WorldWideScience

Sample records for su2 algebra generators

  1. Representations of the deformed U(su(2)) and U(osp(1,2)) algebras

    CERN Document Server

    Bonatsos, Dennis; Kolokotronis, P; Lenis, D; Bonatsos, Dennis

    1996-01-01

    The polynomial deformations of the Witten extensions of the U(su(2)) and U(osp(1,2)) algebras are three generator algebras with normal ordering, admitting a two generator subalgebra. The modules and the representations of these algebras are based on the construction of Verma modules, which are quotient modules, generated by ideals of the original algebra. This construction unifies a large number of the known algebras under the same scheme. The finite dimensional representations show new features such as the multiplicity of representations of the same dimensionality, or the existence of finite dimensional representations only for some dimensions.

  2. A nonlinear deformed su(2) algebra with a two-colour quasitriangular Hopf structure

    CERN Document Server

    Bonatsos, Dennis; Kolokotronis, P; Ludu, A; Quesne, C

    1996-01-01

    Nonlinear deformations of the enveloping algebra of su(2), involving two arbitrary functions of J_0 and generalizing the Witten algebra, were introduced some time ago by Delbecq and Quesne. In the present paper, the problem of endowing some of them with a Hopf algebraic structure is addressed by studying in detail a specific example, referred to as ${\\cal A}^+_q(1)$. This algebra is shown to possess two series of (N+1)-dimensional unitary irreducible representations, where N=0, 1, 2, .... To allow the coupling of any two such representations, a generalization of the standard Hopf axioms is proposed by proceeding in two steps. In the first one, a variant and extension of the deforming functional technique is introduced: variant because a map between two deformed algebras, su_q(2) and ${\\cal A}^+_q(1)$, is considered instead of a map between a Lie algebra and a deformed one, and extension because use is made of a two-valued functional, whose inverse is singular. As a result, the Hopf structure of su_q(2) is car...

  3. Dynamical Generation of the Gauged SU(2) Linear Sigma Model

    Science.gov (United States)

    Delbourgo, R.; Scadron, M. D.

    The fermion and meson sectors of the quark-level SU(2) linear sigma model are dynamically generated from a meson-quark Lagrangian, with the quark (q) and meson (σ, π) fields all treated as elementary, having neither bare masses nor expectation values. In the chiral limit, the masses are predicted to be mq = fπg, mπ = 0, mσ = 2mq, and we also find that the quark-meson coupling is g =2π /√ {Nc}, the three-meson coupling is g' =mσ 2 /2fπ =2gmq and the four-meson coupling is λ = 2g2 = g‧/fπ, where fπ ≃ 90 MeV is the pion decay constant and Nc = 3 is the color number. By gauging this model one can generate the couplings to the vector mesons ρ and A1, including the quark-vector coupling constant gρ = 2π, gρππ, gA1ρπ and the masses mρ 700 MeV, mA1˜= √ {3} mρ ; of course the vector and axial currents remain conserved throughout.

  4. Semiprojectivity of universal -algebras generated by algebraic elements

    DEFF Research Database (Denmark)

    Shulman, Tatiana

    2012-01-01

    Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given....

  5. Generators for finite depth subfactor planar algebras

    Indian Academy of Sciences (India)

    [2] Jones V F R, Planar algebras I, New Zealand J. Math., to appear, e-print arXiv: math.QA/9909027. [3] Kodiyalam V and Tupurani S, Universal skein theory for finite depth subfactor planar algebras, (English) Zbl 1252.46064, Quantum Topol. 2(2) (2011) 157–172. COMMUNICATING EDITOR: B V Rajarama Bhat.

  6. Poincare Algebra Extension with Tensor Generator

    OpenAIRE

    Soroka, Dmitrij V.; Soroka, Vyacheslav A.

    2005-01-01

    A tensor extension of the Poincar\\'e algebra is proposed for the arbitrary dimensions. Casimir operators of the extension are constructed. A possible supersymmetric generalization of this extension is also found in the dimensions $D=2,3,4$.

  7. Varieties Generated by Standard BL-algebras

    Czech Academy of Sciences Publication Activity Database

    Haniková, Zuzana

    2014-01-01

    Roč. 31, č. 1 (2014), s. 15-33 ISSN 0167-8094 R&D Projects: GA ČR GAP202/10/1826 Institutional research plan: CEZ:AV0Z10300504 Institutional support: RVO:67985807 Keywords : substructural logic * fuzzy logic * BL * standard BL-algebra * variety of algebras Subject RIV: BA - General Mathematics Impact factor: 0.621, year: 2014

  8. Programs for generating Clebsch-Gordan coefficients of SU(3) in SU(2) and SO(3) bases

    Science.gov (United States)

    Bahri, C.; Rowe, D. J.; Draayer, J. P.

    2004-05-01

    Computer codes are developed to calculate Clebsch-Gordan coefficients of SU(3) in both SU(2)- and SO(3)-coupled bases. The efficiency of this code derives from the use of vector coherent state theory to evaluate the required coefficients directly without recursion relations. The approach extends to other compact semi-simple Lie groups. The codes are given in subroutine form so that users can incorporate the codes into other programs. Program summaryTitle of program: SU3CGVCS Catalogue identifier: ADTN Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTN Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: Persons requesting the program must sign the standard CPC non-profit use license Computers for which the program is designed and others on which it is operable: SGI Origin 2000, HP Apollo 9000, Sun, IBM SP, Pentium Operating systems under which the program has been tested: IRIX 6.5, HP UX 10.01, SunOS, AIX, Linux Programming language used: FORTRAN 77 Memory required to execute with typical data: On the HP system, it requires about 732 KBytes. Disk space used for output: 2100+2460 bytes No. of bits in a word: 32 bit integer and 64 bit floating point numbers. No. of processors used: 1 Has the code been vectorized: No No. of bytes in distributed program, including test data, etc.: 26 309 No. of lines in distributed program, including test data, etc.: 3969 Distribution format: tar gzip file Nature of physical problem: The group SU(3) and its Lie algebra su(3) have important applications, for example, in elementary particle physics, nuclear physics, and quantum optics [1-3]. The code presented is particularly relevant for the last two fields. Clebsch-Gordan (CG) coefficients are required whenever the symmetries of many-body systems are used for the evaluation of matrix elements of tensor operators. Moreover, the construction of CG coefficients for SU(3) serves as a nontrivial prototype for larger compact

  9. Towards classical spectrum generating algebras for f-deformations

    Energy Technology Data Exchange (ETDEWEB)

    Kullock, Ricardo, E-mail: ricardokullock@gmail.com [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); Universidade do Estado do Rio de Janeiro, Instituto de Aplicação Fernando Rodrigues da Silveira, Departamento de Ciências da Natureza, Rua Santa Alexandrina 288, 20261-232, Rio de Janeiro, RJ (Brazil); Latini, Danilo [Department of Mathematics and Physics and INFN, Roma Tre University, Via della Vasca Navale 84, I-00146 Rome (Italy)

    2016-01-28

    In this paper we revise the classical analog of f-oscillators, a generalization of q-oscillators given in Man'ko et al. (1997) [8], in the framework of classical spectrum generating algebras (SGA) introduced in Kuru and Negro (2008) [9]. We write down the deformed Poisson algebra characterizing the entire family of non-linear oscillators and construct its general solution algebraically. The latter, covering the full range of f-deformations, shows an energy dependence both in the amplitude and the frequency of the motion. - Highlights: • We study the classical analog of f-deformed oscillators. • We use the classical spectrum generating algebra. • The deformed trajectories have energy dependent frequencies. • The method leads to exact results for any acceptable f-deformation.

  10. IDEALS GENERATED BY LINEAR FORMS AND SYMMETRIC ALGEBRAS

    Directory of Open Access Journals (Sweden)

    Gaetana Restuccia

    2016-01-01

    Full Text Available We consider ideals generated by linear forms in the variables X1 : : : ;Xn in the polynomial ring R[X1; : : : ;Xn], being R a commutative, Noetherian ring with identity. We investigate when a sequence a1; a2; : : : ; am of linear forms is an ssequence, in order to compute algebraic invariants of the symmetric algebra of the ideal I = (a1; a2; : : : ; am.

  11. Algebra

    CERN Document Server

    Tabak, John

    2004-01-01

    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  12. Algebra

    CERN Document Server

    Flanders, Harley

    1975-01-01

    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  13. Algebra

    CERN Document Server

    Sepanski, Mark R

    2010-01-01

    Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems

  14. An algebra for spatio-temporal information generation

    Science.gov (United States)

    Pebesma, Edzer; Scheider, Simon; Gräler, Benedikt; Stasch, Christoph; Hinz, Matthias

    2016-04-01

    When we accept the premises of James Frew's laws of metadata (Frew's first law: scientists don't write metadata; Frew's second law: any scientist can be forced to write bad metadata), but also assume that scientists try to maximise the impact of their research findings, can we develop our information infrastructures such that useful metadata is generated automatically? Currently, sharing of data and software to completely reproduce research findings is becoming standard, e.g. in the Journal of Statistical Software [1]. The reproduction (e.g. R) scripts however convey correct syntax, but still limited semantics. We propose [2] a new, platform-neutral way to algebraically describe how data is generated, e.g. by observation, and how data is derived, e.g. by processing observations. It starts with forming functions composed of four reference system types (space, time, quality, entity), which express for instance continuity of objects over time, and continuity of fields over space and time. Data, which is discrete by definition, is generated by evaluating such functions at discrete space and time instances, or by evaluating a convolution (aggregation) over them. Derived data is obtained by inputting data to data derivation functions, which for instance interpolate, estimate, aggregate, or convert fields into objects and vice versa. As opposed to the traditional when, where and what semantics of data sets, our algebra focuses on describing how a data set was generated. We argue that it can be used to discover data sets that were derived from a particular source x, or derived by a particular procedure y. It may also form the basis for inferring meaningfulness of derivation procedures [3]. Current research focuses on automatically generating provenance documentation from R scripts. [1] http://www.jstatsoft.org/ (open access) [2] http://www.meaningfulspatialstatistics.org has the full paper (in review) [3] Stasch, C., S. Scheider, E. Pebesma, W. Kuhn, 2014. Meaningful

  15. Time-reversal-based SU(2) x Sn scalar invariants as (Lie Algebraic) group measures: a structured overview of generalised democratic-recoupled, uniform non-Abelian [AX]n NMR spin systems, as abstract [Formula: see text] chain networks.

    Science.gov (United States)

    Temme, F P

    2004-03-01

    The physics of dual group scalar invariants (SIs) as (Lie algebraic) group measures (L-GMs) and its significance to non-Abelian NMR spin systems motivates this overview of uniform general-2n [AX](2n) spin evolution, which represents an extensive addendum to Corio's earlier (essentially restricted) view of Abelian spin system SU(2)-based SI-cardinalities. The [Formula: see text] values in [J. Magn. Reson., 134 (1998) 131] arise from strictly linear recoupled time-reversal invariance (TRI) models. In contrast, here we discuss the physical significance of an alternative polyhedral combinatorics approach to democratic recoupling (DR), a property inherent in both the TRI and statistical sampling. Recognition of spin ensemble SIs as being L-GMs over isomorphic algebras is invaluable in many DR-based NMR problems. Various [AX]n model spin systems, including the [AX]3 bis odd-odd parity spin system, are examined as direct applications of these L-GM- and combinatorial-based SI ideas. Hence in place of /SI/=15 (implied by Corio's [Formula: see text] approach), the bis 3-fold spin system cardinality is seen now as constrained to a single invariant on an isomorphic product algebra under L-GMs, in accord with the subspectral analysis of Jones et al. [Canad. J. Chem., 43 (1965) 683]. The group projective ideas cited here for DR (as cf. to graph theoretic views) apply to highly degenerate non-Abelian problems. Over dual tensorial bases, they define models of spin dynamical evolution whose (SR) quasiparticle superboson carrier (sub)spaces are characterised by SIs acting as explicit auxiliary labels [Physica, A198 (1993) 245; J. Math. Chem., 31 (2002) 281]. A deeper [Formula: see text] network-based view of spin-alone space developed in Balasubramanian's work [J. Chem. Phys., 78 (1983) 6358] is especially important, (e.g.) in the study of spin waves [J. Math. Chem., 31 (2002) 363]. Beyond the specific NMR SIs derived here, there are DR applications where a sporadic, still higher, 2

  16. Classical spectrum generating algebra of the Kepler–Coulomb system and action-angle variables

    Energy Technology Data Exchange (ETDEWEB)

    Kuru, Ş., E-mail: kuru@science.ankara.edu.tr [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47071 Valladolid (Spain)

    2012-01-09

    The classical spectrum generating algebra for the one-dimensional Kepler–Coulomb system is computed and a set of two corresponding constants of motion depending explicitly on time is obtained. Such constants supply the solution to the motion in an algebraic way. The connection of the spectrum generating algebra and the action-angle variables of the system is also shown. -- Highlights: ► The spectrum generating algebra for classical (and quantum) 1D Kepler–Coulomb problem is constructed. ► It allows to find constants of motion depending explicitly on time. ► It leads to an algebraic solution of the motion. ► This algebra is related to the action-angle variables of the classical system.

  17. Algebraic partial Boolean algebras

    CERN Document Server

    Smith, D

    2003-01-01

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial...

  18. Non Abelian Sugawara construction and the q-deformed N=2 superconformal algebra

    Energy Technology Data Exchange (ETDEWEB)

    Batista, E.; Gomes, J.F.; Lautenschleguer, I.J.

    1996-03-01

    The construction of a q-deformed N=2 superconformal algebra is proposed in terms of level 1 current of U{sub q}(su(2)) quantum affine Lie algebra and a single real Fermi field. In particular, it suggests the expression for the q-deformed Energy-Momentum tensor in the Sugawara form. Its constituents generate two isomorphic quadratic algebraic structures. The generalization to U{sub q}(su(N+1)) is also proposed. (author). 17 refs.

  19. The algebra of supertraces for 2+1 super de Sitter gravity

    Science.gov (United States)

    Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.

    1993-01-01

    The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.

  20. The Switching Generator: New Clock-Controlled Generator with Resistance against the Algebraic and Side Channel Attacks

    Directory of Open Access Journals (Sweden)

    Jun Choi

    2015-06-01

    Full Text Available Since Advanced Encryption Standard (AES in stream modes, such as counter (CTR, output feedback (OFB and cipher feedback (CFB, can meet most industrial requirements, the range of applications for dedicated stream ciphers is decreasing. There are many attack results using algebraic properties and side channel information against stream ciphers for hardware applications. Al-Hinai et al. presented an algebraic attack approach to a family of irregularly clock-controlled linear feedback shift register systems: the stop and go generator, self-decimated generator and alternating step generator. Other clock-controlled systems, such as shrinking and cascade generators, are indeed vulnerable against side channel attacks. To overcome these threats, new clock-controlled systems were presented, e.g., the generalized alternating step generator, cascade jump-controlled generator and mutual clock-controlled generator. However, the algebraic attack could be applied directly on these new systems. In this paper, we propose a new clock-controlled generator: the switching generator, which has resistance to algebraic and side channel attacks. This generator also preserves both security properties and the efficiency of existing clock-controlled generators.

  1. Genetic algorithms in teaching artificial intelligence (automated generation of specific algebras)

    Science.gov (United States)

    Habiballa, Hashim; Jendryscik, Radek

    2017-11-01

    The problem of teaching essential Artificial Intelligence (AI) methods is an important task for an educator in the branch of soft-computing. The key focus is often given to proper understanding of the principle of AI methods in two essential points - why we use soft-computing methods at all and how we apply these methods to generate reasonable results in sensible time. We present one interesting problem solved in the non-educational research concerning automated generation of specific algebras in the huge search space. We emphasize above mentioned points as an educational case study of an interesting problem in automated generation of specific algebras.

  2. On Cohen-Macaulayness of Algebras Generated by Generalized Power Sums. With an appendix by Misha Feigin

    Science.gov (United States)

    Etingof, Pavel; Rains, Eric

    2016-10-01

    Generalized power sums are linear combinations of ith powers of coordinates. We consider subalgebras of the polynomial algebra generated by generalized power sums, and study when such algebras are Cohen-Macaulay. It turns out that the Cohen-Macaulay property of such algebras is rare, and tends to be related to quantum integrability and representation theory of Cherednik algebras. Using representation theoretic results and deformation theory, we establish Cohen-Macaulayness of the algebra of q, t-deformed power sums defined by Sergeev and Veselov, and of some generalizations of this algebra, proving a conjecture of Brookner, Corwin, Etingof, and Sam. We also apply representation-theoretic techniques to studying m-quasi-invariants of deformed Calogero-Moser systems. In an appendix to this paper, M. Feigin uses representation theory of Cherednik algebras to compute Hilbert series for such quasi-invariants, and show that in the case of one light particle, the ring of quasi-invariants is Gorenstein.

  3. Entangled SU(2) and SU(1,1) coherent states

    OpenAIRE

    Wang, Xiao-Guang; Sanders, Barry C.; Pan, Shao-Hua

    2000-01-01

    Entangled SU(2) and SU(1,1) coherent states are developed as superpositions of multiparticle SU(2) and SU(1,1) coherent states. In certain cases, these are coherent states with respect to generalized su(2) and su(1,1) generators, and multiparticle parity states arise as a special case. As a special example of entangled SU(2) coherent states, entangled binomial states are introduced and these entangled binomial states enable the contraction from entangled SU(2) coherent states to entangled har...

  4. Dynamical Equations, Invariants and Spectrum Generating Algebras of Mechanical Systems with Position-Dependent Mass

    Directory of Open Access Journals (Sweden)

    Sara Cruz y Cruz

    2013-01-01

    Full Text Available We analyze the dynamical equations obeyed by a classical system with position-dependent mass. It is shown that there is a non-conservative force quadratic in the velocity associated to the variable mass. We construct the Lagrangian and the Hamiltonian for this system and find the modifications required in the Euler-Lagrange and Hamilton's equations to reproduce the appropriate Newton's dynamical law. Since the Hamiltonian is not time invariant, we get a constant of motion suited to write the dynamical equations in the form of the Hamilton's ones. The time-dependent first integrals of motion are then obtained from the factorization of such a constant. A canonical transformation is found to map the variable mass equations to those of a constant mass. As particular cases, we recover some recent results for which the dependence of the mass on the position was already unnoticed, and find new solvable potentials of the Pöschl-Teller form which seem to be new. The latter are associated to either the su(1,1 or the su(2 Lie algebras depending on the sign of the Hamiltonian.

  5. Generation and Identification of Ordinary Differential Equations of Maximal Symmetry Algebra

    Directory of Open Access Journals (Sweden)

    J. C. Ndogmo

    2016-01-01

    Full Text Available An effective method for generating linear ordinary differential equations of maximal symmetry in their most general form is found, and an explicit expression for the point transformation reducing the equation to its canonical form is obtained. New expressions for the general solution are also found, as well as several identification and other results and a direct proof of the fact that a linear ordinary differential equation is iterative if and only if it is reducible to the canonical form by a point transformation. New classes of solvable equations parameterized by an arbitrary function are also found, together with simple algebraic expressions for the corresponding general solution.

  6. Deformed Twistors and Higher Spin Conformal (Super-)Algebras in Four Dimensions

    CERN Document Server

    Govil, Karan

    2015-01-01

    Massless conformal scalar field in d=4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2,2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2,2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS_5. The higher spin (HS) algebra of Fradkin-Vasiliev type in $AdS_5$ is simply the enveloping algebra of SU(2,2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS_5. Fu...

  7. The Contributions of Working Memory and Executive Functioning to Problem Representation and Solution Generation in Algebraic Word Problems

    Science.gov (United States)

    Lee, Kerry; Ng, Ee Lynn; Ng, Swee Fong

    2009-01-01

    Solving algebraic word problems involves multiple cognitive phases. The authors used a multitask approach to examine the extent to which working memory and executive functioning are associated with generating problem models and producing solutions. They tested 255 11-year-olds on working memory (Counting Recall, Letter Memory, and Keep Track),…

  8. Algebra V homological algebra

    CERN Document Server

    Shafarevich, I

    1994-01-01

    This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.

  9. Basic algebra

    CERN Document Server

    Jacobson, Nathan

    2009-01-01

    A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L

  10. From Special Relativity to embedded generators in Cartan subalgebras of rank-4 spin algebras

    CERN Document Server

    Leon, Zen-chen

    2016-01-01

    Starting from our revisit to Special Relativity here, we provide a reliable characterization of the entire 4-dimensional fundamental structures in our reality where the frame of discrete tangent space of $F^{1,3}$ is quantized to massless, zero-momentum particles distributing on a 4-dimensional regular base $\\{\\mathbb{N}\\cdot c_\\alpha\\}$ with metric $B(c_\\alpha,c_\\beta)=\\delta_{\\alpha\\beta}=\\text{diag}(+,+,+,+)$, determining the constant $c$ locally, as well as instant characterizations on all particles moving along the proper time of $\\tau\\in\\mathbb{N}$. Together with $\\phi_\\text{IV}$ on 1-dimensional space $\\{\\mathbb{N}\\cdot c_4\\}$ of $B(c_\\alpha,c_4)=0$, the quantized particles of tangent frame are split anti-symmetrically from roots $\\gamma_{\\alpha4}$ in a rank-4 Lie algebra with exactly $c_\\alpha$ the generators of its Cartan subalgebra. The same as the combined frame-Higgs valued in $\\gamma_{\\alpha4}$, every massive particles are related to some split frame and Higgs to obtain its unique 3-velocity, 4-v...

  11. The planar algebra of a semisimple and cosemisimple Hopf algebra

    Indian Academy of Sciences (India)

    To a semisimple and cosemisimple Hopf algebra over an algebraically closed field, we associate a planar algebra defined by generators and relations and show that it is a connected, irreducible, spherical, non-degenerate planar algebra with non-zero modulus and of depth two. This association is shown to yield a bijection ...

  12. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  13. An Improved Algorithm for Generating Database Transactions from Relational Algebra Specifications

    Directory of Open Access Journals (Sweden)

    Daniel J. Dougherty

    2010-03-01

    Full Text Available Alloy is a lightweight modeling formalism based on relational algebra. In prior work with Fisler, Giannakopoulos, Krishnamurthi, and Yoo, we have presented a tool, Alchemy, that compiles Alloy specifications into implementations that execute against persistent databases. The foundation of Alchemy is an algorithm for rewriting relational algebra formulas into code for database transactions. In this paper we report on recent progress in improving the robustness and efficiency of this transformation.

  14. Generation and Evaluation of Business Continuity Processes using Algebraic Graph Transformation and the mCRL2 Process Algebra

    OpenAIRE

    Brandt, C.; Hermann, F; Groote, JF Jan Friso

    2011-01-01

    Critical business processes can fail. Therefore, continuity processes are needed as back-up solutions. Today, those continuity processes are set up and maintained manually. They are mostly based on best practices that focus on specific continuity scenarios, Nevertheless, failures can occur in new and unforeseen combinations. As a consequence, a given business continuity plan needs to handle such situations as well. For this purpose, we present a technique for the generation and validation of ...

  15. Brauer algebras of type B

    NARCIS (Netherlands)

    Cohen, A.M.; Liu, S.

    2015-01-01

    For each n ≥ 1, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular

  16. Computer algebra and operators

    Science.gov (United States)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  17. Closed form of the Baker-Campbell-Hausdorff formula for the generators of semisimple complex Lie algebras

    Energy Technology Data Exchange (ETDEWEB)

    Matone, Marco [Universita di Padova, Dipartimento di Fisica e Astronomia ' ' G. Galilei' ' , Padua (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padua (Italy)

    2016-11-15

    Recently it has been introduced an algorithm for the Baker-Campbell-Hausdorff (BCH) formula, which extends the Van-Brunt and Visser recent results, leading to new closed forms of BCH formula. More recently, it has been shown that there are 13 types of such commutator algebras. We show, by providing the explicit solutions, that these include the generators of the semisimple complex Lie algebras. More precisely, for any pair, X, Y of the Cartan-Weyl basis, we find W, linear combination of X, Y, such that exp(X) exp(Y) = exp(W). The derivation of such closed forms follows, in part, by using the above mentioned recent results. The complete derivation is provided by considering the structure of the root system. Furthermore, if X, Y, and Z are three generators of the Cartan-Weyl basis, we find, for a wide class of cases, W, a linear combination of X, Y and Z, such that exp(X) exp(Y) exp(Z) = exp(W). It turns out that the relevant commutator algebras are type 1c-i, type 4 and type 5. A key result concerns an iterative application of the algorithm leading to relevant extensions of the cases admitting closed forms of the BCH formula. Here we provide the main steps of such an iteration that will be developed in a forthcoming paper. (orig.)

  18. Generalized Poincare algebras, Hopf algebras and {kappa}-Minkowski spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Kovacevic, D., E-mail: domagoj.kovacevic@fer.hr [Faculty of Electrical Engineering and Computing, Unska 3, HR-10000 Zagreb (Croatia); Meljanac, S., E-mail: meljanac@irb.hr [Rudjer Boskovic Institute, Bijenicka c. 54, HR-10002 Zagreb (Croatia); Pachol, A., E-mail: pachol@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik (Iceland); Strajn, R., E-mail: rina.strajn@gmail.com [Rudjer Boskovic Institute, Bijenicka c. 54, HR-10002 Zagreb (Croatia)

    2012-05-01

    We propose a generalized description for the {kappa}-Poincare-Hopf algebra as a symmetry quantum group of underlying {kappa}-Minkowski spacetime. We investigate all the possible implementations of (deformed) Lorentz algebras which are compatible with the given choice of {kappa}-Minkowski algebra realization. For the given realization of {kappa}-Minkowski spacetime there is a unique {kappa}-Poincare-Hopf algebra with undeformed Lorentz algebra. We have constructed a three-parameter family of deformed Lorentz generators with {kappa}-Poincare algebras which are related to {kappa}-Poincare-Hopf algebra with undeformed Lorentz algebra. Known bases of {kappa}-Poincare-Hopf algebra are obtained as special cases. Also deformation of igl(4) Hopf algebra compatible with the {kappa}-Minkowski spacetime is presented. Some physical applications are briefly discussed.

  19. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  20. Crossed Products and MF algebras

    OpenAIRE

    Li, Weihua; Orfanos, Stefanos

    2013-01-01

    We prove that the crossed product AxG of a unital finitely generated MF algebra A by a discrete finitely generated amenable residually finite group G is an MF algebra, provided that the action is almost periodic. This generalizes a result of Hadwin and Shen. We also construct two examples of crossed product C*-algebras whose BDF Ext semigroups are not groups.

  1. Chiral algebras

    CERN Document Server

    Beilinson, Alexander

    2004-01-01

    Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the ch

  2. A Note on Some Uniform Algebra Generated by Smooth Functions in the Plane

    Directory of Open Access Journals (Sweden)

    Raymond Mortini

    2012-01-01

    Full Text Available We determine, via classroom proofs, the maximal ideal space, the Bass stable rank as well as the topological and dense stable rank of the uniform closure of all complex-valued functions continuously differentiable on neighborhoods of a compact planar set and holomorphic in the interior ∘ of . In this spirit, we also give elementary approaches to the calculation of these stable ranks for some classical function algebras on .

  3. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach

    Directory of Open Access Journals (Sweden)

    Zhaoyuan Yu

    2015-12-01

    Full Text Available Passive infrared (PIR motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.

  4. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach.

    Science.gov (United States)

    Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian

    2015-12-30

    Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.

  5. Lie algebras and applications

    CERN Document Server

    Iachello, Francesco

    2015-01-01

    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  6. Monomial algebras

    CERN Document Server

    Villarreal, Rafael

    2015-01-01

    The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

  7. SU(2|2) supersymmetric mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Evgeny [Joint Institute for Nuclear Research,Dubna, Moscow Region, 141980 (Russian Federation); Lechtenfeld, Olaf [Institut für Theoretische Physik and Riemann Center for Geometry and Physics,Leibniz Universität Hannover,Appelstraße 2, 30167 Hannover (Germany); Sidorov, Stepan [Joint Institute for Nuclear Research,Dubna, Moscow Region, 141980 (Russian Federation)

    2016-11-07

    We introduce a new kind of non-relativistic N= 8 supersymmetric mechanics, associated with worldline realizations of the supergroup SU(2|2) treated as a deformation of flat N= 8, d=1 supersymmetry. Various worldline SU(2|2) superspaces are constructed as coset manifolds of this supergroup, and the corresponding superfield techniques are developed. For the off-shell SU(2|2) multiplets (3,8,5), (4,8,4) and (5,8,3), we construct and analyze the most general superfield and component actions. Common features are mass oscillator-type terms proportional to the deformation parameter and a trigonometric realization of the superconformal group OSp(4{sup ∗}|4) in the conformal cases. For the simplest (5,8,3) model the quantization is performed.

  8. Intertwining algebras of quantum superintegrable systems on the hyperboloid

    Energy Technology Data Exchange (ETDEWEB)

    Calzada, J A [Departamento de Matematica Aplicada, Escuela Superior de Ingenieros Industriales, Universidad de Valladolid, 47011 Valladolid (Spain); Kuru, S [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J; Olmo, M A del [Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain)], E-mail: juacal@eis.uva.es, E-mail: kuru@science.ankara.edu.tr, E-mail: jnegro@fta.uva.es, E-mail: olmo@fta.uva.es

    2008-08-15

    A class of quantum superintegrable Hamiltonians defined on a two-dimensional hyperboloid is considered together with a set of intertwining operators connecting all of them. It is shown that such intertwining operators close a su(2; 1) Lie algebra and determine the Hamiltonians through the Casimir operators. The physical states are characterized as unitary representations of su(2; 1)

  9. Modern algebra

    CERN Document Server

    Warner, Seth

    1990-01-01

    Standard text provides an exceptionally comprehensive treatment of every aspect of modern algebra. Explores algebraic structures, rings and fields, vector spaces, polynomials, linear operators, much more. Over 1,300 exercises. 1965 edition.

  10. Boolean algebra

    CERN Document Server

    Goodstein, R L

    2007-01-01

    This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.

  11. Iterant Algebra

    Directory of Open Access Journals (Sweden)

    Louis H. Kauffman

    2017-07-01

    Full Text Available We give an exposition of iterant algebra, a generalization of matrix algebra that is motivated by the structure of measurement for discrete processes. We show how Clifford algebras and matrix algebras arise naturally from iterants, and we then use this point of view to discuss the Schrödinger and Dirac equations, Majorana Fermions, representations of the braid group and the framed braids in relation to the structure of the Standard Model for physics.

  12. Infrared behaviors of SU(2 gauge theory

    Directory of Open Access Journals (Sweden)

    Tuominen Kimmo

    2017-01-01

    Full Text Available We will discuss some recent results in the determination of the location of the conformal window in SU(2 gauge theory with Nf fermions in the fundamental representation of the gauge group. In particular, we will demonstrate that the long distance behavior of the continuum theory with Nf = 6 is governed by an infrared stable fixed point.

  13. Abstract algebra structure and application

    CERN Document Server

    Finston, David R

    2014-01-01

    This text seeks to generate interest in abstract algebra by introducing each new structure and topic via a real-world application. The down-to-earth presentation is accessible to a readership with no prior knowledge of abstract algebra. Students are led to algebraic concepts and questions in a natural way through their everyday experiences. Applications include: Identification numbers and modular arithmetic (linear) error-correcting codes, including cyclic codes ruler and compass constructions cryptography symmetry of patterns in the real plane Abstract Algebra: Structure and Application is suitable as a text for a first course on abstract algebra whose main purpose is to generate interest in the subject, or as a supplementary text for more advanced courses. The material paves the way to subsequent courses that further develop the theory of abstract algebra and will appeal to students of mathematics, mathematics education, computer science, and engineering interested in applications of algebraic concepts.

