WorldWideScience

Sample records for stz-induced diabetic mice

  1. Metformin ameliorates insulitis in STZ-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Guo-Jun Jiang

    2017-04-01

    Full Text Available Background & Aims Metformin is currently the most widely used first-line hypoglycemic agent for diabetes mellitus. Besides glucose-lowering action, there is increasingly interest in the potential anti-inflammatory action of this drug. In the present study, we investigated the actions of metformin on experimental insulitis using STZ-induced diabetic mice. Methods Mice with acute diabetes induced by STZ were administered metformin by gavage. Changes of blood glucose and body weight, and the daily amount of food and water intake were measured. Pancreatic tissues were collected for histologic analyses. Pathological assessment and immunohistochemistry analysis were used to determine the effect of metformin on insulitis. Inflammatory cytokines in the pancreas and insulin levels were measured through ELISA analysis. Results Metformin significantly reduced blood glucose levels and improved aberrant water intake behavior in experimental diabetic mice. No significant differences were observed in terms of body weight and food intake behavior in metformin-treated animals. In the STZ-induced model of diabetes, we found the appearance of pronounced insulitis. However, metformin administration reduced the severity of insulitis assessed by blind pathological scoring. In addition, metformin treatment improved insulin levels in experimental diabetic mice. ELISA assay revealed decreased levels of inflammatory response marker IL-1β and TNF-α in the pancreatic tissues following metformin treatment. Conclusion Metformin attenuated insulitis in the STZ-induced mice model of diabetes. This islet-protective effect might be partly correlated with the anti-inflammatory action of metformin.

  2. Anti-diabetic activity of Vaccinium bracteatum Thunb. leaves' polysaccharide in STZ-induced diabetic mice.

    Science.gov (United States)

    Wang, Li; Zhang, Ying; Xu, Maochao; Wang, Yingyao; Cheng, Sujiao; Liebrecht, Alex; Qian, Haifeng; Zhang, Hui; Qi, Xiguang

    2013-10-01

    Vaccinium bracteatum Thunb. (VBT) is a traditional Chinese herbal medicine. The anti-diabetic activity of VBT leaves' polysaccharide (VBTLP) is studied in this paper. The results indicated VBTLP had a dose-dependent decrease on the blood glucose (BG) level, and the time effect of VBTLP on BG level was also significant. The insulin level of high dose group (HDG) was significantly higher (p<0.05) than that of model control (MC) group. Compared to MC, HDG and lose dose group (LDG) had significantly lower (p<0.05) TC and LDL-C levels, however, TG and HDL-C levels are similar. Compared to non-diabetic control (NC), HDG and LDG had similar plasma lipid levels except for higher LDL-C level. Although body weights of LDG and HDG were significant lower (p<0.05) than that of NC from week 2 to week 6, they were similar to that of PC. The results indicate VBTLP possesses a potential hypoglycemic effect in streptozotocin-induced diabetic mice. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Characterization of Momordica charantia L. polysaccharide and its protective effect on pancreatic cells injury in STZ-induced diabetic mice.

    Science.gov (United States)

    Zhang, Cong; Chen, Hongman; Bai, Weiqi

    2018-04-10

    A polysaccharide with a molecular weight of 13,029Da was isolated from Momordica charantia (MCP) fruit and purified by ion-exchange and size-exclusion chromatography. The isolated polysaccharide MCPIIa contained L-Rha, D-GalA, D-Gal, D-Xyl, L-Ara in a molar ratio of 12:3.05:19.89:5.95:56. IR spectrum and NMR studies indicated that the MCPIIa sugar units were linked, via β-glycosidic bonds, to a large number of arabinofuranose, glucuronic acid, and xylopyranosyl residues. In addition, the hypoglycemic effect of MCPIIa was investigated in streptozotocin (STZ)-induced diabetic mice. After STZ-induction, MCPIIa (100, 200, or 300mg/kg body weight) was administered orally, once daily, for 28days. Glycemia in STZ-diabetogenic mice was significantly reduced, and compared with diabetes mellitus (DM) mice, serum insulin concentration increased significantly, following MCPIIa administration. Transmission electron microscopy showed an alleviation of STZ-lesions in pancreatic tissue from mice treated with MCPIIa. These results indicate that MCPIIa may be useful as an anti-diabetic agent. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Podocyte-specific deletion of Rac1 leads to aggravation of renal injury in STZ-induced diabetic mice

    International Nuclear Information System (INIS)

    Ishizaka, Masanori; Gohda, Tomohito; Takagi, Miyuki; Omote, Keisuke; Sonoda, Yuji; Oliva Trejo, Juan Alejandro; Asao, Rin; Hidaka, Teruo; Asanuma, Katsuhiko; Horikoshi, Satoshi; Tomino, Yasuhiko

    2015-01-01

    Rac1, a GTPase of the Rho subfamily, has a crucial role in cytoskeletal architecture, as well as the regulation of cell migration and growth. However, renal injury in mice with podocyte-specific deletion of Rac1 has yet to be elucidated fully due to conflicting findings. Herein, we identified a possible role for Rac1 in podocytes of streptozotocin- (STZ) induced diabetic mice. The urinary albumin/creatinine ratio (ACR) in the knockout (KO) group was significantly higher than that in the wild type (WT) group at any week of age. A more marked ACR increase was observed in STZ/KO group than STZ/WT group, although ACR did increase with weeks of age in both diabetic groups. The kidney sections from diabetic mice revealed a glomerular hypertrophy with mesangial expansion, but there was no appreciable difference in glomerular findings under a light microscope between STZ/WT and STZ/KO mice. However, an electron microscopy analysis revealed that regardless of the presence or absence of diabetes, both KO (KO and STZ/KO) groups had a higher rate of foot process effacement compared with both WT (WT and STZ/WT) groups. The expression levels of the slit diaphragm protein, podocin, was reduced with the induction of diabetes, and the levels in the STZ/KO group experienced a further reduction compared with the STZ/WT group. The number of WT1-positive cells in the STZ/KO group was more significantly decreased than that in the other three groups. In contrast, the numbers of cleaved caspase 3- and TUNEL-positive cells in the glomeruli of the STZ/KO group were more increased than those in the STZ/WT group. Thus, this study provides evidence that podocyte-specific deletion of Rac1 results in morphological alteration in podocytes, and that the induction of apoptosis or decreased expression of the slit diaphragm proteins by hyperglycemic stimuli are associated with the progression of diabetic nephropathy.

  5. Podocyte-specific deletion of Rac1 leads to aggravation of renal injury in STZ-induced diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaka, Masanori [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Gohda, Tomohito, E-mail: goda@juntendo.ac.jp [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Takagi, Miyuki; Omote, Keisuke; Sonoda, Yuji [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Oliva Trejo, Juan Alejandro [Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8397 (Japan); Asao, Rin; Hidaka, Teruo [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Asanuma, Katsuhiko [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8397 (Japan); Horikoshi, Satoshi [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Tomino, Yasuhiko [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Medical Corporation SHOWAKAI, 3-12-12 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023 (Japan)

    2015-11-20

    Rac1, a GTPase of the Rho subfamily, has a crucial role in cytoskeletal architecture, as well as the regulation of cell migration and growth. However, renal injury in mice with podocyte-specific deletion of Rac1 has yet to be elucidated fully due to conflicting findings. Herein, we identified a possible role for Rac1 in podocytes of streptozotocin- (STZ) induced diabetic mice. The urinary albumin/creatinine ratio (ACR) in the knockout (KO) group was significantly higher than that in the wild type (WT) group at any week of age. A more marked ACR increase was observed in STZ/KO group than STZ/WT group, although ACR did increase with weeks of age in both diabetic groups. The kidney sections from diabetic mice revealed a glomerular hypertrophy with mesangial expansion, but there was no appreciable difference in glomerular findings under a light microscope between STZ/WT and STZ/KO mice. However, an electron microscopy analysis revealed that regardless of the presence or absence of diabetes, both KO (KO and STZ/KO) groups had a higher rate of foot process effacement compared with both WT (WT and STZ/WT) groups. The expression levels of the slit diaphragm protein, podocin, was reduced with the induction of diabetes, and the levels in the STZ/KO group experienced a further reduction compared with the STZ/WT group. The number of WT1-positive cells in the STZ/KO group was more significantly decreased than that in the other three groups. In contrast, the numbers of cleaved caspase 3- and TUNEL-positive cells in the glomeruli of the STZ/KO group were more increased than those in the STZ/WT group. Thus, this study provides evidence that podocyte-specific deletion of Rac1 results in morphological alteration in podocytes, and that the induction of apoptosis or decreased expression of the slit diaphragm proteins by hyperglycemic stimuli are associated with the progression of diabetic nephropathy.

  6. Anti-Diabetic, Anti-Oxidant and Anti-Hyperlipidemic Activities of Flavonoids from Corn Silk on STZ-Induced Diabetic Mice.

    Science.gov (United States)

    Zhang, Yan; Wu, Liying; Ma, Zhongsu; Cheng, Jia; Liu, Jingbo

    2015-12-23

    Corn silk is a well-known ingredient frequently used in traditional Chinese herbal medicines. This study was designed to evaluate the anti-diabetic, anti-oxidant and anti-hyperlipidemic activities of crude flavonoids extracted from corn silk (CSFs) on streptozotocin (STZ)-induced diabetic mice. The results revealed that treatment with 300 mg/kg or 500 mg/kg of CSFs significantly reduced the body weight loss, water consumption, and especially the blood glucose (BG) concentration of diabetic mice, which indicated their potential anti-diabetic activities. Serum total superoxide dismutase (SOD) and malondialdehyde (MDA) assays were also performed to evaluate the anti-oxidant effects. Besides, several serum lipid values including total cholesterol (TC), triacylglycerol (TG), low density lipoprotein cholesterol (LDL-C) were reduced and the high density lipoprotein cholesterol level (HDL-C) was increased. The anti-diabetic, anti-oxidant and anti-hyperlipidemic effect of the CSFs suggest a potential therapeutic treatment for diabetic conditions.

  7. Anti-Diabetic, Anti-Oxidant and Anti-Hyperlipidemic Activities of Flavonoids from Corn Silk on STZ-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-12-01

    Full Text Available Corn silk is a well-known ingredient frequently used in traditional Chinese herbal medicines. This study was designed to evaluate the anti-diabetic, anti-oxidant and anti-hyperlipidemic activities of crude flavonoids extracted from corn silk (CSFs on streptozotocin (STZ-induced diabetic mice. The results revealed that treatment with 300 mg/kg or 500 mg/kg of CSFs significantly reduced the body weight loss, water consumption, and especially the blood glucose (BG concentration of diabetic mice, which indicated their potential anti-diabetic activities. Serum total superoxide dismutase (SOD and malondialdehyde (MDA assays were also performed to evaluate the anti-oxidant effects. Besides, several serum lipid values including total cholesterol (TC, triacylglycerol (TG, low density lipoprotein cholesterol (LDL-C were reduced and the high density lipoprotein cholesterol level (HDL-C was increased. The anti-diabetic, anti-oxidant and anti-hyperlipidemic effect of the CSFs suggest a potential therapeutic treatment for diabetic conditions.

  8. In Vivo Hypoglycaemic Effect and Inhibitory Mechanism of the Branch Bark Extract of the Mulberry on STZ-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Hua-Yu Liu

    2014-01-01

    Full Text Available Branch bark extract (BBE derived from the mulberry cultivar Husang 32 (Morus multicaulis L. with aqueous alcohol solution has been investigated as an inhibitor of α-glycosidase in vitro. Mulberry BBE was orally administered to STZ-induced diabetic mice for three weeks, and it improved the weight gain and ameliorated the swelling of liver and kidney in diabetic mice. Obviously, mulberry BBE not only can reduce the abnormally elevated levels of serum insulin and ameliorate insulin resistance induced by STZ, but also it regulates dyslipidemia in diabetic mice. To understand this therapeutic effect and the regulatory mechanisms of BBE in diabetic mice, a qRT-PCR experiment was performed, indicating that the mulberry BBE can regulate the mRNA expression of glycometabolism genes in diabetic mice, including glucose-6-phosphatase (G6Pase, glucokinase (GCK, and phosphoenolpyruvate carboxykinase (PEPCK, thereby regulating sugar metabolism and reducing the blood glucose level in diabetic mice. The mulberry BBE can increase the mRNA expression of the genes Ins1, Ins2 and pancreatic duodenal homeobox-1 (PDX-1 and may decrease the insulin resistance in diabetic mice. Those results provide an important basis for making the best use of mulberry branch resources and producing biomedical drugs with added value.

  9. Anti-Glycemic and Anti-Hepatotoxic Effects of Mangosteen Vinegar Rind from Garcinia mangostana Against HFD/STZ-Induced Type II Diabetes in Mice

    Directory of Open Access Journals (Sweden)

    Karim Naymul

    2018-06-01

    Full Text Available This study focuses on anti-glycemic and anti-hepatotoxic effects of mangosteen vinegar rind (MVR on five weeks high-fat diet (HFD / single dose streptozotocin (STZ 30 mg/kg BW induced male ICR diabetic mice. Mice were randomly divided into five groups (n=6, normal control, diabetic control, and diabetic groups treated with MVR 100, 200 mg/kg BW and glibenclamide 60 mg/kg BW for one week. After the treatment, lipid profile, glycogen and bilirubin contents, oxidative damage (malondialdehyde, MDA, aspartate aminotransferase (AST and alanine aminotransferase (ALT activities, antioxidant enzymes: superoxide dismutase (SOD, catalase (CAT were measured in plasma and/or liver tissues. MVR and glibenclamide treatment to HFD/STZ-induced diabetic mice significantly reduced their plasma glucose, plasma lipid profile, and hepatic lipid profile (P<0.05. Increased hepatic glycogen content indicates improvement of insulin sensitivity. Moreover, oxidative damage markers were ameliorated in MVR- and glibenclamide-treated groups compared to the diabetic control group. MVR with phenolic compounds content of 75 mg GAE/g dry weight and antioxidant potential of 303 mmol/L Trolox/g dry weight acted as a hepatoprotective agent against oxidative damage.

  10. Effect of an aqueous extract of Cucurbita ficifolia Bouché on the glutathione redox cycle in mice with STZ-induced diabetes.

    Science.gov (United States)

    Díaz-Flores, M; Angeles-Mejia, S; Baiza-Gutman, L A; Medina-Navarro, R; Hernández-Saavedra, D; Ortega-Camarillo, C; Roman-Ramos, R; Cruz, M; Alarcon-Aguilar, F J

    2012-10-31

    Cucurbita ficifolia is used in Mexican traditional medicine as an anti-diabetic and anti-inflammatory agent and its actions can be mediated by antioxidant mechanisms. Disturbance in the homeostasis of glutathione has been implicated in the etiology and progression of diabetes mellitus and its complications. It was evaluated, the effect of an aqueous extract of Cucurbita ficifolia on glycemia, plasma lipid peroxidation; as well as levels of reduced (GSH) and oxidized (GSSG) glutathione and activities of enzymes involved in glutathione redox cycle: glutathione peroxidase (GPx) and glutathione reductase (GR) in liver, pancreas, kidney and heart homogenates of streptozotocin-induced diabetic mice. Increased blood glucose and lipid peroxidation, together with decreased of GSH concentration, GSH/GSSG ratio and its redox potential (E(h)), and enhanced activity of GPx and GR in liver, pancreas and kidney were the salient features observed in diabetic mice. Administration of the aqueous extract of Cucurbita ficifolia to diabetic mice for 30 days, used at a dose of 200 mg/kg, resulted in a significant reduction in glycemia, polydipsia, hyperphagia and plasma lipid peroxidation. Moreover, GSH was increased in liver, pancreas and kidney, and GSSG was reduced in liver, pancreas and heart, therefore GSH/GSSG ratio and its E(h) were restored. Also, the activities involved in the glutathione cycle were decreased, reaching similar values to controls. An aqueous extract of Cucurbita ficifolia with hypoglycemic action, improve GSH redox state, increasing glutathione pool, GSH, GSH/GSSG ratio and its E(h), mechanism that can explain, at least in part, its antioxidant properties, supporting its use as an alternative treatment for the control of diabetes mellitus, and prevent the induction of complications by oxidative stress. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Momordica charantia polysaccharides mitigate the progression of STZ induced diabetic nephropathy in rats.

    Science.gov (United States)

    Raish, Mohammad; Ahmad, Ajaz; Jan, Basit L; Alkharfy, Khalid M; Ansari, Mushtaq Ahmad; Mohsin, Kazi; Jenoobi, Fahad Al; Al-Mohizea, Abdullah

    2016-10-01

    Diabetic nephropathy (DN) has become a primary cause of end-stage kidney disease. Several complex dynamics converge together to accelerate the advancement of DN. The present investigation was postulated to explore the mechanism of reno-protective nature of Momordica Charantia polysaccharides (MCP) by evaluating the anti-hyperglycemic, anti-lipidemic as well as markers for oxidative stress and antioxidant proficiency in streptozotocin (STZ)-induced diabetic rats. The oral administration of MCP showed a significant normalization in the levels of kidney function test in the STZ-induced diabetic rats. The levels of blood urea nitrogen (BUN), urea protein and creatinine increased by 316.58%, 195.14% and 800.97% respectively, in STZ-induced diabetic rats when compared with normal rats. MCP treatment also illustrated a significant improvement in glutathione peroxidase, superoxide dismutase and catalase levels, with a significant decline in MDA in diabetic kidneys. Immunoblots of heme-oxygenase 1 (HO-1) and Nrf2 of MCP treated diabetic rats showed a significant up-regulation of HO-1 and Nrf2 protein. Histological and ultra-structural observations also reveal that MCP efficiently protects the kidneys from hyperglycemia-mediated oxidative damage. These findings illustrate that the reno-protective nature of MCP mitigates the progression of STZ induced DN in rats by suppression of oxidative stress and amelioration of the HO-1/Nrf2 pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Nabi Shaik Abdul

    2013-02-01

    Full Text Available Abstract Background The available drugs for diabetes, Insulin or Oral hypoglycemic agents have one or more side effects. Search for new antidiabetic drugs with minimal or no side effects from medicinal plants is a challenge according to WHO recommendations. In this aspect, the present study was undertaken to evaluate the antihyperglycemic and antihyperlipidemic effects of Piper longum root aqueous extract (PlrAqe in streptozotocin (STZ induced diabetic rats. Methods Diabetes was induced in male Wister albino rats by intraperitoneal administration of STZ (50 mg/kg.b.w. Fasting blood glucose (FBG levels were measured by glucose-oxidase & peroxidase reactive strips. Serum biochemical parameters such as glycosylated hemoglobin (HbA1c, total cholesterol (TC, triglycerides (TG, very low density lipoprotein (VLDL, low density lipoprotein (LDL and high density lipoprotein (HDL cholesterol were estimated. The activities of liver and kidney functional markers were measured. The statistical analysis of results was carried out using Student t-test and one-way analysis (ANOVA followed by DMRT. Results During the short term study the aqueous extract at a dosage of 200 mg/kg.b.w was found to possess significant antidiabetic activity after 6 h of the treatment. The administration of aqueous extract at the same dose for 30 days in STZ induced diabetic rats resulted in a significant decrease in FBG levels with the corrections of diabetic dyslipidemia compared to untreated diabetic rats. There was a significant decrease in the activities of liver and renal functional markers in diabetic treated rats compared to untreated diabetic rats indicating the protective role of the aqueous extract against liver and kidney damage and its non-toxic property. Conclusions From the above results it is concluded that the plant extract is capable of managing hyperglycemia and complications of diabetes in STZ induced diabetic rats. Hence this plant may be considered as one of the

  13. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Xin [Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai (China); Li, Xinghui [Departments of Physiology and Pathophysiology, Shanghai College of Medicine, Fudan University, Shanghai (China); Ma, Fenfen; Luo, Shanshan [Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai (China); Ge, Ruowen [Departmentof Biological Sciences, National University of Singapore (Singapore); Zhu, Yizhun, E-mail: zhuyz@fudan.edu.cn [Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai (China); Departmentof Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore (Singapore)

    2016-05-13

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H{sub 2}S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover, SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. - Highlights: • We synthesized a novel hydrogen sulfide-releasing compound, S-propargyl-cysteine (SPRC). • SPRC was preliminarily demonstrated to prevent STZ-induced diabetic nephropathy (DN). • SPRC may exert potential therapeutic candidate to suppress DN.

  14. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy

    International Nuclear Information System (INIS)

    Qian, Xin; Li, Xinghui; Ma, Fenfen; Luo, Shanshan; Ge, Ruowen; Zhu, Yizhun

    2016-01-01

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H_2S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover, SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. - Highlights: • We synthesized a novel hydrogen sulfide-releasing compound, S-propargyl-cysteine (SPRC). • SPRC was preliminarily demonstrated to prevent STZ-induced diabetic nephropathy (DN). • SPRC may exert potential therapeutic candidate to suppress DN.

  15. Renal Protective Effects of Low Molecular Weight of Inonotus obliquus Polysaccharide (LIOP on HFD/STZ-Induced Nephropathy in Mice

    Directory of Open Access Journals (Sweden)

    Yen-Jung Chou

    2016-09-01

    Full Text Available Diabetic nephropathy (DN is the leading cause of end-stage renal disease in diabetes mellitus. Oxidative stress, insulin resistance and pro-inflammatory cytokines have been shown to play an important role in pathogeneses of renal damage on type 2 diabetes mellitus (DM. Inonotus obliquus (IO is a white rot fungus that belongs to the family Hymenochaetaceae; it has been used as an edible mushroom and exhibits many biological activities including anti-tumor, anti-oxidant, anti-inflammatory and anti-hyperglycemic properties. Especially the water-soluble Inonotus obliquus polysaccharides (IOPs have been previously reported to significantly inhibit LPS-induced inflammatory cytokines in mice and protect from streptozotocin (STZ-induced diabetic rats. In order to identify the nephroprotective effects of low molecular weight of IOP fraction (LIOP, from the fruiting bodies of Inonotus obliquus, high-fat diet (HFD plus STZ-induced type 2-like diabetic nephropathy C57BL/6 mice were investigated in this study. Our data showed that eight weeks of administration of 10–100 kDa, LIOP (300 mg/kg had progressively increased their sensitivity to glucose (less insulin tolerance, reduced triglyceride levels, elevated the HDL/LDL ratio and decreased urinary albumin/creatinine ratio(ACR compared to the control group. By pathological and immunohistochemical examinations, it was indicated that LIOP can restore the integrity of the glomerular capsules and increase the numbers of glomerular mesangial cells, associated with decreased expression of TGF-β on renal cortex in mice. Consistently, three days of LIOP (100 μg/mL incubation also provided protection against STZ + AGEs-induced glucotoxicity in renal tubular cells (LLC-PK1, while the levels of NF-κB and TGF-β expression significantly decreased in a dose-dependent manner. Our findings demonstrate that LIOP treatment could ameliorate glucolipotoxicity-induced renal fibrosis, possibly partly via the inhibition of NF

  16. Biomechanical and morphological remodelings of gastrointestinal tract in STZ-induced diabetic rats

    DEFF Research Database (Denmark)

    Sha, Hong; Zhao, Jingbo; Liu, Gui-Fang

    2012-01-01

    AIM: The aim of the study was to investigate the biomechanical and morphometrical remodeling of gastrointestinal (GI) tract in streptozotocin (STZ) induced diabetic rats. METERIALS AND METHODS: Eighteen SD male rats of diabetic group(DM, a single tail vein injection 40mg/kg of STZ, 9 rats...... in the esophageal, jejunal and colonic segments. RESULTS: The blood glucose level, the wet weight per unit to body weight ratio, wall thickness, opening angle, absolute value of residual strain in DM group were significantly higher than those in C0N group (Pstiffness of the esophageal......, jejunal, colonic wall in circumferential direction and the esophageal, colonic wall in longitudinal direction increased in DM group compared those with CON group (P

  17. Protective role of marine macroalgae extracts against STZ induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Marine macroalgae

    2017-12-01

    Full Text Available Objective: To study the anti-diabetic activity of marine macroalgae extracts (n = 31, purification and characterization of sulphated galactopyran (SGP from Gracilaria opuntia (FM4 in diabetic rats. Methods: The animals were separated into groups and STZ (55 mg/kg body weight was used to induce diabetics. Glucose, HbA1c, insulin, C-peptide levels and in vivo antioxidant levels were estimated and histopathological studies were done in STZ-induced diabetic and marine macroalgae treated rats. Results: Based on glucose and HbA1c levels and in vivo antioxidant levels, among the 31 marine macroalgae extracts, FM4 has showed high anti-diabetic activity. Hence, FM4 was purified and characterized by 1H-NMR spectra and FT-IR as sulphated galactopyran. During the survival analysis, SGP at dose of 100 mg/kg showed significant (P < 0.05 survival rate and elevations in C-peptide and insulin levels. The histopathological modulations of SGP were observed in diabetic rat tissues such as liver, kidney and brain. Hence obtained results reveal that SGP treated diabetic rats has significant changes in C-peptide and insulin levels which regulates the blood glucose levels and recovered the histopathological changes. Conclusions: Marine macroalgae have significant anti-diabetic activity. Hence, they could be used as nutraceutical supplement or natural green remedy against diabetes mellitus.

  18. Effects of benazepril on cardiac fibrosis in STZ-induced diabetic rats.

    Science.gov (United States)

    Li, Qian; Wang, Yi; Sun, Shu-zhen; Tian, Yong-jie; Liu, Ming-hua

    2010-08-01

    The present study was designed to explore the roles of MMP-2/TIMP-2 in cardiac fibrosis and to study the effects of benazepril, an angiotensin-converting enzyme inhibitor (ACEI) on cardiac remodelling in streptozotocin(STZ)-induced diabetic rats. Male Wistar rats were randomly divided into three groups: a normal control group (NC), a diabetes mellitus-untreated group (DM) and a diabetes mellitus benazepril-treated group (DB). Diabetes mellitus was induced in the DM and DB groups by intraperitoneal injection of streptozotocin (60 mg/kg). DB rats were treated with benazepril 10 mg/kg/day for 12 weeks by remedial perfusing of the stomach. In the DM group, compared with the NC group, the gene and protein expression of MMP-2 decreased while the TIMP-2 gene and protein expression increased in heart tissues, along with a markedly cardiac collagen deposition.All the above changes were attenuated by benazepril treatment in the DB group. The imbalance of MMP-2 and TIMP-2 expressions in heart tissues might participate in interstitial fibrosis in diabetic myocardiopathy. Benazepril may ameliorate cardiac fibrosis partly by regulating the MMP-2/TIMP-2 system.

  19. Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice.

    Science.gov (United States)

    Zhao, Shan-shan; Yang, Wei-na; Jin, Hui; Ma, Kai-ge; Feng, Gai-feng

    2015-12-01

    Puerarin (PUE), an isoflavone purified from the root of Pueraria lobata (Chinese herb), has been reported to attenuate learning and memory impairments in the transgenic mouse model of Alzheimer's disease (AD). In the present study, we tested PUE in a sporadic AD (SAD) mouse model which was induced by the intracerebroventricular injection of streptozotocin (STZ). The mice were administrated PUE (25, 50, or 100mg/kg/d) for 28 days. Learning and memory abilities were assessed by the Morris water maze test. After behavioral test, the biochemical parameters of oxidative stress (glutathione peroxidase (GSH-Px), superoxide dismutases (SOD), and malondialdehyde (MDA)) were measured in the cerebral cortex and hippocampus. The SAD mice exhibited significantly decreased learning and memory ability, while PUE attenuated these impairments. The activities of GSH-Px and SOD were decreased while MDA was increased in the SAD animals. After PUE treatment, the activities of GSH-Px and SOD were elevated, and the level of MDA was decreased. The middle dose PUE was more effective than others. These results indicate that PUE attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice. PUE may be a promising therapeutic agent for SAD. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effect of Tangweian Jianji on the Biomechanical and Morphometric Remodeling of Colon and Rectum in STZ Induced Diabetic Rats

    DEFF Research Database (Denmark)

    Sha, Hong; Tong, Xiao-Lin; Liu, Gui-Fang

    2012-01-01

    .01). Furthermore, the circumferential and longitudinal stiffness of the colonic wall increased in DM group compared those with CON group. TH but not TL treatment could significantly decrease the colonic wall stiffness in both directions (P...AIM: The aim of the study was to investigate the effect of TWAJJ on the biomechanical and morphometrical remodeling of colon and rectum in streptozotocin (STZ) induced diabetic rats. METHODS: The colonic and rectal segments obtained from diabetic (DM), TWAJJ treated diabetic (TH, high dosage: 10 g...

  1. MiR-124 is Related to Podocytic Adhesive Capacity Damage in STZ-Induced Uninephrectomized Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Dong Li

    2013-10-01

    Full Text Available Background: Diabetic nephropathy (DN is the leading cause of end-stage renal disease. Podocyte plays a key role in the pathogenesis of DN. Adhesive capacity damage of podocytes is characteristic in DN. Emerging evidence suggests that microRNAs (miRNAs play crucial roles in controlling many cell adhesion molecules thus contribute to normal cell adhesion. The roles of miRNA in podocytic adhesive capacity damage in diabetic conditions remain largely unknown. Methods: Diabetes was induced by tail vein injection of streptozotocin (STZ into uninephrectomized male Wistar rats. Comparative miRNA expression array and real-time PCR analyses were conducted in sham group at week 0 (W0, n = 3 and STZ-induced uninephrectomized diabetic rats at week 1 (W1, n = 3 and week 2 (W2, n = 3 to demonstrate the greatest increased miRNA in renal cortex. At week 2, STZ-induced uninephrectomized diabetic rats were treated with vehicle (Group U, n = 9, chemically modified antisense RNA oligonucleotide (ASO complementary to the mature miR-124 (Group O, n = 8, miR-124 mismatch control sequence (Group M, n = 8. Urine specimens were obtained for measurement of urine albumin concentration and urinary podocyte specific protein (nephrin and podocin quantitation. Expression of integrin α3 were detected by immunohistochemistry and western blotting. Results: MiRNAs are differentially regulated in renal cortex of STZ-induced uninephrectomized diabetic rats relative to sham rats. Among the up-regulated miRNAs, miR-124 expression demonstrated the greatest increase. Administration of miR-124 ASO for two weeks significantly reduced urinary podocytic nephrin, podocin and albumin excretion and up-regulate integrin α3 expression. Conclusion: MiR-124 is related to podocytic adhesive capacity damage and may be implicated in the pathogenesis of DN.

  2. Protective effect of the daming capsule on impaired baroreflexes in STZ-induced diabetic rats with hyperlipoidemia

    Directory of Open Access Journals (Sweden)

    Lu Guan-Yi

    2010-12-01

    Full Text Available Abstract Background The Daming capsule (DMC is a traditional Chinese medicine used to treat hyperlipoidemia. Both clinic trials and studies on animal models have demonstrated that DMC is beneficial against diabetic symptoms. Impairment of the baroreflex can cause life-threatening arrhythmias and sudden cardiac death in patients with diabetes mellitus (DM. This study was designed to elucidate the effects of DMC on baroreflexes in streptozocin (STZ-induced diabetic rats with hyperlipoidemia. Methods Wistar rats were randomly divided into three groups: untreated controls, rats pretreated STZ and high lipids (a diabetes model or DM rats, and DM rats treated with DMC. The baroreflex sensitivity was examined during intravenous injection of phenylephrine (PE or sodium nitroprusside (SNP and quantified by the change in heart rate over the change in mean arterial blood pressure (ΔHR/ΔMABP. Morphological remodeling of baroreceptors was analyzed by transmission electron microscopy (TEM. The mRNA levels and expression of GluR2 and a GABAA receptor subunit were measured by quantitative RT-PCR and Western blotting. Results Compared to untreated DM rats, DMC significantly elevated the ratio of ΔHR/ΔMABP by enhancing the compensatory reduction in HR (-ΔHR in response to PE-induced hypertension (+ΔMABP (P P P A receptor expression. Conclusion The Daming capsule partially reversed the parasympathetic baroreflex impairment observed in STZ-induced diabetic rats with hyperlipoidemia. Treatment with DMC also prevented the degeneration of neurons and myelinated axons in the brain stem NAm and reversed the down-regulation of GluR2 mRNA. Rescue of NAm function may contribute to the medicinal properties of DMC in diabetic rats.

  3. Delayed progression of diabetic cataractogenesis and retinopathy by Litchi chinensis in STZ-induced diabetic rats.

    Science.gov (United States)

    Kilari, Eswar Kumar; Putta, Swathi

    2017-03-01

    The study was carried out to evaluate the effect of the aqueous fruit pericarp extract of Litchi chinensis (APLC) on parameters which leads to diabetic cataractogenesis and retinopathy in the streptozotocin-induced diabetic rats. The objective of the study is to evaluate the APLC for in vivo antioxidant activity and its role in inhibiting the polyol pathway and formation of advanced glycation end products (AGEs). The diabetic animals were treated with L. chinensis for a period of 12 weeks. At the end of 12 weeks, the animals were killed and the biochemical pathways involved in the pathogenesis of cataract such as oxidative stress by protein content, superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and polyolpathway by aldose reductase (AR) in lens homogenates, alterations in protein carbonyl content (PCO) and AGEs in both serum and lens the APLC-treated diabetic rats were compared against diabetic control rats. Cataract progression due to hyperglycemia was monitored by slit lamp bio microscope and classified into four stages. Fundoscope test and retinal histopathology were done for assessing retinopathy. Statistically significant reduction in glucose, and elevation of protein content, SOD, CAT, and GSH levels and decreased levels of AR and PCO in lens homogenate and significant reduction in AGEs serum and lens homogenate were observed. Slit lamp examination, fundoscope, and histopathology showed improvement in retinal changes in APLC-treated rats compared to diabetic control animals. The treatment with APLC found to delay the progression of diabetic cataractogenesis and retinopathy, which might be due to its antioxidant activity, because of the presence of active phytochemicals in APLC.

  4. The effect of Stevia rebaudiana on serum omentin and visfatin level in STZ-induced diabetic rats.

    Science.gov (United States)

    Akbarzadeh, Samad; Eskandari, Fatemeh; Tangestani, Hadis; Bagherinejad, Somaieh Tangerami; Bargahi, Afshar; Bazzi, Parviz; Daneshi, Adel; Sahrapoor, Azam; O'Connor, William J; Rahbar, Ali Reza

    2015-03-01

    Recently the role of adipocytokines in relationship to incidence of diabetes has been demonstrated. One of the medicinal plants that are used in the treatment of diabetes is stevia. This study investigates the effect of stevia on serum omentin and visfatin levels as novel adipocytokines in diabetic induced rats to find potential mechanisms for the anti hyperglycemic effect of stevia. Forty male wistar rats weighing 180-250 g were induced with diabetes by intraperitoneal injection of streptozotocin (STZ). The animals were divided into 5 groups of 8. Rats in group 1 (non-diabetic control) and group 2 (diabetic control) were treated with distilled water, and the rats in the treated groups, group 3 (T250), group 4 (T500), and group 5 (T750) were treated with stevia, gavaged every day at 9 a.m. in doses of 250, 500, and 750 mg/kg, respectively. At the end of the study significant reductions in fasting blood sugar (FBS), the homeostasis model assessment insulin resistance (HOMA-IR), triglyceride (TG), alkaline phosphatase (ALP), and Omentin level were found in groups 3 and 4 in comparison with group 2. Pancreatic histopathology slides demonstrated that stevia extract did not induce any increase in the number of β-cells. The conclusion is that prescription of stevia in the doses of 250 and 500 mg/kg/d decreases the omentin level indirectly via activating insulin sensitivity and lowering blood glucose in STZ-induced diabetic rats.

  5. Potential nephrotoxic effects produced by steroidal saponins from hydro alcoholic extract of Tribulus terrestris in STZ-induced diabetic rats.

    Science.gov (United States)

    Gandhi, Sonia; Srinivasan, B P; Akarte, Atul S

    2013-09-01

    Chronic hyperglycemia leads to the development of microvascular complications like diabetic nephropathy. The present study investigated the potential effects of the hydroalcoholic extract of Tribulus terrestris, a plant of Zygophyllaceae family, on the renal complications in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by administering STZ (90 mg/kg) to the 2-days old neonates. After 6 weeks of induction, diabetic rats were treated with 50 mg/kg hydroalcoholic extract of T. terrestris for 8 weeks. The anti-hyperglycaemic nature was confirmed by reduction in blood glucose and improvement in insulin levels. Diabetic renal injury associated with decrease in total proteins and albumin levels was observed to be improved by T. terrestris extract. Glomerular filtration rate along with inflammatory and growth factors, adiponectin and erythropoietin were also improved by the treatment, though the findings were not significant. However, the beneficial antidiabetic effects of T. terrestris extract in plasma were not observed in kidney histopathology. This was confirmed by the quantitative estimation of unhydrolyzed fraction of saponins (major component: protodioscin) in plasma and kidney samples of normal and diabetic rats. Hence, it can be concluded that 8 weeks treatment with T. terrestris extract produces potential toxic effects in kidney, which are independent of its anti-diabetic action.

  6. The Effect of Chang Run Tong on Biomechanical Colon Remodeling in STZ-Induced Type I Diabetic Rats - Is It Related to Advanced Glycation End Product Formation?

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Gregersen, Hans

    2015-01-01

    BACKGROUND AND AIM: The Chinese medicine Chang Run Tong (CRT) effectively improved senile constipation in the clinics. The aims of the present study were to investigate the effect of CRT on colonic remodeling in streptozotocin (STZ) induced diabetic rats and to explore the mechanisms of the CRT...

  7. Immunosuppressive effect of compound K on islet transplantation in an STZ-induced diabetic mouse model.

    Science.gov (United States)

    Ma, Peng-Fei; Jiang, Jie; Gao, Chang; Cheng, Pan-Pan; Li, Jia-Li; Huang, Xin; Lin, Ying-Ying; Li, Qing; Peng, Yuan-Zheng; Cai, Mei-Chun; Shao, Wei; Zhu, Qi; Han, Sai; Qin, Qing; Xia, Jun-Jie; Qi, Zhong-Quan

    2014-10-01

    Islet transplantation is a therapeutic option for type 1 diabetes, but its long-term success is limited by islet allograft survival. Many factors imperil islet survival, especially the adverse effects and toxicity due to clinical immunosuppressants. Compound (Cpd) K is a synthesized analog of highly unsaturated fatty acids from Isatis tinctoria L. (Cruciferae). Here we investigated the therapeutic effect of Cpd K in diabetic mice and found that it significantly prolonged islet allograft survival with minimal adverse effects after 10 days. Furthermore, it reduced the proportion of CD4(+) and CD8(+) T cells in spleen and lymph nodes, inhibited inflammatory cell infiltration in allografts, suppressed serum interleukin-2 and interferon-γ secretion, and increased transforming growth factor-β and Foxp3 mRNA expression. Surprisingly, Cpd K and rapamycin had a synergistic effect. Cpd K suppressed proliferation of naïve T cells by inducing T-cell anergy and promoting the generation of regulatory T cells. In addition, nuclear factor-κB signaling was also blocked. Taken together, these findings indicate that Cpd K may have a potential immunosuppressant effect on islet transplantation. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Sulphated galactopyran derived from Gracilaria opuntia, a marine macroalgae restores the antioxidant metabolic enzymes during STZ induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Lavanya Rayapu

    2017-02-01

    Full Text Available Objective: To screen the effect of sulphated galactopyran fraction isolated from Gracilaria opuntia (G. opuntia (FM4 in streptozotocin (STZ induced diabetic rats. Methods: In vitro antioxidant assays of FM4 were estimated by DPPH, ABTS, hydroxyl free radical and Nitric oxide free radical activities. FM4 was purified and characterized by 1H-NMR spectra and FTIR as sulphated galactopyran. Diabetes was induced intraperitonially by single dose of STZ (55 mg/kg body weight. FM4 was administrated orally (80, 100, 125 mg/kg BW to diabetic rats for 60 days. The enzymatic and non-enzymatic antioxidants such as superoxide dismutase (SOD, glutathione peroxidase (GPx, catalase (CAT, glutathione-S-transferase (GST, lipid peroxidase (LPx, glutathione reduced (GSH, vitamin-C (VIT-C and vitamin-E (VIT-E levels were estimated. Glibenclamide was used as standard drug. Results: Our results demonstrated that the aqueous extract of G. opuntia possess free radical scavenging activity. During FM4 fraction treatment (100 mg/kg BW, the SOD, GPx, CAT, GST, GSH, VIT-C and VIT-E levels were significantly (P < 0.05 increased, and the LPx levels were decreased in different organs such as liver, kidney, brain and pancreas of diabetic rats. Conclusions: The sulphated galactopyran fraction of the marine macroalgae (G. opuntia possesses the antioxidant activity which might help in the prevention of oxidative damage that occurs during diabetes.

  9. Bio-optic signatures for advanced glycation end products in the skin in streptozotocin (STZ) Induced Diabetes (Conference Presentation)

    Science.gov (United States)

    Saidian, Mayer; Ponticorvo, Adrien; Rowland, Rebecca A.; Balbado, Melisa L.; Lentsch, Griffin; Balu, Mihaela; Alexander, Micheal; Shiri, Li; Lakey, Jonathan R. T.; Durkin, Anthony J.; Kohen, Roni; Tromberg, Bruce J.

    2017-02-01

    Type 1diabetes (T1D) is an autoimmune disorder that occurs due to the rapid destruction of insulin-producing beta cells, leading to insulin deficiency and the inability to regulate blood glucose levels and leads to destructive secondary complications. Advanced glycation end (AGEs) products, the result of the cross-linking of reducing sugars and proteins within the tissues, are one of the key causes of major complications associated with diabetes such as renal failure, blindness, nerve damage and vascular changes. Non-invasive techniques to detect AGEs are important for preventing the harmful effects of AGEs during diabetes mellitus. In this study, we utilized multiphoton microscopy to image biopsies taken from control rats and compared them to biopsies taken from streptozotocin (STZ) induced adult male diabetic rats. This was done at two and four weeks after the induction of hyperglycemia (>400 mg/dL) specifically to evaluate the effects of glycation on collagen. We chose to use an in-situ multiphoton microscopy method that combines multiphoton auto-florescence (AF) and second harmonic generation (SHG) to detect the microscopic influence of glycation. Initial results show high auto-florescence levels were present on the collagen, as a result of the accumulation of AGEs only two weeks after the STZ injection and considerably higher levels were present four weeks after the STZ injection. Future projects could involve evaluating advanced glycation end products in a clinical trial of diabetic patients.

  10. Recombinant human GLP-1(rhGLP-1) alleviating renal tubulointestitial injury in diabetic STZ-induced rats.

    Science.gov (United States)

    Yin, Weiqin; Xu, Shiqing; Wang, Zai; Liu, Honglin; Peng, Liang; Fang, Qing; Deng, Tingting; Zhang, Wenjian; Lou, Jinning

    2018-01-01

    GLP-1-based treatment improves glycemia through stimulation of insulin secretion and inhibition of glucagon secretion. Recently, more and more findings showed that GLP-1 could also protect kidney from diabetic nephropathy. Most of these studies focused on glomeruli, but the effect of GLP-1 on tubulointerstitial and tubule is not clear yet. In this study, we examined the renoprotective effect of recombinant human GLP-1 (rhGLP-1), and investigated the influence of GLP-1 on inflammation and tubulointerstitial injury using diabetic nephropathy rats model of STZ-induced. The results showed that rhGLP-1 reduced urinary albumin without influencing the body weight and food intake. rhGLP-1 could increased the serum C-peptide slightly but not lower fasting blood glucose significantly. In diabetic nephropathy rats, beside glomerular sclerosis, tubulointerstitial fibrosis was very serious. These lesions could be alleviated by rhGLP-1. rhGLP-1 decreased the expression of profibrotic factors collagen I, α-SMA, fibronectin, and inflammation factors MCP-1 and TNFα in tubular tissue and human proximal tubular cells (HK-2 cells). Furthermore, rhGLP-1 significantly inhibited the phosphorylation of NF-κB, MAPK in both diabetic tubular tissue and HK-2 cells. The inhibition of the expression of TNFα, MCP-1, collagen I and α-SMA in HK-2 cells by GLP-1 could be mimicked by blocking NF-κB or MAPK. These results indicate that rhGLP-1 exhibit renoprotective effect by alleviation of tubulointerstitial injury via inhibiting phosphorylation of MAPK and NF-κB. Therefore, rhGLP-1 may be a potential drug for treatment of diabetic nephropathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Resolvin D1 inhibits inflammatory response in STZ-induced diabetic retinopathy rats: Possible involvement of NLRP3 inflammasome and NF-κB signaling pathway.

    Science.gov (United States)

    Yin, Yizhou; Chen, Fei; Wang, Wenyan; Wang, Han; Zhang, Xuedong

    2017-01-01

    To investigate the effect of resolvin D1 (RvD1) on the Nod-like receptor family pyrin domain-containing (NLRP3) inflammasome and the nuclear factor-kappa beta (NF-κB) pathway in streptozotocin (STZ)-induced diabetic retinopathy in rats. Ninety-six male rats were divided into four groups: control, STZ, RvD1, and vehicle. The rats with diabetic retinopathy induced by STZ in the RvD1 and vehicle groups were given an intravitreal injection of RvD1 (1,000 ng/kg) or the same dosage of vehicle, respectively. All rats were euthanized 7 days following treatment. Hematoxylin and eosin staining was used to observe the pathological changes in the retinal tissues. The location and expression of the NLRP3 inflammasome components, including NLRP3, caspase-associated recruitment domain (ASC), and caspase-1, in the retinas were detected using immunohistochemistry, real-time PCR, and western blot, respectively. Retinal homogenate of rats were collected for the detection of the downstream molecules interleukin 1 beta (IL-1β) and IL-18 of the NLRP3 inflammasome with enzyme-linked immunosorbent assay kits. The levels of NLRP3, ASC, cleaved caspase-1, IL-1β, and IL-18 were upregulated in the retinas of the STZ-induced diabetic rats; however, these changes were partially inhibited by the RvD1 treatment. Furthermore, the administration of RvD1 suppressed activation of NF-kB, which was upregulated in STZ-induced diabetic retinopathy. RvD1 plays a protective role in STZ-induced diabetic retinopathy by inhibiting the level of activation of the NLRP3 inflammasome and associated cytokine production, suggesting targeting of this pathway might be an effective strategy in treatment of diabetic retinopathy.

