauf, Peter; Moulisová, Alena; Kuchař, Martin; Gerner, Christopher; Lindner, Wolfgang; Kohout, Michal

    2016-02-20

    We present the enantioseparation of new designer drugs from the cathinone family on structurally different chiral ion-exchange type stationary phases. A novel strong cation-exchange type chiral stationary phase was synthesized and its performance compared with previously reported ion-exchange type chiral stationary phases. The influence of structural elements of the chiral selectors on their chromatographic performance was studied and the possibilities of tuning chromatographic parameters by varying the polarity of the employed mobile phases were determined. Evidence is provided that a change in mobile phase composition strongly influences the solvation shell of the polarized and polarizable units of the selectors and analytes, as well as ionizable mobile phase additives. Furthermore, the structural features of the selectors (e.g. the size of aromatic units and their substitution pattern) are shown to play a key role in the effective formation of diastereomeric complexes with analytes. Thus, we have achieved the enantioseparation of all test analytes with a mass spectrometry-compatible mobile phase with a chiral strong cation-exchange type stationary phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Amino acid ionic liquids as chiral ligands in ligand-exchange chiral separations.

    Science.gov (United States)

    Liu, Qian; Wu, Kangkang; Tang, Fei; Yao, Lihua; Yang, Fei; Nie, Zhou; Yao, Shouzhuo

    2009-09-28

    Recently, amino acid ionic liquids (AAILs) have attracted much research interest. In this paper, we present the first application of AAILs in chiral separation based on the chiral ligand exchange principle. By using 1-alkyl-3-methylimidazolium L-proline (L-Pro) as a chiral ligand coordinated with copper(II), four pairs of underivatized amino acid enantiomers-dl-phenylalanine (dl-Phe), dl-histidine (dl-His), dl-tryptophane (dl-Trp), and dl-tyrosine (dl-Tyr)-were successfully separated in two major chiral separation techniques, HPLC and capillary electrophoresis (CE), with higher enantioselectivity than conventionally used amino acid ligands (resolution (R(s))=3.26-10.81 for HPLC; R(s)=1.34-4.27 for CE). Interestingly, increasing the alkyl chain length of the AAIL cation remarkably enhanced the enantioselectivity. It was inferred that the alkylmethylimidazolium cations and L-Pro form ion pairs on the surface of the stationary phase or on the inner surface of the capillary. The ternary copper complexes with L-Pro are consequently attached to the support surface, thus inducing an ion-exchange type of retention for the dl-enantiomers. Therefore, the AAIL cation plays an essential role in the separation. This work demonstrates that AAILs are good alternatives to conventional amino acid ligands for ligand-exchange-based chiral separation. It also reveals the tremendous application potential of this new type of task-specific ILs.

  11. Manipulating the Lorentz force via the chirality of nanoparticles

    Science.gov (United States)

    Wang, Maoyan; Li, Hailong; Dong, Yuliang; Zhang, Xiaochuan; Du, Ming; Wang, Rui; Xu, Tong; Wu, Jian

    2016-12-01

    We demonstrate that a single plane wave pulls a chiral nanoparticle toward the light source. The nanoparticle exhibits optical gain in a particular wavelength region. The equivalence of the generalized and alternative expressions of the Lorentz force density relating to bound charges for chiral media is numerically validated. By considering the two-dimensional electromagnetic problem of incident plane waves normally impinged on active chiral cylinders, it is shown that the gradient force is mainly contributed by the bound electric and magnetic current densities of the cross-polarized waves. We also investigate how the medium parameters and impedance mismatch can be used to manipulate the pulling or pushing Lorentz forces between two chiral cylinders. This finding may provide a recipe to understand the light interaction with multiple chiral nanoparticles of arbitrary shapes (in general) with the aid of the numerical approach. It could be a promising avenue in controlling the optical micromanipulation for chiral nanoparticles with mirroring asymmetry.

  12. Enhanced Electromagnetic Chirality by Locally Excited Surface Plasmon Polaritons

    CERN Document Server

    Alizadeh, M H

    2015-01-01

    The possibility to enhance chiral light-matter interactions through plasmonic nanostructures provides entirely new opportunities for greatly improving the detection limits of chiroptical spectroscopies down to the single molecule level. The most pronounced of these chiral interactions occur in the ultraviolet (UV) range of the electromagnetic spectrum, which is difficult to access with conventional localized plasmon resonance based sensors. Although Surface Plasmon Polaritons (SPPs) on noble metal films can sustain resonances in the desired spectral range, their transverse magnetic nature has been an obstacle for enhancing chiroptical effects. Here we demonstrate, both analytically and numerically, that SPPs excited by near-field sources can exhibit rich and non-trivial chiral characteristics. In particular, we show that the excitation of SPPs by a chiral source not only results in a locally enhanced optical chirality but also achieves manifold enhancement of net optical chirality. Our finding that SPPs facil...

  13. Packing of Helices: Is Chirality the Highest Crystallographic Symmetry?

    Directory of Open Access Journals (Sweden)

    Romain Gautier

    2016-08-01

    Full Text Available Chiral structures resulting from the packing of helices are common in biological and synthetic materials. Herein, we analyze the noncentrosymmetry (NCS in such systems using crystallographic considerations. A comparison of the chiral structures built from helices shows that the chirality can be expected for specific building units such as 31/32 or 61/65 helices which, in hexagonal arrangement, will more likely lead to a chiral resolution. In these two systems, we show that the highest crystallographic symmetry (i.e., the symmetry which can describe the crystal structure from the smallest assymetric unit is chiral. As an illustration, we present the synthesis of two materials ([Zn(2,2’-bpy3](NbF62 and [Zn(2,2’-bpy3](TaF62 in which the 3n helices pack into a chiral structure.

  14. Identification of Enantioselective Extractants for Chiral Separation of Amines and Amino-Alcohols

    NARCIS (Netherlands)

    Steensma, M.; Kuipers, N.J.M.; de Haan, A.B.; Kwant, Gerard

    2006-01-01

    lack of versatile enantioselective extractants. Therefore, a rational approach is developed to transfer the extensive knowledge of chiral selectors reported in the literature on chiral recognition and other chiral separation techniques to extraction. Based on a similarity in separation mechanisms,

  15. The formation mechanism of chiral carbon nanotubes

    Science.gov (United States)

    Liu, Jing; Liu, Liren; Lu, Junzhe; Zhu, Hengjiang

    2018-02-01

    The nuclei and the formation mechanism of chiral carbon nanotubes, namely, single-, double-, and triple-walled carbon nanotubes are simulated by the first principle density functional theory. The formation mechanism from nuclei to corresponding infinitely long carbon nanotubes occurs spirally and via absorbing carbon atoms layer by layer. Carbon atoms at the open end are metastable state compared with ones in the tube wall or the closed end, which indicate the growth point of chiral carbon nanotubes is located at the open end. Growth of outer layer tubular clusters takes precedence over the inner layer in the process of forming multi-walled nuclear structures. Because of the ratio of carbon atoms at the open end to all carbon atoms decreases, the stability of the tubular clusters increases with their length. The infinitely long carbon nanotubes are obtained by executing periodic boundary conditions depend on corresponding nuclear structures.

  16. Chiral perturbation theory with tensor sources

    Energy Technology Data Exchange (ETDEWEB)

    Cata, Oscar; Cata, Oscar; Mateu, Vicent

    2007-05-21

    We construct the most general chirally-invariant Lagrangian for mesons in the presence of external sources coupled to the tensor current \\bar psi sigma_mu nu psi. In order to have only even terms in the chiral expansion, we consider the new source of O(p2). With this choice, we build the even-parity effective Lagrangian up to the p6-order (NLO). While there are only 4 new terms at the p4-order, at p6-order we find 78 terms for n_f=2 and 113 terms for n_f=3. We provide a detailed discussion on the different mechanisms that ensure that our final set of operators is complete and non-redundant. We also examine the odd-parity sector, to conclude that the first operators appear at the p8-order (NNLO).

  17. New approaches in sensitive chiral CE.

    Science.gov (United States)

    Sánchez-Hernández, Laura; Guijarro-Diez, Miguel; Marina, María Luisa; Crego, Antonio L

    2014-01-01

    CE has shown to have a big potential for chiral separations, with advantages such as high efficiency, high resolution, and low sample and reagents consumption. Nevertheless, when UV detection is employed, CE has some drawbacks, especially the low sensitivity obtained due to the short optical path length. Notwithstanding, sensitivity improvements can be achieved when different approaches are employed, such as sample treatment strategies (off-line or on-line), in-capillary sample preconcentration techniques, and/or alternative detection systems to UV-Vis (such as fluorescence, conductimetry, electrochemiluminiscence, MS, etc.). This article reviews the most recent methodological and instrumental advances reported from June 2011 to May 2013 for enhancing the sensitivity in chiral analysis by CE. The sensitivity achieved for the enantioseparated analytes and the applications carried out using the developed methodologies are also summarized. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chiral Selectivity as a Bridge to Homochirality

    Science.gov (United States)

    Burton, A. S.; Berger, E. L.

    2017-01-01

    In abiotic reactions, equal mixtures of L- and D- amino acid enantiomers are produced unless conditions that favor one enantiomer over the other are present. Understanding how the transition from racemic, abiotic chemistry to homochiral polymers used in proteins occurred is fundamental to our understanding of the origins of life on Earth and the search for signs of life elsewhere, but this transition is still poorly understood. We have begun investigations into whether enantiopure amino acid pools are a necessary condition, or if the polymerization process itself can impart some added degree of stereoselectivity. More specifically, we are exploring the polymerization behavior of chiral amino acids to determine if they show a preference for homochiral or heterochiral polymerization. We are also determining the effects of different amino acid chiral ratios (L greater than D) to determine at what level of enantiomeric enrichment homochiral peptides become predominant. These data will allow us to evaluate the plausibility of homochiral polymers arising by known abiotic mechanisms.

  19. A primer for Chiral Perturbative Theory

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Stefan [Mainz Univ. (Germany). Inst. fuer Kernphysik; Schindler, Matthias R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics; George Washington Univ., Washington, DC (United States). Dept. of Physics

    2012-07-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)

  20. Chiral Response of Twisted Bilayer Graphene

    Science.gov (United States)

    Stauber, T.; Low, T.; Gómez-Santos, G.

    2018-01-01

    We present an effective (minimal) theory for chiral two-dimensional materials. These materials possess an electromagnetic coupling without exhibiting a topological gap. As an example, we study the response of doped twisted bilayers, unveiling unusual phenomena in the zero frequency limit. An in-plane magnetic field induces a huge paramagnetic response at the neutrality point and, upon doping, also gives rise to a substantial longitudinal Hall response. The system also accommodates nontrivial longitudinal plasmonic modes that are associated with a longitudinal magnetic moment, thus endowing them with a chiral character. Finally, we note that the optical activity can be considerably enhanced upon doping and our general approach would enable systematic exploration of 2D material heterostructures with optical activity.

  1. Sensing and actuation of smart chiral honeycombs

    Science.gov (United States)

    Abramovitch, H.; Burgard, M.; Edery-Azulay, Lucy; Evans, K. E.; Hoffmeister, M.; Miller, W.; Scarpa, F.; Smith, C. W.; Tee, K. F.; Schönecker, A.; Seffner, L.

    2008-03-01

    A chiral honeycomb configuration is developed with embedded piezosensors and actuators for smart sandwich panel applications. The chiral honeycomb concept is made of repeating units of cylinders and plates (ligaments), featuring an in-plane negative Poisson's ratio. Rapid Prototyping vacuum-cast and FDM (Fusion Deposition Moulding) techniques are developed to embed micro fibres composites to be used for potential structural health monitoring (SHM) applications, and microwave absorption screens for electromagnetic compatibility. Finite Element models are also developed to prototype and simulate the response, sensing and actuation capability of the honeycombs for design purposes. Dynamic tests using scanning laser vibrometers and acoustic wave propagation are carried out to assess the feasibility of the concept.

  2. A primer for chiral perturbation theory

    CERN Document Server

    Scherer, Stefan

    2012-01-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.

  3. Note on the Lattice Fermion Chiral Symmetry Group

    OpenAIRE

    Mandula, Jeffrey E.

    2007-01-01

    The group structure of the variant chiral symmetry discovered by Luscher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of the chiral group, and the CP transformation properties of the symmetry generators is found. Features of the currents associated with these symmetries are discussed, including the fact...

  4. Lipase-Catalyzed Kinetic Resolution of Aryltrimethylsilyl Chiral Alcohols

    Directory of Open Access Journals (Sweden)

    Leandro H. Andrade

    2011-11-01

    Full Text Available Lipase-catalyzed kinetic resolution of aryltrimethylsilyl chiral alcohols through a transesterification reaction was studied. The optimal conditions found for the kinetic resolution of m- and p-aryltrimethylsilyl chiral alcohols, led to excellent results, high conversions (c = 50%, high enantiomeric ratios (E > 200 and enantiomeric excesses for the remaining (S-alcohol and (R-acetylated product (>99%. However, kinetic resolution of o-aryltrimethylsilyl chiral alcohols did not occur under the same conditions applied to the other isomers.

  5. Chiral perturbation theory for nucleon generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik

    2006-08-15

    We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)

  6. Chiral Rayleigh particles discrimination in dynamic dual optical traps

    Science.gov (United States)

    Carretero, Luis; Acebal, Pablo; Blaya, Salvador

    2017-11-01

    A chiral optical conveyor belt for enantiomeric separation of nanoparticles is numerically demonstrated by using different types of counter propagating elliptical Laguerre Gaussian beams with different beam waist and topological charge. The analysis of chiral resolution has been made for particles immersed in water demonstrating that in the analyzed conditions one type of enantiomer is trapped in a deep potential and the others are transported by the chiral conveyor toward another trap located in a different geometrical region.

  7. Chiral symmetry on the lattice with Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, M.; Maiani, L.; Martinelli, G.; Rossi, G.; Testa, M.

    1985-12-16

    The chiral properties of the continuum limit of lattice QCD with Wilson fermions are studied. We show that a partially conserved axial current can be defined, satisfying the usual current algebra requirements. A proper definition of the chiral symmetry order parameter, <0 vertical stroke anti psi psi vertical stroke 0>, is given, and the chiral properties of composite operators are investigated. The implications of our analysis to the lattice determination of non-leptonic weak amplitudes are also discussed. (orig.).

  8. Chiral quaternary phosphonium salts: a new class of organocatalysts.

    Science.gov (United States)

    Enders, Dieter; Nguyen, Thanh Vinh

    2012-07-28

    Phase-transfer catalysis has widely been used as a prime synthetic tool for both laboratory and industrial processes. During the last twenty years, asymmetric phase-transfer catalysis using chiral organocatalysts has attracted widespread interest. However, the scope of chiral phase-transfer catalysis has been limited mostly to the quaternary ammonium salts. As an emerging area, the recent developments in the application of quaternary phosphonium salts as chiral phase-transfer catalysts are discussed in this article.

  9. Emerging functional chiral microporous materials: synthetic strategies and enantioselective separations

    OpenAIRE

    Xue, Ming; Li, Bin; Qiu, Shilun; Chen, Banglin

    2016-01-01

    In recent years, chiral microporous materials with open pores have attracted much attention because of their potential applications in enantioselective separation and catalysis. This review summarizes the recent advances on chiral microporous materials, such as metal-organic frameworks (MOFs), hydrogen-bonded organic frameworks (HOFs) and covalent organic frameworks (COFs). We will introduce the synthetic strategies in detail and highlight the current status of chiral microporous materials on...

  10. What flows in the chirally anomalous transport?

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Kenji

    2016-12-15

    A combination of the magnetic field and the quantum anomaly leads to transport phenomena of chiral fermions. On the microscopic level, however, what really flows is a non-trivial question. I propose an answer to this question; the particle production affected by the magnetic field and the quantum anomaly has an anisotropic distribution in momentum space, which should be realized in the heavy-ion collision by a fast process occurring on top of color flux tubes in the glasma.

  11. Chiral Biomarkers and Microfossils in Carbonaceous Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-01-01

    Homochirality of the biomolecules (D-sugars of DNA and RNA and L-amino acids of proteins) is a fundamental property of all life on Earth. Abiotic mechanisms yield racemic mixtures (D/L=1) of chiral molecules and after the death of an organism, the enantiopure chiral biomolecules slowly racemize. Several independent investigators have now established that the amino acids present in CI1 and CM2 carbonaceous meteorites have a moderate to strong excess of the L-enantiomer. Stable isotope data have established that these amino acids are both indigenous and extraterrestrial. Carbonaceous meteorites also contain many other strong chemical biomarkers including purines and pyrimidines (nitrogen heterocycles of nucleic acids); pristine and phytane (components of the chlorophyll pigment) and morphological biomarkers (microfossils of filamentous cyanobacteria). Energy dispersive X-ray Spectroscopy (EDS) analysis reveals that nitrogen is below the detectability level in most of the meteorite filaments as well as in Cambrian Trilobites and filaments of 2.7 Gya Archaean cyanobacteria from Karelia. The deficiency of nitrogen in the filaments and the total absence of sugars, of twelve of the life-critical protein amino acids, and two of the nucleobases of DNA and RNA provide clear and convincing evidence that these filaments are not modern biological contaminants. This paper reviews the chiral, chemical biomarkers morphological biomarkers and microfossils in carbonaceous meteorites. This paper reviews chiral and morphological biomarkers and discusses the missing nitrogen, sugars, protein amino acids, and nucleobases as ?bio-discriminators? that exclude modern biological contaminants as a possible explanation for the permineralized cyanobacterial filaments found in the meteorites.

  12. Chiral Molecule in the Standard Model

    OpenAIRE

    Fukuyama, Takeshi

    2014-01-01

    This review is based on the talk in the conference of "Spectroscopic Studies on Molecular Chirality" held on Dec 20-21 2013. The objects of the present paper are to (1) derive the energy difference between Laevorotatory, or left-handed, (L-) and Dextrotatory, or right-handed, (D-) molecules and to (2) discuss how this tiny energy difference leads us to the observed enantiomer excess. Relations with other parity violating phenomena in molecules, electric dipole moment and natural optical activ...