  14. A Differential-Algebraic Model for the Once-Through Steam Generator of MHTGR-Based Multimodular Nuclear Plants

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2015-01-01

    Full Text Available Small modular reactors (SMRs are those fission reactors whose electrical output power is no more than 300 MWe. SMRs usually have the inherent safety feature that can be applicable to power plants of any desired power rating by applying the multimodular operation scheme. Due to its strong inherent safety feature, the modular high temperature gas-cooled reactor (MHTGR, which uses helium as coolant and graphite as moderator and structural material, is a typical SMR for building the next generation of nuclear plants (NGNPs. The once-through steam generator (OTSG is the basis of realizing the multimodular scheme, and modeling of the OTSG is meaningful to study the dynamic behavior of the multimodular plants and to design the operation and control strategy. In this paper, based upon the conservation laws of mass, energy, and momentum, a new differential-algebraic model for the OTSGs of the MHTGR-based multimodular nuclear plants is given. This newly-built model can describe the dynamic behavior of the OTSG in both the cases of providing superheated steam and generating saturated steam. Numerical simulation results show the feasibility and satisfactory performance of this model. Moreover, this model has been applied to develop the real-time simulation software for the operation and regulation features of the world first underconstructed MHTGR-based commercial nuclear plant—HTR-PM.

  15. Algebraic Approach to Algorithmic Logic

    Directory of Open Access Journals (Sweden)

    Bancerek Grzegorz

    2014-09-01

    Full Text Available We introduce algorithmic logic - an algebraic approach according to [25]. It is done in three stages: propositional calculus, quantifier calculus with equality, and finally proper algorithmic logic. For each stage appropriate signature and theory are defined. Propositional calculus and quantifier calculus with equality are explored according to [24]. A language is introduced with language signature including free variables, substitution, and equality. Algorithmic logic requires a bialgebra structure which is an extension of language signature and program algebra. While-if algebra of generator set and algebraic signature is bialgebra with appropriate properties and is used as basic type of algebraic logic.

  16. Leibniz Algebras and Lie Algebras

    Directory of Open Access Journals (Sweden)

    Geoffrey Mason

    2013-10-01

    Full Text Available This paper concerns the algebraic structure of finite-dimensional complex Leibniz algebras. In particular, we introduce left central and symmetric Leibniz algebras, and study the poset of Lie subalgebras using an associative bilinear pairing taking values in the Leibniz kernel.

  17. Using Example Generation to Explore Students' Understanding of the Concepts of Linear Dependence/Independence in Linear Algebra

    Science.gov (United States)

    Aydin, Sinan

    2014-01-01

    Linear algebra is a basic mathematical subject taught in mathematics and science depar-tments of universities. The teaching and learning of this course has always been difficult. This study aims to contribute to the research in linear algebra education, focusing on linear dependence and independence concepts. This was done by introducing…

  18. B-spline algebraic diagrammatic construction: application to photoionization cross-sections and high-order harmonic generation.

    Science.gov (United States)

    Ruberti, M; Averbukh, V; Decleva, P

    2014-10-28

    We present the first implementation of the ab initio many-body Green's function method, algebraic diagrammatic construction (ADC), in the B-spline single-electron basis. B-spline versions of the first order [ADC(1)] and second order [ADC(2)] schemes for the polarization propagator are developed and applied to the ab initio calculation of static (photoionization cross-sections) and dynamic (high-order harmonic generation spectra) quantities. We show that the cross-section features that pose a challenge for the Gaussian basis calculations, such as Cooper minima and high-energy tails, are found to be reproduced by the B-spline ADC in a very good agreement with the experiment. We also present the first dynamic B-spline ADC results, showing that the effect of the Cooper minimum on the high-order harmonic generation spectrum of Ar is correctly predicted by the time-dependent ADC calculation in the B-spline basis. The present development paves the way for the application of the B-spline ADC to both energy- and time-resolved theoretical studies of many-electron phenomena in atoms, molecules, and clusters.

  19. Algebra review

    CERN Document Server

    Denlinger, Charles

    1978-01-01

    Algebra Review serves as a background supplement to Howard Anton and Bernard Kolman's books on finite mathematics-Applied Finite Mathematics and Applied Finite Mathematics with Calculus. This book discusses the number systems of algebra, algebraic notation, exponents and radicals, and fractional exponents. The polynomials and factoring, binomial theorem, and rational expressions are also elaborated. This text covers equations such as linear equations, quadratic equations, and higher degree equations. The Cartesian coordinate system, graphing equations in two variables, and some special functio

  20. Planar Para Algebras, Reflection Positivity

    Science.gov (United States)

    Jaffe, Arthur; Liu, Zhengwei

    2017-05-01

    We define a planar para algebra, which arises naturally from combining planar algebras with the idea of ZN para symmetry in physics. A subfactor planar para algebra is a Hilbert space representation of planar tangles with parafermionic defects that are invariant under para isotopy. For each ZN, we construct a family of subfactor planar para algebras that play the role of Temperley-Lieb-Jones planar algebras. The first example in this family is the parafermion planar para algebra (PAPPA). Based on this example, we introduce parafermion Pauli matrices, quaternion relations, and braided relations for parafermion algebras, which one can use in the study of quantum information. An important ingredient in planar para algebra theory is the string Fourier transform (SFT), which we use on the matrix algebra generated by the Pauli matrices. Two different reflections play an important role in the theory of planar para algebras. One is the adjoint operator; the other is the modular conjugation in Tomita-Takesaki theory. We use the latter one to define the double algebra and to introduce reflection positivity. We give a new and geometric proof of reflection positivity by relating the two reflections through the string Fourier transform.

  1. Algebraic geometry

    National Research Council Canada - National Science Library

    Hartshorne, Robin

    1977-01-01

    .... 141 BECKERIWEISPFENNINGIKREDEL. Grabner Bases. A Computational Approach to Commutative Algebra. 142 LANG. Real and Functional Analysis. 3rd ed. 143 DOOB. Measure Theory. 144 DENNIS/FARB. Noncommutat...

  2. Algebraic Numbers

    Directory of Open Access Journals (Sweden)

    Watase Yasushige

    2016-12-01

    Full Text Available This article provides definitions and examples upon an integral element of unital commutative rings. An algebraic number is also treated as consequence of a concept of “integral”. Definitions for an integral closure, an algebraic integer and a transcendental numbers [14], [1], [10] and [7] are included as well. As an application of an algebraic number, this article includes a formal proof of a ring extension of rational number field ℚ induced by substitution of an algebraic number to the polynomial ring of ℚ[x] turns to be a field.

  3. The Kronecker product in terms of Hubbard operators and the Clebsch–Gordan decomposition of SU(2SU(2)

    Energy Technology Data Exchange (ETDEWEB)

    Enríquez, Marco; Rosas-Ortiz, Oscar, E-mail: orosas@fis.cinvestav.mx

    2013-12-15

    We review the properties of the Kronecker (direct, or tensor) product of square matrices A⊗B⊗C⋯ in terms of Hubbard operators. In its simplest form, a Hubbard operator X{sub n}{sup i,j} can be expressed as the n-square matrix which has entry 1 in position (i,j) and zero in all other entries. The algebra and group properties of the observables that define a multipartite quantum system are notably straightforward in such a framework. In particular, we use the Kronecker product in Hubbard notation to get the Clebsch–Gordan decomposition of the product group SU(2SU(2). Finally, the n-dimensional irreducible representations so obtained are used to derive closed forms of the Clebsch–Gordan coefficients that rule the addition of angular momenta. Our results can be further developed in many different directions. -- Highlights: •The Kronecker product is studied in terms of Hubbard operators. •Complicated calculations involving large matrices are reduced to simple relations of subscripts. •The algebraic properties of the quantum observables of multipartite systems are studied. •The Clebsch–Gordan coefficients are given in terms of hypergeometric {sub 3}F{sub 2} functions. •The results can be further developed in many different directions.

  4. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...

  5. Implicative Algebras

    African Journals Online (AJOL)

    Tadesse

    Department of Mathematics, Faculty of Computer and Mathematical Sciences, Addis Ababa. University, Addis Ababa, Ethiopia(*drkvenkateswarlu@gmail.com, **berhanufk@yahoo.co.uk). ABSTRACT. In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra ...

  6. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    Science.gov (United States)

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  7. Static solutions of SU(2)-Higgs theory

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, L.G. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (US))

    1989-11-15

    The structure and stability of static spherically symmetric solutions in the SU(2)-Higgs theory are examined using both analytic and numerical methods. Accurate results are presented for the energy and instability growth rates of the sphaleron'' solution as a function of the Higgs-boson mass. The sphaleron is shown to undergo an infinite sequence of bifurcations as the Higgs-boson mass is increased, starting at {ital M}{sub {ital H}}=12M{sub W}. New deformed sphaleron'' solutions emerge from each of these bifurcations. These deformed sphalerons are not charge-conjugation invariant, have non-half-integral winding numbers, and are lower in energy than the original sphaleron. Hence, for sufficiently large Higgs-boson mass, minimal-energy paths connecting inequivalent vacuum states do not pass through the original sphaleron configuration.

  8. College algebra

    CERN Document Server

    Kolman, Bernard

    1985-01-01

    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  9. Commutative Algebra

    CERN Document Server

    Fontana, Marco; Olberding, Bruce; Swanson, Irena

    2011-01-01

    Commutative algebra is a rapidly growing subject that is developing in many different directions. This volume presents several of the most recent results from various areas related to both Noetherian and non-Noetherian commutative algebra. This volume contains a collection of invited survey articles by some of the leading experts in the field. The authors of these chapters have been carefully selected for their important contributions to an area of commutative-algebraic research. Some topics presented in the volume include: generalizations of cyclic modules, zero divisor graphs, class semigrou

  10. College algebra

    CERN Document Server

    Fine, Henry Burchard

    2005-01-01

    At the beginning of the twentieth century, college algebra was taught differently than it is nowadays. There are many topics that are now part of calculus or analysis classes. Other topics are covered only in abstract form in a modern algebra class on field theory. Fine's College Algebra offers the reader a chance to learn the origins of a variety of topics taught in today's curriculum, while also learning valuable techniques that, in some cases, are almost forgotten. In the early 1900s, methods were often emphasized, rather than abstract principles. In this book, Fine includes detailed discus

  11. Algebraic Groups

    DEFF Research Database (Denmark)

    2007-01-01

    -theorists, and to stimulate contacts between participants. Each of the first four days was dedicated to one area of research that has recently seen decisive progress: \\begin{itemize} \\item structure and classification of wonderful varieties, \\item finite reductive groups and character sheaves, \\item quantum cohomology......The workshop continued a series of Oberwolfach meetings on algebraic groups, started in 1971 by Tonny Springer and Jacques Tits who both attended the present conference. This time, the organizers were Michel Brion, Jens Carsten Jantzen, and Raphaël Rouquier. During the last years, the subject...... of algebraic groups (in a broad sense) has seen important developments in several directions, also related to representation theory and algebraic geometry. The workshop aimed at presenting some of these developments in order to make them accessible to a "general audience" of algebraic group...

  12. Algebraic Geometry

    CERN Document Server

    Holme, Audun

    1988-01-01

    This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.

  13. Gravitational leptogenesis in axion inflation with SU(2) gauge field

    Science.gov (United States)

    Maleknejad, Azadeh

    2016-12-01

    We present an intrinsic leptogenesis mechanism in models of axion inflation with a classical SU(2) gauge field. The gauge field is coupled to the axion with a Chern-Simons interaction and comprises a tiny fraction of the total energy, ρYM/ρtot lesssim epsilon2. However, it has spin-2 fluctuations which breaks the parity and leads to the generation of chiral gravitational waves during inflation. By the gravitational anomaly in SM, it naturally creates a net lepton number density, sufficient to explain the matter asymmetry. We show that this mechanism can generate the observed value of baryon to photon number density in a natural range of parameters and yet has a small chiral tensor power spectrum on large scales.

  14. Elementary algebra

    CERN Document Server

    McKeague, Charles P

    1981-01-01

    Elementary Algebra 2e, Second Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first tackles the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the substitution method, solving linear systems by graphing, solutions to linear equations in two variables, multiplication property of equality, word problems, addition property of equality, and subtraction, addition, multiplication, and division of real numbers. The manuscript then examines exponents and polynomials, factoring, and rational e

  15. Elementary algebra

    CERN Document Server

    McKeague, Charles P

    1986-01-01

    Elementary Algebra, Third Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first ponders on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the elimination method, solving linear systems by graphing, word problems, addition property of equality, solving linear equations, linear inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then takes a look at exponents and polynomials, factoring, and rational expressions. Topics include reducing ra

  16. Spectral triples and associated Connes-de Rham complex for the quantum SU(2) and the quantum sphere

    OpenAIRE

    Chakraborty, Partha Sarathi; Pal, Arupkumar

    2002-01-01

    We construct spectral triples for the C^*-algebra of continuous functions on the quantum SU(2) group and the quantum sphere. There has been various approaches towards building a calculus on quantum spaces, but there seems to be very few instances of computations outlined in chapter~6 of Connes' book. We give detailed computations of the associated Connes-de Rham complex and the space of L_2-forms.

  17. SU (2) lattice gauge theory simulations on Fermi GPUs

    Science.gov (United States)

    Cardoso, Nuno; Bicudo, Pedro

    2011-05-01

    In this work we explore the performance of CUDA in quenched lattice SU (2) simulations. CUDA, NVIDIA Compute Unified Device Architecture, is a hardware and software architecture developed by NVIDIA for computing on the GPU. We present an analysis and performance comparison between the GPU and CPU in single and double precision. Analyses with multiple GPUs and two different architectures (G200 and Fermi architectures) are also presented. In order to obtain a high performance, the code must be optimized for the GPU architecture, i.e., an implementation that exploits the memory hierarchy of the CUDA programming model. We produce codes for the Monte Carlo generation of SU (2) lattice gauge configurations, for the mean plaquette, for the Polyakov Loop at finite T and for the Wilson loop. We also present results for the potential using many configurations (50,000) without smearing and almost 2000 configurations with APE smearing. With two Fermi GPUs we have achieved an excellent performance of 200× the speed over one CPU, in single precision, around 110 Gflops/s. We also find that, using the Fermi architecture, double precision computations for the static quark-antiquark potential are not much slower (less than 2× slower) than single precision computations.

  18. Realizations of AF-algebras as graph algebras, Exel-Laca algebras, and ultragraph algebras

    OpenAIRE

    Katsura, Takeshi; Sims, Aidan; Tomforde, Mark

    2008-01-01

    We give various necessary and sufficient conditions for an AF-algebra to be isomorphic to a graph C*-algebra, an Exel-Laca algebra, and an ultragraph C*-algebra. We also explore consequences of these results. In particular, we show that all stable AF-algebras are both graph C*-algebras and Exel-Laca algebras, and that all simple AF-algebras are either graph C*-algebras or Exel-Laca algebras. In addition, we obtain a characterization of AF-algebras that are isomorphic to the C*-algebra of a ro...

  19. Involutive representations of coordinate algebras and quantum spaces

    Science.gov (United States)

    Jurić, Tajron; Poulain, Timothé; Wallet, Jean-Christophe

    2017-07-01

    We show that su(2) Lie algebras of coordinate operators related to quantum spaces with su(2) noncommutativity can be conveniently represented by SO(3)-covariant poly-differential involutive representations. We show that the quantized plane waves ob-tained from the quantization map action on the usual exponential functions are determined by polar decomposition of operators combined with constraint stemming from the Wigner theorem for SU(2). Selecting a subfamily of ∗-representations, we show that the resulting star-product is equivalent to the Kontsevich product for the Poisson manifold dual to the finite dimensional Lie algebra su(2) . We discuss the results, indicating a way to extend the construction to any semi-simple non simply connected Lie group and present noncommutative scalar field theories which are free from perturbative UV/IR mixing.

  20. The Boolean algebra of Galois algebras

    Directory of Open Access Journals (Sweden)

    Lianyong Xue

    2003-02-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B|bx=g(xb for all x∈B} for each g∈G, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|g∈G}, e a nonzero element in Ba, and He={g∈G|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.

  1. Intertwining symmetry algebras of quantum superintegrable systems on the hyperboloid

    Energy Technology Data Exchange (ETDEWEB)

    Calzada, J A [Departamento de Matematica Aplicada, Escuela Superior de Ingenieros Industriales, Universidad de Valladolid, 47011 Valladolid (Spain); Kuru, S [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J; Olmo, M A del [Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain)], E-mail: juacal@eis.uva.es, E-mail: kuru@science.ankara.edu.tr, E-mail: jnegro@fta.uva.es, E-mail: olmo@fta.uva.es

    2008-06-27

    A class of quantum superintegrable Hamiltonians defined on a two-dimensional hyperboloid is considered together with a set of intertwining operators connecting them. It is shown that such intertwining operators close a su(2, 1) Lie algebra and determine the Hamiltonians through the Casimir operators. By means of discrete symmetries a broader set of operators is obtained closing a so(4, 2) algebra. The physical states corresponding to the discrete spectrum of bound states as well as the degeneration are characterized in terms of unitary representations of su(2, 1) and so(4, 2)

  2. Color Algebras

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.

  3. Problems in abstract algebra

    CERN Document Server

    Wadsworth, A R

    2017-01-01

    This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.

  4. Finite volume effects in SU(2) with two adjoint fermions

    CERN Document Server

    Patella, Agostino; Lucini, Biagio; Pica, Claudio; Rago, Antonio

    2011-01-01

    Many evidences from lattice simulations support the idea that SU(2) with two Dirac flavors in the adjoint representation (also called Minimal Walking Technicolor) is IR conformal. A possible way to see this is through the behavior of the spectrum of the mass-deformed theory. When fermions are massive, a mass-gap is generated and the theory is confined. IR-conformality is recovered in the chiral limit: masses of particles vanish in the chiral limit, while their ratios stay finite. In order to trust this analysis one has to relay on the infinite volume extrapolation. We will discuss the finite volume effects on the mesonic spectrum, investigated by varying the size of the lattice and by changing the boundary conditions for the fields.

  5. Confinement from semiclassical gluon fields in SU(2) gauge theory

    CERN Document Server

    Langfeld, Kurt

    2010-01-01

    The infrared structure of SU(2) Yang-Mills theory is studied by means of lattice gauge simulations using a new constrained cooling technique. This method reduces the action while all Polyakov lines on the lattice remain unchanged. In contrast to unconstrained cooling, quark confinement is still intact. A study of the Hessian of the Yang-Mills action shows that low action (semi-) classical configurations can be achieved, with a characteristic splitting between collective modes and higher momentum modes. Besides confinement, the semiclassical configurations also support the topological susceptibility and generate spontaneous breakdown of chiral symmetry.We show that they possess a cluster structure of locally mainly (anti-) selfdual objects. By contrast to an instanton or a meron medium, the topological charge of individual clusters is smoothly distributed.

  6. On the structure of quantum L∞ algebras

    Science.gov (United States)

    Blumenhagen, Ralph; Fuchs, Michael; Traube, Matthias

    2017-10-01

    It is believed that any classical gauge symmetry gives rise to an L∞ algebra. Based on the recently realized relation between classical W algebras and L∞ algebras, we analyze how this generalizes to the quantum case. Guided by the existence of quantum W algebras, we provide a physically well motivated definition of quantum L∞ algebras describing the consistency of global symmetries in quantum field theories. In this case we are restricted to only two non-trivial graded vector spaces X 0 and X -1 containing the symmetry variations and the symmetry generators. This quantum L∞ algebra structure is explicitly exemplified for the quantum W_3 algebra. The natural quantum product between fields is the normal ordered one so that, due to contractions between quantum fields, the higher L∞ relations receive off-diagonal quantum corrections. Curiously, these are not present in the loop L∞ algebra of closed string field theory.

  7. Linear algebra

    CERN Document Server

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  8. The structure of the super-W∞(λ) algebra

    NARCIS (Netherlands)

    Bergshoeff, E.; Wit, B. de; Vasiliev, M.

    1991-01-01

    We give a comprehensive treatment of the super-W∞(λ) algebra, an extension of the super-Virasoro algebra that contains generators of spin s ≥ ½. The parameter λ defines the embedding of the Virasoro subalgebra. We describe how to obtain the super-W∞(λ) algebra from the associative algebra of

  9. Linear algebra

    CERN Document Server

    Stoll, R R

    1968-01-01

    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  10. Abstract algebra

    CERN Document Server

    Deskins, W E

    1996-01-01

    This excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. These systems, which consist of sets of elements, operations, and relations among the elements, and prescriptive axioms, are abstractions and generalizations of various models which evolved from efforts to explain or discuss physical phenomena.In Chapter 1, the author discusses the essential ingredients of a mathematical system, and in the next four chapters covers the basic number systems, decompositions of integers, diop

  11. Lie algebras

    CERN Document Server

    Jacobson, Nathan

    1979-01-01

    Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its

  12. Algebraic arithmetic

    CERN Document Server

    Bell, Eric T

    1927-01-01

    The central topic of this book is the presentation of the author's principle of arithmetical paraphrases, which won him the Bôcher Prize in 1924. This general principle served to unify and extend many isolated results in the theory of numbers. The author successfully provides a systematic attempt to find a unified theory for each of various classes of related important problems in the theory of numbers, including its interrelations with algebra and analysis. This book will be of interest to advanced students in various branches of mathematics, including number theory, abstract algebra, ellipti

  13. Linear algebra

    CERN Document Server

    Allenby, Reg

    1995-01-01

    As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin

  14. Computer algebra and algebraic analysis

    OpenAIRE

    Castro Jiménez, Francisco Jesús; Lambán Pardo, Laureano (Coordinador); Romero Ibáñez, Ana (Coordinador); Rubio García, Julio (Coordinador)

    2010-01-01

    Este artículo describe algunas aplicaciones del Álgebra Computacional al Análisis Algebraico, también conocido como teoría de D-módulos, es decir, el estudio algebraico de sistemas lineales de ecuaciones en derivadas parciales. Mostramos cómo calcular diferentes objetos e invariantes en teoría de D-módulos, utilizando bases de Groebner para anillos de operadores diferenciales lineales. This paper describes some applications of Computer Algebra to Algebraic Analysis also known as D-module t...

  15. Very true operators on MTL-algebras

    Directory of Open Access Journals (Sweden)

    Wang Jun Tao

    2016-01-01

    Full Text Available The main goal of this paper is to investigate very true MTL-algebras and prove the completeness of the very true MTL-logic. In this paper, the concept of very true operators on MTL-algebras is introduced and some related properties are investigated. Also, conditions for an MTL-algebra to be an MV-algebra and a Gödel algebra are given via this operator. Moreover, very true filters on very true MTL-algebras are studied. In particular, subdirectly irreducible very true MTL-algebras are characterized and an analogous of representation theorem for very true MTL-algebras is proved. Then, the left and right stabilizers of very true MTL-algebras are introduced and some related properties are given. As applications of stabilizer of very true MTL-algebras, we produce a basis for a topology on very true MTL-algebras and show that the generated topology by this basis is Baire, connected, locally connected and separable. Finally, the corresponding logic very true MTL-logic is constructed and the soundness and completeness of this logic are proved based on very true MTL-algebras.

  16. Color Algebras

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  17. Operator theory, operator algebras and applications

    CERN Document Server

    Lebre, Amarino; Samko, Stefan; Spitkovsky, Ilya

    2014-01-01

    This book consists of research papers that cover the scientific areas of the International Workshop on Operator Theory, Operator Algebras and Applications, held in Lisbon in September 2012. The volume particularly focuses on (i) operator theory and harmonic analysis (singular integral operators with shifts; pseudodifferential operators, factorization of almost periodic matrix functions; inequalities; Cauchy type integrals; maximal and singular operators on generalized Orlicz-Morrey spaces; the Riesz potential operator; modification of Hadamard fractional integro-differentiation), (ii) operator algebras (invertibility in groupoid C*-algebras; inner endomorphisms of some semi group, crossed products; C*-algebras generated by mappings which have finite orbits; Folner sequences in operator algebras; arithmetic aspect of C*_r SL(2); C*-algebras of singular integral operators; algebras of operator sequences) and (iii) mathematical physics (operator approach to diffraction from polygonal-conical screens; Poisson geo...

  18. Matrix relation algebras

    NARCIS (Netherlands)

    el Bachraoui, M.; van de Vel, M.L.J.

    2002-01-01

    Square matrices over a relation algebra are relation algebras in a natural way. We show that for fixed n, these algebras can be characterized as reducts of some richer kind of algebra. Hence for fixed n, the class of n × n matrix relation algebras has a first-order characterization. As a

  19. Algebraic theory of molecules

    CERN Document Server

    Iachello, F

    1995-01-01

    1. The Wave Mechanics of Diatomic Molecules. 2. Summary of Elements of Algebraic Theory. 3. Mechanics of Molecules. 4. Three-Body Algebraic Theory. 5. Four-Body Algebraic Theory. 6. Classical Limit and Coordinate Representation. 8. Prologue to the Future. Appendices. Properties of Lie Algebras; Coupling of Algebras; Hamiltonian Parameters

  20. Adjoint SU(2) with four fermion interactions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Drach, Vincent; Pica, Claudio

    2016-01-01

    Four fermion interactions appear in many models of Beyond Standard Model physics. In Technicolour and composite Higgs models Standard Model fermion masses can be generated by four fermion terms. They are also expected to modify the dynamics of the new strongly interacting sector. In particular in...

  1. Real Algebraic Geometry

    CERN Document Server

    Mahé, Louis; Roy, Marie-Françoise

    1992-01-01

    Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...

  2. Drinfeld Doubles for Finite Subgroups of SU(2 and SU(3 Lie Groups

    Directory of Open Access Journals (Sweden)

    Robert Coquereaux

    2013-05-01

    Full Text Available Drinfeld doubles of finite subgroups of SU(2 and SU(3 are investigated in detail. Their modular data – S, T and fusion matrices – are computed explicitly, and illustrated by means of fusion graphs. This allows us to reexamine certain identities on these tensor product or fusion multiplicities under conjugation of representations that had been discussed in our recent paper [J. Phys. A: Math. Theor. 44 (2011, 295208, 26 pages], proved to hold for simple and affine Lie algebras, and found to be generally wrong for finite groups. It is shown here that these identities fail also in general for Drinfeld doubles, indicating that modularity of the fusion category is not the decisive feature. Along the way, we collect many data on these Drinfeld doubles which are interesting for their own sake and maybe also in a relation with the theory of orbifolds in conformal field theory.

  3. Construction and decoding of a class of algebraic geometry codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Larsen, Knud J.; Jensen, Helge Elbrønd

    1989-01-01

    A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result is a decod......A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result...

  4. Algebraic functions

    CERN Document Server

    Bliss, Gilbert Ames

    1933-01-01

    This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t

  5. Effective SU(2) theory for the pseudogap state

    Science.gov (United States)

    Montiel, X.; Kloss, T.; Pépin, C.

    2017-03-01

    This paper exposes in a detailed manner the recent findings about the SU(2) scenario for the underdoped phase of the cuprate superconductors. The SU(2) symmetry is formulated as a rotation between the d -wave superconducting (SC) phase and a d -wave charge order. We define the operators responsible for the SU(2) rotations and we derive the nonlinear σ model associated with it. In this framework, we demonstrate that SU(2) fluctuations are massless in finite portions of the Brillouin zone corresponding to the antinodal regions (0 ,π ) and (π ,0 ). We argue that the presence of SU(2) fluctuations in the antinodal region leads to the opening of Fermi arcs around the Fermi surface and to the formation of the pseudogap. Moreover, we show that SU(2) fluctuations lead, in turn, to the emergence of a finite momentum SC order—or pair density wave (PDW)—and more importantly to a new kind of excitonic particle-hole pairs liquid, the resonant excitonic state (RES), which is made of patches of preformed particle-hole pairs with multiple momenta. When the RES liquid becomes critical, we demonstrate that electronic scattering through the critical modes leads to anomalous transport properties. This new finding can account for the strange metal (SM) phase at finite temperature, on the right-hand side of the SC dome, shedding light on another notoriously mysterious part of the phase diagram of the cuprates.

  6. Universal algebra

    CERN Document Server

    Grätzer, George

    1979-01-01

    Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...

  7. Supersymmetry Breaking Threshold Corrections in the $SU(4)\\times SU(2)_L\\times SU(2)_R$ Model

    OpenAIRE

    Korakianitis, O.; Tracas, N. D.

    1993-01-01

    We evaluate the SUSY and top threshold effects in the context of the MSSM and the string derived model based on SU(4)$\\times$SU(2)$_L\\times$SU(2)$_R$. In both cases we run the two loop RGEs and determine the lower bounds of the supersymmetric particle masses, dictated by the experimentally accepted regions of the values of the low energy parameters.

  8. Representation of Crystallographic Subperiodic Groups by Geometric Algebra

    OpenAIRE

    Hitzer, Eckhard; Ichikawa, Daisuke

    2013-01-01

    We explain how following the representation of 3D crystallographic space groups in geometric algebra it is further possible to similarly represent the 162 socalled subperiodic groups of crystallography in geometric algebra. We construct a new compact geometric algebra group representation symbol, which allows to read off the complete set of geometric algebra generators. For clarity we moreover state explicitly what generators are chosen. The group symbols are based on the representation of po...

  9. Open algebraic surfaces

    CERN Document Server

    Miyanishi, Masayoshi

    2000-01-01

    Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...

  10. The Yoneda algebra of a K2 algebra need not be another K2 algebra

    OpenAIRE

    Cassidy, T.; Phan, C.; Shelton, B.

    2010-01-01

    The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.

  11. Algebras with actions and automata

    Directory of Open Access Journals (Sweden)

    W. Kühnel

    1982-01-01

    Full Text Available In the present paper we want to give a common structure theory of left action, group operations, R-modules and automata of different types defined over various kinds of carrier objects: sets, graphs, presheaves, sheaves, topological spaces (in particular: compactly generated Hausdorff spaces. The first section gives an axiomatic approach to algebraic structures relative to a base category B, slightly more powerful than that of monadic (tripleable functors. In section 2 we generalize Lawveres functorial semantics to many-sorted algebras over cartesian closed categories. In section 3 we treat the structures mentioned in the beginning as many-sorted algebras with fixed “scalar” or “input” object and show that they still have an algebraic (or monadic forgetful functor (theorem 3.3 and hence the general theory of algebraic structures applies. These structures were usually treated as one-sorted in the Lawvere-setting, the action being expressed by a family of unary operations indexed over the scalars. But this approach cannot, as the one developed here, describe continuity of the action (more general: the action to be a B-morphism, which is essential for the structures mentioned above, e.g. modules for a sheaf of rings or topological automata. Finally we discuss consequences of theorem 3.3 for the structure theory of various types of automata. The particular case of algebras with fixed “natural numbers object” has been studied by the authors in [23].

  12. Linear algebra

    CERN Document Server

    Said-Houari, Belkacem

    2017-01-01

    This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...

  13. Novikov-Jordan algebras

    OpenAIRE

    Dzhumadil'daev, A. S.

    2002-01-01

    Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.

  14. Embeddings of Heyting Algebras

    NARCIS (Netherlands)

    Jongh, D.H.J. de; Visser, A.