  12. Effect of Urtica dioica L. (Urticaceae) on testicular tissue in STZ-induced diabetic rats.

    Science.gov (United States)

    Ghafari, S; Balajadeh, B Kabiri; Golalipour, M J

    2011-08-15

    Urtica dioica L. (Stinging nettle) has already been known for a long time as a medicinal plant in the world. This histopathological and morphometrical study was conducted to determine the effects of the hydroalcoholic extract of Urtica dioica leaves on testis of streptozotocin-induced diabetic rats. Eighteen male Wistar rats were allocated to equally normal, diabetic and treatment groups. Hyperglycemia was induced by Streptozotocin (80 mg kg(-1)) in animals of diabetic and treatment groups. One week after STZ injection (80 mg kg(-1)), the rats of treatment group received the extract of U. dioica (100 mg/kg/day) IP for 28 days. After 5 weeks of study, all the rats were sacrificed and testes were removed and fixed in bouin and after tissue processing stained with H and E technique. Tubular cell disintegration, sertoli and spermatogonia cell vacuolization and decrease in sperm concentration in seminiferous tubules were seen in diabetic and treatment groups group in comparison with control. External Seminiferous Tubular Diameter (STD) and Seminiferous Epithelial Height (SEH) significantly reduced (p < 0.05) in the diabetic rats compared with controls and these parameters in the treatment group were similar to diabetics animals. This study showed that hydroalcoholic extract of Urtica dioica leaves, after induction of diabetes; has no treatment effect on seminiferous tubules alterations in streptozotocin-induced diabetic rats.

  13. TCDD modulation of gut microbiome correlated with liver and immune toxicity in streptozotocin (STZ)-induced hyperglycemic mice

    International Nuclear Information System (INIS)

    Lefever, Daniel E.; Xu, Joella; Chen, Yingjia; Huang, Guannan; Tamas, Nagy; Guo, Tai L.

    2016-01-01

    An increasing body of evidence has shown the important role of the gut microbiome in mediating toxicity following environmental contaminant exposure. The goal of this study was to determine if the adverse metabolic effects of chronic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure would be sufficient to exacerbate hyperglycemia, and to further determine if these outcomes were attributable to the gut microbiota alteration. Adult male CD-1 mice were exposed to TCDD (6 μg/kg body weight biweekly) by gavage and injected (i.p.) with STZ (4 × 50 mg/kg body weight) to induced hyperglycemia. 16S rRNA sequencing was used to characterize the changes in the microbiome community composition. Glucose monitoring, flow cytometry, histopathology, and organ characterization were performed to determine the deleterious phenotypic changes of TCDD exposure. Chronic TCDD treatment did not appear to exacerbate STZ-induced hyperglycemia as blood glucose levels were slightly reduced in the TCDD treated mice; however, polydipsia and polyphagia were observed. Importantly, TCDD exposure caused a dramatic change in microbiota structure, as characterized at the phylum level by increasing Firmicutes and decreasing Bacteroidetes while at the family level most notably by increasing Lactobacillaceae and Desulfovibrionaceae, and decreasing Prevotellaceae and ACK M1. The changes in microbiota were further found to be broadly associated with phenotypic changes seen from chronic TCDD treatment. In particular, the phylum level Bacteroidetes to Firmicutes ratio negatively correlated with both liver weight and liver pathology, and positively associated with %CD3 + NK + T cells, a key mediator of host-microbial interactions. Collectively, these findings suggest that the dysregulated gut microbiome may contribute to the deleterious effects (e.g., liver toxicity) seen with TCDD exposure. - Highlights: • TCDD promoted wasting syndrome. • TCDD decreased hyperglycemia. • TCDD exposure caused

  14. TCDD modulation of gut microbiome correlated with liver and immune toxicity in streptozotocin (STZ)-induced hyperglycemic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lefever, Daniel E.; Xu, Joella; Chen, Yingjia [Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA 30602-7382 (United States); Huang, Guannan [Department of Environmental Health Sciences, University of Georgia, Athens, GA 30602-7382 (United States); Tamas, Nagy [Department of Veterinary Pathology, University of Georgia, Athens, GA 30602-7382 (United States); Guo, Tai L., E-mail: tlguo1@uga.edu [Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA 30602-7382 (United States)

    2016-08-01

    An increasing body of evidence has shown the important role of the gut microbiome in mediating toxicity following environmental contaminant exposure. The goal of this study was to determine if the adverse metabolic effects of chronic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure would be sufficient to exacerbate hyperglycemia, and to further determine if these outcomes were attributable to the gut microbiota alteration. Adult male CD-1 mice were exposed to TCDD (6 μg/kg body weight biweekly) by gavage and injected (i.p.) with STZ (4 × 50 mg/kg body weight) to induced hyperglycemia. 16S rRNA sequencing was used to characterize the changes in the microbiome community composition. Glucose monitoring, flow cytometry, histopathology, and organ characterization were performed to determine the deleterious phenotypic changes of TCDD exposure. Chronic TCDD treatment did not appear to exacerbate STZ-induced hyperglycemia as blood glucose levels were slightly reduced in the TCDD treated mice; however, polydipsia and polyphagia were observed. Importantly, TCDD exposure caused a dramatic change in microbiota structure, as characterized at the phylum level by increasing Firmicutes and decreasing Bacteroidetes while at the family level most notably by increasing Lactobacillaceae and Desulfovibrionaceae, and decreasing Prevotellaceae and ACK M1. The changes in microbiota were further found to be broadly associated with phenotypic changes seen from chronic TCDD treatment. In particular, the phylum level Bacteroidetes to Firmicutes ratio negatively correlated with both liver weight and liver pathology, and positively associated with %CD3{sup +} NK{sup +} T cells, a key mediator of host-microbial interactions. Collectively, these findings suggest that the dysregulated gut microbiome may contribute to the deleterious effects (e.g., liver toxicity) seen with TCDD exposure. - Highlights: • TCDD promoted wasting syndrome. • TCDD decreased hyperglycemia. • TCDD exposure

  15. Ghrelin ameliorates nerve growth factor Dysmetabolism and inflammation in STZ-induced diabetic rats.

    Science.gov (United States)

    Zhao, Yuxing; Shen, Zhaoxing; Zhang, Dongling; Luo, Huiqiong; Chen, Jinliang; Sun, Yue; Xiao, Qian

    2017-06-01

    Diabetic encephalopathy is characterized by cognitive impairment and neuroinflammation, deficient neurotrophic support, and neuronal and synaptic loss. Ghrelin, a 28 amino acid peptide, is associated with neuromodulation and cognitive improvement, which has been considered as a potential protective agent for several neurodegenerative diseases. Here we sought to investigate the role of ghrelin in preventing diabetic-related neuropathology. We found that ghrelin attenuated astrocytic activation and reduced levels of interleukin-6 and tumor necrosis factor-α in streptozotocin-induced diabetic rats. In addition, ghrelin inhibited p38 mitogen-associated protein kinase activation. The upregulation of nerve growth factor (NGF) precursor and matrix metalloproteinase (MMP)-9 and downregulation of mature NGF and MMP-7 in the diabetic brain were reversed by ghrelin. Treatment with ghrelin elevated synaptophysin expression and synaptic density in diabetic rats. Taken together, our results demonstrate that ghrelin ameliorates diabetes-related neurodegeneration by preventing NGF dysmetabolism and synaptic degeneration through regulating MMP levels as well as inhibiting neuroinflammation.

  16. PGC-1α Mediated Peripheral Nerve Protection of Tongxinluo in STZ-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Xiaopei Cui

    2016-01-01

    Full Text Available Aim. To investigate the effect of Tongxinluo (Txl, a Chinese herbal compound, on diabetic peripheral neuropathy (DPN. Methods and Results. Diabetic rat model was established by peritoneal injection of streptozotocin (STZ. Txl ultrafine powder treatment for 16 weeks from the baseline significantly reversed the impairment of motor nerve conductive velocity (MNCV, mechanical hyperalgesia, and nerve structure. We further proved that Tongxinluo upregulates PGC-1α and its downstream factors including COX IV and SOD, which were involved in mitochondrial biogenesis. Conclusion. Our study indicates that the protective effect of Txl in diabetic neuropathy may be attributed to the induction of PGC-1α and its downstream targets. This finding may further illustrate the pleiotropic effect of the medicine.

  17. Exercise Training and Grape Seed Extract Co-Administration Improves Lipid Profile, Weight Loss, Bradycardia, and Hypotension of STZ-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Badavi

    2013-12-01

    Full Text Available Background:: Exercise Training (ET and Grape Seed Extract (GSE as an antioxidant have many positive effects on controlling diabetes mellitus and its complications. Objectives:: This study aimed to determine the effects of GSE alone or combined with ET on body weight, plasma lipid profile, blood pressure, and heart rate in STZ-induced diabetic rats. Methods:: In this study, male Wistar rats were randomly assigned to five groups: sedentary control, sedentary diabetic, trained diabetic, GSE treated sedentary diabetic, and GSE treated trained diabetic. ET was conducted on the treadmill daily for 8 weeks. One way ANOVA followed by LSD test was used for statistical analysis. Results:: Reduction of body weight, high density lipoproteins, heart rate, and systolic blood pressure and increment of total cholesterol, triglyceride, low density lipoprotein, and very low density lipoproteins were observed after STZ injection. Co-administration of GSE and ET had more positive effects on lipid profile compared to each method alone. In addition, GSE and ET modified heart rate partially, while their combination was more effective in improvement of heart rat in conscious rats. On the other hand, administration of ET or GSE alone did not affect systolic blood pressure and body weight, while their combination restored systolic blood pressure completely and improved body weight partially. Conclusions:: The study findings indicated that ET combined with GSE had more beneficial effects compared to each one alone on the complications of STZ induced diabetes. This may constitute a convenient and inexpensive therapeutic approach to diabetic complications.

  18. Polyploidy Analysis and Attenuation of Oxidative Stress in Hepatic Tissue of STZ-Induced Diabetic Rats Treated with an Aqueous Extract of Vochysia rufa

    Directory of Open Access Journals (Sweden)

    Izabela Barbosa Moraes

    2015-01-01

    Full Text Available Diabetes mellitus (DM is characterized by hyperglycemia and alterations in the metabolism of lipids, carbohydrates, and proteins. Due to its hypoglycemic effect Vochysia rufa is frequently used in Uberlandia, Brazil, to treat DM. Despite its popularity, there is little information about its effect on hepatic tissue. Therefore, we evaluated the histoarchitecture, oxidative stress parameters, and polyploidy of liver tissue from streptozotocin- (STZ- induced diabetic rats treated with aqueous extract of Vochysia rufa (AEV. Histology was determined by fixing the livers, processing, and staining with HE. Oxidative stress was determined by evaluating CAT, GPx, and SOD activity in liver homogenates and hepatic mitochondria fraction and by measuring GST, GSH levels and lipid peroxidation (MDA. Polyploidy was determined by subjecting isolated hepatocyte nuclei to flow cytometry. In the diabetic group, GST activity and GSH rates decreased whereas liver homogenate analysis showed that GPx, SOD activity and MDA increased. AEV treatment restored all parameters to normal levels. The oxidative stress analysis of hepatic mitochondria fraction showed similar results. Lower polyploid cell populations were found in the diabetic rat livers, even after glibenclamide treatment. Thus, AEV treatment efficiently reduced hepatic oxidative stress caused by STZ-induced diabetes and produced no morphological changes in the histological analysis.

  19. Modulation of liver function, antioxidant responses, insulin resistance and glucose transport by Oroxylum indicum stem bark in STZ induced diabetic rats.

    Science.gov (United States)

    Singh, Jyotsna; Kakkar, Poonam

    2013-12-01

    A decoction of stem bark of Oroxylum indicum Vent. (OI) is taken (2-3 times/day) by the tribal people of Sikkim, India to treat diabetes but scientific validation of its overall potential is lacking. Present study was aimed to assess in vitro antihyperglycemic activity of standardized OI extract using inhibition of α-glucosidase, BSA glycation and enhancement of insulin sensitivity. Antidiabetic and antioxidant modulatory effects of OI extract along with the blood biomarkers of toxic response were studied in streptozotocin (STZ) induced diabetic rats. In vitro analysis showed strong antioxidant capacity of OI -and potential to inhibit BSA glycation and α-glucosidase activity which was comparable to standard counterparts. Extract also improved insulin sensitivity in mature 3T3-L1 adipocytes. In vivo effects of OI extract (oral 250 mg/kg b.wt.) on STZ induced type II diabetic rats normalized the antioxidant status (p≤0.01). Analysis of blood biomarkers of toxic response indicated its safety. Lowering of total cholesterol and HDL levels (p≤0.05) and restoration of glycated Hb (p≤0.01) were also found in OI treated diabetic rats. HOMA-IR, QUICKI analysis along with area under the curve analysis showed the capacity of OI extract to enhance the insulin sensitivity significantly (p≤0.01) which was confirmed by increased GLUT-4 translocation in skeletal muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Intrathecal administration of rapamycin inhibits the phosphorylation of DRG Nav1.8 and attenuates STZ-induced painful diabetic neuropathy in rats.

    Science.gov (United States)

    He, Wan-You; Zhang, Bin; Xiong, Qing-Ming; Yang, Cheng-Xiang; Zhao, Wei-Cheng; He, Jian; Zhou, Jun; Wang, Han-Bing

    2016-04-21

    The mammalian target of rapamycin (mTOR) is a key regulator of mRNA translation and protein synthesis, and it is specifically inhibited by rapamycin. In chronic pain conditions, mTOR-mediated local protein synthesis is crucial for neuronal hyperexcitability and synaptic plasticity. The tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 plays a major role in action potential initiation and propagation and cellular excitability in DRG (dorsal root ganglion) neurons. In this study, we investigated if mTOR modulates the phosphorylation of Nav1.8 that is associated with neuronal hyperexcitability and behavioral hypersensitivity in STZ-induced diabetic rats. Painful diabetic neuropathy (PDN) was induced in Sprague-Dawley rats by intraperitoneal injection with streptozotocin (STZ) at 60mg/kg. After the onset of PDN, the rats received daily intrathecal administrations of rapamycin (1μg, 3μg, or 10μg/day) for 7 days; other diabetic rats received the same volumes of dimethyl sulfoxide (DMSO). Herein, we demonstrate a marked increase in protein expression of total mTOR and phospho-mTOR (p-mTOR) together with the up-regulation of phosphor-Nav1.8 (p-Nav1.8) prior to the mechanical withdrawal threshold reaching a significant reduction in dorsal root ganglions (DRGs). Furthermore, the intrathecal administration of rapamycin, inhibiting the activity of mTOR, suppressed the phosphorylation of DRG Nav1.8, reduced the TTX-R current density, heightened the voltage threshold for activation and lowered the voltage threshold for inactivation and relieved mechanical hypersensitivity in diabetic rats. An intrathecal injection (i.t.) of rapamycin inhibited the phosphorylation and enhanced the functional availability of DRG Nav1.8 attenuated STZ-induced hyperalgesia. These results suggest that rapamycin is a potential therapeutic intervention for clinical PDN. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Evaluation of the Effect of Different Doses of Low Energy Shock Wave Therapy on the Erectile Function of Streptozotocin (STZ-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Zhong-Cheng Xin

    2013-05-01

    Full Text Available To investigate the therapeutic effect of different doses of low energy shock wave therapy (LESWT on the erectile dysfunction (ED in streptozotocin (STZ induced diabetic rats. SD rats (n = 75 were randomly divided into 5 groups (normal control, diabetic control, 3 different dose LESWT treated diabetic groups. Diabetic rats were induced by intra-peritoneal injection of STZ (60 mg/kg and rats with fasting blood glucose ≥ 300 mg/dL were selected as diabetic models. Twelve weeks later, different doses of LESWT (100, 200 and 300 shocks each time treatment on penises were used to treat ED (7.33 MPa, 2 shocks/s three times a week for two weeks. The erectile function was evaluated by intracavernous pressure (ICP after 1 week washout period. Then the penises were harvested for histological study. The results showed LESWT could significantly improve the erectile function of diabetic rats, increase smooth muscle and endothelial contents, up-regulate the expression of α-SMA, vWF, nNOS and VEGF, and down- regulate the expression of RAGE in corpus cavernosum. The therapeutic effect might relate to treatment dose positively, and the maximal therapeutic effect was noted in the LESWT300 group. Consequently, 300 shocks each time might be the ideal LESWT dose for diabetic ED treatment.

  2. Effect of Resistance Exercise Training Associated with Skeletal Muscle Hypertrophy on Serum Pro-Inflammatory Cytokines in STZ-induced Diabetes

    Directory of Open Access Journals (Sweden)

    Mahdieh Molanouri Shamsi

    2016-06-01

    Full Text Available Skeletal muscle atrophy is associated with type 1 diabetes. Effects of resistance exercise training associated with skeletal muscle hypertrophy on serum inflammatory cytokines was exactly not clarified. Protein levels of inflammatory cytokines IL-6, TNF-α, and interleukin-1beta (IL-1β in serum of healthy and streptozotocin (STZ- induced diabetic rats subjected to resistance exercise training were assessed in this study. Rats were divided into the control, training, control diabetic and diabetic training groups. Training groups performed the resistance training consisted of climbing a 1 m ladder with increasing weight added to the tail. Proteins levels of IL-6, TNF-α and IL-1β in serum were measured by the ELIZA method. The results of this study indicated that resistance training induced skeletal muscle hypertrophy in diabetic samples (P<0.05. Also, Resistance training decrease IL-6 protein levels in serum. Inflammatory cytokines could act as stress factors in diabetes. It seems that this kind of exercise training individually could not change cytokines levels in serum.

  3. Antidiabetic and Hypolipidemic Activities of Curculigo latifolia Fruit:Root Extract in High Fat Fed Diet and Low Dose STZ Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Nur Akmal Ishak

    2013-01-01

    Full Text Available Curculigo latifolia fruit is used as alternative sweetener while root is used as alternative treatment for diuretic and urinary problems. The antidiabetic and hypolipidemic activities of C. latifolia fruit:root aqueous extract in high fat diet (HFD and 40 mg streptozotocin (STZ induced diabetic rats through expression of genes involved in glucose and lipid metabolisms were investigated. Diabetic rats were treated with C. latifolia fruit:root extract for 4 weeks. Plasma glucose, insulin, adiponectin, lipid profiles, alanine aminotransferase (ALT, gamma glutamyltransferase (GGT, urea, and creatinine levels were measured before and after treatments. Regulations of selected genes involved in glucose and lipid metabolisms were determined. Results showed the significant (P<0.05 increase in body weight, high density lipoprotein (HDL, insulin, and adiponectin levels and decreased glucose, total cholesterol (TC, triglycerides (TG, low density lipoprotein (LDL, urea, creatinine, ALT, and GGT levels in diabetic rats after 4 weeks treatment. Furthermore, C. latifolia fruit:root extract significantly increased the expression of IRS-1, IGF-1, GLUT4, PPARα, PPARγ, AdipoR1, AdipoR2, leptin, LPL, and lipase genes in adipose and muscle tissues in diabetic rats. These results suggest that C. latifolia fruit:root extract exerts antidiabetic and hypolipidemic effects through altering regulation genes in glucose and lipid metabolisms in diabetic rats.

  4. Anti neuroinflammatory effect of Vildagliptin in ischaemia-reperfusion induced cerebral infarction in normal and STZ induced type-II diabetic rats

    Directory of Open Access Journals (Sweden)

    Kaleru Purnachander

    2016-03-01

    Full Text Available Diabetes is one of the major risk factor for cerebral ischemic stroke. Increased base line levels of oxidative stress in diabetes will lead to cerebral ischemic damage. In pathological conditions such as cerebral ischemia/reperfusion injury, free radicals cause oxidative stress and inflammation leading to increased injury of brain. Inflammation is one of the major pathological mechanisms involved in cerebral ischemia and reperfusion injury. Vildagliptin newer anti-diabetic drug of the class DPP-4 inhibitors is reported to have anti-inflammatory properties apart from its antihyperglycemic activity. Therefore the aim of the present study is to evaluate the anti-inflammatory effect of Vildagliptin against cerebral infarction induced ischemia reperfusion injury in normal and STZ induced diabetic Wistar rats. Cerebral infarction was induced by bilateral common carotid artery occlusion followed by 4 hr reperfusion. Percent infarction, inflammatory markers such as MPO, TNF-α, IL-6 and IL-10 were analysed. Treatment with Vildagliptin for a period of four weeks produced significant reduction in percent cerebral infarct volume. Vildagliptin at 10 mg/kg dose, showed significant reduction in markers like MPO, TNF-α, IL-6 and IL-1β in diabetic group when compared to normal group and in contrast significant increase in anti-inflammatory marker like IL-10 levels. Vildagliptin showed significant cerebroprotective effect by antiinflammatory mechanisms.

  5. A Soxhlet Extract of Gongronema latifolium Retains Moderate Blood Glucose Lowering Effect and Produces Structural Recovery in the Pancreas of STZ-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Bassel Al-Hindi

    2016-04-01

    Full Text Available Background: Gongronema latifolium Benth. (GL possesses considerable glucose lowering effects able to be utilized on a large-scale. This paper investigates the effects of a Soxhlet extract on hyperglycemia, Langerhans islets and glucose uptake by abdominal muscles. Methods: Ethanol and a Soxhlet apparatus were used to obtain GL ethanolic Soxhlet extract (GLES. It was then administered to randomly-segregated male Sprague-Dawley, normal and STZ-induced diabetic rats, using oral gavage to evaluate blood glucose levels (BGLs, serum lipid profile, insulin levels and the pancreas post-treatment. Results: GLES significantly (p < 0.05 decreased BGLs of normal rats in glucose tolerance testing at a dose of 2 g/kg b.w. but failed to do so in diabetic rats undergoing acute 7-h treatment. Given twice-daily, 1 g/kg b.w. of GLES moderately controlled diabetic BGLs starting from day 10. After 14 days of treatment, 1 g/kg and 0.5 g/kg b.w. of GLES caused 44% and 50% respective increases in the average area of Langerhans islets compared to DC. Using isolated rat abdominal muscle, GLES was found to be a mild insulin-sensitizer. GC-MS analysis revealed the presence of the known glucose-lowering phytosterol, Sitostenone. Conclusion: Despite retaining moderate antidiabetic activity, Soxhlet extraction of Gongronema latifolium probably leads to the destruction of active heat-liable compounds.

  6. Effect of Chang Run Tong on the Biomechanical and Morphometric Remodeling of Colon and Rectum in STZ Induced Diabetic Rats

    DEFF Research Database (Denmark)

    Sha, Hong; Zhao, Dong; Zhao, Jingbo

    2013-01-01

    The present study investigates the effect of Chang Run Tong (CRT) on the biomechanical and morphometrical remodeling of colon and rectum in streptozotocin-induced diabetic rats. The colonic and rectal segments were obtained from diabetic (DM), CRT-treated diabetic (T1, high dosage: 50 g/kg/day; T2...

  7. Evaluation of the Effect of Hydroalcoholic Extract of Citrullus colocynthis in Normoglycemic and Streptozocine (STZ Induced Diabetic Male Rats

    Directory of Open Access Journals (Sweden)

    MR Nikbakht

    2006-07-01

    Full Text Available Introduction & Objective: Adverse side effects of chemical drugs for treatment of diabetes persuaded the using of medical plants. Citrullus colocynthis is a plant which has been used traditionally for treatment of diabetes. The purpose of this study was to evaluate the effect of hydroalcholic extract of Citrullus colocynthis fruit on normoglycemic and streptozocine induced diabetic rats. Materials & Methods: 45 male Wistar rats weighing, 250-350 gr, have been selected and randomly divided in seven groups. Group1 without any drugs usage, group 2 that received normal saline (IV and distilled water (oral, group 3 received only streptozocine (IV, group 4 received only the extract of Citrullus colocynthis (1000 mg/kg, groups 5, 6 and 7 received 500, 1000 and 1500 mg/kg of Citrullus colocynthis extract after injection of STZ and induction of diabetes. Diabetes was induced by intravenous injection (45 mg/kg of STZ. Blood sampling was provided directly from animal heart and blood sugar was measured. The collected data were analyzed by SPSS software using students t-test and ANOVA. Results: Mean of normal blood sugar in control group was 156.5±15.7 mg/dl which defined as normal blood sugar. Streptozocine significantly increased blood sugar (p<0.05. The Citrullus colocynthis extract with 500 mg/kg dosage has not significantly reduced the blood sugar but is dosage of 1000 and 1500 mg/kg significantly decreased the blood sugar in a dose-dependent mode (p<0.05. Results also showed that the extract in dosage of 1000 mg/kg did not have a significant effect on normoglycemic animals. Conclusion: Results of this study indicate that the extract of Citrullus colocynthis fruit dose-dependently reduced the blood glucose level in streptozocine-induced diabetic rats but did not have significant effect on normal blood sugar.

  8. Effect of Ipomoea aquatica ethanolic extract in streptozotocin (STZ) induced diabetic rats via1H NMR-based metabolomics approach.

    Science.gov (United States)

    Abu Bakar Sajak, Azliana; Mediani, Ahmed; Maulidiani; Mohd Dom, Nur Sumirah; Machap, Chandradevan; Hamid, Muhajir; Ismail, Amin; Khatib, Alfi; Abas, Faridah

    2017-12-01

    Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown. This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract. By using a combination of 1 H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified. The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified. I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Evaluation of lipid profile and oxidative stress in STZ-induced rats treated with antioxidant vitamin

    Directory of Open Access Journals (Sweden)

    Danielle Ayr Tavares de Almeida

    2012-08-01

    Full Text Available The present study investigated the effect of supplementation of vitamin E on streptozotocin (STZ-induced diabetic rats by measuring blood glucose, changes in body weight, food and water intake, lipid profile, serum urea and creatinine level, and antioxidant enzyme activity. Male Wistar rats were divided into four groups: control rats (GI; rats receiving vitamin E (GII; STZ-induced diabetic rats (GIII and STZ-induced diabetic rats treated with vitamin E (GIV. Vitamin E reduced (p<0.05 blood glucose and urea, improved the lipid profile (decreased the serum levels of total cholesterol, LDL cholesterol, VLDL cholesterol and triacylglycerols, and increased HDL cholesterol and increased total protein in STZ-induced diabetic rats (GIV. Vitamin prevented changes in the activity of SOD and GSH-Px and in the concentration of lipid hydroperoxide. These results suggested that vitamin E improved hyperglycaemia and dyslipidaemia while inhibiting the progression of oxidative stress in STZ-induced diabetic rats.

  10. Ghrelin reverses experimental diabetic neuropathy in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kyoraku, Itaru; Shiomi, Kazutaka [Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Kangawa, Kenji [Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka 565-8565 (Japan); Nakazato, Masamitsu, E-mail: nakazato@med.miyazaki-u.ac.jp [Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan)

    2009-11-20

    Ghrelin, an acylated peptide produced in the stomach, increases food intake and growth hormone secretion, suppresses inflammation and oxidative stress, and promotes cell survival and proliferation. We investigated the pharmacological potential of ghrelin in the treatment of polyneuropathy in uncontrolled streptozotocin (STZ)-induced diabetes in mice. Ghrelin or desacyl-ghrelin was administered daily for 4 weeks after STZ-induced diabetic polyneuropathy had developed. Ghrelin administration did not alter food intake, body weight gain, blood glucose levels, or plasma insulin levels when compared with mice given saline or desacyl-ghrelin administration. Ghrelin administration ameliorated reductions in motor and sensory nerve conduction velocities in diabetic mice and normalized their temperature sensation and plasma concentrations of 8-isoprostaglandin {alpha}, an oxidative stress marker. Desacyl-ghrelin failed to have any effect. Ghrelin administration in a mouse model of diabetes ameliorated polyneuropathy. Thus, ghrelin's effects represent a novel therapeutic paradigm for the treatment of this otherwise intractable disorder.

  11. Ghrelin reverses experimental diabetic neuropathy in mice

    International Nuclear Information System (INIS)

    Kyoraku, Itaru; Shiomi, Kazutaka; Kangawa, Kenji; Nakazato, Masamitsu

    2009-01-01

    Ghrelin, an acylated peptide produced in the stomach, increases food intake and growth hormone secretion, suppresses inflammation and oxidative stress, and promotes cell survival and proliferation. We investigated the pharmacological potential of ghrelin in the treatment of polyneuropathy in uncontrolled streptozotocin (STZ)-induced diabetes in mice. Ghrelin or desacyl-ghrelin was administered daily for 4 weeks after STZ-induced diabetic polyneuropathy had developed. Ghrelin administration did not alter food intake, body weight gain, blood glucose levels, or plasma insulin levels when compared with mice given saline or desacyl-ghrelin administration. Ghrelin administration ameliorated reductions in motor and sensory nerve conduction velocities in diabetic mice and normalized their temperature sensation and plasma concentrations of 8-isoprostaglandin α, an oxidative stress marker. Desacyl-ghrelin failed to have any effect. Ghrelin administration in a mouse model of diabetes ameliorated polyneuropathy. Thus, ghrelin's effects represent a novel therapeutic paradigm for the treatment of this otherwise intractable disorder.

  12. Influence of fluoride on streptozotocin induced diabetic nephrotoxicity in mice: Protective role of Asian ginseng (Panax ginseng & banaba (Lagerstroemia speciosa on mitochondrial oxidative stress

    Directory of Open Access Journals (Sweden)

    Mahaboob P Basha

    2013-01-01

    Full Text Available Background & objectives: Chronic fluoride intoxication through drinking water is a serious health problem. Patients with diabetes are known to have impaired renal function and elimination of fluoride from the body is mainly done through kidney. Fluoride toxicity in diabetes patients may aggravate complications. In this study, the influence of fluoride was assessed on streptozotocin (STZ induced diabetes in mice as also the efficacy/protective effective of oral supplementation of ginseng (GE and banaba leaf extracts (BLE. Methods: The efficacy of plant extracts, GE and BLE at doses of 50, 150, 250 mg/kg b.w./day alone and in combination, was tested for a period of 15 days on fluoride treated STZ induced diabetic animals. Results: Fluoride exposure to mice with STZ-induced diabetes produced significant changes in OSI (organo-somatic index, fluoride content, blood glucose, urea, serum creatinine and oxidative stress indices in kidney tissues with evident histological alterations. Among the antioxidant treatments, combination therapy of GE and BLE at 150 mg/kg b.w. significantly normalized the impaired biochemical variables in kidney tissues of fluoride toxicated diabetic mice. Interpretations & conclusions: High fluoride uptake was found to be diabetogenic and further aggravated the renal oxidative damage and thereby the toxicity in mice with STZ induced diabetes mice. GE and BLE exposure individually or in combination at a dose of 150 mg/kg b.w./day for 15 days exhibited protective effects on fluoride toxicated STZ induced nephrotoxicity in mice.

  13. Effects of crocin and voluntary exercise, alone or combined, on heart VEGF-A and HOMA-IR of HFD/STZ induced type 2 diabetic rats.

    Science.gov (United States)

    Ghorbanzadeh, V; Mohammadi, M; Dariushnejad, H; Chodari, L; Mohaddes, G

    2016-10-01

    Hyperglycemia is the main risk factor for microvascular complications in type 2 diabetes. Crocin and voluntary exercise have anti-hyperglycemic effects in diabetes. In this research, we evaluated the effects of crocin and voluntary exercise alone or combined on glycemia control and heart level of VEGF-A. Animals were divided into eight groups as: control (con), diabetes (Dia), crocin (Cro), voluntary exercise (Exe), crocin and voluntary exercise (Cro-Exe), diabetic-crocin (Dia-Cro), diabetic-voluntary exercise (Dia-Exe), diabetic-crocin-voluntary exercise (Dia-Cro-Exe). Type 2 diabetes was induced by a high-fat diet (4 weeks) and injection of streptozotocin (STZ) (i.p, 35 mg/kg). Animals received oral administration of crocin (50 mg/kg) or performed voluntary exercise alone or together for 8 weeks. Oral glucose tolerance test (OGTT) was performed on overnight fasted control, diabetic and treated rats after 8 weeks of treatment. Then, serum insulin and heart VEGF-A protein levels were measured. Crocin combined with voluntary exercise significantly decreased blood glucose levels (p HOMA-IR) (p HOMA-IR) and reduced glucose levels in diabetic rats. Since both crocin and voluntary exercise can increase VEGF-A protein expression in heart tissue, they probably are able to increase angiogenesis in diabetic animals.

  14. Ursodeoxycholic Acid Attenuates Endoplasmic Reticulum Stress-Related Retinal Pericyte Loss in Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Yoo-Ri Chung

    2017-01-01

    Full Text Available Loss of pericytes, an early hallmark of diabetic retinopathy (DR, results in breakdown of the blood-retinal barrier. Endoplasmic reticulum (ER stress may be involved in this process. The purpose of this study was to examine the effects of ursodeoxycholic acid (UDCA, a known ameliorator of ER stress, on pericyte loss in DR of streptozotocin- (STZ- induced diabetic mice. To assess the extent of DR, the integrity of retinal vessels and density of retinal capillaries in STZ-induced diabetic mice were evaluated. Additionally, induction of ER stress and the unfolded protein response (UPR were assessed in diabetic mice and human retinal pericytes exposed to advanced glycation end products (AGE or modified low-density lipoprotein (mLDL. Fluorescein dye leakage during angiography and retinal capillary density were improved in UDCA-treated diabetic mice, compared to the nontreated diabetic group. Among the UPR markers, those involved in the protein kinase-like ER kinase (PERK pathway were increased, while UDCA attenuated UPR in STZ-induced diabetic mice as well as AGE- or mLDL-exposed retinal pericytes in culture. Consequently, vascular integrity was improved and pericyte loss reduced in the retina of STZ-induced diabetic mice. Our findings suggest that UDCA might be effective in protecting against DR.

  15. Expression of interleukin-15 and inflammatory cytokines in skeletal muscles of STZ-induced diabetic rats: effect of resistance exercise training.

    Science.gov (United States)

    Molanouri Shamsi, M; Hassan, Z H; Gharakhanlou, R; Quinn, L S; Azadmanesh, K; Baghersad, L; Isanejad, A; Mahdavi, M

    2014-05-01

    Skeletal muscle atrophy is associated with type-1 diabetes. Skeletal muscle is the source of pro- and anti-inflammatory cytokines that can mediate muscle hypertrophy and atrophy, while resistance exercise can modulate both muscle mass and muscle cytokine expression. This study determined the effects of a 5-week resistance exercise training regimen on the expression of muscle cytokines in healthy and streptozotocin-induced diabetic rats, with special emphasis on interleukin-15 (IL-15), a muscle-derived cytokine proposed to be involved in muscle hypertrophy or responses to stress. Induction of diabetes reduced muscle weight in both the fast flexor hallucis longus (FHL) and slow soleus muscles, while resistance training preserved FHL muscle weight in diabetic rats. IL-15 protein content was increased by training in both FHL and soleus muscles, as well as serum, in normal and diabetic rats. With regard to proinflammatory cytokines, muscle IL-6 levels were increased in diabetic rats, while training decreased muscle IL-6 levels in diabetic rats; training had no effect on FHL muscle IL-6 levels in healthy rats. Also, tumor necrosis factor-alpha (TNF-α) and IL-1β levels were increased by diabetes, but not changed by training. In conclusion, we found that in diabetic rats, resistance training increased muscle and serum IL-15 levels, decreased muscle IL-6 levels, and preserved FHL muscle mass.

  16. Renal injury is accelerated by global hypoxia-inducible factor 1 alpha deficiency in a mouse model of STZ-induced diabetes

    Czech Academy of Sciences Publication Activity Database

    Bohuslavová, Romana; Čerychová, Radka; Nepomucká, Kateřina; Pavlínková, Gabriela

    2017-01-01

    Roč. 17, č. 1 (2017), č. článku 48. ISSN 1472-6823 Institutional support: RVO:86652036 Keywords : Diabetic complications * Diabetic nephropathy * Hypoxia Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition OBOR OECD: Urology and nephrology Impact factor: 2.275, year: 2016

  17. Heterogeneous Downregulation of Angiotensin II AT1-A and AT1-B Receptors in Arterioles in STZ-Induced Diabetic Rat Kidneys

    Directory of Open Access Journals (Sweden)

    Zsolt Razga

    2014-01-01

    Full Text Available Introduction. The renin granulation of kidney arterioles is enhanced in diabetes despite the fact that the level of angiotensin II in the diabetic kidney is elevated. Therefore, the number of angiotensin II AT1-A and AT1-B receptors in afferent and efferent arteriole’s renin-positive and renin-negative smooth muscle cells (SMC was estimated. Method. Immunohistochemistry at the electron microscopic level was combined with 3D stereological sampling techniques. Results. In diabetes the enhanced downregulation of AT1-B receptors in the renin-positive than in the renin-negative SMCs in both arterioles was resulted: the significant difference in the number of AT1 (AT1-A + AT1-B receptors between the two types of SMCs in the normal rats was further increased in diabetes and in contrast with the significant difference observed between the afferent and efferent arterioles in the normal animals, there was no such difference in diabetes. Conclusions. The enhanced downregulation of the AT1-B receptors in the renin-negative SMCs in the efferent arterioles demonstrates that the regulation of the glomerular filtration rate by the pre- and postglomerular arterioles is changed in diabetes. The enhanced downregulation of the AT1-B receptors in the renin-positive SMCs in the arterioles may result in an enhanced level of renin granulation in the arterioles.

  18. Total glucosides of paeony attenuate renal tubulointerstitial injury in STZ-induced diabetic rats: role of Toll-like receptor 2.

    Science.gov (United States)

    Zhang, Wei; Zhao, Li; Su, Shuang-Quan; Xu, Xing-Xin; Wu, Yong-Gui

    2014-01-01

    Accumulating evidence suggested that macrophages induce tubulointerstitial injury. Total glucosides of paeony (TGP), extracted from Paeonia lactiflora, has presented anti-inflammatory activities in diabetic kidney disease. This research will investigate the protective effect of TGP on renal tubulointerstitium and its mechanism in streptozotocin-induced diabetic rats. TGP was administered orally at a dose of 50, 100, and 200 mg·kg(-1)·d(-1) for 8 weeks. Tubulointerstitial injury was quantified, followed by immunohistochemistry analysis of renal α-smooth muscle actin (α-SMA), E-cadherin (E-cad) expression, nuclear factor kappa B (NF-κB)-p-p-65(+), Toll-like receptor (TLR)2(+), and ED-1(+) cell infiltration in renal tubulointerstitium. Renal TLR2(+) macrophages were detected by double immunohistochemical staining. Western blotting was used to detect the TLR2 expression. Histologically, there was marked accumulation of TLR2(+), NF-κB-p-p-65(+), ED-1(+) cells, and ED-1(+)TLR2(+) cells (macrophages) in the diabetic kidney and TGP treatment could alleviate it. Accompanying with that, the tubulointerstitial injury was ameliorated, α-SMA expression was lower, and E-cad expression was higher compared with the diabetic rats. Western blot analysis showed that the expression of TLR2 protein was significantly increased in the kidney of the diabetic rats, whereas TGP treatment reduced it. Our study showed that TGP could prevent renal tubulointerstitium injury in diabetic rats through a mechanism that may be at least partly correlated with suppression of increased macrophage infiltration and the expression of TLR2.

  19. Protection against T1DM-Induced Bone Loss by Zinc Supplementation: Biomechanical, Histomorphometric, and Molecular Analyses in STZ-Induced Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Raul Hernandes Bortolin

    Full Text Available Several studies have established an association between diabetes and alterations in bone metabolism; however, the underlying mechanism is not well established. Although zinc is recognized as a potential preventive agent against diabetes-induced bone loss, there is no evidence demonstrating its effect in chronic diabetic conditions. This study evaluated the effects of zinc supplementation in a chronic (90 days type 1 diabetes-induced bone-loss model. Male Wistar rats were distributed in three groups: control, type 1 diabetes mellitus (T1DM, and T1DM plus zinc supplementation (T1DMS. Serum biochemical analysis; tibia histomorphometric, biomechanical, and collagen-content analyses; and femur mRNA expression were evaluated. Relative to T1DM, the zinc-supplemented group showed increased histomorphometric parameters such as TbWi and BAr and decreased TbSp, increased biomechanical parameters (maximum load, stiffness, ultimate strain, and Young's modulus, and increased type I collagen content. Interestingly, similar values for these parameters were observed between the T1DMS and control groups. These results demonstrate the protective effect of zinc on the maintenance of bone strength and flexibility. In addition, downregulation of OPG, COL1A, and MMP-9 genes was observed in T1DMS, and the anabolic effects of zinc were evidenced by increased OC expression and serum ALP activity, both related to osteoblastogenesis, demonstrating a positive effect on bone formation. In contrast, T1DM showed excessive bone loss, observed through reduced histomorphometric and biomechanical parameters, characterizing diabetes-associated bone loss. The bone loss was also observed through upregulation of OPG, COL1A, and MMP-9 genes. In conclusion, zinc showed a positive effect on the maintenance of bone architecture and biomechanical parameters. Indeed, OC upregulation and control of expression of OPG, COL1A, and MMP-9 mRNAs, even in chronic hyperglycemia, support an anabolic

  20. COMPARATIVE EVALUATION OF HYPOGLYCEMIC EFFECTS OF TWO DIFFERENT PARTS OF BAUHUNIA PURPUREA LINN. PLANT IN STZ-INDUCED DIABETIC ALBINO WISTAR RATS

    Directory of Open Access Journals (Sweden)

    A. K. Brahmachari

    2015-12-01

    Full Text Available The present work was undertaken to study the comparative phytochemical profiles and hypoglycemic effects of Bauhinia purpurea Linn. Barks (BPBE and leaves ethanolic extracts (BPLE in albino wistar rats to validate their ethno medical use in hyperglycemia as well as to explore the better option. Phytochemicals in ethanolic extracts were analyzed by standard natural product chemistry methods. Diabetes was developed in rats by single intraperitoneal injection of Streptozotocin @ 60mg/ Kg bw. Diabetic albino wister rats (n=3 of either sex (150-200gm bw were orally fed with the extracts once daily for 4 weeks. Glibenclamide @ 0.5mg/Kg bw was used as a positive control for comparison. Fasting blood glucose level at 0, 14th and 28th day and hemoglobin and glycosylated hemoglobin on 28th day of experiment were analyzed. Our results show that the extracts contain alkaloids, flavonoids, glycosides, terpenoids, tannins and phenolics. Rats treated with plant extracts show better glucose modulation, decreased hemoglobin glycosylation and improved hemoglobin concentration as compared to diabetic control. The hypoglycemic effect of only BPBE at 420 mgkg-1 on 14th and 28th day is comparable to that of standard drug glibenclamide (P>0.01. The bark extract has been observed to be more potent hypoglycemic agent than leave extract.

  1. Antidepressant effects of insulin in streptozotocin induced diabetic mice: Modulation of brain serotonin system.

    Science.gov (United States)

    Gupta, Deepali; Kurhe, Yeshwant; Radhakrishnan, Mahesh

    2014-04-22

    Diabetes is a persistent metabolic disorder, which often leads to depression as a result of the impaired neurotransmitter function. Insulin is believed to have antidepressant effects in depression associated with diabetes; however, the mechanism underlying the postulated effect is poorly understood. In the present study, it is hypothesized that insulin mediates an antidepressant effect in streptozotocin (STZ) induced diabetes in mice through modulation of the serotonin system in the brain. Therefore, the current study investigated the antidepressant effect of insulin in STZ induced diabetes in mice and insulin mediated modulation in the brain serotonin system. In addition, the possible pathways that lead to altered serotonin levels as a result of insulin administration were examined. Experimentally, Swiss albino mice of either sex were rendered diabetic by a single intraperitoneal (i.p.) injection of STZ. After one week, diabetic mice received a single dose of either insulin or saline or escitalopram for 14days. Thereafter, behavioral studies were conducted to test the behavioral despair effects using forced swim test (FST) and tail suspension test (TST), followed by biochemical estimations of serotonin concentrations and monoamine oxidase (MAO) activity in the whole brain content. The results demonstrated that, STZ treated diabetic mice exhibited an increased duration of immobility in FST and TST as compared to non-diabetic mice, while insulin treatment significantly reversed the effect. Biochemical assays revealed that administration of insulin attenuated STZ treated diabetes induced neurochemical alterations as indicated by elevated serotonin levels and decreased MAO-A and MAO-B activities in the brain. Collectively, the data indicate that insulin exhibits antidepressant effects in depression associated with STZ induced diabetes in mice through the elevation of the brain serotonin levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Softened food reduces weight loss in the streptozotocin-induced male mouse model of diabetic nephropathy

    DEFF Research Database (Denmark)

    Nørgaard, Sisse A; Sand, Fredrik W; Sørensen, Dorte B

    2018-01-01

    The streptozotocin (STZ)-induced diabetic mouse is a widely used model of diabetes and diabetic nephropathy (DN). However, it is a well-known issue that this model is challenged by high weight loss, which despite supportive measures often results in high euthanization rates. To overcome...... these issues, we hypothesized that supplementing STZ-induced diabetic mice with water-softened chow in addition to normal chow would reduce weight loss, lower the need for supportive treatment, and reduce the number of mice reaching the humane endpoint of 20% weight loss. In a 15 week STZ-induced DN study we...... demonstrated that diabetic male mice receiving softened chow had reduced acute weight loss following STZ treatment ( p = 0.045) and additionally fewer mice were euthanized due to weight loss. By supplementing the diabetic mice with softened chow, no mice reached 20% weight loss whereas 37.5% of the mice...

  3. Urtica dioica leaves modulates muscarinic cholinergic system in the hippocampus of streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Patel, Sita Sharan; Parashar, Arun; Udayabanu, Malairaman

    2015-06-01

    Diabetes mellitus is a chronic metabolic disorder and has been associated with cognitive dysfunction. In our earlier study, chronic Urtica dioica (UD) treatment significantly ameliorated diabetes induced associative and spatial memory deficit in mice. The present study was designed to explore the effect of UD leaves extract on muscarinic cholinergic system, which has long been known to be involved in cognition. Streptozotocin (STZ) (50 mg/kg, i.p., consecutively for 5 days) was used to induce diabetes followed by treatment with UD extract (50 mg/kg, oral) or rosiglitazone (5 mg/kg, oral) for 8 weeks. STZ-induced diabetic mice showed significant reduction in hippocampal muscarinic acetylcholine receptor-1 and choline acetyltransferase expressions. Chronic diabetes significantly up-regulated the protein expression of acetylcholinesterase associated with oxidative stress in hippocampus. Besides, STZ-induced diabetic mice showed hypolocomotion with up-regulation of muscarinic acetylcholine receptor-4 expression in striatum. Chronic UD treatment significantly attenuated the cholinergic dysfunction and oxidative stress in the hippocampus of diabetic mice. UD had no effect on locomotor activity and muscarinic acetylcholine receptor-4 expression in striatum. In conclusion, UD leaves extract has potential to reverse diabetes mediated alteration in muscarinic cholinergic system in hippocampus and thereby improve memory functions.