  13. Hadron Structure in Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Aleksejevs, A. [Grenfell campus of Memorial University, Newfoundland (Canada); Barkanova, S. [Acadia University, Nova Scotia (Canada)

    2013-12-15

    We present our predictions for meson form factors for the SU(3) octet and investigate their impact on the pion electroproduction cross sections. The electric and magnetic polarizabilities of the SU(3) octet of mesons and baryons are analyzed in detail. These extensive calculations are made possible by the recent implementation of semi-automatized calculations in fully-relativistic chiral perturbation theory, which allows evaluation of polarizabilities from Compton scattering up to next-to-the-leading order.

  14. Chiral biomarkers and microfossils in carbonaceous meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-09-01

    Homochirality of the biomolecules (D-sugars of DNA and RNA and L-amino acids of proteins) is a fundamental property of all life on Earth. Abiotic mechanisms yield racemic mixtures (D/L=1) of chiral molecules and after the death of an organism, the enantiopure chiral biomolecules slowly racemize. Several independent investigators have now established that the amino acids present in CI1 and CM2 carbonaceous meteorites have a moderate to strong excess of the L-enantiomer. Stable isotope data have established that these amino acids are both indigenous and extraterrestrial. Carbonaceous meteorites also contain many other strong chemical biomarkers including purines and pyrimidines (nitrogen heterocycles of nucleic acids); pristine and phytane (components of the chlorophyll pigment) and morphological biomarkers (microfossils of filamentous cyanobacteria). Energy dispersive X-ray Spectroscopy (EDS) analysis reveals that nitrogen is below the detectability level in most of the meteorite filaments as well as in Cambrian Trilobites and filaments of 2.7 Gya Archaean cyanobacteria from Karelia. The deficiency of nitrogen in the filaments and the total absence of sugars, of twelve of the life-critical protein amino acids, and two of the nucleobases of DNA and RNA provide clear and convincing evidence that these filaments are not modern biological contaminants. This paper reviews the chiral, chemical biomarkers morphological biomarkers and microfossils in carbonaceous meteorites. This paper reviews chiral and morphological biomarkers and discusses the missing nitrogen, sugars, protein amino acids, and nucleobases as "bio-discriminators" that exclude modern biological contaminants as a possible explanation for the permineralized cyanobacterial filaments found in the meteorites.

  15. Chiral discrimination in biomimetic systems: Phenylalanine

    Indian Academy of Sciences (India)

    WINTEC

    cine derivatives were synthesized and stereoselectivity was measured using IC50 potency assay.6 Naturally occurring L-puromycine inhibits globin mRNA trans- lation with an IC50 of 1⋅8 μM and D-puromycine inhibit translation giving an IC50 of 280 μM. The difference is 150-fold and is a signature of strong chiral dis-.

  16. Circular Intensity Differential Scattering of chiral molecules

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, C.J.

    1980-12-01

    In this thesis a theory of the Circular Intensity Differential Scattering (CIDS) of chiral molecules as modelled by a helix oriented with respect to the direction of incidence of light is presented. It is shown that a necessary condition for the existence of CIDS is the presence of an asymmetric polarizability in the scatterer. The polarizability of the scatterer is assumed generally complex, so that both refractive and absorptive phenomena are taken into account.

  17. Chiral Receiving Antenna With Low Backscattering Levels

    CERN Document Server

    Karilainen, Antti O

    2011-01-01

    Receiving antennas absorb power from incident waves, but they also re-radiate some power into surrounding space. If a receiving antenna is to be used as a sensor which should not disturb the object under study, it should scatter as little power as possible in the receiving direction. We propose to use a chiral element composed of two orthogonal chiral particles as a low-scattering sensor.The element can transmit and receive circular polarization in all directions with the Huygens' pattern. We derive the vector effective length for the antenna using the small dipole approximation for the chiral particles. We observe that the element does not backscatter, regardless of the polarization, when the incidence direction is normal to the plane of the particles. Scattered fields, scattered axial ratio, and the scattering cross section are presented. We show that the zero-backscattering property holds also for the antenna element when it is capable to receive all the available power with conjugate loading. The approxim...

  18. Chiral symmetry breaking in unstirred crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Szurgot, M. [Center of Mathematics and Physics, Technical University of Lodz (Poland)

    2012-01-15

    Statistics of nucleation of chiral forms of sodium bromate from unstirred aqueous solutions was studied. It was established that bimodal, trimodal and unimodal distributions of enantiomers are obtained in unstirred crystallization. It was also found out that probabilities of the creation of L or D crystals and racemates R, as well as the presence of D, L, and R peaks in distributions depend on crystallizer size, supersaturation and temperature. Nucleation at low supersaturations in small, closed crystallizers leads to the formation of pure enantiomers, and to bimodal distributions with D and L peaks at any temperature. At high supersaturations in large, open crystallizers the formation of racemates and unimodal distributions with racemate R peaks results. In open crystallizers at the lowest temperatures and at the highest temperatures used in crystallization from aqueous solution racemates of sodium bromate are preferentially formed, but in a wide range of intermediate-temperatures apart from racemates, pure enantiomers are efficiently formed which leads to trimodal distributions. The spontaneous formation of pure enantiomers in crystallization from unstirred, unseeded solutions is caused by the chiral symmetry breaking phenomenon, the same as that discovered in stirred crystallization. The conservation of chiral symmetry is, in unstirred crystallization, one of the two possibilities, and the other one is the breakage of symmetry. Both of them occur in nature. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Chirality-induced magnon transport in AA-stacked bilayer honeycomb chiral magnets

    Science.gov (United States)

    Owerre, S. A.

    2016-11-01

    In this Letter, we study the magnetic transport in AA-stacked bilayer honeycomb chiral magnets coupled either ferromagnetically or antiferromagnetically. For both couplings, we observe chirality-induced gaps, chiral protected edge states, magnon Hall and magnon spin Nernst effects of magnetic spin excitations. For ferromagnetically coupled layers, thermal Hall and spin Nernst conductivities do not change sign as function of magnetic field or temperature similar to single-layer honeycomb ferromagnetic insulator. In contrast, for antiferromagnetically coupled layers, we observe a sign change in the thermal Hall and spin Nernst conductivities as the magnetic field is reversed. We discuss possible experimental accessible honeycomb bilayer quantum materials in which these effects can be observed.

  20. Enantiomeric separations of chiral pharmaceuticals using chirally modified tetrahexahedral Au nanoparticles

    Science.gov (United States)

    Shukla, N.; Yang, D.; Gellman, A. J.

    2016-06-01

    Tetrahexahedral (THH, 24-sided) Au nanoparticles modified with D- or L-cysteine (Cys) have been used as enantioselective separators of the chiral pharmaceutical propranolol (PLL) in solution phase. Polarimetry has been used to measure the rotation of linearly polarized light by solutions containing mixtures of PLL and Cys/THH-Au NPs with varying enantiomeric excesses of each. Polarimetry yields clear evidence of enantiospecific adsorption of PLL onto the Cys/THH-Au NPs. This extends prior work using propylene oxide as a test chiral probe, by using the crystalline THH Au NPs with well-defined facets to separate a real pharmaceutical. This work suggests that chiral nanoparticles, coupled with a density separation method such as centrifugation, could be used for enantiomeric purification of real pharmaceuticals. A simple robust model developed earlier has also been used to extract the enantiospecific equilibrium constants for R- and S-PLL adsorption onto the D- and L-Cys/THH-Au NPs.

  1. The Three Dimensional Dual of 4D Chirality

    CERN Document Server

    Porrati, M

    2009-01-01

    Chiral gauge theories can be defined in four-dimensional Anti de Sitter space, but AdS boundary conditions explicitly break the chiral symmetry in a specific, well defined manner, which in turns results in an anomalous Ward identity. When the 4D theory admits a dual description in terms of a 3D CFT, the 3D dual of the broken chiral symmetry is a certain double-trace deformation of the CFT, which produces the same anomalous chiral Ward identities that obtains in the 4D bulk theory.

  2. Partial restoration of chiral symmetry in the color flux tube

    Science.gov (United States)

    Iritani, Takumi; Cossu, Guido; Hashimoto, Shoji

    2015-05-01

    Using the quark eigenmodes computed on the lattice with the overlap-Dirac operator, we investigate the spatial distribution of the chiral condensate around static color sources corresponding to quark-antiquark and three-quark systems. A flux structure of chromo fields appears in the presence of such color charges. The magnitude of the chiral condensate is reduced inside the color flux, which implies partial restoration of chiral symmetry inside hadrons. Taking a static baryon source in a periodic box as a toy model of nuclear matter, we estimate the magnitude of the chiral symmetry restoration as a function of baryon matter density.

  3. Chiral nucleon-nucleon forces in nuclear structure calculations

    Directory of Open Access Journals (Sweden)

    Coraggio L.

    2016-01-01

    Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.

  4. Heavy–light mesons in chiral AdS/QCD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yizhuang, E-mail: yizhuang.liu@stonybrook.edu; Zahed, Ismail, E-mail: ismail.zahed@stonybrook.edu

    2017-06-10

    We discuss a minimal holographic model for the description of heavy–light and light mesons with chiral symmetry, defined in a slab of AdS space. The model consists of a pair of chiral Yang–Mills and tachyon fields with specific boundary conditions that break spontaneously chiral symmetry in the infrared. The heavy–light spectrum and decay constants are evaluated explicitly. In the heavy mass limit the model exhibits both heavy-quark and chiral symmetry and allows for the explicit derivation of the one-pion axial couplings to the heavy–light mesons.

  5. Chirality-dependent cellular uptake of chiral nanocarriers and intracellular delivery of different amounts of guest molecules

    Science.gov (United States)

    Kehr, Nermin Seda; Jose, Joachim

    2017-12-01

    We demonstrate the organic molecules loaded and chiral polymers coated periodic mesoporous organosilica (PMO) to generate chiral nanocarriers that we used to study chirality-dependent cellular uptake in serum and serum-free media and the subsequent delivery of different amounts of organic molecules into cells. Our results show that the amount of internalized PMO and thus the transported amount of organic molecules by nanocarrier PMO into cells was chirality dependent and controlled by hard/soft protein corona formation on the PMO surfaces. Therefore, this study demonstrate that chiral porous nanocarriers could potentially be used as advanced drug delivery systems which are able to use the specific chiral surface-protein interactions to influence/control the amount of (bio)active molecules delivered to cells in drug delivery and/or imaging applications.

  6. Exact partition functions for the Ω-deformed N=2{sup ∗}SU(2) gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo; Macorini, Guido [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento,Via Arnesano, 73100 Lecce (Italy); INFN,Via Arnesano, 73100 Lecce (Italy)

    2016-07-12

    We study the low energy effective action of the Ω-deformed N=2{sup ∗}SU(2) gauge theory. It depends on the deformation parameters ϵ{sub 1},ϵ{sub 2}, the scalar field expectation value a, and the hypermultiplet mass m. We explore the plane ((m/(ϵ{sub 1})),((ϵ{sub 2})/(ϵ{sub 1}))) looking for special features in the multi-instanton contributions to the prepotential, motivated by what happens in the Nekrasov-Shatashvili limit ϵ{sub 2}→0. We propose a simple condition on the structure of poles of the k-instanton prepotential and show that it is admissible at a finite set of points in the above plane. At these special points, the prepotential has poles at fixed positions independent on the instanton number. Besides and remarkably, both the instanton partition function and the full prepotential, including the perturbative contribution, may be given in closed form as functions of the scalar expectation value a and the modular parameter q appearing in special combinations of Eisenstein series and Dedekind η function. As a byproduct, the modular anomaly equation can be tested at all orders at these points. We discuss these special features from the point of view of the AGT correspondence and provide explicit toroidal 1-blocks in non-trivial closed form. The full list of solutions with 1, 2, 3, and 4 poles is determined and described in details.

  7. Width and string tension of the flux tube in SU(2) lattice gauge theory at high temperature

    Science.gov (United States)

    Chagdaa, S.; Galsandorj, E.; Laermann, E.; Purev, B.

    2018-02-01

    We study the profiles of the flux tube between a static quark and an antiquark in quenched SU(2) lattice gauge theory at temperatures around the deconfinement phase transition. The physical width of the flux tube and the string tension have been determined from the transverse profiles and the q\\bar{q} potential, respectively. Exploiting the computational power of a GPU accelerator in our flux tube investigation, we achieve much higher statistics through which we can increase the signal to noise ratio of our observables in the simulation. This has allowed the investigation of larger lattices as well as larger separations between the quarks than in our previous work. The improved accuracy gives us better results for the width and the string tension. The physical width of the flux tube increases with the temperature up to around T c while keeping its increasing dependence on the q\\bar{q} separation. The string tension results are compared for two different sizes of the lattice. As the lattice becomes larger and finer together with the improved precision, the temperature dependent string tension tends to have a smaller value than the previous one.

  8. Molecular Dynamics Simulations of Kinetic Models for Chiral Dominance in Soft Condensed Matter

    DEFF Research Database (Denmark)

    Toxvaerd, Søren

    2001-01-01

    Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality......Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality...

  9. Inherently chiral calix[4]arenes via oxazoline directed ortholithiation: synthesis and probe of chiral space.

    Science.gov (United States)

    Herbert, Simon A; van Laeren, Laura J; Castell, Dominic C; Arnott, Gareth E

    2014-01-01

    The diastereoselective oxazoline-directed lithiation of calix[4]arenes is reported with diastereoselective ratios of greater than 100:1 in some instances. Notably, it has been found that the opposite diastereomer can be accessed via this approach merely through the choice of an alkyllithium reagent. The inherently chiral oxazoline calix[4]arenes have also been preliminarily examined as ligands in the palladium-catalyzed Tsuji-Trost allylation reaction, returning results comparable to their planar chiral ferrocene counterparts pointing towards future application of these types of compounds.

  10. Effects of size and ligand density on the chirality transfer from chiral-ligand-capped nanoparticles to nematic liquid crystals

    Science.gov (United States)

    Mori, Taizo; Sharma, Anshul; Nemati, Ahlam; Bergquist, Leah; Hegmann, Torsten

    2017-08-01

    Studies of chiroptical effects of chiral ligand-capped gold nanoparticles (Au NPs) are a fascinating and rapidly evolving field in nanomaterial research with promising applications of such chiral metal NPs in catalysis and metamaterials as well as chiral sensing and separation. The aim of our studies was to seek out a system that not only allows the detection and understanding of Au NP chirality but also permits visualization and ranking — considering size, shape and nature as well as density of the ligand shell — of the extent of chirality transfer to a surrounding medium. Nematic liquid crystal (N-LC) phases are an ideal platform to examine these effects, exhibiting characteristic defect textures upon doping with a chiral additive. To test this, we synthesized series of Au NPs capped with two structurally different chiral ligands and studied well-dispersed mixtures in two nematic liquid crystal hosts. Induced circular dichroism (ICD) spectropolarimetry and polarized light optical microscopy (POM) confirmed that all Au NPs induce chiral nematic (N*-LC) phases, and measurements of the helical pitch as well as calculation of the helical twisting power (HTP) in various cell geometries allowed for an insightful ranking of the efficiency of chirality transfer of all Au NPs as well as their free ligands.

  11. Molecular-level Design of Heterogeneous Chiral Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gellman, Andrew John [Carnegie Mellon University; Sholl, David S. [Georgia Institute of Technology; Tysoe, Wilfred T. [University of Wisconsin - Milwaukee; Zaera, Francisco [University of California at Riverside

    2013-04-28

    Understanding and controlling selectivity is one of the key challenges in heterogeneous catalysis. Among problems in catalytic selectivity enantioselectivity is perhaps the most the most challenging. The primary goal of the project on “Molecular-level Design of Heterogeneous Chiral Catalysts” is to understand the origins of enantioselectivity on chiral heterogeneous surfaces and catalysts. The efforts of the project team include preparation of chiral surfaces, characterization of chiral surfaces, experimental detection of enantioselectivity on such surfaces and computational modeling of the interactions of chiral probe molecules with chiral surfaces. Over the course of the project period the team of PI’s has made some of the most detailed and insightful studies of enantioselective chemistry on chiral surfaces. This includes the measurement of fundamental interactions and reaction mechanisms of chiral molecules on chiral surfaces and leads all the way to rationale design and synthesis of chiral surfaces and materials for enantioselective surface chemistry. The PI’s have designed and prepared new materials for enantioselective adsorption and catalysis. Naturally Chiral Surfaces • Completion of a systematic study of the enantiospecific desorption kinetics of R-3-methylcyclohexanone (R-3-MCHO) on 9 achiral and 7 enantiomeric pairs of chiral Cu surfaces with orientations that span the stereographic triangle. • Discovery of super-enantioselective tartaric acid (TA) and aspartic acid (Asp) decomposition as a result of a surface explosion mechanism on Cu(643)R&S. Systematic study of super-enantiospecific TA and Asp decomposition on five enantiomeric pairs of chiral Cu surfaces. • Initial observation of the enantiospecific desorption of R- and S-propylene oxide (PO) from Cu(100) imprinted with {3,1,17} facets by L-lysine adsorption. Templated Chiral Surfaces • Initial observation of the enantiospecific desorption of R- and S-PO from Pt(111) and Pd(111

  12. tt$^{*}$ equations, localization and exact chiral rings in 4d $ \\mathcal{N} $ =2 SCFTs

    CERN Document Server

    Baggio, Marco; Papadodimas, Kyriakos

    2015-01-01

    We compute exact 2- and 3-point functions of chiral primaries in four-dimensional N=2 superconformal field theories, including all perturbative and instanton contributions. We demonstrate that these correlation functions are nontrivial and satisfy exact differential equations with respect to the coupling constants. These equations are the analogue of the $tt^*$ equations in two dimensions. In the SU(2) N=2 SYM theory coupled to 4 hypermultiplets they take the form of a semi-infinite Toda chain. We provide the complete solution of this chain using input from supersymmetric localization. To test our results we calculate the same correlation functions independently using Feynman diagrams up to 2-loops and we find perfect agreement up to the relevant order. As a spin-off, we perform a 2-loop check of the recent proposal of arXiv:1405.7271 that the logarithm of the sphere partition function in N=2 SCFTs determines the K\\"ahler potential of the Zamolodchikov metric on the conformal manifold. We also present the $tt...