    In this paper we study embeddings of Heyting Algebras. It is pointed out that such embeddings are naturally connected with Derived Rules. We compare the Heyting Algebras embeddable in the Heyting Algebra of the Intuitionistic Propositional Calculus (IPC), i.e. the free Heyting Algebra on countably

  15. Introduction to relation algebras relation algebras

    CERN Document Server

    Givant, Steven

    2017-01-01

    The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...

  16. Hyperbolic unit groups and quaternion algebras

    Indian Academy of Sciences (India)

    K. ) , when this algebra is a division algebra. We construct units, here called Pell and Gauss units, using solutions of certain diophantine quadratic equations. In particular, we exhibit units of norm −1 in H(oQ[. √. −7]); this construction, when combined with the deep work in [5], helps to provide a set of generators for the full.

  17. Coping with Algebraic Constraints in Power Networks

    NARCIS (Netherlands)

    Monshizadeh, Nima; De Persis, Claudio; van der Schaft, Abraham; Scherpen, Jacquelien M.A.

    2016-01-01

    In the intuitive modelling of the power network, the generators and the loads are located at different subset of nodes. This corresponds to the so-called structure preserving model which is naturally expressed in terms of differential algebraic equations (DAE). The algebraic constraints in the

  18. Developing algebraic thinking through group discussion | Fletcher ...

    African Journals Online (AJOL)

    This paper explores the potential of group discussion in generating algebraic thinking among learners. Algebraic thinking, particularly the recognition and articulation of generality, is vital and ought to be within reach of all learners if they are to participate fully in society. Furthermore, generalisation, being fundamental to ...

  19. Mattson Solomon transform and algebra codes

    DEFF Research Database (Denmark)

    Martínez-Moro, E.; Benito, Diego Ruano

    2009-01-01

    In this note we review some results of the first author on the structure of codes defined as subalgebras of a commutative semisimple algebra over a finite field (see Martínez-Moro in Algebra Discrete Math. 3:99-112, 2007). Generator theory and those aspects related to the theory of Gröbner bases...

  20. Fredholm Modules over Graph C∗-Algebras

    DEFF Research Database (Denmark)

    Crisp, Tyrone

    2015-01-01

    We present two applications of explicit formulas, due to Cuntz and Krieger, for computations in K-homology of graph C∗-algebras. We prove that every K-homology class for such an algebra is represented by a Fredholm module having finite-rank commutators, and we exhibit generating Fredholm modules...

  1. Deformed Twistors and Higher Spin Conformal (Super-)Algebras in Six Dimensions

    CERN Document Server

    Govil, Karan

    2014-01-01

    Massless conformal scalar field in six dimensions corresponds to the minimal unitary representation (minrep) of the conformal group SO(6,2). This minrep admits a family of deformations labelled by the spin t of an SU(2)_T group, which is the 6d analog of helicity in four dimensions. These deformations of the minrep of SO(6,2) describe massless conformal fields that are symmetric tensors in the spinorial representation of the 6d Lorentz group. The minrep and its deformations were obtained by quantization of the nonlinear realization of SO(6,2) as a quasiconformal group in arXiv:1005.3580. We give a novel reformulation of the generators of SO(6,2) for these representations as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group SO(5,1) and apply them to define higher spin algebras and superalgebras in AdS_7. The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS_7 is simply the enveloping algebra of SO(6,2) quotiented by a two-sided ideal (Joseph ideal) which an...

  2. Phase diagram of the lattice SU(2) Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Bonati, C., E-mail: bonati@df.unipi.i [Dipartimento di Fisica and INFN, Pisa (Italy); Cossu, G., E-mail: cossu@post.kek.j [Scuola Normale Superiore and INFN, Pisa (Italy); D' Elia, M., E-mail: Massimo.Delia@ge.infn.i [Dipartimento di Fisica and INFN, Genova (Italy); Di Giacomo, A., E-mail: digiaco@df.unipi.i [Dipartimento di Fisica and INFN, Pisa (Italy)

    2010-03-21

    We perform a detailed study of the phase diagram of the lattice Higgs SU(2) model with fixed Higgs field length. Consistently with previsions based on the Fradkin-Shenker theorem we find a first order transition line with an endpoint whose position we determined. The diagram also shows cross-over lines: the cross-over corresponding to the pure SU(2) bulk is also present at nonzero coupling with the Higgs field and merges with the one that continues the line of first order transition beyond the critical endpoint. At high temperature the first order line becomes a crossover, whose position moves by varying the temperature.

  3. Polyakov loop percolation and deconfinement in SU(2) gauge theory

    Science.gov (United States)

    Fortunato, S.; Satz, H.

    2000-03-01

    The deconfinement transition in /SU(2) gauge theory and the magnetization transition in the Ising model belong to the same universality class. The critical behaviour of the Ising model can be characterized either as spontaneous breaking of the Z2 symmetry of spin states or as percolation of appropriately defined spin clusters. We show that deconfinement in /SU(2) gauge theory can be specified as percolation of Polyakov loop clusters with Fortuin-Kasteleyn bond weights, leading to the same (Onsager) critical exponents as the conventional order-disorder description based on the Polykov loop expectation value.

  4. Equivariant spectral triples on the quantum SU(2) group

    OpenAIRE

    Chakraborty, Partha Sarathi; Pal, Arupkumar

    2002-01-01

    We characterize all equivariant odd spectral triples for the quantum SU(2) group acting on its L_2-space and having a nontrivial Chern character. It is shown that the dimension of an equivariant spectral triple is at least three, and given any element of the K-homology group of SU_q(2), there is an equivariant odd spectral triple of dimension 3 inducing that element. The method employed to get equivariant spectral triples in the quantum case is then used for classical SU(2), and we prove that...

  5. Quantum cluster algebras and quantum nilpotent algebras

    Science.gov (United States)

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  6. Quantum cluster algebras and quantum nilpotent algebras.

    Science.gov (United States)

    Goodearl, Kenneth R; Yakimov, Milen T

    2014-07-08

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein-Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405-455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337-397] for the case of symmetric Kac-Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1-52] associated with double Bruhat cells coincide with the corresponding cluster algebras.

  7. Leavitt path algebras

    CERN Document Server

    Abrams, Gene; Siles Molina, Mercedes

    2017-01-01

    This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...

  8. Uniform Frechet algebras

    CERN Document Server

    Goldmann, H

    1990-01-01

    The first part of this monograph is an elementary introduction to the theory of Fréchet algebras. Important examples of Fréchet algebras, which are among those considered, are the algebra of all holomorphic functions on a (hemicompact) reduced complex space, and the algebra of all continuous functions on a suitable topological space.The problem of finding analytic structure in the spectrum of a Fréchet algebra is the subject of the second part of the book. In particular, the author pays attention to function algebraic characterizations of certain Stein algebras (= algebras of holomorphic functions on Stein spaces) within the class of Fréchet algebras.

  9. Vector generation functions, q-spectral functions of hyperbolic geometry, and vertex operators for quantum affine algebras

    Science.gov (United States)

    Bytsenko, A. A.; Chaichian, M.; Luna, R.

    2017-12-01

    We investigate the concept of q-replicated argument in symmetric functions with its connection to spectral functions of hyperbolic geometry. This construction suffices for vector generation functions in the form of q-series and string theory. We hope that the mathematical side of the construction can be enriched by ideas coming from physics.

  10. 't Hooft loop and the phases of SU(2) LGT

    OpenAIRE

    Burgio, Giuseppe

    2013-01-01

    We analyze the vacuum structure of SU(2) lattice gauge theories in D=2,3,4, concentrating on the stability of 't Hooft loops. High precision calculations have been performed in D=3; similar results hold also for D=4 and D=2. We discuss the impact of our findings on the continuum limit of Yang-Mills theories.

  11. Mass anomalous dimension in SU(2) with six fundamental fermions

    DEFF Research Database (Denmark)

    Bursa, Francis; Del Debbio, Luigi; Keegan, Liam

    2010-01-01

    We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. We measure the running of the coupling and the mass in the Schroedinger Functional scheme. We observe very slow running of the coupling constant. We measure the mass anomalous dimension gamma, and find it is between 0.13...

  12. The SU(2)-Higgs model on asymmetric lattices

    CERN Document Server

    Csikor, Ferenc

    1996-01-01

    We calculate the {\\cal O}(g^2,\\lambda) corrections to the coupling anisotropies of the SU(2)-Higgs model on lattices with asymmetric lattice spacings. These corrections are obtained by a one-loop calculation requiring the rotational invariance of the gauge- and Higgs-boson propagators in the continuum limit.

  13. Large-volume results in SU(2) with adjoint fermions

    CERN Document Server

    Del Debbio, Luigi; Pica, Claudio; Patella, Agostino; Rago, Antonio; Roman, Sabin

    2014-01-01

    Taming finite-volume effects is a crucial ingredient in order to identify the existence of IR fixed points. We present the latest results from our numerical simulations of SU(2) gauge theory with 2 Dirac fermions in the adjoint representation on large volumes. We compare with previous results, and extrapolate to thermodynamic limit when possible.

  14. Finite volume effects in SU(2) with two adjoint fermions

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino

    2011-01-01

    Many evidences from lattice simulations support the idea that SU(2) with two Dirac flavors in the adjoint representation (also called Minimal Walking Technicolor) is IR conformal. A possible way to see this is through the behavior of the spectrum of the mass-deformed theory. When fermions are mas...

  15. Large-volume results in SU(2) with adjoint fermions

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Lucini, Biagio; Pica, Claudio

    2013-01-01

    Taming finite-volume effects is a crucial ingredient in order to identify the existence of IR fixed points. We present the latest results from our numerical simulations of SU(2) gauge theory with 2 Dirac fermions in the adjoint representation on large volumes. We compare with previous results, an...

  16. Compactifications of IIA supergravity on SU(2)-structure manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Spanjaard, B.

    2008-07-15

    In this thesis, we study compactifications of type IIA supergravity on six-dimensional manifolds with an SU(2)-structure. A general study of six-dimensional manifolds with SU(2)-structure shows that IIA supergravity compactified on such a manifold should yield a four-dimensional gauged N=4 supergravity. We explicitly derive the bosonic spectrum, gauge transformations and action for IIA supergravity compactified on two different manifolds with SU(2)-structure, one of which also has an H{sup (3)}{sub 10}-flux, and confirm that the resulting four-dimensional theories are indeed N=4 gauged supergravities. In the second chapter, we study an explicit construction of a set of SU(2)-structure manifolds. This construction involves a Scherk-Schwarz duality twist reduction of the half-maximal six-dimensional supergravity obtained by compactifying IIA supergravity on a K3. This reduction results in a gauged N=4 four-dimensional supergravity, where the gaugings can be divided into three classes of parameters. We relate two of the classes to parameters we found before, and argue that the third class of parameters could be interpreted as a mirror flux. (orig.)

  17. Deformed Virasoro Algebras from Elliptic Quantum Algebras

    Science.gov (United States)

    Avan, J.; Frappat, L.; Ragoucy, E.

    2017-09-01

    We revisit the construction of deformed Virasoro algebras from elliptic quantum algebras of vertex type, generalizing the bilinear trace procedure proposed in the 1990s. It allows us to make contact with the vertex operator techniques that were introduced separately at the same period. As a by-product, the method pinpoints two critical values of the central charge for which the center of the algebra is extended, as well as (in the gl(2) case) a Liouville formula.

  18. Lukasiewicz-Moisil algebras

    CERN Document Server

    Boicescu, V; Georgescu, G; Rudeanu, S

    1991-01-01

    The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

  19. Algebraic theory of numbers

    CERN Document Server

    Samuel, Pierre

    2008-01-01

    Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

  20. Linear associative algebras

    CERN Document Server

    Abian, Alexander

    1973-01-01

    Linear Associative Algebras focuses on finite dimensional linear associative algebras and the Wedderburn structure theorems.The publication first elaborates on semigroups and groups, rings and fields, direct sum and tensor product of rings, and polynomial and matrix rings. The text then ponders on vector spaces, including finite dimensional vector spaces and matrix representation of vectors. The book takes a look at linear associative algebras, as well as the idempotent and nilpotent elements of an algebra, ideals of an algebra, total matrix algebras and the canonical forms of matrices, matrix

  1. Relation between dual S-algebras and BE-algebras

    Directory of Open Access Journals (Sweden)

    Arsham Borumand Saeid

    2015-05-01

    Full Text Available In this paper, we investigate the relationship between dual (Weak Subtraction algebras, Heyting algebras and BE-algebras. In fact, the purpose of this paper is to show that BE-algebra is a generalization of Heyting algebra and dual (Weak Subtraction algebras. Also, we show that a bounded commutative self distributive BE-algebra is equivalent to the Heyting algebra.  

  2. Visualizing automorphisms of graph algebras

    DEFF Research Database (Denmark)

    Avery, James Emil; Johansen, Rune; Szymanski, Wojciech

    2018-01-01

    Graph C*-algebras have been celebrated as C*-algebras that can be seen, because many important properties may be determined by looking at the underlying graph. This paper introduces the permutation graph for a permutative endomorphism of a graph C*-algebra as a labeled directed multigraph...... that gives a visual representation of the endomorphism and facilitates computations. Combinatorial criteria have previously been developed for deciding when such an endomorphism is an automorphism, but here the question is reformulated in terms of the permutation graph and new proofs are given. Furthermore......, it is shown how to use permutation graphs to efficiently generate exhaustive collections of permutative automorphisms. Permutation graphs provide a natural link to the textile systems representing induced endomorphisms on the edge shift of the given graph, and this allows the powerful tools of the theory...

  3. Visualizing automorphisms of graph algebras

    DEFF Research Database (Denmark)

    Avery, James Emil; Johansen, Rune; Szymanski, Wojciech

    2017-01-01

    Graph C*-algebras have been celebrated as C*-algebras that can be seen, because many important properties may be determined by looking at the underlying graph. This paper introduces the permutation graph for a permutative endomorphism of a graph C*-algebra as a labeled directed multigraph...... that gives a visual representation of the endomorphism and facilitates computations. Combinatorial criteria have previously been developed for deciding when such an endomorphism is an automorphism, but here the question is reformulated in terms of the permutation graph and new proofs are given. Furthermore......, it is shown how to use permutation graphs to efficiently generate exhaustive collections of permutative automorphisms. Permutation graphs provide a natural link to the textile systems representing induced endomorphisms on the edge shift of the given graph, and this allows the powerful tools of the theory...

  4. N=1 supersymmetric $SU(4) x SU(2)_{L} x SU(2)_{R}$ effective theory from the weakly coupled heterotic superstring

    CERN Document Server

    Leontaris, George K

    1999-01-01

    In the context of the free-fermionic formulation of the heterotic superstring, we construct a three generation N=1 supersymmetric SU(4)xSU(2)LxSU(2)R model supplemented by an SU(8) hidden gauge symmetry and five Abelian factors. The symmetry breaking to the standard model is achieved using vacuum expectation values of a Higgs pair in (4bar,2R)+(4,2R) at a high scale. One linear combination of the Abelian symmetries is anomalous and is broken by vacuum expectation values of singlet fields along the flat directions of the superpotential. All consistent string vacua of the model are completely classified by solving the corresponding system of F- and D-flatness equations including non-renormalizable terms up to sixth order. The requirement of existence of electroweak massless doublets further restricts the phenomenologically viable vacua. The third generation fermions receive masses from the tree-level superpotential. Further, a complete calculation of all non-renormalizable fermion mass terms up to fifth order s...

  5. N = 1 supersymmetric SU(4) x SU(2) sub L x SU (2) sub R effective theory from the weakly coupled heterotic superstring

    CERN Document Server

    Leontaris, George K

    1999-01-01

    In the context of the free-fermionic formulation of the heterotic superstring, we construct a three-generation N = 1 supersymmetric SU(4) x SU(2) sub L x SU(2) sub R model supplemented by an SU(8) hidden gauge symmetry and five Abelian factors. The symmetry breaking to the standard model is achieved using vacuum expectation values of a Higgs pair in (4,2 sub R) + (4-bar,2 sub R) at a high scale. One linear combination of the Abelian symmetries is anomalous and is broken by vacuum expectation values of singlet fields along the flat directions of the superpotential. All consistent string vacua of the model are completely classified by solving the corresponding system of F- and D-flatness equations including non-renormalizable terms up to sixth order. The requirement of existence of electroweak massless doublets imposes further restrictions to the phenomenologically viable vacua. The third generation fermions receive masses from the tree-level superpotential. Further, a complete calculation of all non-renormaliz...

  6. Algebraic pattern recognition

    Science.gov (United States)

    Przybyłek, Michał R.

    2014-01-01

    This paper offers an algebraic explanation for the phenomenon of a new and prosperous branch of evolutionary metaheuristics - "skeletal algorithms". We show how this explanation gives rise to algorithms for recognition of algebraic theories and present sample applications.

  7. Families talen en algebra

    NARCIS (Netherlands)

    Asveld, P.R.J.

    1976-01-01

    Operaties op formele talen geven aanleiding tot bijbehorende operatoren op families talen. Bepaalde onderwerpen uit de algebra (universele algebra, tralies, partieel geordende monoiden) kunnen behulpzaam zijn in de studie van verzamelingen van dergelijke operatoren.

  8. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  9. Algebraic statistics computational commutative algebra in statistics

    CERN Document Server

    Pistone, Giovanni; Wynn, Henry P

    2000-01-01

    Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.

  10. Combinatorial commutative algebra

    CERN Document Server

    Miller, Ezra

    2005-01-01

    Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determined rings. The chapters in this work cover topics ranging from homological invariants of monomial ideals and their polyhedral resolutions, to tools for studying algebraic varieties.

  11. Foundations of algebraic geometry

    CERN Document Server

    Weil, A

    1946-01-01

    This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.

  12. Mass anomalous dimension in SU(2) with six fundamental fermions

    Energy Technology Data Exchange (ETDEWEB)

    Bursa, Francis, E-mail: fwb22@cam.ac.u [Jesus College, Cambridge, CB5 8BL (United Kingdom); Del Debbio, Luigi; Keegan, Liam [SUPA, School of Astrophysics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); Pica, Claudio [CP3-Origins, University of Southern Denmark Odense, 5230 M (Denmark); Pickup, Thomas [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3NP (United Kingdom)

    2011-02-07

    We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. We measure the running of the coupling and the mass in the Schroedinger Functional scheme. We observe very slow running of the coupling constant. We measure the mass anomalous dimension {gamma}, and find it is between 0.135 and 1.03 in the range of couplings consistent with the existence of an IR fixed point.

  13. SU(2)-monopoles, curves with symmetries and Ramanujan's heritage

    Science.gov (United States)

    Braden, Harry W.; Ènol'skii, Viktor Z.

    2010-08-01

    We develop the Ercolani-Sinha construction of SU(2) monopoles for a five-parameter family of centred charge 3 monopoles. In particular we show how to solve the transcendental constraints arising on the spectral curve. For a class of symmetric curves the transcendental constraints become a number-theoretic problem and a recently proven identity of Ramanujan provides a solution. Bibliography: 36 titles.

  14. Lectures on algebraic statistics

    CERN Document Server

    Drton, Mathias; Sullivant, Seth

    2009-01-01

    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  15. Higher dimensional classical W-algebras

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Moras, F. (Santiago Univ., Santiago de Compostela (Spain). Dept. de Fisica de Particulas Elementales); Ramos, E. (Dept. of Physics, Queen Mary and Westfield Coll., London (United Kingdom))

    1993-11-01

    Classical W-algebras in higher dimensions are constructed. This is achieved by generalizing the classical Gel'fand-Dickey brackets to the commutative limit of the ring of classical pseudodifferential operators in arbitrary dimension. These W-algebras are the Poisson structures associated with a higher dimensional version of the Khokhlov-Zabolotskaya hierarchy (dispersionless KP-hierarchy). The two dimensional case is worked out explicitly and it is shown that the role of DiffS(1) is taken by the algebra of generators of local diffeomorphisms in two dimensions. (orig.)

  16. On MV-algebras of non-linear functions

    Directory of Open Access Journals (Sweden)

    Antonio Di Nola

    2017-01-01

    Full Text Available In this paper, the main results are:a study of the finitely generated MV-algebras of continuous functions from the n-th power of the unit real interval I to I;a study of Hopfian MV-algebras; anda category-theoretic study of the map sending an MV-algebra as above to the range of its generators (up to a suitable form of homeomorphism.

  17. Maiorana-McFarland class: Degree optimization and algebraic properties

    DEFF Research Database (Denmark)

    Pasalic, Enes

    2006-01-01

    In this paper, we consider a subclass of the Maiorana-McFarland class used in the design of resilient nonlinear Boolean functions. We show that these functions allow a simple modification so that resilient Boolean functions of maximum algebraic degree may be generated instead of suboptimized degr...... against algebraic attacks. A theoretical analysis of the algebraic properties of extended Maiorana-McFarland class indicates that this class of functions should be avoided as a filtering function in nonlinear combining generators....

  18. Monopoles in the Plaquette Formulation of the 3D SU(2) Lattice Gauge Theory

    CERN Document Server

    Borisenko, O; Boháčik, J

    2011-01-01

    Using a plaquette formulation for lattice gauge models we describe monopoles of the three dimensional SU(2) theory which appear as configurations in the complete axial gauge and violate the continuum Bianchi identity. Furthemore we derive a dual formulation for the Wilson loop in arbitrary representation and calculate the form of the interaction between generated electric flux and monopoles in the region of a weak coupling relevant for the continuum limit. The effective theory which controls the interaction is of the sine-Gordon type model. The string tension is calculated within the semiclassical approximation.

  19. An Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System

    Energy Technology Data Exchange (ETDEWEB)

    Bernevig, Andrei

    2010-02-10

    Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constant (the ReD model), and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions, and is generated by operators whose wavevector depends on the coupling strength. It renders the spin lifetime infinite at this wavevector, giving rise to a Persistent Spin Helix (PSH). We obtain the spin fluctuation dynamics at, and away, from the symmetry point, and suggest experiments to observe the PSH.

  20. An Exact SU(2) Symmetry and Persistent Spin Helix ina Spin-orbit Coupled System

    Energy Technology Data Exchange (ETDEWEB)

    Bernevig, B.A.; /Stanford U., Phys. Dept. /Santa Barbara, KITP; Orenstein, J.; /LBL, Berkeley /UC, Berkeley; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2007-01-22

    Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constant (the ReD model), and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions, and is generated by operators whose wavevector depends on the coupling strength. It renders the spin lifetime infinite at this wavevector, giving rise to a Persistent Spin Helix (PSH). We obtain the spin fluctuation dynamics at, and away, from the symmetry point, and suggest experiments to observe the PSH.

  1. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    OpenAIRE

    Shomron, Noam; Parlett, Beresford N.

    2008-01-01

    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  2. Periodic Euclidean solutions of SU(2)-Higgs theory

    Energy Technology Data Exchange (ETDEWEB)

    Frost, K.L.; Yaffe, L.G. [University of Washington, Department of Physics, Seattle, Washington 98105-1560 (United States)

    1999-03-01

    We examine periodic, spherically symmetric, classical solutions of SU(2)-Higgs theory in four-dimensional Euclidean space. Classical perturbation theory is used to construct periodic time-dependent solutions in the neighborhood of the static sphaleron. The behavior of the action, as a function of period, changes character depending on the value of the Higgs boson mass. The required pattern of bifurcations of solutions as a function of the Higgs boson mass is examined, and implications for the temperature dependence of the baryon number violation rate in the standard model are discussed. {copyright} {ital 1999} {ital The American Physical Society}

  3. Representations of Lie algebras and partial differential equations

    CERN Document Server

    Xu, Xiaoping

    2017-01-01

    This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students.  Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certai...

  4. Evolution algebras and their applications

    CERN Document Server

    Tian, Jianjun Paul

    2008-01-01

    Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.

  5. Simple relation algebras

    CERN Document Server

    Givant, Steven

    2017-01-01

    This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...

  6. Introduction to abstract algebra

    CERN Document Server

    Smith, Jonathan D H

    2008-01-01

    Taking a slightly different approach from similar texts, Introduction to Abstract Algebra presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It helps students fully understand groups, rings, semigroups, and monoids by rigorously building concepts from first principles. A Quick Introduction to Algebra The first three chapters of the book show how functional composition, cycle notation for permutations, and matrix notation for linear functions provide techniques for practical computation. The author also uses equivalence relations to introduc

  7. Lectures in general algebra

    CERN Document Server

    Kurosh, A G; Stark, M; Ulam, S

    1965-01-01

    Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the

  8. Algebraic extensions of fields

    CERN Document Server

    McCarthy, Paul J

    1991-01-01

    ""...clear, unsophisticated and direct..."" - MathThis textbook is intended to prepare graduate students for the further study of fields, especially algebraic number theory and class field theory. It presumes some familiarity with topology and a solid background in abstract algebra. Chapter 1 contains the basic results concerning algebraic extensions. In addition to separable and inseparable extensions and normal extensions, there are sections on finite fields, algebraically closed fields, primitive elements, and norms and traces. Chapter 2 is devoted to Galois theory. Besides the fundamenta

  9. Fundamentals of Hopf algebras

    CERN Document Server

    Underwood, Robert G

    2015-01-01

    This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras, and Hopf algebras.  The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author’s 2011 publication, An Introduction to Hopf Algebras.  The book may be used as the main text or as a supplementary text for a graduate algebra course.  Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields, and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforw...

  10. Cohomology of Effect Algebras

    Directory of Open Access Journals (Sweden)

    Frank Roumen

    2017-01-01

    Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.

  11. Boolean algebra essentials

    CERN Document Server

    Solomon, Alan D

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  12. Free dendriform algebras. Part I. A parenthesis setting

    Directory of Open Access Journals (Sweden)

    Philippe Leroux

    2006-01-01

    Full Text Available We propose both a reformulation of some known results on the free dendriform algebra on one generator from a parenthesis setting instead of using permutations and some developments as well. Moreover, by introducing the concept of NCP-operad, we show how to use the free dendriform algebra on one generator to reformulate some results obtained by Speicher in free probability.

  13. Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra

    NARCIS (Netherlands)

    van den Hijligenberg, N.W.; van den Hijligenberg, N.W.; Martini, Ruud

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of

  14. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    NARCIS (Netherlands)

    N.W. van den Hijligenberg; R. Martini

    1995-01-01

    textabstractWe discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra

  15. The Virasoro vertex algebra and factorization algebras on Riemann surfaces

    Science.gov (United States)

    Williams, Brian

    2017-12-01

    This paper focuses on the connection of holomorphic two-dimensional factorization algebras and vertex algebras which has been made precise in the forthcoming book of Costello-Gwilliam. We provide a construction of the Virasoro vertex algebra starting from a local Lie algebra on the complex plane. Moreover, we discuss an extension of this factorization algebra to a factorization algebra on the category of Riemann surfaces. The factorization homology of this factorization algebra is computed as the correlation functions. We provide an example of how the Virasoro factorization algebra implements conformal symmetry of the beta-gamma system using the method of effective BV quantization.

  16. Free fields and new cosets of current algebra

    Energy Technology Data Exchange (ETDEWEB)

    Bars, I. (University of Southern California, Los Angeles (USA). Dept. of Physics)

    1991-02-14

    We introduce a new free field representation of current algebras by considering the affine compact and non-compact groups G{sub k}=SU(N+M){sub k}, SU(N, M){sub k} and supergroups SU(N/M){sub k} using cosets of the form G{sub k}/(SU(N){sub k+etaM}xSU(M){sub etak+etaN}), where eta=+- for group/supergroup respectively. The subgroup H=SU(N)xSU(M) does not include a U(1) factor. Because of the subgroup levels k+etaM, (k+N)eta these cosets differ from GKO cosets of the type G{sub k}/H{sub k}. We discuss simultaneously compact, non-compact and supergroup current algebras all in the same formalism. Borrowing ideas from induced representation theory of Lie groups we puerovide a basis in which we split the currents into 'orbital' and 'intrinsic spin' parts. The 'orbital' part is constructed from NM canonical pairs of complex free fields (analogous to position and momentum) classified in G/(HxU(1)). These provide a new generalization of Wakimoto's SU(2){beta}-{gamma} system. There is also a single free scalar field phi in a background charge which is associated with the remaining (twisted) U(1). The 'intrinsic spin' part corresponds to currents in H=SU(N)xSU(M). The resulting expressions for the currents are simple and elegant and they are reminiscent of Wigner's constructiion of the Poincare group generators in terms of orbital and intrinsic spin variables. The Sugawara stress tensor splits into four commuting parts T{sub G}=T{sub (G/HxU(1))}+T{sub U(1)}+T{sub H} where the first two terms are constructed only from the free fields ({beta}-{gamma}), phi respectively, while T{sub H}=T{sub SU(N)}+T{sub SU(M)} is the Sugawara stress tensor for the 'intrinsic spin' currents belonging to H. By iterating our G/H method, the 'intrinsic spin' part H may, in turn, be written in terms of new free fields, thus reducing the entire current algebra of G to a free field theory. (orig.).

  17. Algebraic monoids, group embeddings, and algebraic combinatorics

    CERN Document Server

    Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang

    2014-01-01

    This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids.   Topics presented include:   v  structure and representation theory of reductive algebraic monoids v  monoid schemes and applications of monoids v  monoids related to Lie theory v  equivariant embeddings of algebraic groups v  constructions and properties of monoids from algebraic combinatorics v  endomorphism monoids induced from vector bundles v  Hodge–Newton decompositions of reductive monoids   A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular.   Graduate students as well a...

  18. Commutative algebra constructive methods finite projective modules

    CERN Document Server

    Lombardi, Henri

    2015-01-01

    Translated from the popular French edition, this book offers a detailed introduction to various basic concepts, methods, principles, and results of commutative algebra. It takes a constructive viewpoint in commutative algebra and studies algorithmic approaches alongside several abstract classical theories. Indeed, it revisits these traditional topics with a new and simplifying manner, making the subject both accessible and innovative. The algorithmic aspects of such naturally abstract topics as Galois theory, Dedekind rings, Prüfer rings, finitely generated projective modules, dimension theory of commutative rings, and others in the current treatise, are all analysed in the spirit of the great developers of constructive algebra in the nineteenth century. This updated and revised edition contains over 350 well-arranged exercises, together with their helpful hints for solution. A basic knowledge of linear algebra, group theory, elementary number theory as well as the fundamentals of ring and module theory is r...

  19. SU(2) Gauge Theory with Two Fundamental Flavours

    DEFF Research Database (Denmark)

    Arthur, Rudy; Drach, Vincent; Hansen, Martin

    2016-01-01

    (Goldstone) Higgs theories to several intriguing types of dark matter candidates, such as the SIMPs. We improve our previous lattice analysis [1] by adding more data at light quark masses, at two additional lattice spacings, by determining the lattice cutoff via a Wilson flow measure of the $w_0$ parameter......We investigate the continuum spectrum of the SU(2) gauge theory with $N_f=2$ flavours of fermions in the fundamental representation. This model provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range from composite......, and by measuring the relevant renormalisation constants non-perturbatively in the RI'-MOM scheme. Our results for the lightest isovector states in the vector and axial channels, in units of the pseudoscalar decay constant, are $m_V/F_{\\rm{PS}}\\sim 13.1(2.2)$ and $m_A/F_{\\rm{PS}}\\sim 14.5(3.6)$ (combining...