  4. Olive leaf down-regulates the oxidative stress and immune dysregulation in streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Park, Jung-Hyun; Jung, Ji-Hye; Yang, Jin-Young; Kim, Hyun-Sook

    2013-11-01

    Type 1 diabetes is an endocrinologic disorder characterized by uncontrolled glucose regulation and oxidative stress. Olive leaves have been studied extensively for their antioxidant activity and capacity to improve immune function. We hypothesized that olive leaf powder supplementation will be effective in inhibiting the oxidative stress and immune dysregulation in streptozotocin (STZ)-induced diabetic mice. Mice were assigned to 1 of 5 groups: control (C), STZ-induced diabetes (D), and STZ-induced diabetes supplemented with very low dose (VLOL), low dose (LOL), or high dose of olive leaf powder (HOL). Blood glucose in the VLOL and LOL groups was lower than that in the D group (P LOL groups. Nitric oxide levels decreased in the VLOL and LOL groups, as compared with the D group. The messenger RNA expression levels of inducible nitric oxide synthase were significantly decreased in the VLOL and HOL groups, and interferon-γ levels were significantly decreased in the liver of the VLOL, LOL, and HOL groups compared with the levels in the D group. Interleukin-17 levels were significantly decreased in the VLOL and HOL groups. Th1 and Th17 cytokine levels were increased in the D group but decreased in all the experimental groups. Th2 cytokine levels were increased in all olive leaf-supplemented groups compared with those in the D group. These results indicate a reduction in the levels of proinflammatory cytokines, suggesting that olive leaves have the potential to provide therapeutic inhibition of diabetic complications. © 2013.

  5. Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats.

    Science.gov (United States)

    Gondi, Mahendranath; Prasada Rao, U J S

    2015-12-01

    Peel is a major by-product during processing of mango fruit into pulp. Recent report indicates that the whole peel powder ameliorated diabetes. In the present study, ethanolic extract of mango peel was analysed for its bioactive compounds, evaluated for α-amylase and α-glucosidase inhibitory properties, oral glucose tolerance test, antioxidant properties, plasma insulin level and biochemical parameters related to diabetes. In addition to gallic and protocatechuic acids, the extract also had chlorogenic and ferulic acids, which were not reported earlier in mango peel extracts. The peel extract inhibited α-amylase and α-glucosidase activities, with IC50 values of 4.0 and 3.5 μg/ml. Ethanolic extract of peel showed better glucose utilization in oral glucose tolerance test. Treatment of streptozotocin-induced diabetic rats with the extract decreased fasting blood glucose, fructosamine and glycated hemoglobin levels, and increased plasma insulin level. Peel extract treatment decreased malondialdehyde level, but increased the activities of antioxidant enzymes significantly in liver and kidney compared to diabetic rats. These beneficial effects were comparable to metformin, but better than gallic acid treated diabetic rats. The beneficial effects of peel extract may be through different mechanism like increased plasma insulin levels, decreased oxidative stress and inhibition of carbohydrate hydrolyzing enzyme activities by its bioactive compounds. Thus, results suggest that the peel extract can be a potential source of nutraceutical or can be used in functional foods and this is the first report on antidiabetic properties of mango peel extract.

  6. Inhibition mechanism of compound ethanol extracts from wuweizi (fructus schisandrae chinensis) on renal interstitial fibrosis in diabetic nephropathy model mice.

    Science.gov (United States)

    Zhang, Yanqiu; Zhang, Daning; Zhang, Mianzhi

    2012-12-01

    To evaluate inhibition effect and mechanism of compound ethanol extracts from Wuweizi (Fructus Schisandrae Chinensis), Chuanxiong (Rhizoma Chuanxiong) and Muli (Cocha Ostreae) (FRC) on glomerular and tubular interstitial fibrosis in streptozocin (STZ)-induced diabetic nephropathy (ND) model mice. Twenty-seven male C57BL/6 mice were divided randomly into 3 groups: nondibetic (ND), STZ-induced diabetic (D), and STZ-induced diabetic that were treated with 5 g x kg(-1) x day(-1) of FRC by oral gavage (D(FRC)), with 9 in each group. The protein expressions of E-cadherin, alpha-smooth muscle actin (alpha-SMA), Plasminogen Activator Inhibitor-1 (PAL-1) in renal tissues were investigated by Western blotting. The expressions of fibronectin (FN) and alpha-SMA were detected by immunohistochemical method. The morphological changes of renal tissues were observed under a microscope. Renal tissues in the D(FRC) group showed a lessened degree of fibrosis. Meanwhile, the expressions of FN, alpha-SMA and PAI-1 were significantly lower in the D(FRC) group than those in the D group (all P < 0.05). FRC can ameliorate the DN in the C57BL/6 mice, and its mechanism may relate to inhibition on the epithelial to mesenchymal transdifferentiation, endothelial-myofibroblast transition and PAL-1 expression.

  7. Hypoglycemic and hypolipidemic effects of triterpenoid-enriched Jamun (Eugenia jambolana Lam.) fruit extract in streptozotocin-induced type 1 diabetic mice.

    Science.gov (United States)

    Xu, Jialin; Liu, Tingting; Li, Yuanyuan; Yuan, Chunhui; Ma, Hang; Seeram, Navindra P; Liu, Feifei; Mu, Yu; Huang, Xueshi; Li, Liya

    2018-06-20

    The edible berries of Eugenia jambolana Lam. (known as Jamun) are consumed in various parts of the world. Our previous studies revealed that a triterpenoid-enriched Jamun fruit extract (TJFE) showed beneficial effects on glucose homeostasis in non-diabetic mice. Herein, the anti-diabetic effects of TJFE (100 mg kg-1 by oral gavage for ten days) were evaluated in streptozotocin (STZ)-induced type 1 diabetic mice. TJFE significantly attenuated STZ-induced hyperglycemia and glucose intolerance, suppressed the abnormal elevation of hepatic gluconeogenesis, and improved dyslipidemia in the mice. Histopathology and mechanism-based studies revealed that TJFE preserved the architecture and function of pancreatic islets, attenuated insulin secretion deficiency, enhanced insulin/Akt signaling transduction, reduced lipogenic gene expression, and prevented the abnormal activation of Erk MAPK in the liver tissues of the STZ-induced diabetic mice. The current study adds to previously published data supporting the potential beneficial effects of this edible fruit on diabetes management.

  8. The characterization of a full-thickness excision open foot wound model in n5-streptozotocin (STZ)-induced type 2 diabetic rats that mimics diabetic foot ulcer in terms of reduced blood circulation, higher C-reactive protein, elevated inflammation, and reduced cell proliferation

    Science.gov (United States)

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Fung, Kwok-Pui; Lam, Francis Fu-Yuen; Ng, Ethel Sau-Kuen; Lau, Kit-Man; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-01-01

    Delayed foot wound healing is a major complication attributed to hyperglycemia in type 2 diabetes mellitus (DM) patients, and these wounds may develop into foot ulcers. There are at least two types of DM wound models used in rodents to study delayed wound healing. However, clinically relevant animal models are not common. Most models use type 1 DM rodents or wounds created on the back rather than on the foot. An open full-thickness excision wound on the footpad of type 2 DM rats is more clinically relevant, but such a model has not yet been characterized systematically. The objective of this study was to investigate and characterize how DM affected a full-thickness excision open foot wound in n5-streptozotocin (n5-STZ)-induced type 2 DM rats. We hypothesized that elevated inflammation, reduced blood circulation, and cell proliferation due to hyperglycemia could delay the wound healing of DM rats. The wounds of DM rats were compared with those of non-DM rats (Ctrl) at Days 1 and 8 post wounding. The wound healing process of the DM rats was significantly delayed compared with that of the Ctrl rats. The DM rats also had higher C-reactive protein (CRP) and lower blood circulation and proliferating cell nuclear antigen (PCNA) in DM wounds. This confirmed that elevated inflammation and reduced blood flow and cell proliferation delayed foot wound healing in the n5-STZ rats. Hence, this open foot wound animal model provides a good approach to study the process of delayed wound healing. PMID:28413186

  9. The characterization of a full-thickness excision open foot wound model in n5-streptozotocin (STZ)-induced type 2 diabetic rats that mimics diabetic foot ulcer in terms of reduced blood circulation, higher C-reactive protein, elevated inflammation, and reduced cell proliferation.

    Science.gov (United States)

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Fung, Kwok-Pui; Lam, Francis Fu-Yuen; Ng, Ethel Sau-Kuen; Lau, Kit-Man; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-08-05

    Delayed foot wound healing is a major complication attributed to hyperglycemia in type 2 diabetes mellitus (DM) patients, and these wounds may develop into foot ulcers. There are at least two types of DM wound models used in rodents to study delayed wound healing. However, clinically relevant animal models are not common. Most models use type 1 DM rodents or wounds created on the back rather than on the foot. An open full-thickness excision wound on the footpad of type 2 DM rats is more clinically relevant, but such a model has not yet been characterized systematically. The objective of this study was to investigate and characterize how DM affected a full-thickness excision open foot wound in n5-streptozotocin (n5-STZ)-induced type 2 DM rats. We hypothesized that elevated inflammation, reduced blood circulation, and cell proliferation due to hyperglycemia could delay the wound healing of DM rats. The wounds of DM rats were compared with those of non-DM rats (Ctrl) at Days 1 and 8 post wounding. The wound healing process of the DM rats was significantly delayed compared with that of the Ctrl rats. The DM rats also had higher C-reactive protein (CRP) and lower blood circulation and proliferating cell nuclear antigen (PCNA) in DM wounds. This confirmed that elevated inflammation and reduced blood flow and cell proliferation delayed foot wound healing in the n5-STZ rats. Hence, this open foot wound animal model provides a good approach to study the process of delayed wound healing.

  10. GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice.

    Science.gov (United States)

    Wang, Z; Gleichmann, H

    1998-01-01

    In mice, diabetes can be induced by multiple low doses of streptozotocin (MLD-STZ), i.e., 40 mg/kg body wt on each of 5 consecutive days. In this model, diabetes develops only when STZ induces both beta-cell toxicity and T-cell-dependent immune reactions. The target molecule(s) of MLD-STZ-induced beta-cell toxicity are not known, however. In this study, we report that GLUT2 is a target molecule for MLD-STZ toxicity. Ex vivo, a gradual decrement of both GLUT2 protein and mRNA expression was found in pancreatic islets isolated from MLD-STZ-treated C57BL/6 male mice, whereas mRNA expression of beta-actin, glucokinase, and proinsulin remained unaffected. Significant reduction of both GLUT2 protein and mRNA expression was first noted 1 day after the third STZ injection, clearly preceding the onset of hyperglycemia. The extent of reduction increased with the number of STZ injections administered and increased over time, after the last, i.e., fifth, STZ injection. The STZ-induced reduction of GLUT2 protein and mRNA was not due to an essential loss of beta-cells, because ex vivo, not only the total RNA yield and protein content in isolated islets, but also proinsulin mRNA expression, failed to differ significantly in the differently treated groups. Furthermore, islets isolated from MLD-STZ-treated donors responded to the nonglucose secretagogue arginine in a pattern similar to that of solvent-treated donors. Interestingly, the MLD-STZ-induced reduction of both GLUT2 protein and mRNA was prevented by preinjecting mice with 5-thio-D-glucose before each STZ injection. Apparently, GLUT2 is a crucial target molecule of MLD-STZ toxicity, and this toxicity seems to precede the immune reactions against beta-cells.

  11. Lactobacillus salivarius reverse diabetes-induced intestinal defense impairment in mice through non-defensin protein.

    Science.gov (United States)

    Chung, Pei-Hsuan; Wu, Ying-Ying; Chen, Pei-Hsuan; Fung, Chang-Phone; Hsu, Ching-Mei; Chen, Lee-Wei

    2016-09-01

    Altered intestinal microbiota and subsequent endotoxemia play pathogenic roles in diabetes. We aimed to study the mechanisms of intestinal defense impairment in type 1 diabetes and the effects of Lactobacillus salivarius as well as fructooligosaccharides (FOS) supplementation on diabetes-induced bacterial translocation. Alterations in the enteric microbiome, expression of mucosal antibacterial proteins and bacteria-killing activity of the intestinal mucosa in streptozotocin (STZ)-induced diabetic mice and Ins2(Akita) mice were investigated. The effects of dead L. salivarius (2×10(8)CFU/ml) and FOS (250 mg per day) supplementation for 1 week on endotoxin levels and Klebsiella pneumoniae translocation were also examined. Finally, germ-free mice were cohoused with wild-type or Ins2(Akita) mice for 2 weeks to examine the contribution of microbiota on the antibacterial protein expression. STZ-induced diabetic mice developed intestinal defense impairment as demonstrated by decreased mucosal bacteria-killing activity; reduction of non-defensin family proteins, such as Reg3β, Reg3γ, CRP-ductin and RELMβ, but not the defensin family proteins; and increased bacterial translocation. Intestinal bacteria overgrowth, enteric dysbiosis and increased intestinal bacterial translocation, particularly pathogenic K. pneumoniae in STZ-induced diabetic mice and Ins2(Akita) mice, were noted. Treating diabetic mice with dead L. salivarius or FOS reversed enteric dysbiosis, restored mucosal antibacterial protein and lessened endotoxin levels as well as K. pneumoniae translocation. Moreover, germ-free mice cohoused with wild-type mice demonstrated more intestinal Reg3β and RELMβ expression than those cohoused with Ins2(Akita) mice. These results indicate that hyperglycemia induces enteric dysbiosis, reduction of non-defensin proteins as well as bacteria-killing activity of the intestinal mucosa and intestinal defense impairment. Reversal of enteric dysbiosis with dead L. salivarius or

  12. Ludwigia octovalvis extract improves glycemic control and memory performance in diabetic mice.

    Science.gov (United States)

    Lin, Wei-Sheng; Lo, Jung-Hsin; Yang, Jo-Hsuan; Wang, Hao-Wei; Fan, Shou-Zen; Yen, Jui-Hung; Wang, Pei-Yu

    2017-07-31

    Ludwigia octovalvis (Jacq.) P.H. Raven (Onagraceae) extracts have historically been consumed as a healthful drink for treating various conditions, including edema, nephritis, hypotension and diabetes. We have previously shown that Ludwigia octovalvis extract (LOE) can significantly extend lifespan and improve age-related memory deficits in Drosophila melanogaster through activating AMP-activated protein kinase (AMPK). Since AMPK has become a critical target for treating diabetes, we herein investigate the anti-hyperglycemic potential of LOE. Differentiated C2C12 muscle cells, HepG2 hepatocellular cells, streptozotocin (STZ)-induced diabetic mice and high fat diet (HFD)-induced diabetic mice were used to investigate the anti-hyperglycemic potential of LOE. The open field test and novel object recognition test were used to evaluate spontaneous motor activity and memory performance of HFD-induced diabetic mice. In differentiated C2C12 muscle cells and HepG2 hepatocellular cells, treatments with LOE and its active component (β-sitosterol) induced significant AMPK phosphorylation. LOE also enhanced uptake of a fluorescent glucose derivative (2-NBDG) and inhibited glucose production in these cells. The beneficial effects of LOE were completely abolished when an AMPK inhibitor, dorsomorphin, was added to the culture system, suggesting that LOE requires AMPK activation for its action in vitro. In streptozotocin (STZ)-induced diabetic mice, we found that both LOE and β-sitosterol induced an anti-hyperglycemic effect comparable to that of metformin, a drug that is commonly prescribed to treat diabetes. Moreover, LOE also improved glycemic control and memory performance of mice fed a HFD. These results indicate that LOE is a potent anti-diabetic intervention that may have potential for future clinical applications. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Tetrahydrobiopterin Has a Glucose-Lowering Effect by Suppressing Hepatic Gluconeogenesis in an Endothelial Nitric Oxide Synthase–Dependent Manner in Diabetic Mice

    Science.gov (United States)

    Abudukadier, Abulizi; Fujita, Yoshihito; Obara, Akio; Ohashi, Akiko; Fukushima, Toru; Sato, Yuichi; Ogura, Masahito; Nakamura, Yasuhiko; Fujimoto, Shimpei; Hosokawa, Masaya; Hasegawa, Hiroyuki; Inagaki, Nobuya

    2013-01-01

    Endothelial nitric oxide synthase (eNOS) dysfunction induces insulin resistance and glucose intolerance. Tetrahydrobiopterin (BH4) is an essential cofactor of eNOS that regulates eNOS activity. In the diabetic state, BH4 is oxidized to 7,8-dihydrobiopterin, which leads to eNOS dysfunction owing to eNOS uncoupling. The current study investigates the effects of BH4 on glucose metabolism and insulin sensitivity in diabetic mice. Single administration of BH4 lowered fasting blood glucose levels in wild-type mice with streptozotocin (STZ)-induced diabetes and alleviated eNOS dysfunction by increasing eNOS dimerization in the liver of these mice. Liver has a critical role in glucose-lowering effects of BH4 through suppression of hepatic gluconeogenesis. BH4 activated AMP kinase (AMPK), and the suppressing effect of BH4 on gluconeogenesis was AMPK-dependent. In addition, the glucose-lowering effect and activation of AMPK by BH4 did not appear in mice with STZ-induced diabetes lacking eNOS. Consecutive administration of BH4 in ob/ob mice ameliorated glucose intolerance and insulin resistance. Taken together, BH4 suppresses hepatic gluconeogenesis in an eNOS-dependent manner, and BH4 has a glucose-lowering effect as well as an insulin-sensitizing effect in diabetic mice. BH4 has potential in the treatment of type 2 diabetes. PMID:23649519

  14. Changes in the pharmacokinetics of digoxin in polyuria in streptozotocin-induced diabetic mice and lithium carbonate-treated mice.

    Science.gov (United States)

    Ikarashi, Nobutomo; Kagami, Mai; Kobayashi, Yasushi; Ishii, Makoto; Toda, Takahiro; Ochiai, Wataru; Sugiyama, Kiyoshi

    2011-06-01

    In humans, digoxin is mainly eliminated through the kidneys unchanged, and renal clearance represents approximately 70% of the total clearance. In this study, we used the mouse models to examine digoxin pharmacokinetics in polyuria induced by diabetes mellitus and lithium carbonate (Li(2)CO(3)) administration, including mechanistic evaluation of the contribution of glomerular filtration, tubular secretion, and tubular reabsorption. After digoxin administration to streptozotocin (STZ)-induced diabetic mice, digoxin CL/F increased to approximately 2.2 times that in normal mice. After treatment with Li(2)CO(3) (0.2%) for 10 days, the CL/F increased approximately 1.1 times for normal mice and 1.6 times for STZ mice. Creatinine clearance (CLcr) and the renal mRNA expression levels of mdr1a did not differ significantly between the normal, STZ, and Li(2)CO(3)-treated mice. The urine volume of STZ mice was approximately 26 mL/day, 22 times that of normal mice. The urine volume of Li(2)CO(3)-treated mice increased approximately 7.3 times for normal mice and 2.3 times for STZ mice. These results suggest that the therapeutic effect of digoxin may be significantly reduced in the presence of polyuria either induced by diabetes mellitus or manifested as an adverse effect of Li(2)CO(3) in diabetic patients, along with increased urine volume.

  15. Valsartan ameliorates podocyte loss in diabetic mice through the Notch pathway.

    Science.gov (United States)

    Gao, Feng; Yao, Min; Cao, Yanping; Liu, Shuxia; Liu, Qingjuan; Duan, Huijun

    2016-05-01

    The Notch pathway is known to be linked to diabetic nephropathy (DN); however, its underlying mechanism was poorly understood. In the present study, we examined the effect of Valsartan, an angiotensin II type 1 receptor antagonist, on the Notch pathway and podocyte loss in DN. Diabetes was induced in mice by an intraperitoneal injection of streptozotocin and and this was followed by treatment with Valsartan. Levels of blood glucose, kidney weight and body weight, as well as proteinuria were measured. Samples of the kidneys were also histologically examined. The relative levels of Jagged1, Notch1, Notch intracellular domain 1 (NICD1), Hes family BHLH transcription factor 1 (Hes1) and Hes-related family BHLH transcription factor with YRPW motif 1 expression (Hey1) in the glomeruli were determined by immunohistochemical analysis, western blot analysis and RT-qPCR. The B-Cell CLL/Lymphoma 2 (Bcl-2) and p53 pathways were examined by western blot analysis. Apoptosis and detachment of podocytes from the glomerular basement membrane were examined using a TUNEL assay, flow cytometric analysis and ELISA. The number of podocytes was quantified by measuring Wilms tumor-1 (WT-1) staining. We noted that the expression of Jagged1, Notch1, NICD1, Hes1 and Hey1 was increased in a time-dependent manner in the glomeruli of mice with streptozotocin (STZ)-induced diabetes. Moreover, in diabetic mice, Valsartan significantly reduced kidney weight and proteinuria, and mitigated the pathogenic processes in the kidneys. Valsartan also inhibited the activation of Notch, Bcl-2 and p53 pathways and ameliorated podocyte loss in the glomeruli of mice with STZ-induced diabetes. Taken together, these findings indicated that Valsartan exerted a beneficial effect on reducing podocyte loss, which is associated with inhibition of Notch pathway activation in the glomeruli of diabetic mice.

  16. Renal Protective Effect of Xiao-Chai-Hu-Tang on Diabetic Nephropathy of Type 1-Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Chun-Ching Lin

    2012-01-01

    Full Text Available Xiao-Chai-Hu-Tang (XCHT, a traditional Chinese medicine formula consisting of seven medicinal plants, is used in the treatment of various diseases. We show here that XCHT could protect type-1 diabetic mice against diabetic nephropathy, using streptozotocin (STZ-induced diabetic mice and high-glucose (HG-exposed rat mesangial cell (RMC as models. Following 4 weeks of oral administration with XCHT, renal functions and renal hypertrophy significantly improved in the STZ-diabetic mice, while serum glucose was only moderately reduced compared to vehicle treatment. Treatment with XCHT in the STZ-diabetic mice and HG-exposed RMC resulted in a decrease in expression levels of TGF-β1, fibronectin, and collagen IV, with concomitant increase in BMP-7 expression. Data from DPPH assay, DHE stain, and CM-H2DCFDA analysis indicated that XCHT could scavenge free radicals and inhibit high-glucose-induced ROS in RMCs. Taken together, these results suggest that treatment with XCHT can improve renal functions in STZ-diabetic mice, an effect that is potentially mediated through decreasing oxidative stress and production of TGF-β1, fibronectin, and collagen IV in the kidney during development of diabetic nephropathy. XCHT, therefore merits further investigation for application to improve renal functions in diabetic disorders.

  17. Effect of the Total Extract of Averrhoacarambola (Oxalidaceae Root on the Expression Levels of TLR4 and NF-κB in Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xiaohui Xu

    2015-07-01

    Full Text Available Background: Averrhoacarambola L., which is a folk medicine used in diabetes mellitus (DM in ancient China, has been reported to have anti-diabetic efficacy. Aims: The aim of this study was to evaluate the hypoglycemic effect of the extract of Averrhoacarambola L. root (EACR on the regulation of the Toll-like receptor 4 (TLR4-Nuclear-factor kappa B (NF-κB pathway in B pathway in streptozotocin (STZ-induced diabetic mice. Methods: the mice were injected with STZ (120 mg/kg body weight via a tail vein. After 72 h, the mice with FBG = 11.1 mmol/L were confirmed as having diabetes. Subsequently, the mice were treated intragastrically with EACR (300, 600, 1200 mg/kg body weight/d and metformin (320 mg/kg body weight/d for 14 days. Results: As a result the serum fasting blood glucose (FBG, interleukin-6 (IL-6 and tumor necrosis factor-a (TNF-a levels were decreased following EACR administration. Immunohistochemical analysis revealed that the pancreatic tissue expression levels of TLR4 and NF-κB were downregulated after EACR administration. EACR suppressed pancreatic mRNA expression level of TLR4 and blocked the downstream NF-κB pathway in the pancreas. According to Western blot analysis EACR suppressed pancreatic TLR4 and NF-κB protein expression levels. Histopathological examination of the pancreas showed that STZ-induced pancreas lesions were alleviated by the EACR treatment. Conclusion: These findings suggest that the modulation of the IL-6 and TNF-a inflammatory cytokines and the suppression of the TLR4-NF-κB pathway are most likely involved in the anti-hyperglycemic effect of EACR in STZ-induced diabetic mice.

  18. Anti-diabetic effects of Inonotus obliquus polysaccharides-chromium (III) complex in type 2 diabetic mice and its sub-acute toxicity evaluation in normal mice.

    Science.gov (United States)

    Wang, Cong; Chen, Zhongqin; Pan, Yuxiang; Gao, Xudong; Chen, Haixia

    2017-10-01

    Polysaccharides are important bioactive ingredients from Inonotus obliquus. This study aimed to synthesize and characterize a novel I. obliquus polysaccharides-chromium (III) complex (UIOPC) and investigate the anti-diabetic effects in streptozotocin (STZ) induced type 2 diabetes mellitus (T2DM) mice and sub-acute toxicity in normal mice. The molecular weight of UIOPC was about 11.5 × 10 4  Da with the chromium content was 13.01% and the chromium was linked with polysaccharides through coordination bond. After treatment of UIOPC for four weeks, the body weight, fasting blood glucose (FBG) levels, plasma insulin levels of the diabetic mice were significantly reduced when compared with those of the diabetic mice (p < 0.05). The results on serum profiles and antioxidant enzymes activities revealed that UIOPC had a positive effect on hypoglycemic and antioxidant ability. Histopathology results showed that UIOPC could effectively alleviate the STZ-lesioned tissues in diabetic mice. Furthermore, high dose administration of UIOPC had no obviously influence on serum profiles levels and antioxidant ability of the normal mice and the organ tissues maintained organized and integrity in the sub-acute toxicity study. These results suggested that UIOPC might be a good candidate for the functional food or pharmaceuticals in the treatment of T2DM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antidiabetic Effects of Carassius auratus Complex Formula in High Fat Diet Combined Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Zhi-Hong Wang

    2014-01-01

    Full Text Available Carassius auratus complex formula, including Carassius auratus, Rhizoma dioscoreae, Lycium chinense, and Rehmannia glutinosa Libosch, is a combination prescription of traditional Chinese medicine, which has always been used to treat diabetes mellitus in ancient China. In this study, we provided experimental evidence for the use of Carassius auratus complex formula in the treatment of high fat diet combined streptozotocin- (STZ- induced type 2 diabetes. Carassius auratus complex formula aqueous extract was prepared and the effects of it on blood glucose, serum insulin, adipose tissue weight, oral glucose tolerance test (OGTT, total cholesterol, and triglyceride (TG levels in mice were measured. Moreover, adiponectin, TG synthesis related gene expressions, and the inhibitory effect of aldose reductase (AR were performed to evaluate its antidiabetic effects. After the 8-week treatment, blood glucose, insulin levels, and adipose tissue weight were significantly decreased. OGTT and HOMA-IR index showed improved glucose tolerance. It could also lower plasma TG, TC, and liver TG levels. Furthermore, Carassius auratus complex formula could inhibit the activity of AR and restore adiponectin expression in serum. Based on these findings, it is suggested that Carassius auratus complex formula possesses potent anti-diabetic effects on high fat diet combined STZ-induced diabetic mice.

  20. Anti-diabetic potential of the essential oil of Pinus koraiensis leaves toward streptozotocin-treated mice and HIT-T15 pancreatic β cells.

    Science.gov (United States)

    Joo, Hye-Eun; Lee, Hyo-Jung; Sohn, Eun Jung; Lee, Min-Ho; Ko, Hyun-Suk; Jeong, Soo-Jin; Lee, Hyo-Jeong; Kim, Sung-Hoon

    2013-01-01

    The metabolic syndrome creates risk factors for coronary heart disease, diabetes, fatty liver, obesity and several cancers. Our group has already reported that the essential oil from leaves of Pinus koraiensis SIEB (EOPK) exerted antihyperlipidemic effects by upregulating the low-density lipoprotein receptor and inhibiting acyl-coenzyme A, cholesterol acyltransferases. We evaluated in the current study the anti-diabetic effects of EOPK on mice with streptozotocin (STZ)-induced type I diabetes and on HIT-T15 pancreatic β cells. EOPK significantly protected HIT-T15 cells from STZ-induced cytotoxicity and reduced the blood glucose level in STZ-induced diabetic mice when compared with the untreated control. EOPK consistently and significantly suppressed the α-amylase activity in a dose-dependent manner and enhanced the expression of insulin at the mRNA level in STZ-treated HIT-T15 cells, while the expression of insulin was attenuated. EOPK also significantly abrogated the population of reactive oxygen species when compared to the untreated control in STZ-treated HIT-T15 cells. Furthermore, EOPK significantly reduce nitric oxide production, suppressed the phosphorylation of endothelial nitric oxide (NO) synthase and suppressed the production of vascular endothelial growth factor (VEGF) in STZ-treated HIT-T15 cells, implying its potential application to diabetic retinopathy. Overall, our findings suggest that EOPK had hypoglycemic potential by inhibiting reactive oxygene species (ROS), endothelial NO synthase (eNOS) and VEGF in STZ-treated mice and HIT-T15 pancreatic β cells as a potent anti-diabetic agent.

  1. Flos Puerariae Extract Ameliorates Cognitive Impairment in Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Zhong-he Liu

    2015-01-01

    Full Text Available Objective. The effects of Flos Puerariae extract (FPE on cognitive impairment associated with diabetes were assessed in C57BL/6J mice. Methods. Experimental diabetic mice model was induced by one injection of 50 mg/kg streptozotocin (STZ for 5 days consecutively. FPE was orally administrated at the dosages of 50, 100, or 200 mg/kg/day, respectively. The learning and memory ability was assessed by Morris water maze test. Body weight, blood glucose, free fatty acid (FFA and total cholesterol (TCH in serum, malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px, and acetylcholinesterase (AChE activities in cerebral cortex and hippocampus were also measured. Results. Oral administration of FPE significantly improved cognitive deficits in STZ-induced diabetic mice. FPE treatment also maintained body weight and ameliorated hyperglycemia and dyslipidemia in diabetic mice. Additionally, decreased MDA level, enhanced CAT, and GSH-Px activities in cerebral cortex or hippocampus, as well as alleviated AChE activity in cerebral cortex, were found in diabetic mice supplemented with FPE. Conclusion. This study suggests that FPE ameliorates memory deficits in experimental diabetic mice, at least partly through the normalization of metabolic abnormalities, ameliorated oxidative stress, and AChE activity in brain.

  2. Petalonia improves glucose homeostasis in streptozotocin-induced diabetic mice

    International Nuclear Information System (INIS)

    Kang, Seong-Il; Jin, Young-Jun; Ko, Hee-Chul; Choi, Soo-Youn; Hwang, Joon-Ho; Whang, Ilson; Kim, Moo-Han; Shin, Hye-Sun; Jeong, Hyung-Bok; Kim, Se-Jae

    2008-01-01

    The anti-diabetic potential of Petalonia binghamiae extract (PBE) was evaluated in vivo. Dietary administration of PBE to streptozotocin (STZ)-induced diabetic mice significantly lowered blood glucose levels and improved glucose tolerance. The mode of action by which PBE attenuated diabetes was investigated in vitro using 3T3-L1 cells. PBE treatment stimulated 3T3-L1 adipocyte differentiation as evidenced by increased triglyceride accumulation. At the molecular level, peroxisome proliferator-activated receptor γ (PPARγ) and terminal marker protein aP2, as well as the mRNA of GLUT4 were up-regulated by PBE. In mature adipocytes, PBE significantly stimulated the uptake of glucose and the expression of insulin receptor substrate-1 (IRS-1). Furthermore, PBE increased PPARγ luciferase reporter gene activity in COS-1 cells. Taken together, these results suggest that the in vivo anti-diabetic effect of PBE is mediated by both insulin-like and insulin-sensitizing actions in adipocytes

  3. The anti-ALS drug riluzole attenuates pericyte loss in the diabetic retinopathy of streptozotocin-treated mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong A. [Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Chung, Yoo-Ri [Department of Ophthalmology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Byun, Hyae-Ran [Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Park, Hwangseo [Department of Bioscience and Biotechnology, Sejong University, Seoul (Korea, Republic of); Koh, Jae-Young, E-mail: jkko@amc.seoul.kr [Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yoon, Young Hee, E-mail: yhyoon@amc.seoul.kr [Department of Ophthalmology, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2017-01-15

    Loss of pericytes, considered an early hallmark of diabetic retinopathy, is thought to involve abnormal activation of protein kinase C (PKC). We previously showed that the anti-amyotrophic lateral sclerosis (ALS) drug riluzole functions as a PKC inhibitor. Here, we examined the effects of riluzole on pathological changes in diabetic retinopathy. Pathological endpoints examined in vivo included the number of pericytes and integrity of retinal vessels in streptozotocin (STZ)-induced diabetic mice. In addition, PKC activation and the induction of monocyte chemotactic protein (MCP1) were assessed in diabetic mice and in human retinal pericytes exposed to advanced glycation end product (AGE) or modified low-density lipoprotein (mLDL). The diameter of retinal vessels and the number of pericytes were severely reduced, and the levels of MCP1 and PKC were increased in STZ-induced diabetic mice. Administration of riluzole reversed all of these changes. Furthermore, the increased expression of MCP1 in AGE- or mLDL-treated cultured retinal pericytes was inhibited by treatment with riluzole or the PKC inhibitor GF109203X. In silico modeling showed that riluzole fits well within the catalytic pocket of PKC. Taken together, our results demonstrate that riluzole attenuates both MCP1 induction and pericyte loss in diabetic retinopathy, likely through its direct inhibitory effect on PKC. - Highlights: • The effects of riluzole were examined in streptozotocin-induced diabetic mice. • The diameter of retinal vessels and the number of pericytes were severely reduced. • The levels of MCP1 and PKC were increased, while riluzole reversed all changes. • Riluzole attenuated the level of MCP1 in AGE- or mLDL-treated retinal pericytes. • Riluzole attenuated both MCP1 induction and pericyte loss in diabetic retinopathy.

  4. The anti-ALS drug riluzole attenuates pericyte loss in the diabetic retinopathy of streptozotocin-treated mice

    International Nuclear Information System (INIS)

    Choi, Jeong A.; Chung, Yoo-Ri; Byun, Hyae-Ran; Park, Hwangseo; Koh, Jae-Young; Yoon, Young Hee

    2017-01-01

    Loss of pericytes, considered an early hallmark of diabetic retinopathy, is thought to involve abnormal activation of protein kinase C (PKC). We previously showed that the anti-amyotrophic lateral sclerosis (ALS) drug riluzole functions as a PKC inhibitor. Here, we examined the effects of riluzole on pathological changes in diabetic retinopathy. Pathological endpoints examined in vivo included the number of pericytes and integrity of retinal vessels in streptozotocin (STZ)-induced diabetic mice. In addition, PKC activation and the induction of monocyte chemotactic protein (MCP1) were assessed in diabetic mice and in human retinal pericytes exposed to advanced glycation end product (AGE) or modified low-density lipoprotein (mLDL). The diameter of retinal vessels and the number of pericytes were severely reduced, and the levels of MCP1 and PKC were increased in STZ-induced diabetic mice. Administration of riluzole reversed all of these changes. Furthermore, the increased expression of MCP1 in AGE- or mLDL-treated cultured retinal pericytes was inhibited by treatment with riluzole or the PKC inhibitor GF109203X. In silico modeling showed that riluzole fits well within the catalytic pocket of PKC. Taken together, our results demonstrate that riluzole attenuates both MCP1 induction and pericyte loss in diabetic retinopathy, likely through its direct inhibitory effect on PKC. - Highlights: • The effects of riluzole were examined in streptozotocin-induced diabetic mice. • The diameter of retinal vessels and the number of pericytes were severely reduced. • The levels of MCP1 and PKC were increased, while riluzole reversed all changes. • Riluzole attenuated the level of MCP1 in AGE- or mLDL-treated retinal pericytes. • Riluzole attenuated both MCP1 induction and pericyte loss in diabetic retinopathy.

  5. Shifts in renin-angiotensin system components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa region of streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Qian, Xiaobing; Lin, Leilei; Zong, Yao; Yuan, Yongguang; Dong, Yanmin; Fu, Yue; Shao, Wanwen; Li, Yujie; Gao, Qianying

    2018-03-01

    This study aimed to analyse shifts in renin-angiotensin system (RAS) components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa (LC) region in streptozotocin (STZ)-induced diabetic mice. Six months after diabetes induction, the retinal vessels of male C57BL/6 J mice were observed by colour photography, fundus fluorescein angiography (FFA), and immunofluorescent staining following incubation with CD31. Immunofluorescence for glial fibrillary acidic protein (GFAP), alpha-smooth muscle actin (α-SMA),and NG2 was also performed. Angiotensin-converting enzyme 1 (ACE1), angiotensin II type I receptor (AT1R), renin, hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and haeme oxygenase 1 (HO-1) expression levels were confirmed by immunohistochemical and western blotting analyses. Compared with control mice, diabetic mice had significantly higher blood glucose concentrations (p diabetic mice; however, immunostaining of whole-mount retinas revealed an increased number of retinal vessels. Furthermore, histopathological staining showed significant reduction in the whole retinal thickness. GFAP expression was slightly higher, whereas fewer NG2 + pericytes were observed in diabetic mice than in control mice. ACE1, AT1R, renin, HIF-1α, VEGF, VEGFR2, and HO-1 expression were up-regulated in the LC of the STZ-induced diabetic mice. Collectively, ACE 1, AT1R, HIF-1α, VEGF, VEGFR2, and HO-1 activation in the LC region in diabetic mice may be involved in diabetes via the RAS and induction of angiogenesis and oxidative stress.

  6. Hordenine protects against hyperglycemia-associated renal complications in streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Su, Shuhao; Cao, Meng; Wu, Guangyuan; Long, Zi; Cheng, Xiaodong; Fan, Junshu; Xu, Zhongrui; Su, Hongfei; Hao, Yiming; Li, Ge; Peng, Jie; Li, Shuang; Wang, Xin

    2018-05-15

    The worldwide prevalence of diabetes and associated metabolic diseases has dramatically increased. Pharmacological treatment of diabetes is still limited. Hordenine (HOR), a phenethylamine alkaloid, is a natural constituent in many plants. The present study was designed to explore the possible anti-diabetic effect of HOR in streptozotocin (STZ)-induced diabetic mice. Combined treatment of HOR and insulin significantly reduced fasting and postprandial blood glucose level in diabetic mice. HOR and insulin did not show evident protective effect against structural and functional injuries of pancreas. Renal histological and functional injuries were significantly improved by HOR or insulin treatment. Moreover, combined treatment of HOR and insulin resulted in a more significant amelioration of renal histological and functional injuries in diabetic mice. HOR induced a decrease of renal IL-1α/β and IL-6 expression, and a reduction of Col1α1 and MMP9 expression and PAS-stained mesangial expansion in glomeruli of diabetic mice. In diabetic mice, HOR significantly decreased Nrf2 expression and increased hnRNPF and hnRNPK expression in kidney. Moreover, HOR showed a synergistic effect with insulin on the expression of these regulators. Renal ROS level and TBARS content in diabetic mice were decreased by HOR. The reduction of renal expression of antioxidant enzymes in diabetic mice was inhibited by HOR and insulin. Furthermore, HOR and insulin function synergistically to play an antioxidant role against oxidative injury in diabetic nephropathy. In conclusion, to the best of our knowledge, we, for the first time, found the anti-diabetic, anti-inflammatory, and anti-fibrotic role of HOR in combination with insulin. HOR functions synergistically with insulin and prevents diabetic nephropathy. However, the molecular mechanism of the synergistic effect of HOR and insulin needs to be elucidated. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Urtica dioica modulates hippocampal insulin signaling and recognition memory deficit in streptozotocin induced diabetic mice.

    Science.gov (United States)

    Patel, Sita Sharan; Gupta, Sahil; Udayabanu, Malairaman

    2016-06-01

    Diabetes mellitus has been associated with functional abnormalities in the hippocampus and performance of cognitive function. Urtica dioica (UD) has been used in the treatment of diabetes. In our previous report we observed that UD extract attenuate diabetes mediated associative and spatial memory dysfunction. The present study aimed to evaluate the effect of UD extract on mouse model of diabetes-induced recognition memory deficit and explore the possible mechanism behind it. Streptozotocin (STZ) (50 mg/kg, i.p. consecutively for 5 days) was used to induce diabetes followed by UD extract (50 mg/kg, oral) or rosiglitazone (ROSI) (5 mg/kg, oral) administration for 8 weeks. STZ induced diabetic mice showed significant decrease in hippocampal insulin signaling and translocation of glucose transporter type 4 (GLUT4) to neuronal membrane resulting in cognitive dysfunction and hypolocomotion. UD treatment effectively improved hippocampal insulin signaling, glucose tolerance and recognition memory performance in diabetic mice, which was comparable to ROSI. Further, diabetes mediated oxidative stress and inflammation was reversed by chronic UD or ROSI administration. UD leaves extract acts via insulin signaling pathway and might prove to be effective for the diabetes mediated central nervous system complications.

  8. Cannabinoid 2 Receptor Agonist Improves Systemic Sensitivity to Insulin in High-Fat Diet/Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xiuyuan Zhang

    2016-12-01

    Full Text Available Background/Aims: The endocannabinoid signalling (ECS system has been known to regulate glucose homeostasis. Previous studies have suggested that the cannabinoid 2 (CB2 receptor may play a regulatory role on insulin secretion, immune modulation and insulin resistance. Given that diabetes and insulin resistance are attributable to elevated inflammatory tone, we investigated the role of CB2 receptor on glucose tolerance and insulin sensitivity in high-fat diet (HFD/streptozotocin (STZ-induced mice. Methods: Diabetes was induced in male ICR mice by HFD/STZ and exposed to a CB2 receptor agonist, SER601, for 2- or 4-weeks via subcutaneous implantation of osmotic minipumps. Glucose and insulin tolerance tests were performed at the end of treatment. Islets were isolated for assessment of β-cell function. Pancreases and skeletal muscles were also obtained for histological analyses. Results: Despite a lack of impact on glucose tolerance, substantial improvement on insulin sensitivity was observed in SER601-treated mice, which could partly be attributed to improved islet β-cell function, shown as increased glucose-induced insulin secretion and insulin content. No changes on islet macrophage infiltration or skeletal muscle fat deposition were detectable from SER601-treated mice. However, a major decrease in body weight was recorded at the end of 4-week SER601 exposure, accompanied by a lack of epididymal adipose mass in SER601-treated mice. Conclusion: Our data suggest a lipolytic role of SER601 in HFD/STZ-induced diabetic mice, which results in significant improvement of systemic insulin sensitivity. Thus, the CB2 receptor may be considered a promising target for therapeutic development against insulin resistance and obesity-related diabetes.

  9. Effect of aqueous and alcoholic extract of Sesbania sesban (Linn Merr. root on glycemic control in streptozotocin-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Manjusha Choudhary

    2014-01-01

    Full Text Available Aim: The present study was carried out to investigate the hypoglycemic effects of the aqueous and ethanolic extracts of Sesbania sesban (SS (Merr. roots, which is widely used in inflammation, fever, ulcers, leucoderma and diabetes in various parts of India. Materials and Methods: SS extracts were administered orally at doses (500 and 1000 mg/kg to normal and streptozotocin (STZ induced Type-2 diabetic mice. The fasting blood glucose (FBG, biochemical parameters in serum viz., blood glucose, serum insulin, cholesterol, triglyceride (TG, high-density lipoprotein (HDL cholesterol, urea, creatinine and total protein, change in body weight, internal organs weight, food intake, water intake and glycogen level in liver were performed for the evaluation of hypoglycemic effects. Results: Both doses of aqueous and ethanolic SS extracts caused a marked decrease of FBG in STZ induced Type-2 diabetic mice. Both extracts decreased the cholesterol, TG, urea, creatinine level and increased the insulin, HDL cholesterol and total protein level. Decrease in body weight and glycogen level induced by STZ was restored. Increase in water and food intake induced by STZ was decreased. Conclusions: The results suggest that aqueous and ethanolic extracts of SS may have hypoglycemic potential for the Type-2 diabetes and support the traditional use of the roots of plant as a hypoglycemic agent.

  10. Testicular cytoprotective activities of Curcuma longa in STZ-induced ...

    African Journals Online (AJOL)

    This study was aimed at investigating the cytoprotective activities of Curcuma longa (Turmeric) on the histological structure of the testes in diabetic male rats. Turmeric is commonly called the golden spice, is used as a spice in cooking and also has a long history of medicinal use, dating back nearly 4000 years to the Vedic ...

  11. Softened food reduces weight loss in the streptozotocin-induced male mouse model of diabetic nephropathy.

    Science.gov (United States)

    Nørgaard, Sisse A; Sand, Fredrik W; Sørensen, Dorte B; Abelson, Klas Sp; Søndergaard, Henrik

    2018-01-01

    The streptozotocin (STZ)-induced diabetic mouse is a widely used model of diabetes and diabetic nephropathy (DN). However, it is a well-known issue that this model is challenged by high weight loss, which despite supportive measures often results in high euthanization rates. To overcome these issues, we hypothesized that supplementing STZ-induced diabetic mice with water-softened chow in addition to normal chow would reduce weight loss, lower the need for supportive treatment, and reduce the number of mice reaching the humane endpoint of 20% weight loss. In a 15 week STZ-induced DN study we demonstrated that diabetic male mice receiving softened chow had reduced acute weight loss following STZ treatment ( p = 0.045) and additionally fewer mice were euthanized due to weight loss. By supplementing the diabetic mice with softened chow, no mice reached 20% weight loss whereas 37.5% of the mice without this supplement reached this humane endpoint ( p = 0.0027). Excretion of corticosterone metabolites in faeces was reduced in diabetic mice on softened chow ( p = 0.0007), suggesting lower levels of general stress. Finally, it was demonstrated that the water-softened chow supplement did not significantly affect the induction of key disease parameters, i.e. %HbA1C and albuminuria nor result in abnormal teeth wear. In conclusion, supplementation of softened food is refining the STZ-induced diabetic mouse model significantly by reducing stress, weight loss and the number of animals sacrificed due to humane endpoints, while maintaining the key phenotypes of diabetes and nephropathy.