  13. The Isolated Electron: De Broglie’s Hidden Thermodynamics, SU(2 Quantum Yang-Mills Theory, and a Strongly Perturbed BPS Monopole

    Directory of Open Access Journals (Sweden)

    Ralf Hofmann

    2017-10-01

    Full Text Available Based on a recent numerical simulation of the temporal evolution of a spherically perturbed BPS monopole, SU(2 Yang-Mills thermodynamics, Louis de Broglie’s deliberations on the disparate Lorentz transformations of the frequency of an internal “clock” on one hand and the associated quantum energy on the other hand, and postulating that the electron is represented by a figure-eight shaped, self-intersecting center vortex loop in SU(2 Quantum Yang-Mills theory we estimate the spatial radius R 0 of this self-intersection region in terms of the electron’s Compton wave length λ C . This region, which is immersed into the confining phase, constitutes a blob of deconfining phase of temperature T 0 mildly above the critical temperature T c carrying a frequently perturbed BPS monopole (with a magnetic-electric dual interpretation of its charge w.r.t. U(1⊂SU(2. We also establish a quantitative relation between rest mass m 0 of the electron and SU(2 Yang-Mills scale Λ , which in turn is defined via T c . Surprisingly, R 0 turns out to be comparable to the Bohr radius while the core size of the monopole matches λ C , and the correction to the mass of the electron due to Coulomb energy is about 2%.

  14. Synthesis of Chiral Chalcone Derivatives Catalyzed by the Chiral Cinchona Alkaloid Squaramide

    Directory of Open Access Journals (Sweden)

    Dandan Xie

    2014-11-01

    Full Text Available An effective method has been developed for the preparation of novel chiral chalcone derivatives under mild conditions from the easily accessible starting materials nitromethane and chalcone derivatives 2. The corresponding products were obtained in moderate yields with excellent enantioselectivities (up to 99%.

  15. Chiral liquid crystals: the vestigial chiral phases of T, O, I matter

    Science.gov (United States)

    Nissinen, Jaakko; Liu, Ke; Slager, Robert-Jan; Wu, Kai; Zaanen, Jan

    We show how chiral order develops in vestigial isotropic phases of T , O and I liquid crystalline systems in three dimensions. The liquid crystal phases are realized in a lattice model of orientational degrees of freedom with point group symmetries G ⊂ O (3) , represented as O (3) -rotors coupled to G gauge fields. The model incorporates also disclinations via the gauge fields, features an ordered nematic phase with unbroken G rotations at low temperatures and a high temperature isotropic liquid phase. We observe an intermediate phase with spontaneous chirality but isotropic SO (3) symmetry (a liquid) for the gauge groups T, O, and I, the proper symmetry groups of the tetrahedron, cube and icosahedron, respectively. For the other subgroups of SO (3) , Cn <= ∞ and Dn <= ∞, there is generically only a single phase transition from the nematic phase to the isotropic liquid. We discuss the nature of the phase transitions and conditions under which the chiral phase is stabilized by the nematic order parameter fluctuations. The nature of the vestigial chiral phase is reminiscent of the so-called Ising nematic phase in iron based superconductors. Research supported by the Netherlands foundation for Fundamental Research of Matter (FOM).

  16. Out-of-equilibrium chiral magnetic effect from chiral kinetic theory

    Science.gov (United States)

    Huang, Anping; Jiang, Yin; Shi, Shuzhe; Liao, Jinfeng; Zhuang, Pengfei

    2018-02-01

    Recently there has been significant interest in the macroscopic manifestation of chiral anomaly in many-body systems of chiral fermions. A notable example is the Chiral Magnetic Effect (CME). Enthusiastic efforts have been made to search for the CME in the quark-gluon plasma created in heavy ion collisions. A crucial challenge is that the extremely strong magnetic field in such collisions may last only for a brief moment and the CME current may have to occur at so early a stage that the quark-gluon matter is still far from thermal equilibrium. This thus requires modeling of the CME in an out-of-equilibrium setting. With the recently developed theoretical tool of chiral kinetic theory, we make a first phenomenological study of the CME-induced charge separation during the pre-thermal stage in heavy ion collisions. The effect is found to be very sensitive to the time dependence of the magnetic field and also influenced by the initial quark momentum spectrum as well as the relaxation time of the system evolution toward thermal equilibrium. Within the present approach, such pre-thermal charge separation is found to be modest.

  17. Long Range Chiral Imprinting of Cu(110) by Tartaric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, T J; Pushkarev, V; Wei, D; Lucci, F R; Sholl, D S; Gellman, A J; Sykes, E C. H.

    2013-10-31

    Restructuring of metals by chiral molecules represents an important route to inducing and controlling enantioselective surface chemistry. Tartaric acid adsorption on Cu(110) has served as a useful system for understanding many aspects of chiral molecule adsorption and ordering on a metal surface, and a number of chiral and achiral unit cells have been reported. Herein, we show that given the appropriate annealing treatment, singly deprotonated tartaric acid monolayers can restructure the Cu metal itself, and that the resulting structure is both highly ordered and chiral. Molecular resolution scanning tunneling microscopy reveals that singly deprotonated tartaric acid extracts Cu atoms from the Cu(110) surface layer and incorporates them into highly ordered, chiral adatom arrays capped by a continuous molecular layer. Further evidence for surface restructuring comes from images of atom-deep trenches formed in the Cu(110) surface during the process. These trenches also run in low symmetry directions and are themselves chiral. Simulated scanning tunneling microscopy images are consistent with the appearance of the added atom rows and etched trenches. The chiral imprinting results in a long-range, highly ordered unit cell covering the whole surface as confirmed by low energy electron diffraction. Details of the restructuring mechanism were further investigated via time-lapse imaging at elevated temperature. This work reveals the stages of nanoscale surface restructuring and offers an interesting method for chiral modification of an achiral metal surface.

  18. Inorganic–Organic Hybrids Incorporating a Chiral Cyclic Ammonium ...

    African Journals Online (AJOL)

    Inorganic–Organic Hybrids Incorporating a Chiral Cyclic Ammonium Cation. ... South African Journal of Chemistry ... In this paper we report the synthesis and the crystal structure of eight inorganic–organic hybrids containing various lead halides as the inorganic motif and a chiral, primary ammonium cation as the organic ...

  19. The possible mass region for shears bands and chiral doublets

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J. [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Frauendorf, S.

    1998-03-01

    The Tilted Axis Cranking (TAC) theory is reviewed. The recent progress of TAC for triaxial deformed nuclei is reported. More emphasis has been paid to the new discovered phenomena - chiral doublets and their explanation. The possible mass region for the shears bands and chiral doublets and their experimental signature are discussed. (author)

  20. Chiral effective field theories of the strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, M.R. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208 (United States); Scherer, S. [Institut fur Kernphysik, Johannes Gutenberg-Universitat, 55099 Mainz (Germany)

    2011-09-15

    Effective field theories of the strong interactions based on the approximate chiral symmetry of QCD provide a model-independent approach to low-energy hadron physics. We give a brief introduction to mesonic and baryonic chiral perturbation theory and discuss a number of applications. We also consider the effective field theory including vector and axial-vector mesons. (authors)

  1. Chiral symmetry breaking from Ginsparg-Wilson fermions

    CERN Document Server

    Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent

    2000-01-01

    We calculate the large-volume and small-mass dependences of the quark condensate in quenched QCD using Neuberger's operator. We find good agreement with the predictions of quenched chiral perturbation theory, enabling a determination of the chiral lagrangian parameter \\Sigma, up to a multiplicative renormalization.

  2. Static and Dynamic properties of Cubic Chiral Magnets

    NARCIS (Netherlands)

    Qian, F.

    2017-01-01

    The research presented in this thesis focuses on chiral magnets, where skyrmion lattices are stablised by magnetic fields. Neutron scattering, magnetisation and magnetic susceptibility measurements have been performed on several typical chiral magnets such as the multiferroic insulator Cu2OSeO3 and

  3. Integrable double deformation of the principal chiral model

    Energy Technology Data Exchange (ETDEWEB)

    Delduc, F., E-mail: Francois.Delduc@ens-lyon.fr [Laboratoire de Physique, ENS Lyon and CNRS UMR 5672, Université de Lyon, 46, allée d' Italie, 69364 Lyon Cedex 07 (France); Magro, M., E-mail: Marc.Magro@ens-lyon.fr [Laboratoire de Physique, ENS Lyon and CNRS UMR 5672, Université de Lyon, 46, allée d' Italie, 69364 Lyon Cedex 07 (France); Vicedo, B., E-mail: Benoit.Vicedo@gmail.com [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom)

    2015-02-15

    We define a two-parameter family of integrable deformations of the principal chiral model on an arbitrary compact group. The Yang–Baxter σ-model and the principal chiral model with a Wess–Zumino term both correspond to limits in which one of the two parameters vanishes.

  4. Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons

    Science.gov (United States)

    Chanyal, B. C.

    2017-12-01

    In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca–Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.

  5. Chiral Recognition by Fluorescence: One Measurement for Two Parameters

    Directory of Open Access Journals (Sweden)

    Shanshan Yu

    2014-01-01

    Full Text Available This outlook describes two strategies to simultaneously determine the enantiomeric composition and concentration of a chiral substrate by a single fluorescent measurement. One strategy utilizes a pseudoenantiomeric sensor pair that is composed of a 1,1′-bi-2-naphthol-based amino alcohol and a partially hydrogenated 1,1′-bi-2-naphthol-based amino alcohol. These two molecules have the opposite chiral configuration with fluorescent enhancement at two different emitting wavelengths when treated with the enantiomers of mandelic acid. Using the sum and difference of the fluorescent intensity at the two wavelengths allows simultaneous determination of both concentration and enantiomeric composition of the chiral acid. The other strategy employs a 1,1′-bi-2-naphthol-based trifluoromethyl ketone that exhibits fluorescent enhancement at two emission wavelengths upon interaction with a chiral diamine. One emission responds mostly to the concentration of the chiral diamine and the ratio of the two emissions depends on the chiral configuration of the enantiomer but independent of the concentration, allowing both the concentration and enantiomeric composition of the chiral diamine to be simultaneously determined. These strategies would significantly simplify the practical application of the enantioselective fluorescent sensors in high-throughput chiral assay.

  6. Locally Enhanced and Tunable Optical Chirality in Helical Metamaterials

    CERN Document Server

    Gutsche, Philipp; Burger, Sven

    2016-01-01

    We report on a numerical study of optical chirality. Intertwined gold helices illuminated with plane waves concentrate right and left circularly polarized electromagnetic field energy to sub-wavelength regions. These spots of enhanced chirality can be smoothly shifted in position and magnitude by varying illumination parameters, allowing for the control of light-matter interactions on a nanometer scale.

  7. Chiral amide from (1, 2)-(+)-norephedrine and furoic acid: An ...

    Indian Academy of Sciences (India)

    Chiral amide derived from (1, 2)-(+)-norephedrine and 2-furoic acid was found to catalyse the asymmetric Reformatsky reaction between prochiral aldehydes and α-bromo ethylacetate with diethylzinc as zinc source. The corresponding chiral -hydroxy esters were formed in 99% yield with over 80% enantiomeric excess ...

  8. Strange two-baryon interactions using chiral effective field theory

    NARCIS (Netherlands)

    Polinder, H.

    2008-01-01

    We have constructed the leading order strangeness S = −1,−2 baryon-baryon potential in a chiral effective field theory approach. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. The potential, derived using SU(3)f symmetry constraints,

  9. Chiral symmetry and nuclear matter equation of state

    Indian Academy of Sciences (India)

    chiral symmetry. To get the EOS, we have used Brueckner–Bethe–Golstone formalism with Bonn-B potential as two-body interaction and QCD sum rule and ... The spontaneous breaking of the chiral symmetry is signaled by the ... pairs observed in the invariant mass region around 400 MeV in the 200A GeV central col-.

  10. Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Higa, R; Valderrama, M Pavon; Arriola, E Ruiz

    2007-06-14

    The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.

  11. Chiral Boson Theory on the Light-Front

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Prem P.

    1999-09-16

    The framework for describing the quantized theory of chiral boson is discussed. It avoids the conflict with the requirement of the principle of microcausality as is found in the conventional treatment. The discussion of the Floreanini-Jackiw model and its modified version for describing the chiral boson becomes very transparent on the light-front.

  12. Spontaneous transmission of chirality through multiple length scales.

    Science.gov (United States)

    Iski, Erin V; Tierney, Heather L; Jewell, April D; Sykes, E Charles H

    2011-06-20

    The hierarchical transfer of chirality in nature, from the nano-, to meso-, to macroscopic length scales, is very complex, and as of yet, not well understood. The advent of scanning probes has allowed chirality to be monitored at the single molecule or monolayer level and has opened up the possibility to track enantiospecific interactions and chiral self-assembly with molecular-scale detail. This paper describes the self-assembly of a simple, model molecule (naphtho[2,3-a]pyrene) that is achiral in the gas phase, but becomes chiral when adsorbed on a surface. This polyaromatic hydrocarbon forms a stable and reversibly ordered system on Cu(111) in which the transmission of chirality from single surface-bound molecules to complex 2D chiral architectures can be monitored as a function of molecular packing density and surface temperature. In addition to the point chirality of the surface-bound molecule, the unit cell of the molecular domains was also found to be chiral due to the incommensurate alignment of the molecular rows with respect to the underlying metal lattice. These molecular domains always aggregated in groups of three, all of the same chirality, but with different rotational orientations, forming homochiral "tri-lobe" ensembles. At a larger length scale, these tri-lobe ensembles associated with nearest-neighbor tri-lobe units of opposite chirality at lower packing densities before forming an extended array of homochiral tri-lobe ensembles at higher converges. This system displayed chirality at a variety of size scales from the molecular (≈1 nm) and domain (≈5 nm) to the tri-lobe ensemble (≈10 nm) and extended array (>25 nm) levels. The chirality of the tri-lobe ensembles dictated how the overall surface packing occurred and both homo- and heterochiral arrays could be reproducibly and reversibly formed and interchanged as a function of surface coverage. Finally, these chirally templated surfaces displayed remarkable enantiospecificity for

  13. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds.

    Science.gov (United States)

    Calcaterra, Andrea; D'Acquarica, Ilaria

    2018-01-05

    This review article is aimed at providing an overview of the current market of chiral drugs by exploring which is the nowadays tendency, for the pharmaceutical industry, either to exploit the chiral switching practice from already marketed racemates or to develop de novo enantiomerically pure compounds. A concise illustration of the main techniques developed to assess the absolute configuration (AC) and enantiomeric purity of chiral drugs has been given, where greater emphasis was placed on the contribution of enantioselective chromatography (HPLC, SFC and UHPC). Afterwards, we focused our study on the cohort of 45 new drugs that have been approved by the US Food and Drug Administration (FDA) in 2015. We extracted the chemical structure of the new drugs from the FDA approval chemistry reviews available on the database of the agency's Center for Drug Evaluation and Research (CDER), and we selected a subgroup (i.e., 44% of the cohort) of small-molecule active pharmaceutical ingredients (APIs) containing one or more chirality centers. On the basis of the FDA dossiers examined, it emerged that all the chiral drugs approved by the FDA in 2015 are enantiomerically pure compounds with a well-defined AC, with the exception of one, namely lesinurad, which has been licensed as the racemate of two enantiomeric atropoisomers, arising because of the hindered rotation around the single C-N bond in the naphthalene ring. Finally, none of the previously developed racemates has been switched to the single-enantiomer version in 2015. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Some aspects of chirality: Fermion masses and chiral p-forms

    Energy Technology Data Exchange (ETDEWEB)

    Kleppe, A.

    1997-05-01

    The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m{sub 0} implies the existence of other Dirac fields where the corresponding quanta have masses Rm{sub 0}, R{sup 2}m{sub 0}, .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way.

  15. Dynamic control of chirality in phosphine ligands for enantioselective catalysis.

    Science.gov (United States)

    Zhao, Depeng; Neubauer, Thomas M; Feringa, Ben L

    2015-03-25

    Chirality plays a fundamental role in biology and chemistry and the precise control of chirality in a catalytic conversion is a key to modern synthesis most prominently seen in the production of pharmaceuticals. In enantioselective metal-based catalysis, access to each product enantiomer is commonly achieved through ligand design with chiral bisphosphines being widely applied as privileged ligands. Switchable phosphine ligands, in which chirality is modulated through an external trigger signal, might offer attractive possibilities to change enantioselectivity in a catalytic process in a non-invasive manner avoiding renewed ligand synthesis. Here we demonstrate that a photoswitchable chiral bisphosphine based on a unidirectional light-driven molecular motor, can be used to invert the stereoselectivity of a palladium-catalysed asymmetric transformation. It is shown that light-induced changes in geometry and helicity of the switchable ligand enable excellent selectivity towards the racemic or individual enantiomers of the product in a Pd-catalysed desymmetrization reaction.

  16. Chirality of sulforhodamine dye molecules incorporated in DNA thin films

    Science.gov (United States)

    Steckl, A. J.; Spaeth, H.; Singh, K.; Grote, J.; Naik, R.

    2008-11-01

    Thin films formed from salmon sperm DNA reacted with a cationic surfactant (CTMA-Cl) included up to 25 wt % fluorescent molecule sulforhodamine (SRh). SRh effect on DNA chirality and vice versa was investigated by circular dichroism (CD) spectroscopy. The CD signals at 250-265 nm indicate that DNA chirality was maintained or enhanced. Induced CD (iCD) signal at 580-610 nm indicates that SRh is chiral in DNA/CTMA. iCD signal from both solutions and thin films generally increases with SRh concentration. The chirality induced in SRh molecules and the absence of significant DNA reduction in chirality are clear indicators of strong binding to DNA/CTMA.

  17. Exotic meson decays in the environment with chiral imbalance

    Science.gov (United States)

    Andrianov, A. A.; Andrianov, V. A.; Espriu, D.; Iakubovich, A. V.; Putilova, A. E.

    2017-10-01

    An emergence of Local Parity Breaking (LPB) in central heavy-ion collisions (HIC) at high energies is discussed. LPB in the fireball can be produced by a difference between the number densities of right- and left-handed chiral fermions (Chiral Imbalance) which is implemented by a chiral (axial) chemical potential. The effective meson lagrangian induced by QCD is extended to the medium with Chiral Imbalance and the properties of light scalar and pseudoscalar mesons (π, α0) are analyzed. It is shown that exotic decays of scalar mesons arise as a result of mixing of π and α0 vacuum states in the presence of chiral imbalance. The pion electromagnetic formfactor obtains an unusual parity-odd supplement which generates a photon polarization asymmetry in pion polarizability. We hope that the above pointed indications of LPB can be identified in experiments on LHC, RHIC, CBM FAIR and NICA accelerators.