  20. Dynamic SU(2) structure from seven-branes

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, Ben; McAllister, Liam; /Cornell U., Phys. Dept.; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2010-12-16

    We obtain a family of supersymmetric solutions of type IIB supergravity with dynamic SU(2) structure, which describe the local geometry near a stack of four D7-branes and one O7-plane wrapping a rigid four-cycle. The deformation to a generalized complex geometry is interpreted as a consequence of nonperturbative effects in the seven-brane gauge theory. We formulate the problem for seven-branes wrapping the base of an appropriate del Pezzo cone, and in the near-stack limit in which the four-cycle is flat, we obtain an exact solution in closed form. Our solutions serve to characterize the local geometry of nonperturbatively-stabilized flux compactifications.

  1. Probing neutrino and Higgs sectors in SU(2){sub 1} x SU(2){sub 2} x U(1){sub Y} model with lepton-flavor non-universality

    Energy Technology Data Exchange (ETDEWEB)

    Hue, L.T. [Duy Tan University, Institute of Research and Development, Da Nang City (Viet Nam); Vietnam Academy of Science and Technology, Institute of Physics, Hanoi (Viet Nam); Arbuzov, A.B. [Joint Institute for Nuclear Researches, Bogoliubov Laboratory for Theoretical Physics, Dubna (Russian Federation); Ngan, N.T.K. [Cantho University, Department of Physics, Cantho (Viet Nam); Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi (Viet Nam); Long, H.N. [Ton Duc Thang University, Theoretical Particle Physics and Cosmology Research Group, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam)

    2017-05-15

    The neutrino and Higgs sectors in the SU(2){sub 1} x SU(2){sub 2} x U(1){sub Y} model with lepton-flavor non-universality are discussed. We show that active neutrinos can get Majorana masses from radiative corrections, after adding only new singly charged Higgs bosons. The mechanism for the generation of neutrino masses is the same as in the Zee models. This also gives a hint to solving the dark matter problem based on similar ways discussed recently in many radiative neutrino mass models with dark matter. Except the active neutrinos, the appearance of singly charged Higgs bosons and dark matter does not affect significantly the physical spectrum of all particles in the original model. We indicate this point by investigating the Higgs sector in both cases before and after singly charged scalars are added into it. Many interesting properties of physical Higgs bosons, which were not shown previously, are explored. In particular, the mass matrices of charged and CP-odd Higgs fields are proportional to the coefficient of triple Higgs coupling μ. The mass eigenstates and eigenvalues in the CP-even Higgs sector are also presented. All couplings of the SM-like Higgs boson to normal fermions and gauge bosons are different from the SM predictions by a factor c{sub h}, which must satisfy the recent global fit of experimental data, namely 0.995 < vertical stroke c{sub h} vertical stroke < 1. We have analyzed a more general diagonalization of gauge boson mass matrices, then we show that the ratio of the tangents of the W-W{sup '} and Z-Z{sup '} mixing angles is exactly the cosine of the Weinberg angle, implying that number of parameters is reduced by 1. Signals of new physics from decays of new heavy fermions and Higgs bosons at LHC and constraints of their masses are also discussed. (orig.)

  2. Probing neutrino and Higgs sectors in { SU(2) }_1 × { SU(2) }_2 × { U(1) }_Y model with lepton-flavor non-universality

    Science.gov (United States)

    Hue, L. T.; Arbuzov, A. B.; Ngan, N. T. K.; Long, H. N.

    2017-05-01

    The neutrino and Higgs sectors in the { SU(2) }_1 × { SU(2) }_2 × { U(1) }_Y model with lepton-flavor non-universality are discussed. We show that active neutrinos can get Majorana masses from radiative corrections, after adding only new singly charged Higgs bosons. The mechanism for the generation of neutrino masses is the same as in the Zee models. This also gives a hint to solving the dark matter problem based on similar ways discussed recently in many radiative neutrino mass models with dark matter. Except the active neutrinos, the appearance of singly charged Higgs bosons and dark matter does not affect significantly the physical spectrum of all particles in the original model. We indicate this point by investigating the Higgs sector in both cases before and after singly charged scalars are added into it. Many interesting properties of physical Higgs bosons, which were not shown previously, are explored. In particular, the mass matrices of charged and CP-odd Higgs fields are proportional to the coefficient of triple Higgs coupling μ . The mass eigenstates and eigenvalues in the CP-even Higgs sector are also presented. All couplings of the SM-like Higgs boson to normal fermions and gauge bosons are different from the SM predictions by a factor c_h, which must satisfy the recent global fit of experimental data, namely 0.995Z-Z' mixing angles is exactly the cosine of the Weinberg angle, implying that number of parameters is reduced by 1. Signals of new physics from decays of new heavy fermions and Higgs bosons at LHC and constraints of their masses are also discussed.

  3. Typing linear algebra: A biproduct-oriented approach

    OpenAIRE

    Macedo, Hugo,; Oliveira, José de

    2013-01-01

    Interested in formalizing the generation of fast running code for linear algebra applications, the authors show how an index-free, calculational approach to matrix algebra can be developed by regarding matrices as morphisms of a category with biproducts. This shifts the traditional view of matrices as indexed structures to a type-level perspective analogous to that of the pointfree algebra of programming. The derivation of fusion, cancellation and abide laws from the biproduct equations makes...

  4. Quasitraces on exact C*-algebras are traces

    DEFF Research Database (Denmark)

    Haagerup, Uffe

    2014-01-01

    It is shown that all 2-quasitraces on a unital exact C ∗   -algebra are traces. As consequences one gets: (1) Every stably finite exact unital C ∗   -algebra has a tracial state, and (2) if an AW ∗   -factor of type II 1   is generated (as an AW ∗   -algebra) by an exact C ∗   -subalgebra, then i...

  5. On almost ƒ-algebras

    African Journals Online (AJOL)

    Click on the link to view the abstract. Keywords: Almost ƒ-algebra; ƒ-algebra; orthosymmetric bimorphism. Quaestiones Mathematicae 32(2009), 55–69. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Article Metrics. Metrics Loading ... Metrics powered by PLOS ALM.

  6. C*-algebras

    Science.gov (United States)

    Bär, Christian; Becker, Christian

    In this chapter we will collect those basic concepts and facts related to C*-algebras that will be needed later on. We give complete proofs. In Sects. 1, 2, 3, and 6 we follow closely the presentation in [1]. For more information on C*-algebras, see, e.g. [2-6].

  7. Linear-Algebra Programs

    Science.gov (United States)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  8. Ready, Set, Algebra?

    Science.gov (United States)

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…

  9. Elements of mathematics algebra

    CERN Document Server

    Bourbaki, Nicolas

    2003-01-01

    This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...

  10. Quantum affine algebras

    Energy Technology Data Exchange (ETDEWEB)

    Chari, V. (Tata Inst. of Fundamental Research, Bombay (India). School of Mathematics); Pressley, A. (King' s Coll., London (United Kingdom). Dept. of Mathematics)

    1991-12-01

    A quantum group is a Hopf algebra U{sub q}(a), depending on a parameter q element of C, which 'tends to' the universal enveloping algebra U(a) of a Lie algebra a as q tends to 1. In this paper, we develop a highest weight theory for the finite-dimensional representations of U{sub q}(a) when a is the affine algebra sl{sub 2}, assuming that q is not a root of unity. We also give a concrete construction of all finite-dimensional irreducible representations of U{sub q}(sl{sub 2}). Many, but not all, of the results extend without difficulty to the case of U{sub q}(g) with g any finite-dimensional complex simple Lie algebra. (orig./HSI).

  11. The Algebra of Lexical Semantics

    Science.gov (United States)

    Kornai, András

    The current generative theory of the lexicon relies primarily on tools from formal language theory and mathematical logic. Here we describe how a different formal apparatus, taken from algebra and automata theory, resolves many of the known problems with the generative lexicon. We develop a finite state theory of word meaning based on machines in the sense of Eilenberg [11], a formalism capable of describing discrepancies between syntactic type (lexical category) and semantic type (number of arguments). This mechanism is compared both to the standard linguistic approaches and to the formalisms developed in AI/KR.

  12. Axion inflation with an SU(2) gauge field: detectable chiral gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Maleknejad, Azadeh [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. Code. 19538-33511, Tehran (Iran, Islamic Republic of)

    2016-07-20

    We study a single field axion inflation model in the presence of an SU(2) gauge field with a small vev. In order to make the analysis as model-independent as possible, we consider an arbitrary potential for the axion that is able to support the slow-roll inflation. The gauge field is coupled to the axion with a Chern-Simons interaction (λ/f)F{sub μν}{sup a}F̃{sub a}{sup μν} where (λ/f)∼((O(10))/(M{sub pl})). It has a negligible effect on the background evolution, ((ρ{sub YM})/(M{sub pl}{sup 2}H{sup 2}))≲ϵ{sup 2}. However, its quantum fluctuations make a significant contribution to the cosmic perturbation. In particular, the gauge field has a spin-2 fluctuation which explicitly breaks the parity between the left- and right-handed polarization states. The chiral tensor modes are linearly coupled to the gravitational waves and lead to a circularly polarized tensor power spectrum comparable to the unpolarized vacuum power spectrum. Moreover, the scalar sector is modified by the linear scalar fluctuations of the gauge field. Since the spin-0 and spin-2 fluctuations of the SU(2) gauge field are independent, the gauge field can, at the same time, generate a detectable chiral gravitational wave signal and have a negligible contribution to the scalar fluctuations, in agreement with the current CMB observations.

  13. Fundamental fermion interactions via vector bosons of unified SU(2 x SU(4 gauge fields

    Directory of Open Access Journals (Sweden)

    Eckart eMarsch

    2016-02-01

    Full Text Available Employing the fermion unification model based on the intrinsic SU(8 symmetry of a generalized Dirac equation, we discuss the fundamental interactions under the SU(8=SU(2$otimes$SU(4 symmetry group. The physics involved can describe all fermions, the leptons (electron and neutrino, and the coloured up and down quarks of the first generation in the standard model (SM by a complex SU(8 octet of Dirac spinor fields. The fermion interactions are found to be mediated by the unified SU(4 and SU(2 vector gauge boson fields, which include the photon, the gluons, and the bosons $Z$ and $W$ as well known from the SM, but also comprise new ones, namely three coloured $X$ bosons carrying a fractional hypercharge of $pm4/3$ and transmuting leptons into quarks and vice versa. The full covariant derivative of the model is derived and discussed. The Higgs mechanism gives mass to the $Z$ and $W$ bosons, but also permits one to derive the mass of the coloured $X$ boson, for which depending on the choice of the values of the coupling constant, the estimates are 35~GeV or 156~GeV, values that are well within reach of the LHC. The scalar Higgs field can also lend masses to the fermions and fix their physical values for given appropriate coupling constants to that field.

  14. Yoneda algebras of almost Koszul algebras

    Indian Academy of Sciences (India)

    School of Mathematics and Physics, University of South China, Hengyang,. Hunan, People's Republic of China. E-mail: zhenglijing817@163.com. MS received 4 September 2013; revised 14 ... (Ŵ0,Ŵ0) with multiplication defined by the Yoneda product. In the rest of the paper, we fix a finite dimensional k-algebra S ∼= k × k ...

  15. On Genetic and Evolution Algebras

    Science.gov (United States)

    Qaralleh, Izzat

    2017-03-01

    The genetic and evolution algebras generally are non-associative algebra. The concept of evolution and genetic algebras were introduced to answer the question what non-Mendelian genetics offers to mathematics. This paper we review some results of evolution and genetic algebras.

  16. Counting relations on Ockham algebras

    OpenAIRE

    Davey, Brian A.; Nguyen, Long T.; Pitkethly, Jane G.

    2015-01-01

    We find all finite Ockham algebras that admit only finitely many compatible relations (modulo a natural equivalence). Up to isomorphism and symmetry, these Ockham algebras form two countably infinite families: one family consists of the quasi-primal Ockham algebras, and the other family is a sequence of generalised Stone algebras.

  17. A Richer Understanding of Algebra

    Science.gov (United States)

    Foy, Michelle

    2008-01-01

    Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number,…

  18. Quantitative Algebraic Reasoning

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon

    2016-01-01

    We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...... equational theory whose free algebras correspond to well known structures. In each case we have finitary and continuous versions. The four cases are: Hausdorff metrics from quantitive semilattices; pWasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed...

  19. Endomorphisms of graph algebras

    DEFF Research Database (Denmark)

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D......_E of C*(E). Our results pertain both automorphisms and proper endomorphisms. Firstly, the Weyl group and the restricted Weyl group of a graph C*-algebra are introduced and investigated. In particular, criteria of outerness for automorphisms in the restricted Weyl group are found. We also show...

  20. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  1. Bundles of Banach algebras

    Directory of Open Access Journals (Sweden)

    J. W. Kitchen

    1994-01-01

    Full Text Available We study bundles of Banach algebras π:A→X, where each fiber Ax=π−1({x} is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers are commutative, we investigate how the Gelfand representation of the section space algebra Γ(π relates to the Gelfand representation of the fibers. In the general case, we investigate how adjoining an identity to the bundle π:A→X relates to the standard adjunction of identities to the fibers.

  2. Type IIA orientifolds on SU(2)-structure manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Danckaert, Thomas

    2010-11-15

    We investigate the possible supersymmetry-preserving orientifold projections of type IIA string theory on a six-dimensional background with SU(2)-structure. We find two categories of projections which preserve half of the low-energy supersymmetry, reducing the effective theory from an N=4 supergravity theory, to an N=2 supergravity. For these two cases, we impose the projection on the low-energy spectrum and reduce the effective N=4 supergravity action accordingly. We can identify the resulting gauged N=2 supergravity theory and bring the action into canonical form. We compute the scalar moduli spaces and characterize the gauged symmetries in terms of the geometry of these moduli spaces. Due to their origin in N=4 supergravity, which is a highly constrained theory, the moduli spaces are of a very simple form. We find that, for suitable background manifolds, isometries in all scalar sectors can become gauged. The obtained gaugings share many features with those of N=2 supergravities obtained previously from other G-structure compactifications. (orig.)

  3. Locally finite reducts of Heyting algebras and canonical formulas

    NARCIS (Netherlands)

    Bezhanishvili, G.; Bezhanishvili, N.

    2017-01-01

    The variety of Heyting algebras has two well-behaved locally finite reducts, the variety of bounded distributive lattices and the variety of implicative semilattices. The variety of bounded distributive lattices is generated by the →-free reducts of Heyting algebras, while the variety of implicative

  4. Locally Finite Reducts of Heyting Algebras and Canonical Formulas

    NARCIS (Netherlands)

    Bezhanishvili, Guram; Bezhanishvili, N.

    2013-01-01

    The variety of Heyting algebras has two well-behaved locally finite reducts, the variety of bounded distributive lattices and the variety of implicative semilattices. The variety of bounded distributive lattices is generated by the →-free reducts of Heyting algebras while the variety of implicative

  5. Differential Hopf algebra structures on the Universal Enveloping Algebra of a Lie Algebra

    NARCIS (Netherlands)

    van den Hijligenberg, N.W.; van den Hijligenberg, N.; Martini, Ruud

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincaré–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebrastructure of U(g).

  6. A Babylonian Geometrical Algebra.

    Science.gov (United States)

    Bidwell, James K.

    1986-01-01

    A possible method of derivation of prescriptions for solving problems, found in Babylonian cuneiform texts, is presented. It is a kind of "geometric algebra" based mainly on one figure and the manipulation of or within various areas and segments. (MNS)

  7. Linear algebra done right

    CERN Document Server

    Axler, Sheldon

    2015-01-01

    This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

  8. Supersymmetric Extension of Non-Hermitian su(2 Hamiltonian and Supercoherent States

    Directory of Open Access Journals (Sweden)

    Omar Cherbal

    2010-12-01

    Full Text Available A new class of non-Hermitian Hamiltonians with real spectrum, which are written as a real linear combination of su(2 generators in the form H=ωJ_3+αJ_−+βJ_+, α≠β, is analyzed. The metrics which allows the transition to the equivalent Hermitian Hamiltonian is established. A pseudo-Hermitian supersymmetic extension of such Hamiltonians is performed. They correspond to the pseudo-Hermitian supersymmetric systems of the boson-phermion oscillators. We extend the supercoherent states formalism to such supersymmetic systems via the pseudo-unitary supersymmetric displacement operator method. The constructed family of these supercoherent states consists of two dual subfamilies that form a bi-overcomplete and bi-normal system in the boson-phermion Fock space. The states of each subfamily are eigenvectors of the boson annihilation operator and of one of the two phermion lowering operators.

  9. Beginning algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Beginning Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in algebra. The publication first elaborates on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on solving linear systems by graphing, elimination method, graphing ordered pairs and straight lines, linear and compound inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then examines exponents and polynomials, factoring, and rational expressions. Topics include multiplication and division

  10. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  11. Introduction to abstract algebra

    CERN Document Server

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  12. Intermediate algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex

  13. Noncommutative algebra and geometry

    CERN Document Server

    De Concini, Corrado; Vavilov, Nikolai 0

    2005-01-01

    Finite Galois Stable Subgroups of Gln. Derived Categories for Nodal Rings and Projective Configurations. Crowns in Profinite Groups and Applications. The Galois Structure of Ambiguous Ideals in Cyclic Extensions of Degree 8. An Introduction to Noncommutative Deformations of Modules. Symmetric Functions, Noncommutative Symmetric Functions and Quasisymmetric Functions II. Quotient Grothendieck Representations. On the Strong Rigidity of Solvable Lie Algebras. The Role of Bergman in Invesigating Identities in Matrix Algebras with Symplectic Involution. The Triangular Structure of Ladder Functors.

  14. C*-algebras and numerical linear algebra

    CERN Document Server

    Arveson, W

    1992-01-01

    We consider problems associated with the computation of spectra of self-adjoint operators in terms of the eigenvalue distributions of their n x n sections. Under rather general circumstances, we show how these eigenvalues accumulate near points of the essential spectrum of the given operator, and we prove that their averages converge to a measure concentrated precisely on the essential spectrum. In the primary cases of interest, namely the discretized Hamiltonians of one-dimensional quantum systems, this limiting measure is associated with a tracial state on a certain simple C*-algebra. These results have led us to conclude that one must view this kind of numerical analysis in the context of C*-algebras.

  15. Minimal unitary representation of 5d superconformal algebra F(4 and AdS6/CFT5 higher spin (super-algebras

    Directory of Open Access Journals (Sweden)

    Sudarshan Fernando

    2015-01-01

    Full Text Available We study the minimal unitary representation (minrep of SO(5,2, obtained by quantization of its geometric quasiconformal action, its deformations and supersymmetric extensions. The minrep of SO(5,2 describes a massless conformal scalar field in five dimensions and admits a unique “deformation” which describes a massless conformal spinor. Scalar and spinor minreps of SO(5,2 are the 5d analogs of Dirac's singletons of SO(3,2. We then construct the minimal unitary representation of the unique 5d superconformal algebra F(4 with the even subalgebra SO(5,2×SU(2. The minrep of F(4 describes a massless conformal supermultiplet consisting of two scalar and one spinor fields. We then extend our results to the construction of higher spin AdS6/CFT5 (super-algebras. The Joseph ideal of the minrep of SO(5,2 vanishes identically as operators and hence its enveloping algebra yields the AdS6/CFT5 bosonic higher spin algebra directly. The enveloping algebra of the spinor minrep defines a “deformed” higher spin algebra for which a deformed Joseph ideal vanishes identically as operators. These results are then extended to the construction of the unique higher spin AdS6/CFT5 superalgebra as the enveloping algebra of the minimal unitary realization of F(4 obtained by the quasiconformal methods.

  16. Multicomplex algebras on polynomials and generalized Hamilton dynamics

    Science.gov (United States)

    Yamaleev, Robert M.

    2006-10-01

    Generator of the complex algebra within the framework of general formulation obeys the quadratic equation. In this paper we explore multicomplex algebra with the generator obeying n-order polynomial equation with real coefficients. This algebra induces generalized trigonometry ((n+1)-gonometry), underlies of the nth order oscillator model and nth order Hamilton equations. The solution of an evolution equation generated by (nxn) matrix is represented via the set of (n+1)-gonometric functions. The general form of the first constant of motion of the evolution equation is established.

  17. $b \\to s \\gamma$ Decay in $SU(2)_L \\times SU(2)_R \\times U(1)$ Extensions of the Standard Model

    OpenAIRE

    Cho, Peter; Misiak, Mikolaj

    1993-01-01

    The rare radiative decay $b \\to s \\gamma$ is studied in $SU(2)_L \\times SU(2)_R \\times U(1)$ extensions of the Standard Model. Matching conditions for coefficients of operators appearing in the low energy effective Hamiltonian for this process are derived, and QCD corrections to these coefficients are analyzed. The $b \\to s \\gamma$ decay rate is then calculated and compared with the corresponding Standard Model result. We find that observable deviations from Standard Model predictions can occ...

  18. Free-field realisations of the BMS{sub 3} algebra and its extensions

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Nabamita [Indian Institute of Science Education and Research,Homi Bhabha Rd, Pashan, Pune 411 008 (India); Jatkar, Dileep P. [Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad 211019 (India); Mukhi, Sunil; Neogi, Turmoli [Indian Institute of Science Education and Research,Homi Bhabha Rd, Pashan, Pune 411 008 (India)

    2016-06-06

    We construct an explicit realisation of the BMS{sub 3} algebra with nonzero central charges using holomorphic free fields. This can be extended by the addition of chiral matter to a realisation having arbitrary values for the two independent central charges. Via the introduction of additional free fields, we extend our construction to the minimally supersymmetric BMS{sub 3} algebra and to the nonlinear higher-spin BMS{sub 3}-W{sub 3} algebra. We also describe an extended system that realises both the SU(2) current algebra as well as BMS{sub 3} via the Wakimoto representation, though in this case introducing a central extension also brings in new non-central operators.

  19. Hecke algebras with unequal parameters

    CERN Document Server

    Lusztig, G

    2003-01-01

    Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...

  20. Connection Between the SU(3) Algebraic Model and Configuration Space for Bending Modes of Linear Molecules: Application to Acetylene

    Science.gov (United States)

    Renato, Lemus; María del Mar, Estezez-Fregozo

    2017-06-01

    An approach to connect the su(3) dynamical group- used to describe the bending modes of linear molecules- with configuration space is discussed. The SU(3) group may be seen as a consequence of adding a scalar boson to the SU(2) space of two degenerate harmonic oscillators. The resulting SU(3) group becomes the dynamical group for the bending degrees of freedom of linear molecules, but the connection to configuration space is not obvious. This work aims at providing this connection. Our approach is based on the basis of establishing a mapping between the algebraic and configuration states. An arbitrary operator in configuration space is then expanded in terms of generators of the dynamical algebra. The coefficients are determined through a minimization procedure and given in terms of matrix elements defined in configuration space. As an application we consider the vibrational description of the bending modes of the acetylene molecule, where the force constants are estimated in the framework of the U(3) × U(3) model.

  1. C*-algebras by example

    CERN Document Server

    Davidson, Kenneth R

    1996-01-01

    The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea

  2. Algebra II workbook for dummies

    CERN Document Server

    Sterling, Mary Jane

    2014-01-01

    To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr

  3. Constructive Learning in Undergraduate Linear Algebra

    Science.gov (United States)

    Chandler, Farrah Jackson; Taylor, Dewey T.

    2008-01-01

    In this article we describe a project that we used in our undergraduate linear algebra courses to help our students successfully master fundamental concepts and definitions and generate interest in the course. We describe our philosophy and discuss the projects overall success.

  4. Regularity of C*-algebras and central sequence algebras

    DEFF Research Database (Denmark)

    Christensen, Martin S.

    The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...

  5. Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra

    CERN Document Server

    Pitsch, Wolfgang; Zarzuela, Santiago

    2016-01-01

    This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...

  6. Quantum cluster algebra structures on quantum nilpotent algebras

    CERN Document Server

    Goodearl, K R

    2017-01-01

    All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.

  7. Differential structures in C*-algebras

    Indian Academy of Sciences (India)

    enveloping algebra non commutative differential forms and de Rham algebra. Second and higher order differential structure defined by a closed symmetric operator dom(δ) = a W∗-domain algebra. (Weaver) a W∗-domain algebra = non commutative ...

  8. A first graduate course in abstract algebra

    CERN Document Server

    Wickless, WJ

    2004-01-01

    Since abstract algebra is so important to the study of advanced mathematics, it is critical that students have a firm grasp of its principles and underlying theories before moving on to further study. To accomplish this, they require a concise, accessible, user-friendly textbook that is both challenging and stimulating. A First Graduate Course in Abstract Algebra is just such a textbook.Divided into two sections, this book covers both the standard topics (groups, modules, rings, and vector spaces) associated with abstract algebra and more advanced topics such as Galois fields, noncommutative rings, group extensions, and Abelian groups. The author includes review material where needed instead of in a single chapter, giving convenient access with minimal page turning. He also provides ample examples, exercises, and problem sets to reinforce the material. This book illustrates the theory of finitely generated modules over principal ideal domains, discusses tensor products, and demonstrates the development of det...

  9. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    Science.gov (United States)

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  10. The planar algebra associated to a Kac algebra

    Indian Academy of Sciences (India)

    of the planar algebra associated with the subfactor corresponding to (an outer action on a factor by) a finite-dimensional Kac algebra. One of the relations shows that the antipode of the Kac algebra agrees with the `rotation on 2-boxes'.

  11. Complex Algebraic Varieties

    CERN Document Server

    Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf

    1992-01-01

    The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...

  12. Complex algebraic geometry

    CERN Document Server

    Kollár, János

    1997-01-01

    This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

  13. Algebraic number theory

    CERN Document Server

    Jarvis, Frazer

    2014-01-01

    The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...

  14. Higher regulators, algebraic

    CERN Document Server

    Bloch, Spencer J

    2000-01-01

    This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.

  15. Basic linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  16. Computer Program For Linear Algebra

    Science.gov (United States)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  17. Partially ordered algebraic systems

    CERN Document Server

    Fuchs, Laszlo

    2011-01-01

    Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

  18. Principles of algebraic geometry

    CERN Document Server

    Griffiths, Phillip A

    1994-01-01

    A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top

  19. Algebraic geometric codes

    Science.gov (United States)

    Shahshahani, M.

    1991-01-01

    The performance characteristics are discussed of certain algebraic geometric codes. Algebraic geometric codes have good minimum distance properties. On many channels they outperform other comparable block codes; therefore, one would expect them eventually to replace some of the block codes used in communications systems. It is suggested that it is unlikely that they will become useful substitutes for the Reed-Solomon codes used by the Deep Space Network in the near future. However, they may be applicable to systems where the signal to noise ratio is sufficiently high so that block codes would be more suitable than convolutional or concatenated codes.

  20. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  1. Elementary algebraic geometry

    CERN Document Server

    Kendig, Keith

    2015-01-01

    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  2. Algebraic curves and cryptography

    CERN Document Server

    Murty, V Kumar

    2010-01-01

    It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on

  3. Handbook of linear algebra

    CERN Document Server

    Hogben, Leslie

    2013-01-01

    With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

  4. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  5. Helmholtz algebraic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  6. Algebra with Galois theory

    CERN Document Server

    Artin, Emil

    2007-01-01

    The present text was first published in 1947 by the Courant Institute of Mathematical Sciences of New York University. Published under the title Modern Higher Algebra. Galois Theory, it was based on lectures by Emil Artin and written by Albert A. Blank. This volume became one of the most popular in the series of lecture notes published by Courant. Many instructors used the book as a textbook, and it was popular among students as a supplementary text as well as a primary textbook. Because of its popularity, Courant has republished the volume under the new title Algebra with Galois Theory.

  7. Linear Algebra Thoroughly Explained

    CERN Document Server

    Vujičić, Milan

    2008-01-01

    Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.

  8. Algebraic number theory

    CERN Document Server

    Weiss, Edwin

    1998-01-01

    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

  9. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  10. Algebra & trigonometry I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq

  11. Twisted Quantum Affine Algebras

    Science.gov (United States)

    Chari, Vyjayanthi; Pressley, Andrew

    We give a highest weight classification of the finite-dimensional irreducible representations of twisted quantum affine algebras. As in the untwisted case, such representations are in one-to-one correspondence with n-tuples of monic polynomials in one variable. But whereas in the untwisted case n is the rank of the underlying finite-dimensional complex simple Lie algebra ?, in the twisted case n is the rank of the subalgebra of ? fixed by the diagram automorphism. The way in which such an n-tuple determines a representation is also more complicated than in the untwisted case.

  12. Quantum affine algebras

    Science.gov (United States)

    Chari, Vyjayanthi; Pressley, Andrew

    1991-12-01

    We classify the finite-dimensional irreducible representations of the quantum affine algebraU_q (hat sl_2 ) in terms of highest weights (this result has a straightforward generalization for arbitrary quantum affine algebras). We also give an explicit construction of all such representations by means of an evaluation homomorphismU_q (hat sl_2 ) to U_q (sl_2 ), first introduced by M. Jimbo. This is used to compute the trigonometric R-matrices associated to finite-dimensional representations ofU_q (hat sl_2 ).

  13. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1998-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  14. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1975-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  15. On W1+∞ 3-algebra and integrable system

    Directory of Open Access Journals (Sweden)

    Min-Ru Chen

    2015-02-01

    Full Text Available We construct the W1+∞ 3-algebra and investigate its connection with the integrable systems. Since the W1+∞ 3-algebra with a fixed generator W00 in the operator Nambu 3-bracket recovers the W1+∞ algebra, it is intrinsically related to the KP hierarchy. For the general case of the W1+∞ 3-algebra, we directly derive the KP and KdV equations from the Nambu–Poisson evolution equation with the different Hamiltonian pairs of the KP hierarchy. Due to the Nambu–Poisson evolution equation involves two Hamiltonians, the deep relationship between the Hamiltonian pairs of KP hierarchy is revealed. Furthermore we give a realization of the W1+∞ 3-algebra in terms of a complex bosonic field. Based on the Nambu 3-brackets of the complex bosonic field, we derive the (generalized nonlinear Schrödinger equation and give an application in optical soliton.

  16. Quantum teleportation and Birman-Murakami-Wenzl algebra

    Science.gov (United States)

    Zhang, Kun; Zhang, Yong

    2017-02-01

    In this paper, we investigate the relationship of quantum teleportation in quantum information science and the Birman-Murakami-Wenzl (BMW) algebra in low-dimensional topology. For simplicity, we focus on the two spin-1/2 representation of the BMW algebra, which is generated by both the Temperley-Lieb projector and the Yang-Baxter gate. We describe quantum teleportation using the Temperley-Lieb projector and the Yang-Baxter gate, respectively, and study teleportation-based quantum computation using the Yang-Baxter gate. On the other hand, we exploit the extended Temperley-Lieb diagrammatical approach to clearly show that the tangle relations of the BMW algebra have a natural interpretation of quantum teleportation. Inspired by this interpretation, we construct a general representation of the tangle relations of the BMW algebra and obtain interesting representations of the BMW algebra. Therefore, our research sheds a light on a link between quantum information science and low-dimensional topology.

  17. Denotational semantics for thread algebra

    NARCIS (Netherlands)

    Vu, T.D.

    2008-01-01

    This paper gives a denotational semantics for thread algebra (TA), an algebraic framework for the description and analysis of recent programming languages such as C# and Java [J.A. Bergstra, C.A. Middelburg, Thread algebra for strategic interleaving, Formal Aspects of Computing, in press.

  18. Process Algebra and Markov Chains

    NARCIS (Netherlands)

    Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.