  12. Far infra-red therapy promotes ischemia-induced angiogenesis in diabetic mice and restores high glucose-suppressed endothelial progenitor cell functions

    Directory of Open Access Journals (Sweden)

    Huang Po-Hsun

    2012-08-01

    Full Text Available Abstract Background Far infra-red (IFR therapy was shown to exert beneficial effects in cardiovascular system, but effects of IFR on endothelial progenitor cell (EPC and EPC-related vasculogenesis remain unclear. We hypothesized that IFR radiation can restore blood flow recovery in ischemic hindlimb in diabetic mice by enhancement of EPCs functions and homing process. Materials and methods Starting at 4 weeks after the onset of diabetes, unilateral hindlimb ischemia was induced in streptozotocine (STZ-induced diabetic mice, which were divided into control and IFR therapy groups (n = 6 per group. The latter mice were placed in an IFR dry sauna at 34°C for 30 min once per day for 5 weeks. Results Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio in the thermal therapy group was significantly increased beyond that in controls, and significantly greater capillary density was seen in the IFR therapy group. Flow cytometry analysis showed impaired EPCs (Sca-1+/Flk-1+ mobilization after ischemia surgery in diabetic mice with or without IFR therapy (n = 6 per group. However, as compared to those in the control group, bone marrow-derived EPCs differentiated into endothelial cells defined as GFP+/CD31+ double-positive cells were significantly increased in ischemic tissue around the vessels in diabetic mice that received IFR radiation. In in-vitro studies, cultured EPCs treated with IFR radiation markedly augmented high glucose-impaired EPC functions, inhibited high glucose-induced EPC senescence and reduced H2O2 production. Nude mice received human EPCs treated with IFR in high glucose medium showed a significant improvement in blood flow recovery in ischemic limb compared to those without IFR therapy. IFR therapy promoted blood flow recovery and new vessel formation in STZ-induced diabetic mice. Conclusions Administration of IFR therapy promoted collateral flow recovery and new vessel formation in STZ-induced

  13. Immunomodulatory and Antidiabetic Effects of a New Herbal Preparation (HemoHIM) on Streptozotocin-Induced Diabetic Mice.

    Science.gov (United States)

    Kim, Jong-Jin; Choi, Jina; Lee, Mi-Kyung; Kang, Kyung-Yun; Paik, Man-Jeong; Jo, Sung-Kee; Jung, Uhee; Park, Hae-Ran; Yee, Sung-Tae

    2014-01-01

    Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia japonica Miyabe) was developed to protect immune, hematopoietic, and self-renewal tissues against radiation. This study determined whether or not HemoHIM could alter hyperglycemia and the immune response in diabetic mice. Both nondiabetic and diabetic mice were orally administered HemoHIM (100 mg/kg) once a day for 4 weeks. Diabetes was induced by single injection of streptozotocin (STZ, 200 mg/kg, i.p.). In diabetic mice, HemoHIM effectively improved hyperglycemia and glucose tolerance compared to the diabetic control group as well as elevated plasma insulin levels with preservation of insulin staining in pancreatic β-cells. HemoHIM treatment restored thymus weight, white blood cells, lymphocyte numbers, and splenic lymphocyte populations (CD4(+) T and CD8(+) T), which were reduced in diabetic mice, as well as IFN-γ production in response to Con A stimulation. These results indicate that HemoHIM may have potential as a glucose-lowering and immunomodulatory agent by enhancing the immune function of pancreatic β-cells in STZ-induced diabetic mice.

  14. Immunomodulatory and Antidiabetic Effects of a New Herbal Preparation (HemoHIM on Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Jong-Jin Kim

    2014-01-01

    Full Text Available HemoHIM (a new herbal preparation of three edible herbs: Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia japonica Miyabe was developed to protect immune, hematopoietic, and self-renewal tissues against radiation. This study determined whether or not HemoHIM could alter hyperglycemia and the immune response in diabetic mice. Both nondiabetic and diabetic mice were orally administered HemoHIM (100 mg/kg once a day for 4 weeks. Diabetes was induced by single injection of streptozotocin (STZ, 200 mg/kg, i.p.. In diabetic mice, HemoHIM effectively improved hyperglycemia and glucose tolerance compared to the diabetic control group as well as elevated plasma insulin levels with preservation of insulin staining in pancreatic β-cells. HemoHIM treatment restored thymus weight, white blood cells, lymphocyte numbers, and splenic lymphocyte populations (CD4+ T and CD8+ T, which were reduced in diabetic mice, as well as IFN-γ production in response to Con A stimulation. These results indicate that HemoHIM may have potential as a glucose-lowering and immunomodulatory agent by enhancing the immune function of pancreatic β-cells in STZ-induced diabetic mice.

  15. Inhibition of nuclear factor of activated T-cells (NFAT suppresses accelerated atherosclerosis in diabetic mice.

    Directory of Open Access Journals (Sweden)

    Anna V Zetterqvist

    Full Text Available OBJECTIVE OF THE STUDY: Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: Streptozotocin (STZ-induced diabetes in apolipoprotein E(-/- mice resulted in 2.2 fold increased aortic atherosclerosis and enhanced pro-inflammatory burden, as evidenced by elevated blood monocytes, endothelial activation- and inflammatory markers in aorta, and pro-inflammatory cytokines in plasma. In vivo treatment with the NFAT blocker A-285222 for 4 weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, having no effect in non-diabetic mice. STZ-treated mice exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. NFAT-dependent transcriptional activity was examined in aorta, spleen, thymus, brain, heart, liver and kidney, but only augmented in the aorta of diabetic mice. A-285222 completely blocked this diabetes-driven NFAT activation, but had no impact on the other organs or on splenocyte proliferation or cytokine secretion, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. Instead, NFAT inhibition effectively reduced IL-6, osteopontin, monocyte chemotactic protein 1, intercellular adhesion molecule 1, CD68 and tissue factor expression in the arterial wall and lowered plasma IL-6 in diabetic mice. CONCLUSIONS: Targeting NFAT signaling may be a novel and attractive approach for the treatment of diabetic macrovascular complications.

  16. Effect of pregabalin on contextual memory deficits and inflammatory state-related protein expression in streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Sałat, Kinga; Gdula-Argasińska, Joanna; Malikowska, Natalia; Podkowa, Adrian; Lipkowska, Anna; Librowski, Tadeusz

    2016-06-01

    Diabetes mellitus is a metabolic disease characterized by hyperglycemia due to defects in insulin secretion or its action. Complications from long-term diabetes consist of numerous biochemical, molecular, and functional tissue alterations, including inflammation, oxidative stress, and neuropathic pain. There is also a link between diabetes mellitus and vascular dementia or Alzheimer's disease. Hence, it is important to treat diabetic complications using drugs which do not aggravate symptoms induced by the disease itself. Pregabalin is widely used for the treatment of diabetic neuropathic pain, but little is known about its impact on cognition or inflammation-related proteins in diabetic patients. Thus, this study aimed to evaluate the effect of intraperitoneal (ip) pregabalin on contextual memory and the expression of inflammatory state-related proteins in the brains of diabetic, streptozotocin (STZ)-treated mice. STZ (200 mg/kg, ip) was used to induce diabetes mellitus. To assess the impact of pregabalin (10 mg/kg) on contextual memory, a passive avoidance task was applied. Locomotor and exploratory activities in pregabalin-treated diabetic mice were assessed by using activity cages. Using Western blot analysis, the expression of cyclooxygenase-2 (COX-2), cytosolic prostaglandin E synthase (cPGES), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear factor-ĸB (NF-ĸB) p50 and p65, aryl hydrocarbon receptor (AhR), as well as glucose transporter type-4 (GLUT4) was assessed in mouse brains after pregabalin treatment. Pregabalin did not aggravate STZ-induced learning deficits in vivo or influence animals' locomotor activity. We observed significantly lower expression of COX-2, cPGES, and NF-κB p50 subunit, and higher expression of AhR and Nrf2 in the brains of pregabalin-treated mice in comparison to STZ-treated controls, which suggested immunomodulatory and anti-inflammatory effects of pregabalin. Antioxidant properties of pregabalin in the brains of

  17. Candesartan restores pressure-induced vasodilation and prevents skin pressure ulcer formation in diabetic mice.

    Science.gov (United States)

    Danigo, Aurore; Nasser, Mohamad; Bessaguet, Flavien; Javellaud, James; Oudart, Nicole; Achard, Jean-Michel; Demiot, Claire

    2015-02-18

    Angiotensin II type 1 receptor (AT1R) blockers have beneficial effects on neurovascular complications in diabetes and in organ's protection against ischemic episodes. The present study examines whether the AT1R blocker candesartan (1) has a beneficial effect on diabetes-induced alteration of pressure-induced vasodilation (PIV, a cutaneous physiological neurovascular mechanism which could delay the occurrence of tissue ischemia), and (2) could be protective against skin pressure ulcer formation. Male Swiss mice aged 5-6 weeks were randomly assigned to four experimental groups. In two groups, diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ, 200 mg.kg(-1)). After 6 weeks, control and STZ mice received either no treatment or candesartan (1 mg/kg-daily in drinking water) during 2 weeks. At the end of treatment (8 weeks of diabetes duration), C-fiber mediated nociception threshold, endothelium-dependent vasodilation and PIV were assessed. Pressure ulcers (PUs) were then induced by pinching the dorsal skin between two magnetic plates for three hours. Skin ulcer area development was assessed during three days, and histological examination of the depth of the skin lesion was performed at day three. After 8 weeks of diabetes, the skin neurovascular functions (C-fiber nociception, endothelium-dependent vasodilation and PIV) were markedly altered in STZ-treated mice, but were fully restored by treatment with candesartan. Whereas in diabetes mice exposure of the skin to pressure induced wide and deep necrotic lesions, treatment with candersartan restored their ability to resist to pressure-induced ulceration as efficiently as the control mice. Candesartan decreases the vulnerability to pressure-induced ulceration and restores skin neurovascular functions in mice with STZ-induced established diabetes.

  18. Effects of Bauhinia forficata Tea on Oxidative Stress and Liver Damage in Diabetic Mice.

    Science.gov (United States)

    Salgueiro, Andréia Caroline Fernandes; Folmer, Vanderlei; da Silva, Marianne Pires; Mendez, Andreas Sebastian Loureiro; Zemolin, Ana Paula Pegoraro; Posser, Thaís; Franco, Jeferson Luis; Puntel, Robson Luiz; Puntel, Gustavo Orione

    2016-01-01

    This study was designed to evaluate the effects of Bauhinia forficata Link subsp. pruinosa (BF) tea on oxidative stress and liver damage in streptozotocin (STZ)-induced diabetic mice. Diabetic male mice have remained 30 days without any treatment. BF treatment started on day 31 and continued for 21 days as a drinking-water substitute. We evaluated (1) BF chemical composition; (2) glucose levels; (3) liver/body weight ratio and liver transaminases; (4) reactive oxygen species (ROS), lipid peroxidation, and protein carbonylation in liver; (5) superoxide dismutase (SOD) and catalase (CAT) activities in liver; (6) δ-aminolevulinate dehydratase (δ-ALA-D) and nonprotein thiols (NPSH) in liver; (7) Nrf2, NQO-1, and HSP70 levels in liver and pancreas. Phytochemical analyses identified four phenols compounds. Diabetic mice present high levels of NQO-1 in pancreas, increased levels of ROS and lipid peroxidation in liver, and decrease in CAT activity. BF treatment normalized all these parameters. BF did not normalize hyperglycemia, liver/body weight ratio, aspartate aminotransferase, protein carbonyl, NPSH levels, and δ-ALA-D activity. The raised oxidative stress seems to be a potential mechanism involved in liver damage in hyperglycemic conditions. Our results indicated that BF protective effect could be attributed to its antioxidant capacity, more than a hypoglycemic potential.

  19. Effects of Bauhinia forficata Tea on Oxidative Stress and Liver Damage in Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Andréia Caroline Fernandes Salgueiro

    2016-01-01

    Full Text Available This study was designed to evaluate the effects of Bauhinia forficata Link subsp. pruinosa (BF tea on oxidative stress and liver damage in streptozotocin (STZ-induced diabetic mice. Diabetic male mice have remained 30 days without any treatment. BF treatment started on day 31 and continued for 21 days as a drinking-water substitute. We evaluated (1 BF chemical composition; (2 glucose levels; (3 liver/body weight ratio and liver transaminases; (4 reactive oxygen species (ROS, lipid peroxidation, and protein carbonylation in liver; (5 superoxide dismutase (SOD and catalase (CAT activities in liver; (6 δ-aminolevulinate dehydratase (δ-ALA-D and nonprotein thiols (NPSH in liver; (7 Nrf2, NQO-1, and HSP70 levels in liver and pancreas. Phytochemical analyses identified four phenols compounds. Diabetic mice present high levels of NQO-1 in pancreas, increased levels of ROS and lipid peroxidation in liver, and decrease in CAT activity. BF treatment normalized all these parameters. BF did not normalize hyperglycemia, liver/body weight ratio, aspartate aminotransferase, protein carbonyl, NPSH levels, and δ-ALA-D activity. The raised oxidative stress seems to be a potential mechanism involved in liver damage in hyperglycemic conditions. Our results indicated that BF protective effect could be attributed to its antioxidant capacity, more than a hypoglycemic potential.

  20. [Nicorandil improves cognitive dysfunction in mice with streptozotocin-induced diabetes].

    Science.gov (United States)

    Yan, Wen-Hui; Zhang, Chun-Xi; Xing, Tong; Gong, Xue; Yang, Yu-Xuan; Li, Yi-Nuo; Liu, Xuan; Ayijiang, Jiamaliding; Yu, Ye; Zhang, Meng; Chen, Li-Na

    2018-04-20

    To observe the protective effects of potassium channel opener nicorandil against cognitive dysfunction in mice with streptozotocin (STZ)-induced diabetes. C57BL/6J mouse models of type 1 diabetes mellitus (T1DM) were established by intraperitoneal injection of STZ and received daily treatment with intragastric administration of nicorandil or saline (model group) for 4 consecutive weeks, with normal C57BL/6J mice serving as control. Fasting blood glucose level was recorded every week and Morris water maze was used to evaluate the cognitive behavior of the mice in the 4th week. At the end of the experiment, the mice were sacrificed to observe the ultrastructural changes in the hippocampus and pancreas under transmission electron microscopy; the contents of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) in the hippocampus and SOD activity and MDA level in the brain tissue were determined. Compared with the control group, the model group showed significantly increased fasting blood glucose (P<0.001), significantly prolonged escape latency (P<0.05) and increased swimming distance (P<0.01) with ultrastructural damage of pancreatic β cells and in the hippocampus; GIP and GLP-1 contents in the hippocampus (P<0.01) and SOD activity in the brain were significantly decreased (P<0.05) and MDA content was significantly increased in the model group (P<0.05). Compared with the model group, nicorandil treatment did not cause significant changes in fasting blood glucose, but significantly reduced the swimming distance (P<0.05); nicorandil did not improve the ultrastructural changes in pancreatic β cells but obviously improved the ultrastructures of hippocampal neurons and synapses. Nicorandil also significantly increased the contents of GIP and GLP-1 in the hippocampus (P<0.05), enhanced SOD activity (P<0.05) and decreased MDA level (P<0.01) in the brain tissue. Nicorandil improves cognitive dysfunction in mice with STZ-induced diabetes by

  1. Antidiabetic, hypolipidemic and hepatoprotective effects of Arctium lappa root’s hydro-alcoholic extract on nicotinamide-streptozotocin induced type 2 model of diabetes in male mice

    Science.gov (United States)

    Ahangarpour, Akram; Heidari, Hamid; Oroojan, Ali Akbar; Mirzavandi, Farhang; Nasr Esfehani, Khalil; Dehghan Mohammadi, Zeinab

    2017-01-01

    Objective: Arctium lappa (burdock), (A. lappa) root has hypoglycemic and antioxidative effects, and has been used for treatment of diabetes in tradition medicine. This study was conducted to evaluate the antidiabetic and hypolipidemic properties of A. lappa root extract on nicotinamide-streptozotocin (NA-STZ)-induced type2 diabetes in mice. Materials and Methods: In this investigation, 70 adult male NMRI mice (30-35g) randomly divided into 7 groups (n=10) as follow: 1-control, 2-type 2 diabetic mice, 3-diabetic mice that received glibenclamide (0.25 mg/kg) as an anti-diabetic drug, 4, 5, 6 and 7- diabetic and normal animals that were pre-treated with 200 and 300 mg/kg A. lappa root extract, respectively, for 28 days. Diabetes has been induced by intraperitoneal injection of NA and STZ. Finally, the blood sample was taken and insulin, glucose, SGOT, SGPT, alkaline phosphatase, leptin and lipid levels was evaluated. Results: Induction of diabetes decreased the level of insulin, leptin and high density lipoprotein (HDL) and increased the level of other lipids, glucose, and hepatic enzymes significantly (plappa root extract, at specific doses, has an anti-diabetic effect through its hypolipidemic and insulinotropic properties. Hence, this plant extract may be beneficial in the treatment of diabetes. PMID:28348972

  2. Antidiabetic, hypolipidemic and hepatoprotective effects of Arctium lappa root's hydro-alcoholic extract on nicotinamide-streptozotocin induced type 2 model of diabetes in male mice.

    Science.gov (United States)

    Ahangarpour, Akram; Heidari, Hamid; Oroojan, Ali Akbar; Mirzavandi, Farhang; Nasr Esfehani, Khalil; Dehghan Mohammadi, Zeinab

    2017-01-01

    Arctium lappa (burdock), (A. lappa) root has hypoglycemic and antioxidative effects, and has been used for treatment of diabetes in tradition medicine. This study was conducted to evaluate the antidiabetic and hypolipidemic properties of A. lappa root extract on nicotinamide-streptozotocin (NA-STZ)-induced type2 diabetes in mice. In this investigation, 70 adult male NMRI mice (30-35g) randomly divided into 7 groups (n=10) as follow: 1-control, 2-type 2 diabetic mice, 3-diabetic mice that received glibenclamide (0.25 mg/kg) as an anti-diabetic drug, 4, 5, 6 and 7- diabetic and normal animals that were pre-treated with 200 and 300 mg/kg A. lappa root extract, respectively, for 28 days. Diabetes has been induced by intraperitoneal injection of NA and STZ. Finally, the blood sample was taken and insulin, glucose, SGOT, SGPT, alkaline phosphatase, leptin and lipid levels was evaluated. Induction of diabetes decreased the level of insulin, leptin and high density lipoprotein (HDL) and increased the level of other lipids, glucose, and hepatic enzymes significantly (plappa root extract, at specific doses, has an anti-diabetic effect through its hypolipidemic and insulinotropic properties. Hence, this plant extract may be beneficial in the treatment of diabetes.

  3. Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice.

    Science.gov (United States)

    Wang, Hsien-Yi; Kan, Wei-Chih; Cheng, Tain-Junn; Yu, Sung-Hsun; Chang, Liang-Hao; Chuu, Jiunn-Jye

    2014-07-01

    Momordica charantia Linn. (Cucurbitaceae), also called bitter melon, has traditionally been used as a natural anti-diabetic agent for anti-hyperglycemic activity in several animal models and clinical trials. We investigated the differences in the anti-diabetic properties and mechanism of action of Taiwanese M. charantia (MC) between type 1 diabetic (T1D) and type 2 diabetic (T2D) mice. To clarify the beneficial effects of MC, we measured non-fasting glucose, oral glucose tolerance, and plasma insulin levels in KK/HIJ mice with high-fat diet-induced diabetes (200 mg/kg/day of charantin-rich extract of MC [CEMC]) and in ICR mice with STZ-induced diabetes. After 8 weeks, all the mice were exsanguinated, and the expression of the insulin-signaling-associated proteins in their tissue was evaluated, in coordination with the protective effects of CEMC against pancreatic β-cell toxicity (in vitro). Eight weeks of data indicated that CEMC caused a significant decline in non-fasting blood glucose, plasma glucose intolerance, and insulin resistance in the KK/HIJ mice, but not in the ICR mice. Furthermore, CEMC decreased plasma insulin and promoted the sensitivity of insulin by increasing the expression of GLUT4 in the skeletal muscle and of IRS-1 in the liver of KK/HIJ mice; however, CEMC extract had no effect on the insulin sensitivity of ICR mice. In vitro study showed that CEMC prevented pancreatic β cells from high-glucose-induced cytotoxicity after 24 h of incubation, but the protective effect was not detectable after 72 h. Collectively, the hypoglycemic effects of CEMC suggest that it has potential for increasing insulin sensitivity in patients with T2D rather than for protecting patients with T1D against β-cell dysfunction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Antidiabetic, hypolipidemic and hepatoprotective effects of Arctium lappa root’s hydro-alcoholic extract on nicotinamide-streptozotocin induced type 2 model of diabetes in male mice

    Directory of Open Access Journals (Sweden)

    Akram Ahangarpour

    2017-02-01

    Full Text Available Objective: Arctium lappa (burdock, (A. lappa root has hypoglycemic and antioxidative effects, and has been used for treatment of diabetes in tradition medicine. This study was conducted to evaluate the antidiabetic and hypolipidemic properties of A. lappa root extract on nicotinamide-streptozotocin (NA-STZ-induced type2 diabetes in mice.Materials and Methods: In this investigation, 70 adult male NMRI mice (30-35g randomly divided into 7 groups (n=10 as follow: 1-control, 2-type 2 diabetic mice, 3-diabetic mice that received glibenclamide (0.25 mg/kg as an anti-diabetic drug, 4, 5, 6 and 7- diabetic and normal animals that were pre-treated with 200 and 300 mg/kg A. lappa root extract, respectively, for 28 days. Diabetes has been induced by intraperitoneal injection of NA and STZ. Finally, the blood sample was taken and insulin, glucose, SGOT, SGPT, alkaline phosphatase, leptin and lipid levels was evaluated.Results: Induction of diabetes decreased the level of insulin, leptin and high density lipoprotein (HDL and increased the level of other lipids, glucose, and hepatic enzymes significantly (p

  5. Folic Acid Reduces Tau Phosphorylation by Regulating PP2A Methylation in Streptozotocin-Induced Diabetic Mice

    Science.gov (United States)

    Zheng, Miaoyan; Zou, Chen; Li, Mengyue; Huang, Guowei; Gao, Yuxia; Liu, Huan

    2017-01-01

    High incidence rate of Alzheimer’s disease (AD) is observed in patients with type 2 diabetes. Aggregated β-amyloid (Aβ) and hyperphosphorylated tau are the hallmarks of AD. Hyperphosphorylated tau has been detected in diabetic animals as well as in diabetic patients. Folates mediate the transfer of one carbon unit, required in various biochemical reactions. The effect of folate on tau phosphorylation in diabetic models still remains unknown. In this study, we investigated the effect and mechanism of folic acid on hyperphosphorylation of tau in streptozotocin (STZ)-induced diabetic mice. Diabetic mice induced by STZ, at the age of 10 weeks, were administered with three levels of folic acid: folic acid-deficient diet, diet with normal folic acid content, and 120 μg/kg folic acid diet for 8 weeks. Levels of serum folate and blood glucose were monitored. Tau phosphorylation, protein phosphatase 2A (PP2A) methylation, and Glycogen synthase kinase 3β (GSK-3β) phosphorylation were detected using Western blot. The S-adenosyl methionine:S-adenosyl homocysteine ratio (SAM:SAH) in brain tissues was also determined. DNA methyltransferase (DNMT) mRNA expression levels were detected using real-time PCR. Folic acid reduced tau hyperphosphorylation at Ser396 in the brain of diabetes mellitus (DM) mice. In addition, PP2A methylation and DNMT1 mRNA expression were significantly increased in DM mice post folic acid treatment. GSK-3β phosphorylation was not regulated by folic acid administration. Folic acid can reduce tau phosphorylation by regulating PP2A methylation in diabetic mice. These results support that folic acid can serve as a multitarget neuronal therapeutic agent for treating diabetes-associated cognitive dysfunction. PMID:28422052

  6. Contribution of neural cell death to depressive phenotypes of streptozotocin-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-06-01

    Full Text Available Major depression disorder (MDD or depression is highly prevalent in individuals with diabetes, and the depressive symptoms are more severe and less responsive to antidepressant therapies in these patients. The underlying mechanism is little understood. We hypothesized that the pathophysiology of comorbid depression was more complex than that proposed for MDD and that neural cell death played a role in the disease severity. To test this hypothesis, we generated streptozotocin (STZ-induced diabetic mice. These mice had blood glucose levels threefold above controls and exhibited depressive phenotypes as judged by a battery of behavioral tests, thus confirming the comorbidity in mice. Immunohistological studies showed markedly increased TUNEL-positive cells in the frontal cortex and hippocampus of the comorbid mice, indicating apoptosis. This finding was supported by increased caspase-3 and decreased Bcl-2 proteins in these brain regions. In addition, the serum brain-derived neurotrophic factor (BDNF level of comorbid mice was reduced compared with controls, further supporting the neurodegenerative change. Mechanistic analyses showed an increased expression of mitochondrial fission genes fission protein 1 (Fis1 and dynamin-related protein 1 (Drp1, and a decreased expression of mitochondrial fusion genes mitofusin 1 (Mfn1, mitofusin 2 (Mfn2 and optical atrophy 1 (Opa1. Representative assessment of the proteins Drp1 and Mfn2 mirrored the mRNA changes. The data demonstrated that neural cell death was associated with the depressive phenotype of comorbid mice and that a fission-dominant expression of genes and proteins mediating mitochondrial dynamics played a role in the hyperglycemia-induced cell death. The study provides new insight into the disease mechanism and could aid the development of novel therapeutics aimed at providing neuroprotection by modulating mitochondrial dynamics to treat comorbid depression with diabetes.

  7. Lyoniresinol 3α-O-β-D-glucopyranoside-mediated hypoglycaemia and its influence on apoptosis-regulatory protein expression in the injured kidneys of streptozotocin-induced mice.

    Science.gov (United States)

    Wen, Qingwei; Liang, Tao; Qin, Feizhang; Wei, Jinbin; He, Qiaoling; Luo, Xiu; Chen, Xiaoyu; Zheng, Ni; Huang, Renbin

    2013-01-01

    Averrhoa carambola L. (Oxalidaceae) root (ACLR) has a long history of use in traditional Chinese medicine for treating diabetes and diabetic nephropathy (DN). (±)-Lyoniresinol 3α-O-β-D-glucopyranoside (LGP1, LGP2) were two chiral lignan glucosides that were isolated from the ACLR. The purpose of this study was to investigate the effect of LGP1 and LGP2-mediated hypoglycaemia on renal injury in streptozotocin (STZ)-induced diabetic mice. STZ-induced diabetic mice were administrated LGP1 and LGP2 orally (20, 40, 80 mg/kg body weight/d) for 14 days. Hyperglycaemia and the expression of related proteins such as nuclear factor-κB (NF-κB), caspase-3, -8, -9, and Bcl-associated X protein (Bax) were markedly decreased by LGP1 treatment. However, LGP2 treatment had no hypoglycaemic activity. Diabetes-dependent alterations in the kidney such as glomerular hypertrophy, excessive extracellular matrix amassing, and glomerular and tubular basement membrane thickening were improved after 14 days of LGP1 treatment. B cell lymphoma Leukaemia-2 (Bcl-2) expression was reduced in the STZ-induced diabetic mouse kidneys but was enhanced by LGP1 treatment. These findings suggest that LGP1 treatment may inhibit diabetic nephropathy progression and may regulate several pharmacological targets for treating or preventing diabetic nephropathy.

  8. Lyoniresinol 3α-O-β-D-glucopyranoside-mediated hypoglycaemia and its influence on apoptosis-regulatory protein expression in the injured kidneys of streptozotocin-induced mice.

    Directory of Open Access Journals (Sweden)

    Qingwei Wen

    Full Text Available Averrhoa carambola L. (Oxalidaceae root (ACLR has a long history of use in traditional Chinese medicine for treating diabetes and diabetic nephropathy (DN. (±-Lyoniresinol 3α-O-β-D-glucopyranoside (LGP1, LGP2 were two chiral lignan glucosides that were isolated from the ACLR. The purpose of this study was to investigate the effect of LGP1 and LGP2-mediated hypoglycaemia on renal injury in streptozotocin (STZ-induced diabetic mice. STZ-induced diabetic mice were administrated LGP1 and LGP2 orally (20, 40, 80 mg/kg body weight/d for 14 days. Hyperglycaemia and the expression of related proteins such as nuclear factor-κB (NF-κB, caspase-3, -8, -9, and Bcl-associated X protein (Bax were markedly decreased by LGP1 treatment. However, LGP2 treatment had no hypoglycaemic activity. Diabetes-dependent alterations in the kidney such as glomerular hypertrophy, excessive extracellular matrix amassing, and glomerular and tubular basement membrane thickening were improved after 14 days of LGP1 treatment. B cell lymphoma Leukaemia-2 (Bcl-2 expression was reduced in the STZ-induced diabetic mouse kidneys but was enhanced by LGP1 treatment. These findings suggest that LGP1 treatment may inhibit diabetic nephropathy progression and may regulate several pharmacological targets for treating or preventing diabetic nephropathy.

  9. Antihyperglycaemic and organic protective effects on pancreas, liver and kidney by polysaccharides from Hericium erinaceus SG-02 in streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Zhang, Chen; Li, Juan; Hu, Chunlong; Wang, Jing; Zhang, Jianjun; Ren, Zhenzhen; Song, Xinling; Jia, Le

    2017-09-07

    The present work was designed to investigate the antihyperglycaemic and protective effects of two Hericium erinaceus intracellular polysaccharide (HIPS) purified fractions (HIPS1 and HIPS2) from mycelia of H. erinaceus SG-02 on pancreas, liver and kidney in streptozotocin (STZ)-induced diabetic mice. The supplementation of HIPS1 and HIPS2 significantly decreased the blood glucose (GLU) levels; suppressed the abnormal elevations of alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea nitrogen (BUN) and creatinine (CRE) levels in serum; improved the antioxidant enzymatic (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT)) activities; and attenuated the pathological damage to these organs. The HIPS1 showed superior effects in antihyperglycaemia and organic protection than HIPS2 possible owing to the abundant functional groups (-NH 2 , -COOH and S=O) in HIPS1, indicating that H. erinaceus SG-02 could be used as a functional food and natural drug for the prevention of diabetes and its complications.

  10. L-citrulline protects from kidney damage in type 1 diabetic mice.

    Directory of Open Access Journals (Sweden)

    Maritza J Romero

    2013-12-01

    Full Text Available Rationale. Diabetic nephropathy is a major cause of end-stage renal disease, associated with endothelial dysfunction. Chronic supplementation of L-arginine (L-arg, the substrate for endothelial nitric oxide synthase (eNOS, failed to improve vascular function. L-citrulline (L-cit supplementation not only increases L-arg synthesis, but also inhibits cytosolic arginase I (Arg I, a competitor of eNOS for the use of L-arg, in the vasculature. Aims. To investigate whether L-cit treatment reduces diabetic nephropathy in streptozotocin (STZ-induced type 1 diabetes in mice and rats and to study its effects on arginase II (ArgII function, the main renal isoform. Methods. STZ-C57BL6 mice received L-cit or vehicle supplemented in the drinking water. For comparative analysis, diabetic ArgII knock out mice and L-cit-treated STZ-rats were evaluated. Results. L-cit exerted protective effects in kidneys of STZ-rats, and markedly reduced urinary albumin excretion, tubulo-interstitial fibrosis and kidney hypertrophy, observed in untreated diabetic mice. Intriguingly, L-cit treatment was accompanied by a sustained elevation of tubular ArgII at 16 wks and significantly enhanced plasma levels of the anti-inflammatory cytokine IL-10. Diabetic ArgII knock out mice showed greater BUN levels, hypertrophy, and dilated tubules than diabetic wild type mice. Despite a marked reduction in collagen deposition in ArgII knock out mice, their albuminuria was not significantly different from diabetic wild type animals. L-cit also restored NO/ROS balance and barrier function in high glucose-treated monolayers of human glomerular endothelial cells. Moreover, L-cit also has the ability to establish an anti-inflammatory profile, characterized by increased IL-10 and reduced IL-1beta and IL-12(p70 generation in the human proximal tubular cells. Conclusions. L-cit supplementation established an anti-inflammatory profile and significantly preserved the nephron function during type 1

  11. Structural modifications in the arterial wall during physiological aging and as a result of diabetes mellitus in a mouse model: are the changes comparable?

    Science.gov (United States)

    Prévost, G; Bulckaen, H; Gaxatte, C; Boulanger, E; Béraud, G; Creusy, C; Puisieux, F; Fontaine, P

    2011-04-01

    Vascular accelerated aging represents the major cause of morbidity and mortality in subjects with diabetes mellitus. In the present study, our aim was to compare premature functional and morphological changes in the arterial wall resulting from streptozotocin (STZ)-induced diabetes mellitus in mice over a short-term period with those that develop during physiological aging. The effect of aminoguanidine (AG) on the prevention of these alterations in the diabetic group was also analyzed. The vascular relaxation response to acetylcholine (ACh) in the mouse was tested in isolated segments of phenylephrine (Phe)-precontracted aorta at 2, 4 and 8 weeks (wk) of STZ-induced diabetes and compare to 12- and 84-wk-old mice. Aortic structural changes were investigated, and receptor for AGE (RAGE) aortic expression was quantified by western blot. Compared to the 12-wk control group (76 ± 5%), significant endothelium-dependant relaxation (EDR) impairment was found in the group of 12-wk-old mice, which underwent a 4-wk diabetes-inducing STZ treatment (12wk-4WD) (52 ± 4%; P aging preventive effect on the structural changes of the arterial wall. Our study compared EDR linked to physiological aging with that observed in the case of STZ-induced diabetes over a short-term period, and demonstrated the beneficial effect of AG. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  12. Effects of low dose radiation on kidney function and morphology of diabetic mice

    International Nuclear Information System (INIS)

    Zhang Chi; Li Xiaokun; Gong Shouliang; Meng Tao; Li Cai; Cai Lu

    2010-01-01

    Objective: To study the effect of low dose radiation (LDR) on the kidney function and morphology in C57BL/6J mice with diabetic nephropathy (DN) induced by streptozotocin (STZ) and illuminate the protective function of LDR on kidney damage caused by diabetes mellitus (DM). Methods: The healthy and right age C57BL/6J mice were divided into 4 groups including control, DM, LDR and DM/LDR. The mice in DM and DM/LDR groups were injected intraperitoneally with STZ to set up DM models. The mice in DM/LDR and LDR groups were irradiated with 25 mGy X-rays every other day for 4 weeks. The changes of blood glucose level, urine index level and the morphology of glomerular were detected at 2, 4, 8, 12, 16 weeks after radiation. Results: The blood glucose levels of mice in DM and DM/LDR groups after STZ-induced DM model preparation were higher than those in LDR and control groups (P<0.05). After treated with LDR for 2 weeks, the blood glucose level in DM/LDR group was supressed and significantly lower than that in DM group (P<0.05). Moreover the the change had been kept to 16 weeks. In addition, compared with DM group, the level of urine micro albumin(MALB) in DM/LDR group was decreased and the urine creatinine (Cre) level was increased. Compared with DM group, the morphological results showed that the glomerular mesangial expansion and mesangial cell proliferation were significantly supressed in DM/LDR group (P<0.05). Conclusion: LDR can promote the decease of blood glucose level efficiently, relief the change of kidney function, supress and delay the pathological changes of DN. (authors)

  13. Adipose Tissue-Derived Mesenchymal Stem Cells Exert In Vitro Immunomodulatory and Beta Cell Protective Functions in Streptozotocin-Induced Diabetic Mice Model

    Directory of Open Access Journals (Sweden)

    Hossein Rahavi

    2015-01-01

    Full Text Available Regenerative and immunomodulatory properties of mesenchymal stem cells (MSCs might be applied for type 1 diabetes mellitus (T1DM treatment. Thus, we proposed in vitro assessment of adipose tissue-derived MSCs (AT-MSCs immunomodulation on autoimmune response along with beta cell protection in streptozotocin- (STZ- induced diabetic C57BL/6 mice model. MSCs were extracted from abdominal adipose tissue of normal mice and cultured to proliferate. Diabetic mice were prepared by administration of multiple low-doses of streptozotocin. Pancreatic islets were isolated from normal mice and splenocytes prepared from normal and diabetic mice. Proliferation, cytokine production, and insulin secretion assays were performed in coculture experiments. AT-MSCs inhibited splenocytes proliferative response to specific (islet lysate and nonspecific (PHA triggers in a dose-dependent manner (P<0.05. Decreased production of proinflammatory cytokines, such as IFN-γ, IL-2, and IL-17, and increased secretion of regulatory cytokines such as TGF-β, IL-4, IL-10, and IL-13 by stimulated splenocytes were also shown in response to islet lysate or PHA stimulants (P<0.05. Finally, we demonstrated that AT-MSCs could effectively sustain viability as well as insulin secretion potential of pancreatic islets in the presence of reactive splenocytes (P<0.05. In conclusion, it seems that MSCs may provide a new horizon for T1DM cell therapy and islet transplantation in the future.

  14. Chronic Inhibition of PDE5 Limits Pro-Inflammatory Monocyte-Macrophage Polarization in Streptozotocin-Induced Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Mary Anna Venneri

    Full Text Available Diabetes mellitus is characterized by changes in endothelial cells that alter monocyte recruitment, increase classic (M1-type tissue macrophage infiltration and lead to self-sustained inflammation. Our and other groups recently showed that chronic inhibition of phosphodiesterase-5 (PDE5i affects circulating cytokine levels in patients with diabetes; whether PDE5i also affects circulating monocytes and tissue inflammatory cell infiltration remains to be established. Using murine streptozotocin (STZ-induced diabetes and in human vitro cell-cell adhesion models we show that chronic hyperglycemia induces changes in myeloid and endothelial cells that alter monocyte recruitment and lead to self-sustained inflammation. Continuous PDE5i with sildenafil (SILD expanded tissue anti-inflammatory TIE2-expressing monocytes (TEMs, which are known to limit inflammation and promote tissue repair. Specifically, SILD: 1 normalizes the frequency of circulating pro-inflammatory monocytes triggered by hyperglycemia (53.7 ± 7.9% of CD11b+Gr-1+ cells in STZ vs. 30.4 ± 8.3% in STZ+SILD and 27.1 ± 1.6% in CTRL, P<0.01; 2 prevents STZ-induced tissue inflammatory infiltration (4-fold increase in F4/80+ macrophages in diabetic vs. control mice by increasing renal and heart anti-inflammatory TEMs (30.9 ± 3.6% in STZ+SILD vs. 6.9 ± 2.7% in STZ, P <0.01, and 11.6 ± 2.9% in CTRL mice; 3 reduces vascular inflammatory proteins (iNOS, COX2, VCAM-1 promoting tissue protection; 4 lowers monocyte adhesion to human endothelial cells in vitro through the TIE2 receptor. All these changes occurred independently from changes of glycemic status. In summary, we demonstrate that circulating renal and cardiac TEMs are defective in chronic hyperglycemia and that SILD normalizes their levels by facilitating the shift from classic (M1-like to alternative (M2-like/TEM macrophage polarization. Restoration of tissue TEMs with PDE5i could represent an additional pharmacological tool to prevent

  15. Effects of Averrhoa carambola L. (Oxalidaceae) juice mediated on hyperglycemia, hyperlipidemia, and its influence on regulatory protein expression in the injured kidneys of streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Pham, Hoa Thi Thai; Huang, Wansu; Han, Chuangye; Li, Juman; Xie, Qiuqiao; Wei, Jinbin; Xu, Xiaohui; Lai, Zefeng; Huang, Xiang; Huang, Renbin; Wen, Qingwei

    2017-01-01

    Recently, many reports have shown that Averrhoa carambola L. (Oxalidaceae) juice (EACJ) could reduce blood glucose in humans. However, its mechanisms have not been well explored; therefore, our study aimed to investigate the beneficial effects of EACJ on hyperglycemia, hyperlipidemia and renal injury in streptozotocin (STZ)-induced diabetic mice. Those mice were injected with STZ via the tail vein (120 mg/kg body weight) and were identified as diabetic mice when the level of blood glucose was ≥ 11.1 mmol/L. Those mice were intragastriced gavage with saline, EACJ (25, 50, 100 g/kg body weight/d) and metformin (320 mg/kg body weight/d) for 21 days. The fasting blood glucose (FBG), free fatty acids (FFA), total cholesterol (TC), triglycerides (TG), Scr (CREA) and blood urea nitrogen (BUN) were significantly decreased, while the sorbitol dehydrogenase (SDH), Cyclic Adenosine monophosphate (cAMP), malondialdehyde (MDA), superoxide dismutase (SOD), and insulin were elevated. Diabetes-dependent alterations in the kidney, such as glomerular hypertrophy, thicken and tubular basement membrane, were improved after 21 days of EACJ treatment. Hyperglycemia, renal formation and the expressions of related proteins such as connective tissue growth factor (CTGF) and transforming growth factor beta 1 (TGF-β1) were markedly decreased by EACJ. These results indicate that EACJ treatment decrease hyperglycemia, hyperlipidemia and inhibit the progression of diabetic nephropathy (DN), which may be linked to regulating several pharmacological targets for treating or preventing DN.

  16. The Effect of Alium Satium Extract on the Glomerular Diameter of STZ -induced Sprague dawley Rats

    Directory of Open Access Journals (Sweden)

    Susilorini Susilorini

    2013-06-01

    Full Text Available Hyperglycemia exert toxic effect in kidney.The aim of this study was to investigate the short term effect of ethanolic extract of garlic in preventing nephropathy following streptozotocin (STZ induced rats. Twenty male Sprague dawley rats were randomly divided into 4 group, all group induced induced by single dose intraperitoneal injection of 40 mg kg-1 of streptozotocin (STZ. Treatment with 3 doses ethanolic extract of garlic (0,1; 0,25; 0,5 mg kg-1 day-1 was followed for 14 days, then the left kidneys were excised and histhopathological studies were carried out using scanner 3D Hitech and Panoramic view software. Statistical analysis have been done using non parametric analysis Kruskall Wallis. The study revealed that glomerular diameter of the treatment rats was significantly different from the control group (p=0,0001. Increasing doses didn’t make difference. The ethanolic extract of garlic (Allium sativum influences the diameter glomeruli but increasing doses has no effect on the glomerular diameter.

  17. Effect of Turmeric Etanol Extract (Curcuma Longa L) on Low Density Lipoprotein Level and Liver Histopathology Image in Type 1 Diabetes Mellitus Rat Model Induced by Streptozotocin

    OpenAIRE

    Herlina Pratiwi; Djoko Winarso; Nunung Handoyo

    2017-01-01

    This study was conducted to determine levels of LDL and liver damage in rats (Rattus norvegicus) models of type 1 diabetes mellitus inducted by streptozotocin (STZ) with etanol extract of turmeric (Curcuma Longa L) therapy. Animals used rat (Rattus norvegicus) 3-month-old males who were divided into 5 groups, each group consisting of four mice. The group was divided according to treatment: negative control (not induced by STZ), the positive control group (STZ induced), groups of rats DM 1 wit...

  18. Ethyl acetate fraction from Hibiscus sabdariffa L. attenuates diabetes-associated cognitive impairment in mice.

    Science.gov (United States)

    Seung, Tae Wan; Park, Seon Kyeong; Kang, Jin Yong; Kim, Jong Min; Park, Sang Hyun; Kwon, Bong Seok; Lee, Chang Jun; Kang, Jeong Eun; Kim, Dae Ok; Lee, Uk; Heo, Ho Jin

    2018-03-01

    The ameliorating effects of the ethyl acetate fraction from Hibiscus sabdariffa L. (EFHS) 2 against diabetes mellitus (DM) 3 and DM-induced cognitive impairment were investigated on streptozotocin (STZ) 4 -induced DM mice. The EFHS groups showed improved hyperglycemia and glucose tolerance compared to the STZ group. Furthermore, their liver and kidney function and lipid metabolic imbalance in the blood serum were effectively recovered. The EFHS groups significantly ameliorated STZ-induced cognitive impairment in Y-maze, passive avoidance, and Morris water maze (MWM) 5 tests. The EFHS groups showed significant improvement in the antioxidant and cholinergic systems of the brain tissue. In addition, EFHS had an excellent ameliorating effect on protein expression levels from the tau hyperphosphorylation pathways, such as phospho-c-Jun N-terminal kinases (p-JNK), 6 phospho-tau (p-tau), 7 and cleaved poly (ADP-ribose) polymerase (c-PARP). 8 The main compounds of EFHS were identified as various phenolic compounds, including hibiscus acid, caffeoylquinic acid (CQA) 9 isomers, and quercetin derivates. Therefore, EFHS containing various physiologically active materials can potentially be used for improving DM-induced cognitive impairment via its antioxidant activity, improvement of the cholinergic system, and hyperphosphorylation tau signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Intracavernous Delivery of a Designed Angiopoietin-1 Variant Rescues Erectile Function by Enhancing Endothelial Regeneration in the Streptozotocin-Induced Diabetic Mouse

    Science.gov (United States)

    Jin, Hai-Rong; Kim, Woo Jean; Song, Jae Sook; Piao, Shuguang; Choi, Min Ji; Tumurbaatar, Munkhbayar; Shin, Sun Hwa; Yin, Guo Nan; Koh, Gou Young; Ryu, Ji-Kan; Suh, Jun-Kyu

    2011-01-01

    OBJECTIVE Patients with diabetic erectile dysfunction often have severe endothelial dysfunction and respond poorly to oral phosphodiesterase-5 inhibitors. We examined the effectiveness of the potent angiopoietin-1 (Ang1) variant, cartilage oligomeric matrix protein (COMP)-Ang1, in promoting cavernous endothelial regeneration and restoring erectile function in diabetic animals. RESEARCH DESIGN AND METHODS Four groups of mice were used: controls; streptozotocin (STZ)-induced diabetic mice; STZ-induced diabetic mice treated with repeated intracavernous injections of PBS; and STZ-induced diabetic mice treated with COMP-Ang1 protein (days −3 and 0). Two and 4 weeks after treatment, we measured erectile function by electrical stimulation of the cavernous nerve. The penis was harvested for histologic examinations, Western blot analysis, and cGMP quantification. We also performed a vascular permeability test. RESULTS Local delivery of the COMP-Ang1 protein significantly increased cavernous endothelial proliferation, endothelial nitric oxide (NO) synthase (NOS) phosphorylation, and cGMP expression compared with that in the untreated or PBS-treated STZ-induced diabetic group. The changes in the group that received COMP-Ang1 restored erectile function up to 4 weeks after treatment. Endothelial protective effects, such as marked decreases in the expression of p47phox and inducible NOS, in the generation of superoxide anion and nitrotyrosine, and in the number of apoptotic cells in the corpus cavernosum tissue, were noted in COMP-Ang1–treated STZ-induced diabetic mice. An intracavernous injection of COMP-Ang1 completely restored endothelial cell-cell junction proteins and decreased cavernous endothelial permeability. COMP-Ang1–induced promotion of cavernous angiogenesis and erectile function was abolished by the NOS inhibitor, N-nitro-L-arginine methyl ester, but not by the NADPH oxidase inhibitor, apocynin. CONCLUSIONS These findings support the concept of cavernous

  20. Treatment of diabetic mice with undenatured whey protein accelerates the wound healing process by enhancing the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wounded tissue

    Directory of Open Access Journals (Sweden)

    Badr Gamal

    2012-06-01

    Full Text Available Abstract Background Continuous diabetes-associated complications are a major source of immune system exhaustion and an increased incidence of infection. Diabetes can cause poor circulation in the feet, increasing the likelihood of ulcers forming when the skin is damaged and slowing the healing of the ulcers. Whey proteins (WPs enhance immunity during childhood and have a protective effect on some immune disorders. Therefore, in this study, we investigated the effects of camel WP on the healing and closure of diabetic wounds in a streptozotocin (STZ-induced type I diabetic mouse model. Results Diabetic mice exhibited delayed wound closure characterized by a significant decrease in an anti-inflammatory cytokine (namely, IL-10 and a prolonged elevation of the levels of inflammatory cytokines (TNF-α, IL-1β and IL-6 in wound tissue. Moreover, aberrant expression of chemokines that regulate wound healing (MIP-1α, MIP-2, KC and CX3CL1 and growth factors (TGF-β were observed in the wound tissue of diabetic mice compared with control nondiabetic mice. Interestingly, compared with untreated diabetic mice, supplementation with WP significantly accelerated the closure of diabetic wounds by limiting inflammatory stimuli via the restoration of normal IL-10, TNF-α, IL-1β and IL-6 levels. Most importantly, the supplementation of diabetic mice with WP significantly modulated the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wound tissue compared with untreated diabetic mice. Conclusion Our data demonstrate the benefits of WP supplementation for improving the healing and closure of diabetic wounds and restoring the immune response in diabetic mice.