  18. Stochastic chiral symmetry breaking process besides the deterministic one.

    Science.gov (United States)

    Silva-Dias, L; López-Castillo, A

    2017-11-08

    In chiral symmetry breaking, populations with initial enantiomeric excess (EE) are probabilistically favored if statistical fluctuation is present, as in nature. Stochastic methods correctly describe chiral symmetry breaking by taking into account the quantitative enantiomeric difference (excess or deficiency) and the statistical fluctuation amplitude, which is inversely proportional to the absolute size of the populations involved. From this, we obtain a law, which indicates that such a favoring probability decreases exponentially [P(EE) = 1/(e(αEE) + 1)] with an initial enantiomeric deficiency mediated by statistical fluctuation. Obviously, chiral symmetry breaking equally favors populations without enantiomeric excess [P(0) = 1/2]. However, if deterministic methods are considered, chiral symmetry breaking will strictly favor the population with an initial enantiomeric excess (EE). To study these stochastic chiral symmetry breaking processes the autocatalytic Frank model was considered. Summarizing, our results show that the initial enantiomeric excesses are not entirely responsible for the final state configuration of autocatalytic finite systems.

  19. [B₃₀]⁻: a quasiplanar chiral boron cluster.

    Science.gov (United States)

    Li, Wei-Li; Zhao, Ya-Fan; Hu, Han-Shi; Li, Jun; Wang, Lai-Sheng

    2014-05-26

    Chirality is vital in chemistry. Its importance in atomic clusters has been recognized since the discovery of the first chiral fullerene, the D2 symmetric C76. A number of gold clusters have been found to be chiral, raising the possibility to use them as asymmetric catalysts. The discovery of clusters with enantiomeric structures is essential to design new chiral materials with tailored chemical and physical properties. Herein we report the first inherently chiral boron cluster of [B30](-) in a joint photoelectron spectroscopy and theoretical study. The most stable structure of [B30](-) is found to be quasiplanar with a hexagonal hole. Interestingly, a pair of enantiomers arising from different positions of the hexagonal hole are found to be degenerate in our global minimum searches and both should co-exist experimentally because they have identical electronic structures and give rise to identical simulated photoelectron spectra. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Exotic meson decays in the environment with chiral imbalance

    Directory of Open Access Journals (Sweden)

    Andrianov A. A.

    2017-01-01

    Full Text Available An emergence of Local Parity Breaking (LPB in central heavy-ion collisions (HIC at high energies is discussed. LPB in the fireball can be produced by a difference between the number densities of right- and left-handed chiral fermions (Chiral Imbalance which is implemented by a chiral (axial chemical potential. The effective meson lagrangian induced by QCD is extended to the medium with Chiral Imbalance and the properties of light scalar and pseudoscalar mesons (π, α0 are analyzed. It is shown that exotic decays of scalar mesons arise as a result of mixing of π and α0 vacuum states in the presence of chiral imbalance. The pion electromagnetic formfactor obtains an unusual parity-odd supplement which generates a photon polarization asymmetry in pion polarizability. We hope that the above pointed indications of LPB can be identified in experiments on LHC, RHIC, CBM FAIR and NICA accelerators.

  1. Twist Defect in Chiral Photonic Structures

    Science.gov (United States)

    Kopp, Victor I.; Genack, Azriel Z.

    2002-06-01

    We demonstrate that twisting one part of a chiral photonic structure about its helical axis produces a single circularly polarized localized mode that gives rise to an anomalous crossover in propagation. Up to a crossover thickness, this defect results in a peak in transmission and exponential scaling of the linewidth for a circularly polarized wave with the same handedness as structure. Above the crossover, however, the linewidth saturates and the defect mode can be excited only by the oppositely polarized wave, resulting in a peak in reflection instead of transmission.

  2. Chiral transport of neutrinos in supernovae

    Directory of Open Access Journals (Sweden)

    Yamamoto Naoki

    2017-01-01

    Full Text Available The conventional neutrino transport theory for core-collapse supernovae misses one key property of neutrinos: the left-handedness. The chirality of neutrinos modifies the hydrodynamic behavior at the macroscopic scale and leads to topological transport phenomena. We argue that such transport phenomena should play important roles in the evolution of core-collapse supernovae, and, in particular, lead to a tendency toward the inverse energy cascade from small to larger scales, which may be relevant to the origin of the supernova explosion.

  3. Chiral phase transition from string theory.

    Science.gov (United States)

    Parnachev, Andrei; Sahakyan, David A

    2006-09-15

    The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.

  4. Chiral molecule in the Standard Model

    Science.gov (United States)

    Fukuyama, Takeshi

    2014-04-01

    This paper is based on the talk at the conference of "Spectroscopic Studies on Molecular Chirality" held on December 20-21, 2013. The objects of the present paper are to (1) derive the energy difference between Laevorotatory, or left-handed, (L-) and Dextrorotatory, or right-handed, (D-) molecules and to (2) discuss how this tiny energy difference leads us to the observed enantiomer excess. Relations with other parity violating phenomena in molecules, electric dipole moment (EDM) and natural optical activity, are also discussed.

  5. Chiral Imbalance in QCD and its consequences

    Directory of Open Access Journals (Sweden)

    Andrianov Alexander

    2016-01-01

    Full Text Available Under extreme conditions of high temperature and/or large quark (baryon density, the vacuum of QCD changes its properties, and deconfinement, chiral symmetry restoration as well as chiral symmetry breaking take place. These transitions (phases are accompanied by the rapid change in the rate and nature of topological transitions connecting different topological sectors. The heavy ion collisions (HIC program opens a possibility to study these phenomena in so-called non-Abelian Quark-gluon plasma (QGP. In these phases the currents of light quarks (vector and axial-vector can be independently examined for right-handed (RH and left-handed (LH quarks. To describe such a quark matter chiral chemical potential can be introduced to quantify the presence of chirality imbalance (ChI i.e. the difference between the average numbers of RH and LH quarks in the fireball after HIC. In this review talk we will focus our attention on the discussion of the ChI related developments in heavy ion physics at central collisions and the plans for the future experiments aimed at establishing (or falsifying the presence of Local spacial Parity Breaking (LPB in heavy ion data. We describe some of experimental observables in detecting the signal of LPB. A number of measurements is proposed that allow to reach a definite conclusion on the occurrence of LPB effects in non-Abelian QGP produced in central heavy ion collisions and its simulation within a number of QCD-inspired models is outlined. Based on the effective meson theory in the presence of Chern-Simons interaction it is found that the spectrum of massive vector mesons splits into three polarization components with different effective masses. Moreover a resonance broadening occurs that leads to an increase of spectral contribution to the dilepton production as compared to the vacuum state. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the

  6. Moduli stabilisation for chiral global models

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Mayrhofer, Christoph [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-10-15

    We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kaehler moduli within the Kaehler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersections with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating r

  7. Chiral Lagrangians and quark condensate in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Delorme, J.; Chanfray, G.; Ericson, M.

    1996-03-01

    The evolution of density of quark condensate in nuclear medium with interacting nucleons, including the short range correlations is examined. Two chiral models are used, the linear sigma model and the non-linear one. It is shown that the quark condensate, as other observables, is independent on the variant selected. The application to physical pions excludes the linear sigma model as a credible one. The non-linear models restricted to pure s-wave pion-nucleon scattering are examined. (author). 28 refs.; Submitted to nuclear Physics, A (NL).

  8. Chiral bands in {sup 105}Rh

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara-Nunez, J.A.; Oliveira, J.R.B.; Cybulska, E.W.; Medina, N.H.; Rao, M.N.; Ribas, R.V.; Rizzutto, M.A.; Seale, W.A.; Falla-Sotelo, F.; Wiedemann, K.T. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Dimitrov, V.I.; Frauendorf, S. [University of Notre Dame, Notre Dame, IN (United States). Dept. of Physics; Research Center Rossendorf, Dresden (Germany). Institute for Nuclear and Hadronic Physics

    2004-09-15

    The {sup 105}Rh nucleus has been studied by in-beam {gamma} spectroscopy with the heavy-ion fusion-evaporation reaction {sup 100}Mo({sup 11}B, {alpha}2n{gamma}) at 43 MeV. A rich variety of structures was observed at high and low spin, using {gamma}-{gamma}-t and {gamma}-{gamma}-particle coincidences and directional correlation ratios. Four magnetic dipole bands have also been observed at high spin. Two of them are nearly degenerate in excitation energy and could be chiral partners, as predicted by Tilted Axis Cranking calculations. (author)

  9. Chiral Diamine-catalyzed Asymmetric Aldol Reaction

    Institute of Scientific and Technical Information of China (English)

    LI Hui; XU Da-zhen; WU Lu-lu; WANG Yong-mei

    2012-01-01

    A highly efficient catalytic system composed of a simple and commercially available chiral primary diamine (1R,2R)-cyclohexane-1,2-diamine(6) and trifluoroacetic acid(TFA) was employed for asymmetric Aldol reaction in i-PrOH at room temperature.A loading of 10%(molar fraction) catalyst 6 with TFA as a cocatalyst could catalyze the Aldol reactions of various ketones or aldehydes with a series of aromatic aldehydes,furnishing Aldol products in moderate to high yields(up to >99%) with enantioselectivities of up to >99% and diastereoselectivities of up to 99:1.

  10. Three-nucleon reactions with chiral dynamics*

    Directory of Open Access Journals (Sweden)

    Witała H.

    2014-03-01

    Full Text Available Faddeev calculations using the chiral three-nucleon force at next-to-next-to-next-to-leading-order show that this force is not able to provide an explanation for the low-energy Ay puzzle. Also the large discrepancies between data and theory for the symmetric-space-star and for the neutron-neutron quasi-free-scattering cross sections in low energy neutron-deuteron breakup cannot be explained by that three-nucleon force. The discrepancy for the neutron-neutron quasi-free-scattering cross section seems to require a modification of the 1S0 neutron-neutron force.

  11. Chiral separation of novel iminonaringenin derivatives.

    Science.gov (United States)

    Bouanini, Meriem; Belboukhari, Nasser; Menéndez, J Carlos; Sekkoum, Khaled; Cheriti, Abdelkarim; Aboul-Enein, Hassan Y

    2018-01-15

    A series of 4-iminonaringenin derivatives 2-6 have been prepared in good overall yields from a condensation reaction between naringenin and primary amines. The structures of all products were confirmed by ultraviolet, infrared, proton nuclear magnetic resonance, and carbon-13 nuclear magnetic resonance spectroscopic techniques. These derivatives were analyzed by high-performance liquid chromatography using polysaccharide-based chiral stationary phases, namely, Chiralpak IB and Chiralcel OD, using various mobile phases. 2-Propanol showed a high enantioselectivity for naringin and its derivatives using achiral column containing immobilized polysaccharides (Chiralpak IB). © 2018 Wiley Periodicals, Inc.

  12. Structure functions in the chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Sanjose, V.; Vento, V.

    1989-07-13

    We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.).

  13. Tests of Chiral perturbation theory with COMPASS

    Directory of Open Access Journals (Sweden)

    Friedrich Jan M.

    2014-06-01

    Full Text Available The COMPASS experiment at CERN accesses pion-photon reactions via the Primakoff effect., where high-energetic pions react with the quasi-real photon field surrounding the target nuclei. When a single real photon is produced, pion Compton scattering is accessed and from the measured cross-section shape, the pion polarisability is determined. The COMPASS measurement is in contradiction to the earlier dedicated measurements, and rather in agreement with the theoretical expectation from ChPT. In the same experimental data taking, reactions with neutral and charged pions in the final state are measured and analyzed in the context of chiral perturbation theory.

  14. Enantiomeric Separation of 1-(Benzofuran-2-yl)alkylamines on Chiral Stationary Phases Based on Chiral Crown Ethers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soohyun; Kim, Sang Jun; Hyun, Myung Ho [Pusan National Univ., Busan (Korea, Republic of)

    2012-10-15

    Optically active chiral amines are important as building blocks for pharmaceuticals and as scaffolds for chiral ligands and, consequently, many efforts have been devoted to the development of efficient methods for their preparation. For example, reduction of amine precursors with chiral catalysts, enzymatic kinetic resolution or dynamic kinetic resolution of racemic amines and the direct amination of ketones with transaminases have been developed as the efficient methods for the preparation of optically active chiral amines. During the process of developing or utilizing optically active chiral amines, the methods for the determination of their enantiomeric composition are essential. Among various methods, liquid chromatographic resolution of enantiomers on chiral stationary phases (CSPs) have been known to be one of the most accurate and economic means for the determination of the enantiomeric composition of optically active chiral compounds. Especially, CSPs based on chiral crown ethers have been successfully used for the resolution of racemic primary amines. For example, CSPs based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (CSP 1, Figure 1) or (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 (CSP 2 and CSP 3, Figure 1) have been known to be quite effective for the resolution of cyclic and non-cyclic amines, various fluoroquinolone antibacterials containing a primary amino group, tocainide (antiarrhythmic agent) and its analogues, aryl-a-amino ketones and 3-amino-1,4-benzodiazepin-2-ones.

  15. Self-Assembly of Hierarchical Chiral Nanostructures Based on Metal-Benzimidazole Interactions: Chiral Nanofibers, Nanotubes, and Microtubular Flowers.

    Science.gov (United States)

    Zhou, Xiaoqin; Jin, Qingxian; Zhang, Li; Shen, Zhaocun; Jiang, Long; Liu, Minghua

    2016-09-01

    Controlled hierarchical self-assembly of synthetic molecules into chiral nanoarchitectures to mimic those biological chiral structures is of great importance. Here, a low-molecular-weight organogelator containing a benzimidazole moiety conjugated with an amphiphilic l-glutamic amide has been designed and its self-assembly into various hierarchical chiral nanostructures is investigated. Upon gel formation in organic solvents, 1D chiral nanostructure such as nanofiber and nanotube are obtained depending on the solvents. In the presence of transition and rare earth metal ions, hierarchical chiral nanostructures are formed. Specifically, the addition of TbCl3 , EuCl3 , and AgNO3 leads to nanofiber structures, while the addition of Cu(NO3 )2 , Tb(NO3 )3 , or Eu(NO3 )3 provides the microflower structures and microtubular flower structures, respectively. While Eu(III) and Tb(III)-containing microtubular flowers keep the chirality, the Cu(II)-coordinated microflowers lose chirality. More interestingly, the nanofibers formed by the gelator coordinated with Eu(III) or Tb(III) ions show not only the supramolecular chirality but also the circularly polarized luminescence. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    Science.gov (United States)

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  17. Pharmacologically active compounds in the environment and their chirality.

    Science.gov (United States)

    Kasprzyk-Hordern, Barbara

    2010-11-01

    Pharmacologically active compounds including both legally used pharmaceuticals and illicit drugs are potent environmental contaminants. Extensive research has been undertaken over the recent years to understand their environmental fate and toxicity. The one very important phenomenon that has been overlooked by environmental researchers studying the fate of pharmacologically active compounds in the environment is their chirality. Chiral drugs can exist in the form of enantiomers, which have similar physicochemical properties but differ in their biological properties such as distribution, metabolism and excretion, as these processes (due to stereospecific interactions of enantiomers with biological systems) usually favour one enantiomer over the other. Additionally, due to different pharmacological activity, enantiomers of chiral drugs can differ in toxicity. Furthermore, degradation of chiral drugs during wastewater treatment and in the environment can be stereoselective and can lead to chiral products of varied toxicity. The distribution of different enantiomers of the same chiral drug in the aquatic environment and biota can also be stereoselective. Biological processes can lead to stereoselective enrichment or depletion of the enantiomeric composition of chiral drugs. As a result the very same drug might reveal different activity and toxicity and this will depend on its origin and exposure to several factors governing its fate in the environment. In this critical review a discussion of the importance of chirality of pharmacologically active compounds in the environmental context is undertaken and suggestions for directions in further research are made. Several groups of chiral drugs of major environmental relevance are discussed and their pharmacological action and disposition in the body is also outlined as it is a key factor in developing a full understanding of their environmental occurrence, fate and toxicity. This review will be of interest to environmental

  18. Increments to chiral recognition facilitating enantiomer separations of chiral acids, bases, and ampholytes using Cinchona-based zwitterion exchanger chiral stationary phases.

    Science.gov (United States)

    Wernisch, Stefanie; Pell, Reinhard; Lindner, Wolfgang

    2012-07-01

    The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral stationary phases represent potential tuning sites for enantiomer selectivity. In this contribution, we investigate the influence of alkanesulfonic acid chain length and flexibility on enantiomer separations of chiral acids, bases, and amphoteric molecules for six Cinchona alkaloid-based chiral stationary phases in comparison with structurally related anion and cation exchangers. Employing polar-organic elution conditions, we observed an intramolecular counterion effect for acidic analytes which led to reduced retention times but did not impair enantiomer selectivities. Retention of amphoteric analytes is based on simultaneous double ion pairing of their charged functional groups with the acidic and basic sites of the zwitterionic selectors. A chiral center in the vicinity of the strong cation exchanger site is vital for chiral separations of bases. Sterically demanding side chains are beneficial for separations of free amino acids. Enantioseparations of free (un-derivatized) peptides were particularly successful in stationary phases with straight-chain alkanesulfonic acid sites, pointing to a beneficial influence of more flexible moieties. In addition, we observed pseudo-enantiomeric behavior of quinine and quinidine-derived chiral stationary phases facilitating reversal of elution orders for all analytes. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Why (almost) all bundles are chiral

    Science.gov (United States)

    Kost-Smith, Zachary V.; Blackwell, Robert A.; Glaser, Matthew A.