    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  19. Challenges in Computational Commutative Algebra

    OpenAIRE

    Abbott, John

    2006-01-01

    In this paper we consider a number of challenges from the point of view of the CoCoA project one of whose tasks is to develop software specialized for computations in commutative algebra. Some of the challenges extend considerably beyond the boundary of commutative algebra, and are addressed to the computer algebra community as a whole.

  20. On Weak-BCC-Algebras

    Science.gov (United States)

    Thomys, Janus; Zhang, Xiaohong

    2013-01-01

    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  1. Exotic group C*-algebras

    OpenAIRE

    Wiersma, Matthew

    2014-01-01

    Let $\\Gamma$ be a discrete group. When $\\Gamma$ is nonamenable, the reduced and full group $C$*-algebras differ and it is generally believed that there should be many intermediate $C$*-algebras, however few examples are known. In this paper we give new constructions and compare existing constructions of intermediate group $C$*-algebras for both generic and specific groups $\\Gamma$.

  2. Meadow enriched ACP process algebras

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2009-01-01

    We introduce the notion of an ACP process algebra. The models of the axiom system ACP are the origin of this notion. ACP process algebras have to do with processes in which no data are involved. We also introduce the notion of a meadow enriched ACP process algebra, which is a simple generalization

  3. Galois Connections for Flow Algebras

    DEFF Research Database (Denmark)

    Filipiuk, Piotr; Terepeta, Michal Tomasz; Nielson, Hanne Riis

    2011-01-01

    We generalise Galois connections from complete lattices to flow algebras. Flow algebras are algebraic structures that are less restrictive than idempotent semirings in that they replace distributivity with monotonicity and dispense with the annihilation property; therefore they are closer to the ...... using Galois connections such that correctness of the analyses is preserved. The approach is illustrated for a mutual exclusion algorithm....

  4. An algebra of reversible computation.

    Science.gov (United States)

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  5. Orthogonal symmetries and Clifford algebras

    Indian Academy of Sciences (India)

    16]). Finite dimensional simple algebras with involution form an important class of algebras with involution whose properties are relatively well understood. By a theorem due to. Albert, a central simple K-algebra A carries an involution fixing K if ...

  6. Commutative algebra with a view toward algebraic geometry

    CERN Document Server

    Eisenbud, David

    1995-01-01

    Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...

  7. Rings of quotients of incidence algebras and path algebras

    DEFF Research Database (Denmark)

    Esparza, Eduardo Ortega

    2006-01-01

    We compute the maximal right/left/symmetric rings of quotients of finite dimensional incidence and graph algebras. We show that these rings of quotients are Morita equivalent to incidence algebras and path algebras respectively, with respect to simpler, well determined partially ordered sets and ...... and finite quivers, respectively. The geometric background of these algebras gives us an intuitive idea of the construction of their maximal ring of quotients.......We compute the maximal right/left/symmetric rings of quotients of finite dimensional incidence and graph algebras. We show that these rings of quotients are Morita equivalent to incidence algebras and path algebras respectively, with respect to simpler, well determined partially ordered sets...

  8. Discourses on Algebra

    Indian Academy of Sciences (India)

    To the Indian reader, the word discourse, evokes a respected figure interpreting divine wisdom to common folk in an accessible fash- ion. I dug a bit deeper with Google trans- late, and found that the original Russian ti- tle of Shafarevich's book was more like Se- lected Chapters of Algebra and that it was first published in a ...

  9. Real space process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1993-01-01

    The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication

  10. Deficiently extremal Gorenstein algebras

    Indian Academy of Sciences (India)

    For the given codimension g ≥ 3 and initial degree p ≥ 2, a Gorenstein algebra R/I with minimal multiplicity is extremal in the sense of Schenzel [8]. This has a nice structural implication: the minimal resolution of R/I must be pure and almost linear, and so their. Betti numbers are given by Herzog and Kühl [3] formulae.

  11. Algebraic geometry in India

    Indian Academy of Sciences (India)

    revolutionised by the introduction of new con- cepts and techniques by Grothendieck and others; this progress has been instrumental in solving outstanding and famous problems not only in algebraic geometry but also in related fields like number theory. Mathematicians from India have made influ- ential and extensive ...

  12. On the composition of an arbitrary collection of SU(2) spins: an enumerative combinatoric approach

    Science.gov (United States)

    Gyamfi, J. A.; Barone, V.

    2018-03-01

    The whole enterprise of spin compositions can be recast as simple enumerative combinatoric problems. We show here that enumerative combinatorics (Stanley 2011 Enumerative Combinatorics (Cambridge Studies in Advanced Mathematics vol 1) (Cambridge: Cambridge University Press)) is a natural setting for spin composition, and easily leads to very general analytic formulae—many of which hitherto not present in the literature. Based on it, we propose three general methods for computing spin multiplicities; namely, (1) the multi-restricted composition, (2) the generalized binomial and (3) the generating function methods. Symmetric and anti-symmetric compositions of SU(2) spins are also discussed, using generating functions. Of particular importance is the observation that while the common Clebsch–Gordan decomposition—which considers the spins as distinguishable—is related to integer compositions, the symmetric and anti-symmetric compositions (where one considers the spins as indistinguishable) are obtained considering integer partitions. The integers in question here are none other than the occupation numbers of the Holstein–Primakoff bosons. The pervasiveness of q-analogues in our approach is a testament to the fundamental role they play in spin compositions. In the appendix, some new results in the power series representation of Gaussian polynomials (or q-binomial coefficients)—relevant to symmetric and antisymmetric compositions—are presented.

  13. Pseudo-Weak-R0 Algebras

    Directory of Open Access Journals (Sweden)

    Yong Lin Liu

    2014-01-01

    Full Text Available A positive answer to the open problem of Iorgulescu on extending weak-R0 algebras and R0-algebras to the noncommutative forms is given. We show that pseudo-weak-R0 algebras are categorically isomorphic to pseudo-IMTL algebras and that pseudo-R0 algebras are categorically isomorphic to pseudo-NM algebras. Some properties, the noncommutative forms of the properties in weak-R0 algebras and R0-algebras, are investigated. The simplified axiom systems of pseudo-weak-R0 algebras and pseudo-R0 algebras are obtained.

  14. Advanced modern algebra part 2

    CERN Document Server

    Rotman, Joseph J

    2017-01-01

    This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.

  15. The finite temperature phase transition in the lattice SU(2)-Higgs model

    CERN Document Server

    Farakos, K; Rummukainen, K; Shaposhnikov, Mikhail E

    1994-01-01

    We study the finite temperature transition of SU(2)-Higgs model with lattice Monte Carlo techniques. We use dimensional reduction to transform the original 4-dimensional SU(2)-gauge + fundamental Higgs theory to an effective 3-dimensional SU(2) + adjoint Higgs + fundamental Higgs model. The simulations were performed with Higgs masses of 35 and 80 GeV; in both cases we observe a stronger first order transition than the perturbation theory predicts, indicating that the dynamics of the transition strongly depend on non-perturbative effects.

  16. Path integrals and coherent states of SU(2) and SU(1,1)

    CERN Document Server

    Inomata, Akira; Kuratsuji, Hiroshi

    1992-01-01

    The authors examine several topical subjects, commencing with a general introduction to path integrals in quantum mechanics and the group theoretical backgrounds for path integrals. Applications of harmonic analysis, polar coordinate formulation, various techniques and path integrals on SU(2) and SU(1, 1) are discussed. Soluble examples presented include particle-flux system, a pulsed oscillator, magnetic monopole, the Coulomb problem in curved space and others.The second part deals with the SU(2) coherent states and their applications. Construction and generalization of the SU(2) coherent sta

  17. Integrable hydrodynamic equations for initial chiral currents and infinite hydrodynamic chains from WZNW model and string model of WZNW type with SU(2), SO(3), SP(2), SU(∞), SO(∞), SP(∞) constant torsions

    Science.gov (United States)

    Cirilo-Lombardo, D. J.; Gershun, V. D.

    2014-09-01

    The WZNW and string models are considered in terms of the initial and invariant chiral currents assuming that the internal and external torsions coincide (anticoincide) and they are the structure constants of the SU(n), SO(n), SP(n) Lie algebras. These models are the auxiliary problems in order to construct integrable equations of hydrodynamic type. It was shown that the WZNW and string models in terms of invariant chiral currents are integrable for the constant torsion associated with the structure constants of the SU(2), SO(3), SP(2) and SU(3) algebras only. The equation of motion for the density of the first Casimir operator was obtained in the form of the inviscid Burgers equation. The solution of this equation is presented through the Lambert function. Also, a new equation of motion for the initial chiral current was found. The integrable infinite hydrodynamic chains obtained from the WZNW and string models are given in terms of invariant chiral currents with the SU(2), SO(3), SP(2) and with SU(∞), SO(∞), SP(∞) constant torsions. Also, the equations of motion for the density of any Casimir operator and new infinite-dimensional equations of hydrodynamic type for the initial chiral currents through the symmetric structure constant of SU(∞), SO(∞), SP(∞) algebras are obtained.

  18. Metriplectic Algebra for Dissipative Fluids in Lagrangian Formulation

    Directory of Open Access Journals (Sweden)

    Massimo Materassi

    2015-03-01

    Full Text Available The dynamics of dissipative fluids in Eulerian variables may be derived from an algebra of Leibniz brackets of observables, the metriplectic algebra, that extends the Poisson algebra of the frictionless limit of the system via a symmetric semidefinite component, encoding dissipative forces. The metriplectic algebra includes the conserved total Hamiltonian H, generating the non-dissipative part of dynamics, and the entropy S of those microscopic degrees of freedom draining energy irreversibly, which generates dissipation. This S is a Casimir invariant of the Poisson algebra to which the metriplectic algebra reduces in the frictionless limit. The role of S is as paramount as that of H, but this fact may be underestimated in the Eulerian formulation because S is not the only Casimir of the symplectic non-canonical part of the algebra. Instead, when the dynamics of the non-ideal fluid is written through the parcel variables of the Lagrangian formulation, the fact that entropy is symplectically invariant clearly appears to be related to its dependence on the microscopic degrees of freedom of the fluid, that are themselves in involution with the position and momentum of the parcel.

  19. SU(2) Flat Connection on Riemann Surface and Twisted Geometry with Cosmological Constant

    CERN Document Server

    Han, Muxin

    2016-01-01

    SU(2) flat connection on 2D Riemann surface is shown to relate to the generalized twisted geometry in 3D space with cosmological constant. Various flat connection quantities on Riemann surface are mapped to the geometrical quantities in discrete 3D space. We propose that the moduli space of SU(2) flat connections on Riemann surface generalizes the phase space of twisted geometry or Loop Quantum Gravity to include the cosmological constant.

  20. Three-dimensional polarization algebra.

    Science.gov (United States)

    R Sheppard, Colin J; Castello, Marco; Diaspro, Alberto

    2016-10-01

    If light is focused or collected with a high numerical aperture lens, as may occur in imaging and optical encryption applications, polarization should be considered in three dimensions (3D). The matrix algebra of polarization behavior in 3D is discussed. It is useful to convert between the Mueller matrix and two different Hermitian matrices, representing an optical material or system, which are in the literature. Explicit transformation matrices for converting the column vector form of these different matrices are extended to the 3D case, where they are large (81×81) but can be generated using simple rules. It is found that there is some advantage in using a generalization of the Chandrasekhar phase matrix treatment, rather than that based on Gell-Mann matrices, as the resultant matrices are of simpler form and reduce to the two-dimensional case more easily. Explicit expressions are given for 3D complex field components in terms of Chandrasekhar-Stokes parameters.

  1. CKM and PMNS Mixing Matrices from Discrete Subgroups of SU(2

    Directory of Open Access Journals (Sweden)

    Potter F.

    2014-07-01

    Full Text Available One of the greatest challenges in particle physics is to determine the first principles origin of the quark and lepton mixing matrices CKM and PMNS that relate the flavor states to the mass states. This first principles derivation of both the PMNS and CKM matrices utilizes quaternion generators of the three discrete (i.e., finite binary rotational subgroups of SU(2 called [3,3,2], [4,3,2], and [5,3,2] for three lepton families in R 3 and four related discrete binary rotational subgroups [3,3,3], [4,3,3], [3,4,3], and [5,3,3] represented by four quark families in R 4 . The traditional 3 3 CKM matrix is extracted as a submatrix of the 4 4 CKM4 matrix. The predicted fourth family of quarks has not been discovered yet. If these two additional quarks exist, there is the possibility that the Standard Model lagrangian may apply all the way down to the Planck scale.

  2. Real algebraic geometry

    CERN Document Server

    Bochnak, Jacek; Roy, Marie-Françoise

    1998-01-01

    This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

  3. A Process Algebra Approach to Quantum Electrodynamics

    Science.gov (United States)

    Sulis, William

    2017-12-01

    The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.

  4. Dual Algebras and A-Measures

    Directory of Open Access Journals (Sweden)

    Marek Kosiek

    2014-01-01

    Full Text Available Weak-star closures of Gleason parts in the spectrum of a function algebra are studied. These closures relate to the bidual algebra and turn out both closed and open subsets of a compact hyperstonean space. Moreover, weak-star closures of the corresponding bands of measures are reducing. Among the applications we have a complete solution of an abstract version of the problem, whether the set of nonnegative A-measures (called also Henkin measures is closed with respect to the absolute continuity. When applied to the classical case of analytic functions on a domain of holomorphy Ω⊂Cn, our approach avoids the use of integral formulae for analytic functions, strict pseudoconvexity, or some other regularity of Ω. We also investigate the relation between the algebra of bounded holomorphic functions on Ω and its abstract counterpart—the w* closure of a function algebra A in the dual of the band of measures generated by one of Gleason parts of the spectrum of A.

  5. On Fuzzy Ideals of BL-Algebras

    Science.gov (United States)

    Xin, Xiao Long

    2014-01-01

    In this paper we investigate further properties of fuzzy ideals of a BL-algebra. The notions of fuzzy prime ideals, fuzzy irreducible ideals, and fuzzy Gödel ideals of a BL-algebra are introduced and their several properties are investigated. We give a procedure to generate a fuzzy ideal by a fuzzy set. We prove that every fuzzy irreducible ideal is a fuzzy prime ideal but a fuzzy prime ideal may not be a fuzzy irreducible ideal and prove that a fuzzy prime ideal ω is a fuzzy irreducible ideal if and only if ω(0) = 1 and |Im⁡(ω)| = 2. We give the Krull-Stone representation theorem of fuzzy ideals in BL-algebras. Furthermore, we prove that the lattice of all fuzzy ideals of a BL-algebra is a complete distributive lattice. Finally, it is proved that every fuzzy Boolean ideal is a fuzzy Gödel ideal, but the converse implication is not true. PMID:24892085

  6. Split Malcev algebras

    Indian Academy of Sciences (India)

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  7. Algebra, Arithmetic, and Geometry

    CERN Document Server

    Tschinkel, Yuri

    2009-01-01

    The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont

  8. Algebra & trigonometry II essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica

  9. Modern algebra essentials

    CERN Document Server

    Lutfiyya, Lutfi A

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.

  10. Algebra of Majorana doubling.

    Science.gov (United States)

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  11. BLAS (Basic Linear Algebra Subroutines), Linear Algebra Modules and Supercomputers.

    Science.gov (United States)

    1984-12-31

    Linear Algebra Subroutines (BLAS) and linear algebra software modules in general. The need for these extensions and new sets of modules is largely due...potential computin .p"er. The participants represented most active groups in ilecar algebral , ware an were about equally divided among industry...discussions. Section 2 describes seven proposals for linear algebra software modules and Sec- tion 3 describes four presentations on the use of such

  12. Further linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Most of the introductory courses on linear algebra develop the basic theory of finite­ dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num­ ber of illustrative and worked examples, as well as many exercises that are strategi­ cally placed throughout the text. Solutions to the ex...

  13. On the bialgebra of functional graphs and differential algebras

    Directory of Open Access Journals (Sweden)

    Maurice Ginocchio

    1997-12-01

    Full Text Available We develop the bialgebraic structure based on the set of functional graphs, which generalize the case of the forests of rooted trees. We use noncommutative polynomials as generating monomials of the functional graphs, and we introduce circular and arborescent brackets in accordance with the decomposition in connected components of the graph of a mapping of {1, 2, …, n} in itself as in the frame of the discrete dynamical systems. We give applications fordifferential algebras and algebras of differential operators.

  14. The algebraic size of the family of injective operators

    Directory of Open Access Journals (Sweden)

    Bernal-González Luis

    2017-01-01

    Full Text Available In this paper, a criterion for the existence of large linear algebras consisting, except for zero, of one-to-one operators on an infinite dimensional Banach space is provided. As a consequence, it is shown that every separable infinite dimensional Banach space supports a commutative infinitely generated free linear algebra of operators all of whose nonzero members are one-to-one. In certain cases, the assertion holds for nonseparable Banach spaces.

  15. Second-Order Algebraic Theories

    Science.gov (United States)

    Fiore, Marcelo; Mahmoud, Ola

    Fiore and Hur [10] recently introduced a conservative extension of universal algebra and equational logic from first to second order. Second-order universal algebra and second-order equational logic respectively provide a model theory and a formal deductive system for languages with variable binding and parameterised metavariables. This work completes the foundations of the subject from the viewpoint of categorical algebra. Specifically, the paper introduces the notion of second-order algebraic theory and develops its basic theory. Two categorical equivalences are established: at the syntactic level, that of second-order equational presentations and second-order algebraic theories; at the semantic level, that of second-order algebras and second-order functorial models. Our development includes a mathematical definition of syntactic translation between second-order equational presentations. This gives the first formalisation of notions such as encodings and transforms in the context of languages with variable binding.

  16. Analysis and solution of algebraic-differential equations of the steam generation processes; Analisis y resolucion de ecuaciones algebraico-diferenciales de los procesos de generacion de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Herrera, Juan Anibal

    1996-10-01

    This work presents the construction, analysis and solution of an equipment`s network in steady and dynamic state from: a) The mathematical models of individual equipment and of their geometry. b) The topology let interconnections between equipment. c) The selection of a numerical method to solve simultaneously the mathematical models. The selected mathematical models represent the cycle boiler-superheater. These models were taken from the MICROTERM-300 modular simulator, which contains the simplified models of the process (feedwater, boiler, turbines, etc.) of the thermoelectric plant Francisco Perez Rios from Tula Hidalgo, Mexico. This work was developed in the following stages: 1.- The selection of an appropiate numerical integration method to solve simultaneously the algebraic and differential equations of the equipment conforming the cycle boiler-superheater. 2.- The adaptation of individual mathematical models to allow changes in their geometry, operating conditions and different forms of connection. Also, this models were modified to have a representation of the equations to allow their analysis and an efficient organization to get their solution. 3.- The application of two computer-aided tools to trace possible coding errors in the mathematical models: a) A syntax analyzer which detect assignation and reference errors of variables. b) A structural analyzer to obtain the structural matrix, which relate the variables and the equations in a model. During this stage some improvements to these computer-aided tools were suggested. 4.- The individual testing of each mathematical model in steady and dynamic state in order to: a) Validate the mathematical models. b) Analyze the behavior of the variables of the mathematical models with different parameters, different operating conditions and different initial conditions. 5.- Lastly, the coupling between equipment analyzed to form an equipment`s network what represent the cycle boiler-superheater and the testing in

  17. How Structure Sense for Algebraic Expressions or Equations Is Related to Structure Sense for Abstract Algebra

    Science.gov (United States)

    Novotna, Jarmila; Hoch, Maureen

    2008-01-01

    Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…

  18. The graded Lie algebra of general relativity

    OpenAIRE

    Reiterer, Michael; Trubowitz, Eugene

    2014-01-01

    We construct a graded Lie algebra in which a solution to the vacuum Einstein equations is any element of degree 1 whose bracket with itself is zero. Each solution generates a cochain complex, whose first cohomology is linearized gravity about that solution. We gauge-fix to get a smaller cochain complex with the same cohomologies (deformation retraction). The new complex is much smaller, it consists of the solution spaces of linear homogeneous wave equations (symmetric hyperbolic equations). T...

  19. Categorical Algebra and its Applications

    CERN Document Server

    1988-01-01

    Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.

  20. Kleene Algebra and Bytecode Verification

    Science.gov (United States)

    2016-04-27

    Bytecode 2005 Preliminary Version Kleene Algebra and Bytecode Verification Lucja Kot 1 Dexter Kozen 2 Department of Computer Science Cornell...first-order methods that inductively annotate program points with abstract values. In [6] we introduced a second-order approach based on Kleene algebra ...form a left-handed Kleene algebra . The dataflow labeling is not achieved by inductively labeling the program with abstract values, but rather by

  1. Applications of Computer Algebra Conference

    CERN Document Server

    Martínez-Moro, Edgar

    2017-01-01

    The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.

  2. Introduction to algebraic independence theory

    CERN Document Server

    Philippon, Patrice

    2001-01-01

    In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.

  3. Algebra I Essentials For Dummies

    CERN Document Server

    Sterling, Mary Jane

    2010-01-01

    With its use of multiple variables, functions, and formulas algebra can be confusing and overwhelming to learn and easy to forget. Perfect for students who need to review or reference critical concepts, Algebra I Essentials For Dummies provides content focused on key topics only, with discrete explanations of critical concepts taught in a typical Algebra I course, from functions and FOILs to quadratic and linear equations. This guide is also a perfect reference for parents who need to review critical algebra concepts as they help students with homework assignments, as well as for adult learner

  4. Chiral algebras of class S

    Energy Technology Data Exchange (ETDEWEB)

    Beem, Christopher [Institute for Advanced Study,Einstein Dr., Princeton, NJ 08540 (United States); Peelaers, Wolfger; Rastelli, Leonardo [C.N. Yang Institute for Theoretical Physics, SUNY,Stony Brook, NY 11794-3840 (United States); Rees, Balt C. van [Theory Group, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland)

    2015-05-05

    Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.

  5. Computational aspects of algebraic curves

    CERN Document Server

    Shaska, Tanush

    2005-01-01

    The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove

  6. Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras

    NARCIS (Netherlands)

    Put, Marius van der

    1999-01-01

    The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.

  7. Abstract Algebra to Secondary School Algebra: Building Bridges

    Science.gov (United States)

    Christy, Donna; Sparks, Rebecca

    2015-01-01

    The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

  8. Calculations on Lie Algebra of the Group of Affine Symplectomorphisms

    Directory of Open Access Journals (Sweden)

    Zuhier Altawallbeh

    2017-01-01

    Full Text Available We find the image of the affine symplectic Lie algebra gn from the Leibniz homology HL⁎(gn to the Lie algebra homology H⁎Lie(gn. The result shows that the image is the exterior algebra ∧⁎(wn generated by the forms wn=∑i=1n(∂/∂xi∧∂/∂yi. Given the relevance of Hochschild homology to string topology and to get more interesting applications, we show that such a map is of potential interest in string topology and homological algebra by taking into account that the Hochschild homology HH⁎-1(U(gn is isomorphic to H⁎-1Lie(gn,U(gnad. Explicitly, we use the alternation of multilinear map, in our elements, to do certain calculations.

  9. Geometric Algebra Computing

    CERN Document Server

    Corrochano, Eduardo Bayro

    2010-01-01

    This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int

  10. Handbook of algebra

    CERN Document Server

    Hazewinkel, M

    2008-01-01

    Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it i

  11. Matlab linear algebra

    CERN Document Server

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to

  12. Statecharts Via Process Algebra

    Science.gov (United States)

    Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance

    1999-01-01

    Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics

  13. Kinship Algebra Expert System (KAES): A Software Implementation of a Cultural Theory

    OpenAIRE

    Read, Dwight W

    2006-01-01

    The computer program Kinship Algebra Expert System (KAES) provides a graphically based framework for constructing, if possible, a generative algebraic model for the structure of a kinship terminology (the terms used to refer to one’s kin). The algebraic modeling is based on a theory of kinship terminologies elaborated through writing the software program. The theory relates the properties and structure of kinship terminologies to an underlying logic that the KAES program helps uncover and mod...

  14. Algebraic Statistics for Network Models

    Science.gov (United States)

    2014-02-19

    use algebra, combinatorics and Markov bases to give a constructing way of answering this question for ERGMs of interest. Question 2: How do we model...for every function. 06/06/13 Petrović. Manuscripts 8, 10. Invited lecture at the Scientific Session on Commutative Algebra and Combinatorics at the

  15. Patterns to Develop Algebraic Reasoning

    Science.gov (United States)

    Stump, Sheryl L.

    2011-01-01

    What is the role of patterns in developing algebraic reasoning? This important question deserves thoughtful attention. In response, this article examines some differing views of algebraic reasoning, discusses a controversy regarding patterns, and describes how three types of patterns--in contextual problems, in growing geometric figures, and in…

  16. Process algebra for performance evaluation

    NARCIS (Netherlands)

    Hermanns, H.; Herzog, Ulrich; Katoen, Joost P.

    2002-01-01

    This paper surveys the theoretical developments in the field of stochastic process algebras, process algebras where action occurrences may be subject to a delay that is determined by a random variable. A huge class of resource-sharing systems – like large-scale computers, client–server

  17. Algebraic Methods in Plane Geometry

    Indian Academy of Sciences (India)

    Srimath

    group, taxicab number, Carmi- chael number. Algebraic Methods in Plane Geometry. 2. Cubic Curves. Shailesh A Shirali. Shailesh Shirali heads a. Community Mathematics. Center at Rishi Valley. School (KFI). He has a ..... Ian Stewart and David Tall, Algebraic Number Theory and Fermat's Last. Theorem, A K Peters, 2002.

  18. Templates for Linear Algebra Problems

    NARCIS (Netherlands)

    Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der

    1995-01-01

    The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and

  19. A distinguished real Banach algebra

    Indian Academy of Sciences (India)

    ˆfnzn . With respect to the usual pointwise operations of addition, multiplication and scalar- multiplication by reals, Cs(T) and As become real algebras. When As is endowed with the supremum norm, then As is isomorphically isometric to the real Banach algebra, AR(D), of all holomorphic functions on the disk that are real on.

  20. Astro Algebra [CD-ROM].

    Science.gov (United States)

    1997

    Astro Algebra is one of six titles in the Mighty Math Series from Edmark, a comprehensive line of math software for students from kindergarten through ninth grade. Many of the activities in Astro Algebra contain a unique technology that uses the computer to help students make the connection between concrete and abstract mathematics. This software…

  1. Linear Algebra and Image Processing

    Science.gov (United States)

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  2. Revisiting timing in process algebra

    NARCIS (Netherlands)

    Middelburg, C.A.

    We shortly review the framework of process algebras with timing presented by Baeten and Middelburg [Handbook of Process Algebra, Elsevier, 2001, Chapter 10]. In order to cover processes that are capable of performing certain actions at all points in some time interval, we add integration to the

  3. Evolution of Hall resistivity and spectral function with doping in the SU(2) theory of cuprates

    Science.gov (United States)

    Morice, C.; Montiel, X.; Pépin, C.

    2017-10-01

    Recent transport experiments in the cuprate superconductors linked the opening of the pseudogap to a change in electronic dispersion [S. Badoux et al., Nature (London) 531, 210 (2015), 10.1038/nature16983]. Transport measurements showed that the carrier density sharply changes from x to 1 +x at the pseudogap critical doping, in accordance with the change from Fermi arcs at low doping to a large hole Fermi surface at high doping. The SU(2) theory of cuprates shows that short-range antiferromagnetic correlations cause the arising of both charge and superconducting orders, which are related by an SU(2) symmetry. The fluctuations associated with this symmetry form a pseudogap phase. Here we derive the renormalized electronic propagator under the SU(2) dome, and calculate the spectral functions and transport quantities of the renormalized bands. We show that their evolution with doping matches both spectral and transport measurements.

  4. Computer Algebra Recipes for Mathematical Physics

    CERN Document Server

    Enns, Richard H

    2005-01-01

    Over two hundred novel and innovative computer algebra worksheets or "recipes" will enable readers in engineering, physics, and mathematics to easily and rapidly solve and explore most problems they encounter in their mathematical physics studies. While the aim of this text is to illustrate applications, a brief synopsis of the fundamentals for each topic is presented, the topics being organized to correlate with those found in traditional mathematical physics texts. The recipes are presented in the form of stories and anecdotes, a pedagogical approach that makes a mathematically challenging subject easier and more fun to learn. Key features: * Uses the MAPLE computer algebra system to allow the reader to easily and quickly change the mathematical models and the parameters and then generate new answers * No prior knowledge of MAPLE is assumed; the relevant MAPLE commands are introduced on a need-to-know basis * All MAPLE commands are indexed for easy reference * A classroom-tested story/anecdote format is use...

  5. Lattice simulation of a center symmetric three dimensional effective theory for SU(2) Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Dominik

    2010-11-17

    We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for theWilson line which includes a ''fuzzy'' bag term to generate non-perturbative fluctuations between Z(2) degenerate ground states. The model is studied in the limit where the gauge fields are set to zero as well as the full model with gauge fields. We confirm that, at moderately weak coupling, the ''fuzzy'' bag term leads to eigenvalue repulsion in a finite region above the deconfining phase transition which shrinks in the extreme weak-coupling limit. A non-trivial Z(N) symmetric vacuum arises in the confined phase. The effective potential for the Polyakov loop in the theory with gauge fields is extracted from the simulations including all modes of the loop as well as for cooled configurations where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram. Other results include the exact location of the phase boundary in the plane spanned by the coupling parameters, correlation lengths of several operators in the magnetic and electric sectors and the spatial string tension. We also present results from simulations of the full 4D Yang-Mills theory and attempt to make a qualitative comparison to the 3D effective theory. (orig.)

  6. Waterloo Workshop on Computer Algebra

    CERN Document Server

    Zima, Eugene; WWCA-2016; Advances in computer algebra : in honour of Sergei Abramov's' 70th birthday

    2018-01-01

    This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016.   This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.

  7. Representations of affine Hecke algebras

    CERN Document Server

    Xi, Nanhua

    1994-01-01

    Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest

  8. Elements of algebraic coding systems

    CERN Document Server

    Cardoso da Rocha, Jr, Valdemar

    2014-01-01

    Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...

  9. Basic algebraic geometry, v.2

    CERN Document Server

    Shafarevich, Igor Rostislavovich

    1994-01-01

    Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...

  10. On the SU(2 vertical stroke 1) WZNW model and its statistical mechanics applications

    Energy Technology Data Exchange (ETDEWEB)

    Saleur, H. [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[University of Southern California, Los Angeles, CA (United States). Dept. of Physics; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-11-15

    Motivated by a careful analysis of the Laplacian on the supergroup SU(2 vertical stroke 1) we formulate a proposal for the state space of the SU(2 vertical stroke 1) WZNW model. We then use properties of sl(2 vertical stroke 1) characters to compute the partition function of the theory. In the special case of level k=1 the latter is found to agree with the properly regularized partition function for the continuum limit of the integrable sl(2 vertical stroke 1)3- anti 3 super-spin chain. Some general conclusions applicable to other WZNW models (in particular the case k=-1/2) are also drawn. (orig.)

  11. Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study

    DEFF Research Database (Denmark)

    Zohar, Erez; Wahl, Thorsten B.; Burrello, Michele

    2016-01-01

    limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study...... of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation....