  1. Protective effects of total extracts of Averrhoa carambola L. (Oxalidaceae) roots on streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Xu, Xiaohui; Liang, Tao; Wen, Qingwei; Lin, Xing; Tang, Jingzhi; Zuo, Qiaoyun; Tao, Liqun; Xuan, Feifei; Huang, Renbin

    2014-01-01

    In Chinese culture, the roots of Averrhoa carambola L. have long been used for medical purposes due to their potent pharmaceutical activities, such as improving digestive function and treating diabetes. Recently, we prepared extracts of Averrhoa carambola L. root (EACR), which were isolated from Averrhoa carambola L. roots using ethanol or water. This study was designed to investigate the potential effects of EACR on streptozotocin (STZ) diabetic mice and to explore the underlying mechanism of these effects. Male mice were injected with STZ through the tail vein (120 mg/kg body weight) and were identified as a diabetic mouse model when the level of blood glucose was ≥11.1 mmol/L. Subsequently, the mice were administered EACR (150, 300, 600, 1200 mg/kg body weight/d) and metformin (320 mg/kg body weight/d) via intragastric gavage for three weeks. The results indicated that EACR significantly decreased the serum levels of blood glucose, total cholesterol (TC), triglycerides (TGs) and free fatty acids (FFAs), whereas the content of serum insulin was elevated. In addition, the expressions of apoptosis-related regulators (including caspase-3, caspase-8 and caspase-9) and the apoptosis-induced protein Bax were markedly down-regulated by EACR, whereas the expression of the anti-apoptotic Bcl-2 protein was notably increased. Furthermore, EACR could protect the diabetic mice against the STZ-induced apoptosis of pancreatic β cells. Taken together, these findings indicate that EACR plays an effective hyperglycemic role that is associated with ameliorating metabolic functions and with inhibiting apoptosis in pancreas tissue. © 2014 S. Karger AG, Basel.

  2. Protective Effects of Total Extracts of Averrhoa carambola L. (Oxalidaceae Roots on Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xiaohui Xu

    2014-04-01

    Full Text Available Background: In Chinese culture, the roots of Averrhoa carambola L. have long been used for medical purposes due to their potent pharmaceutical activities, such as improving digestive function and treating diabetes. Methods: Recently, we prepared extracts of Averrhoa carambola L. root (EACR, which were isolated from Averrhoa carambola L. roots using ethanol or water. This study was designed to investigate the potential effects of EACR on streptozotocin (STZ diabetic mice and to explore the underlying mechanism of these effects. Male mice were injected with STZ through the tail vein (120 mg/kg body weight and were identified as a diabetic mouse model when the level of blood glucose was ≥11.1 mmol/L. Subsequently, the mice were administered EACR (150, 300, 600, 1200 mg/kg body weight/d and metformin (320 mg/kg body weight/d via intragastric gavage for three weeks. Results: The results indicated that EACR significantly decreased the serum levels of blood glucose, total cholesterol (TC, triglycerides (TGs and free fatty acids (FFAs, whereas the content of serum insulin was elevated. In addition, the expressions of apoptosis-related regulators (including caspase-3, caspase-8 and caspase-9 and the apoptosis-induced protein Bax were markedly down-regulated by EACR, whereas the expression of the anti-apoptotic Bcl-2 protein was notably increased. Furthermore, EACR could protect the diabetic mice against the STZ-induced apoptosis of pancreatic β cells. Conclusion: Taken together, these findings indicate that EACR plays an effective hyperglycemic role that is associated with ameliorating metabolic functions and with inhibiting apoptosis in pancreas tissue.

  3. Properties of Flavonoids Isolated from the Bark of Eysenhardtia polystachya and Their Effect on Oxidative Stress in Streptozotocin-Induced Diabetes Mellitus in Mice

    Science.gov (United States)

    Garcia-Campoy, Abraham Heriberto; Muñiz-Ramirez, Alethia

    2016-01-01

    Six new flavonoids 2′,4′-dihydroxychalcone-6′-O-β-d-glucopyranoside (1), α,3,2′,4′-tetrahydroxy-4-methoxy-dihydrochalcone-3′-C-β-glucopyranosy-6′-O-β-d-glucopyranoside (2), 7-hydroxy-5,8′-dimethoxy-6′α-l-rhamnopyranosyl-8-(3-phenyl-trans-acryloyl)-1-benzopyran-2-one (3), 6′7-dihydroxy-5,8-dimethoxy-8(3-phenyl-trans-acryloyl)-1-benzopyran-2-one (4), 9-hydroxy-3,8-dimethoxy-4-prenylpterocarpan (5), and α,4,4′-trihydroxydihydrochalcone-2′-O-β-d-glucopyranoside (6) were isolated from bark of Eysenhardtia polystachya. Antidiabetic activity of compounds 1–5 in terms of their cellular antioxidant and free radical scavenging and also in streptozotocin- (STZ-) induced diabetic mice was evaluated on liver transaminases, lipid peroxidation, total bilirubin, total protein, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (CSH-Px), and glutathione reductase (GSH). Results indicated that 1–5 scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (∙OH), nitric oxide radicals (NO∙), superoxide anion radical (O2 ∙−), radical cation (ABTS∙+), and hydrogen peroxide (H2O2) radical, and protection against H2O2 induced BSA damage was also observed. Furthermore, 1–5 showed ability to decrease the oxidative stress in H9c2 cell. Diabetic mice present high levels of lipid peroxide, total protein, SGPT, SGOT, ALP, and TB. However, treatment of STZ-induced diabetes in mice with 1–5 reduced levels of these enzymes leading to protector effect of liver. In addition, with treatment with 1–5, increases in radical scavenging enzymes of CSH-Px, SOD, GSH, and CAT have also been observed in diabetic mice. The antioxidant properties of compounds 1–5 are a promising strategy for ameliorating therapeutic effects by avoiding disorders in the normal redox reactions in healthy cells which consequently could alleviate complications of diabetes. PMID:27668038

  4. Activity assay of mangosteen (Garcinia mangostana L.) pericarp extract for decreasing fasting blood cholesterol level and lipid peroxidation in type-2 diabetic mice

    Science.gov (United States)

    Husen, Saikhu Akhmad; Winarni, Dwi; Khaleyla, Firas; Kalqutny, Septian Hary; Ansori, Arif Nur Muhammad

    2017-09-01

    This study aimed to explore the activity of pericarp extract of mangosteen (Garcinia mangostana L.). Mangosteen pericarp contains various active compounds which are beneficial for human health. In-vivo antioxidant assay of pericarp extract was carried out using 3-4 month male mice of strain BALB/c weighed 30-40 g. The mice were divided into two groups: normal control (KN) group and STZ-induced diabetic group. STZ induction was performed using multiple low-dose method 30 mg/kg body weight treated daily for five consecutive days. Diabetic group was separated into two subgroups: diabetic control (KD), metformin control (KM), and crude extract treatment subgroups. The fasting blood glucose and the cholesterol level were measured before and after lard treatment, we also did it on the first, seventh, and fourteenth day of mangosteen pericarp crude extract treatment. The mice were treated with mangosteen pericarp crude extract for 14 days. The MDA level of the fasting blood serum was measured. The body weight and fasting blood cholesterol level before and after lard treatment were analyzed by t-test, whereas, the fasting blood cholesterol and the MDA level were analyzed using one-way variant analysis continued with Duncan test. The correlation between the increasing body weight and the fasting blood cholesterol level was determined by Pearson correlation test. The results of the study showed that the administration of mangosteen pericarp crude extract was able to reduce the fasting blood cholesterol and the malondialdehide level significantly.

  5. Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yanli Zhao

    Full Text Available Heme oxygenase-1 (HO-1 has been implicated in cardiac dysfunction, oxidative stress, inflammation, apoptosis and autophagy associated with heart failure, and atherosclerosis, in addition to its recognized role in metabolic syndrome and diabetes. Numerous studies have presented contradictory findings about the role of HO-1 in diabetic cardiomyopathy (DCM. In this study, we explored the role of HO-1 in myocardial dysfunction, myofibril structure, oxidative stress, inflammation, apoptosis and autophagy using a streptozotocin (STZ-induced diabetes model in mice systemically overexpressing HO-1 (Tg-HO-1 or mutant HO-1 (Tg-mutHO-1. The diabetic mouse model was induced by multiple peritoneal injections of STZ. Two months after injection, left ventricular (LV function was measured by echocardiography. In addition, molecular biomarkers related to oxidative stress, inflammation, apoptosis and autophagy were evaluated using classical molecular biological/biochemical techniques. Mice with DCM exhibited severe LV dysfunction, myofibril structure disarray, aberrant cardiac oxidative stress, inflammation, apoptosis, autophagy and increased levels of HO-1. In addition, we determined that systemic overexpression of HO-1 ameliorated left ventricular dysfunction, myofibril structure disarray, oxidative stress, inflammation, apoptosis and autophagy in DCM mice. Furthermore, serine/threonine-specific protein kinase (Akt and AMP-activated protein kinase (AMPK phosphorylation is normally inhibited in DCM, but overexpression of the HO-1 gene restored the phosphorylation of these kinases to normal levels. In contrast, the functions of HO-1 in DCM were significantly reversed by overexpression of mutant HO-1. This study underlines the unique roles of HO-1, including the inhibition of oxidative stress, inflammation and apoptosis and the enhancement of autophagy, in the pathogenesis of DCM.

  6. Cucurbitane Triterpenoids from the Fruits of Momordica Charantia Improve Insulin Sensitivity and Glucose Homeostasis in Streptozotocin-Induced Diabetic Mice.

    Science.gov (United States)

    Han, Joo-Hui; Tuan, Nguyen Quoc; Park, Min-Ho; Quan, Khong Trong; Oh, Joonseok; Heo, Kyung-Sun; Na, MinKyun; Myung, Chang-Seon

    2018-04-01

    Momordica charantia (M. charantia) has antidiabetic effects, and cucurbitane-type triterpenoid is one of the compounds of M. charantia. This study aims to investigate whether the new cucurbitane-type triterpenoids affect insulin sensitivity both in vitro and in vivo, and the underlying mechanisms. Four compounds (C1-C4) isolated from the ethanol extract of M. charantia enhance glucose uptake in C2C12 myotubes via insulin receptor substrate-1 (IRS-1) rather than via adenosine monophosphate-activated protein kinase. The most potent, compound 2 (C2), significantly increases the activation of IRS-1 and downstream signaling pathways, resulting in glucose transporter 4 translocation. Furthermore, these C2-induced in vitro effects are blocked by specific signal inhibitors. We further evaluate the antidiabetic effect of C2 using a streptozotocin (STZ)-induced diabetic mouse model. Consistent with in vitro data, treatment with C2 (1.68 mg kg -1 ) significantly decreases blood glucose level and enhances glycogen storage in STZ-injected mice. These effects appear to be mediated by the IRS-1 signaling pathway in skeletal muscle, not in adipose and liver tissues, suggesting that C2 improves hyperglycemia by increasing glucose uptake into skeletal muscle. Our findings demonstrate that the new cucurbitane-type triterpenoids have potential for prevention and management of diabetes by improving insulin sensitivity and glucose homeostasis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Inflammatory Macrophages Promotes Development of Diabetic Encephalopathy.

    Science.gov (United States)

    Wang, Beiyun; Miao, Ya; Zhao, Zhe; Zhong, Yuan

    2015-01-01

    Diabetes and Alzheimer's disease are often associated with each other, whereas the relationship between two diseases is ill-defined. Although hyperglycemia during diabetes is a major cause of encephalopathy, diabetes may also cause chronic inflammatory complications including peripheral neuropathy. Hence the role and the characteristics of inflammatory macrophages in the development of diabetic encephalopathy need to be clarified. Diabetes were induced in mice by i.p. injection of streptozotocin (STZ). Two weeks after STZ injection and confirmation of development of diabetes, inflammatory macrophages were eliminated by i.p. injection of 20µg saporin-conjugated antibody against a macrophage surface marker CD11b (saporin-CD11b) twice per week, while a STZ-treated group received injection of rat IgG of same frequency as a control. The effects of macrophage depletion on brain degradation markers, brain malondialdehyde (MDA), catalase, superoxidase anion-positive cells and nitric oxide (NO) were measured. Saporin-CD11b significantly reduced inflammatory macrophages in brain, without affecting mouse blood glucose, serum insulin, glucose responses and beta cell mass. However, reduced brain macrophages significantly inhibited the STZ-induced decreases in brain MDA, catalase and superoxidase anion-positive cells, and the STZ-induced decreases in brain NO. Inflammatory macrophages may promote development of diabetic encephalopathy. © 2015 S. Karger AG, Basel.

  8. Recovery from diabetes in neonatal mice after a low-dose streptozotocin treatment

    International Nuclear Information System (INIS)

    Kataoka, Masateru; Kawamuro, Yuki; Shiraki, Nobuaki; Miki, Rika; Sakano, Daisuke; Yoshida, Tetsu; Yasukawa, Takanori; Kume, Kazuhiko; Kume, Shoen

    2013-01-01

    Highlights: ► We monitored long-term beta cell regeneration in neonatal mice treated with low dose STZ. ► Low-dose STZ neonatal female mice recovered blood glucose in 150 days. ► Glucose intolerance of the STZ treated mice significantly improved in 150 days. -- Abstract: Administration of streptozotocin (STZ) induces destruction of β-cells and is widely used as an experimental animal model of type I diabetes. In neonatal rat, after low-doses of STZ-mediated destruction of β-cells, β-cells regeneration occurs and reversal of hyperglycemia was observed. However, in neonatal mice, β-cell regeneration seems to occur much slowly compared to that observed in the rat. Here, we described the time dependent quantitative changes in β-cell mass during a spontaneous slow recovery of diabetes induced in a low-dose STZ mice model. We then investigated the underlying mechanisms and analyzed the cell source for the recovery of β-cells. We showed here that postnatal day 7 (P7) female mice treated with 50 mg/kg STZ underwent the destruction of a large proportion of β-cells and developed hyperglycemia. The blood glucose increased gradually and reached a peak level at 500 mg/dl on day 35–50. This was followed by a spontaneous regeneration of β-cells. A reversal of non-fasting blood glucose to the control value was observed within 150 days. However, the mice still showed impaired glucose tolerance on day 150 and day 220, although a significant improvement was observed on day 150. Quantification of the β-cell mass revealed that the β-cell mass increased significantly between day 100 and day 150. On day 150 and day 220, the β-cell mass was approximately 23% and 48.5% of the control, respectively. Of the insulin-positive cells, 10% turned out to be PCNA-positive proliferating cells. Our results demonstrated that, β-cell duplication is one of the cell sources for β-cell regeneration

  9. Recovery from diabetes in neonatal mice after a low-dose streptozotocin treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Masateru; Kawamuro, Yuki; Shiraki, Nobuaki [Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811 (Japan); Miki, Rika; Sakano, Daisuke [Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811 (Japan); The Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811 (Japan); Yoshida, Tetsu; Yasukawa, Takanori; Kume, Kazuhiko [Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811 (Japan); Kume, Shoen, E-mail: skume@kumamoto-u.ac.jp [Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811 (Japan); The Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811 (Japan)

    2013-01-18

    Highlights: ► We monitored long-term beta cell regeneration in neonatal mice treated with low dose STZ. ► Low-dose STZ neonatal female mice recovered blood glucose in 150 days. ► Glucose intolerance of the STZ treated mice significantly improved in 150 days. -- Abstract: Administration of streptozotocin (STZ) induces destruction of β-cells and is widely used as an experimental animal model of type I diabetes. In neonatal rat, after low-doses of STZ-mediated destruction of β-cells, β-cells regeneration occurs and reversal of hyperglycemia was observed. However, in neonatal mice, β-cell regeneration seems to occur much slowly compared to that observed in the rat. Here, we described the time dependent quantitative changes in β-cell mass during a spontaneous slow recovery of diabetes induced in a low-dose STZ mice model. We then investigated the underlying mechanisms and analyzed the cell source for the recovery of β-cells. We showed here that postnatal day 7 (P7) female mice treated with 50 mg/kg STZ underwent the destruction of a large proportion of β-cells and developed hyperglycemia. The blood glucose increased gradually and reached a peak level at 500 mg/dl on day 35–50. This was followed by a spontaneous regeneration of β-cells. A reversal of non-fasting blood glucose to the control value was observed within 150 days. However, the mice still showed impaired glucose tolerance on day 150 and day 220, although a significant improvement was observed on day 150. Quantification of the β-cell mass revealed that the β-cell mass increased significantly between day 100 and day 150. On day 150 and day 220, the β-cell mass was approximately 23% and 48.5% of the control, respectively. Of the insulin-positive cells, 10% turned out to be PCNA-positive proliferating cells. Our results demonstrated that, β-cell duplication is one of the cell sources for β-cell regeneration.

  10. Scutellaria barbata attenuates diabetic retinopathy by preventing retinal inflammation and the decreased expression of tight junction protein

    Directory of Open Access Journals (Sweden)

    Xi-Yu Mei

    2017-06-01

    Full Text Available AIM: To observe the attenuation of ethanol extract of Herba Scutellaria barbata (SE against diabetic retinopathy (DR and its engaged mechanism. METHODS: C57BL/6J mice were intraperitoneally injected with streptozotocin (STZ, 55 mg/kg for 5 consecutive days to induce diabetes. The diabetic mice were orally given with SE (100, 200 mg/kg for 1mo at 1mo after STZ injection. Blood-retinal barrier (BRB breakdown was detected by using Evans blue permeation assay. Real-time polymerase chain reaction (RT-PCR, Western blot and immunofluorescence staining were used to detect mRNA and protein expression. Enzyme-linked immunosorbent assay (ELISA was used to detect serum contents of tumor necrosis factor-α (TNF-α and interleukin (IL-1β. RESULTS: SE (100, 200 mg/kg reversed the breakdown of BRB in STZ-induced diabetic mice. The decreased expression of retinal claudin-1 and claudin-19, which are both tight junction (TJ proteins, was reversed by SE. SE decreased the increased serum contents and retinal mRNA expression of TNF-α and IL-1β. SE also decreased the increased retinal expression of intercellular cell adhesion molecule-1 (ICAM-1. SE reduced the increased phosphorylation of nuclear factor kappa B (NFκB p65 and its subsequent nuclear translocation in retinas from STZ-induced diabetic mice. Results of Western blot and retinal immunofluorescence staining of ionized calcium-binding adapter molecule 1 (Iba1 demonstrated that SE abrogated the activation of microglia cells in STZ-induced diabetic mice. CONCLUSION: SE attenuates the development of DR by inhibiting retinal inflammation and restoring the decreased expression of TJ proteins including claudin-1 and claudin-19.

  11. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    Full Text Available BACKGROUND: Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs to differentiate into functional islet like cell aggregates (ICAs. Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17 and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3-4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. CONCLUSIONS: h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.

  12. Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet

    International Nuclear Information System (INIS)

    Guo, Tai L.; Wang, Yunbiao; Xiong, Tao; Ling, Xiao; Zheng, Jianfeng

    2014-01-01

    Diet and phytoestrogens affect the development and progression of diabetes. The objective of the present study was to determine if oral exposure to phytoestrogen genistein (GE) by gavage changed blood glucose levels (BGL) through immunomodulation in streptozotocin (STZ)-induced diabetic male B6C3F1 mice fed with three different diets. These three diets were: NTP-2000 diet (NTP), soy- and alfalfa-free 5K96 diet (SOF) and high fat diet (HFD) with 60% of kcal from fat, primarily rendered fat of swine. The dosing regimen for STZ consisted of three 100 mg/kg doses (i.p.): the first dose was administered at approximately 2 weeks following the initiation of daily GE (20 mg/kg) gavage, and the second dose was on day 19 following the first dose, and the third dose was on day 57 following the first dose. In mice on the NTP diet, GE treatment decreased BGL with statistical significances observed on days 33 and 82 following the first STZ injection. In mice fed the HFD diet, GE treatment produced a significant decrease and a significant increase in BGL on days 15 and 89 following the first STZ injection, respectively. In mice fed the SOF diet, GE treatment had no significant effects on BGL. Although GE treatment affected phenotypic distributions of both splenocytes (T cells, B cells, natural killer cells and neutrophils) and thymocytes (CD4/CD8 and CD44/CD25), and their mitochondrial transmembrane potential and generation of reactive oxygen species, indicators of cell death (possibly apoptosis), GE modulation of neutrophils was more consistent with its diabetogenic or anti-diabetic potentials. The differential effects of GE on BGL in male B6C3F1 mice fed with three different diets with varied phytoestrogen contents suggest that the estrogenic properties of this compound may contribute to its modulation of diabetes. - Highlights: • Diets affected streptozotocin-induced diabetes in male B6C3F1 mice. • Genistein modulation of streptozotocin diabetes can be induced by diet.

  13. Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Tai L., E-mail: tlguo1@uga.edu [Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382 (United States); Wang, Yunbiao [Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382 (United States); Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102 (China); Xiong, Tao [College of Animal Science, Yangtze University, Jingzhou City, Hubei Province 434025 (China); Ling, Xiao [Institute for Food and Drug Control of Shandong Province, Jinan City, Shandong 250012 (China); Zheng, Jianfeng [Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613 (United States)

    2014-11-01

    Diet and phytoestrogens affect the development and progression of diabetes. The objective of the present study was to determine if oral exposure to phytoestrogen genistein (GE) by gavage changed blood glucose levels (BGL) through immunomodulation in streptozotocin (STZ)-induced diabetic male B6C3F1 mice fed with three different diets. These three diets were: NTP-2000 diet (NTP), soy- and alfalfa-free 5K96 diet (SOF) and high fat diet (HFD) with 60% of kcal from fat, primarily rendered fat of swine. The dosing regimen for STZ consisted of three 100 mg/kg doses (i.p.): the first dose was administered at approximately 2 weeks following the initiation of daily GE (20 mg/kg) gavage, and the second dose was on day 19 following the first dose, and the third dose was on day 57 following the first dose. In mice on the NTP diet, GE treatment decreased BGL with statistical significances observed on days 33 and 82 following the first STZ injection. In mice fed the HFD diet, GE treatment produced a significant decrease and a significant increase in BGL on days 15 and 89 following the first STZ injection, respectively. In mice fed the SOF diet, GE treatment had no significant effects on BGL. Although GE treatment affected phenotypic distributions of both splenocytes (T cells, B cells, natural killer cells and neutrophils) and thymocytes (CD4/CD8 and CD44/CD25), and their mitochondrial transmembrane potential and generation of reactive oxygen species, indicators of cell death (possibly apoptosis), GE modulation of neutrophils was more consistent with its diabetogenic or anti-diabetic potentials. The differential effects of GE on BGL in male B6C3F1 mice fed with three different diets with varied phytoestrogen contents suggest that the estrogenic properties of this compound may contribute to its modulation of diabetes. - Highlights: • Diets affected streptozotocin-induced diabetes in male B6C3F1 mice. • Genistein modulation of streptozotocin diabetes can be induced by diet.

  14. Diabetic mice are protected from normally lethal nephrotoxicity of S-1,2-dichlorovinyl-L-cysteine (DCVC): role of nephrogenic tissue repair

    International Nuclear Information System (INIS)

    Dnyanmote, Ankur V.; Sawant, Sharmilee P.; Lock, Edward A.; Latendresse, John R.; Warbritton, Alan A.; Mehendale, Harihara M.

    2006-01-01

    Streptozotocin (STZ)-induced diabetic (DB) rats are protected from nephrotoxicity of gentamicin, cisplatin and mercuric chloride, although the mechanisms remain unclear. Ninety percent of DB mice receiving a LD90 dose (75 mg/kg, ip) of S-1,2-dichlorovinyl-L-cysteine (DCVC) survived in contrast to only 10% of the nondiabetic (NDB) mice surviving the same dose. We tested the hypothesis that the mechanism of protection is upregulated tissue repair. In the NDB mice, DCVC produced steep temporal increases in blood urea nitrogen (BUN) and plasma creatinine, which were associated with proximal tubular cell (PTC) necrosis, acute renal failure (ARF), and death within 48 h. In contrast, in the DB mice, BUN and creatinine increased less steeply, declining after 36 h to completely resolve by 96 h. HPLC analysis of plasma and urine revealed that DB did not alter the toxicokinetics of DCVC. Furthermore, activity of renal cysteine conjugate β-lyase, the enzyme that bioactivates DCVC, was unaltered in DB mice, undermining the possibility of lower bioactivation of DCVC leading to lower injury. [3H]-thymidine pulse labeling and PCNA analysis indicated an early onset and sustained nephrogenic tissue repair in DCVC-treated DB mice. BRDU immunohistochemistry revealed a fourfold increase in the number of cells in S-phase in the DB kidneys even without exposure to DCVC. Blocking the entry of cells into S-phase by antimitotic intervention using colchicine abolished stimulated nephrogenic tissue repair and nephroprotection. These findings suggest that preplacement of S-phase cells in the kidney due to diabetes is critical in mitigating the progression of DCVC-initiated renal injury by upregulation of tissue repair, leading to survival of the DB mice by avoiding acute renal failure

  15. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice.

    Science.gov (United States)

    Anderson, Nicholas J; King, Matthew R; Delbruck, Lina; Jolivalt, Corinne G

    2014-06-01

    One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy) but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD) can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ)-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity) and central nervous system function (learning ability, memory) were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype. © 2014. Published by The Company of Biologists Ltd.

  16. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice

    Directory of Open Access Journals (Sweden)

    Nicholas J. Anderson

    2014-06-01

    Full Text Available One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity and central nervous system function (learning ability, memory were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype.

  17. Supplementation of fenugreek leaves lower lipid profile in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Annida, B; Stanely Mainzen Prince, P

    2004-01-01

    The present study was undertaken to evaluate the lipid-lowering effect of fenugreek leaves in diabetes mellitus. Albino Wistar rats were randomly divided into six groups: normal untreated rats; streptozotocin (STZ)-induced diabetic rats; STZ-induced rats + fenugreek leaves (0.5 g/kg of body weight); STZ-induced rats + fenugreek leaves (1 g/kg of body weight); STZ-induced rats + glibenclamide (600 microg/kg of body weight); and STZ-induced rats + insulin (6 units/kg of body weight). Rats were made diabetic by STZ (40 mg/kg) injected intraperitoneally. Fenugreek leaves were supplemented in the diet daily to diabetic rats for 45 days, and food intake was recorded daily. Blood glucose, total cholesterol, triglycerides, and free fatty acids were determined in serum, liver, heart, and kidney. Our results show that blood glucose and serum and tissue lipids were elevated in STZ-induced diabetic rats. Supplementation of fenugreek leaves lowered the lipid profile in STZ-induced diabetic rats.

  18. Insulin-Producing Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells In Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Ying Xin

    Full Text Available The two major obstacles in the successful transplantation of islets for diabetes treatment are inadequate supply of insulin-producing tissue and immune rejection. Induction of the differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs into insulin-producing cells (IPCs for autologous transplantation may alleviate those limitations.hMSCs were isolated and induced to differentiate into IPCs through a three-stage differentiation protocol in a defined media with high glucose, nicotinamide, and exendin-4. The physiological characteristics and functions of IPCs were then evaluated. Next, about 3 × 10(6 differentiated cells were transplanted into the renal sub-capsular space of streptozotocin (STZ-induced diabetic nude mice. Graft survival and function were assessed by immunohistochemistry, TUNEL staining and measurements of blood glucose levels in the mice.The differentiated IPCs were characterized by Dithizone (DTZ positive staining, expression of pancreatic β-cell markers, and human insulin secretion in response to glucose stimulation. Moreover, 43% of the IPCs showed L-type Ca2+ channel activity and similar changes in intracellular Ca2+ in response to glucose stimulation as that seen in pancreatic β-cells in the process of glucose-stimulated insulin secretion. Transplantation of functional IPCs into the renal subcapsular space of STZ-induced diabetic nude mice ameliorated the hyperglycemia. Immunofluorescence staining revealed that transplanted IPCs sustainably expressed insulin, c-peptide, and PDX-1 without apparent apoptosis in vivo.IPCs derived from hMSCs in vitro can ameliorate STZ-induced diabetic hyperglycemia, which indicates that these hMSCs may be a promising approach to overcome the limitations of islet transplantation.

  19. Toll-Like Receptor 4 Activation Contributes to Diabetic Bladder Dysfunction in a Murine Model of Type 1 Diabetes.

    Science.gov (United States)

    Szasz, Theodora; Wenceslau, Camilla F; Burgess, Beth; Nunes, Kenia P; Webb, R Clinton

    2016-12-01

    Diabetic bladder dysfunction (DBD) is a common urological complication of diabetes. Innate immune system activation via Toll-like receptor 4 (TLR4) leads to inflammation and oxidative stress and was implicated in diabetes pathophysiology. We hypothesized that bladder hypertrophy and hypercontractility in DBD is mediated by TLR4 activation. Wild-type (WT) and TLR4 knockout (TLR4KO) mice were made diabetic by streptozotocin (STZ) treatment, and bladder contractile function and TLR4 pathway expression were evaluated. Immunohistochemistry confirmed the expression of TLR4 in human and mouse bladder. Recombinant high-mobility group box protein 1 (HMGB1) increased bladder TLR4 and MyD88 expression and enhanced contractile response to electrical field stimulation. Bladder expression of TLR4 and MyD88 and serum expression of HMGB1 were increased in STZ compared with control mice. Carbachol (CCh)-mediated contraction was increased in bladders from STZ mice, and TLR4 inhibitor CLI-095 attenuated this increase. Induction of diabetes by STZ in WT mice increased bladder weight and contractile responses to CCh and to electrical field stimulation. TLR4KO mice were not protected from STZ-induced diabetes; however, despite levels of hyperglycemia similar to those of WT STZ mice, TLR4KO STZ mice were protected from diabetes-induced bladder hypertrophy and hypercontractility. These data suggest that TLR4 activation during diabetes mediates DBD-associated bladder hypertrophy and hypercontractility. © 2016 by the American Diabetes Association.

  20. Streptozotocin, Type I Diabetes Severity and Bone

    Directory of Open Access Journals (Sweden)

    Motyl Katherine

    2009-01-01

    Full Text Available Abstract As many as 50% of adults with type I (T1 diabetes exhibit bone loss and are at increased risk for fractures. Therapeutic development to prevent bone loss and/or restore lost bone in T1 diabetic patients requires knowledge of the molecular mechanisms accounting for the bone pathology. Because cell culture models alone cannot fully address the systemic/metabolic complexity of T1 diabetes, animal models are critical. A variety of models exist including spontaneous and pharmacologically induced T1 diabetic rodents. In this paper, we discuss the streptozotocin (STZ-induced T1 diabetic mouse model and examine dose-dependent effects on disease severity and bone. Five daily injections of either 40 or 60 mg/kg STZ induce bone pathologies similar to spontaneously diabetic mouse and rat models and to human T1 diabetic bone pathology. Specifically, bone volume, mineral apposition rate, and osteocalcin serum and tibia messenger RNA levels are decreased. In contrast, bone marrow adiposity and aP2 expression are increased with either dose. However, high-dose STZ caused a more rapid elevation of blood glucose levels and a greater magnitude of change in body mass, fat pad mass, and bone gene expression (osteocalcin, aP2. An increase in cathepsin K and in the ratio of RANKL/OPG was noted in high-dose STZ mice, suggesting the possibility that severe diabetes could increase osteoclast activity, something not seen with lower doses. This may contribute to some of the disparity between existing studies regarding the role of osteoclasts in diabetic bone pathology. Examination of kidney and liver toxicity indicate that the high STZ dose causes some liver inflammation. In summary, the multiple low-dose STZ mouse model exhibits a similar bone phenotype to spontaneous models, has low toxicity, and serves as a useful tool for examining mechanisms of T1 diabetic bone loss.

  1. Streptozotocin, Type I Diabetes Severity and Bone

    Directory of Open Access Journals (Sweden)

    Motyl Katherine

    2009-03-01

    Full Text Available Abstract As many as 50% of adults with type I (T1 diabetes exhibit bone loss and are at increased risk for fractures. Therapeutic development to prevent bone loss and/or restore lost bone in T1 diabetic patients requires knowledge of the molecular mechanisms accounting for the bone pathology. Because cell culture models alone cannot fully address the systemic/metabolic complexity of T1 diabetes, animal models are critical. A variety of models exist including spontaneous and pharmacologically induced T1 diabetic rodents. In this paper, we discuss the streptozotocin (STZ-induced T1 diabetic mouse model and examine dose-dependent effects on disease severity and bone. Five daily injections of either 40 or 60 mg/kg STZ induce bone pathologies similar to spontaneously diabetic mouse and rat models and to human T1 diabetic bone pathology. Specifically, bone volume, mineral apposition rate, and osteocalcin serum and tibia messenger RNA levels are decreased. In contrast, bone marrow adiposity and aP2 expression are increased with either dose. However, high-dose STZ caused a more rapid elevation of blood glucose levels and a greater magnitude of change in body mass, fat pad mass, and bone gene expression (osteocalcin, aP2. An increase in cathepsin K and in the ratio of RANKL/OPG was noted in high-dose STZ mice, suggesting the possibility that severe diabetes could increase osteoclast activity, something not seen with lower doses. This may contribute to some of the disparity between existing studies regarding the role of osteoclasts in diabetic bone pathology. Examination of kidney and liver toxicity indicate that the high STZ dose causes some liver inflammation. In summary, the multiple low-dose STZ mouse model exhibits a similar bone phenotype to spontaneous models, has low toxicity, and serves as a useful tool for examining mechanisms of T1 diabetic bone loss.

  2. Comparison on hypoglycemic and antioxidant activities of the fresh and dried Portulaca oleracea L. in insulin-resistant HepG2 cells and streptozotocin-induced C57BL/6J diabetic mice.

    Science.gov (United States)

    Gu, Jun-Fei; Zheng, Zhi-Yin; Yuan, Jia-Rui; Zhao, Bing-Jie; Wang, Chun-Fei; Zhang, Li; Xu, Qing-Yu; Yin, Guo-Wen; Feng, Liang; Jia, Xiao-Bin

    2015-02-23

    Fresh Portulaca oleracea L. (family: Portulacaceae; POL) has been used as a folk medicine for the treatment of diabetes mellitus for a long time. More bioactive components with higher activity could be retained in fresh medicinal herbs compared to the dried ones. The present study was conducted to compare different antidiabetic activity between fresh and dried POL, including hypoglycemic and antioxidant activities both in vivo and in vitro. Furthermore, in order to explore which components were responsible for the antidiabetic activity, the difference on chemical components between fresh and dried POL was analyzed and compared. Insulin-resistant HepG2 cells induced by insulin were used to evaluate the promoting effect of the fresh and dried POL on glucose utilization in vitro. Streptozotocin (STZ)-induced C57BL/6J diabetic mice were used to compare the differences on hypoglycemic and antioxidant activities of fresh and dried POL, including the fasting blood glucose, glucose tolerance, serum insulin level, malondialdehyde (MDA) level and superoxide dismutase (SOD) activity in vivo. UPLC/Q-TOF-MS method was performed to analyze the difference of antidiabetic components between fresh and dried POL. Compared with the dried POL extract, the fresh POL extract significantly increased the consumption of extracellular glucose in insulin-resistant HepG2 cells (P<0.05). In STZ-induced C57BL/6J diabetic mice, both fresh and dried extracts decreased markedly the fasting blood glucose (FBG) levels, and improved significantly oral glucose tolerance test (OGTT), as well as enhanced significantly insulin secretion and antioxidative activities (P<0.05; P<0.01). Furthermore, the fresh extract showed stronger antidiabetic activity (P<0.05). The UPLC/Q-TOF-MS analysis results also revealed that the relative contents of polyphenols and alkaloids in the fresh herbs were more abundant than those in the dried POL. Our results indicated that both fresh and dried POL possessed antidiabetic

  3. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus

    Science.gov (United States)

    Rose, Michael; Gerasimova, Maria; Satriano, Joseph; Platt, Kenneth A.; Koepsell, Hermann; Cunard, Robyn; Sharma, Kumar; Thomson, Scott C.; Rieg, Timo

    2013-01-01

    The Na-glucose cotransporter SGLT2 mediates high-capacity glucose uptake in the early proximal tubule and SGLT2 inhibitors are developed as new antidiabetic drugs. We used gene-targeted Sglt2 knockout (Sglt2−/−) mice to elucidate the contribution of SGLT2 to blood glucose control, glomerular hyperfiltration, kidney growth, and markers of renal growth and injury at 5 wk and 4.5 mo after induction of low-dose streptozotocin (STZ) diabetes. The absence of SGLT2 did not affect renal mRNA expression of glucose transporters SGLT1, NaGLT1, GLUT1, or GLUT2 in response to STZ. Application of STZ increased blood glucose levels to a lesser extent in Sglt2−/− vs. wild-type (WT) mice (∼300 vs. 470 mg/dl) but increased glucosuria and food and fluid intake to similar levels in both genotypes. Lack of SGLT2 prevented STZ-induced glomerular hyperfiltration but not the increase in kidney weight. Knockout of SGLT2 attenuated the STZ-induced renal accumulation of p62/sequestosome, an indicator of impaired autophagy, but did not attenuate the rise in renal expression of markers of kidney growth (p27 and proliferating cell nuclear antigen), oxidative stress (NADPH oxidases 2 and 4 and heme oxygenase-1), inflammation (interleukin-6 and monocyte chemoattractant protein-1), fibrosis (fibronectin and Sirius red-sensitive tubulointerstitial collagen accumulation), or injury (renal/urinary neutrophil gelatinase-associated lipocalin). SGLT2 deficiency did not induce ascending urinary tract infection in nondiabetic or diabetic mice. The results indicate that SGLT2 is a determinant of hyperglycemia and glomerular hyperfiltration in STZ-induced diabetes mellitus but is not critical for the induction of renal growth and markers of renal injury, inflammation, and fibrosis. PMID:23152292

  4. Selenite exacerbates hepatic insulin resistance in mouse model of type 2 diabetes through oxidative stress-mediated JNK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jun, E-mail: hustzhj@hust.edu.cn; Xu, Gang; Bai, Zhaoshuai; Li, Kaicheng; Yan, Junyan; Li, Fen; Ma, Shuai; Xu, Huibi; Huang, Kaixun, E-mail: hxxzrf@hust.edu.cn

    2015-12-15

    Recent evidence suggests a potential pro-diabetic effect of selenite treatment in type 2 diabetics; however, the underlying mechanisms remain elusive. Here we investigated the effects and the underlying mechanisms of selenite treatment in a nongenetic mouse model of type 2 diabetes. High-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice were orally gavaged with selenite at 0.5 or 2.0 mg/kg body weight/day or vehicle for 4 weeks. High-dose selenite treatment significantly elevated fasting plasma insulin levels and insulin resistance index, in parallel with impaired glucose tolerance, insulin tolerance and pyruvate tolerance. High-dose selenite treatment also attenuated hepatic IRS1/Akt/FoxO1 signaling and pyruvate kinase gene expressions, but elevated the gene expressions of phosphoenolpyruvate carboxyl kinase (PEPCK), glucose 6-phosphatase (G6Pase), peroxisomal proliferator-activated receptor-γ coactivator 1α (PGC-1α) and selenoprotein P (SelP) in the liver. Furthermore, high-dose selenite treatment caused significant increases in MDA contents, protein carbonyl contents, and a decrease in GSH/GSSG ratio in the liver, concurrent with enhanced ASK1/MKK4/JNK signaling. Taken together, these findings suggest that high-dose selenite treatment exacerbates hepatic insulin resistance in mouse model of type 2 diabetes, at least in part through oxidative stress-mediated JNK pathway, providing new mechanistic insights into the pro-diabetic effect of selenite in type 2 diabetes. - Highlights: • Selenite exacerbates hepatic insulin resistance in HFD/STZ-induced diabetic mice. • Selenite elevates hepatic gluconeogenesis and reduces glycolysis in diabetic mice. • Selenite exacerbates hepatic oxidative stress and triggers JNK signaling pathway. • Selenite elevates hepatic selenoprotein P expression in diabetic mice.

  5. Selenite exacerbates hepatic insulin resistance in mouse model of type 2 diabetes through oxidative stress-mediated JNK pathway

    International Nuclear Information System (INIS)

    Zhou, Jun; Xu, Gang; Bai, Zhaoshuai; Li, Kaicheng; Yan, Junyan; Li, Fen; Ma, Shuai; Xu, Huibi; Huang, Kaixun

    2015-01-01

    Recent evidence suggests a potential pro-diabetic effect of selenite treatment in type 2 diabetics; however, the underlying mechanisms remain elusive. Here we investigated the effects and the underlying mechanisms of selenite treatment in a nongenetic mouse model of type 2 diabetes. High-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice were orally gavaged with selenite at 0.5 or 2.0 mg/kg body weight/day or vehicle for 4 weeks. High-dose selenite treatment significantly elevated fasting plasma insulin levels and insulin resistance index, in parallel with impaired glucose tolerance, insulin tolerance and pyruvate tolerance. High-dose selenite treatment also attenuated hepatic IRS1/Akt/FoxO1 signaling and pyruvate kinase gene expressions, but elevated the gene expressions of phosphoenolpyruvate carboxyl kinase (PEPCK), glucose 6-phosphatase (G6Pase), peroxisomal proliferator-activated receptor-γ coactivator 1α (PGC-1α) and selenoprotein P (SelP) in the liver. Furthermore, high-dose selenite treatment caused significant increases in MDA contents, protein carbonyl contents, and a decrease in GSH/GSSG ratio in the liver, concurrent with enhanced ASK1/MKK4/JNK signaling. Taken together, these findings suggest that high-dose selenite treatment exacerbates hepatic insulin resistance in mouse model of type 2 diabetes, at least in part through oxidative stress-mediated JNK pathway, providing new mechanistic insights into the pro-diabetic effect of selenite in type 2 diabetes. - Highlights: • Selenite exacerbates hepatic insulin resistance in HFD/STZ-induced diabetic mice. • Selenite elevates hepatic gluconeogenesis and reduces glycolysis in diabetic mice. • Selenite exacerbates hepatic oxidative stress and triggers JNK signaling pathway. • Selenite elevates hepatic selenoprotein P expression in diabetic mice.

  6. ClC-3 deficiency protects preadipocytes against apoptosis induced by palmitate in vitro and in type 2 diabetes mice.

    Science.gov (United States)

    Huang, Yun-Ying; Huang, Xiong-Qin; Zhao, Li-Yan; Sun, Fang-Yun; Chen, Wen-Liang; Du, Jie-Yi; Yuan, Feng; Li, Jie; Huang, Xue-Lian; Liu, Jie; Lv, Xiao-Fei; Guan, Yong-Yuan; Chen, Jian-Wen; Wang, Guan-Lei

    2014-11-01

    Palmitate, a common saturated free fatty acid (FFA), has been demonstrated to induce preadipocyte apoptosis in the absence of adipogenic stimuli, suggesting that preadipocytes may be prone to apoptosis under adipogenic insufficient conditions, like type 2 diabetes mellitus (T2DM). ClC-3, encoding Cl(-) channel or Cl(-)/H(+) antiporter, is critical for cell fate choices of proliferation versus apoptosis under diseased conditions. However, it is unknown whether ClC-3 is related with preadipocyte apoptosis induced by palmitate or T2DM. Palmitate, but not oleate, induced apoptosis and increase in ClC-3 protein expression and endoplasmic reticulum (ER) stress in 3T3-L1 preadipocyte. ClC-3 specific siRNA attenuated palmitate-induced apoptosis and increased protein levels of Grp78, ATF4, CHOP and phosphorylation of JNK1/2, whereas had no effects on increased phospho-PERK and phospho-eIF2α protein expression. Moreover, the enhanced apoptosis was shown in preadipocytes from high-sucrose/fat, low-dose STZ induced T2DM mouse model with hyperglycemia, hyperlipidemia (elevated serum TG and FFA levels) and insulin resistance. ClC-3 knockout significantly attenuated preadipocyte apoptosis and the above metabolic disorders in T2DM mice. These data demonstrated that ClC-3 deficiency prevent preadipocytes against palmitate-induced apoptosis via suppressing ER stress, and also suggested that ClC-3 may play a role in regulating cellular apoptosis and disorders of glucose and lipid metabolism during T2DM.