    2014-03-01

    We examine the self assembly of bundles of achiral hard rods with distributed, short-range attractive interactions. We show that in the majority of cases the equilibrium state of the bundle is chiral, with a double twist structure. We use biased Monte Carlo techniques and cell theory to compute the free energy as a function of an appropriately defined twist order parameter, and show that the formation of spontaneously chiral bundles is driven by maximization of orientational entropy. The finite curvature of the bundle boundary permits orientational escape, in which the circumferential angular range of motion of the rods is maximized for some finite average tilt. We map out the phase diagram of bundles in terms of the density, the ratio of rod length to bundle radius, L / R , and rod aspect ratio, L / D , and find transitions between untwisted, weakly twisted, and strongly twisted states. This work helps explain the common observation of twisted macroscopic bundles, and may provide insight into observations of twist in self-assembled membranes of colloidal rods.[2] This work funded by NSF MRSEC Grant DMR-0820579.

  20. Optical activity of chirally distorted nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.; Fedorov, Anatoly V. [Department of Optical Physics and Modern Natural Science, ITMO University, Saint Petersburg 197101 (Russian Federation); Rukhlenko, Ivan D., E-mail: rukhlenko.ivan@gmail.com [Department of Optical Physics and Modern Natural Science, ITMO University, Saint Petersburg 197101 (Russian Federation); Monash University, Clayton Campus, Victoria 3800 (Australia)

    2016-05-21

    We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ by a factor of 10{sup 5}. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.

  1. 8th International Workshop on Chiral Dynamics

    CERN Document Server

    2016-01-01

    The International Workshop on Chiral Dynamics 2015, the eighth in a series which started in 1994 at MIT, and was later held in Mainz (1997), Jefferson Lab (2000 and 2012), Bonn (2003), Duke (2006) and Bern (2009), will take place in Pisa, from June 29 to July 3 2015, and will be jointly hosted by the Department of Physics of the University of Pisa and the Pisa branch of the Istituto Nazionale di Fisica Nucleare. The purpose of this workshop series is to bring physicists together who are active in this field, as well as those who are interested, to discuss and debate the most recent achievements and future developments. The workshop will have a near equal contribution from theorists and experimentalists and, as in the latest editions, a strong synergy with the lattice community will be present. Topics: Hadron structure Isospin breaking in hadronic systems Meson-meson and meson-baryon interaction Effective field theory and chiral perturbation theory Few-body physics Compton scattering and the polarizabilities o...

  2. Attomolar DNA detection with chiral nanorod assemblies

    Science.gov (United States)

    Ma, Wei; Kuang, Hua; Xu, Liguang; Ding, Li; Xu, Chuanlai; Wang, Libing; Kotov, Nicholas A.

    2013-10-01

    Nanoscale plasmonic assemblies display exceptionally strong chiral optical activity. So far, their structural design was primarily driven by challenges related to metamaterials whose practical applications are remote. Here we demonstrate that gold nanorods assembled by the polymerase chain reaction into DNA-bridged chiral systems have promising analytical applications. The chiroplasmonic activity of side-by-side assembled patterns is attributed to a 7-9 degree twist between the nanorod axes. This results in a strong polarization rotation that matches theoretical expectations. The amplitude of the bisignate ‘wave’ in the circular dichroism spectra of side-by-side assemblies demonstrates excellent linearity with the amount of target DNA. The limit of detection for DNA using side-by-side assemblies is as low as 3.7 aM. This chiroplasmonic method may be particularly useful for biological analytes larger than 2-5 nm which are difficult to detect by methods based on plasmon coupling and ‘hot spots’. Circular polarization increases for inter-nanorod gaps between 2 and 20 nm when plasmonic coupling rapidly decreases. Reaching the attomolar limit of detection for simple and reliable bioanalysis of oligonucleotides may have a crucial role in DNA biomarker detection for early diagnostics of different diseases, forensics and environmental monitoring.

  3. Assembling optically active and nonactive metamaterials with chiral units

    Science.gov (United States)

    Xiong, Xiang; Jiang, Shang-Chi; Hu, Yu-Hui; Zhao, Jun-Ming; Feng, Yi-Jun; Peng, Ru-Wen; Wang, Mu

    2012-12-01

    Metamaterials constructed with chiral units can be either optically active or nonactive depending on the spatial configuration of the building blocks. For a class of chiral units, their effective induced electric and magnetic dipoles, which originate from the induced surface electric current upon illumination of incident light, can be collinear at the resonant frequency. This feature provides significant advantage in designing metamaterials. In this paper we concentrate on several examples. In one scenario, chiral units with opposite chiralities are used to construct the optically nonactive metamaterial structure. It turns out that with linearly polarized incident light, the pure electric or magnetic resonance (and accordingly negative permittivity or negative permeability) can be selectively realized by tuning the polarization of incident light for 90°. Alternatively, units with the same chirality can be assembled as a chiral metamaterial by taking the advantage of the collinear induced electric and magnetic dipoles. It follows that for the circularly polarized incident light, negative refractive index can be realized. These examples demonstrate the unique approach to achieve certain optical properties by assembling chiral building blocks, which could be enlightening in designing metamaterials.

  4. Sum-Frequency Generation from Chiral Media and Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Na [Univ. of California, Berkeley, CA (United States)

    2006-02-13

    Sum frequency generation (SFG), a second-order nonlinear optical process, is electric-dipole forbidden in systems with inversion symmetry. As a result, it has been used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry. This thesis describes recent progresses in the applications of and new insights into SFG from chiral media and interfaces. SFG from solutions of chiral amino acids is investigated, and a theoretical model explaining the origin and the strength of the chiral signal in electronic-resonance SFG spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers by measuring both the magnitude and the phase of the chiral SFG response is described, as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is also used to solve the Ozma problems. Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model system, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-containing polymers.

  5. Chiral d-wave superconductivity in doped graphene.

    Science.gov (United States)

    Black-Schaffer, Annica M; Honerkamp, Carsten

    2014-10-22

    A highly unconventional superconducting state with a spin-singlet dx2-y2+/-idxy-wave, or chiral d-wave symmetry has recently been suggested to emerge from electron-electron interactions in doped graphene. It has been argued that graphene doped to the van Hove singularity at 1/4 doping, where the density of states diverge, is particularly likely to be a chiral d-wave superconductor. In this review we summarize the currently mounting theoretical evidence for the existence of a chiral d-wave superconducting state in graphene, obtained with methods ranging from mean-field studies of effective Hamiltonians to angle-resolved renormalization group calculations. We further discuss the multiple distinctive properties of the chiral d-wave superconducting state in graphene, as well as its stability in the presence of disorder. We also review the means of enhancing the chiral d-wave state using proximity-induced superconductivity. The appearance of chiral d-wave superconductivity is intimately linked to the hexagonal crystal lattice and we also offer a brief overview of other materials which have also been proposed to be chiral d-wave superconductors.

  6. Chirality Recognition in Camphor - 1,2-PROPANEDIOL Complexes

    Science.gov (United States)

    Perez, Cristobal; Fatima, Mariyam; Krin, Anna; Schnell, Melanie

    2017-06-01

    The molecular interactions in complexes involving chiral molecules are of particular interest, because the interactions change in a subtle way upon replacing one of the partners by its mirror image. This is based on the fact that chiral molecules are sensitive probes for other chiral objects and chiral interactions. In this particular case, we will concentrate on molecule-molecule interactions and investigate them with broadband rotational spectroscopy. When two chiral molecules form complexes, the homochiral and heterochiral forms have different structures (and thus rotational constants and spectra) and different energies. They are diastereomers, which can easily be differentiated, for example via molecular spectroscopy. This is often exploited in chemical synthesis for identifying and separating enantiomers. The phenomena involving chirality recognition are relevant in the biosphere, in organic synthesis and in polymer design. We use chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy to study the structures and the underlying interactions of camphor-1,2-propanediol complexes. This system is also interesting because the complex formation can be expected to be ruled by an interplay between hydrogen bonding to the polar carbonyl group in camphor and dispersion interactions. The spectra are extremely rich because of the high number of conformers for 1,2-propanediol. We started out with racemic mixtures of both camphor and 1,2-propanediol. Using enantiopure samples of different handedness of the two partners nicely simplifies the spectra and guides the assignment. In the talk, we will report on the latest results for this chiral complex.

  7. Synthesis and Characterization of Surface Mounted Chiral Metal-Organic Frameworks

    OpenAIRE

    Gu, Zhi-Gang

    2014-01-01

    Chiral surface mounted metal-organic frameworks (SURMOFs), composed of metal ions and chiral organic ligands, have been grown on functionalized substrates and studied in this thesis. On one hand, the impact of the pore size of the chiral SURMOF on the enantioselectivity has been investigated in this thesis. On the other hand, oriented circular dichroism (OCD) was chosen as a tool to investigate the chirality and enantioselective separation property of chiral SURMOFs.

  8. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals.

    Science.gov (United States)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T Peter

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  9. A model for chiral symmetry breaking in QCD

    Science.gov (United States)

    Govaerts, J.; Mandula, J. E.; Weyers, J.

    1984-04-01

    A recently proposed model for dynamical breaking of chiral symmetry in QCD is extended and developed for the calculation of pion and chiral symmetry breaking parameters. The pion is explicitly realized as a massless Goldstone boson and as a bound state of the constituent quarks. We compute, in the limit of exact chiral symmetry, MQ, the constituent quark mass ƒ π the pion decay coupling, , the constituent quark loop density, μπ2/ mq, the ratio of the Goldstone boson mass squared to the bare quark mass, and π, the pion electromagnetic charge radius squared.

  10. Causality relations for materials with strong artificial optical chirality

    CERN Document Server

    Gorkunov, M V; Ezhov, A A; Artemov, V V; Rogov, O Y

    2014-01-01

    We demonstrate that the fundamental causality principle being applied to strongly chiral artificial materials yields the generalized Kramers-Kronig relations for the observables -- circular dichroism and optical activity. The relations include the Blaschke terms determined by material-specific features - the zeros of transmission amplitude on the complex frequency plane. By the example of subwavelength arrays of chiral holes in silver films we show that the causality relations can be used not only for a precise verification of experimental data but also for resolving the positions of material anomalies and resonances and quantifying the degree of their chiral splitting.

  11. Relativistic Chiral Theory of Nuclear Matter and QCD Constraints

    CERN Document Server

    Chanfray, G

    2009-01-01

    We present a relativistic chiral theory of nuclear matter which includes the effect of confinement. Nuclear binding is obtained with a chiral invariant scalar background field associated with the radial fluctuations of the chiral condensate Nuclear matter stability is ensured once the scalar response of the nucleon depending on the quark confinement mechanism is properly incorporated. All the parameters are fixed or constrained by hadron phenomenology and lattice data. A good description of nuclear saturation is reached, which includes the effect of in-medium pion loops. Asymmetry properties of nuclear matter are also well described once the full rho meson exchange and Fock terms are included.

  12. Quantum-mechanical picture of peripheral chiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos [Uppsala Univ., Uppsala (Sweden); Weiss, Christian [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-08-28

    The nucleon's peripheral transverse charge and magnetization densities are computed in chiral effective field theory. The densities are represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft pion-nucleon intermediate states. The orbital motion of the pion causes a large left-right asymmetry in a transversely polarized nucleon. As a result, the effect attests to the relativistic nature of chiral dynamics [pion momenta k = O(Mπ)] and could be observed in form factor measurements at low momentum transfer.

  13. Chiral gold nanowires with boerdijk-coxeter-bernal structure

    KAUST Repository

    Zhu, Yihan

    2014-09-10

    A Boerdijk-Coxeter-Bernal (BCB) helix is made of linearly stacked regular tetrahedra (tetrahelix). As such, it is chiral without nontrivial translational or rotational symmetries. We demonstrate here an example of the chiral BCB structure made of totally symmetrical gold atoms, created in nanowires by direct chemical synthesis. Detailed study by high-resolution electron microscopy illustrates their elegant chiral structure and the unique one-dimensional "pseudo-periodicity". The BCB-type atomic packing mode is proposed to be a result of the competition and compromise between the lattice and surface energy.

  14. Lateral shift in one-dimensional quasiperiodic chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Da, Jian, E-mail: dajian521@sina.com [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Mo, Qi, E-mail: moqiyueyang@163.com [School of Software, Yunnan University, Cuihu Bai Road, Kunming City, Yunnan Province 650091 (China); Cheng, Yaokun [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Liu, Taixiang [Taishan Vocational College of Nursing, Shandong Province 271000 (China)

    2015-02-01

    We investigate the lateral shift of a one-dimensional quasiperiodic photonic crystal consisting of chiral and conventional dielectric materials. The effect of structural irregularity on lateral shift is evaluated by stationary-phase approach. Our results show that the lateral shift can be modulated by varying the structural irregularity in quasiperiodic structure. Besides, the position of peak in lateral shift spectrum stays sensitive to the chiral factor of chiral materials. In comparison with that of periodic structure, quasiperiodic structure provides an extra degree of freedom to manipulate the lateral shift.

  15. Chiral Disorder and Random Matrix Theory with Magnetism

    OpenAIRE

    Nowak, Maciej A.; Sadzikowski, Mariusz; Zahed, Ismail.

    2013-01-01

    We revisit the concept of chiral disorder in QCD in the presence of a QED magnetic field $|eH|$. Weak magnetism corresponds to $|eH|\\le 1/\\rho^2$ with $\\rho\\approx 1/3$\\,fm the vacuum instanton size, while strong magnetism the reverse. Asymptotics (ultra-strong magnetism) is in the realm of perturbative QCD. We analyze weak magnetism using the concept of the quark return probability in the diffusive regime of chiral disorder. The result is in agreement with expectations from chiral perturbati...

  16. Method for the synthesis of chiral allylic alcohols utilizing selone based chiral derivatizing agents

    Science.gov (United States)

    Silks, III, Louis A.

    2002-01-01

    Molecules containing a chiral 1,2-diol unit are synthesized from reactions between aldehydes and N-acyl selones. A chilled N-acyl selone is reacted with a Lewis acid such as TiCl.sub.4 and mixed with a tertiary amine such as diisopropylethylamine to generate an enolate solution. Upon further chilling of the enolate solution a desired aldehyde is added and after an acceptable reaction period a quencher is introduced and the product isolated.

  17. Photo- and pion electroproduction in chiral effective field theory; Photo- und Elektropionproduktion in chiraler effektiver Feldtheorie

    Energy Technology Data Exchange (ETDEWEB)

    Hilt, Marius

    2011-12-13

    This thesis is concerned with pion photoproduction (PPP) and pion electroproduction (PEP) in the framework of manifestly Lorentz-invariant baryon chiral perturbation theory. For that purpose two different approaches are used. Firstly, a one-loop-order calculation up to chiral order O(q{sup 4}) including pions and nucleons as degrees of freedom, is performed to describe the energy dependence of the reactions over a large range. To improve the dependence on the virtuality of the photon in PEP, in a second approach vector mesons are included as explicit degrees of freedom. The latter calculation includes one-loop contributions up to chiral order O(q{sup 3}). Only three of the four physical processes of PPP and PEP can be accessed experimentally. These reactions are measured at several different facilities, e.g. Mainz, Bonn, or Saskatoon. The data obtained there are used to explore the limits of chiral perturbation theory. This thesis is the first complete manifestly Lorentz-invariant calculation up to order O(q{sup 4}) for PPP and PEP, and the first calculation ever for these processes including vector mesons explicitly. Beside the calculation of physical observables, a partial wave decomposition is performed and the most important multipoles are analyzed. They may be extracted from the calculated amplitudes and allow one to examine the nucleon and {delta} resonances. The number of diagrams one has to calculate is very large. In order to handle these expressions, several routines were developed for the computer algebra system Mathematica. For the multipole decomposition, two different programs are used. On the one hand, a modified version of the so-called {chi}MAID has been employed. On the other hand, similar routines were developed for Mathematica. In the end, the different calculations are compared with respect to their applicability to PPP and PEP.

  18. Topics in three flavor chiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Nissler, Robin

    2007-07-01

    In this work, we investigate several processes in low-energy hadron physics by combining chiral perturbation theory (ChPT), the effective field theory of quantum chromodynamics (QCD) at low energies, with a unitarization method based on the Bethe-Salpeter equation. Such so-called chiral unitary approaches are capable of describing processes in the three flavor sector of the strong interaction which involve substantial effects from final-state interactions and the excitation of (subthreshold) resonances, a domain where the perturbative framework of ChPT is not applicable. In part I of this work we study {eta} and {eta}' decays which constitute a perfect tool to examine symmetries and symmetry breaking patterns of QCD being incorporated in a model-independent fashion in ChPT. In particular, these decays allow to investigate the breaking of isospin symmetry due to the light quark mass difference m{sub d}-m{sub u} as well as effects of anomalies stemming from the quantum nature of QCD. For these reasons the decays of {eta} and {eta}' have also attracted considerable experimental interest. They are currently under investigation at several facilities including KLOE rate at DA{phi}NE, Crystal Ball at MAMI, WASA-at-COSY, VES at IHEP, and CLEO at CESR. In part II we investigate low-energy meson-baryon scattering in the strangeness S=-1 sector which is dominated by the {lambda}(1405) resonance immediately below the anti KN threshold. The anti KN interaction below threshold is of relevance for the quest of possible deeply bound anti K-nuclear clusters and has recently received an additional tight constraint: the K{sup -}p scattering length as determined from kaonic hydrogen by the KEK and the DEAR collaborations. Apart from successfully describing a large amount of experimental data and furnishing predictions for yet unmeasured quantities, our calculations allow to interrelate different experimental observables providing important consistency tests of experiments. E

  19. Relativistic chiral mean field model and chiral property of finite nuclei and nuclear matter

    Science.gov (United States)

    Toki, Hiroshi; Ogawa, Yoko; Hu, Jinniu

    2009-10-01

    We study the role of pion in finite nuclei and nuclear matter with the relativistic chiral mean field (RCMF) model. In the RCMF model, we use the linear sigma model Lagrangian, which contains the nucleon field and sigma and pion fields in chiral symmetric way. We introduce further the omega meson coupling in order to include necessary repulsion to form nucleus. We take first the mean field approximation and obtain meson fluctuation terms to be treated in the 2p-2h space so that the pion exchange interaction is fully taken into account. The pion exchange interaction provides major contribution to the nuclear binding. We calculate ^4He, ^12C and ^16O and nuclear matter. For finite nuclei, we obtain more than a half of the attraction from the pion exchange interaction. We get an extra binding for ^12C than ^16O due to the pion exchange interaction coming from the Pauli-blocking effect. We find the nucleon mass is reduced about 20% from the free space value in the interior of finite nuclei. We calculate also chiral condensate in nuclear matter, which has a similar behavior to the model independent expression as a function of density. This behavior agrees with the behavior of isovector s-wave parameter extracted from deeply bound pionic atoms.