  12. Rota-Baxter algebras and the Hopf algebra of renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi-Fard, K.

    2006-06-15

    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  13. (Modular Effect Algebras are Equivalent to (Frobenius Antispecial Algebras

    Directory of Open Access Journals (Sweden)

    Dusko Pavlovic

    2017-01-01

    Full Text Available Effect algebras are one of the generalizations of Boolean algebras proposed in the quest for a quantum logic. Frobenius algebras are a tool of categorical quantum mechanics, used to present various families of observables in abstract, often nonstandard frameworks. Both effect algebras and Frobenius algebras capture their respective fragments of quantum mechanics by elegant and succinct axioms; and both come with their conceptual mysteries. A particularly elegant and mysterious constraint, imposed on Frobenius algebras to characterize a class of tripartite entangled states, is the antispecial law. A particularly contentious issue on the quantum logic side is the modularity law, proposed by von Neumann to mitigate the failure of distributivity of quantum logical connectives. We show that, if quantum logic and categorical quantum mechanics are formalized in the same framework, then the antispecial law of categorical quantum mechanics corresponds to the natural requirement of effect algebras that the units are each other's unique complements; and that the modularity law corresponds to the Frobenius condition. These correspondences lead to the equivalence announced in the title. Aligning the two formalisms, at the very least, sheds new light on the concepts that are more clearly displayed on one side than on the other (such as e.g. the orthogonality. Beyond that, it may also open up new approaches to deep and important problems of quantum mechanics (such as the classification of complementary observables.

  14. Head First Algebra A Learner's Guide to Algebra I

    CERN Document Server

    Pilone, Tracey

    2008-01-01

    Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i

  15. Applications of computer algebra

    CERN Document Server

    1985-01-01

    Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with in­ creasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equa­ tion and obtains a closed for...

  16. MATLAB matrix algebra

    CERN Document Server

    Pérez López, César

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...

  17. Algebraic topology and concurrency

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric

    2006-01-01

    We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...... differences between ordinary and directed homotopy through examples. We also relate the topological view to a combinatorial view of concurrent programs closer to transition systems, through the notion of a cubical set. Finally we apply some of these concepts to the proof of the safeness of a two......-phase protocol, well-known and used in concurrent database theory. We end up with a list of problems from both a mathematical and a computer-scientific point of view....

  18. Space-time algebra

    CERN Document Server

    Hestenes, David

    2015-01-01

    This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, a...

  19. Quantized Algebra I Texts

    Science.gov (United States)

    DeBuvitz, William

    2014-03-01

    I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a popular Algebra I textbook, and I was surprised and dismayed by how it treated simultaneous equations and quadratic equations. The coefficients are always simple integers in examples and exercises, even when they are related to physics. This is probably a good idea when these topics are first presented to the students. It makes it easy to solve simultaneous equations by the method of elimination of a variable. And it makes it easy to solve some quadratic equations by factoring. The textbook also discusses the method of substitution for linear equations and the use of the quadratic formula, but only with simple integers.

  20. Algebraic Multigrid Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    2017-08-01

    AMG is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the BoomerAMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL and is very similar to the AMG2013 benchmark with additional optimizations. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem with a 27-point stencil, which can be scaled up and is designed to solve a very large problem. A second problem simulates a time dependent problem, in which successively various smnllcr systems are solved.

  1. Algebra for cryptologists

    CERN Document Server

    Meijer, Alko R

    2016-01-01

    This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has been described as the science of the integrity of information, covering all aspects like confidentiality, authenticity and non-repudiation and also including the protocols required for achieving these aims. In both theory and practice it requires notions and constructions from three major disciplines: computer science, electronic engineering and mathematics. Within mathematics, group theory, the theory of finite fields, and elementary number theory as well as some topics not normally covered in courses in algebra, such as the theory of Boolean functions and Shannon theory, are involved. Although essentially self-contained, a degree of mathematical maturity on the part of the reader is assumed, corresponding to his o...

  2. A new (in)finite-dimensional algebra for quantum integrable models

    Energy Technology Data Exchange (ETDEWEB)

    Baseilhac, Pascal [Laboratoire de Mathematiques et Physique Theorique CNRS/UMR 6083, Universite de Tours, Parc de Grandmont, 37200 Tours (France)]. E-mail: baseilha@phys.univ-tours.fr; Koizumi, Kozo [Laboratoire de Mathematiques et Physique Theorique CNRS/UMR 6083, Universite de Tours, Parc de Grandmont, 37200 Tours (France)]. E-mail: kozo.koizumi@lmpt.univ-tours.fr

    2005-08-08

    A new (in)finite-dimensional algebra which is a fundamental dynamical symmetry of a large class of (continuum or lattice) quantum integrable models is introduced and studied in details. Finite-dimensional representations are constructed and mutually commuting quantities-which ensure the integrability of the system-are written in terms of the fundamental generators of the new algebra. Relation with the deformed Dolan-Grady integrable structure recently discovered by one of the authors and Terwilliger's tridiagonal algebras is described. Remarkably, this (in)finite-dimensional algebra is a 'q-deformed' analogue of the original Onsager's algebra arising in the planar Ising model. Consequently, it provides a new and alternative algebraic framework for studying massive, as well as conformal, quantum integrable models.

  3. A new (in)finite-dimensional algebra for quantum integrable models

    Science.gov (United States)

    Baseilhac, Pascal; Koizumi, Kozo

    2005-08-01

    A new (in)finite-dimensional algebra which is a fundamental dynamical symmetry of a large class of (continuum or lattice) quantum integrable models is introduced and studied in details. Finite-dimensional representations are constructed and mutually commuting quantities—which ensure the integrability of the system—are written in terms of the fundamental generators of the new algebra. Relation with the deformed Dolan-Grady integrable structure recently discovered by one of the authors and Terwilliger's tridiagonal algebras is described. Remarkably, this (in)finite-dimensional algebra is a " q-deformed" analogue of the original Onsager's algebra arising in the planar Ising model. Consequently, it provides a new and alternative algebraic framework for studying massive, as well as conformal, quantum integrable models.

  4. Thermodynamics of SU(2) quantum Yang-Mills theory and CMB anomalies

    CERN Document Server

    Hofmann, Ralf

    2013-01-01

    A brief review of effective SU(2) Yang-Mills thermodynamics in the deconfining phase is given, including the construction of the thermal ground-state estimate in terms of an inert, adjoint scalar field $\\phi$, based on non-propagating (anti)selfdual field configurations of topological charge unity. We explain why the screening physics of an SU(2) photon is subject to an electric-magnetically dual interpretation. Next, we elucidate how a low-frequency excess of line temperature in the Cosmic Microwave Background (CMB) determines the value of the critical temperature of the deconfining-preconfining phase transition of an SU(2) Yang-Mills theory postulated to describe photon propagation, and we describe how, starting at a redshift of about unity, SU(2) photons collectively work 3D temperature depressions into the CMB. Upon projection along a line of sight, a given depression influences the present CMB sky in a cosmologically local way, possibly explaining the large-angle anomalies confirmed recently by the Planc...

  5. SU(2)$_{\\tiny\\mbox{CMB}}$ at high redshifts and the value of $H_0$

    CERN Document Server

    Hahn, Steffen

    2016-01-01

    We investigate a high-$z$ cosmological model to compute the co-moving sound horizon $r_s$ at baryon freeze-out following hydrogen recombination. This model assumes a replacement of the conventional CMB photon gas by SU(2) Yang-Mills thermodynamics, three flavors of massless neutrinos ($N_\

  6. Supersymmetric solutions of SU(2-Fayet–Iliopoulos-gauged N=2, d=4 supergravity

    Directory of Open Access Journals (Sweden)

    Tomás Ortín

    2017-03-01

    Full Text Available We explore the construction of supersymmetric solutions of theories of N=2,d=4 supergravity with a SU(2 gauging and SU(2 Fayet–Iliopoulos terms. In these theories an SU(2 isometry subgroup of the Special-Kähler manifold is gauged together with a SU(2 R-symmetry subgroup. We construct several solutions of the CP‾3 quadratic model directly in four dimensions and of the ST[2,6] model by dimensional reduction of the solutions found by Cariglia and Mac Conamhna in N=(1,0,d=6 supergravity with the same kind of gauging. In the CP‾3 model, we construct an AdS2×S2 solution which is only 1/8 BPS and an R×H3 solutions that also preserves 1 of the 8 possible supersymmetries. We show how to use dimensional reduction as in the ungauged case to obtain Rn×Sm and also AdSn×Sm-type solutions (with different radii in 5- and 4-dimensions from the 6-dimensional AdS3×S3 solution.

  7. Scattering lengths in SU(2) gauge theory with two fundamental fermions

    DEFF Research Database (Denmark)

    Arthur, R.; Drach, V.; Hansen, Martin Rasmus Lundquist

    2014-01-01

    We investigate non perturbatively scattering properties of Goldstone Bosons in an SU(2) gauge theory with two Wilson fermions in the fundamental representation. Such a theory can be used to build extensions of the Standard Model that unifies Technicolor and pseudo Goldstone composite Higgs models...

  8. Mass anomalous dimension and running of the coupling in SU(2) with six fundamental fermions

    DEFF Research Database (Denmark)

    Bursa, Francis; Del Debbio, Luigi; Keegan, Liam

    2010-01-01

    We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. By using the Schr\\"odinger Functional method we measure the running of the coupling and the fermion mass over a wide range of length scales. We observe very slow running of the coupling and construct an estimator for the...

  9. Light Asymmetric Dark Matter on the Lattice: SU(2) Technicolor with Two Fundamental Flavors

    DEFF Research Database (Denmark)

    Lewis, Randy; Pica, Claudio; Sannino, Francesco

    2012-01-01

    The SU(2) gauge theory with two massless Dirac flavors constitutes the building block of several models of Technicolor. Furthermore it has also been used as a template for the construction of a natural light asymmetric, or mixed type, dark matter candidate. We use explicit lattice simulations to ...

  10. A correction to the Immirzi parameter of SU(2 spin networks

    Directory of Open Access Journals (Sweden)

    M. Sadiq

    2015-02-01

    Full Text Available The elegant predictions of loop quantum gravity are obscured by the free Immirzi parameter (γ. Dreyer (2003, considering the asymptotic quasinormal modes spectrum of a black hole, proposed that γ may be fixed by letting the j=1 transitions of spin networks as the dominant processes contributing to the black hole area, as opposed to the expected j=1/2 transitions. This suggested that the gauge group of the theory might be SO(3 rather than SU(2. Corichi (2003, maintaining SU(2 as the underlying gauge group, and invoking the principle of local fermion-number conservation, reported the same value of γ for j=1 processes as obtained by Dreyer. In this note, preserving the SU(2 structure of the theory, and considering j=1 transitions as the dominant processes, we point out that the value of γ is in fact twice the value reported by these authors. We arrive at this result by assuming the asymptotic quasinormal modes themselves as dynamical systems obeying SU(2 symmetry.

  11. Confining vs. conformal scenario for SU(2) with 2 adjoint fermions. Mesonic spectrum

    DEFF Research Database (Denmark)

    Pica, Claudio; Del Debbio, Luigi; Lucini, Biagio

    2010-01-01

    The Minimal Walking Technicolor (MWT) model, based on the SU(2) gauge group with two Dirac adjoint fermions, is expected to lie close to the lower boundary of the conformal window. As such, it is believed to possess a dynamics different enough from QCD to be a viable candidate for a Technicolor t...

  12. Mass anomalous dimension of SU(2) using the spectral density method

    CERN Document Server

    Suorsa, Joni M; Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari; Tuominen, Kimmo; Tähtinen, Sara

    2016-01-01

    SU(2) with N_f = 6 and N_f = 8 are believed to have an infrared conformal fixed point. We use the spectral density method cross referenced with the mass step scaling method to evaluate the coupling constant dependence of the mass anomalous dimension for massless HEX smeared, clover improved Wilson fermions with Schr\\"odinger functional boundary conditions.

  13. On 2D and 3D solitons in SU(2) gluo-dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bogolubskaya, Alla; Bogolubsky, Igor [Joint Institute for Nuclear Research - JINR, Joliot-Curie st., 6, Moskovskaya obl., 141980, Dubna (Russian Federation)

    2010-07-01

    We plan to indicate the possibility of soliton existence in 2D and 3D SU(2) gluo-dynamics. Hamiltonians in terms of radial functions will be presented. Localized in space field distributions which provide local minima to these Hamiltonians are studied. Their physical implications are discussed. (author)

  14. Anatomy of isolated monopole in Abelian projection od SU(2) lattice gauge theory

    CERN Document Server

    Belavin, V A; Veselov, A I

    2001-01-01

    The structure of the isolated static monopolies in the maximum Abelian projection of the SU(2) gluodynamics on the lattice studied. The standard parametrization of the coupling matrix was used by determining the maximum Abelian projection of the R functional maximization relative to all scale transformations. The monopole radius R approx = 0.06 fm is evaluated

  15. Weinberg Angle Derivation from Discrete Subgroups of SU(2 and All That

    Directory of Open Access Journals (Sweden)

    Potter F.

    2015-01-01

    Full Text Available The Weinberg angle W of the Standard Model of leptons and quarks is derived from specific discrete (i.e., finite subgroups of the electroweak local gauge group SU(2 L U(1 Y . In addition, the cancellation of the triangle anomaly is achieved even when there are four quark families and three lepton families!

  16. An SU(2) symmetry of the one-dimensional spin-1 XY model

    CERN Document Server

    Kitazawa, A; Nomura, K

    2003-01-01

    We show that the one-dimensional spin-1 XY model has an additional SU(2) symmetry for the open boundary condition and for an artificial one. We can explain some degeneracies of excitation states which were reported in previous numerical studies. (letter to the editor)

  17. Gradient flow and IR fixed point in SU(2) with Nf=8 flavors

    DEFF Research Database (Denmark)

    Leino, Viljami; Karavirta, Tuomas; Rantaharju, Jarno

    2015-01-01

    We study the running of the coupling in SU(2) gauge theory with 8 massless fundamental representation fermion flavours, using the gradient flow method with the Schr\\"odinger functional boundary conditions. Gradient flow allows us to measure robust continuum limit for the step scaling function...

  18. Running coupling in SU(2) gauge theory with two adjoint fermions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari

    2016-01-01

    We study SU(2) gauge theory with two Dirac fermions in the adjoint representation of the gauge group on the lattice. Using clover improved Wilson fermion action with hypercubic truncated stout smearing we perform simulations at larger coupling than before. We measure the evolution of the coupling...

  19. The gradient flow running coupling in SU2 with 8 flavors

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Karavirta, Tuomas; Leino, Viljami

    2014-01-01

    We present preliminary results of the gradient flow running coupling with Dirichlet boundary condition in the SU(2) gauge theory with 8 fermion flavours. Improvements to the gradient flow measurement allow us to obtain a robust continuum limit. The results are consistent with perturbative running...

  20. Abstract algebra an introduction with applications

    CERN Document Server

    Robinson, Derek JS

    2015-01-01

    This is the second edition of the introduction to abstract algebra. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. There is ample material here for a two semester course in abstract algebra.

  1. Network algebra for synchronous and asynchronous dataflow

    NARCIS (Netherlands)

    Bergstra, J.A.; Stefanescu, G.

    1994-01-01

    Network algebra (NA) is proposed as a uniform algebraic framework for the description (and analysis) of dataflow networks. The core of this algebraic setting is provided by an equational theory called Basic Network Algebra (BNA). It constitutes a selection of primitives and identities from the

  2. Galilean contractions of W-algebras

    Directory of Open Access Journals (Sweden)

    Jørgen Rasmussen

    2017-09-01

    Full Text Available Infinite-dimensional Galilean conformal algebras can be constructed by contracting pairs of symmetry algebras in conformal field theory, such as W-algebras. Known examples include contractions of pairs of the Virasoro algebra, its N=1 superconformal extension, or the W3 algebra. Here, we introduce a contraction prescription of the corresponding operator-product algebras, or equivalently, a prescription for contracting tensor products of vertex algebras. With this, we work out the Galilean conformal algebras arising from contractions of N=2 and N=4 superconformal algebras as well as of the W-algebras W(2,4, W(2,6, W4, and W5. The latter results provide evidence for the existence of a whole new class of W-algebras which we call Galilean W-algebras. We also apply the contraction prescription to affine Lie algebras and find that the ensuing Galilean affine algebras admit a Sugawara construction. The corresponding central charge is level-independent and given by twice the dimension of the underlying finite-dimensional Lie algebra. Finally, applications of our results to the characterisation of structure constants in W-algebras are proposed.

  3. Planar algebra of the subgroup-subfactor

    Indian Academy of Sciences (India)

    G in terms of operator matrices. We also obtain an identification between the planar algebra of the fixed algebra sub- factor RG ⊂ RH and the G-invariant planar subalgebra of the planar algebra of the 'flip' of ⋆n. Keywords. Planar algebras; subfactors; standard invariant. 1. Introduction. For every pair H ⊂ G of finite groups, ...

  4. Cohomology of 3-dimensional color Lie algebras

    NARCIS (Netherlands)

    Piontkovski, Dmitri; Silvestrov, Sergei D.

    2007-01-01

    We develop the cohomology theory of color Lie algebras due to Scheunert-Zhang in a framework of non-homogeneous quadratic Koszul algebras. In this approach, the Chevalley-Eilenberg complex of a color Lie algebra becomes a standard Koszul complex for its universal enveloping algebra, providing a

  5. Multifractal vector fields and stochastic Clifford algebra.

    Science.gov (United States)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  6. Algebra a teaching and source book

    CERN Document Server

    Shult, Ernest

    2015-01-01

    This book presents a graduate-level course on modern algebra. It can be used as a teaching book – owing to the copious exercises – and as a source book for those who wish to use the major theorems of algebra. The course begins with the basic combinatorial principles of algebra: posets, chain conditions, Galois connections, and dependence theories. Here, the general Jordan–Holder Theorem becomes a theorem on interval measures of certain lower semilattices. This is followed by basic courses on groups, rings and modules; the arithmetic of integral domains; fields; the categorical point of view; and tensor products. Beginning with introductory concepts and examples, each chapter proceeds gradually towards its more complex theorems. Proofs progress step-by-step from first principles. Many interesting results reside in the exercises, for example, the proof that ideals in a Dedekind domain are generated by at most two elements. The emphasis throughout is on real understanding as opposed to memorizing a catech...

  7. Homology theory on algebraic varieties

    CERN Document Server

    Wallace, Andrew H

    1958-01-01

    Homology Theory on Algebraic Varieties, Volume 6 deals with the principles of homology theory in algebraic geometry and includes the main theorems first formulated by Lefschetz, one of which is interpreted in terms of relative homology and another concerns the Poincaré formula. The actual details of the proofs of these theorems are introduced by geometrical descriptions, sometimes aided with diagrams. This book is comprised of eight chapters and begins with a discussion on linear sections of an algebraic variety, with emphasis on the fibring of a variety defined over the complex numbers. The n

  8. Introduction to algebra and trigonometry

    CERN Document Server

    Kolman, Bernard

    1981-01-01

    Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are

  9. Coxeter groups and Hopf algebras

    CERN Document Server

    Aguiar, Marcelo

    2011-01-01

    An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary backgrou

  10. Study guide for college algebra

    CERN Document Server

    Snow, James W; Shapiro, Arnold

    1981-01-01

    Study Guide for College Algebra is a supplemental material for the basic text, College Algebra. Its purpose is to make the learning of college algebra and trigonometry easier and enjoyable.The book provides detailed solutions to exercises found in the text. Students are encouraged to use the study guide as a learning tool during the duration of the course, a reviewer prior to an exam, a reference book, and as a quick overview before studying a section of the text. The Study Guide and Solutions Manual consists of four major components: basic concepts that should be learned from each unit, what

  11. Algebraic and stochastic coding theory

    CERN Document Server

    Kythe, Dave K

    2012-01-01

    Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.

  12. Test bank for college algebra

    CERN Document Server

    Kolman, Bernard; Levitan, Michael L

    1985-01-01

    Test Bank for College Algebra, Second Edition is a supplementary material for the text, College Algebra, Second Edition. The book is intended for use by mathematics teachers.The book contains standard tests for each chapter in the textbook. Each set of test aims to evaluate the level of understanding the student has achieved during the course. The answers for each chapter test and the final exam are found at the end of the book.Mathematics teachers teaching college algebra will find the book very useful.

  13. Infinite-Dimensional Lie Algebras

    Science.gov (United States)

    Kac, Victor G.

    1994-08-01

    This is the third, substantially revised edition of this important monograph by a giant in the field of mathematics. The book is concerned with Kac-Moody algebras, a particular class of infinite-dimensional Lie algebras, and their representations. Each chapter begins with a motivating discussion and ends with a collection of exercises with hints to the more challenging problems. The theory has applications in many areas of mathematics, and Lie algebras have been significant in the study of fundamental particles, including string theory, so this book should appeal to mathematical physicists, as well as mathematicians.

  14. Introduction to applied algebraic systems

    CERN Document Server

    Reilly, Norman R

    2009-01-01

    This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as

  15. Lectures on Algebraic Geometry I

    CERN Document Server

    Harder, Gunter

    2012-01-01

    This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho

  16. An algorithm for analysis of the structure of finitely presented Lie algebras

    Directory of Open Access Journals (Sweden)

    Vladimir P. Gerdt

    1997-12-01

    Full Text Available We consider the following problem: what is the most general Lie algebra satisfying a given set of Lie polynomial equations? The presentation of Lie algebras by a finite set of generators and defining relations is one of the most general mathematical and algorithmic schemes of their analysis. That problem is of great practical importance, covering applications ranging from mathematical physics to combinatorial algebra. Some particular applications are constructionof prolongation algebras in the Wahlquist-Estabrook method for integrability analysis of nonlinear partial differential equations and investigation of Lie algebras arising in different physical models. The finite presentations also indicate a way to q-quantize Lie algebras. To solve this problem, one should perform a large volume of algebraic transformations which is sharply increased with growth of the number of generators and relations. For this reason, in practice one needs to use a computer algebra tool. We describe here an algorithm for constructing the basis of a finitely presented Lie algebra and its commutator table, and its implementation in the C language. Some computer results illustrating our algorithmand its actual implementation are also presented.

  17. κ-Minkowski Spacetimes and DSR Algebras: Fresh Look and Old Problems

    Directory of Open Access Journals (Sweden)

    Andrzej Borowiec

    2010-10-01

    Full Text Available Some classes of Deformed Special Relativity (DSR theories are reconsidered within the Hopf algebraic formulation. For this purpose we shall explore a minimal framework of deformed Weyl-Heisenberg algebras provided by a smash product construction of DSR algebra. It is proved that this DSR algebra, which uniquely unifies κ-Minkowski spacetime coordinates with Poincaré generators, can be obtained by nonlinear change of generators from undeformed one. Its various realizations in terms of the standard (undeformed Weyl-Heisenberg algebra opens the way for quantum mechanical interpretation of DSR theories in terms of relativistic (Stückelberg version Quantum Mechanics. On this basis we review some recent results concerning twist realization of κ-Minkowski spacetime described as a quantum covariant algebra determining a deformation quantization of the corresponding linear Poisson structure. Formal and conceptual issues concerning quantum κ-Poincaré and κ-Minkowski algebras as well as DSR theories are discussed. Particularly, the so-called ''q-analog'' version of DSR algebra is introduced. Is deformed special relativity quantization of doubly special relativity remains an open question. Finally, possible physical applications of DSR algebra to description of some aspects of Planck scale physics are shortly recalled.

  18. Pre-Algebra Essentials For Dummies

    CERN Document Server

    Zegarelli, Mark

    2010-01-01

    Many students worry about starting algebra. Pre-Algebra Essentials For Dummies provides an overview of critical pre-algebra concepts to help new algebra students (and their parents) take the next step without fear. Free of ramp-up material, Pre-Algebra Essentials For Dummies contains content focused on key topics only. It provides discrete explanations of critical concepts taught in a typical pre-algebra course, from fractions, decimals, and percents to scientific notation and simple variable equations. This guide is also a perfect reference for parents who need to review critical pre-algebra

  19. Modules Over Color Hom-Poisson Algebras

    OpenAIRE

    Bakayoko, Ibrahima

    2014-01-01

    In this paper we introduce color Hom-Poisson algebras and show that every color Hom-associative algebra has a non-commutative Hom-Poisson algebra structure in which the Hom-Poisson bracket is the commutator bracket. Then we show that color Poisson algebras (respectively morphism of color Poisson algebras) turn to color Hom-Poisson algebras (respectively morphism of Color Hom-Poisson algebras) by twisting the color Poisson structure. Next we prove that modules over color Hom–associative algebr...

  20. Topological Partial *-ALGEBRAS:. Basic Properties and Examples

    Science.gov (United States)

    Antoine, J.-P.; Bagarello, F.; Trapani, C.

    Let {A} be a partial *-algebra endowed with a topology τ that makes it into a locally convex topological vector space {A} {[ τ ]}. Then {A} is called a topological partial *-algebra if it satisfies a number of conditions, which all amount to require that the topology τ fits with the multiplier structure of {A}. Besides the obvious cases of topological quasi *-algebras and CQ*-algebras, we examine several classes of potential topological partial *-algebras, either function spaces (lattices of Lp spaces on [0, 1] or on ℝ, amalgam spaces), or partial *-algebras of operators (operators on a partial inner product space, O*-algebras).

  1. Lectures on algebraic quantum field theory and operator algebras

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Berlin Univ. (Germany). Institut fuer Theoretische Physik. E-mail: schroer@cbpf.br

    2001-04-01

    In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)

  2. Connections between algebra, combinatorics, and geometry

    CERN Document Server

    Sather-Wagstaff, Sean

    2014-01-01

    Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...

  3. Asymptotic aspect of derivations in Banach algebras.

    Science.gov (United States)

    Roh, Jaiok; Chang, Ick-Soon

    2017-01-01

    We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.

  4. Cartooning in Algebra and Calculus

    Science.gov (United States)

    Moseley, L. Jeneva

    2014-01-01

    This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.

  5. A Menu of Algebraic Delights.

    Science.gov (United States)

    Mathematics Teacher, 1986

    1986-01-01

    Included are brief reports on an algebra quiz in a menu format; two activity sheets on base two; and an alternative method of teaching least common multiple and greatest common factor, and related ideas, with six lessons outlined. (MNS)

  6. Ada Linear-Algebra Program

    Science.gov (United States)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  7. Computational linear and commutative algebra

    CERN Document Server

    Kreuzer, Martin

    2016-01-01

    This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...

  8. Classical theory of algebraic numbers

    CERN Document Server

    Ribenboim, Paulo

    2001-01-01

    Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...

  9. Reverse engineering: algebraic boundary representations to constructive solid geometry.

    Energy Technology Data Exchange (ETDEWEB)

    Buchele, S. F.; Ellingson, W. A.

    1997-12-17

    Recent advances in reverse engineering have focused on recovering a boundary representation (b-rep) of an object, often for integration with rapid prototyping. This boundary representation may be a 3-D point cloud, a triangulation of points, or piecewise algebraic or parametric surfaces. This paper presents work in progress to develop an algorithm to extend the current state of the art in reverse engineering of mechanical parts. This algorithm will take algebraic surface representations as input and will produce a constructive solid geometry (CSG) description that uses solid primitives such as rectangular block, pyramid, sphere, cylinder, and cone. The proposed algorithm will automatically generate a CSG solid model of a part given its algebraic b-rep, thus allowing direct input into a CAD system and subsequent CSG model generation.

  10. Differential Algebra for Model Comparison

    OpenAIRE

    Harrington, Heather A.; Ho, Kenneth L.; Meshkat, Nicolette

    2016-01-01

    We present a method for rejecting competing models from noisy time-course data that does not rely on parameter inference. First we characterize ordinary differential equation models in only measurable variables using differential algebra elimination. Next we extract additional information from the given data using Gaussian Process Regression (GPR) and then transform the differential invariants. We develop a test using linear algebra and statistics to reject transformed models with the given d...

  11. Distribution theory of algebraic numbers

    CERN Document Server

    Yang, Chung-Chun

    2008-01-01

    The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.

  12. Nineteen papers on algebraic semigroups

    CERN Document Server

    Aizenshtat, A Ya; Podran, N E; Ponizovskii, IS; Shain, BM

    1988-01-01

    This volume contains papers selected by leading specialists in algebraic semigroups in the U.S., the United Kingdom, and Australia. Many of the papers strongly influenced the development of algebraic semigroups, but most were virtually unavailable outside the U.S.S.R. Written by some of the most prominent Soviet researchers in the field, the papers have a particular emphasis on semigroups of transformations. Boris Schein of the University of Arkansas is the translator.

  13. Generalized Bunce-Deddens algebras

    OpenAIRE

    Orfanos, Stefanos

    2008-01-01

    We define a broad class of crossed product C*-algebras of the form C(G)xG, where G is a discrete countable amenable residually finite group, and G is a profinite completion of G. We show that they are unital separable simple nuclear quasidiagonal C*-algebras, or real rank zero, stable rank one, with comparability of projections and with a unique trace.

  14. Nonlinear holomorphic supersymmetry, Dolan-Grady relations and Onsager algebra

    Energy Technology Data Exchange (ETDEWEB)

    Klishevich, Sergey M. E-mail: sklishev@lauca.usach.cl; Plyushchay, Mikhail S. E-mail: mplyushc@lauca.usach.cl

    2002-04-29

    Recently, it was noticed by us that the nonlinear holomorphic supersymmetry of order n is contained in N, n>1 (n-HSUSY) has an algebraic origin. We show that the Onsager algebra underlies n-HSUSY and investigate the structure of the former in the context of the latter. A new infinite set of mutually commuting charges is found which, unlike those from the Dolan-Grady set, include the terms quadratic in the Onsager algebra generators. This allows us to find the general form of the superalgebra of n-HSUSY and fix it explicitly for the cases of n=2,3,4,5,6. The similar results are obtained for a new, contracted form of the Onsager algebra generated via the contracted Dolan-Grady relations. As an application, the algebraic structure of the known 1D and 2D systems with n-HSUSY is clarified and a generalization of the construction to the case of nonlinear pseudo-supersymmetry is proposed. Such a generalization is discussed in application to some integrable spin models and with its help we obtain a family of quasi-exactly solvable systems appearing in the PT-symmetric quantum mechanics.