  7. Hydrogen improves glycemic control in type1 diabetic animal model by promoting glucose uptake into skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Haruka Amitani

    Full Text Available Hydrogen (H(2 acts as a therapeutic antioxidant. However, there are few reports on H(2 function in other capacities in diabetes mellitus (DM. Therefore, in this study, we investigated the role of H(2 in glucose transport by studying cultured mouse C2C12 cells and human hepatoma Hep-G2 cells in vitro, in addition to three types of diabetic mice [Streptozotocin (STZ-induced type 1 diabetic mice, high-fat diet-induced type 2 diabetic mice, and genetically diabetic db/db mice] in vivo. The results show that H(2 promoted 2-[(14C]-deoxy-d-glucose (2-DG uptake into C2C12 cells via the translocation of glucose transporter Glut4 through activation of phosphatidylinositol-3-OH kinase (PI3K, protein kinase C (PKC, and AMP-activated protein kinase (AMPK, although it did not stimulate the translocation of Glut2 in Hep G2 cells. H(2 significantly increased skeletal muscle membrane Glut4 expression and markedly improved glycemic control in STZ-induced type 1 diabetic mice after chronic intraperitoneal (i.p. and oral (p.o. administration. However, long-term p.o. administration of H(2 had least effect on the obese and non-insulin-dependent type 2 diabetes mouse models. Our study demonstrates that H(2 exerts metabolic effects similar to those of insulin and may be a novel therapeutic alternative to insulin in type 1 diabetes mellitus that can be administered orally.

  8. Anti-diabetic effects of rice hull smoke extract in alloxan-induced diabetic mice

    Science.gov (United States)

    We investigated the protective effect of a liquid rice hull smoke extract (RHSE) against diabetes in alloxan-induced diabetic mice. Anti-diabetic effects of RHSE were evaluated in both the rat insulinoma-1 cell line (INS-1) and diabetic ICR mice induced by inraperitoneal (ip) injection of alloxan. ...

  9. Regeneration of pancreatic non-β endocrine cells in adult mice following a single diabetes-inducing dose of streptozotocin.

    Directory of Open Access Journals (Sweden)

    Yanqing Zhang

    Full Text Available The non-β endocrine cells in pancreatic islets play an essential counterpart and regulatory role to the insulin-producing β-cells in the regulation of blood-glucose homeostasis. While significant progress has been made towards the understanding of β-cell regeneration in adults, very little is known about the regeneration of the non-β endocrine cells such as glucagon-producing α-cells and somatostatin producing δ-cells. Previous studies have noted the increase of α-cell composition in diabetes patients and in animal models. It is thus our hypothesis that non-β-cells such as α-cells and δ-cells in adults can regenerate, and that the regeneration accelerates in diabetic conditions. To test this hypothesis, we examined islet cell composition in a streptozotocin (STZ-induced diabetes mouse model in detail. Our data showed the number of α-cells in each islet increased following STZ-mediated β-cell destruction, peaked at Day 6, which was about 3 times that of normal islets. In addition, we found δ-cell numbers doubled by Day 6 following STZ treatment. These data suggest α- and δ-cell regeneration occurred rapidly following a single diabetes-inducing dose of STZ in mice. Using in vivo BrdU labeling techniques, we demonstrated α- and δ-cell regeneration involved cell proliferation. Co-staining of the islets with the proliferating cell marker Ki67 showed α- and δ-cells could replicate, suggesting self-duplication played a role in their regeneration. Furthermore, Pdx1(+/Insulin(- cells were detected following STZ treatment, indicating the involvement of endocrine progenitor cells in the regeneration of these non-β cells. This is further confirmed by the detection of Pdx1(+/glucagon(+ cells and Pdx1(+/somatostatin(+ cells following STZ treatment. Taken together, our study demonstrated adult α- and δ-cells could regenerate, and both self-duplication and regeneration from endocrine precursor cells were involved in their regeneration.

  10. Paeoniflorin Suppressed High Glucose-Induced Retinal Microglia MMP-9 Expression and Inflammatory Response via Inhibition of TLR4/NF-κB Pathway Through Upregulation of SOCS3 in Diabetic Retinopathy.

    Science.gov (United States)

    Zhu, Su-Hua; Liu, Bing-Qian; Hao, Mao-Juan; Fan, Yi-Xin; Qian, Cheng; Teng, Peng; Zhou, Xiao-Wei; Hu, Liang; Liu, Wen-Tao; Yuan, Zhi-Lan; Li, Qing-Ping

    2017-10-01

    Diabetic retinopathy (DR) is a serious-threatening complication of diabetes and urgently needed to be treated. Evidence has accumulated indicating that microglia inflammation within the retina plays a critical role in DR. Microglial matrix metalloproteinase 9 (MMP-9) has an important role in the destruction of the integrity of the blood-retinal barrier (BRB) associated with the development of DR. MMP-9 was also considered important for regulating inflammatory responses. Paeoniflorin, a monoterpene glucoside, has a potent immunomodulatory effect on microglia. We hypothesized that paeoniflorin could significantly suppress microglial MMP-9 activation induced by high glucose and further relieve DR. BV2 cells were used to investigate the effects and mechanism of paeoniflorin. The activation of MMP-9 was measured by gelatin zymography. Cell signaling was measured by western blot assay and immunofluorescence assay. High glucose increased the activation of MMP-9 in BV2 cells, which was abolished by HMGB1, TLR4, p38 MAPK, and NF-κB inhibition. Phosphorylation of p38 MAPK induced by high glucose was decreased by TLR4 inhibition in BV2 cells. Paeoniflorin induced suppressor of cytokine signaling 3 (SOCS3) expression and reduced MMP-9 activation in BV2 cells. The effect of paeoniflorin on SOCS3 was abolished by the TLR4 inhibitor. In streptozotocin (STZ)-induced diabetes mice, paeoniflorin induced SOCS3 expression and reduced MMP-9 activation. Paeoniflorin suppressed STZ-induced IBA-1 and IL-1β expression and decreased STZ-induced high blood glucose level. In conclusion, paeoniflorin suppressed high glucose-induced retinal microglia MMP-9 expression and inflammatory response via inhibition of the TLR4/NF-κB pathway through upregulation of SOCS3 in diabetic retinopathy.

  11. Topical Application of Propolis Enhances Cutaneous Wound Healing by Promoting TGF-Beta/Smad-Mediated Collagen Production in a Streptozotocin-Induced Type I Diabetic Mouse Model

    Directory of Open Access Journals (Sweden)

    Wael N. Hozzein

    2015-09-01

    Full Text Available Background/Aims: Impaired wound healing is considered to be one of the most serious complications associated with diabetes as it significantly increases the susceptibility of patients to infection. Propolis is a natural bee product used extensively in foods and beverages that has significant benefits to human health. In particular, propolis has antioxidant, anti-inflammatory and analgesic effects that could be useful for improving wound healing. In this study, we investigated the effects of topical application of propolis on the healing and closure of diabetic wounds in a streptozotocin (STZ-induced type I diabetic mouse model. Methods: Sixty male mice were distributed equally into 3 experimental groups: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice treated daily with a topical application of propolis. Results: We found that diabetic mice exhibited delayed wound closure characterized by a significant decrease in the levels of TGF-β1 and a prolonged elevation of the levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α and MMP9 in wound tissues compared with control non-diabetic mice. Moreover, the wound tissues of diabetic mice showed a marked reduction in the phosphorylation of Smad2 and Smad3 as well as a marked reduction in collagen production. Interestingly, compared with untreated diabetic mice, topical application of propolis significantly enhanced the closure of diabetic wounds and decreased the levels of IL-1β, IL-6, TNF-α and MMP9 to near normal levels. Most importantly, compared with untreated diabetic mice, the treatment of diabetic mice with propolis significantly enhanced the production of collagen via the TGF-β1/Smad2,3 signaling axis in wounded tissues. Conclusion: Our findings reveal the molecular mechanisms underlying the improved healing and closure of diabetic wounds following topical propolis application.

  12. Intrapancreatic injection of human bone marrow-derived mesenchymal stem/stromal cells alleviates hyperglycemia and modulates the macrophage state in streptozotocin-induced type 1 diabetic mice.

    Directory of Open Access Journals (Sweden)

    Norimitsu Murai

    Full Text Available Type 1 diabetes mellitus is a progressive disease caused by the destruction of pancreatic β-cells, resulting in insulin dependency and hyperglycemia. While transplanted bone marrow-derived mesenchymal stem/stromal cells (BMMSCs have been explored as an alternative therapeutic approach for diseases, the choice of delivery route may be a critical factor determining their sustainability. This study evaluated the effects of intrapancreatic and intravenous injection of human BMMSCs (hBMMSCs in streptozotocin (STZ-induced type 1 diabetic mouse model. C57/BL6 mice were intraperitoneally injected with 115 mg/kg STZ on day 0. hBMMSCs (1 × 106 cells or vehicle were injected into the pancreas or jugular vein on day 7. Intrapancreatic, but not intravenous, hBMMSC injection significantly reduced blood glucose levels on day 28 compared with vehicle injection by the same route. This glucose-lowering effect was not induced by intrapancreatic injection of human fibroblasts as the xenograft control. Intrapancreatically injected fluorescence-labeled hBMMSCs were observed in the intra- and extra-lobular spaces of the pancreas, and intravenously injected cells were in the lung region, although the number of cells mostly decreased within 2 weeks of injection. For hBMMSCs injected twice into the pancreatic region on days 7 and 28, the injected mice had further reduced blood glucose to borderline diabetic levels on day 56. Animals injected with hBMMSCs twice exhibited increases in the plasma insulin level, number and size of islets, insulin-positive proportion of the total pancreas area, and intensity of insulin staining compared with vehicle-injected animals. We found a decrease of Iba1-positive cells in islets and an increase of CD206-positive cells in both the endocrine and exocrine pancreas. The hBMMSC injection also reduced the number of CD40-positive cells merged with glucagon immunoreactions in the islets. These results suggest that intrapancreatic injection

  13. Therapeutic Effects of Bupleurum Polysaccharides in Streptozotocin Induced Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Lingyu Pan

    Full Text Available Diabetes mellitus is related to low-grade chronic inflammation and oxidative stress. Bupleurum Polysaccharides (BPs, isolated from Bupleurum smithii var. parvifolium has anti-inflammatory and anti-oxidative properties. However, little is known about its therapeutic effects on diabetes. In this experiment, the effects of BPs on alleviation of diabetes and the underlying mechanisms were investigated. Diabetic mice model was established via successive intraperitoneal injections of streptozotocin (100 mg/kg body weight for two days. Mice with blood glucose levels higher than 16.8mmol/L were selected for experiments. The diabetic mice were orally administered with BPs (30 and 60 mg/kg once a day for 35 days. BPs not only significantly decreased levels of blood glucose, but also increased those of serum insulin and liver glycogen in diabetic mice compared to model mice. Additionally, BPs adminstration improved the insulin expression and suppressed the apoptosis in pancreas of the diabetic mice. Histopathological observations further demonstrated that BPs protected the pancreas and liver from oxidative and inflammatory damages. These results suggest that BPs protect pancreatic β cells and liver hepatocytes and ameliorate diabetes, which is associated with its anti-oxidative and anti-inflammatory properties.

  14. High-dose benfotiamine rescues cardiomyocyte contractile dysfunction in streptozotocin-induced diabetes mellitus.

    Science.gov (United States)

    Ceylan-Isik, Asli F; Wu, Shan; Li, Qun; Li, Shi-Yan; Ren, Jun

    2006-01-01

    Diabetic cardiomyopathy is characterized by cardiac dysfunction. This study was designed to examine the effect of benfotiamine, a lipophilic derivative of thiamine, on streptozotocin (STZ)-induced cardiac contractile dysfunction in mouse cardiomyocytes. Adult male FVB mice were made diabetic with a single injection of STZ (200 mg/kg ip). Fourteen days later, control and diabetic (fasting plasma glucose > 13.9 mM) mice were put on benfotiamine therapy (100 mg.kg(-1).day(-1) ip) for another 14 days. Mechanical and intracellular Ca2+ properties were evaluated in left ventricular myocytes using an IonOptix MyoCam system. The following indexes were evaluated: peak shortening (PS), time to PS (TPS), time to 90% relengthening (TR90), maximal velocity of shortening/relengthening, resting and rise of intracellular Ca2+ in response to electrical stimulus, sarcoplasmic reticulum (SR) Ca2+ load, and intracellular Ca2+ decay rate (tau). Two- or four-week STZ treatment led to hyperglycemia, prolonged TPS and TR90, reduced SR Ca2+ load, elevated resting intracellular Ca2+ level and prolonged tau associated with normal PS, maximal velocity of shortening/relengthening, and intracellular Ca2+ rise in response to electrical stimulus. Benfotiamine treatment abolished prolongation in TPS, TR90, and tau, as well as reduction in SR Ca2+ load without affecting hyperglycemia and elevated resting intracellular Ca2+. Diabetes triggered oxidative stress, measured by GSH-to-GSSG ratio and formation of advanced glycation end product (AGE) in the hearts. Benfotiamine treatment alleviated oxidative stress without affecting AGE or protein carbonyl formation. Collectively, our results indicated that benfotiamine may rescue STZ-induced cardiomyocyte dysfunction but not AGE formation in short-term diabetes.

  15. Decreased thyroidal response to thyrotropin in diabetic mice

    International Nuclear Information System (INIS)

    Bagchi, N.; Brown, T.R.; Shivers, B.; Lucas, S.; Mack, R.E.

    1981-01-01

    The effect of diabetes mellitus on the synthesis and secretion of thyroid hormone ws investigated in mice with streptozotocin-induced diabetes. Thyroid glands were labeled in vivo with 131I for 2 h. In control animals, TSH stimulated the synthesis of PB127I and 131I-labeled iodothyronines and simultaneously decreased the proportion of 131I-. These effects of TSH were not observed in diabetic animals but were demonstrable in diabetic animals treated with insulin. For studies of hormone secretion, labeled thyroid glands were cultured in vitro in medium containing 1 mM mononitrotyrosine. The rate of the hydrolysis of labeled thyroglobulin was measured as the proportion of 131I-labeled iodotyrosines and 131I-labeled iodothyronines recovered at the end of culture and was used as an index of thyroid secretion. TSH in vivo stimulated the rate of thyroglobulin hydrolysis for 6 h, with a peak occurring after 2 h. The diabetic mice had a diminished response to TSH, which improved on treatment with insulin. The addition of TSH and insulin to the culture medium significantly increased the rate of thyroglobulin hydrolysis in glands of diabetic mice over that resulting from the addition of dibutyryl cAMP alone. The generation of thyroidal cAMP in response to TSH was higher in diabetic mice than in controls. The rise in plasma T4 and T3 2 h after the administration of TSH was less in diabetic mice than in control mice or diabetic mice treated with insulin. Our studies, therefore, indicate that the thyroidal response to TSH is decreased in diabetes mellitus. The defect appears to be at a step beyond the generation of cAMP

  16. Proteasome Activators, PA28α and PA28β, Govern Development of Microvascular Injury in Diabetic Nephropathy and Retinopathy

    Directory of Open Access Journals (Sweden)

    Saeed Yadranji Aghdam

    2016-01-01

    Full Text Available Diabetic nephropathy (DN and diabetic retinopathy (DR are major complications of type 1 and type 2 diabetes. DN and DR are mainly caused by injury to the perivascular supporting cells, the mesangial cells within the glomerulus, and the pericytes in the retina. The genes and molecular mechanisms predisposing retinal and glomerular pericytes to diabetic injury are poorly characterized. In this study, the genetic deletion of proteasome activator genes, PA28α and PA28β genes, protected the diabetic mice in the experimental STZ-induced diabetes model against renal injury and retinal microvascular injury and prolonged their survival compared with wild type STZ diabetic mice. The improved wellbeing and reduced renal damage was associated with diminished expression of Osteopontin (OPN and Monocyte Chemoattractant Protein-1 (MCP-1 in the glomeruli of STZ-injected PA28α/PA28β double knockout (Pa28αβDKO mice and also in cultured mesangial cells and retinal pericytes isolated from Pa28αβDKO mice that were grown in high glucose. The mesangial PA28-mediated expression of OPN under high glucose conditions was suppressed by peptides capable of inhibiting the binding of PA28 to the 20S proteasome. Collectively, our findings demonstrate that diabetic hyperglycemia promotes PA28-mediated alteration of proteasome activity in vulnerable perivascular cells resulting in microvascular injury and development of DN and DR.

  17. Antihyperglycemic and hypolipidemic effects of α, β-amyrin, a triterpenoid mixture from Protium heptaphyllum in mice

    Directory of Open Access Journals (Sweden)

    Santos Flávia

    2012-08-01

    Full Text Available Abstract Background Pentacyclic triterpenes in general exert beneficial effects in metabolic disorders. This study investigated the effects of α, β-amyrin, a pentacyclic triterpene mixture from the resin of Protium heptaphyllum on blood sugar level and lipid profile in normal and streptozotocin (STZ-induced diabetic mice, and in mice fed on a high-fat diet (HFD. Findings Mice treated with α, β-amyrin (10, 30 and 100 mg/kg, p.o. or glibenclamide (10 mg/kg, p.o. had significantly reduced STZ-induced increases in blood glucose (BG, total cholesterol (TC and serum triglycerides (TGs. Unlike glibenclamide that showed significant reductions in BG, TC and TGs in normoglycemic mice, α, β-amyrin did not lower normal blood sugar levels but at 100 mg/kg, manifested a hypolipidemic effect. Also, α, β-amyrin effectively reduced the elevated plasma glucose levels during the oral glucose tolerance test. Moreover, the plasma insulin level and histopathological analysis of pancreas revealed the beneficial effect of α, β-amyrin in the preservation of beta cell integrity. In mice treated orally with α, β-amyrin (10, 30 and 100 mg/kg or fenofibrate (200 mg/kg, the HFD-associated rise in serum TC and TGs were significantly less. The hypocholesterolemic effect of α, β-amyrin appeared more prominent at 100 mg/kg with significant decreases in VLDL and LDL cholesterol and an elevation of HDL cholesterol. Besides, the atherogenic index was significantly reduced by α, β-amyrin. Conclusions These findings reflect the potential antihyperglycemic and hypolipidemic effects of α, β-amyrin mixture and suggest that it could be a lead compound for drug development effective in diabetes and atherosclerosis.

  18. Circulatory and Renal Consequences of Pregnancy in Diabetic NOD Mice

    Science.gov (United States)

    Burke, S.D.; Barrette, V.F.; David, S.; Khankin, E. V.; Adams, M.A.; Croy, B.A.

    2011-01-01

    Objectives Women with diabetes have elevated gestational risks for severe hemodynamic complications, including preeclampsia in mid- to late pregnancy. This study employed continuous, chronic radiotelemetry to compare the hemodynamic patterns in non-obese diabetic (NOD) mice who were overtly diabetic or normoglycemic throughout gestation. We hypothesized that overtly diabetic, pregnant NOD mice would develop gestational hypertension and provide understanding of mechanisms in progression of this pathology. Study Design Telemeter-implanted, age-matched NOD females with and without diabetes were assessed for six hemodynamic parameters (mean, systolic, diastolic, pulse pressures, heart rate and activity) prior to mating, over pregnancy and over a 72 hr post-partum interval. Urinalysis, serum biochemistry and renal histopathology were also conducted. Results Pregnant, normoglycemic NOD mice had a hemodynamic profile similar to other inbred strains, despite insulitis. This pattern was characterized by an interval of pre-implantation stability, post implantation decline in arterial pressure to mid gestation, and then a rebound to pre-pregnancy baseline during later gestation. Overtly diabetic NOD mice had a blood pressure profile that was normal until mid-gestation then become mildly hypotensive (−7mmHg, Ppost-partum (−10% pre-pregnancy pressure and HR, P<0.05). Conclusions Pregnancy accelerates circulatory and renal pathologies in overtly diabetic NOD mice and is characterized by depressed arterial pressure from mid-gestation and birth of growth 45 restricted offspring. PMID:22014504

  19. Zataria multiflora essential oil reduces diabetic damages in ...

    African Journals Online (AJOL)

    diabetic effects were analyzed in the streptozotocin (STZ)-induced diabetic rats. The yield of EO was 3% and carvactol (53%), p-cymene (17%), and thymol (11%) were detected as the main EO components. The antioxidant and nitric oxide ...

  20. B lymphocytes not required for progression from insulitis to diabetes in non-obese diabetic mice.

    Science.gov (United States)

    Charlton, B; Zhang, M D; Slattery, R M

    2001-12-01

    Previous studies have implicated B lymphocytes in the pathogenesis of diabetes in the non-obese diabetic (NOD) mouse. While it is clear that B lymphocytes are necessary, it has not been clear at which stage of disease they play a role; early, late or both. To clarify when B lymphocytes are needed, T lymphocytes were transferred from 5-week-old NOD female mice to age-matched NOD/severe combined immunodeficiency (SCID) recipient mice. NOD/SCID mice, which lack functionally mature T and B lymphocytes, do not normally develop insulitis or insulin-dependent diabetes melitus (IDDM). The NOD/SCID mice that received purified T lymphocytes from 5-week-old NOD mice subsequently developed insulitis and diabetes even though they did not have detectable B lymphocytes. This suggests that while B lymphocytes may be essential for an initial priming event they are not requisite for disease progression in the NOD mouse.

  1. Effect of Potent Ethyl Acetate Fraction of Stereospermum suaveolens Extract in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    T. Balasubramanian

    2012-01-01

    Full Text Available To evaluate the antihyperglycemic effect of ethyl acetate fraction of ethanol extract of Stereospermum suaveolens in streptozotocin-(STZ- induced diabetic rats by acute and subacute models. In this paper, various fractions of ethanol extract of Stereospermum suaveolens were prepared and their effects on blood glucose levels in STZ-induced diabetic rats were studied after a single oral administration (200?mg/kg. Administration of the ethyl acetate fraction at 200?mg/kg once daily for 14 days to STZ-induced diabetic rats was also carried out. The parameters such as the fasting blood glucose, hepatic glycogen content, and pancreatic antioxidant levels were monitored. In the acute study, the ethyl acetate fraction is the most potent in reducing the fasting serum glucose levels of the STZ-induced diabetic rats. The 14-day repeated oral administration of the ethyl acetate fraction significantly reduced the fasting blood glucose and pancreatic TBARS level and significantly increased the liver glycogen, pancreatic superoxide dismutase, and catalase activities as well as reduced glutathione levels. The histopathological studies during the subacute treatment have been shown to ameliorate the STZ-induced histological damage of pancreas. This paper concludes that the ethyl acetate fraction from ethanol extract of Stereospermum suaveolens possesses potent antihyperglycemic and antioxidant properties, thereby substantiating the use of plant in the indigenous system of medicine.

  2. Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses.

    Science.gov (United States)

    Chu, Shenghui; Gu, Junfei; Feng, Liang; Liu, Jiping; Zhang, Minghua; Jia, Xiaobin; Liu, Min; Yao, Danian

    2014-04-01

    Neuroinflammatory responses play a crucial role in the pathogenesis of Alzheimer's disease (AD). Ginsenoside Rg5 (Rg5), an abundant natural compound in Panax ginseng, has been found to be beneficial in treating AD. In the present study, we demonstrated that Rg5 improved cognitive dysfunction and attenuated neuroinflammatory responses in streptozotocin (STZ)-induced memory impaired rats. Cognitive deficits were ameliorated with Rg5 (5, 10 and 20mg/kg) treatment in a dose-dependent manner together with decreased levels of inflammatory cytokines TNF-α and IL-1β (Pred and immunohistochemistry staining results showed that Rg5 alleviated Aβ deposition but enhanced the expressions of insulin-like growth factors 1 (IGF-1) and brain derived neurophic factor (BDNF) in the hippocampus and cerebral cortex (Pmemory impairments in rats could be improved by Rg5, which was associated with attenuating neuroinflammatory responses. Our findings suggested that Rg5 could be a beneficial agent for the treatment of AD. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Aldose Reductase-Deficient Mice Develop Nephrogenic Diabetes Insipidus

    Science.gov (United States)

    Ho, Horace T. B.; Chung, Sookja K.; Law, Janice W. S.; Ko, Ben C. B.; Tam, Sidney C. F.; Brooks, Heddwen L.; Knepper, Mark A.; Chung, Stephen S. M.

    2000-01-01

    Aldose reductase (ALR2) is thought to be involved in the pathogenesis of various diseases associated with diabetes mellitus, such as cataract, retinopathy, neuropathy, and nephropathy. However, its physiological functions are not well understood. We developed mice deficient in this enzyme and found that they had no apparent developmental or reproductive abnormality except that they drank and urinated significantly more than their wild-type littermates. These ALR2-deficient mice exhibited a partially defective urine-concentrating ability, having a phenotype resembling that of nephrogenic diabetes insipidus. PMID:10913167

  4. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    OpenAIRE

    Alkan , Manal; Machavoine , François; Rignault , Rachel; Dam , Julie; Dy , Michel; Thieblemont , Nathalie

    2015-01-01

    International audience; Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD) mouse model. To this end, we used mice (inactivated) knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC −/− m...

  5. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    Directory of Open Access Journals (Sweden)

    Manal Alkan

    2015-01-01

    Full Text Available Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD mouse model. To this end, we used mice (inactivated knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC−/− mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γ in HDC−/− mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC−/− mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response.

  6. Exclusion of aldose reductase as a mediator of ERG deficits in a mouse model of diabetic eye disease.

    Science.gov (United States)

    Samuels, Ivy S; Lee, Chieh-Allen; Petrash, J Mark; Peachey, Neal S; Kern, Timothy S

    2012-11-01

    Streptozotocin (STZ)-induced diabetes is associated with reductions in the electrical response of the outer retina and retinal pigment epithelium (RPE) to light. Aldose reductase (AR) is the first enzyme required in the polyol-mediated metabolism of glucose, and AR inhibitors have been shown to improve diabetes-induced electroretinogram (ERG) defects. Here, we used control and AR -/- mice to determine if genetic inactivation of this enzyme likewise inhibits retinal electrophysiological defects observed in a mouse model of type 1 diabetes. STZ was used to induce hyperglycemia and type 1 diabetes. Diabetic and age-matched nondiabetic controls of each genotype were maintained for 22 weeks, after which ERGs were used to measure the light-evoked components of the RPE (dc-ERG) and the neural retina (a-wave, b-wave). In comparison to their nondiabetic controls, wildtype (WT) and AR -/- diabetic mice displayed significant decreases in the c-wave, fast oscillation, and off response components of the dc-ERG but not in the light peak response. Nondiabetic AR -/- mice displayed larger ERG component amplitudes than did nondiabetic WT mice; however, the amplitude of dc-ERG components in diabetic AR -/- animals were similar to WT diabetics. ERG a-wave amplitudes were not reduced in either diabetic group, but b-wave amplitudes were lower in WT and AR -/-diabetic mice. These findings demonstrate that the light-induced responses of the RPE and outer retina are disrupted in diabetic mice, but these defects are not due to photoreceptor dysfunction, nor are they ameliorated by deletion of AR. This latter finding suggests that benefits observed in other studies utilizing pharmacological inhibitors of AR might have been secondary to off-target effects of the drugs.

  7. Anti-Diabetic Effects of CTB-APSL Fusion Protein in Type 2 Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Yunlong Liu

    2014-03-01

    Full Text Available To determine whether cholera toxin B subunit and active peptide from shark liver (CTB-APSL fusion protein plays a role in treatment of type 2 diabetic mice, the CTB-APSL gene was cloned and expressed in silkworm (Bombyx mori baculovirus expression vector system (BEVS, then the fusion protein was orally administrated at a dose of 100 mg/kg for five weeks in diabetic mice. The results demonstrated that the oral administration of CTB-APSL fusion protein can effectively reduce the levels of both fasting blood glucose (FBG and glycosylated hemoglobin (GHb, promote insulin secretion and improve insulin resistance, significantly improve lipid metabolism, reduce triglycerides (TG, total cholesterol (TC and low density lipoprotein (LDL levels and increase high density lipoprotein (HDL levels, as well as effectively improve the inflammatory response of type 2 diabetic mice through the reduction of the levels of inflammatory cytokines tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6. Histopathology shows that the fusion protein can significantly repair damaged pancreatic tissue in type 2 diabetic mice, significantly improve hepatic steatosis and hepatic cell cloudy swelling, reduce the content of lipid droplets in type 2 diabetic mice, effectively inhibit renal interstitial inflammatory cells invasion and improve renal tubular epithelial cell nucleus pyknosis, thus providing an experimental basis for the development of a new type of oral therapy for type 2 diabetes.

  8. Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice.

    Science.gov (United States)

    Xu, Xin; Shan, Bin; Liao, Cai-Hu; Xie, Jian-Hua; Wen, Ping-Wei; Shi, Jia-Yi

    2015-11-01

    A water-soluble polysaccharide (MCP) was isolated from the fruits of Momordica charantia L., and the hypoglycemic effects of MCP were investigated in both normal healthy and alloxan-induced diabetic mice. MCP was orally administered once a day after 3 days of alloxan-induction at 100, 200 and 300mg/kg body weight for 28 day. Results showed that fasting blood glucose level (BGL) was significantly decreased, whereas the glucose tolerance was marked improvement in alloxan-induced diabetic mice, and loss in body weight was also prevented in diabetic mice compared to the diabetic control group. The dosage of 300mg/kg body weight exhibited the best effects. In addition, MCP did not exhibit any toxic symptoms in the limited toxicity evaluation in mice. The results suggest that MCP possess significantly dose-dependent anti-diabetic activity on alloxan-induced diabetic mice. Hence, MCP can be incorporated as a supplement in health-care food, drugs and/or combined with other hypoglycemic drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of tocotrienol on aortic atherosclerosis in diabetic mice

    International Nuclear Information System (INIS)

    Kiani, M.R.B.; Butt, S.A.; Ahmed, T.

    2015-01-01

    Effect of tocotrienol on aortic atherosclerosis in diabetic mice To study the histomorphological effect of tocotrienol on aortic atherosclerosis in diabetic mice having high fat diet. Study Design: Lab based randomized controlled trial. Place and Duration of Study: Army Medical College, Rawalpindi and National Institute of Health, Islamabad from November 2009 to June 2010. Material and Methods: Forty five female BALB/c mice were randomly divided into three groups. The diabetic mice model was established by intraperitoneal injection of streptozotocin (STZ) 40 mg/kg body weight. Group A was given normal laboratory diet, group B high fat diet and group C was given tocotrienol along with high fat diet for 32 weeks. At the end of experiment the mice were sacrificed. The hearts of animals were dissected out and ascending aortae were taken out. The specimen was fixed in 10% formol calcium and processed for paraffin embedding. Five micrometer thick sections were made for haematoxylin and eosin, and Verhoeff's staining. After staining, histomorphologic changes in slides were noted. Results: In contrast to group A, atheroscelrosis developed in groups B and C. Statistically significant atherosclerotic changes were found in the aortae of diabetic mice in group B when compared to group A. On comparison of group A to C, atherosclerotic changes were statistically insignificant. However when group B was compared with group C, the aortic atherosclerotic changes decreased significantly in group C. Conclusion: In diabetics with high fat diet intake, there is an increase in development of atherosclerosis in aorta which can be reduced by tocotrienol. (author)

  10. Hypoglycemic and antioxidant activities of Caesalpinia ferrea Martius leaf extract in streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Sherien Kamal Hassan

    2015-06-01

    Conclusions: From the present study, it can be concluded that the C. ferrea leaf extract effectively improved hyperglycaemia while inhibiting the progression of oxidative stress in STZ-induced diabetic rats. Hence, it can be used in the management of diabetes mellitus.

  11. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity

    Directory of Open Access Journals (Sweden)

    Pauza Mary E

    2008-03-01

    Full Text Available Abstract A common complication associated with diabetes is painful or painless diabetic peripheral neuropathy (DPN. The mechanisms and determinants responsible for these peripheral neuropathies are poorly understood. Using both streptozotocin (STZ-induced and transgene-mediated murine models of type 1 diabetes (T1D, we demonstrate that Transient Receptor Potential Vanilloid 1 (TRPV1 expression varies with the neuropathic phenotype. We have found that both STZ- and transgene-mediated T1D are associated with two distinct phases of thermal pain sensitivity that parallel changes in TRPV1 as determined by paw withdrawal latency (PWL. An early phase of hyperalgesia and a late phase of hypoalgesia are evident. TRPV1-mediated whole cell currents are larger and smaller in dorsal root ganglion (DRG neurons collected from hyperalgesic and hypoalgesic mice. Resiniferatoxin (RTX binding, a measure of TRPV1 expression is increased and decreased in DRG and paw skin of hyperalgesic and hypoalgesic mice, respectively. Immunohistochemical labeling of spinal cord lamina I and II, dorsal root ganglion (DRG, and paw skin from hyperalgesic and hypoalgesic mice reveal increased and decreased TRPV1 expression, respectively. A role for TRPV1 in thermal DPN is further suggested by the failure of STZ treatment to influence thermal nociception in TRPV1 deficient mice. These findings demonstrate that altered TRPV1 expression and function contribute to diabetes-induced changes in thermal perception.

  12. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    International Nuclear Information System (INIS)

    Wang, Jun; Cao, Hui; Wang, Hongjie; Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli; Xiang, Ming

    2015-01-01

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4 + CD25 + Foxp3 + regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation

  13. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan (China); Cao, Hui [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Hongjie [Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL (United States); Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xiang, Ming, E-mail: xiangming@mails.tjmu.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-06-15

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.

  14. Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice

    Institute of Scientific and Technical Information of China (English)

    TIAN Bei; LI Xiao-xin; SHEN Li; ZHAO Min; YU Wen-zhen

    2010-01-01

    Background Hematopoietic stem cells (HSCs) can be used to deliver functionally active angiostatic molecules to the retinal vasculature by targeting active astrocytes and may be useful in targeting pre-angiogenic retinal lesions. We sought to determine whether HSC mobilization can ameliorate early diabetic retinopathy in mice.Methods Mice were devided into four groups: normal mice control group, normal mice HSC-mobilized group, diabetic mice control group and diabetic mice HSC mobilized group. Murine stem cell growth factor (murine SCF) and recombined human granulocyte colony stimulating factor (rhG-csf) were administered to the mice with diabetes and without diabetes for continuous 5 days to induce autologous HSCs mobilization, and subcutaneous injection of physiological saline was used as control. Immunohistochemical double staining was conducted with anti-mouse rat CD31 monoclonal antibody and anti-BrdU rat antibody.Results Marked HSCs clearly increased after SCF plus G-csf-mobilization. Non-mobilized diabetic mice showed more HSCs than normal mice (P=0.032), and peripheral blood significantly increased in both diabetic and normal mice (P=0.000).Diabetic mice showed more CD31 positive capillary vessels (P=0.000) and accelerated endothelial cell regeneration. Only diabetic HSC-mobilized mice expressed both BrdU and CD31 antigens in the endothelial cells of new capillaries.Conclusion Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice.

  15. Severe pulmonary metastasis in obese and diabetic mice.

    Science.gov (United States)

    Mori, Akinori; Sakurai, Hiroaki; Choo, Min-Kyung; Obi, Ryosuke; Koizumi, Keiichi; Yoshida, Chiho; Shimada, Yutaka; Saiki, Ikuo

    2006-12-15

    Although obesity is known as a risk factor for several human cancers, the association of obesity with cancer recurrence and metastasis remains to be characterized. Here, B16-BL6 melanoma and Lewis lung carcinoma cells were intravenously injected into diabetic (db/db) and obese (ob/ob) mice. The number of experimental lung colonies was markedly promoted in these mice when compared with C57BL/6 mice. In contrast, tumor growth at the implanted site was comparable when cells were inoculated orthotopically. The use of B16-BL6 cells stably transfected with the luciferase gene revealed that the increased metastasis reflected a difference mainly within 6 hr after the intravenous inoculation of tumor cells. Administration of recombinant leptin in ob/ob mice abolished the increase in metastasis early on as well as the decrease in the splenic NK cell number. In addition, depletion of NK cells by an anti-asialo-GM1 antibody abrogated the enhanced metastasis in db/db mice. These results demonstrate that metastasis is markedly promoted in diabetic and obese mice mainly because of decreased NK cell function during the early phase of metastasis. Copyright 2006 Wiley-Liss, Inc.

  16. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice.

    Science.gov (United States)

    Hiratsuka, Seiichi; Ishihara, Kenji; Kitagawa, Tomoko; Wada, Shun; Yokogoshi, Hidehiko

    2008-12-01

    The effect of dietary docosahexaenoic acid (DHA, C22:6n-3) with two lipid types on lipid peroxidation of the brain was investigated in streptozotocin (STZ)-induced diabetic mice. Each group of female Balb/c mice was fed a diet containing DHA-connecting phospholipids (DHA-PL) or DHA-connecting triacylglycerols (DHA-TG) for 5 wk. Safflower oil was fed as the control. The lipid peroxide level of the brain was significantly lower in the mice fed the DHA-PL diet when compared to those fed the DHA-TG and safflower oil diets, while the alpha-tocopherol level was significantly higher in the mice fed the DHA-PL diet than in those fed the DHA-TG and safflower oil diets. The DHA level of phosphatidylethanolamine in the brain was significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil diet. The dimethylacetal levels were significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil and DHA-TG diets. These results suggest that the dietary DHA-connecting phospholipids have an antioxidant activity on the brain lipids in mice, and the effect may be related to the brain plasmalogen.

  17. Characterization of upper thoracic spinal neurons receiving noxious cardiac and/or somatic inputs in diabetic rats

    DEFF Research Database (Denmark)

    Ghorbani, Marie Louise M; Qin, Chao; Wu, Mingyuan

    2011-01-01

    The aim of the present study was to examine spinal processing of cardiac and somatic nociceptive input in rats with STZ-induced diabetes. Type 1 diabetes was induced with streptozotocin (50mg/kg) in 14 male Sprague-Dawley rats and citrate buffer was injected in 14 control rats. After 4-11weeks...

  18. Altered metabolic signature in pre-diabetic NOD mice.

    Directory of Open Access Journals (Sweden)

    Rasmus Madsen

    Full Text Available Altered metabolism proceeding seroconversion in children progressing to Type 1 diabetes has previously been demonstrated. We tested the hypothesis that non-obese diabetic (NOD mice show a similarly altered metabolic profile compared to C57BL/6 mice. Blood samples from NOD and C57BL/6 female mice was collected at 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13 and 15 weeks and the metabolite content was analyzed using GC-MS. Based on the data of 89 identified metabolites OPLS-DA analysis was employed to determine the most discriminative metabolites. In silico analysis of potential involved metabolic enzymes was performed using the dbSNP data base. Already at 0 weeks NOD mice displayed a unique metabolic signature compared to C57BL/6. A shift in the metabolism was observed for both strains the first weeks of life, a pattern that stabilized after 5 weeks of age. Multivariate analysis revealed the most discriminative metabolites, which included inosine and glutamic acid. In silico analysis of the genes in the involved metabolic pathways revealed several SNPs in either regulatory or coding regions, some in previously defined insulin dependent diabetes (Idd regions. Our result shows that NOD mice display an altered metabolic profile that is partly resembling the previously observation made in children progressing to Type 1 diabetes. The level of glutamic acid was one of the most discriminative metabolites in addition to several metabolites in the TCA cycle and nucleic acid components. The in silico analysis indicated that the genes responsible for this reside within previously defined Idd regions.

  19. NETosis Delays Diabetic Wound Healing in Mice and Humans.

    Science.gov (United States)

    Fadini, Gian Paolo; Menegazzo, Lisa; Rigato, Mauro; Scattolini, Valentina; Poncina, Nicol; Bruttocao, Andrea; Ciciliot, Stefano; Mammano, Fabio; Ciubotaru, Catalin Dacian; Brocco, Enrico; Marescotti, Maria Cristina; Cappellari, Roberta; Arrigoni, Giorgio; Millioni, Renato; Vigili de Kreutzenberg, Saula; Albiero, Mattia; Avogaro, Angelo

    2016-04-01

    Upon activation, neutrophils undergo histone citrullination by protein arginine deiminase (PAD)4, exocytosis of chromatin and enzymes as neutrophil extracellular traps (NETs), and death. In diabetes, neutrophils are primed to release NETs and die by NETosis. Although this process is a defense against infection, NETosis can damage tissue. Therefore, we examined the effect of NETosis on the healing of diabetic foot ulcers (DFUs). Using proteomics, we found that NET components were enriched in nonhealing human DFUs. In an independent validation cohort, a high concentration of neutrophil elastase in the wound was associated with infection and a subsequent worsening of the ulcer. NET components (elastase, histones, neutrophil gelatinase-associated lipocalin, and proteinase-3) were elevated in the blood of patients with DFUs. Circulating elastase and proteinase-3 were associated with infection, and serum elastase predicted delayed healing. Neutrophils isolated from the blood of DFU patients showed an increased spontaneous NETosis but an impaired inducible NETosis. In mice, skin PAD4 activity was increased by diabetes, and FACS detection of histone citrullination, together with intravital microscopy, showed that NETosis occurred in the bed of excisional wounds. PAD4 inhibition by Cl-amidine reduced NETting neutrophils and rescued wound healing in diabetic mice. Cumulatively, these data suggest that NETosis delays DFU healing. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Islet-specific T cell clones transfer diabetes to nonobese diabetic (NOD) F1 mice.

    Science.gov (United States)

    Peterson, J D; Pike, B; McDuffie, M; Haskins, K

    1994-09-15

    To investigate diabetes resistance to T cell-mediated disease transfer, we administered islet-specific T cell clones to the F1 progeny of nonobese diabetic (NOD) mice that were crossed with various nondiabetes-prone inbred mouse strains. We investigated four diabetogenic CD4+ T cell clones and all induced insulitis and full development of diabetes in (SWR x NOD)F1, (SJL x NOD)F1, and (C57BL/6 x NOD)F1 mice. In contrast, (BALB/c x NOD)F1 and (CBA x NOD)F1 mice were susceptible to disease transfer by some T cell clones but not others, and (C57/L x NOD)F1 mice seemed to be resistant to both insulitis and disease transfer by all of the clones tested. Disease induced by the T cell clones in susceptible F1 strains was age dependent and could only be observed in recipients younger than 13 days old. Full or partial disease resistance did not correlate with the presence or absence of I-E, different levels of Ag expression in islet cells, or differences in APC function. The results from this study suggest that there may be multiple factors contributing to susceptibility of F1 mice to T cell clone-mediated induction of diabetes, including non-MHC-related genetic background, the immunologic maturity of the recipient, and individual characteristics of the T cell clones.

  1. Rapamycin-ameliorated diabetic symptoms involved in increasing adiponectin expression in diabetic mice on a high-fat diet.

    Science.gov (United States)

    Gong, Fang-Hua; Ye, Yan-Na; Li, Jin-Meng; Zhao, Hai-Yang; Li, Xiao-Kun

    2017-07-01

    Recent studies showed that rapamycin improved diabetic complications. Here, we investigated the metabolic effects of rapamycin in type 2 diabetes model (T2DM) mice. Mice were treated with a daily intraperitoneal injection of rapamycin at 2 mg/kg or vehicle only for 3 weeks and were maintained on a high-fat diet. The treated diabetic mice exhibited decreased body weight, blood glucose levels, and fat mass. FGF21 expression was suppressed in C57B/L6 mice, but adiponectin expression increased both in FGF21 KO and C57B/L6 mice. These results suggest that rapamycin may alleviate FGF21 resistance in mice on a high-fat diet. The reduction of adipose tissue mass of the diabetic mice may be due to the increased adiponectin. Copyright © 2017. Published by Elsevier Taiwan.

  2. Perinatal Polyunstaurated Fatty Acids Supplementation Causes Alterations in Fuel Homeostasis in Adult Male Rats but does not Offer Resistance Against STZ-induced Diabetes

    NARCIS (Netherlands)

    van Dijk, G.; Kacsandi, A.; Kobor-Nyakas, D. E.; Hogyes, E.; Nyakas, C.; Hőgyes, E.

    2011-01-01

    Maternal factors can have major imprinting effects on homeostatic mechanisms in the developing fetus and newborn. Here we studied whether supplemented perinatal polyunsaturated fatty acids (PUFAs) influence energy balance and fuel homeostasis later in life. Between day 10 after conception and day 10

  3. Mice deficient in PAPP-A show resistance to the development of diabetic nephropathy.

    Science.gov (United States)

    Mader, Jessica R; Resch, Zachary T; McLean, Gary R; Mikkelsen, Jakob H; Oxvig, Claus; Marler, Ronald J; Conover, Cheryl A

    2013-10-01

    We investigated pregnancy-associated plasma protein-A (PAPP-A) in diabetic nephropathy. Normal human kidney showed specific staining for PAPP-A in glomeruli, and this staining was markedly increased in diabetic kidney. To assess the possible contribution of PAPP-A in the development of diabetic nephropathy, we induced diabetes with streptozotocin in 14-month-old WT and Papp-A knockout (KO) mice. Renal histopathology was evaluated after 4 months of stable hyperglycemia. Kidneys from diabetic WT mice showed multiple abnormalities including thickening of Bowman's capsule (100% of mice), increased glomerular size (80% of mice), tubule dilation (80% of mice), and mononuclear cell infiltration (90% of mice). Kidneys of age-matched non-diabetic WT mice had similar evidence of tubule dilation and mononuclear cell infiltration to those of diabetic WT mice, indicating that these changes were predominantly age-related. However, thickened Bowman's capsule and increased glomerular size appeared specific for the experimental diabetes. Kidneys from diabetic Papp-A KO mice had significantly reduced or no evidence of changes in Bowman's capsule thickening and glomerular size. There was also a shift to larger mesangial area and increased macrophage staining in diabetic WT mice compared with Papp-A KO mice. In summary, elevated PAPP-A expression in glomeruli is associated with diabetic nephropathy in humans and absence of PAPP-A is associated with resistance to the development of indicators of diabetic nephropathy in mice. These data suggest PAPP-A as a potential therapeutic target for diabetic nephropathy.