  20. Examination of the Potential for Adaptive Chirality of the Nitrogen Chiral Center in Aza-Aspartame

    Directory of Open Access Journals (Sweden)

    Samir H. Bouayad-Gervais

    2013-11-01

    Full Text Available The potential for dynamic chirality of an azapeptide nitrogen was examined by substitution of nitrogen for the α-carbon of the aspartate residue in the sweetener S,S-aspartame. Considering that S,S- and R,S-aspartame possess sweet and bitter tastes, respectively, a bitter-sweet taste of aza-aspartame 9 could be indicative of a low isomerization barrier for nitrogen chirality inter-conversion. Aza-aspartame 9 was synthesized by a combination of hydrazine and peptide chemistry. Crystallization of 9 indicated a R,S-configuration in the solid state; however, the aza-residue chiral center was considerably flattened relative to its natural amino acid counterpart. On tasting, the authors considered aza-aspartame 9 to be slightly bitter or tasteless. The lack of bitter sweet taste of aza-aspartame 9 may be due to flattening from sp2 hybridization in the urea as well as a high barrier for sp3 nitrogen inter-conversion, both of which may interfere with recognition by taste receptors.

  1. Orientifold Planar Equivalence: The Chiral Condensate

    DEFF Research Database (Denmark)

    Armoni, Adi; Lucini, Biagio; Patella, Agostino

    2008-01-01

    in SU($N$) Yang-Mills in the large $N$ limit. Then, we compute numerically those quenched condensates for $N$ up to 8. After separating the even from the odd corrections in $1/N$, we are able to show that our data support the equivalence; however, unlike other quenched observables, subleading terms......The recently introduced orientifold planar equivalence is a promising tool for solving non-perturbative problems in QCD. One of the predictions of orientifold planar equivalence is that the chiral condensates of a theory with $N_f$ flavours of Dirac fermions in the symmetric (or antisymmetric......) representation and $N_f$ flavours of Majorana fermions in the adjoint representation have the same large $N$ value for any value of the mass of the (degenerate) fermions. Assuming the invariance of the theory under charge conjugation, we prove this statement on the lattice for staggered quenched condensates...

  2. Chiral Lagrangians, anomalies, supersymmetry, and holomorphy

    Science.gov (United States)

    Losev, Andrei; Moore, Gregory; Nekrasov, Nikita; Shatashvili, Samson

    1997-02-01

    We investigate higher-dimensional analogues of the bc systems of 2D RCFT. When coupled to gauge fields and Beltrami differentials defining integrable holomorphic structures, the bc partition functions can be explicitly evaluated using anomalies and holomorphy. The resulting induced actions generalize the chiral algebras of 2D RCFT to 2 n dimensions. Moreover, bc systems in four and six dimensions are closely related to supersymmetric matter. In particular, we show that d = 4, N = 2 hypermultiplets induce a theory of self-dual Yang-Mills fields coupled to self-dual gravity. In this way the bc systems fermionize both the algebraic sector of the WZW 4 theory, as defined by Losev et al., and the classical open NWS = 2 string.

  3. Chiral Lagrangians, anomalies, supersymmetry, and holomorphy

    Energy Technology Data Exchange (ETDEWEB)

    Losev, A. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)]|[Yale Univ., New Haven, CT (United States). Dept. of Physics; Moore, G. [Yale Univ., New Haven, CT (United States). Dept. of Physics; Nekrasov, N. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)]|[Princeton Univ., NJ (United States). Dept. of Physics; Shatashvili, S. [Yale Univ., New Haven, CT (United States). Dept. of Physics

    1997-01-20

    We investigate higher-dimensional analogues of the bc systems of 2D RCFT. When coupled to gauge fields and Beltrami differentials defining integrable holomorphic structures, the bc partition functions can be explicitly evaluated using anomalies and holomorphy. The resulting induced actions generalize the chiral algebras of 2D RCFT to 2n dimensions. Moreover, bc systems in four and six dimensions are closely related to supersymmetric matter. In particular, we show that d=4, N=2 hypermultiplets induce a theory of self-dual Yang-Mills fields coupled to self-dual gravity. In this way the bc systems fermionize both the algebraic sector of the WZW{sub 4} theory, as defined by Losev et al., and the classical open N{sub ws}=2 string. (orig.).

  4. Superconformal index, BPS monodromy and chiral algebras

    Science.gov (United States)

    Cecotti, Sergio; Song, Jaewon; Vafa, Cumrun; Yan, Wenbin

    2017-11-01

    We show that specializations of the 4d N=2 superconformal index labeled by an integer N is given by Tr ℳ N where ℳ is the Kontsevich-Soibelman monodromy operator for BPS states on the Coulomb branch. We provide evidence that the states enumerated by these limits of the index lead to a family of 2d chiral algebras A_N . This generalizes the recent results for the N = -1 case which corresponds to the Schur limit of the superconformal index. We show that this specialization of the index leads to the same integrand as that of the elliptic genus of compactification of the superconformal theory on S 2 × T 2 where we turn on 1/2N units of U(1) r flux on S 2.

  5. Discovering Chiral Higgsinos at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Arvanitaki, Asimina; /Stanford U., ITP /SLAC

    2006-11-10

    The concept of chirality is extended to the Minimal Supersymmetric Standard Model (MSSM) and the {micro} term is forbidden by a gauged U(1){prime} symmetry. R-parity automatically emerges after symmetry breaking, suppressing proton decay and protecting the LSP. Exotics charged under the SM pose a challenge to traditional SU(5) unification, but unification is still implemented in deconstructed GUTs. Because of the multitude of additional states to the MSSM, the Z{prime} has a large width, and the SM background, neglected in previous theoretical studies, becomes important for Z{prime} discovery. As a result, the LHC reach is reduced from 3.2 TeV, for a Z{prime} with SM decays, to 1.5 TeV, when additional decay channels are included. This model also predicts possibly long-lived colored and electroweak exotics.

  6. Chiral perturbation theory for lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Oliver

    2010-07-21

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  7. Chiral Alkyl Halides: Underexplored Motifs in Medicine

    Directory of Open Access Journals (Sweden)

    Bálint Gál

    2016-11-01

    Full Text Available While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the role that chiral alkyl halides can play in drug discovery. Through a series of case studies, we demonstrate in this review that these motifs can indeed be stable under physiological conditions, and that halogenation can enhance bioactivity through both steric and electronic effects. Our hope is that, by placing such compounds in the minds of the chemical community, they may gain more traction in drug discovery and inspire more synthetic chemists to develop methods for selective halogenation.

  8. A lattice formulation of chiral gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Bodwin, G.T. [Argonne National Lab., IL (United States). High Energy Physics Div.

    1995-12-01

    The authors present a method for formulating gauge theories of chiral fermions in lattice field theory. The method makes use of a Wilson mass to remove doublers. Gauge invariance is then restored by modifying the theory in two ways: the magnitude of the fermion determinant is replaced with the square root of the determinant for a fermion with vector-like couplings to the gauge field; a double limit is taken in which the lattice spacing associated with the fermion field is taken to zero before the lattice spacing associated with the gauge field. The method applies only to theories whose fermions are in an anomaly-free representation of the gauge group. They also present a related technique for computing matrix elements of operators involving fermion fields. Although the analyses of these methods are couched in weak-coupling perturbation theory, it is argued that computational prescriptions are gauge invariant in the presence of a nonperturbative gauge-field configuration.

  9. Selective control of reconfigurable chiral plasmonic metamolecules

    Science.gov (United States)

    Kuzyk, Anton; Urban, Maximilian J.; Idili, Andrea; Ricci, Francesco; Liu, Na

    2017-01-01

    Selective configuration control of plasmonic nanostructures using either top-down or bottom-up approaches has remained challenging in the field of active plasmonics. We demonstrate the realization of DNA-assembled reconfigurable plasmonic metamolecules, which can respond to a wide range of pH changes in a programmable manner. This programmability allows for selective reconfiguration of different plasmonic metamolecule species coexisting in solution through simple pH tuning. This approach enables discrimination of chiral plasmonic quasi-enantiomers and arbitrary tuning of chiroptical effects with unprecedented degrees of freedom. Our work outlines a new blueprint for implementation of advanced active plasmonic systems, in which individual structural species can be programmed to perform multiple tasks and functions in response to independent external stimuli. PMID:28439556

  10. Experimental demonstration of spontaneous chirality in a nonlinear microresonator

    CERN Document Server

    Cao, Qi-Tao; Dong, Chun-Hua; Jing, Hui; Liu, Rui-Shan; Chen, Xi; Ge, Li; Gong, Qihuang; Xiao, Yun-Feng

    2016-01-01

    Chirality is an important concept that describes the asymmetry property of a system, which usually emerges spontaneously due to mirror symmetry breaking. Such spontaneous chirality manifests predominantly as parity breaking in modern physics, which has been studied extensively, for instance, in Higgs physics, double-well Bose-Einstein condensates, topological insulators and superconductors. In the optical domain, spontaneous chiral symmetry breaking has been elusive experimentally, especially for micro- and nano-photonics which demands multiple identical subsystems, such as photonic nanocavities, meta-molecules and other dual-core settings. Here, for the first time, we observe spontaneous emergence of a chiral field in a single ultrahigh-Q whispering- gallery microresonator. This counter-intuitive effect arises due to the inherent Kerr nonlinearity-modulated coupling between clockwise (CW) and counterclockwise (CCW) propagating waves. At an ultra-weak input threshold of a few hundred microwatts, the initial c...

  11. Active chiral control of GHz acoustic whispering-gallery modes

    Science.gov (United States)

    Mezil, Sylvain; Fujita, Kentaro; Otsuka, Paul H.; Tomoda, Motonobu; Clark, Matt; Wright, Oliver B.; Matsuda, Osamu

    2017-10-01

    We selectively generate chiral surface-acoustic whispering-gallery modes in the gigahertz range on a microscopic disk by means of an ultrafast time-domain technique incorporating a spatial light modulator. Active chiral control is achieved by making use of an optical pump spatial profile in the form of a semicircular arc, positioned on the sample to break the symmetry of clockwise- and counterclockwise-propagating modes. Spatiotemporal Fourier transforms of the interferometrically monitored two-dimensional acoustic fields measured to micron resolution allow individual chiral modes and their azimuthal mode order, both positive and negative, to be distinguished. In particular, for modes with 15-fold rotational symmetry, we demonstrate ultrafast chiral control of surface acoustic waves in a micro-acoustic system with picosecond temporal resolution. Applications include nondestructive testing and surface acoustic wave devices.

  12. Monte Carlo simulations of nematic and chiral nematic shells.

    Science.gov (United States)

    Wand, Charlie R; Bates, Martin A

    2015-01-01

    We present a systematic Monte Carlo simulation study of thin nematic and cholesteric shells with planar anchoring using an off-lattice model. The results obtained using the simple model correspond with previously published results for lattice-based systems, with the number, type, and position of defects observed dependent on the shell thickness with four half-strength defects in a tetrahedral arrangement found in very thin shells and a pair of defects in a bipolar (boojum) configuration observed in thicker shells. A third intermediate defect configuration is occasionally observed for intermediate thickness shells, which is stabilized in noncentrosymmetric shells of nonuniform thickness. Chiral nematic (cholesteric) shells are investigated by including a chiral term in the potential. Decreasing the pitch of the chiral nematic leads to a twisted bipolar (chiral boojum) configuration with the director twist increasing from the inner to the outer surface.

  13. Graphene chiral liquid crystals and macroscopic assembled fibres

    Science.gov (United States)

    Xu, Zhen; Gao, Chao

    2011-12-01

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles.

  14. Renormalization and power counting of chiral nuclear forces

    Energy Technology Data Exchange (ETDEWEB)

    Long, Bingwei [JLAB

    2013-08-01

    I discuss the progress we have made on modifying Weinberg's prescription for chiral nuclear forces, using renormalization group invariance as the guideline. Some of the published results are presented.

  15. Chiral Extrapolation of Lattice Data for Heavy Meson Hyperfine Splittings

    Energy Technology Data Exchange (ETDEWEB)

    X.-H. Guo; P.C. Tandy; A.W. Thomas

    2006-03-01

    We investigate the chiral extrapolation of the lattice data for the light-heavy meson hyperfine splittings D*-D and B*-B to the physical region for the light quark mass. The chiral loop corrections providing non-analytic behavior in m{sub {pi}} are consistent with chiral perturbation theory for heavy mesons. Since chiral loop corrections tend to decrease the already too low splittings obtained from linear extrapolation, we investigate two models to guide the form of the analytic background behavior: the constituent quark potential model, and the covariant model of QCD based on the ladder-rainbow truncation of the Dyson-Schwinger equations. The extrapolated hyperfine splittings remain clearly below the experimental values even allowing for the model dependence in the description of the analytic background.

  16. Leading order relativistic chiral nucleon-nucleon interaction

    Science.gov (United States)

    Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie

    2018-01-01

    Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )

  17. Optical Force and Torque on Dipolar Dual Chiral Particles

    CERN Document Server

    Rahimzadegan, Aso; Alaee, Rasoul; Fernandez-Corbaton, Ivan; Rockstuhl, Carsten

    2016-01-01

    On the one hand, electromagnetic dual particles preserve the helicity of light upon interaction. On the other hand, chiral particles respond differently to light of opposite helicity. These two properties on their own constitute a source of fascination. Their combined action, however, is less explored. Here, we study on analytical grounds the force and torque as well as the optical cross sections of dual chiral particles in dipolar approximation exerted by a wave of well-defined helicity, i.e. a circularly polarized plane wave. We put emphasis on particles that possess a maximally electromagnetic chiral and hence dual response. Besides the analytical insights, we also investigate the exerted optical force and torque on a real particle at the example of a metallic helix that is designed to approach the maximal electromagnetic chirality condition. Various applications in the context of optical sorting but also nanorobotics can be perceived considering the particles studied in this contribution.

  18. Polarization Control by Using Anisotropic 3D Chiral Structures

    CERN Document Server

    Chen, Menglin L N; Sha, Wei E I; Choy, Wallace C H; Itoh, Tatsuo

    2016-01-01

    Due to the mirror symmetry breaking, chiral structures show fantastic electromagnetic (EM) properties involving negative refraction, giant optical activity, and asymmetric transmission. Aligned electric and magnetic dipoles excited in chiral structures contribute to extraordinary properties. However, the chiral structures that exhibit n-fold rotational symmetry show limited tuning capability. In this paper, we proposed a compact, light, and highly tunable anisotropic chiral structure to overcome this limitation and realize a linear-to-circular polarization conversion. The anisotropy is due to simultaneous excitations of two different pairs of aligned electric and magnetic dipoles. The 3D omega-like structure, etched on two sides of one PCB board and connected by metallic vias, achieves 60% of linearto- circular conversion (transmission) efficiency at the operating frequency of 9.2 GHz. The desired 90-degree phase shift between the two orthogonal linear polarization components is not only from the finite-thick...

  19. Detection of graphene chirality using achiral liquid crystalline platforms

    Science.gov (United States)

    Basu, Rajratan; Kinnamon, Daniel; Garvey, Alfred

    2015-09-01

    Monolayer graphene flakes were dispersed at low concentrations into two achiral liquid crystals (LCs) alkoxyphenylbenzoate (9OO4) and 4-cyano-4'-pentylbiphenyl (5CB), separately. The presence of graphene resulted in two types of chiral signatures in the LCs: an electroclinic effect (a polar tilt of the LC director perpendicular to, and linear in, an applied electric field) in the smectic-A phase of 9OO4, and a macroscopic helical twist of the LC director in the nematic phase of 5CB. Graphene flakes generally possess strain chirality and edge chirality. The non-covalent interactions between the LC molecules and chiral graphene flakes induce molecular conformational deracemization in the LC, exhibiting a bulk electroclinic effect and a macroscopic helical twist.

  20. Transfer of chirality from adsorbed chiral molecules to the substrates highlighted by circular dichroism in angle-resolved valence photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Contini, G.; Turchini, S.; Sanna, Simone

    2012-01-01

    Studies of self-assembled chiral molecules on achiral metallic surfaces have mostly focused on the determination of the geometry of adsorbates and their electronic structure. The aim of this paper is to provide direct information on the chirality character of the system and on the chirality trans...

  1. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  2. An Active Metamaterial Platform for Chiral Responsive Optoelectronics.

    Science.gov (United States)

    Kang, Lei; Lan, Shoufeng; Cui, Yonghao; Rodrigues, Sean P; Liu, Yongmin; Werner, Douglas H; Cai, Wenshan

    2015-08-05

    Chiral-selective non-linear optics and optoelectronic signal generation are demonstrated in an electrically active photonic metamaterial. The metamaterial reveals significant chiroptical responses in both harmonic generation and the photon drag effect, correlated to the resonance behavior in the linear regime. The multifunctional chiral metamaterial with dual electrical and optical functionality enables transduction of chiroptical responses to electrical signals for integrated photonics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Synthesis of Chiral Perylene and Naphthalene Diimides

    OpenAIRE

    Aşır, Süleyman

    2009-01-01

    ABSTRACT: In this thesis a new naphthalene monoimide, one chiral naphthalene diimide and two chiral perylene diimides have been successfully synthesized. The synthesized products were characterized through the data from NMR, IR, MS, UV-vis, DSC, TGA, elemental analysis, cyclic voltammetry, square-wave voltammetry and circular dichroism (CD). Naphthalene monoimide exhibits an intramolecular charge transfer complexation in its absorption spectrum in polar solvents. Excimer-like emissions were ...

  4. Chiral symmetry and changes of properties in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.E. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics

    1995-12-31

    The decrease with density of the nucleon effective mass m{sub n}{sup *} as a movement towards chiral restoration, connecting m{sub n}{sup *} with the density dependent quark condensate (q-barq){sup *} is described. Roughly, m{sub n}{sup *} can be used as the order parameter for the phase of broken chiral symmetry. (author). 22 refs., 1 fig.