  15. Instantons, vortices and confinement in SU(2) Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, A.L.L. de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Oxman, L.E.; Teixeira, B.F.I. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    Full text: In this work, we derive a recently proposed Abelian model to describe the interaction of correlated instantons, center vortices, and dual fields in three dimensional SU(2) Yang-Mills theory. Correlated monopoles and center vortices are believed to play a relevant role in accommodating the different properties of the confining string in Yang-Mills theories, receiving support from lattice simulations. In fact, scenarios based on either monopoles or closed center vortices are only partially successful to describe the expected behavior of the potential between quarks. At asymptotic distances, this potential should be linear and depend on the representation of the subgroup Z(N) of SU(N) (N-ality). At intermediate scales, it should posses Casimir scaling. The Cho-Faddeev- Niemi representation (CFN) can be used to associate monopoles with defects of the local color frame used to decompose the gauge fields. This possible frame defects can be extended to describe not only monopoles but also center vortices, correlated or not. In these scenarios, one of the difficulties is how to deal with the integration over an ensemble of extended objects, after considering a phenomenological parametrization of their properties, such as stiffness, interactions with dual fields, and interactions between them. This is particularly severe in four dimensional theories where center vortices generate two dimensional extended world surfaces. However, in three dimensions center vortices are stringlike and an ensemble of world lines is naturally associated with a second quantized field theory. The aim of this work is presenting a careful derivation of an effective model, considering instantons and center vortices in D=3 SU(3) theory, after parameterizing some intrinsic physical properties that these objects could present. One of the fundamental ingredients will be the adoption of recent techniques borrowed from polymer physics, where the extended objects are also one dimensional. This

  16. Thermodynamics of SU(2 quantum Yang-Mills theory and CMB anomalies

    Directory of Open Access Journals (Sweden)

    Hofmann Ralf

    2014-04-01

    Full Text Available A brief review of effective SU(2 Yang-Mills thermodynamics in the deconfining phase is given, including the construction of the thermal ground-state estimate in terms of an inert, adjoint scalar field φ, based on non-propagating (antiselfdual field configurations of topological charge unity. We also discuss kinematic constraints on interacting propagating gauge fields implied by the according spatial coarse-graining, and we explain why the screening physics of an SU(2 photon is subject to an electric-magnetically dual interpretation. This argument relies on the fact that only (anticalorons of scale parameter ρ ∼ |φ|−1 contribute to the coarse-graining required for thermal-ground-state emergence at temperature T. Thus, use of the effective gauge coupling e in the (anticaloron action is justified, yielding the value ħ for the latter at almost all temperatures. As a consequence, the indeterministic transition of initial to final plane waves caused by an effective, pointlike vertex is fundamentally mediated in Euclidean time by a single (anticaloron being part of the thermal ground state. Next, we elucidate how a low-frequency excess of line temperature in the Cosmic Microwave Background (CMB determines the value of the critical temperature of the deconfining-preconfining phase transition of an SU(2 Yang-Mills theory postulated to describe photon propagation, and we describe how, starting at a redshift of about unity, SU(2 photons collectively work 3D temperature depressions into the CMB. Upon projection along a line of sight, a given depression influences the present CMB sky in a cosmologically local way, possibly explaining the large-angle anomalies confirmed recently by the Planck collaboration. Finally, six relativistic polarisations residing in the SU(2 vector modes roughly match the number of degrees of freedom in cosmic neutrinos (Planck which would disqualify the latter as radiation. Indeed, if interpreted as single center

  17. Parallel algorithms for numerical linear algebra

    CERN Document Server

    van der Vorst, H

    1990-01-01

    This is the first in a new series of books presenting research results and developments concerning the theory and applications of parallel computers, including vector, pipeline, array, fifth/future generation computers, and neural computers.All aspects of high-speed computing fall within the scope of the series, e.g. algorithm design, applications, software engineering, networking, taxonomy, models and architectural trends, performance, peripheral devices.Papers in Volume One cover the main streams of parallel linear algebra: systolic array algorithms, message-passing systems, algorithms for p

  18. Esercizi scelti di algebra

    CERN Document Server

    Chirivì, Rocco; Dvornicich, Roberto

    2017-01-01

    Questo libro – primo di due volumi -  presenta oltre 250 esercizi scelti di algebra ricavati dai compiti d'esame dei corsi di Aritmetica tenuti dagli autori all'Università di Pisa. Ogni esercizio viene presentato con una o più soluzioni accuratamente redatte con linguaggio e notazioni uniformi. Caratteristica distintiva del libro è che gli esercizi proposti sono tutti diversi uno dall'altro e le soluzioni richiedono sempre una piccola idea originale; ciò rende il libro unico nel genere. Gli argomenti di questo primo volume sono: principio d'induzione, combinatoria, congruenze, gruppi abeliani, anelli commutativi, polinomi, estensioni di campi, campi finiti. Il libro contiene inoltre una dettagliata sezione di richiami teorici e può essere usato come libro di riferimento per lo studio. Una serie di esercizi preliminari introduce le tecniche principali da usare per confrontarsi con i testi d'esame proposti. Il volume è rivolto a tutti gli studenti del primo anno dei corsi di laur ea in Matematica e Inf...

  19. Algebras in genetics

    CERN Document Server

    Wörz-Busekros, Angelika

    1980-01-01

    The purpose of these notes is to give a rather complete presentation of the mathematical theory of algebras in genetics and to discuss in detail many applications to concrete genetic situations. Historically, the subject has its origin in several papers of Etherington in 1939- 1941. Fundamental contributions have been given by Schafer, Gonshor, Holgate, Reiers¢l, Heuch, and Abraham. At the moment there exist about forty papers in this field, one survey article by Monique Bertrand from 1966 based on four papers of Etherington, a paper by Schafer and Gonshor's first paper. Furthermore Ballonoff in the third section of his book "Genetics and Social Structure" has included four papers by Etherington and Reiers¢l's paper. Apparently a complete review, in par­ ticular one comprising more recent results was lacking, and it was difficult for students to enter this field of research. I started to write these notes in spring 1978. A first german version was finished at the end of that year. Further revision and tran...

  20. Free probability on Hecke algebras and certain group C^{*}-algebras induced by Hecke algebras

    Directory of Open Access Journals (Sweden)

    Ilwoo Cho

    2016-01-01

    Full Text Available In this paper, by establishing free-probabilistic models on the Hecke algebras \\(\\mathcal{H}\\left(GL_{2}(\\mathbb{Q}_{p}\\right\\ induced by \\(p\\-adic number fields \\(\\mathbb{Q}_{p}\\, we construct free probability spaces for all primes \\(p\\. Hilbert-space representations are induced by such free-probabilistic structures. We study \\(C^{*}\\-algebras induced by certain partial isometries realized under the representations.

  1. Extended supersymmetric BMS{sub 3} algebras and their free field realisations

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Nabamita [Indian Institute of Science Education and Research,Homi Bhabha Road, Pashan, Pune 411 008 (India); Jatkar, Dileep P. [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad, 211019 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Lodato, Ivano; Mukhi, Sunil; Neogi, Turmoli [Indian Institute of Science Education and Research,Homi Bhabha Road, Pashan, Pune 411 008 (India)

    2016-11-09

    We study N=(2,4,8) supersymmetric extensions of the three dimensional BMS algebra (BMS{sub 3}) with most generic possible central extensions. We find that N-extended supersymmetric BMS{sub 3} algebras can be derived by a suitable contraction of two copies of the extended superconformal algebras. Extended algebras from all the consistent contractions are obtained by scaling left-moving and right-moving supersymmetry generators symmetrically, while Virasoro and R-symmetry generators are scaled asymmetrically. On the way, we find that the BMS/GCA correspondence does not in general hold for supersymmetric systems. Using the β-γ and the b-c systems, we construct free field realisations of all the extended super-BMS{sub 3} algebras.

  2. Certain number-theoretic episodes in algebra

    CERN Document Server

    Sivaramakrishnan, R

    2006-01-01

    Many basic ideas of algebra and number theory intertwine, making it ideal to explore both at the same time. Certain Number-Theoretic Episodes in Algebra focuses on some important aspects of interconnections between number theory and commutative algebra. Using a pedagogical approach, the author presents the conceptual foundations of commutative algebra arising from number theory. Self-contained, the book examines situations where explicit algebraic analogues of theorems of number theory are available. Coverage is divided into four parts, beginning with elements of number theory and algebra such as theorems of Euler, Fermat, and Lagrange, Euclidean domains, and finite groups. In the second part, the book details ordered fields, fields with valuation, and other algebraic structures. This is followed by a review of fundamentals of algebraic number theory in the third part. The final part explores links with ring theory, finite dimensional algebras, and the Goldbach problem.

  3. The Standard Model Algebra - a summary

    Science.gov (United States)

    Cristinel Stoica, Ovidiu

    2017-08-01

    A generation of leptons and quarks and the gauge symmetries of the Standard Model can be obtained from the Clifford algebra ℂℓ 6. An instance of ℂℓ 6 is implicitly generated by the Dirac algebra combined with the electroweak symmetry, while the color symmetry gives another instance of ℂℓ 6 with a Witt decomposition. The minimal mathematical model proposed here results by identifying the two instances of ℂℓ 6. The left ideal decomposition generated by the Witt decomposition represents the leptons and quarks, and their antiparticles. The SU(3)c and U(1)em symmetries of the SM are the symmetries of this ideal decomposition. The patterns of electric charges, colors, chirality, weak isospins, and hypercharges, follow from this, without predicting additional particles or forces, or proton decay. The electroweak symmetry is present in its broken form, due to the geometry. The predicted Weinberg angle is given by sin2 W = 0.25. The model shares common features with previously known models, particularly with Chisholm and Farwell, 1996, Trayling and Baylis, 2004, and Furey, 2016.

  4. Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study

    Energy Technology Data Exchange (ETDEWEB)

    Zohar, Erez, E-mail: erez.zohar@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Wahl, Thorsten B. [Rudolf Peierls Centre for Theoretical Physics, Oxford, 1 Keble Road, OX1 3NP (United Kingdom); Burrello, Michele, E-mail: michele.burrello@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Cirac, J. Ignacio [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany)

    2016-11-15

    Over the last years, Projected Entangled Pair States have demonstrated great power for the study of many body systems, as they naturally describe ground states of gapped many body Hamiltonians, and suggest a constructive way to encode and classify their symmetries. The PEPS study is not only limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation.

  5. From instantons to sphalerons: Time-dependent periodic solutions of SU(2)-Higgs theory

    Energy Technology Data Exchange (ETDEWEB)

    Frost, K.L.; Yaffe, L.G. [Department of Physics, University of Washington, Seattle, Washington 98105-1560 (United States)

    1999-11-01

    We solve numerically for periodic, spherically symmetric, classical solutions of SU(2)-Higgs theory in four-dimensional Euclidean space. In the limit of short periods the solutions approach tiny instanton{endash}anti-instanton superpositions while, for longer periods, the solutions merge with the static sphaleron. A previously predicted bifurcation point, where two branches of periodic solutions meet, appears for Higgs boson masses larger than 3.091M{sub W}. {copyright} {ital 1999} {ital The American Physical Society}

  6. Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buividovich, P.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Polikarpov, M.I. [Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2011-11-15

    We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)

  7. First results for SU(2) Yang-Mills with one adjoint Dirac Fermion

    CERN Document Server

    Athenodorou, Andreas; Bergner, Georg; Lucini, Biagio; Patella, Agostino

    2013-01-01

    We present a first exploratory study of SU(2) gauge theory with one Dirac flavour in the adjoint representation. We provide initial results for the spectroscopy and the anomalous dimension for the chiral condensate. Our investigation indicates that the theory is conformal or near-conformal, with an anomalous dimension of order one. A discussion of the relevance of these findings in relation to walking technicolor scenarios is also presented.

  8. Template Composite Dark Matter : SU(2) gauge theory with 2 fundamental flavours

    CERN Document Server

    Drach, Vincent; Pica, Claudio; Rantaharju, Jarno; Sannino, Francesco

    2015-11-13

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon exchange computing the electric polarizability of the DM candidate. Finally, we briefly discuss the viability of the model given the present experimental constraints.

  9. Quantum entanglement in the one-dimensional spin-orbital SU (2 )⊗XXZ model

    Science.gov (United States)

    You, Wen-Long; Horsch, Peter; Oleś, Andrzej M.

    2015-08-01

    We investigate the phase diagram and the spin-orbital entanglement of a one-dimensional SU (2 )⊗XXZ model with SU(2) spin exchange and anisotropic XXZ orbital exchange interactions and negative exchange coupling constant. As a unique feature, the spin-orbital entanglement entropy in the entangled ground states increases here linearly with system size. In the case of Ising orbital interactions, we identify an emergent phase with long-range spin-singlet dimer correlations triggered by a quadrupling of correlations in the orbital sector. The peculiar translational-invariant spin-singlet dimer phase has finite von Neumann entanglement entropy and survives when orbital quantum fluctuations are included. It even persists in the isotropic SU (2 )⊗SU (2) limit. Surprisingly, for finite transverse orbital coupling, the long-range spin-singlet correlations also coexist in the antiferromagnetic spin and alternating orbital phase making this phase also unconventional. Moreover, we also find a complementary orbital singlet phase that exists in the isotropic case but does not extend to the Ising limit. The nature of entanglement appears essentially different from that found in the frequently discussed model with positive coupling. Furthermore, we investigate the collective spin and orbital wave excitations of the disentangled ferromagnetic-spin/ferro-orbital ground state and explore the continuum of spin-orbital excitations. Interestingly, one finds among the latter excitations two modes of exciton bound states. Their spin-orbital correlations differ from the remaining continuum states and exhibit logarithmic scaling of the von Neumann entropy with increasing system size. We demonstrate that spin-orbital excitons can be experimentally explored using resonant inelastic x-ray scattering, where the strongly entangled exciton states can be easily distinguished from the spin-orbital continuum.

  10. Light Kaluza Klein States in Randall-Sundrum Models with Custodial SU(2)

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela; /Fermilab; Ponton, Eduardo; /Columbia U.; Santiago, Jose; /Fermilab; Wagner, Carlos E.M.; /Argonne /Chicago U., EFI /KICP, Chicago

    2006-07-01

    We consider Randall-Sundrum scenarios based on SU(2){sub L} x SU(2){sub R} and a discrete parity exchanging L with R. The custodial and parity symmetries can be used to make the tree level contribution to the T parameter and the anomalous couplings of the bottom quark to the Z very small. We show that the resulting quantum numbers typically induce a negative T parameter at one loop that, together with the positive value of the S parameter, restrict considerably these models. There are nevertheless regions of parameter space that successfully reproduce the fit to electroweak precision observables with light Kaluza-Klein excitations accessible at colliders. We consider models of gauge-Higgs unification that implement the custodial and parity symmetries and find that the electroweak data singles out a very well defined region in parameter space. In this region one typically finds light gauge boson Kaluza-Klein excitations as well as light SU(2){sub L} singlet, and sometimes also doublet, fermionic states, that mix with the top quark, and that may yield interesting signatures at future colliders.

  11. Systematic construction of spin liquids on the square lattice from tensor networks with SU(2) symmetry

    CERN Document Server

    Mambrini, Matthieu; Poilblanc, Didier

    2016-01-01

    We elaborate a simple classification scheme of all rank-5 SU(2)-spin rotational symmetric tensors according to i) the on-site physical spin-$S$, (ii) the local Hilbert space $V^{\\otimes 4}$ of the four virtual (composite) spins attached to each site and (iii) the irreducible representations of the $C_{4v}$ point group of the square lattice. We apply our scheme to draw a complete list of all SU(2)-symmetric translationally and rotationally-invariant Projected Entangled Pair States (PEPS) with bond dimension $D\\leqslant 6$. All known SU(2)-symmetric PEPS on the square lattice are recovered and simple generalizations are provided in some cases. More generally, to each of our symmetry class can be associated a $({\\cal D}-1)$-dimensional manifold of spin liquids (potentially) preserving lattice symmetries and defined in terms of ${\\cal D}$ independent tensors of a given bond dimension $D$. In addition, generic (low-dimensional) families of PEPS explicitly breaking either (i) particular point-group lattice symmetri...

  12. Effect of SU(2) symmetry on many-body localization and thermalization

    Science.gov (United States)

    Protopopov, Ivan V.; Ho, Wen Wei; Abanin, Dmitry A.

    2017-07-01

    The many-body localized (MBL) phase is characterized by a complete set of quasilocal integrals of motion and area-law entanglement of excited eigenstates. We study the effect of non-Abelian continuous symmetries on MBL, considering the case of SU(2 ) symmetric disordered spin chains. The SU(2 ) symmetry imposes strong constraints on the entanglement structure of the eigenstates, precluding conventional MBL. We construct a fixed-point Hamiltonian, which realizes a nonergodic (but non-MBL) phase characterized by eigenstates having logarithmic scaling of entanglement with the system size, as well as an incomplete set of quasilocal integrals of motion. We study the response of such a phase to local symmetric perturbations, finding that even weak perturbations induce multispin resonances. We conclude that the nonergodic phase is generally unstable and that SU(2 ) symmetry implies thermalization. The approach introduced in this Rapid Communication can be used to study dynamics in disordered systems with non-Abelian symmetries, and provides a starting point for searching nonergodic phases beyond conventional MBL.

  13. Double-partition Quantum Cluster Algebras

    DEFF Research Database (Denmark)

    Jakobsen, Hans Plesner; Zhang, Hechun

    2012-01-01

    A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double parti- tions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping...... together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis....

  14. Principles of linear algebra with Mathematica

    CERN Document Server

    Shiskowski, Kenneth M

    2013-01-01

    A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings,

  15. Finite-dimensional division algebras over fields

    CERN Document Server

    Jacobson, Nathan

    2009-01-01

    Finite-Dimensional Division Algebras over fields determine, by the Wedderburn Theorem, the semi-simple finite-dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. The book concentrates on those algebras that have an involution. Algebras with involution appear in many contexts; they arose first in the study of the so-called 'multiplication algebras of Riemann matrices'. The largest part of the book is the fifth chapter, dealing with involutorial simple algebras of finite dimension over a field. Of parti

  16. Elliptic algebra, Frenkel-Kac construction and root of unity limit

    Science.gov (United States)

    Itoyama, H.; Oota, T.; Yoshioka, R.

    2017-09-01

    We argue that the level-1 elliptic algebra Uq, p(\\widehat{g}) is a dynamical symmetry realized as a part of 2d/5d correspondence where the Drinfeld currents are the screening currents to the q-Virasoro/W block in the 2d side. For the case of Uq, p(\\widehat{sl}(2)) , the level-1 module has a realization by an elliptic version of the Frenkel-Kac construction. The module admits the action of the deformed Virasoro algebra. In a rth root of unity limit of p with q2 → 1 , the {Z}r -parafermions and a free boson appear and the value of the central charge that we obtain agrees with that of the 2d coset CFT with para-Virasoro symmetry, which corresponds to the 4d N=2 SU(2) gauge theory on {R}^4/{Z}r .

  17. Algebra 2 linear algebra, Galois theory, representation theory, group extensions and Schur multiplier

    CERN Document Server

    Lal, Ramji

    2017-01-01

    This is the second in a series of three volumes dealing with important topics in algebra. Volume 2 is an introduction to linear algebra (including linear algebra over rings), Galois theory, representation theory, and the theory of group extensions. The section on linear algebra (chapters 1–5) does not require any background material from Algebra 1, except an understanding of set theory. Linear algebra is the most applicable branch of mathematics, and it is essential for students of science and engineering As such, the text can be used for one-semester courses for these students. The remaining part of the volume discusses Jordan and rational forms, general linear algebra (linear algebra over rings), Galois theory, representation theory (linear algebra over group algebras), and the theory of extension of groups follow linear algebra, and is suitable as a text for the second and third year students specializing in mathematics. .

  18. Linear algebra applications using Matlab software

    Directory of Open Access Journals (Sweden)

    Cornelia Victoria Anghel

    2005-10-01

    Full Text Available The paper presents two ways of special matrix generating using some functions included in the MatLab software package. The MatLab software package contains a set of functions that generate special matrixes used in the linear algebra applications and the signal processing from different activity fields. The paper presents two tipes of special matrixes that can be generated using written sintaxes in the dialog window of the MatLab software and for the command validity we need to press the Enter task. The applications presented in the paper represent eamples of numerical calculus using the MatLab software and belong to the scientific field „Computer Assisted Mathematics” thus creating the symbiosis between mathematics and informatics.

  19. Discrete event systems in dioid algebra and conventional algebra

    CERN Document Server

    Declerck, Philippe

    2013-01-01

    This book concerns the use of dioid algebra as (max, +) algebra to treat the synchronization of tasks expressed by the maximum of the ends of the tasks conditioning the beginning of another task - a criterion of linear programming. A classical example is the departure time of a train which should wait for the arrival of other trains in order to allow for the changeover of passengers.The content focuses on the modeling of a class of dynamic systems usually called "discrete event systems" where the timing of the events is crucial. Events are viewed as sudden changes in a process which i

  20. Dynamical systems of algebraic origin

    CERN Document Server

    Schmidt, Klaus

    1995-01-01

    Although much of classical ergodic theory is concerned with single transformations and one-parameter flows, the subject inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multidimensional symmetry groups. However, the wealth of concrete and natural examples which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. The purpose of this book is to help remedy this scarcity of explicit examples by introducing a class of continuous Zd-actions diverse enough to exhibit many of the new phenomena encountered in the transition from Z to Zd, but which nevertheless lends itself to systematic study: the Zd-actions by automorphisms of compact, abelian groups. One aspect of these actions, not surprising in itself but quite striking in its extent and depth nonetheless, is the connection with commutative algebra and arithmetical algebraic geometry. The algebraic framework resulting...

  1. Probability on real Lie algebras

    CERN Document Server

    Franz, Uwe

    2016-01-01

    This monograph is a progressive introduction to non-commutativity in probability theory, summarizing and synthesizing recent results about classical and quantum stochastic processes on Lie algebras. In the early chapters, focus is placed on concrete examples of the links between algebraic relations and the moments of probability distributions. The subsequent chapters are more advanced and deal with Wigner densities for non-commutative couples of random variables, non-commutative stochastic processes with independent increments (quantum Lévy processes), and the quantum Malliavin calculus. This book will appeal to advanced undergraduate and graduate students interested in the relations between algebra, probability, and quantum theory. It also addresses a more advanced audience by covering other topics related to non-commutativity in stochastic calculus, Lévy processes, and the Malliavin calculus.

  2. Logarithmic exotic conformal Galilean algebras

    Energy Technology Data Exchange (ETDEWEB)

    Henkel, Malte, E-mail: Malte.henkel@univ-lorraine.fr [Groupe de Physique Statistique, Institut Jean Lamour (CNRS UMR 7198), Université de Lorraine Nancy, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy Cedex (France); Hosseiny, Ali, E-mail: al_hosseiny@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G.C. Evin, Tehran 19839 (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Rouhani, Shahin, E-mail: rouhani@ipm.ir [Department of Physics, Sharif University of Technology, P.O. Box 11165-9161, Tehran (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2014-02-15

    Logarithmic representations of the conformal Galilean algebra (CGA) and the Exotic Conformal Galilean algebra (ECGA) are constructed. This can be achieved by non-decomposable representations of the scaling dimensions or the rapidity indices, specific to conformal Galilean algebras. Logarithmic representations of the non-exotic CGA lead to the expected constraints on scaling dimensions and rapidities and also on the logarithmic contributions in the co-variant two-point functions. On the other hand, the ECGA admits several distinct situations which are distinguished by different sets of constraints and distinct scaling forms of the two-point functions. Two distinct realisations for the spatial rotations are identified as well. This is the first concrete example of a reducible, but non-decomposable representation, without logarithmic terms. Such cases had been anticipated before.

  3. Topics in quaternion linear algebra

    CERN Document Server

    Rodman, Leiba

    2014-01-01

    Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses...

  4. Order units in a C-algebra

    Indian Academy of Sciences (India)

    Abstract. Order unit property of a positive element in a *-algebra is defined. It is proved that precisely projections satisfy this order theoretic property. This way, unital hereditary *-subalgebras of a *-algebra are characterized.

  5. Applied matrix algebra in the statistical sciences

    CERN Document Server

    Basilevsky, Alexander

    2005-01-01

    This comprehensive text offers teachings relevant to both applied and theoretical branches of matrix algebra and provides a bridge between linear algebra and statistical models. Appropriate for advanced undergraduate and graduate students. 1983 edition.

  6. Quantum Groupoids Acting on Semiprime Algebras

    Directory of Open Access Journals (Sweden)

    Inês Borges

    2011-01-01

    Full Text Available Following Linchenko and Montgomery's arguments we show that the smash product of an involutive weak Hopf algebra and a semiprime module algebra, satisfying a polynomial identity, is semiprime.

  7. Enveloping σ-C C C-algebra of a smooth Frechet algebra crossed ...

    Indian Academy of Sciences (India)

    ... enveloping -*-algebra R E ( S ( R , A ∞ , ) ) of the smooth Schwartz crossed product R S ( R , A ∞ , ) of the Frechet algebra A ∞ of C ∞ -elements of is isomorphic to the -*-crossed product R C ∗ ( R , E ( A ) , ) of the enveloping -*-algebra () of by the induced action. When is a hermitian Q -algebra, ...

  8. Computational triadic algebras of signs

    Energy Technology Data Exchange (ETDEWEB)

    Zadrozny, W. [T.J. Watson Research Center, Yorktown Heights, NY (United States)

    1996-12-31

    We present a finite model of Peirce`s ten classes of signs. We briefly describe Peirce`s taxonomy of signs; we prove that any finite collection of signs can be extended to a finite algebra of signs in which all interpretants are themselves being interpreted; and we argue that Peirce`s ten classes of signs can be defined using constraints on algebras of signs. The paper opens the possibility of defining multimodal cognitive agents using Peirce`s classes of signs, and is a first step towards building a computational logic of signs based on Peirce`s taxonomies.

  9. Algebraic Varieties and System Design

    DEFF Research Database (Denmark)

    Aabrandt, Andreas

    Design and analysis of networks have many applications in the engineering sciences. This dissertation seeks to contribute to the methods used in the analysis of networks with a view towards assisting decision making processes. Networks are initially considered as objects in the category of graphs...... and later as objects in the category of hypergraphs. The connection with the category of simplicial pairs become apparent when the topology is analyzed using homological algebra. A topological ranking is developed that measures the ability of the network to stay path-connected. Combined with the analysis...... are called algebraic varieties....

  10. Algebraic geometry and theta functions

    CERN Document Server

    Coble, Arthur B

    1929-01-01

    This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and

  11. Entropic Forms and Related Algebras

    Directory of Open Access Journals (Sweden)

    Antonio Maria Scarfone

    2013-02-01

    Full Text Available Starting from a very general trace-form entropy, we introduce a pair of algebraic structures endowed by a generalized sum and a generalized product. These algebras form, respectively, two Abelian fields in the realm of the complex numbers isomorphic each other. We specify our results to several entropic forms related to distributions recurrently observed in social, economical, biological and physical systems including the stretched exponential, the power-law and the interpolating Bosons-Fermions distributions. Some potential applications in the study of complex systems are advanced.

  12. Scalable Parallel Algebraic Multigrid Solvers

    Energy Technology Data Exchange (ETDEWEB)

    Bank, R; Lu, S; Tong, C; Vassilevski, P

    2005-03-23

    The authors propose a parallel algebraic multilevel algorithm (AMG), which has the novel feature that the subproblem residing in each processor is defined over the entire partition domain, although the vast majority of unknowns for each subproblem are associated with the partition owned by the corresponding processor. This feature ensures that a global coarse description of the problem is contained within each of the subproblems. The advantages of this approach are that interprocessor communication is minimized in the solution process while an optimal order of convergence rate is preserved; and the speed of local subproblem solvers can be maximized using the best existing sequential algebraic solvers.

  13. Linear algebra and its applications

    CERN Document Server

    Lax, Peter D

    2013-01-01

    Praise for the First Edition"". . .recommended for the teacher and researcher as well as for graduate students. In fact, [it] has a place on every mathematician's bookshelf."" -American Mathematical MonthlyLinear Algebra and Its Applications, Second Edition presents linear algebra as the theory and practice of linear spaces and linear maps with a unique focus on the analytical aspects as well as the numerous applications of the subject. In addition to thorough coverage of linear equations, matrices, vector spaces, game theory, and numerical analysis, the Second Edition features

  14. Yangian Algebras and Classical Riemann Problems

    OpenAIRE

    Khoroshkin, S.; Lebedev, D.; Pakuliak, S.

    1997-01-01

    We investigate different Hopf algebras associated to Yang's solution of quantum Yang-Baxter equation. It is shown that for the precise definition of the algebra one needs the commutation relations for the deformed algebra of formal currents and the specialization of the Riemann problem for the currents. Two different Riemann problems are considered. They lead to the central extended Yangian double associated with ${sl}_2$ and to the degeneration of scaling limit of elliptic affine algebra. Un...

  15. Discrimination in a General Algebraic Setting

    Directory of Open Access Journals (Sweden)

    Benjamin Fine

    2015-01-01

    Full Text Available Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras.

  16. Quantized Matrix Algebras and Quantum Seeds

    DEFF Research Database (Denmark)

    Jakobsen, Hans Plesner; Pagani, Chiara

    2015-01-01

    We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees.......We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees....

  17. Parts of the Whole: An Algebra Lesson

    Directory of Open Access Journals (Sweden)

    Dorothy Wallace

    2011-07-01

    Full Text Available This column draws on research of Eon Harper to demonstrate how an understanding of his proposed stages of algebra acquisition would inform a systemic overhaul of algebra education. Harper's stages also explain why students may pass a series of algebra courses yet still be unable to make sense of calculus, as well as offering insight on what aspects of algebra support quantitative literacy.

  18. Algebra success in 20 minutes a day

    CERN Document Server

    LearningExpress, LLC

    2014-01-01

    Stripped of unnecessary math jargon but bursting with algebra essentials, this handy guide covers vital algebra skills that apply to real-world scenarios. Whether you're new to algebra or just looking for a refresher, Algebra Success in 20 Minutes a Day offers a lesson plan that provides quick and thorough instruction in practical, critical skills. All lessons can be completed in just 20 minutes a day, for a manageable and non-intimidating learning experience.

  19. Generalized module extension Banach algebras: Derivations and ...

    African Journals Online (AJOL)

    Let A and X be Banach algebras and let X be an algebraic Banach A-module. Then the ℓ-1direct sum A x X equipped with the multiplication (a; x)(b; y) = (ab; ay + xb + xy) (a; b ∈ A; x; y ∈ X) is a Banach algebra, denoted by A ⋈ X, which will be called "a generalized module extension Banach algebra". Module extension ...

  20. Algebra and Geometry of Hamilton's Quaternions

    Indian Academy of Sciences (India)

    IAS Admin

    Inspired by the relation between the algebra of complex numbers and plane geometry, William. Rowan Hamilton sought an algebra of triples for application to three-dimensional geometry. Un- able to multiply and divide triples, he invented a non-commutative division algebra of quadru- ples, in what he considered his most ...

  1. Classifying bicrossed products of two Taft algebras

    OpenAIRE

    Agore, A. L.

    2016-01-01

    We classify all Hopf algebras which factorize through two Taft algebras $\\mathbb{T}_{n^{2}}(\\bar{q})$ and respectively $T_{m^{2}}(q)$. To start with, all possible matched pairs between the two Taft algebras are described: if $\\bar{q} \

  2. New family of Maxwell like algebras

    Energy Technology Data Exchange (ETDEWEB)

    Concha, P.K., E-mail: patillusion@gmail.com [Departamento de Ciencias, Facultad de Artes y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Casilla 567, Valdivia (Chile); Durka, R., E-mail: remigiuszdurka@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Merino, N., E-mail: nemerino@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Rodríguez, E.K., E-mail: everodriguezd@gmail.com [Departamento de Ciencias, Facultad de Artes y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Casilla 567, Valdivia (Chile)

    2016-08-10

    We introduce an alternative way of closing Maxwell like algebras. We show, through a suitable change of basis, that resulting algebras are given by the direct sums of the AdS and the Maxwell algebras already known in the literature. Casting the result into the S-expansion method framework ensures the straightaway construction of the gravity theories based on a found enlargement.