  4. Diabetes-Resistant NOR Mice Are More Severely Affected by Streptozotocin Compared to the Diabetes-Prone NOD Mice: Correlations with Liver and Kidney GLUT2 Expressions

    Directory of Open Access Journals (Sweden)

    S. Kahraman

    2015-01-01

    Full Text Available Nonobese Diabetic (NOD mice are susceptible strains for Type 1 diabetes development, and Nonobese Diabetes-Resistant (NOR mice are defined as suitable controls for NOD mice in non-MHC-related research. Diabetes is often accelerated in NOD mice via Streptozotocin (STZ. STZ is taken inside cells via GLUT2 transmembrane carrier proteins, the major glucose transporter isoforms in pancreatic beta cells, liver, kidneys, and the small intestine. We observed severe adverse effects in NOR mice treated with STZ compared to NOD mice that were made diabetic with a similar dose. We suggested that the underlying mechanism could be differential GLUT2 expressions in pancreatic beta cells, yet immunofluorescent and immunohistochemical studies revealed similar GLUT2 expression levels. We also detected GLUT2 expression profiles in NOD and NOR hepatic and renal tissues by western blot analysis and observed considerably higher GLUT2 expression levels in liver and kidney tissues of NOR mice. Although beta cell GLUT2 expression levels are frequently evaluated as a marker predicting STZ sensitivity in animal models, we report here very different diabetic responses to STZ in two different animal strains, in spite of similar initial GLUT2 expressions in beta cells. Furthermore, use of NOR mice in STZ-mediated experimental diabetes settings should be considered accordingly.

  5. Experimental treatment of diabetic mice with microencapsulated rat islet cells transplantation

    International Nuclear Information System (INIS)

    Luo Yun; Xue Yilong; Li Yanling; Li Xinjian

    2006-01-01

    To observe treatment effects of diabetic mice with microcapsulated and non-microcapsulated rat islet cell transplantation, pancreas of SD rat was perfused with collagenase through cloledchus, and then the pancreatic tissues were isolated and digested. Histopaque-1077 was used to purify the digested pancreas. Islet cells were collected and implanted into the peritoneal cavity of diabetic mice. The isolated islets had a response upon glucose stimulation. When the microcapsulated islets and non- microcapsulated islets were transplanted into diabetic mices the high blood glucose level could be decreased to normal. The normal blood glucose level in the diabetic mice transpanted with microcapsulated islets could be maintained for over 30 days,but it could be mainlained only for 2-3 days in the diabetic mice transplanted with non-microcapsulated islets. Thus it is believed that microcapsulated islet cell transplantation exerts good effect on diabetic mice and the microcapsules possessed good immunoisolating function. (authors)

  6. Cholinergic stimulation prevents the development of autoimmune diabetes: Evidence for the modulation of Th17 effector cells via an IFNgamma-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Junu George

    2016-10-01

    Full Text Available Type I diabetes (T1D results from T cell-mediated damage of pancreatic β-cells and loss of insulin production. The cholinergic anti-inflammatory pathway represents a physiological link connecting the central nervous and immune systems via vagus nerve, and functions to control the release of proinflammatory cytokines. Using the multiple-low-dose streptozotocin (MLD-STZ model to induce experimental autoimmune diabetes, we investigated the potential of regulating the development of hyperglycemia through administration of paraoxon, a highly specific acetylcholinesterase inhibitor (AChEI. We demonstrate that pretreatment with paraoxon prevented hyperglycemia in STZ-treated C57BL/6 mice. This correlated with a reduction in T cell infiltration into pancreatic islets and preservation of the structure and functionality of β-cells. Gene expression analysis of pancreatic tissue revealed that increased peripheral cholinergic activity prevented STZ-mediated loss of insulin production, this being associated with a reduction in IL-1β, IL-6, and IL-17 proinflammatory cytokines. Intracellular cytokine analysis in splenic T cells demonstrated that inhibition of AChE led to a shift in STZ-induced immune response from a predominantly disease-causing IL-17-expressing Th17 cells to IFNγ-positive Th1 cells. Consistent with this conclusion, inhibition of AChE failed to prevent STZ-induced hyperglycemia in IFNγ-deficient mice. Our results provide mechanistic evidence for the prevention of murine T1D by inhibition of AChE and suggest a promising strategy for modulating disease severity.

  7. Catalase therapy corrects oxidative stress-induced pathophysiology in incipient diabetic retinopathy.

    Science.gov (United States)

    Giordano, Courtney R; Roberts, Robin; Krentz, Kendra A; Bissig, David; Talreja, Deepa; Kumar, Ashok; Terlecky, Stanley R; Berkowitz, Bruce A

    2015-05-01

    Preclinical studies have highlighted retinal oxidative stress in the pathogenesis of diabetic retinopathy. We evaluated whether a treatment designed to enhance cellular catalase reduces oxidative stress in retinal cells cultured in high glucose and in diabetic mice corrects an imaging biomarker responsive to antioxidant therapy (manganese-enhanced magnetic resonance imaging [MEMRI]). Human retinal Müller and pigment epithelial cells were chronically exposed to normal or high glucose levels and treated with a cell-penetrating derivative of the peroxisomal enzyme catalase (called CAT-SKL). Hydrogen peroxide (H2O2) levels were measured using a quantitative fluorescence-based assay. For in vivo studies, streptozotocin (STZ)-induced diabetic C57Bl/6 mice were treated subcutaneously once a week for 3 to 4 months with CAT-SKL; untreated age-matched nondiabetic controls and untreated diabetic mice also were studied. MEMRI was used to analytically assess the efficacy of CAT-SKL treatment on diabetes-evoked oxidative stress-related pathophysiology in vivo. Similar analyses were performed with difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase. After catalase transduction, high glucose-induced peroxide production was significantly lowered in both human retinal cell lines. In diabetic mice in vivo, subnormal intraretinal uptake of manganese was significantly improved by catalase supplementation. In addition, in the peroxisome-rich liver of treated mice catalase enzyme activity increased and oxidative damage (as measured by lipid peroxidation) declined. On the other hand, DFMO was largely without effect in these in vitro or in vivo assays. This proof-of-concept study raises the possibility that augmentation of catalase is a therapy for treating the retinal oxidative stress associated with diabetic retinopathy.

  8. Alkannin Inhibited Hepatic Inflammation in Diabetic Db/Db Mice

    Directory of Open Access Journals (Sweden)

    Wenhua Xue

    2018-03-01

    Full Text Available Background/Aims: The current study was designed to investigate the protective role of alkannin (ALK on liver injury in diabetic C57BL/KsJ-db/db mice and explore its potential mechanisms. Methods: An oral glucose tolerance test (OGTT was performed. The levels of insulin, alanine aminotransferase (ALT, aspartate aminotransaminase (AST, total cholesterol (TC and triglyceride (TG were determined by commercial kits. The pro-inflammatory cytokines interleukin (IL-1β, IL-6 and tumour necrosis factor (TNF-α were determined by ELISA. The levels of the ROCK/NF-κB pathway were determined by Western blotting. Results: The contents of pro-inflammatory cytokines interleukin (IL-1β, IL-6 and tumour necrosis factor (TNF-α were inhibited by ALK, metformin or fasudil in diabetic db/db mice. Further, Western blotting analysis showed that the expression of Rho, ROCK1, ROCK2, p-NF-κBp65, and p-IκBα was significantly reversed by ALK treatment. In human hepatic HepG2 cells, the hepatoprotective effects of ALK were further characterized. With response to palmitic acid-challenge, increased amounts of insulin, ALT, AST, TG, and TC were observed, whereas ALK pretreatment significantly inhibited their leakage in HepG2 cells without appreciable cytotoxic effects. The inflammation condition was recovered with ALK treatment as shown by changes of IL-1β, IL-6 and TNF-α. Further, Western blotting analysis also suggested that ALK improves hepatic inflammation in a Rho-kinase pathway. Conclusion: The present study successfully investigated the role of Rho-kinase signalling in diabetic liver injury. ALK exhibited hepatoprotective effects in diabetic db/db mice, and it might act through improving hepatic inflammation through the Rho-kinase pathway.

  9. Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-alpha.

    Science.gov (United States)

    Wu, Shan; Ren, Jun

    2006-02-13

    Diabetes mellitus leads to thiamine deficiency and multiple organ damage including diabetic neuropathy. This study was designed to examine the effect of benfotiamine, a lipophilic derivative of thiamine, on streptozotocin (STZ)-induced cerebral oxidative stress. Adult male FVB mice were made diabetic with a single injection of STZ (200 mg/kg, i.p.). Fourteen days later, control and diabetic (fasting blood glucose >13.9 mM) mice received benfotiamine (100 mg/kg/day, i.p.) for 14 days. Oxidative stress and protein damage were evaluated by glutathione/glutathione disulfide (GSH/GSSG) assay and protein carbonyl formation, respectively. Pro-oxidative or pro-inflammatory factors including advanced glycation end-product (AGE), tissue factor and tumor necrosis factor-alpha (TNF-alpha) were evaluated by immunoblot analysis. Four weeks STZ treatment led to hyperglycemia, enhanced cerebral oxidative stress (reduced GSH/GSSG ratio), elevated TNF-alpha and AGE levels without changes in protein carbonyl or tissue factor. Benfotiamine alleviated diabetes-induced cerebral oxidative stress without affecting levels of AGE, protein carbonyl, tissue factor and TNF-alpha. Collectively, our results indicated benfotiamine may antagonize diabetes-induced cerebral oxidative stress through a mechanism unrelated to AGE, tissue factor and TNF-alpha.

  10. Hypoglycemic effect of Mucuna pruriens seed extract on normal and streptozotocin-diabetic rats.

    Science.gov (United States)

    Bhaskar, Anusha; Vidhya, V G; Ramya, M

    2008-12-01

    The hypoglycemic effect of the aqueous extract of the seeds of Mucuna pruriens was investigated in normal, glucose load conditions and streptozotocin (STZ)-induced diabetic rats. In normal rats, the aqueous extract of the seeds of Mucuna pririens (100 and 200 mg/kg body weight) significantly (Ppruriens has an anti-hyperglycemic action and it could be a source of hypoglycemic compounds.

  11. Myocardial impulse propagation is impaired in right ventricular tissue of Zucker Diabetic Fatty (ZDF) rats

    DEFF Research Database (Denmark)

    Olsen, Kristine Boisen; Axelsen, Lene Nygaard; Braunstein, Thomas Hartig

    2013-01-01

    Diabetes increases the risk of cardiovascular complications including arrhythmias, but the underlying mechanisms remain to be established. Decreased conduction velocity (CV), which is an independent risk factor for re-entry arrhythmias, is present in models with streptozotocin (STZ) induced type ...

  12. Administration of Zinc plus Cyclo-(His-Pro Increases Hippocampal Neurogenesis in Rats during the Early Phase of Streptozotocin-Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Bo Young Choi

    2017-01-01

    Full Text Available The effects of zinc supplementation on hippocampal neurogenesis in diabetes mellitus have not been studied. Herein, we investigated the effects of zinc plus cyclo-(His-Pro (ZC on neurogenesis occurring in the subgranular zone of dentate gyrus after streptozotocin (STZ-induced diabetes. ZC (27 mg/kg was administered by gavage once daily for one or six weeks from the third day after the STZ injection, and histological evaluation was performed at 10 (early phase or 45 (late phase days after STZ injection. We found that the proliferation of progenitor cells in STZ-induced diabetic rats showed an increase in the early phase. Additionally, ZC treatment remarkably increased the number of neural progenitor cells (NPCs and immature neurons in the early phase of STZ-induced diabetic rats. Furthermore, ZC treatment showed increased survival rate of newly generated cells but no difference in the level of neurogenesis in the late phase of STZ-induced diabetic rats. The present study demonstrates that zinc supplementation by ZC increases both NPCs proliferation and neuroblast production at the early phase of diabetes. Thus, this study suggests that zinc supplemented with a histidine/proline complex may have beneficial effects on neurogenesis in patients experiencing the early phase of Type 1 diabetes.

  13. Exendin-4 improves resistance to Listeria monocytogenes infection in diabetic db/db mice

    OpenAIRE

    Liu, Hsien Yueh; Chung, Chih-Yao; Yang, Wen-Chin; Liang, Chih-Lung; Wang, Chi-Young; Chang, Chih-Yu; Chang, Cicero Lee-Tian

    2012-01-01

    The incidence of diabetes mellitus is increasing among companion animals. This disease has similar characteristics in both humans and animals. Diabetes is frequently identified as an independent risk factor for infections associated with increased mortality. In the present study, homozygous diabetic (db/db) mice were infected with Listeria (L.) monocytogenes and then treated with the anti-diabetic drug exendin-4, a glucagon-like peptide 1 analogue. In aged db/db mice, decreased CD11b+ macroph...

  14. Enhanced GABA action on the substantia gelatinosa neurons of the medullary dorsal horn in the offspring of streptozotocin-injected mice.

    Science.gov (United States)

    Nguyen, Hoang Thi Thanh; Bhattarai, Janardhan Prasad; Park, Soo Joung; Lee, Jeong Chae; Cho, Dong Hyu; Han, Seong Kyu

    2015-07-01

    Peripheral neuropathy is a frequent complication of diabetes mellitus and a common symptom of neuropathic pain, the mechanism of which is complex and involves both peripheral and central components of the sensory system. The lamina II of the medullary dorsal horn, called the substantia gelatinosa (SG), is well known to be a critical site for processing of orofacial nociceptive information. Although there have been a number of studies done on diabetic neuropathy related to the orofacial region, the action of neurotransmitter receptors on SG neurons in the diabetic state is not yet fully understood. Therefore, we used the whole-cell patch clamp technique to investigate this alteration on SG neurons in both streptozotocin (STZ)-induced diabetic mice and offspring from diabetic female mice. STZ (200 mg/kg)-injected mice showed a small decrease in body weight and a significant increase in blood glucose level when compared with their respective control group. However, application of different concentrations of glycine, gamma-aminobutyric acid (GABA) and glutamate on SG neurons from STZ-injected mice did not induce any significant differences in inward currents when compared to their control counterparts. On the other hand, the offspring of diabetic female mice (induced by multiple injections of STZ (40 mg/kg) for 5 consecutive days) led to a significant decrease in both body weight and blood glucose level compared to the control offspring. Glycine and glutamate responses in the SG neurons of the offspring from diabetic female mice were similar to those of control offspring. However, the GABA response in SG neurons of offspring from diabetic female mice was greater than that of control offspring. Furthermore, the GABA-mediated responses in offspring from diabetic and control mice were examined at different concentrations ranging from 3 to 1,000 μM. At each concentration, the GABA-induced mean inward currents in the SG neurons of offspring from diabetic female mice were

  15. Impaired response of mature adipocytes of diabetic mice to hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seok Jong, E-mail: seok-hong@northwestern.edu; Jin, Da P.; Buck, Donald W.; Galiano, Robert D.; Mustoe, Thomas A., E-mail: tmustoe@nmh.org

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role in injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.

  16. Diabetes Insipidus in Mice with a Mutation in Aquaporin-2.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Congenital nephrogenic diabetes insipidus (NDI is a disease characterized by failure of the kidney to concentrate urine in response to vasopressin. Human kindreds with nephrogenic diabetes insipidus have been found to harbor mutations in the vasopressin receptor 2 (Avpr2 gene or the vasopressin-sensitive water channel aquaporin-2 (Aqp2 gene. Development of a treatment is rendered difficult due to the lack of a viable animal model. Through forward genetic screening of ethylnitrosourea-mutagenized mice, we report the identification and characterization of a mouse model of NDI, with an F204V mutation in the Aqp2 gene. Unlike previously attempted murine models of NDI, our mice survive to adulthood and more exactly recapitulate the human disorder. Previous in vitro experiments using renal cell lines suggest recessive Aqp2 mutations result in improper trafficking of the mutant water pore. Using these animals, we have directly proven this hypothesis of improper AQP2 translocation as the molecular defect in nephrogenic diabetes insipidus in the intact organism. Additionally, using a renal cell line we show that the mutated protein, AQP2-F204V, is retained in the endoplasmic reticulum and that this abnormal localization can be rescued by wild-type protein. This novel mouse model allows for further mechanistic studies as well as testing of pharmacological and gene therapies for NDI.

  17. Vorapaxar treatment reduces mesangial expansion in streptozotocin-induced diabetic nephropathy in mice.

    Science.gov (United States)

    Waasdorp, Maaike; Duitman, JanWillem; Florquin, Sandrine; Spek, C Arnold

    2018-04-24

    Twenty years after the onset of diabetes, up to 40% of patients develop diabetic nephropathy. Protease-activated receptor-1 (PAR-1) has recently been shown to aggravate the development of experimental diabetic nephropathy. PAR-1 deficient mice develop less albuminuria and glomerular lesions and PAR-1 stimulation induces proliferation and fibronectin production in mesangial cells in vitro . Vorapaxar is a clinically available PAR-1 inhibitor which is currently used for secondary prevention of ischemic events. The aim of this study was to investigate in a preclinical setting whether vorapaxar treatment may be a novel strategy to reduce diabetes-induced kidney damage. While control treated diabetic mice developed significant albuminuria, mesangial expansion and glomerular fibronectin deposition, diabetic mice on vorapaxar treatment did not show any signs of kidney damage despite having similar levels of hyperglycemia. These data show that PAR-1 inhibition by vorapaxar prevents the development of diabetic nephropathy in this preclinical animal model for type I diabetes and pinpoint PAR-1 as a novel therapeutic target to pursue in the setting of diabetic nephropathy. 22 C57Bl/6 mice were made diabetic using multiple low-dose streptozotocin injections (50 mg/kg) and 22 littermates served as non-diabetic controls. Four weeks after the induction of diabetes, 11 mice of each group were assigned to control or vorapaxar treatment. Mice were sacrificed after 20 weeks of treatment and kidney damage was evaluated.

  18. Chronic Inhibition of PDE5 Limits Pro-Inflammatory Monocyte-Macrophage Polarization in Streptozotocin-Induced Diabetic Mice.

    Science.gov (United States)

    Venneri, Mary Anna; Giannetta, Elisa; Panio, Giuseppe; De Gaetano, Rita; Gianfrilli, Daniele; Pofi, Riccardo; Masciarelli, Silvia; Fazi, Francesco; Pellegrini, Manuela; Lenzi, Andrea; Naro, Fabio; Isidori, Andrea M

    2015-01-01

    Diabetes mellitus is characterized by changes in endothelial cells that alter monocyte recruitment, increase classic (M1-type) tissue macrophage infiltration and lead to self-sustained inflammation. Our and other groups recently showed that chronic inhibition of phosphodiesterase-5 (PDE5i) affects circulating cytokine levels in patients with diabetes; whether PDE5i also affects circulating monocytes and tissue inflammatory cell infiltration remains to be established. Using murine streptozotocin (STZ)-induced diabetes and in human vitro cell-cell adhesion models we show that chronic hyperglycemia induces changes in myeloid and endothelial cells that alter monocyte recruitment and lead to self-sustained inflammation. Continuous PDE5i with sildenafil (SILD) expanded tissue anti-inflammatory TIE2-expressing monocytes (TEMs), which are known to limit inflammation and promote tissue repair. Specifically, SILD: 1) normalizes the frequency of circulating pro-inflammatory monocytes triggered by hyperglycemia (53.7 ± 7.9% of CD11b+Gr-1+ cells in STZ vs. 30.4 ± 8.3% in STZ+SILD and 27.1 ± 1.6% in CTRL, PTEMs (30.9 ± 3.6% in STZ+SILD vs. 6.9 ± 2.7% in STZ, P TEMs are defective in chronic hyperglycemia and that SILD normalizes their levels by facilitating the shift from classic (M1-like) to alternative (M2-like)/TEM macrophage polarization. Restoration of tissue TEMs with PDE5i could represent an additional pharmacological tool to prevent end-organ diabetic complications.

  19. PD-L1 Deficiency within Islets Reduces Allograft Survival in Mice.

    Directory of Open Access Journals (Sweden)

    Dongxia Ma

    Full Text Available Islet transplantation may potentially cure type 1 diabetes mellitus (T1DM. However, immune rejection, especially that induced by the alloreactive T-cell response, remains a restraining factor for the long-term survival of grafted islets. Programmed death ligand-1 (PD-L1 is a negative costimulatory molecule. PD-L1 deficiency within the donor heart accelerates allograft rejection. Here, we investigate whether PD-L1 deficiency in donor islets reduces allograft survival time.Glucose Stimulation Assays were performed to evaluate whether PD-L1 deficiency has detrimental effects on islet function. Islets isolated from PDL1-deficient mice or wild- type (WT mice (C57BL/6j were implanted beneath the renal capsule of streptozotocin (STZ-induced diabetic BALB/c mice. Blood glucose levels and graft survival time after transplantation were monitored. Moreover, we analyzed the residual islets, infiltrating immune cells and alloreactive cells from the recipients.PD-L1 deficiency within islets does not affect islet function. However, islet PD-L1 deficiency increased allograft rejection and was associated with enhanced inflammatory cell infiltration and recipient T-cell alloreactivity.This is the first report to demonstrate that PD-L1 deficiency accelerated islet allograft rejection and regulated recipient alloimmune responses.

  20. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Gui-Zhen [Department of Health, Linyi People' s Hospital, Shandong University, Shandong (China); Tian, Wei [Department of Nursing, Linyi Oncosurgical Hospital, Shandong (China); Fu, Hai-Tao [Department of Ophthalmology, Linyi People' s Hospital, Shandong University, Shandong (China); Li, Chao-Peng, E-mail: lcpcn@163.com [Eye Institute of Xuzhou, Jiangsu (China); Liu, Ban, E-mail: liuban@126.com [Department of Cardiology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai (China)

    2016-02-26

    Microvascular dysfunction is an important characteristic of diabetic retinopathy. Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. In this study, we investigated the role of lncRNA-MEG3 in diabetes-related microvascular dysfunction. We show that MEG3 expression level is significantly down-regulated in the retinas of STZ-induced diabetic mice, and endothelial cells upon high glucose and oxidative stress. MEG3 knockdown aggravates retinal vessel dysfunction in vivo, as shown by serious capillary degeneration, and increased microvascular leakage and inflammation. MEG3 knockdown also regulates retinal endothelial cell proliferation, migration, and tube formation in vitro. The role of MEG3 in endothelial cell function is mainly mediated by the activation of PI3k/Akt signaling. MEG3 up-regulation may serve as a therapeutic strategy for treating diabetes-related microvascular complications. - Highlights: • LncRNA-MEG3 level is down-regulated upon diabetic stress. • MEG3 knockdown aggravates retinal vascular dysfunction in vivo. • MEG3 regulates retinal endothelial cell function in vitro. • MEG3 regulates endothelial cell function through PI3k/Akt signaling.

  1. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction

    International Nuclear Information System (INIS)

    Qiu, Gui-Zhen; Tian, Wei; Fu, Hai-Tao; Li, Chao-Peng; Liu, Ban

    2016-01-01

    Microvascular dysfunction is an important characteristic of diabetic retinopathy. Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. In this study, we investigated the role of lncRNA-MEG3 in diabetes-related microvascular dysfunction. We show that MEG3 expression level is significantly down-regulated in the retinas of STZ-induced diabetic mice, and endothelial cells upon high glucose and oxidative stress. MEG3 knockdown aggravates retinal vessel dysfunction in vivo, as shown by serious capillary degeneration, and increased microvascular leakage and inflammation. MEG3 knockdown also regulates retinal endothelial cell proliferation, migration, and tube formation in vitro. The role of MEG3 in endothelial cell function is mainly mediated by the activation of PI3k/Akt signaling. MEG3 up-regulation may serve as a therapeutic strategy for treating diabetes-related microvascular complications. - Highlights: • LncRNA-MEG3 level is down-regulated upon diabetic stress. • MEG3 knockdown aggravates retinal vascular dysfunction in vivo. • MEG3 regulates retinal endothelial cell function in vitro. • MEG3 regulates endothelial cell function through PI3k/Akt signaling.

  2. Diabetes preventive gluten-free diet decreases the number of caecal bacteria in non-obese diabetic mice

    DEFF Research Database (Denmark)

    Hansen, Axel Kornerup; Ling, Fenjung; Anne, Kaas

    2006-01-01

    disease prevention. Methods Two groups of NOD mice from the age of 3 weeks were fed either a gluten-free diet or a standard diet. Each diabetic mouse, when diagnosed, along with a non-diabetic mouse from the same diet group and two nondiabetic mice from the alternate diet group were euthanized and sampled...... qualitatively and quantitatively substantially altered the composition of the caecal bacterial flora in NOD mice. Although Gram-positive bacteria might influence the beta cells through certain digestive products, it is more likely to assume that any effect on diabetes incidence is immunological. Copyright (c...

  3. Effects of black hoof medicinal mushroom, phellinus linteus (Agaricomycetes), polysaccharide extract in streptozotocin-induced diabetic rats

    NARCIS (Netherlands)

    Yamaç, Mustafa; Zeytinoğlu, Melih; Şentürk, Hakan; Kartkaya, Kazim; Kanbak, Göngör; Bayramoğlu, Gökhan; Oğlakci, Ayşegül; Griensven, van Leo J.L.D.

    2016-01-01

    In this article we report the healing effects of a Phellinus linteus fruiting body hot water extract (PLE) in streptozotocin (STZ)–induced diabetic rats. PLE was given before and after STZ. The preprotective, protective, and postprotective effects of PLE on STZ-induced oxidative stress were

  4. The dual role of scavenger receptor class A in development of diabetes in autoimmune NOD mice.

    Directory of Open Access Journals (Sweden)

    Mami Shimizu

    Full Text Available Human type 1 diabetes is an autoimmune disease that results from the autoreactive destruction of pancreatic β cells by T cells. Antigen presenting cells including dendritic cells and macrophages are required to activate and suppress antigen-specific T cells. It has been suggested that antigen uptake from live cells by dendritic cells via scavenger receptor class A (SR-A may be important. However, the role of SR-A in autoimmune disease is unknown. In this study, SR-A-/- nonobese diabetic (NOD mice showed significant attenuation of insulitis, lower levels of insulin autoantibodies, and suppression of diabetes development compared with NOD mice. We also found that diabetes progression in SR-A-/- NOD mice treated with low-dose polyinosinic-polycytidylic acid (poly(I:C was significantly accelerated compared with that in disease-resistant NOD mice treated with low-dose poly(I:C. In addition, injection of high-dose poly(I: C to mimic an acute RNA virus infection significantly accelerated diabetes development in young SR-A-/- NOD mice compared with untreated SR-A-/- NOD mice. Pathogenic cells including CD4+CD25+ activated T cells were increased more in SR-A-/- NOD mice treated with poly(I:C than in untreated SR-A-/- NOD mice. These results suggested that viral infection might accelerate diabetes development even in diabetes-resistant subjects. In conclusion, our studies demonstrated that diabetes progression was suppressed in SR-A-/- NOD mice and that acceleration of diabetes development could be induced in young mice by poly(I:C treatment even in SR-A-/- NOD mice. These results suggest that SR-A on antigen presenting cells such as dendritic cells may play an unfavorable role in the steady state and a protective role in a mild infection. Our findings imply that SR-A may be an important target for improving therapeutic strategies for type 1 diabetes.

  5. Radon inhalation suppresses nephropathy in streptozotocin-induced type-1 diabetic mice

    International Nuclear Information System (INIS)

    Nishiyama, Yuichi; Kataoka, Takahiro; Yamato, Keiko; Etani, Reo; Taguchi, Takehito; Yamaoka, Kiyonori

    2016-01-01

    In this study, we investigated the suppressive effects of radon inhalation against nephropathy in C57BL/6J mice with type-1 diabetes induced by intraperitoneal injection of streptozotocin (50 mg/kg weight, given five times). Four weeks after diabetes induction, the diabetic mice were continuously treated with inhaled radon-222 of 2000 Bq/m3 or air only (sham) for four weeks. The results showed that radon inhalation did not affect type-1 diabetic symptoms such as body weight loss, hyperglycemia, and hypoinsulinemia. However, diabetic mice treated with radon showed lower urinary albumin excretion and fibrotic change in renal glomeruli compared with diabetic mice not treated with radon. Furthermore, renal superoxide dismutase activity and glutathione content were significantly higher in diabetic mice treated with radon than in diabetic mice not treated with radon. These findings suggested that radon inhalation enhanced renal antioxidants activities, resulting in the suppression of diabetic nephropathy. This study may contribute to the development of a novel approach in the treatment of nephropathy for diabetic patients. (author)

  6. 链脲佐菌素诱导的小鼠糖尿病视网膜病模型及促血管新生分子的表达%Streptozotocin induced diabetic retinopathy in C57 mice and the expression of some pro-angiogenic molecules

    Institute of Scientific and Technical Information of China (English)

    余增洋; 陆宾; 龚陈媛; 季莉莉

    2016-01-01

    AIM: To estabIish the mice modeI of streptozotocin (STZ)-induced proIiferative diabetic retinopathy (PDR), and observe the aItered expression of some pro -angiogenic moIecuIes such as vascuIar endotheIiaI growth factor (VEGF) and its receptors (VEGFR1 and VEGFR2), and matrix metaIIoproteinase ( MMP2 and MMP9 ) during the deveIopment of PDR. METHODS:C57BL/6J mice were intraperitoneaI injected with STZ (55 mg/kg) for 5 consecutive days, and bIood gIucose concentrations were measured after 7d of the injection. The diabetic mice were further housed for 3, 4, 5mo respectiveIy after the deveIopment of diabetes. HistoIogicaI evaIuation of retinas was performed. The retinaI vesseIs were detected by immunofIuorescence staining with the cIuster of differentiation 31 ( CD31 ) . The mRNA expression of VEGF, VEGFR1, VEGFR2, MMP2 and MMP9 in mice retinas was detected by ReaI-time PCR anaIysis. RESULTS: RetinaI histoIogicaI observation and CD31 staining both demonstrate that there are more vesseIs in diabetic mice than in normaI controI mice at 5mo after the deveIopment of diabetes. As compared with normaI controI, the mRNA expression of VEGF, VEGFR1, VEGFR2, MMP2 and MMP9 are aII increased in diabetic mice at 5mo after the deveIopment of diabetes. CONCLUSION: This study demonstrates that PDR is occurred at 5mo after the deveIopment of diabetes in STZ-induced diabetic mice. In addition, the mRNA expression of VEGF, VEGFR1, VEGFR2, MMP2 and MMP9 are aII increased after the deveIopment of PDR.%目的::建立链脲佐菌素( streptozotocin, STZ)诱导的小鼠增殖性糖尿病视网膜病( proliferative diabetic retinopathy, PDR)动物模型,并观察在增殖性糖尿病视网膜病发生、发展过程中血管内皮生长因子( vascular endothelial growth factor, VEGF)及其受体(VEGFR1, VEGFR2),金属基质蛋白酶(matrix metalloproteinase, MMP)2, MMP9表达的变化。方法:C57 BL/6 J小鼠连续5 d腹腔注射STZ (55 mg/kg )。末次注射后7d检测血糖浓度。

  7. [Red Blood Cells Raman Spectroscopy Comparison of Type Two Diabetes Patients and Rats].

    Science.gov (United States)

    Wang, Lei; Liu, Gui-dong; Mu, Xin; Xiao, Hong-bin; Qi, Chao; Zhang, Si-qi; Niu Wen-ying; Jiang, Guang-kun; Feng, Yue-nan; Bian, Jing-qi

    2015-10-01

    By using confocal Raman spectroscopy, Raman spectra were measured in normal rat red blood cells, normal human red blood cells, STZ induced diabetetic rats red blood cells, Alloxan induced diabetetic rats red blood cells and human type 2 diabetes red blood cells. Then principal component analysis (PCA) with support vector machine (SVM) classifier was used for data analysis, and then the distance between classes was used to judge the degree of close to two kinds of rat model with type 2 diabetes. The results found significant differences in the Raman spectra of red blood cell in diabetic and normal red blood cells. To diabetic red blood cells, the peak in the amide VI C=O deformation vibration band is obvious, and amide V N-H deformation vibration band spectral lines appear deviation. Belong to phospholipid fatty acyl C-C skeleton, the 1 130 cm(-1) spectral line is enhanced and the 1 088 cm(-1) spectral line is abated, which show diabetes red cell membrane permeability increased. Raman spectra of PCA combined with SVM can well separate 5 types of red blood cells. Classifier test results show that the classification accuracy is up to 100%. Through the class distance between the two induced method and human type 2 diabetes, it is found that STZ induced model is more close to human type 2 diabetes. In conclusion, Raman spectroscopy can be used for diagnosis of diabetes and rats STZ induced diabetes method is closer to human type 2 diabetes.

  8. Black Seed Thymoquinone Improved Insulin Secretion, Hepatic Glycogen Storage, and Oxidative Stress in Streptozotocin-Induced Diabetic Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Heba M. A. Abdelrazek

    2018-01-01

    Full Text Available Diabetes mellitus is one of the metabolic diseases having several complications. Nigella sativa oil (NSO might have beneficial effects in the treatment of diabetic complications. Thirty-two mature male Wistar rats were equally divided into four experimental groups: control, control NSO 2 mL/kg, streptozotocin- (STZ- induced diabetic, and diabetic (STZ-induced treated with oral NSO 2 mg/kg for 30 days. Fasting blood glucose (FBG, insulin, and lipid profile levels were determined. Pancreatic and hepatic tissues were used for catalase and GSH. Histopathology, hepatic glycogen contents, insulin immunohistochemistry, and pancreatic islet morphometry were performed. NSO 2 mL/kg was noticed to decrease (P<0.05 FBG and increase (P<0.05 insulin levels in diabetic rats than in diabetic nontreated animals. Lipid profile showed significant (P<0.5 improvement in diabetic rats that received NSO 2 mL/kg than in the diabetic group. Both pancreatic and hepatic catalase and GSH activities revealed a significant (P<0.05 increment in the diabetic group treated with NSO than in the diabetic animals. NSO improved the histopathological picture and hepatic glycogen contents of the diabetic group as well as increased (P<0.05 insulin immunoreactive parts % and mean pancreatic islet diameter. NSO exerts ameliorative and therapeutic effects on the STZ-induced diabetic male Wistar rats.

  9. Activation of α7nAChR Promotes Diabetic Wound Healing by Suppressing AGE-Induced TNF-α Production.

    Science.gov (United States)

    Dong, Miao-Wu; Li, Ming; Chen, Jie; Fu, Tong-Tong; Lin, Ke-Zhi; Ye, Guang-Hua; Han, Jun-Ge; Feng, Xiang-Ping; Li, Xing-Biao; Yu, Lin-Sheng; Fan, Yan-Yan

    2016-04-01

    Diabetes frequently presents accumulation of advanced glycation end products (AGEs), which might induce excessive TNF-α production from macrophages to cause impaired wound healing. Recent studies have shown that activation of α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages efficiently suppressed TNF-α synthesis. The aim of this study was to investigate the accumulation of AGEs in the wounds and determine whether PNU282987, an α7nAChR agonist, can improve wound repair by inhibiting AGE-mediated TNF-α production in a streptozotocin (STZ)-induced diabetic mouse model. Animals were assigned into four groups: wounded control group, wounded diabetic group, wounded diabetic group treated intraperitoneally with PNU282987, or wounded diabetic group treated intraperitoneally with vehicle. Compared with the non-diabetic control mice, the diabetic mice exhibited delayed wound healing that was characterized by elevated accumulation of AGEs, increased TNF-α level and macrophage infiltration, and decreased fibroblast number and collagen deposition at the late stage of repair. Besides, macrophages of diabetic wounds showed expression of α7nAChR. During late repair, PNU282987 treatment of diabetic mice significantly reduced the level of TNF-α, accelerated wound healing, and elevated fibroblast number and collagen deposition. To investigate the cellular mechanism of these observations, RAW 264.7 cells, a macrophage cell line, were incubated with AGEs in the presence or absence of PNU282987. TNF-α production from AGE-stimulated macrophages was significantly decreased by PNU282987 in a dose-dependent manner. Furthermore, PNU282987 significantly inhibited AGE-induced nuclear factor-κB (NF-κB) activation and receptor for AGE (RAGE) expression. These results strongly suggest that activating α7nAChR can promote diabetic wound healing by suppressing AGE-induced TNF-α production, which may be closely associated with the blockage of NF-κB activation in macrophages.

  10. Endothelial arginine resynthesis contributes to the maintenance of vasomotor function in male diabetic mice.

    Directory of Open Access Journals (Sweden)

    Ramesh Chennupati

    Full Text Available Argininosuccinate synthetase (ASS is essential for recycling L-citrulline, the by-product of NO synthase (NOS, to the NOS substrate L-arginine. Here, we assessed whether disturbed arginine resynthesis modulates endothelium-dependent vasodilatation in normal and diabetic male mice.Endothelium-selective Ass-deficient mice (Assfl/fl/Tie2Cretg/- = Ass-KOTie2 were generated by crossing Assfl/fl mice ( = control with Tie2Cre mice. Gene ablation in endothelial cells was confirmed by immunohistochemistry. Blood pressure (MAP was recorded in 34-week-old male mice. Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Ass-KOTie2 and control animals. At the age of 10 weeks, diabetes was induced in control and Ass-KOTie2 mice by streptozotocin injections. Vasomotor responses of diabetic animals were studied 10 weeks later. MAP was similar in control and Ass-KOTie2 mice. Depletion of circulating L-arginine by arginase 1 infusion or inhibition of NOS activity with L-NAME resulted in an increased MAP (10 and 30 mmHg, respectively in control and Ass-KOTie2 mice. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in healthy control and Ass-KOTie2 mice. However, in diabetic Ass-KOTie2 mice, relaxation responses to acetylcholine and endothelium-derived NO (EDNO were significantly reduced when compared to diabetic control mice.Absence of endothelial citrulline recycling to arginine did not affect blood pressure and systemic arterial vasomotor responses in healthy mice. EDNO-mediated vasodilatation was significantly more impaired in diabetic Ass-KOTie2 than in control mice demonstrating that endothelial arginine recycling becomes a limiting endothelial function in diabetes.

  11. Diabetes preventive gluten-free diet decreases the number of caecal bacteria in non-obese diabetic mice

    Czech Academy of Sciences Publication Activity Database

    Hansen, A. K.; Ling, F.; Kaas, A.; Funda, David P.; Farlov, H.; Buschard, K.

    2006-01-01

    Roč. 22, - (2006), s. 220-225 ISSN 1520-7552 R&D Projects: GA AV ČR IAA5020405 Institutional research plan: CEZ:AV0Z50200510 Keywords : type 1 diabetes mellitus * non-obese diabetic mice * gluten Subject RIV: EE - Microbiology, Virology Impact factor: 2.551, year: 2006

  12. Early-Onset Diabetic E1-DN Mice Develop Albuminuria and Glomerular Injury Typical of Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Mervi E. Hyvönen

    2015-01-01

    Full Text Available The transgenic E1-DN mice express a kinase-negative epidermal growth factor receptor in their pancreatic islets and are diabetic from two weeks of age due to impaired postnatal growth of β-cell mass. Here, we characterize the development of hyperglycaemia-induced renal injury in the E1-DN mice. Homozygous mice showed increased albumin excretion rate (AER at the age of 10 weeks; the albuminuria increased over time and correlated with blood glucose. Morphometric analysis of PAS-stained histological sections and electron microscopy images revealed mesangial expansion in homozygous E1-DN mice, and glomerular sclerosis was observed in the most hyperglycaemic mice. The albuminuric homozygous mice developed also other structural changes in the glomeruli, including thickening of the glomerular basement membrane and widening of podocyte foot processes that are typical for diabetic nephropathy. Increased apoptosis of podocytes was identified as one mechanism contributing to glomerular injury. In addition, nephrin expression was reduced in the podocytes of albuminuric homozygous E1-DN mice. Tubular changes included altered epithelial cell morphology and increased proliferation. In conclusion, hyperglycaemic E1-DN mice develop albuminuria and glomerular and tubular injury typical of human diabetic nephropathy and can serve as a new model to study the mechanisms leading to the development of diabetic nephropathy.

  13. Characterization and comparison of SGLT2 inhibitors: Part 3. Effects on diabetic complications in type 2 diabetic mice.

    Science.gov (United States)

    Tahara, Atsuo; Takasu, Toshiyuki; Yokono, Masanori; Imamura, Masakazu; Kurosaki, Eiji

    2017-08-15

    In this study, we investigated and compared the effects of all six sodium-glucose cotransporter (SGLT) 2 inhibitors commercially available in Japan on diabetes-related diseases and complications in type 2 diabetic mice. Following 4-week repeated administration to diabetic mice, all SGLT2 inhibitors showed significant improvement in diabetes-related diseases and complications, including obesity; abnormal lipid metabolism; steatohepatitis; inflammation; endothelial dysfunction; and nephropathy. While all SGLT2 inhibitors exerted comparable effects in reducing hyperglycemia, improvement of these diabetes-related diseases and complications was more potent with the two long-acting drugs (ipragliflozin and dapagliflozin) than with the four intermediate-acting four drugs (tofogliflozin, canagliflozin, empagliflozin, and luseogliflozin), albeit without statistical significance. These findings demonstrate that SGLT2 inhibitors alleviate various diabetic pathological conditions in type 2 diabetic mice, and suggest that SGLT2 inhibitors, particularly long-acting drugs, might be useful not only for hyperglycemia but also in diabetes-related diseases and complications, including nephropathy in type 2 diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Portulaca oleracea Ameliorates Diabetic Vascular Inflammation and Endothelial Dysfunction in db/db Mice

    Science.gov (United States)

    Lee, An Sook; Lee, Yun Jung; Lee, So Min; Yoon, Jung Joo; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Type 2 diabetes is associated with significantly accelerated rates of micro- and macrovascular complications such as diabetic vascular inflammation and endothelial dysfunction. In the present study, we investigated the protective effect of the aqueous extract of Portulaca oleracea L. (AP), an edible plant used as a folk medicine, on diabetic vascular complications. The db/db mice were treated with AP (300 mg/kg/day, p.o.) for 10 weeks, and AP treatment markedly lowered blood glucose, plasma triglyceride, plasma level of LDL-cholesterol, and systolic blood pressure in diabetic db/db mice. Furthermore, AP significantly increased plasma level of HDL-cholesterol and insulin level. The impairment of ACh- and SNP-induced vascular relaxation of aortic rings were ameliorated by AP treatment in diabetic db/db mice. This study also showed that overexpression of VCAM-1, ICAM-1, E-selectin, MMP-2, and ET-1 were observed in aortic tissues of untreated db/db mice, which were significantly suppressed by treatment with AP. We also found that the insulin immunoreactivity of the pancreatic islets remarkably increased in AP treated db/db mice compared with untreated db/db mice. Taken together, AP suppresses hyperglycemia and diabetic vascular inflammation, and prevents the development of diabetic endothelial dysfunction for the development of diabetes and its vascular complications. PMID:22474522

  15. Neuronal human BACE1 knockin induces systemic diabetes in mice.

    Science.gov (United States)

    Plucińska, Kaja; Dekeryte, Ruta; Koss, David; Shearer, Kirsty; Mody, Nimesh; Whitfield, Phillip D; Doherty, Mary K; Mingarelli, Marco; Welch, Andy; Riedel, Gernot; Delibegovic, Mirela; Platt, Bettina

    2016-07-01

    β-Secretase 1 (BACE1) is a key enzyme in Alzheimer's disease pathogenesis that catalyses the amyloidogenic cleavage of amyloid precursor protein (APP). Recently, global Bace1 deletion was shown to protect against diet-induced obesity and diabetes, suggesting that BACE1 is a potential regulator of glucose homeostasis. Here, we investigated whether increased neuronal BACE1 is sufficient to alter systemic glucose metabolism, using a neuron-specific human BACE1 knockin mouse model (PLB4). Glucose homeostasis and adiposity were determined by glucose tolerance tests and EchoMRI, lipid species were measured by quantitative lipidomics, and biochemical and molecular alterations were assessed by western blotting, quantitative PCR and ELISAs. Glucose uptake in the brain and upper body was measured via (18)FDG-PET imaging. Physiological and molecular analyses demonstrated that centrally expressed human BACE1 induced systemic glucose intolerance in mice from 4 months of age onward, alongside a fatty liver phenotype and impaired hepatic glycogen storage. This diabetic phenotype was associated with hypothalamic pathology, i.e. deregulation of the melanocortin system, and advanced endoplasmic reticulum (ER) stress indicated by elevated central C/EBP homologous protein (CHOP) signalling and hyperphosphorylation of its regulator eukaryotic translation initiation factor 2α (eIF2α). In vivo (18)FDG-PET imaging further confirmed brain glucose hypometabolism in these mice; this corresponded with altered neuronal insulin-related signalling, enhanced protein tyrosine phosphatase 1B (PTP1B) and retinol-binding protein 4 (RBP4) levels, along with upregulation of the ribosomal protein and lipid translation machinery. Increased forebrain and plasma lipid accumulation (i.e. ceramides, triacylglycerols, phospholipids) was identified via lipidomics analysis. Our data reveal that neuronal BACE1 is a key regulator of metabolic homeostasis and provide a potential mechanism for the high

  16. Interleukin-6 stimulates Akt and p38 MAPK phosphorylation and fibroblast migration in non-diabetic but not diabetic mice.