  5. Circular dichroism induced by Fano resonances in planar chiral oligomers

    CERN Document Server

    Hopkins, Ben; Miroshnichenko, Andrey E; Kivshar, Yuri S

    2016-01-01

    We present a general theory of circular dichroism induced in planar chiral nanostructures with rotational symmetry. It is demonstrated, analytically, that the handedness of the incident field's polarization can control whether a nanostructure induces either absorption or scattering losses, even when the total loss (extinction) is polarization-independent. We then show that this effect is a consequence of modal interference so that strong circular dichroism in absorption and scattering can be engineered by combining Fano resonances with chiral nanoparticle clusters.

  6. Highly fluorescent supramolecular gels with chirality transcription through hydrogen bonding.

    Science.gov (United States)

    Seo, Jangwon; Chung, Jong Won; Jo, Eun-Hye; Park, Soo Young

    2008-06-28

    A highly fluorescent organogel with transparency was formed through a hydrogen (H)-bonding interaction between a non-fluorescent and achiral 2-(3',5'-bis-trifluoromethyl-biphenyl-4-yl)-3-(4-pyridin-4-yl-phenyl)-acrylonitrile (CN-TFMBPPE) monomer and chiral sergeant l-tartaric acid (TA) (or d-TA), with gel formation being accompanied by a drastic fluorescence enhancement as well as chirality induction.

  7. Extending Chiral Perturbation Theory with an Isosinglet Scalar

    DEFF Research Database (Denmark)

    Hansen, Martin; Langaeble, Kasper; Sannino, Francesco

    2017-01-01

    We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different patterns of chiral symmetry breaking of immediate relevance for phenomenology and...... and lattice investigations. By construction our results encompass several interesting limits, ranging from the dilaton to the linear sigma model....

  8. Incommensurate Chirality Density Wave Transition in a Hybrid Molecular Framework

    Science.gov (United States)

    Hill, Joshua A.; Christensen, Kirsten E.; Goodwin, Andrew L.

    2017-09-01

    Using single-crystal x-ray diffraction we characterize the 235 K incommensurate phase transition in the hybrid molecular framework tetraethylammonium silver(I) dicyanoargentate, [NEt4]Ag3(CN )4 . We demonstrate the transition to involve spontaneous resolution of chiral [NEt4]+ conformations, giving rise to a state in which molecular chirality is incommensurately modulated throughout the crystal lattice. We refer to this state as an incommensurate chirality density wave (XDW) phase, which represents a fundamentally new type of chiral symmetry breaking in the solid state. Drawing on parallels to the incommensurate ferroelectric transition of NaNO2 , we suggest the XDW state arises through coupling between acoustic (shear) and molecular rotoinversion modes. Such coupling is symmetry forbidden at the Brillouin zone center but symmetry allowed for small but finite modulation vectors q =[0 ,0 ,qz]* . The importance of long-wavelength chirality modulations in the physics of this hybrid framework may have implications for the generation of mesoscale chiral textures, as required for advanced photonic materials.

  9. Detection of chiral anomaly and valley transport in Dirac semimetals

    Science.gov (United States)

    Zhang, Cheng; Zhang, Enze; Liu, Yanwen; Chen, Zhigang; Liang, Sihang; Cao, Junzhi; Yuan, Xiang; Tang, Lei; Li, Qian; Gu, Teng; Wu, Yizheng; Zou, Jin; Xiu, Faxian

    Chiral anomaly is a non-conservation of chiral charge pumped by the topological nontrivial gauge field, which has been predicted to exist in the emergent quasiparticle excitations in Dirac and Weyl semimetals. However, so far, such pumping process hasn't been clearly demonstrated and lacks a convincing experimental identification. Here, we report the detection of the charge pumping effect and the related valley transport in Cd3As2 driven by external electric and magnetic fields (EB). We find that the chiral imbalance leads to a non-zero gyrotropic coefficient, which can be confirmed by the EB-generated Kerr effect. By applying B along the current direction, we observe a negative magnetoresistance despite the giant positive one at other directions, a clear indication of the chiral anomaly. Remarkably, a robust nonlocal response in valley diffusion originated from the chiral anomaly is persistent up to room temperature when B is parallel to E. The ability to manipulate the valley polarization in Dirac semimetal opens up a brand-new route to understand its fundamental properties through external fields and utilize the chiral fermions in valleytronic applications.

  10. Transmission of chirality through space and across length scales

    Science.gov (United States)

    Morrow, Sarah M.; Bissette, Andrew J.; Fletcher, Stephen P.

    2017-05-01

    Chirality is a fundamental property and vital to chemistry, biology, physics and materials science. The ability to use asymmetry to operate molecular-level machines or macroscopically functional devices, or to give novel properties to materials, may address key challenges at the heart of the physical sciences. However, how chirality at one length scale can be translated to asymmetry at a different scale is largely not well understood. In this Review, we discuss systems where chiral information is translated across length scales and through space. A variety of synthetic systems involve the transmission of chiral information between the molecular-, meso- and macroscales. We show how fundamental stereochemical principles may be used to design and understand nanoscale chiral phenomena and highlight important recent advances relevant to nanotechnology. The survey reveals that while the study of stereochemistry on the nanoscale is a rich and dynamic area, our understanding of how to control and harness it and dial-up specific properties is still in its infancy. The long-term goal of controlling nanoscale chirality promises to be an exciting journey, revealing insight into biological mechanisms and providing new technologies based on dynamic physical properties.

  11. Evidence for chiral logarithms in the baryon spectrum

    CERN Document Server

    Walker-Loud, Andre

    2011-01-01

    Using precise lattice QCD computations of the baryon spectrum, we present the first direct evidence for the presence of contributions to the baryon masses which are non-analytic in the light quark masses; contributions which are often denoted "chiral logarithms". We isolate the poor convergence of SU(3) baryon chiral perturbation theory to the flavor-singlet mass combination. The flavor-octet baryon mass splittings, which are corrected by chiral logarithms at next to leading order in SU(3) chiral perturbation theory, yield baryon-pion axial coupling constants D, F, C and H consistent with QCD values; the first evidence of chiral logarithms in the baryon spectrum. The Gell-Mann--Okubo relation, a flavor-27 baryon mass splitting, which is dominated by chiral corrections from light quark masses, provides further evidence for the presence of non-analytic light quark mass dependence in the baryon spectrum; we simultaneously find the GMO relation to be inconsistent with the first few terms in a taylor expansion in ...

  12. Theoretical model of chirality-induced helical self-propulsion

    Science.gov (United States)

    Yamamoto, Takaki; Sano, Masaki

    2018-01-01

    We recently reported the experimental realization of a chiral artificial microswimmer exhibiting helical self-propulsion [T. Yamamoto and M. Sano, Soft Matter 13, 3328 (2017), 10.1039/C7SM00337D]. In the experiment, cholesteric liquid crystal (CLC) droplets dispersed in surfactant solutions swam spontaneously, driven by the Marangoni flow, in helical paths whose handedness is determined by the chirality of the component molecules of CLC. To study the mechanism of the emergence of the helical self-propelled motion, we propose a phenomenological model of the self-propelled helical motion of the CLC droplets. Our model is constructed by symmetry argument in chiral systems, and it describes the dynamics of CLC droplets with coupled time-evolution equations in terms of a velocity, an angular velocity, and a tensor variable representing the symmetry of the helical director field of the droplet. We found that helical motions as well as other chiral motions appear in our model. By investigating bifurcation behaviors between each chiral motion, we found that the chiral coupling terms between the velocity and the angular velocity, the structural anisotropy of the CLC droplet, and the nonlinearity of model equations play a crucial role in the emergence of the helical motion of the CLC droplet.

  13. Asymmetric Alkylation and Aldol Reactions of D-Mannitol-Derived Chiral Oxazolidin-2-one Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, Yun Hee; Jun, Jong Gab [Hallym University, Chunchon (Korea, Republic of)

    2004-01-15

    In the preceding article, we have introduced a new chiral oxazolidin-2-one auxiliary (1) derived from a cheap Dmannitol, and demonstrated the chiral selectivity in alkylation, aldol reaction and {beta}-lactam synthesis.1 The present work began with a search for useful chiral directing groups with which to control the chiral selectivity. Because the rigidity of cyclic structures contributes significantly to control of chirality,2 the 1,2:5,6-di-O-cyclohexylidene-Dmannitol (2) was used for the synthesis of oxazolidin-2-one chiral auxiliary (3) comparing the selectivity with the auxiliary (1) in alkylation and aldol reactions.

  14. Deracemization of Racemic Amino Acids Using (R)- and (S)-Alanine Racemase Chiral Analogues as Chiral Converters

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Manjeong [Sunchon National Univ., Suncheon (Korea, Republic of); Jeon, So Hee; Lee, Wonjae [Chosun Univ., Gwangju (Korea, Republic of); Kang, Jong Seong [Chungnam National Univ., Daejeon (Korea, Republic of); Kim, Kwan Mook [Ewha Womans Univ., Seoul (Korea, Republic of)

    2014-07-15

    Our findings show that both (R)- and (S)-ARCA can be practical chiral converters for L- and D-amino acids, respectively, in the deracemization of racemic amino acids. The overall stereoselectivities of both chiral converters are generally greater than 90%. In addition, we developed chiral and achiral HPLC methods for the analysis of stereoselectivity determination. This chromatographic method proved much more accurate and convenient at determining both enantiomer and diastereomer purity than did those previously reported. Deracemization is the stereoselective process of converting a racemate into either a pure enantiomer or a mixture in which one enantiomer is present in excess.1 Previous studies have shown that (S)-alanine racemase chiral analogue (ARCA) [(S)-2-hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde], developed as a chiral convertor compound that imitates the function of alanine racemase, plays an essential role in the stereoselective conversion of amino acid. Since (S)-ARCA showed a higher stability with D-amino acids than with L-amino acids, several L-amino acids were preferentially converted to D-amino acids via (S)-ARCA/D-amino acid imine diastereomer formation. For the deracemization process undertaken in this study, we utilized both (R)-ARCA and (S)-ARCA as chiral converters, which were expected to generate L- and D-amino acids, respectively, from the starting racemic mixtures.

  15. Chiral selectivity of amino acid adsorption on chiral surfaces—The case of alanine on Pt

    Energy Technology Data Exchange (ETDEWEB)

    Franke, J.-H.; Kosov, D. S. [Department of Physics, Campus Plaine - CP 231, Université Libre de Bruxelles, 1050 Brussels (Belgium)

    2015-02-07

    We study the binding pattern of the amino acid alanine on the naturally chiral Pt surfaces Pt(531), Pt(321), and Pt(643). These surfaces are all vicinal to the (111) direction but have different local environments of their kink sites and are thus a model for realistic roughened Pt surfaces. Alanine has only a single methyl group attached to its chiral center, which makes the number of possible binding conformations computationally tractable. Additionally, only the amine and carboxyl group are expected to interact strongly with the Pt substrate. On Pt(531), we study the molecule in its pristine as well as its deprotonated form and find that the deprotonated one is more stable by 0.47 eV. Therefore, we study the molecule in its deprotonated form on Pt(321) and Pt(643). As expected, the oxygen and nitrogen atoms of the deprotonated molecule provide a local binding “tripod” and the most stable adsorption configurations optimize the interaction of this “tripod” with undercoordinated surface atoms. However, the interaction of the methyl group plays an important role: it induces significant chiral selectivity of about 60 meV on all surfaces. Hereby, the L-enantiomer adsorbs preferentially to the Pt(321){sup S} and Pt(643){sup S} surfaces, while the D-enantiomer is more stable on Pt(531){sup S}. The binding energies increase with increasing surface density of kink sites, i.e., they are largest for Pt(531){sup S} and smallest for Pt(643){sup S}.

  16. Chiral/ring closed vs. achiral/open chain triazine-based organogelators: induction and amplification of supramolecular chirality in organic gels.

    Science.gov (United States)

    Lascialfari, L; Berti, D; Brandi, A; Cicchi, S; Mannini, M; Pescitelli, G; Procacci, P

    2014-06-07

    The purpose of this study is to compare the gelling behavior of two molecules: a chiral compound and its achiral counterpart. The chiral partner is characterized by a rigid, chiral pyrrolidine nucleus, while the achiral one contains a flexible diethanolamine moiety. The chiral compound is an already known good organogelator, but also the achiral compound shows remarkable gelling properties. Very interestingly, a small fraction of the chiral compound induces chirality and strong CD effects in its aggregates with the achiral one. The observed chirality amplification corresponds to a peculiar sergeant-and-soldier effect. Molecular modelling and CD calculations suggested a model for the supramolecular assembly of hetero-aggregates that fits the experimental data.

  17. Preparation of Two New Diasteromeric Chiral Stationary Phases Based on (+-(18-Crown-6-2,3,11,12-tetracarboxylic Acid and (R- or (S-1-(1-Naphthylethylamine and Chiral Tethering Group Effect on the Chiral Recognition

    Directory of Open Access Journals (Sweden)

    Rajalingam Agneeswari

    2016-08-01

    Full Text Available Two new diastereomeric chiral stationary phases (CSPs based on (+-(18-crown-6-2,3,11,12-tetracarboxylic acid as a chiral tethering group and a Π-basic chiral unit such as (R-1-(1-naphthylethylamine (CSP 1 or (S-1-(1-naphthylethylamine (CSP 2 were prepared. The two CSPs were applied to the enantiomeric separation of N-(3,5-dinitrobenzoyl-1-phenylalkylamines and N-(3,5-dinitrobenzoyl-α-amino acid derivatives using 20% isopropyl alcohol in hexane as a normal mobile phase. To elucidate the effect of the two chiral units on the chiral recognition, the chiral recognition abilities of the two CSPs were compared with each other and with that of a CSP (CSP 3 based on (R-1-(1-naphthylethylamine. From the chromatographic chiral recognition results, (R-1-(1-naphthylethylamine and (+−(18-crown-6-2,3,11,12-tetracarboxylic acid constituting CSP 1 were concluded to show a cooperative (“matched” effect on the chiral recognition while (S-1-(1-naphthylethylamine and (+-(18-crown-6-2,3,11,12-tetracarboxylic acid constituting CSP 2 were concluded to show an uncooperative (“mismatched” effect on the chiral recognition. From these results, it was concluded that (+-(18-crown-6-2,3,11,12-tetracarboxylic acid can be successfully used as a chiral tethering group for the preparation of new CSPs.

  18. Chiral symmetry breakings in supersymmetric QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shinmura, Mamoru; Yamawaki, Koichi (Nagoya Univ. (Japan). Dept. of Physics)

    1984-05-01

    It is argued that spontaneous chiral symmetry breaking in supersymmetric QCD is due to the boson pair condensation instead of the fermion pair condensation in sharp contrast to the ordinary QCD. We further construct a low energy effective Lagrangian for supersymmetric QCD, which realizes the symmetry breaking, SU(N) sub(L) x SU(N) sub(R) x U(1) sub(V) x U(1) sub(X) down to SU(N) sub(V) x U(1) sub(V), in the massless limit. Our Lagrangian has no singular behaviour in the massless limit, supersymmetry being preserved independently of the quark mass m. It is shown that linear masses (instead of quadratic masses) of the pseudo-Nambu-Goldstone bosons are proportional to the quark mass and supersymmetric variants of Dashen's formulae are all saturated by the condensations -- O(m..lambda../sup 2/) and -- O (..lambda../sup 2/) for m -- 0.

  19. Quantum kinetic theory of the chiral anomaly

    Science.gov (United States)

    Sekine, Akihiko; Culcer, Dimitrie; MacDonald, Allan H.

    2017-12-01

    We present a general quantum kinetic theory of low-field magnetotransport in weakly disordered crystals that accounts fully for the interplay between electric-field-induced interband coherence, Bloch-state scattering, and an external magnetic field. The quantum kinetic equation we derive for the Bloch-state density matrix naturally incorporates the momentum-space Berry phase effects whose influence on Bloch-state wave-packet dynamics is normally incorporated into transport theory in an ad hoc manner. The Berry phase correction to the momentum-space density of states in the presence of an external magnetic field implied by semiclassical wave-packet dynamics is captured by our theory as an intrinsic density-matrix response to a magnetic field. We propose a simple and general procedure for expanding the linear response of the Bloch-state density matrix to an electric field in powers of magnetic field. As an illustration, we apply our theory to magnetotransport in Weyl semimetals. We show that the chiral anomaly (positive magnetoconductivity quadratic in magnetic field) that appears when separate Fermi surface pockets surround distinct Weyl points survives only when intervalley scattering is very weak compared to intravalley scattering.

  20. Hadronic Lorentz violation in chiral perturbation theory

    Science.gov (United States)

    Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.

    2017-03-01

    Any possible Lorentz violation in the hadron sector must be tied to Lorentz violation at the underlying quark level. The relationships between the theories at these two levels are studied using chiral perturbation theory. Starting from a two-flavor quark theory that includes dimension-4 Lorentz-violation operators, the effective Lagrangians are derived for both pions and nucleons, with novel terms appearing in both sectors. Since the Lorentz-violation coefficients for nucleons and pions are all related to a single set of underlying quark coefficients, one can compare the sensitivity of different types of experiments. Our analysis shows that atomic physics experiments currently provide constraints on the quark parameters that are stronger by about 10 orders of magnitude than astrophysical experiments with relativistic pions. Alternatively, it is possible to place approximate bounds on pion Lorentz violation using only proton and neutron observations. Under the assumption that the Lorentz-violating operators considered here are the only ones contributing to the relevant observables and taking the currently unknown hadronic low-energy constants to be of natural size, the resulting estimated bounds on four pion parameters are at the 10-23 level, representing improvements of 10 orders of magnitude.

  1. Quantum Dynamics of Skyrmions in Chiral Magnets

    Directory of Open Access Journals (Sweden)

    Christina Psaroudaki

    2017-11-01

    Full Text Available We study the quantum propagation of a Skyrmion in chiral magnetic insulators by generalizing the micromagnetic equations of motion to a finite-temperature path integral formalism, using field theoretic tools. Promoting the center of the Skyrmion to a dynamic quantity, the fluctuations around the Skyrmionic configuration give rise to a time-dependent damping of the Skyrmion motion. From the frequency dependence of the damping kernel, we are able to identify the Skyrmion mass, thus providing a microscopic description of the kinematic properties of Skyrmions. When defects are present or a magnetic trap is applied, the Skyrmion mass acquires a finite value proportional to the effective spin, even at vanishingly small temperature. We demonstrate that a Skyrmion in a confined geometry provided by a magnetic trap behaves as a massive particle owing to its quasi-one-dimensional confinement. An additional quantum mass term is predicted, independent of the effective spin, with an explicit temperature dependence which remains finite even at zero temperature.