  3. Fractional superLie algebras and groups

    Energy Technology Data Exchange (ETDEWEB)

    Ahmedov, H. [Feza Gursey Institute, Cengelkoy, Istanbul (Turkey)]. E-mail: hagi@gursey.gov.tr; Yildiz, A. [ Feza Gursey Institute, Cengelkoy, Istanbul (Turkey); Ucan, Y. [Yildiz Technical University, Department of Mathematics, Besiktas, Istanbul (Turkey)

    2001-08-24

    The nth root of a Lie algebra and its dual (that is the fractional supergroup) based on the permutation group S{sub n} invariant forms is formulated in the Hopf algebra formalism. Detailed discussion of S{sub 3}-graded sl(2) algebras is performed. (author)

  4. Asymptotic symmetry algebra of conformal gravity

    Science.gov (United States)

    Irakleidou, Maria; Lovrekovic, Iva

    2017-11-01

    We compute asymptotic symmetry algebras of conformal gravity. Due to more general boundary conditions allowed in conformal gravity in comparison to those in Einstein gravity, we can classify the corresponding algebras. The highest algebra for nontrivial boundary conditions is five dimensional and it leads to global geon solution with nonvanishing charges.

  5. (L,M-Fuzzy σ-Algebras

    Directory of Open Access Journals (Sweden)

    Fu-Gui Shi

    2010-01-01

    Full Text Available The notion of (L,M-fuzzy σ-algebras is introduced in the lattice value fuzzy set theory. It is a generalization of Klement's fuzzy σ-algebras. In our definition of (L,M-fuzzy σ-algebras, each L-fuzzy subset can be regarded as an L-measurable set to some degree.

  6. Algebra in Dutch education, 1600-2000

    NARCIS (Netherlands)

    Krüger, Jenneke

    2015-01-01

    Algebra became part of mathematics education in the Netherlands in course of the seventeenth century. At first in the form of cossic algebra, but by the end of the century, the influence of the notation of Descartes was noticeable. In the eighteenth century, algebra was part of the basic curriculum

  7. Unifying the Algebra for All Movement

    Science.gov (United States)

    Eddy, Colleen M.; Quebec Fuentes, Sarah; Ward, Elizabeth K.; Parker, Yolanda A.; Cooper, Sandi; Jasper, William A.; Mallam, Winifred A.; Sorto, M. Alejandra; Wilkerson, Trena L.

    2015-01-01

    There exists an increased focus on school mathematics, especially first-year algebra, due to recent efforts for all students to be college and career ready. In addition, there are calls, policies, and legislation advocating for all students to study algebra epitomized by four rationales of the "Algebra for All" movement. In light of this…

  8. A Balancing Act: Making Sense of Algebra

    Science.gov (United States)

    Gavin, M. Katherine; Sheffield, Linda Jensen

    2015-01-01

    For most students, algebra seems like a totally different subject than the number topics they studied in elementary school. In reality, the procedures followed in arithmetic are actually based on the properties and laws of algebra. Algebra should be a logical next step for students in extending the proficiencies they developed with number topics…

  9. Constraint-Referenced Analytics of Algebra Learning

    Science.gov (United States)

    Sutherland, Scot M.; White, Tobin F.

    2016-01-01

    The development of the constraint-referenced analytics tool for monitoring algebra learning activities presented here came from the desire to firstly, take a more quantitative look at student responses in collaborative algebra activities, and secondly, to situate those activities in a more traditional introductory algebra setting focusing on…

  10. Build an Early Foundation for Algebra Success

    Science.gov (United States)

    Knuth, Eric; Stephens, Ana; Blanton, Maria; Gardiner, Angela

    2016-01-01

    Research tells us that success in algebra is a factor in many other important student outcomes. Emerging research also suggests that students who are started on an algebra curriculum in the earlier grades may have greater success in the subject in secondary school. What's needed is a consistent, algebra-infused mathematics curriculum all…

  11. Teaching Strategies to Improve Algebra Learning

    Science.gov (United States)

    Zbiek, Rose Mary; Larson, Matthew R.

    2015-01-01

    Improving student learning is the primary goal of every teacher of algebra. Teachers seek strategies to help all students learn important algebra content and develop mathematical practices. The new Institute of Education Sciences[IES] practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students"…

  12. Difficulties in Initial Algebra Learning in Indonesia

    Science.gov (United States)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2014-01-01

    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was…

  13. Aspects of finite field-dependent symmetry in SU(2) Cho–Faddeev–Niemi decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com

    2013-11-25

    In this Letter we consider SU(2) Yang–Mills theory analyzed in Cho–Faddeev–Niemi variables which remains invariant under local gauge transformations. The BRST symmetries of this theory are generalized by making the infinitesimal parameter finite and field-dependent. Further, we show that under appropriate choices of finite and field-dependent parameter, the gauge-fixing and ghost terms corresponding to Landau as well as maximal Abelian gauge for such Cho–Faddeev–Niemi decomposed theory appear naturally within functional integral through Jacobian calculation.

  14. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Stefan

    2008-07-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  15. Thermodynamics of SU(2) mathcal{N} =2 supersymmetric Yang-Mills theory

    Science.gov (United States)

    Paik, Steve; Yaffe, Laurence G.

    2010-01-01

    The thermodynamics of four-dimensional SU(2) mathcal{N} =2 super-Yang-Mills theory is examined in both high and low temperature regimes. At low temperatures, compelling evidence is found for two distinct equilibrium states related by a spontaneously broken discrete R-symmetry. These equilibrium states exist because the quantum moduli space of the theory has two singular points where extra massless states appear. At high temperature, a unique R-symmetry-preserving equilibrium state is found. Discrepancies with previous results in the literature are explained.

  16. Spherically symmetric classical solutions in SU(2) gauge theory with a Higgs field

    Energy Technology Data Exchange (ETDEWEB)

    Ratra, B.; Yaffe, L.G.

    1988-04-21

    A consistent ansatz for time dependent classical solutions in an SU(2) gauge theory with a doublet Higgs field is presented. The (3+1)-dimensional field equations are reduced to those of an effective (1+1)-dimensional theory. This ansatz describes solutions which travel between topologically distinct classical vacua of the non-abelian gauge theory. The real time version of these solutions describes the creation and decay of the unstable static 'sphaleron', the imaginary time version describes a euclidean instanton. (orig.)

  17. Machine learning of explicit order parameters: From the Ising model to SU(2) lattice gauge theory

    Science.gov (United States)

    Wetzel, Sebastian J.; Scherzer, Manuel

    2017-11-01

    We present a solution to the problem of interpreting neural networks classifying phases of matter. We devise a procedure for reconstructing the decision function of an artificial neural network as a simple function of the input, provided the decision function is sufficiently symmetric. In this case one can easily deduce the quantity by which the neural network classifies the input. The method is applied to the Ising model and SU(2) lattice gauge theory. In both systems we deduce the explicit expressions of the order parameters from the decision functions of the neural networks. We assume no prior knowledge about the Hamiltonian or the order parameters except Monte Carlo-sampled configurations.

  18. From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.

    Science.gov (United States)

    Pepe, M; Wiese, U-J

    2009-05-15

    We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.

  19. Hagedorn spectrum and thermodynamics of SU(2) and SU(3) Yang-Mills theories

    CERN Document Server

    Caselle, Michele; Panero, Marco

    2015-01-01

    We present a high-precision lattice calculation of the equation of state in the confining phase of SU(2) Yang-Mills theory. We show that the results are described very well by a gas of massive, non-interacting glueballs, provided one assumes an exponentially growing Hagedorn spectrum. The latter can be derived within an effective bosonic closed-string model, leading to a parameter-free theoretical prediction, which is in perfect agreement with our lattice results. Furthermore, when applied to SU(3) Yang-Mills theory, this effective model accurately describes the lattice results reported by Bors\\'anyi et al. in JHEP 07 (2012) 056.

  20. Correlation functions of the energy-momentum tensor in SU(2) gauge theory at finite temperature

    DEFF Research Database (Denmark)

    Huebner, K.; Karsch, F.; Pica, Claudio

    2008-01-01

    We calculate correlation functions of the energy-momentum tensor in the vicinity of the deconfinement phase transition of (3+1)-dimensional SU(2) gauge theory and discuss their critical behavior in the vicinity of the second order deconfinement transition. We show that correlation functions...... of the trace of the energy momentum tensor diverge uniformly at the critical point in proportion to the specific heat singularity. Correlation functions of the pressure, on the other hand, stay finite at the critical point. We discuss the consequences of these findings for the analysis of transport...

  1. Diamond lemma for the group graded quasi-algebras

    Indian Academy of Sciences (India)

    the basis for 고 = J/I, where I is the ideal generated by the elements Wσ − fσ ,. (Wσ ,fσ ) ∈ S. The first step in the classification project of quasi-quantum groups [5, 6] is to say whether the subalgebra (in a graded quiver Majid algebra) generated by the paths having unit of the group as the source vertex, is finite dimensional or ...

  2. Process algebra and conditional composition

    NARCIS (Netherlands)

    Bergstra, J.A.; Ponse, A.

    2001-01-01

    We discern three non-classical truth values, and define a five-valued propositional logic. We combine this logic with process algebra via conditional composition (i.e., if-then-else-). In particular, the choice operation (+) is regarded as a special case of conditional composition. We present an

  3. Math Sense: Algebra and Geometry.

    Science.gov (United States)

    Howett, Jerry

    This book is designed to help students gain the range of math skills they need to succeed in life, work, and on standardized tests; overcome math anxiety; discover math as interesting and purposeful; and develop good number sense. Topics covered in this book include algebra and geometry. Lessons are organized around four strands: (1) skill lessons…

  4. Algebra, Home Mortgages, and Recessions

    Science.gov (United States)

    Mariner, Jean A. Miller; Miller, Richard A.

    2009-01-01

    The current financial crisis and recession in the United States present an opportunity to discuss relevant applications of some topics in typical first-and second-year algebra and precalculus courses. Real-world applications of percent change, exponential functions, and sums of finite geometric sequences can help students understand the problems…

  5. Algebra from Chips and Chopsticks

    Science.gov (United States)

    Yun, Jeong Oak; Flores, Alfinio

    2012-01-01

    Students can use geometric representations of numbers as a way to explore algebraic ideas. With the help of these representations, students can think about the relations among the numbers, express them using their own words, and represent them with letters. The activities discussed here can stimulate students to try to find various ways of solving…

  6. Celestial mechanics with geometric algebra

    Science.gov (United States)

    Hestenes, D.

    1983-01-01

    Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.

  7. Relational Algebra Teaching Support Tool

    Directory of Open Access Journals (Sweden)

    Jonathas Jivago de Almeida Cruz

    2017-01-01

    Full Text Available In recent years, there has been an increasing supply of digital, pedagogical tools, known as Digital Learning Objects (DLO – digital resources (image, film, animation, etc. and software developed specifically for educational purposes. In the area of Computer Science, teaching Databases present a particular challenge because of a lack of quality tools to work with Relational Algebra. The present study proposes a web-based tool to support teaching and learning Relational Algebra – an important subject that is particularly difficult for students to understand. The purpose of the proposed tool is to provide an alternative method for teaching Relational Algebra operations, such as: selection, projection, union, set difference, rename, intersection, Cartesian product, natural join, division and some aggregate functions. In addition, we propose a graphic definition of a database schema (using features such as drag and drop, column highlights, lines, fields, etc., so students can use the tool easily, and in conjunction with the theory taught regarding the definition languages (DDL and data manipulation (DML. We intend for this tool to serve as an appropriate means for teaching and learning Relational Algebra, contributing to the development of new teaching skills, as well motivating the students in the process of learning.

  8. Homomorphisms between C∗ -algebra extensions

    Indian Academy of Sciences (India)

    -algebra extensions. CHANGGUO WEI. School of Mathematical Sciences, Ocean University of China, Qingdao 266071, ... into the other in general, so we have to consider properties of extension homomorphisms before studying the ..... Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math. (Berlin: Springer).

  9. Algebraic Methods in Plane Geometry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 10. Algebraic Methods in ... General Article Volume 13 Issue 10 October 2008 pp 916-928 ... Keywords. Conics; family of curves; Pascal's theorem; homogeneous coordinates; Butterfly theorem; abelian group; associativity of addition; group law.

  10. Hopf algebras and congruence subgroups

    CERN Document Server

    Sommerhauser, Yorck

    2007-01-01

    We prove that the kernel of the natural action of the modular group on the center of the Drinfel'd double of a semisimple Hopf algebra is a congruence subgroup. To do this, we introduce a class of generalized Frobenius-Schur indicators and endow it with an action of the modular group that is compatible with the original one.

  11. Algebraic study of chiral anomalies

    Indian Academy of Sciences (India)

    2012-06-14

    Jun 14, 2012 ... †Reproduced with kind permission from Springer Science+Business Media: Algebraic study of chiral anoma- lies, Juan Mañes, Raymond Stora and Bruno Zumino, Communications in Mathematical Physics 102, 157–174. (1985) Springer-Verlag. Even though at variance with normal Pramana policy, we ...

  12. Inequalities, Assessment and Computer Algebra

    Science.gov (United States)

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary…

  13. Adventures in Flipping College Algebra

    Science.gov (United States)

    Van Sickle, Jenna

    2015-01-01

    This paper outlines the experience of a university professor who implemented flipped learning in two sections of college algebra courses for two semesters. It details how the courses were flipped, what technology was used, advantages, challenges, and results. It explains what students do outside of class, what they do inside class, and discusses…

  14. A distinguished real Banach algebra

    Indian Academy of Sciences (India)

    We present a new and elementary approach to characterize the maximal ideals and their associated multiplicative linear functionals for a classical real Banach algebra of analytic functions. Author Affiliations. Raymond Mortini1. Département de Mathématiques, LMAM, UMR 7122, Université Paul Verlaine, Ile du Saulcy, ...

  15. Algebraic methods in system theory

    Science.gov (United States)

    Brockett, R. W.; Willems, J. C.; Willsky, A. S.

    1975-01-01

    Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.

  16. Elementary Algebra Connections to Precalculus

    Science.gov (United States)

    Lopez-Boada, Roberto; Daire, Sandra Arguelles

    2013-01-01

    This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…

  17. Rationality problem for algebraic tori

    CERN Document Server

    Hoshi, Akinari

    2017-01-01

    The authors give the complete stably rational classification of algebraic tori of dimensions 4 and 5 over a field k. In particular, the stably rational classification of norm one tori whose Chevalley modules are of rank 4 and 5 is given. The authors show that there exist exactly 487 (resp. 7, resp. 216) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension 4, and there exist exactly 3051 (resp. 25, resp. 3003) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension 5. The authors make a procedure to compute a flabby resolution of a G-lattice effectively by using the computer algebra system GAP. Some algorithms may determine whether the flabby class of a G-lattice is invertible (resp. zero) or not. Using the algorithms, the suthors determine all the flabby and coflabby G-lattices of rank up to 6 and verify that they are stably permutation. The authors also show that the Krull-Schmidt theorem for G-...

  18. Vague BCK/BCI-algebras

    Directory of Open Access Journals (Sweden)

    Arsham Borumand Saeid

    2009-01-01

    Full Text Available In this note, by using the concept of vague sets, the notion of vague \\(BCK/BCI\\-algebra is introduced. And the notions of \\(\\alpha\\-cut and vague-cut are introduced and the relationships between these notions and crisp subalgebras are studied.

  19. Model Theory for Process Algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We present a first-order extension of the algebraic theory about processes known as ACP and its main models. Useful predicates on processes, such as deadlock freedom and determinism, can be added to this theory through first-order definitional extensions. Model theory is used to analyse the

  20. Weaving Geometry and Algebra Together

    Science.gov (United States)

    Cetner, Michelle

    2015-01-01

    When thinking about student reasoning and sense making, teachers must consider the nature of tasks given to students along with how to plan to use the tasks in the classroom. Students should be presented with tasks in a way that encourages them to draw connections between algebraic and geometric concepts. This article focuses on the idea that it…

  1. An introduction to abstract algebra

    CERN Document Server

    Robinson, Derek JS

    2003-01-01

    This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. In particular applications to Polya coloring theory, latin squares, Steiner systems and error correcting codes are described. Another feature of the book is that group theory and ring theory are carried further than is often done at this level. There is ample material here for a two semester course in abstract algebra. The importance of proof is stressed and rigorous proofs of almost all results are given. But care has been taken to lead the reader through the proofs by gentle stages. There are nearly 400 problems, of varying degrees of difficulty, to test the reader''s skill and progress. The book should be suitable for students ...

  2. Teachers' Understanding of Algebraic Generalization

    Science.gov (United States)

    Hawthorne, Casey Wayne

    Generalization has been identified as a cornerstone of algebraic thinking (e.g., Lee, 1996; Sfard, 1995) and is at the center of a rich conceptualization of K-8 algebra (Kaput, 2008; Smith, 2003). Moreover, mathematics teachers are being encouraged to use figural-pattern generalizing tasks as a basis of student-centered instruction, whereby teachers respond to and build upon the ideas that arise from students' explorations of these activities. Although more and more teachers are engaging their students in such generalizing tasks, little is known about teachers' understanding of generalization and their understanding of students' mathematical thinking in this domain. In this work, I addressed this gap, exploring the understanding of algebraic generalization of 4 exemplary 8th-grade teachers from multiple perspectives. A significant feature of this investigation is an examination of teachers' understanding of the generalization process, including the use of algebraic symbols. The research consisted of two phases. Phase I was an examination of the teachers' understandings of the underlying quantities and quantitative relationships represented by algebraic notation. In Phase II, I observed the instruction of 2 of these teachers. Using the lens of professional noticing of students' mathematical thinking, I explored the teachers' enacted knowledge of algebraic generalization, characterizing how it supported them to effectively respond to the needs and queries of their students. Results indicated that teachers predominantly see these figural patterns as enrichment activities, disconnected from course content. Furthermore, in my analysis, I identified conceptual difficulties teachers experienced when solving generalization tasks, in particular, connecting multiple symbolic representations with the quantities in the figures. Moreover, while the teachers strived to overcome the challenges of connecting different representations, they invoked both productive and unproductive

  3. Algebra and Number Theory An Integrated Approach

    CERN Document Server

    Dixon, Martyn; Subbotin, Igor

    2011-01-01

    Explore the main algebraic structures and number systems that play a central role across the field of mathematics Algebra and number theory are two powerful branches of modern mathematics at the forefront of current mathematical research, and each plays an increasingly significant role in different branches of mathematics, from geometry and topology to computing and communications. Based on the authors' extensive experience within the field, Algebra and Number Theory has an innovative approach that integrates three disciplines-linear algebra, abstract algebra, and number theory-into one compr

  4. q-Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra U_q(u(n,1

    Directory of Open Access Journals (Sweden)

    Raisa M. Asherova

    2010-01-01

    Full Text Available For the quantum algebra U_q(gl(n+1 in its reduction on the subalgebra U_q(gl(n an explicit description of a Mickelsson-Zhelobenko reduction Z-algebra Z_q(gl(n+1,gl(n is given in terms of the generators and their defining relations. Using this Z-algebra we describe Hermitian irreducible representations of a discrete series for the noncompact quantum algebra U_q(u(n,1 which is a real form of U_q(gl(n+1, namely, an orthonormal Gelfand-Graev basis is constructed in an explicit form.

  5. Numerical Results for SU(4) and SU(2) Kondo Effect in Carbon Nanotubes

    Science.gov (United States)

    Martins, George; Busser, Carlos

    2006-03-01

    New numerical results are presented for the Kondo effect in Carbon Nanotube (CNT) quantum dots (QDs). As recently reported by P. Jarillo-Herrero et al. (Nature 434, 484 (2005)), the Kondo effect in CNTs presents an SU(4) symmetry, which arises from the entanglement of orbital and spin degrees of freedom. As the number of co-tunneling processes increases, thanks to the extra (orbital) degree of freedom, the Kondo temperature reaches a high value of TK=7.7K. Interesting considerations can be drawn regarding the change from SU(4) to SU(2) symmetries depending on the hopping matrix elements between the leads and the CNT QD. Our results will analyze the transition between the SU(4) and the so-called two-level SU(2) (2LSU(2)) Kondo regimes induced by the variation of the coupling of the QD to the leads. The effect of an external magnetic field along the tube direction will also be analyzed. Our results will be compared with available Numerical Renormalization Group (NRG) results by M-S Choi et al. (Phys. Rev. Lett. 95, 067204 (2005)). A comparison with the experimental results will be made to gauge the adequacy of the model and approximations made.

  6. Infrared conformality and bulk critical points: SU(2) with heavy adjoint quarks

    CERN Document Server

    Lucini, Biagio; Rago, Antonio; Rinaldi, Enrico

    2013-01-01

    The lattice phase structure of a gauge theory can be a serious obstruction to Monte Carlo studies of its continuum behaviour. This issue is particularly delicate when numerical studies are performed to determine whether a theory is in a (near-)conformal phase. In this work we investigate the heavy mass limit of the SU(2) gauge theory with Nf=2 adjoint fermions and its lattice phase diagram, showing the presence of a critical point ending a line of first order bulk phase transition. The relevant gauge observables and the low-lying spectrum are monitored in the vicinity of the critical point with very good control over different systematic effects. The scaling properties of masses and susceptibilities open the possibility that the effective theory at criticality is a scalar theory in the universality class of the four-dimensional Gaussian model. This behaviour is clearly different from what is observed for SU(2) gauge theory with two dynamical adjoint fermions, whose (near-)conformal numerical signature is henc...

  7. Normed algebras and the geometric series test

    Directory of Open Access Journals (Sweden)

    Robert Kantrowitz

    2017-11-01

    Full Text Available The purpose of this article is to survey a class of normed algebras that share many central features of Banach algebras, save for completeness. The likeness of these algebras to Banach algebras derives from the fact that the geometric series test is valid, whereas the lack of completeness points to the failure of the absolute convergence test for series in the algebra. Our main result is a compendium of conditions that are all equivalent to the validity of the geometric series test for commutative unital normed algebras. Several examples in the final section showcase some incomplete normed algebras for which the geometric series test is valid, and still others for which it is not.

  8. Infinite order decompositions of C*-algebras.

    Science.gov (United States)

    Nematjonovich, Arzikulov Farhodjon

    2016-01-01

    The present paper is devoted to infinite order decompositions of C*-algebras. It is proved that an infinite order decomposition (IOD) of a C*-algebra forms the complexification of an order unit space, and, if the C*-algebra is monotone complete (not necessarily weakly closed) then its IOD is also monotone complete ordered vector space. Also it is established that an IOD of a C*-algebra is a C*-algebra if and only if this C*-algebra is a von Neumann algebra. As a summary we obtain that the norm of an infinite dimensional matrix is equal to the supremum of norms of all finite dimensional main diagonal submatrices of this matrix and an infinite dimensional matrix is positive if and only if all finite dimensional main diagonal submatrices of this matrix are positive.

  9. Classical algebra its nature, origins, and uses

    CERN Document Server

    Cooke, Roger L

    2008-01-01

    This insightful book combines the history, pedagogy, and popularization of algebra to present a unified discussion of the subject. Classical Algebra provides a complete and contemporary perspective on classical polynomial algebra through the exploration of how it was developed and how it exists today. With a focus on prominent areas such as the numerical solutions of equations, the systematic study of equations, and Galois theory, this book facilitates a thorough understanding of algebra and illustrates how the concepts of modern algebra originally developed from classical algebraic precursors. This book successfully ties together the disconnect between classical and modern algebraand provides readers with answers to many fascinating questions that typically go unexamined, including: What is algebra about? How did it arise? What uses does it have? How did it develop? What problems and issues have occurred in its history? How were these problems and issues resolved? The author answers these questions and more,...

  10. A course in BE-algebras

    CERN Document Server

    Mukkamala, Sambasiva Rao

    2018-01-01

    This book presents a unified course in BE-algebras with a comprehensive introduction, general theoretical basis and several examples. It introduces the general theoretical basis of BE-algebras, adopting a credible style to offer students a conceptual understanding of the subject. BE-algebras are important tools for certain investigations in algebraic logic, because they can be considered as fragments of any propositional logic containing a logical connective implication and the constant "1", which is considered as the logical value “true”.  Primarily aimed at graduate and postgraduate students of mathematics, it also helps researchers and mathematicians to build a strong foundation in applied abstract algebra. Presenting insights into some of the abstract thinking that constitutes modern abstract algebra, it provides a transition from elementary topics to advanced topics in BE-algebras. With abundant examples and exercises arranged after each section, it offers readers a comprehensive, easy-to-follow int...

  11. Three-Index Symmetric Matter Representations of SU(2) in F-Theory from Non-Tate Form Weierstrass Models

    CERN Document Server

    Klevers, Denis

    2016-01-01

    We give an explicit construction of a class of F-theory models with matter in the three-index symmetric (4) representation of SU(2). This matter is realized at codimension two loci in the F-theory base where the divisor carrying the gauge group is singular; the associated Weierstrass model does not have the form associated with a generic SU(2) Tate model. For 6D theories, the matter is localized at a triple point singularity of arithmetic genus g=3 in the curve supporting the SU(2) group. This is the first explicit realization of matter in F-theory in a representation corresponding to a genus contribution greater than one. The construction is realized by "unHiggsing" a model with a U(1) gauge factor under which there is matter with charge q=3. The resulting SU(2) models can be further unHiggsed to realize non-Abelian G_2xSU(2) models with more conventional matter content or SU(2)^3 models with trifundamental matter. The U(1) models used as the basis for this construction do not seem to have a Weierstrass real...

  12. Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity

    Directory of Open Access Journals (Sweden)

    Hanamantagouda P. Sankappanavar

    2014-07-01

    Full Text Available This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles in the variety of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1. It is shown that there are 25 nontrivial simple algebras in this variety. In Part II, we prove, using the description of simples obtained in this Part, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--the latter is known to be generated by the expansions of the three 4-element Boolean semi-Heyting algebras. As consequences of this theorem, we present (equational axiomatizations for several subvarieties of $mathbf{RDQDStSH_1}$. The Part II concludes with some open problems for further investigation.

  13. AT -algebras and extensions of AT-algebras

    Indian Academy of Sciences (India)

    sion in K0 does not arise from the torsion parts of certain metric spaces but from nontrivial extensions of C(S1) by K. Let A be an AT -algebra. The invariant consists of the abelian semigroup V (A), the Murry–von Neumann equivalence classes of projections in matri- ces of A, an abelian semigroup k(A)+, some equivalence ...

  14. N-Algebraic Structures and S-N-Algebraic Structures

    CERN Document Server

    Kandasamy, W B V; Smarandache, Florentin

    2006-01-01

    For the first time, we have introduced the concept of N-groups, N-semigroups, N-loops, and N-groupoids. We also define a mixed N-algebraic structure. The main aim of this book is to attract young mathematicians to this interesting field. It contains more than 200 new definitions. These concepts find applications in fields like finite automaton, coloring problems and coding theory.

  15. SU(4)-SU(2) crossover and spin-filter properties of a double quantum dot nanosystem

    Science.gov (United States)

    Lopes, V.; Padilla, R. A.; Martins, G. B.; Anda, E. V.

    2017-06-01

    The SU(4)-SU(2) crossover, driven by an external magnetic field h , is analyzed in a capacitively coupled double quantum dot device connected to independent leads. As one continuously charges the dots from empty to quarter filled, by varying the gate potential Vg, the crossover starts when the magnitude of the spin polarization of the double quantum dot, as measured by - , becomes finite. Although the external magnetic field breaks the SU(4) symmetry of the Hamiltonian, the ground state preserves it in a region of Vg, where - =0 . Once the spin polarization becomes finite, it initially increases slowly until a sudden change occurs, in which (polarization direction opposite to the magnetic field) reaches a maximum and then decreases to negligible values abruptly, at which point an orbital SU(2) ground state is fully established. This crossover from one Kondo state, with emergent SU(4) symmetry, where spin and orbital degrees of freedom all play a role, to another, with SU(2) symmetry, where only orbital degrees of freedom participate, is triggered by a competition between g μBh , the energy gain by the Zeeman-split polarized state and the Kondo temperature TKS U (4 ), the gain provided by the SU(4) unpolarized Kondo-singlet state. At fixed magnetic field, the knob that controls the crossover is the gate potential, which changes the quantum dots occupancies. If one characterizes the occurrence of the crossover by Vgmax, the value of Vg where reaches a maximum, one finds that the function f relating the Zeeman splitting, Bmax, which corresponds to Vgmax, i.e., Bmax=f (Vgmax) , has a similar universal behavior to that of the function relating the Kondo temperature to Vg. In addition, our numerical results show that near the SU(4) Kondo temperature and for relatively small magnetic fields the device has a ground state that restricts the electronic population at the dots to be spin polarized along the magnetic field. These two facts introduce very efficient spin

  16. Alternative algebraic approaches in quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mezey, Paul G., E-mail: paul.mezey@gmail.com [Canada Research Chair in Scientific Modeling and Simulation, Department of Chemistry and Department of Physics and Physical Oceanography, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John' s, NL A1B 3X7 (Canada)

    2015-01-22

    Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.

  17. Computations in finite-dimensional Lie algebras

    Directory of Open Access Journals (Sweden)

    A. M. Cohen

    1997-12-01

    Full Text Available This paper describes progress made in context with the construction of a general library of Lie algebra algorithms, called ELIAS (Eindhoven Lie Algebra System, within the computer algebra package GAP. A first sketch of the package can be found in Cohen and de Graaf[1]. Since then, in a collaborative effort with G. Ivanyos, the authors have continued to develop algorithms which were implemented in ELIAS by the second author. These activities are part of a bigger project, called ACELA and financed by STW, the Dutch Technology Foundation, which aims at an interactive book on Lie algebras (cf. Cohen and Meertens [2]. This paper gives a global description of the main ways in which to present Lie algebras on a computer. We focus on the transition from a Lie algebra abstractly given by an array of structure constants to a Lie algebra presented as a subalgebra of the Lie algebra of n×n matrices. We describe an algorithm typical of the structure analysis of a finite-dimensional Lie algebra: finding a Levi subalgebra of a Lie algebra.

  18. The algebras of large N matrix mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, M.B.; Schwartz, C.

    1999-09-16

    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.

  19. Algebraic properties of the monopole formula

    Energy Technology Data Exchange (ETDEWEB)

    Hanany, Amihay [Theoretical Physics Group, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom); Sperling, Marcus [Fakultät für Physik, Universität Wien,Boltzmanngasse 5, 1200 Wien (Austria)

    2017-02-06

    The monopole formula provides the Hilbert series of the Coulomb branch for a 3-dimensional N=4 gauge theory. Employing the concept of a fan defined by the matter content, and summing over the corresponding collection of monoids, allows the following: firstly, we provide explicit expressions for the Hilbert series for any gauge group. Secondly, we prove that the order of the pole at t=1 and t→∞ equals the complex or quaternionic dimension of the moduli space, respectively. Thirdly, we determine all bare and dressed BPS monopole operators that are sufficient to generate the entire chiral ring. As an application, we demonstrate the implementation of our approach to computer algebra programs and the applicability to higher rank gauge theories.

  20. Codes over an infinite family of algebras

    Directory of Open Access Journals (Sweden)

    - Irwansyah

    2017-01-01

    Full Text Available In this paper, we will show some properties of codes over the ring $B_k=\\mathbb{F}_p[v_1,\\dots,v_k]/(v_i^2=v_i,\\forall i=1,\\dots,k.$ These rings, form a family of commutative algebras over finite field $\\mathbb{F}_p$. We first discuss about the form of maximal ideals and characterization of automorphisms for the ring $B_k$. Then, we define certain Gray map which can be used to give a connection between codes over $B_k$ and codes over $\\mathbb{F}_p$. Using the previous connection, we give a characterization for equivalence of codes over $B_k$ and Euclidean self-dual codes. Furthermore, we give generators for invariant ring of Euclidean self-dual codes over $B_k$ through MacWilliams relation of Hamming weight enumerator for such codes.