  2. The falsification of Chiral Nuclear Forces

    Science.gov (United States)

    Ruiz Arriola, E.; Amaro, J. E.; Navarro Perez, R.

    2017-03-01

    Predictive power in theoretical nuclear physics has been a major concern in the study of nuclear structure and reactions. The Effective Field Theory (EFT) based on chiral expansions provides a model independent hierarchy for many body forces at long distances but their predictive power may be undermined by the regularization scheme dependence induced by the counterterms and encoding the short distances dynamics which seem to dominate the uncertainties. We analyze several examples including zero energy NN scattering or perturbative counterterm-free peripheral scattering where one would expect these methods to work best and unveil relevant systematic discrepancies when a fair comparison to the Granada-2013 NN-database and partial wave analysis (PWA) is undertaken. Work supported by Spanish Ministerio de Economia y Competitividad and European FEDER funds (grant FIS2014-59386-P), the Agencia de Innovacion y Desarrollo de Andalucia (grant No. FQM225), the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0008511 (NUCLEI SciDAC Collaboration)

  3. Chirality and Numbering of Substituted Tropane Alkaloids

    Directory of Open Access Journals (Sweden)

    Philippe Christen

    2011-08-01

    Full Text Available The strict application of IUPAC rules for the numbering of tropane alkaloids is not always applied by authors and there is hence a lot of confusion in the literature. In most cases, the notation of 3, 6/7-disubstituted derivatives has been chosen arbitrarily, based on NMR and MS data, without taking into account the absolute configuration of these two carbons. This paper discusses the problem and the relevance of CD and NMR to determine molecular configurations. We report on the use of 1H-NMR anisochrony (Δd induced by the Mosher’s chiral auxiliary reagents (R-(-- and (S-(+-α-methoxy-α-trifluoromethyl-phenylacetyl chlorides (MTPA-Cl, to determine the absolute configuration of (3R,6R-3α-hydroxy-6b-senecioyloxytropane, a disubstituted tropane alkaloid isolated from the aerial parts of Schizanthus grahamii (Solanaceae. These analytical tools should help future works in correctly assigning the configuration of additional 3, 6/7 disubstituted tropane derivatives.

  4. Chiral heat wave in cold Fermi liquid and modified zero sound

    Science.gov (United States)

    Frenklakh, D.; Gorsky, A.

    2017-08-01

    We discuss kinetic equations involving the anomalous terms responsible for the chiral anomaly. The general chiral heat wave in cold Fermi liquid is described and the modification of the anomalous zero sound at small temperature and vorticity is found.

  5. Lattice modes of the chirally pure and racemic phases of tyrosine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Belyanchikov, M. A. [Moscow Institute of Physics and Technology (Russian Federation); Gorelik, V. S., E-mail: gorelik@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Gorshunov, B. P. [Moscow Institute of Physics and Technology (Russian Federation); Pyatyshev, A. Yu., E-mail: jb-valensia@mail.ru [Bauman Moscow State Technical University (Russian Federation)

    2017-01-15

    High-Q librational modes have been found to be present in the infrared absorption and Raman spectra of chirally pure L-tyrosine. Such modes can serve as terahertz radiation detectors and generators in chirally pure biostructures.

  6. Enantiopure heterobimetallic single-chain magnets from the chiral Ru(III) building block.

    Science.gov (United States)

    Ru, Jing; Gao, Feng; Wu, Tao; Yao, Min-Xia; Li, Yi-Zhi; Zuo, Jing-Lin

    2014-01-21

    A pair of one-dimensional enantiomers based on the versatile chiral dicyanoruthenate(III) building block have been synthesized and they are chiral single-chain magnets with the effective spin-reversal barrier of 28.2 K.

  7. Morphogenesis and Optoelectronic Properties of Supramolecular Assemblies of Chiral Perylene Diimides in a Binary Solvent System.

    Science.gov (United States)

    Shang, Xiaobo; Song, Inho; Ohtsu, Hiroyoshi; Tong, Jiaqi; Zhang, Haoke; Oh, Joon Hak

    2017-07-14

    Chiral supramolecular structures are attracting great attention due to their specific properties and high potential in chiral sensing and separation. Herein, supramolecular assembling behaviors of chiral perylene diimides have been systematically investigated in a mixed solution of tetrahydrofuran and water. They exhibit remarkably different morphologies and chiral aggregation behaviors depending on the mixing ratio of the solvents, i.e., the fraction of water. The morphogenesis and optoelectronic properties of chiral supramolecular structures have been thoroughly studied using a range of experimental and theoretical methods to investigate the morphological effects of chiral supramolecular assemblies on the electrical performances and photogenerated charge-carrier behaviors. In addition, chiral perylene diimides have been discriminated by combining vibrational circular dichroism with theoretical calculations, for the first time. The chiral supramolecular nanostructures developed herein strongly absorb visible spectral region and exhibit high photoresponsivity and detectivity, opening up new opportunities for practical applications in optoelectronics.

  8. Chiral Orientation of Skeletal Muscle Cells Requires Rigid Substrate

    Directory of Open Access Journals (Sweden)

    Ninghao Zhu

    2017-06-01

    Full Text Available Reconstitution of tissue morphology with inherent left–right (LR asymmetry is essential for tissue/organ functions. For skeletal muscle, the largest tissue in mammalian organisms, successful myogenesis requires the regulation of the LR asymmetry to form the appropriate muscle alignment. However, the key factor for reproducing the LR asymmetry of skeletal tissues in a controllable, engineering context remains largely unknown. Recent reports indicate that cell chirality may underlie the LR development in tissue morphogenesis. Here, we report that a rigid substrate is required for the chirality of skeletal muscle cells. By using alternating micropatterned cell-adherent and cell-repellent stripes on a rigid substrate, we found that C2C12 skeletal muscle myoblasts exhibited a unidirectional tilted orientation with respect to the stripe boundary. Importantly, such chiral orientation was reduced when soft substrates were used instead. In addition, we demonstrated the key role of actin stress fibers in the formation of the chiral orientation. This study reveals that a rigid substrate is required for the chiral pattern of myoblasts, paving the way for reconstructing damaged muscle tissue with inherent LR asymmetry in the future.

  9. On the Mechanical Properties of Chiral Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mahnaz Zakeri

    2013-12-01

    Full Text Available Carbon nanotubes (CNTs are specific structures with valuable characteristics. In general, the structure of each nanotube is defined by a unique chiral vector. In this paper, different structures of short single-walled CNTs are simulated and their mechanical properties are determined using finite element method. For this aim, a simple algorithm is presented which is able to model the geometry of single-walled CNTs with any desired structure based on nano-scale continuum mechanics approach. By changing the chiral angle from 0 to 30 degree for constant length to radius ratio, the effect of nanotube chirality on its mechanical properties is evaluated. It is observed that the tensile modulus of CNTs changes between 0.93-1.02 TPa for different structures, and it can be higher for chiral structures than zigzag and armchair ones. Also, for different chiral angles, the bending modulus changes between 0.76-0.82 TPa, while the torsional modulus varies in the range of 0.283-0.301TPa.

  10. The magnetic equation of state in effective chiral models

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, Gabor; Friman, Bengt [Helmholtzzentrum fuer Schwerionenforschung (GSI), 64291 Darmstadt (Germany); Tarnowski, Wojciech [Helmholtzzentrum fuer Schwerionenforschung (GSI), 64291 Darmstadt (Germany); Jagiellonian University, PL-30-059 Cracow (Poland); Redlich, Krzysztof [University of Wroclaw, Faculty of Physics and Astronomy, PL-50-204 Wroclaw (Poland); Helmholtzzentrum fuer Schwerionenforschung (GSI), ExtreMe Matter Institute (EMMI), 64291 Darmstadt (Germany)

    2015-07-01

    The chiral properties of QCD are often studied using effective models like the Quark-Meson model. In these models the gauge sector of QCD is integrated out and the models do not show confinement, but they are significantly easier to deal with. Concerning chiral properties they are constructed to be in the same universality class as QCD, so sufficiently close to the chiral phase transition they have the same universal properties (e.g. critical exponents). A finite current quark mass however breaks chiral symmetry explicitly rendering it an approximate symmetry both in QCD and in effective models. This causes violation of the scaling laws at the chiral phase transition. The measure of the violation in QCD and the effective model is in general different. However the better the model is, the closer the deviations from the scaling should be to the deviations in QCD. In this talk the scaling violations in effective models of QCD are discussed, and the results are compared with lattice data on the magnetic equation of state.

  11. Utilization of Alternate Chirality Enantiomers in Microbial Communities

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    Our previous study of chirality led to interesting findings for some anaerobic extremophiles: the ability to metabolize substrates with alternate chirality enantiomers of amino acids and sugars. We have subsequently found that not just separate microbial species or strains but entire microbial communities have this ability. The functional division within a microbial community on proteo- and sugarlytic links was also reflected in a microbial diet with L-sugars and D-amino acids. Several questions are addressed in this paper. Why and when was this feature developed in a microbial world? Was it a secondary de novo adaptation in a bacterial world? Or is this a piece of genetic information that has been left in modern genomes as an atavism? Is it limited exclusively to prokaryotes, or does this ability also occur in eukaryotes? In this article, we have used a broader approach to study this phenomenon using anaerobic extremophilic strains from our laboratory collection. A series of experiments were performed on physiologically different groups of extremophilic anaerobes (pure and enrichment cultures). The following characteristics were studied: 1) the ability to grow on alternate chirality enantiomers -- L-sugars and D- amino acids; 2) Growth-inhibitory effect of alternate chirality enantiomers; 3) Stickland reaction with alternate chirality amino acids. The results of this research are presented in this paper.

  12. Chiral superfluidity of the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2012-08-15

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T{sub c}chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  13. Capillary electrophoresis of covalently functionalized single-chirality carbon nanotubes.

    Science.gov (United States)

    He, Pingli; Meany, Brendan; Wang, Chunyan; Piao, Yanmei; Kwon, Hyejin; Deng, Shunliu; Wang, YuHuang

    2017-07-01

    We demonstrate the separation of chirality-enriched single-walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high-performance CE. Controlled amounts of negatively charged and positively charged functional groups were attached to the sidewall of chirality-enriched SWCNTs through covalent functionalization using 4-carboxybenzenediazonium tetrafluoroborate or 4-diazo-N,N-diethylaniline tetrafluoroborate, respectively. Surfactant- and pH-dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single-chirality-enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to nonfunctionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single-chirality SWCNTs by functional density was confirmed with UV-Vis-NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality-enriched samples, and show the feasibility of applying CE for high-performance separation of nanomaterials based on differences in surface functional density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chromatographic Studies of Protein-Based Chiral Separations

    Science.gov (United States)

    Bi, Cong; Zheng, Xiwei; Azaria, Shiden; Beeram, Sandya; Li, Zhao; Hage, David S.

    2016-01-01

    The development of separation methods for the analysis and resolution of chiral drugs and solutes has been an area of ongoing interest in pharmaceutical research. The use of proteins as chiral binding agents in high-performance liquid chromatography (HPLC) has been an approach that has received particular attention in such work. This report provides an overview of proteins that have been used as binding agents to create chiral stationary phases (CSPs) and in the use of chromatographic methods to study these materials and protein-based chiral separations. The supports and methods that have been employed to prepare protein-based CSPs will also be discussed and compared. Specific types of CSPs that are considered include those that employ serum transport proteins (e.g., human serum albumin, bovine serum albumin, and alpha1-acid glycoprotein), enzymes (e.g., penicillin G acylase, cellobiohydrolases, and α-chymotrypsin) or other types of proteins (e.g., ovomucoid, antibodies, and avidin or streptavidin). The properties and applications for each type of protein and CSP will also be discussed in terms of their use in chromatography and chiral separations. PMID:28344977

  15. Chirality-sensitive microwave spectroscopy - application to terpene molecules

    Science.gov (United States)

    Schnell, Melanie

    Most molecules of biochemical relevance are chiral. Even though the physical properties of two enantiomers are nearly identical, they might exhibit completely different biochemical effects, such as different odor in the case of carvone. In nature and as products of chemical syntheses, chiral molecules often exist in mixtures with other chiral molecules. The analysis of these complex mixtures to identify the molecular components, to determine which enantiomers are present, and to measure the enantiomeric excesses (ee) is still one of the challenging and very important tasks of analytical chemistry. We recently experimentally demonstrated a new method of differentiating enantiomeric pairs of chiral molecules in the gas phase. It is based on broadband rotational spectroscopy and is a three-wave mixing process that involves a closed cycle of three rotational transitions. The phase of the acquired signal bares the signature of the enantiomer, as it depends upon the product of the transition dipole moments. Furthermore, because the signal amplitude is proportional to the ee, this technique allows not only for determining which enantiomer is in excess, but also by how much. A unique advantage of our technique is that it can also be applied to mixtures of chiral molecules, even when the molecules are very similar. In my lecture, I will introduce the technique and give an update on the recent developments.

  16. Spontaneous chiral symmetry breaking in early molecular networks

    Directory of Open Access Journals (Sweden)

    Markovitch Omer

    2010-05-01

    Full Text Available Abstract Background An important facet of early biological evolution is the selection of chiral enantiomers for molecules such as amino acids and sugars. The origin of this symmetry breaking is a long-standing question in molecular evolution. Previous models addressing this question include particular kinetic properties such as autocatalysis or negative cross catalysis. Results We propose here a more general kinetic formalism for early enantioselection, based on our previously described Graded Autocatalysis Replication Domain (GARD model for prebiotic evolution in molecular assemblies. This model is adapted here to the case of chiral molecules by applying symmetry constraints to mutual molecular recognition within the assembly. The ensuing dynamics shows spontaneous chiral symmetry breaking, with transitions towards stationary compositional states (composomes enriched with one of the two enantiomers for some of the constituent molecule types. Furthermore, one or the other of the two antipodal compositional states of the assembly also shows time-dependent selection. Conclusion It follows that chiral selection may be an emergent consequence of early catalytic molecular networks rather than a prerequisite for the initiation of primeval life processes. Elaborations of this model could help explain the prevalent chiral homogeneity in present-day living cells. Reviewers This article was reviewed by Boris Rubinstein (nominated by Arcady Mushegian, Arcady Mushegian, Meir Lahav (nominated by Yitzhak Pilpel and Sergei Maslov.

  17. Chiral anomaly and anomalous finite-size conductivity in graphene

    Science.gov (United States)

    Shen, Shun-Qing; Li, Chang-An; Niu, Qian

    2017-09-01

    Graphene is a monolayer of carbon atoms packed into a hexagon lattice to host two spin degenerate pairs of massless two-dimensional Dirac fermions with different chirality. It is known that the existence of non-zero electric polarization in reduced momentum space which is associated with a hidden chiral symmetry will lead to the zero-energy flat band of a zigzag nanoribbon and some anomalous transport properties. Here it is proposed that the Adler-Bell-Jackiw chiral anomaly or non-conservation of chiral charges of Dirac fermions at different valleys can be realized in a confined ribbon of finite width, even in the absence of a magnetic field. In the laterally diffusive regime, the finite-size correction to conductivity is always positive and is inversely proportional to the square of the lateral dimension W, which is different from the finite-size correction inversely proportional to W from the boundary modes. This anomalous finite-size conductivity reveals the signature of the chiral anomaly in graphene, and it is measurable experimentally. This finding provides an alternative platform to explore the purely quantum mechanical effect in graphene.

  18. Molecular Basis for Chiral Selection in RNA Aminoacylation

    Directory of Open Access Journals (Sweden)

    Koji Tamura

    2011-07-01

    Full Text Available The chiral-selective aminoacylation of an RNA minihelix is a potential progenitor to modern tRNA-based protein synthesis using l-amino acids. This article describes the molecular basis for this chiral selection. The extended double helical form of an RNA minihelix with a CCA triplet (acceptor of an amino acid, an aminoacyl phosphate donor nucleotide (mimic of aminoacyl-AMP, and a bridging nucleotide facilitates chiral-selective aminoacylation. Energetically, the reaction is characterized by a downhill reaction wherein an amino acid migrates from a high-energy acyl phosphate linkage to a lower-energy carboxyl ester linkage. The reaction occurs under the restriction that the nucleophilic attack of O, from 3′-OH in the terminal CCA, to C, from C=O in the acyl phosphate linkage, must occur at a Bürgi-Dunitz angle, which is defined as the O–C=O angle of approximately 105°. The extended double helical form results in a steric hindrance at the side chain of the amino acid leading to chiral preference combined with cation coordinations in the amino acid and the phosphate oxygen. Such a system could have developed into the protein biosynthetic system with an exclusively chiral component (l-amino acids via (proto ribosomes.

  19. Synthesis and applications of novel bis(ammonium) chiral ionic liquids derived from isomannide

    DEFF Research Database (Denmark)

    Kumar, Vineet; Olsen, Carl Erik; Schäffer, Susan J.

    2007-01-01

    Carbohydrate-based novel bis(ammonium) chiral ionic liquids have been synthesized by following a straightforward protocol using isomannide as the substrate. Their applications in chiral discrimination and optical resolution of racemates have been established.......Carbohydrate-based novel bis(ammonium) chiral ionic liquids have been synthesized by following a straightforward protocol using isomannide as the substrate. Their applications in chiral discrimination and optical resolution of racemates have been established....

  20. Nonperturbative expression for the transmission through a leaky chiral edge mode

    OpenAIRE

    Kim, Kun Woo; Klich, Israel; Refael, Gil

    2014-01-01

    Chiral edge modes of topological insulators and Hall states exhibit nontrivial behavior of conductance in the presence of impurities or additional channels. We present a simple formula for the conductance through a chiral edge mode coupled to a disordered bulk. For a given coupling matrix between the chiral mode and bulk modes, and a Green's function matrix of bulk modes in real space, the renormalized Green's function of the chiral mode is expressed in closed form as a ratio of determinants....