    Directory of Open Access Journals (Sweden)

    Tsubame Nishikai-Yan Shen

    Full Text Available Persistent inflammatory environment and abnormal macrophage activation are characteristics of chronic diabetic wounds. Here, we attempted to characterize the differences in macrophage activation and temporal variations in cytokine expression in diabetic and non-diabetic wounds, with a focus on interleukin (IL-6 mRNA expression and the p38 MAPK and PI3K/Akt signaling pathways. Cutaneous wound closure, CD68- and arginase-1 (Arg-1-expressing macrophages, and cytokine mRNA expression were examined in non-diabetic and streptozotocin-induced type 1 diabetic mice at different time points after injury. The effect of IL-6 on p38 MAPK and Akt phosphorylation was investigated, and an in vitro scratch assay was performed to determine the role of IL-6 in primary skin fibroblast migration. Before injury, mRNA expression levels of the inflammatory markers iNOS, IL-6, and TNF-α were higher in diabetic mice; however, IL-6 expression was significantly lower 6 h post injury in diabetic wounds than that in non-diabetic wounds. Non-diabetic wounds exhibited increased p38 MAPK and Akt phosphorylation; however, no such increase was found in diabetic wounds. In fibroblasts from non-diabetic mice, IL-6 increased the phosphorylation of p38 MAPK and levels of its downstream factor CREB, and also significantly increased Akt phosphorylation and levels of its upstream factor P13K. These effects of IL-6 were not detected in fibroblasts derived from the diabetic mice. In scratch assays, IL-6 stimulated the migration of primary cultured skin fibroblasts from the non-diabetic mice, and the inhibition of p38 MAPK was found to markedly suppress IL-6-stimulated fibroblast migration. These findings underscore the critical differences between diabetic and non-diabetic wounds in terms of macrophage activation, cytokine mRNA expression profile, and involvement of the IL-6-stimulated p38 MAPK-Akt signaling pathway. Aberrant macrophage activation and abnormalities in the cytokine m

  17. Effects of low-dose rate irradiation on two types of type II diabetes model mice

    International Nuclear Information System (INIS)

    Nomura, Takaji; Sakai, Kazuo

    2004-01-01

    The effects of low-dose rate gamma-irradiation were investigated in two mouse strains - C57BL/KsJ-db/db (db mouse) and AKITA (AKITA mouse)-for type II diabetes mellitus. Both strains develop the developed type II diabetes by about 8 weeks of age due to dysfunction of the insulin/insulin receptor. The db Mouse' shows obese and exhibits hyperinsulinism, and the onset of Type II diabetes like resembles that for Westerners. On the other hand, the AKITA mouse has exhibits disordered insulin secretion, and the diabetes such as resembles that of Asians. Ten-week old female mice, in groups of 8 or 12, were irradiated at 0.65 mGy/hr in the low-dose rate irradiation facility in the Low Dose Radiation Research Center. The level of urine glucose was measured with test slips. The urine glucose levels of all of the mice were highly elevated the beginning of the irradiation. In the irradiated group of db mice, three mice showed decrease in glucose level compare to the level of non-irradiated diabetes mice after 35, 52 or 80 weeks of irradiation. All had maintained a normal level thereafter. No such improvement in diabetes was ever observed in the 12 mice of in the non-irradiated control group. The AKITA mice, however, did not decrease the glucose level regardless of the irradiation. Both the db mice and AKITA mice had their lives prolonged their life by the irradiation. The survival rate of db mice at the age of 90 weeks was 75% in the irradiated group, but 50% in the non-irradiated group. The average life span was 104 weeks in the irradiated group and 87 weeks in the control group. Furthermore, a marked difference was furthermore observed in the appearance of the coat hair, skin, and tail; appearances were well preserved in the irradiated group. The average life span in the irradiated AKITA mice was also longer than that for the non-irradiated mice, 51 weeks and 41 weeks in the irradiated and non-irradiated group respectively. These results suggest that the low-dose irradiation

  18. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Seung Hwan Hwang

    2017-01-01

    Full Text Available The objective of the present study was to evaluate α-glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE and Nopal dry power (NADP in low-dose streptozotocin- (STZ- induced diabetic rats fed a high-fat diet (HFD. The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1 nondiabetic rats fed a regular diet (RD-Control; (2 low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control; (3 low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE; and (4 low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone. In results, NPWE and NADP had IC50 values of 67.33 and 86.68 μg/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05 μg/mL while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model (P<0.05. Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower (P<0.05 than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement.

  19. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica) in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet.

    Science.gov (United States)

    Hwang, Seung Hwan; Kang, Il-Jun; Lim, Soon Sung

    2017-01-01

    The objective of the present study was to evaluate α -glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE) and Nopal dry power (NADP) in low-dose streptozotocin- (STZ-) induced diabetic rats fed a high-fat diet (HFD). The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1) nondiabetic rats fed a regular diet (RD-Control); (2) low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control); (3) low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE); and (4) low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone). In results, NPWE and NADP had IC 50 values of 67.33 and 86.68  μ g/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05  μ g/mL) while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model ( P < 0.05). Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower ( P < 0.05) than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement.

  20. Improvement of diabetes, obesity and hypertension in type 2 diabetic KKAy mice by bis(allixinato)oxovanadium(IV) complex

    International Nuclear Information System (INIS)

    Adachi, Yusuke; Yoshikawa, Yutaka; Yoshida, Jiro; Kodera, Yukihiro; Katoh, Akira; Takada, Jitsuya; Sakurai, Hiromu

    2006-01-01

    Previously, we found that bis(allixinato)oxovanadium(IV) (VO(alx) 2 ) exhibits a potent hypoglycemic activity in type 1-like diabetic mice. Since the enhancement of insulin sensitivity is involved in one of the mechanisms by which vanadium exerts its anti-diabetic effects, VO(alx) 2 was further tested in type 2 diabetes with low insulin sensitivity. The effect of oral administration of VO(alx) 2 was examined in obesity-linked type 2 diabetic KKA y mice. Treatment of VO(alx) 2 for 4 weeks normalized hyperglycemia, glucose intolerance, hyperinsulinemia, hypercholesterolemia and hypertension in KKA y mice; however, it had no effect on hypoadiponectinemia. VO(alx) 2 also improved hyperleptinemia, following attenuation of obesity in KKA y mice. This is the first example in which a vanadium compound improved leptin resistance in type 2 diabetes by oral administration. On the basis of these results, VO(alx) 2 is proposed to enhance not only insulin sensitivity but also leptin sensitivity, which in turn improves diabetes, obesity and hypertension in an obesity-linked type 2 diabetic animal

  1. Prophylactic fenbendazole therapy does not affect the incidence and onset of type 1 diabetes in non-obese diabetic mice.

    Science.gov (United States)

    Franke, Deanna D H; Shirwan, Haval

    2006-03-01

    Fenbendazole (FBZ) is a common, highly efficacious broad-spectrum anthelmintic drug used to treat and limit rodent pinworm infections. However, the effect of its prophylactic use on the immune response of rodents is largely undefined. The non-obese diabetic (NOD) mouse is a model commonly used to study type 1 diabetes (T1D). Parasitic infections will inhibit diabetes development in NOD mice; thus, in the presence of contamination, prophylactic treatment with anthelmintics must be considered to maintain experimental research. Herein, we investigated the prophylactic use of FBZ in NOD mice to determine its effect on the incidence and onset of diabetes, lymphocyte sub-populations and T cell proliferative responses. NOD mice were separated into control and treatment groups. The treatment group received a diet containing FBZ. Animals were monitored for the incidence and onset of T1D. At matched time points, diabetic and non-diabetic mice were killed and splenic lymphocytes analyzed for various cell sub-populations and mitogen-induced proliferative responses using flow cytometry. Treated and control mice were monitored >23 weeks with no detectable effects on the incidence or onset of diabetes. Moreover, no significant differences were detected in lymphocyte sub-populations and mitogen-induced CD4(+) and CD8(+) proliferative responses between control and treatment groups. These results suggest that prophylactic FBZ treatment does not significantly alter the incidence or onset of diabetes in NOD mice. The prophylactic use of FBZ, therefore, presents a viable approach for the prevention of pinworm infection in precious experimental animals with substantial scientific and economic benefits.

  2. GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice

    DEFF Research Database (Denmark)

    Jolivalt, CG; Fineman, M; Deacon, Carolyn F.

    2011-01-01

    not affect blood sugar, insulin levels or paw thermal response latencies in either control or diabetic mice. However, the reductions of motor nerve conduction velocity and paw intraepidermal fibre density seen in diabetic mice were attenuated by exenatide treatment. Conclusions: These data show...... that the peripheral nerve of diabetic rodents exhibits functional GLP-1R and suggest that GLP-1R-mediated ERK-signalling in sciatic nerve of diabetic rodents may protect large motor fibre function and small C fibre structure by a mechanism independent of glycaemic control....

  3. Comparative Anti-Diabetic Evaluation of Different Parts of Himalrandia tetrasperma in Alloxan Induced Diabetic in Mice

    International Nuclear Information System (INIS)

    Ajaib, M.

    2016-01-01

    The present experiments were designed to investigate the acute effects of methanolic extracts of various parts of H. tetrasperma in diabetic mice. The basic phyto-chemical study showed the occurrence of alkaloids, saponins, flavonoids and tannins as main phyto-constituents in the methanolic extract. Diabetes was induced experimentally in mice by intra peritoneally injecting alloxan (150 mg/kg i.p.). In acute study, methanolic H. tetrasperma extracts of various parts of plant were evaluated for anti-diabetic potential in alloxan induced diabetic mice. Extracts of leaves, bark and seeds (250 mg/kg, i.p) and metformin (250 mg/kg i.p) were given intra peritoneal in alloxan treated diabetic mice and blood glucose levels were measured at 0, 360 and 24 h. There was significant lowering of blood glucose level at 1 h after treatment, in diabetic mice treated with methanolic extracts of bark (182.3 ± 3.6 mg/dL), leaves (178.5 ± 1.2 mg/dL) and seeds (156.3 ± 11.3 mg/dL) when compared with control diabetic group (280 ± 7.92 mg/dL). Highly significant results were also obtained at 24 h after treatment with methanolic extracts of bark (187.67 ±1.2 mg/dL), leaves (170.66 ± 2.3 mg/dL) and seeds (142 ± 8.7 mg/dL) when compared with control diabetic group (257.7 ± 6.7 mg/dL). It is concluded that methanolic extract of all parts possess significant anti-diabetic activity which is due to the presence of phytochemicals, i.e. alkaloids, flavonoids, phenols, saponins, tannins and it can be further evaluated for the mechanism involved. (author)

  4. Lacking Ketohexokinase-A Exacerbates Renal Injury in Streptozotocin-induced Diabetic Mice.

    Science.gov (United States)

    Doke, Tomohito; Ishimoto, Takuji; Hayasaki, Takahiro; Ikeda, Satsuki; Hasebe, Masako; Hirayama, Akiyoshi; Soga, Tomoyoshi; Kato, Noritoshi; Kosugi, Tomoki; Tsuboi, Naotake; Lanaspa, Miguel A; Johnson, Richard J; Kadomatsu, Kenji; Maruyama, Shoichi

    2018-03-28

    Ketohexokinase (KHK), a primary enzyme in fructose metabolism, has two isoforms, namely, KHK-A and KHK-C. Previously, we reported that renal injury was reduced in streptozotocin-induced diabetic mice which lacked both isoforms. Although both isoforms express in kidney, it has not been elucidated whether each isoform plays distinct roles in the development of diabetic kidney disease (DKD). The aim of the study is to elucidate the role of KHK-A for DKD progression. Diabetes was induced by five consecutive daily intraperitoneal injections of streptozotocin (50 mg/kg) in C57BL/6 J wild-type mice, mice lacking KHK-A alone (KHK-A KO), and mice lacking both KHK-A and KHK-C (KHK-A/C KO). At 35 weeks, renal injury, inflammation, hypoxia, and oxidative stress were examined. Metabolomic analysis including polyol pathway, fructose metabolism, glycolysis, TCA (tricarboxylic acid) cycle, and NAD (nicotinamide adenine dinucleotide) metabolism in kidney and urine was done. Diabetic KHK-A KO mice developed severe renal injury compared to diabetic wild-type mice, and this was associated with further increases of intrarenal fructose, dihydroxyacetone phosphate (DHAP), TCA cycle intermediates levels, and severe inflammation. In contrast, renal injury was prevented in diabetic KHK-A/C KO mice compared to both wild-type and KHK-A KO diabetic mice. Further, diabetic KHK-A KO mice contained decreased renal NAD + level with the increase of renal hypoxia-inducible factor 1-alpha expression despite having increased renal nicotinamide (NAM) level. These results suggest that KHK-C might play a deleterious role in DKD progression through endogenous fructose metabolism, and that KHK-A plays a unique protective role against the development of DKD. Copyright © 2018. Published by Elsevier Inc.

  5. Effect of visfatin on lipid profile of obese and diabetic mice

    International Nuclear Information System (INIS)

    Naz, R.; Hussain, M.M.; Aslam, M.

    2012-01-01

    Objective: To determine the effect of visfatin on blood lipid levels in balb/c strain of albino mice. Design: Quasi experimental study. Place and duration of study: The study was carried out at the department of Physiology, Army Medical College, Rawalpindi and National Institute of Health Sciences, Islamabad from April to December 2007. Material and Methods: One hundred and twenty balb/c strain albino mice were procured from NIH, Islamabad. After taking base line blood samples, mice were divided randomly into four groups. Animals in groups I and II were made obese by feeding high fat / high carbohydrate diet whereas mice in Groups III and IV were induced diabetes mellitus by injecting streptozotocin. Groups I (obese) and III (diabetic) served as controls whereas groups II (obese treated) and IV (diabetic treated) were administered visfatin injection. Terminal intracardiac blood sample was used to measure the serum lipid and visfatin levels. Results: Serum lipid levels were found increased in obese and diabetic groups as compared to healthy mice. The administration of recombinant-histidine soluble (mice) visfatin significantly (p< 0.01) decreased the serum lipid levels with concomitant increase in HDL levels (p< 0.01) in obese and diabetic groups of mice and were comparable with baseline normal values of healthy controls. Conclusion: Visfatin is a potential antilipidemic adipocytokine that probably modulates insulin sensitivity and decreases atherogenic lipids (triglycerides, cholesterol, LDL and VLDL) with concomitant increase in HDL in obesity and diabetes mellitus. (author)

  6. Evaluation of the Effects of Novel Nafimidone Derivatives on Thermal Hypoalgesia in Mice with Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Suat Kamışlı

    2013-03-01

    Full Text Available Objective: Diabetic neuropathy (DN is a common complication in Diabetes Mellitus. The streptozotocin-induced diabetic rodent is the most commonly used animal model of diabetes and increased sodium channel expression and activity were revealed in this model. At this study, we evaluated the effect of three different nafimidone derivatives which have possible anticonvulsant activity on disorders of thermal pain sensation in diabetic mice. Study Design: Randomized animal experiment. Material and Methods: Mice were divided randomly into five groups (5 mice per group: Control, Diabetes, Dibetes+C1, Diabetes+C2, Diabetes+C3. We used hot and cold plate, and tail-immersion tests for assessment of thermal nociceptive responses. Results: Compared with the control group, the hot-plate response time and the number of paw liftings on cold plate as important indicators of loss of sensation increased, but no significant difference (p>0.05 was found in tail-immersion response time test in diabetes group. C3 compound moved it back to control group levels in the all of three tests. C1 and C2 compounds were effective only in cold-plate test. Conclusion: Nafimidone derivatives may be effective in the cases where epilepsy and diabetes occur together since it has shown efficacy against “loss of sensation” which evolves in diabetic neuropathy over time as well as its antiepileptic effect.

  7. The protective effect of dietary flavonoid fraction from Acanthophora spicifera on streptozotocin induced oxidative stress in diabetic rats

    Directory of Open Access Journals (Sweden)

    Lavakumar Vuppalapati

    2016-06-01

    Full Text Available The present investigation was considered in arraying of antidiabetic and antioxidant activity from dietary flavonoid loaded fraction of Acanthophora spicifera (A. spicifera, Family: Rhodomelaceae on streptozotocin (STZ induced oxidative stress rats. The testings were acted upon male rats, which were alienated into five groups: control group, diabetic group (single dose of 65 mg/kg, streptozotocin (STZ i.p., diabetic with insulin (6 IU, and diabetic with flavonoid rich fraction groups (FRF at 50 and 100 mg/kg body weight, given orally for 21 days. The blood glucose level was determined at different week intermissions. The antioxidant consequences of FRF on STZ-induced diabetic rats were determined by the estimations of the oxidative stress marker like malonyldialdehyde and antioxidant enzymes such as superoxide dismutase, catalase and glutathione in tissue homogenates of heart, liver and kidney. FRF treatment of diabetic rats significantly (P < 0.05 diminishes the blood glucose altitudes to normal in contrast with diabetic rats. However, FRF administration, significantly decreased the malonyldialdehyde (MDA and increased the activities of superoxide dismutase (SOD, catalase (CAT and glutathione levels (GSH in diabetic rats. The outcome designates that FRF fraction from red algae A. spicifera was potent anti diabetic and antioxidant asset against STZ induced diabetes and oxidative tissue breakups.

  8. Bezafibrate ameliorates diabetes via reduced steatosis and improved hepatic insulin sensitivity in diabetic TallyHo mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-03-01

    Full Text Available Objective: Recently, we have shown that Bezafibrate (BEZ, the pan-PPAR (peroxisome proliferator-activated receptor activator, ameliorated diabetes in insulin deficient streptozotocin treated diabetic mice. In order to study whether BEZ can also improve glucose metabolism in a mouse model for fatty liver and type 2 diabetes, the drug was applied to TallyHo mice. Methods: TallyHo mice were divided into an early (ED and late (LD diabetes progression group and both groups were treated with 0.5% BEZ (BEZ group or standard diet (SD group for 8 weeks. We analyzed plasma parameters, pancreatic beta-cell morphology, and mass as well as glucose metabolism of the BEZ-treated and control mice. Furthermore, liver fat content and composition as well as hepatic gluconeogenesis and mitochondrial mass were determined. Results: Plasma lipid and glucose levels were markedly reduced upon BEZ treatment, which was accompanied by elevated insulin sensitivity index as well as glucose tolerance, respectively. BEZ increased islet area in the pancreas. Furthermore, BEZ treatment improved energy expenditure and metabolic flexibility. In the liver, BEZ ameliorated steatosis, modified lipid composition and increased mitochondrial mass, which was accompanied by reduced hepatic gluconeogenesis. Conclusions: Our data showed that BEZ ameliorates diabetes probably via reduced steatosis, enhanced hepatic mitochondrial mass, improved metabolic flexibility and elevated hepatic insulin sensitivity in TallyHo mice, suggesting that BEZ treatment could be beneficial for patients with NAFLD and impaired glucose metabolism. Keywords: Bezafibrate, Glucose metabolism, Insulin resistance, Lipid metabolism, NAFLD

  9. Endothelial arginine resynthesis contributes to the maintenance of vasomotor function in male diabetic mice

    DEFF Research Database (Denmark)

    Chennupati, Ramesh; Meens, Merlijn J P M T; Marion, Vincent

    2014-01-01

    AIM: Argininosuccinate synthetase (ASS) is essential for recycling L-citrulline, the by-product of NO synthase (NOS), to the NOS substrate L-arginine. Here, we assessed whether disturbed arginine resynthesis modulates endothelium-dependent vasodilatation in normal and diabetic male mice. METHODS...... of endothelial citrulline recycling to arginine did not affect blood pressure and systemic arterial vasomotor responses in healthy mice. EDNO-mediated vasodilatation was significantly more impaired in diabetic Ass-KOTie2 than in control mice demonstrating that endothelial arginine recycling becomes a limiting...... responses were studied in isolated saphenous arteries of 12- and 34-week-old Ass-KOTie2 and control animals. At the age of 10 weeks, diabetes was induced in control and Ass-KOTie2 mice by streptozotocin injections. Vasomotor responses of diabetic animals were studied 10 weeks later. MAP was similar...

  10. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Al-Numair, Khalid S; Chandramohan, Govindasamy; Veeramani, Chinnadurai; Alsaif, Mohammed A

    2015-09-01

    The aim of the present study was to evaluate the protective effect of kaempferol against oxidative stress in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in male, adult albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 days to normal and STZ-induced diabetic rats. The STZ-induced diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes in plasma, liver, kidney, and heart whereas they showed significantly decreased level of plasma insulin. The levels of non-enzymic antioxidants (vitamin C, vitamin E, reduced glutathione) in plasma, liver, kidney, and heart and the activities of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) in liver, kidney, and heart were significantly decreased in diabetic rats. Administration of kaempferol to diabetic rats was showed brought back in plasma glucose, insulin, lipid peroxidation products, enzymatic, and non-enzymatic antioxidants to near normal. The present study indicates that kaempferol has a good antioxidant property, as evidenced by its increase of antioxidant status and decrease of lipid peroxidation markers, thus providing protection from the risks of diabetic complications.

  11. Hypertension is a conditional factor for the development of cardiac hypertrophy in type 2 diabetic mice.

    Directory of Open Access Journals (Sweden)

    Marc van Bilsen

    Full Text Available BACKGROUND: Type 2 diabetes is frequently associated with co-morbidities, including hypertension. Here we investigated if hypertension is a critical factor in myocardial remodeling and the development of cardiac dysfunction in type 2 diabetic db/db mice. METHODS: Thereto, 14-wks-old male db/db mice and non-diabetic db/+ mice received vehicle or angiotensin II (AngII for 4 wks to induce mild hypertension (n = 9-10 per group. Left ventricular (LV function was assessed by serial echocardiography and during a dobutamine stress test. LV tissue was subjected to molecular and (immunohistochemical analysis to assess effects on hypertrophy, fibrosis and inflammation. RESULTS: Vehicle-treated diabetic mice neither displayed marked myocardial structural remodeling nor cardiac dysfunction. AngII-treatment did not affect body weight and fasting glucose levels, and induced a comparable increase in blood pressure in diabetic and control mice. Nonetheless, AngII-induced LV hypertrophy was significantly more pronounced in diabetic than in control mice as assessed by LV mass (increase +51% and +34%, respectively, p<0.01 and cardiomyocyte size (+53% and +31%, p<0.001. This was associated with enhanced LV mRNA expression of markers of hypertrophy and fibrosis and reduced activation of AMP-activated protein kinase (AMPK, while accumulation of Advanced Glycation End products (AGEs and the expression levels of markers of inflammation were not altered. Moreover, AngII-treatment reduced LV fractional shortening and contractility in diabetic mice, but not in control mice. CONCLUSIONS: Collectively, the present findings indicate that type 2 diabetes in its early stage is not yet associated with adverse cardiac structural changes, but already renders the heart more susceptible to hypertension-induced hypertrophic remodeling.

  12. Effect of spent turmeric on kidney glycoconjugates in streptozotocin-induced diabetic rats

    OpenAIRE

    Kumar, Gurusiddaiah Suresh; Salimath, Paramahans Veerayya

    2014-01-01

    Background Curcumin known to have number of medicinal use and masked the fiber containing ukonan like active polysaccharide in turmeric and its pharmacological effect will be addressed on diabetic nephropathy particularly the glycoconjugates of extracellular components viz., glycoproteins and glycosaminoglycans - heparan sulfate (HS). Methods Male Wistar rats were maintained on AIN-76 diet containing 10% spent turmeric and were grouped into control and STZ induced diabetes SFC/TFC and SFD/TFD...

  13. Daintain/AIF-1 (Allograft Inflammatory Factor-1) accelerates type 1 diabetes in NOD mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan-Ying, E-mail: biozyy@163.com [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Huang, Xin-Yuan [College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000 (China); Chen, Zheng-Wang [Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Daintain/AIF-1 is over-expressed in the blood of NOD mice suffering from insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 stimulates white blood cell proliferation in NOD mice. Black-Right-Pointing-Pointer Daintain/AIF-1 increases blood glucose levels and triggers type 1 diabetes. Black-Right-Pointing-Pointer Daintain/AIF-1 accelerates insulitis, while its antibody prevents insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 enhances the levels of nitric oxide in the pancreases of NOD mice. -- Abstract: A large body of experimental evidence suggests that cytokines trigger pancreatic {beta}-cell death in type 1 diabetes mellitus. Daintain/AIF-1 (Allograft Inflammatory Factor-1), a specific marker for activated macrophages, is accumulated in the pancreatic islets of pre-diabetic BB rats. In the present study, we demonstrate that daintain/AIF-1 is released into blood and the levels of daintain/AIF-1 in the blood of type 1 diabetes-prone non-obese diabetic (NOD) mice suffering from insulitis are significantly higher than that in healthy NOD mice. When injected intravenously into NOD mice, daintain/AIF-1 stimulates white blood cell proliferation, increases the concentrations of blood glucose, impairs insulin expression, up-regulates nitric oxide (NO) production in pancreases and accelerates diabetes in NOD mice, while the antibody against daintain/AIF-1 delays or prevents insulitis in NOD mice. These results imply daintain/AIF-1 triggers type 1 diabetes probably via arousing immune cells activation and induction of NO production in pancreas of NOD mice.

  14. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice

    Science.gov (United States)

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-01

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  15. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice.

    Science.gov (United States)

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-04

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  16. The Protective Effects of Oral Low-dose Quercetin on Diabetic Nephropathy in Hypercholesterolemic Mice

    Directory of Open Access Journals (Sweden)

    Isabele Beserra Santos Gomes

    2015-09-01

    Full Text Available Aims: Diabetic nephropathy (DN is one of the major causes of end-stage renal disease, and the incidence of DN is increasing worldwide. Considering our previous report indicating that chronic treatment with oral low-dose quercetin (10 mg/Kg demonstrated renoprotective, anti-oxidative and anti-apoptotic effects in the C57BL/6J model of diabetic nephropathy, we investigated whether this flavonoid could also have beneficial effects in concurrent DN and spontaneous atherosclerosis using the apolipoprotein E-deficient mouse (apoE-/-. Methods: DN was induced by streptozotocin (100 mg/kg/day, for 3 days in adult apoE-/-mice. Six weeks later, the mice were divided into the following groups: diabetic apoE-/- mice treated with quercetin (DQ, 10 mg/kg/day, 4 weeks, diabetic ApoE-/- mice treated with vehicle (DV and non-treated non-diabetic (ND mice.Results: Quercetin treatment caused a reduction in polyuria (~30%, glycemia (~25%, abolished the hypertriglyceridemia and had significant effects on renal function, including decreased proteinuria (~15% and creatininemia (~30%, which were accompanied by beneficial effects on the renal structural changes, including normalization of the index of glomerulosclerosis and kidney weight.Conclusions: Our data revealed that quercetin treatment significantly reduced DN in hypercholesterolemic mice by inducing biochemical and morphological modifications. Thus, this translational study highlights the importance of quercetin as a potential nutraceutical for the management of DN, including in diabetes associated with dyslipidemia.

  17. Functional Deficits Precede Structural Lesions in Mice With High-Fat Diet-Induced Diabetic Retinopathy.

    Science.gov (United States)

    Rajagopal, Rithwick; Bligard, Gregory W; Zhang, Sheng; Yin, Li; Lukasiewicz, Peter; Semenkovich, Clay F

    2016-04-01

    Obesity predisposes to human type 2 diabetes, the most common cause of diabetic retinopathy. To determine if high-fat diet-induced diabetes in mice can model retinal disease, we weaned mice to chow or a high-fat diet and tested the hypothesis that diet-induced metabolic disease promotes retinopathy. Compared with controls, mice fed a diet providing 42% of energy as fat developed obesity-related glucose intolerance by 6 months. There was no evidence of microvascular disease until 12 months, when trypsin digests and dye leakage assays showed high fat-fed mice had greater atrophic capillaries, pericyte ghosts, and permeability than controls. However, electroretinographic dysfunction began at 6 months in high fat-fed mice, manifested by increased latencies and reduced amplitudes of oscillatory potentials compared with controls. These electroretinographic abnormalities were correlated with glucose intolerance. Unexpectedly, retinas from high fat-fed mice manifested striking induction of stress kinase and neural inflammasome activation at 3 months, before the development of systemic glucose intolerance, electroretinographic defects, or microvascular disease. These results suggest that retinal disease in the diabetic milieu may progress through inflammatory and neuroretinal stages long before the development of vascular lesions representing the classic hallmark of diabetic retinopathy, establishing a model for assessing novel interventions to treat eye disease. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. Multiple low-dose radiation prevents type 2 diabetes-induced renal damage through attenuation of dyslipidemia and insulin resistance and subsequent renal inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Minglong Shao

    Full Text Available Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR plays a critical role in attenuating insulin resistance, inflammation and oxidative stress.The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms.Mice were fed with a high-fat diet (HFD, 40% of calories from fat for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured.HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2 expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks.These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance, inflammation and oxidative stress.

  19. Prevention of early cure of type 1 diabetes by intranasal administration of gliadin in NOD mice

    Czech Academy of Sciences Publication Activity Database

    Funda, David P.; Fundová, Petra; Hansen, A. K.; Buschard, K.

    2014-01-01

    Roč. 9, č. 4 (2014) E-ISSN 1932-6203 R&D Projects: GA ČR GA310/09/1640; GA MZd(CZ) NS10340 Institutional support: RVO:61388971 Keywords : gliadin * diabetes * diabetes 1 type * NOD mice Subject RIV: EC - Immunology Impact factor: 3.234, year: 2014

  20. Thujone improves glucose homeostasis in streptozotocin-induced diabetic rats through activation of Akt/GSK-3AND#946; signaling pathway

    OpenAIRE

    Hakam Hasan Alkhateeb

    2015-01-01

    Objective: Thujone, a main constituent of medicinal herbs, has been shown to have antidiabetic properties. Therefore the primary objective of this study was to investigate the mechanism(s) by which thujone ameliorates diabetes and insulin resistance in streptozotocin (STZ)-induced diabetic rats. Methods: Male Sprague-Dawley rats were rendered diabetic by a single intraperitoneal injection of STZ (55 mg/kg). Thereafter, rats were randomly divided into three groups: normal control rats; STZ...

  1. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice.

    Science.gov (United States)

    Horie, Masanori; Miura, Takamasa; Hirakata, Satomi; Hosoyama, Akira; Sugino, Sakiko; Umeno, Aya; Murotomi, Kazutoshi; Yoshida, Yasukazu; Koike, Taisuke

    2017-10-30

    A relationship between type 2 diabetes mellitus (T2DM) and intestinal flora has been suggested since development of analysis technology for intestinal flora. An animal model of T2DM is important for investigation of T2DM. Although there are some animal models of T2DM, a comparison of the intestinal flora of healthy animals with that of T2DM animals has not yet been reported. The intestinal flora of Tsumura Suzuki Obese Diabetes (TSOD) mice was compared with that of Tsumura, Suzuki, Non Obesity (TSNO) mice in the present study. The TSOD mice showed typical type 2 diabetes symptoms, which were high-fat diet-independent. The TSOD and the TSNO mouse models were derived from the same strain, ddY. In this study, we compared the intestinal flora of TSOD mice with that if TSNO mice at 5 and 12 weeks of age. We determined that that the number of operational taxonomic units (OTUs) was significantly higher in the cecum of TSOD mice than in that of TSNO mice. The intestinal flora of the cecum and that of the feces were similar between the TSNO and the TSOD strains. The dominant bacteria in the cecum and feces were of the phyla Firmicutes and Bacteroidetes. However, the content of some bacterial species varied between the two strains. The percentage of Lactobacillus spp. within the general intestinal flora was higher in TSOD mice than in TSNO mice. In contrast, the percentages of order Bacteroidales and family Lachnospiraceae were higher in TSNO mice than in TSOD mice. Some species were observed only in TSOD mice, such as genera Turicibacter and SMB53 (family Clostridiaceae), the percentage of which were 3.8% and 2.0%, respectively. Although further analysis of the metabolism of the individual bacteria in the intestinal flora is essential, genera Turicibacter and SMB53 may be important for the abnormal metabolism of type 2 diabetes.

  2. Early atherosclerosis and vascular inflammation in mice with diet-induced type 2 diabetes

    DEFF Research Database (Denmark)

    Bartels, E D; Bang, C A; Nielsen, L B

    2009-01-01

    and the median lesion area was 8.0 times higher than in fat-fed wild-type mice (P = 0.001). Intracellular adhesion molecule-1 staining of the aortic endothelium was most pronounced in the fat-fed apoB transgenic mice. CONCLUSIONS: Our findings suggest that diet-induced type 2 diabetes causes early......BACKGROUND: Obesity and type 2 diabetes increase the risk of atherosclerosis. It is unknown to what extent this reflects direct effects on the arterial wall or secondary effects of hyperlipidaemia. MATERIALS AND METHODS: The effect of obesity and type 2 diabetes on the development...

  3. Anti-Diabetic Effects of Phenolic Extract from Rambutan Peels (Nephelium lappaceum) in High-Fat Diet and Streptozotocin-Induced Diabetic Mice.

    Science.gov (United States)

    Ma, Qingyu; Guo, Yan; Sun, Liping; Zhuang, Yongliang

    2017-07-26

    Recent studies have shown that rambutan peel phenolic (RPP) extract demonstrate high antioxidant and antiglycation activities in vitro and in vivo. This study further evaluated the anti-diabetic activity of RPP in a mouse model of Type II diabetes induced by streptozotocin combined with high-fat diet. Results showed that RPP increased the body weight and reduced the fasting blood glucose level of the diabetic mice. RPP significantly reduced the serum levels of total cholesterol, triglyceride, creatinine, and glycated serum protein in diabetic mice in a dose-dependent manner. Glycogen content in mice liver was recovered by RPP, which further increased the activity of superoxide dismutase and glutathione peroxidase and reduced lipid peroxidation in diabetic mice. Histological analysis showed that RPP effectively protected the tissue structure of the liver, kidney, and pancreas. In addition, RPP decreased the mesangial index and inhibited the expression of TGF-β in the kidney of diabetic mice.

  4. Correction of protein metabolic disorders by composite extract of Musa paradisiaca and Coccinia indica in streptozotocin-induced diabetic albino rat: an approach through the pancreas.

    Science.gov (United States)

    Mallick, Chhanda; De, Debasis; Ghosh, Debidas

    2009-04-01

    The study focused on the ability of the extracts of Musa paradisiaca and Coccinia indica on protein metabolic disorders in streptozotocin (STZ)-induced diabetes. Wistar strain rats were divided into 6 groups as control, control + composite extract treated, STZ-induced diabetes, diabetic + composite extract treated, composite extract-pretreated diabetes, and composite extract-pretreated diabetes + composite extract treated. Protein metabolic status was assessed by serum levels of urea, uric acid, albumin, and creatinine along with urine urea and albumin levels. Diabetic therapeutic ability was assessed by blood glucose, glycated hemoglobin, and serum insulin levels. Histology of the pancreas, liver, and kidney was evaluated. Indices of protein metabolic disorders were deviated from control in STZ-induced diabetes, which were protected significantly after the treatment of composite extract of M. paradisiaca and C. indica. This protection was more prominent when the extract-pretreated animals were subjected to diabetes induction by STZ. The composite extract has a protective therapeutic effect against diabetes through beta-cell regeneration capacity.

  5. Hypoglycemic effect of DL-aminocarnitine in streptozotocin diabetic mice: inhibition of gluconeogenesis

    International Nuclear Information System (INIS)

    Jenkins, D.L.; Griffith, O.W.

    1986-01-01

    DL-Aminocarnitine and palmitoyl-DL-aminocarnitine are potent, non-covalent inhibitors of carnitine palmitoyl transferase. In both diabetic and non-diabetic fasted mice, DL-aminocarnitine (0.3 mmol/kg) and palmitoyl-DL-aminocarnitine (0.1 mmol/kg) decrease the blood concentration of ketone bodies to levels observed in fed control mice. Both carnitine palmitoyltransferase inhibitors also normalize plasma glucose levels in diabetic mice. The hypoglycemic effect is maximal at 8 hours, the continues for at least 12 hours. In the present studies the authors have used [ 14 C]alanine, a pyruvate precursor, to prove the effect of aminocarnitine on gluconeogenesis. Diabetic mice given L-[U- 14 C]alanine (1 mmol/kg) by intraperitoneal injection convert 10-15% of the administered dose to [ 14 C]glucose after 10 min; less than 0.1% of the radioactivity is recovered in glycogen. If 0.3 mmol/kg aminocarnitine is given subcutaneously 1 hr prior to giving [ 14 C]analine, the radioactivity recovered in plasma glucose is reduced by approximately 40%. The authors conclude that the hypoglycemic effect of DL-aminocarnitine in diabetic mice is due, at least in part, to inhibition of gluconeogenesis. The possibility that aminocarnitine also stimulates glucose utilization in diabetic animals is not excluded

  6. Preventive effects of andrographolide on the development of diabetes in autoimmune diabetic NOD mice by inducing immune tolerance.

    Science.gov (United States)

    Zhang, Chengliang; Gui, Ling; Xu, Yanjiao; Wu, Tao; Liu, Dong

    2013-08-01

    Andrographolide, an active component in traditional anti-diabetic herbal plants, is a diterpenoid lactone isolated from Andrographis paniculata because of its potent anti-inflammatory and hypoglycemic effects. However, the effect of andrographolide on the development of diabetes in autoimmune non-obese diabetic (NOD) mice remains unknown. This study aimed to investigate the protective effects of andrographolide on the development of autoimmune diabetes and clarify the underlying mechanism. NOD mice were randomly divided into four groups and administered with water and andrographolide at 50, 100, and 150mg/kg body weight for four weeks. ICR mice were also selected as the control group. Oral glucose tolerance and histopathological insulitis were examined. Th1/Th2/Th17 cytokine secretion was determined by ELISA. The transcriptional profiles of T-bet, GATA3, and RORγt in the pancreatic lymphatic node samples derived from the NOD mice were detected by RT-PCR. After four weeks of oral supplementation, andrographolide significantly inhibited insulitis, delayed the onset, and suppressed the development of diabetes in 30-week-old NOD mice in a dose dependent manner. This protective status was correlated with a substantially decreased production of interferon (IFN)-γ and interleukin (IL)-2, increased IL-10 and transforming growth factor (TGF)-β, and a reduced IL-17. Andrographolide also increased GATA3 mRNA expression but decreased T-bet and RORγt mRNA expressions. Our results suggested that andrographolide prevented type 1 diabetes by maintaining Th1/Th2/Th17 homeostasis. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Lysosomal Exoglycosidase Profile and Secretory Function in the Salivary Glands of Rats with Streptozotocin-Induced Diabetes

    OpenAIRE

    Maciejczyk, Mateusz; Kossakowska, Agnieszka; Szulimowska, Julita; Klimiuk, Anna; Knaś, Małgorzata; Car, Halina; Niklińska, Wiesława; Ładny, Jerzy Robert; Chabowski, Adrian; Zalewska, Anna

    2017-01-01

    Before this study, there had been no research evaluating the relationship between a lysosomal exoglycosidase profile and secretory function in the salivary glands of rats with streptozotocin- (STZ-) induced type 1 diabetes. In our work, rats were divided into 4 groups of 8 animals each: control groups (C2, C4) and diabetic groups (STZ2, STZ4). The secretory function of salivary glands—nonstimulated and stimulated salivary flow, α-amylase, total protein—and salivary exoglycosidase activities—N...

  8. Inner Retinal Oxygen Delivery, Metabolism, and Extraction Fraction in Ins2Akita Diabetic Mice.

    Science.gov (United States)

    Blair, Norman P; Wanek, Justin; Felder, Anthony E; Brewer, Katherine C; Joslin, Charlotte E; Shahidi, Mahnaz

    2016-11-01

    Retinal nonperfusion and hypoxia are important factors in human diabetic retinopathy, and these presumably inhibit energy production and lead to cell death. The purpose of this study was to elucidate the effect of diabetes on inner retinal oxygen delivery and metabolism in a mouse model of diabetes. Phosphorescence lifetime and blood flow imaging were performed in spontaneously diabetic Ins2Akita (n = 22) and nondiabetic (n = 22) mice at 12 and 24 weeks of age to measure retinal arterial (O2A) and venous (O2V) oxygen contents and total retinal blood flow (F). Inner retinal oxygen delivery (DO2) and metabolism (MO2) were calculated as F ∗ O2A and F ∗ (O2A - O2V), respectively. Oxygen extraction fraction (OEF), which equals MO2/DO2, was calculated. DO2 at 12 weeks were 112 ± 40 and 97 ± 29 nL O2/min in nondiabetic and diabetic mice, respectively (NS), and 148 ± 31 and 85 ± 37 nL O2/min at 24 weeks, respectively (P < 0.001). MO2 were 65 ± 31 and 66 ± 27 nL O2/min in nondiabetic and diabetic mice at 12 weeks, respectively, and 79 ± 14 and 54 ± 28 nL O2/min at 24 weeks, respectively (main effects = NS). At 12 weeks OEF were 0.57 ± 0.17 and 0.67 ± 0.09 in nondiabetic and diabetic mice, respectively, and 0.54 ± 0.07 and 0.63 ± 0.08 at 24 weeks, respectively (main effect of diabetes: P < 0.01). Inner retinal MO2 was maintained in diabetic Akita mice indicating that elevation of the OEF adequately compensated for reduced DO2 and prevented oxidative metabolism from being limited by hypoxia.

  9. whole plant extract in alloxan-induced diabetic mice

    African Journals Online (AJOL)

    was evaluated. Two control groups (non-diabetic control and diabetic control) received normal saline ... rules for experimental use of animals complied .... Figure 1: Bar-graph representing the blood glucose levels at different treatment days.

  10. Exercise Increases Insulin Content and Basal Secretion in Pancreatic Islets in Type 1 Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Han-Hung Huang

    2011-01-01

    Full Text Available Exercise appears to improve glycemic control for people with type 1 diabetes (T1D. However, the mechanism responsible for this improvement is unknown. We hypothesized that exercise has a direct effect on the insulin-producing islets. Eight-week-old mice were divided into four groups: sedentary diabetic, exercised diabetic, sedentary control, and exercised control. The exercised groups participated in voluntary wheel running for 6 weeks. When compared to the control groups, the islet density, islet diameter, and β-cell proportion per islet were significantly lower in both sedentary and exercised diabetic groups and these alterations were not improved with exercise. The total insulin content and insulin secretion were significantly lower in sedentary diabetics compared to controls. Exercise significantly improved insulin content and insulin secretion in islets in basal conditions. Thus, some improvements in exercise-induced glycemic control in T1D mice may be due to enhancement of insulin content and secretion in islets.

  11. Anti-diabetic effects of rice hull smoke extract on glucose-regulating mechanism in type 2 diabetic mice

    Science.gov (United States)

    The aim of this study is to determine the protective effect of a liquid rice hull smoke extract (RHSE) against type 2 diabetes induced by a high fat diet administered to mice. Dietary administration of 0.5% or 1% RHSE for 7 weeks results in significantly reduced blood glucose and triglyceride and to...

  12. Resolvin D1 promotes corneal epithelial wound healing and restoration of mechanical sensation in diabetic mice.

    Science.gov (United States)

    Zhang, Zhenzhen; Hu, Xiaoli; Qi, Xia; Di, Guohu; Zhang, Yangyang; Wang, Qian; Zhou, Qingjun

    2018-01-01

    To investigate the effect and mechanism of proresolving lipid mediator resolvin D1 (RvD1) on the corneal epithelium and the restoration of mechanical sensation in diabetic mice. Type 1 diabetes was induced in mice with intraperitoneal streptozocin injections. The healthy and diabetic mice underwent removal of the central corneal epithelium, and then 100 ng/ml RvD1 or its formyl peptide receptor 2 (FPR2) antagonist WRW4 was used to treat the diabetic mice. Regeneration of the corneal epithelium and nerves was observed with sodium fluorescein staining and whole-mount anti-β3-tubulin fluorescence staining. The inflammatory response level was measured with hematoxylin and eosin staining (inflammatory cell infiltration), enzyme-linked immunosorbent assay (tumor necrosis factor alpha and interleukin-1 beta content), myeloperoxidase activity, and fluorescence staining (macrophage content). The reactive oxygen species (ROS) and glutathione (GSH) levels were examined with incubation with fluorescent probes, and oxidative stress-related protein expression levels were evaluated with fluorescence staining and western blotting. Topical application of RvD1 promoted regeneration of the corneal epithelium in diabetic mice, accompanied by the reactivation of signaling and inflammation resolution related to regeneration of the epithelium. Furthermore, RvD1 directly attenuated the accumulation of ROS and nicotinamide adenine dinucleotide phosphate oxidase 2/4 expression, while RvD1 enhanced GSH synthesis and reactivated the Nrf2-ARE signaling pathway that was impaired in the corneal epithelium in the diabetic mice. More interestingly, topical application of RvD1 promoted regeneration of corneal nerves and completely restored impaired mechanical sensitivity of the cornea in diabetic mice. In addition, the promotion of corneal epithelial wound healing by RvD1 in diabetic mice was abolished by its FPR2 antagonist WRW4. Topical application of RvD1 promotes corneal epithelial wound

  13. Low Protein Diet Inhibits Uric Acid Synthesis and Attenuates Renal Damage in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jianmin Ran

    2014-01-01

    Full Text Available Aim. Several studies indicated that hyperuricemia may link to the worsening of diabetic nephropathy (DN. Meanwhile, low protein diet (LPD retards exacerbation of renal damage in chronic kidney disease. We then assessed whether LPD influences uric acid metabolism and benefits the progression of DN in streptozotocin- (STZ- induced diabetic rats. Methods. STZ-induced and control rats were both fed with LPD (5% and normal protein diet (18%, respectively, for 12 weeks. Vital signs, blood and urinary samples for UA metabolism were taken and analyzed every 3 weeks. Kidneys were removed at the end of the experiment. Results. Diabetic rats developed into constantly high levels of serum UA (SUA, creatinine (SCr and 24 h amounts of urinary albumin excretion (UAE, creatintine (UCr, urea nitrogen (UUN, and uric acid (UUA. LPD significantly decreased SUA, UAE, and blood glucose, yet left SCr, UCr, and UUN unchanged. A stepwise regression showed that high UUA is an independent risk factor for DN. LPD remarkably ameliorated degrees of enlarged glomeruli, proliferated mesangial cells, and hyaline-degenerated tubular epithelial cells in diabetic rats. Expression of TNF-α in tubulointerstitium significantly decreased in LPD-fed diabetic rats. Conclusion. LPD inhibits endogenous uric acid synthesis and might accordingly attenuate renal damage in STZ-induced diabetic rats.

  14. iNOS inhibits hair regeneration in obese diabetic (ob/ob) mice.

    Science.gov (United States)

    Sasaki, Mari; Shinozaki, Shohei; Morinaga, Hironobu; Kaneki, Masao; Nishimura, Emi; Shimokado, Kentaro

    2018-07-02

    Previous studies have shown that androgenic alopecia is associated with metabolic syndrome and diabetes. However, the detailed mechanism whereby diabetes causes alopecia still remains unclear. We focused on the inflammatory response that is caused by diabetes or obesity, given that inflammation is a risk factor for hair loss. Inducible nitric oxide synthase (iNOS) is known to be upregulated under conditions of acute or chronic inflammation. To clarify the potential role of iNOS in diabetes-related alopecia, we generated obese diabetic iNOS-deficient (ob/ob; iNOS-KO mice). We observed that ob/ob; iNOS-KO mice were potentiated for the transition from telogen (rest phase) to anagen (growth phase) in the hair cycle compared with iNOS-proficient ob/ob mice. To determine the effect of nitric oxide (NO) on the hair cycle, we administered an iNOS inhibitor intraperitoneally (compound 1400 W, 10 mg/kg) or topically (10% aminoguanidine) in ob/ob mice. We observed that iNOS inhibitors promoted anagen transition in ob/ob mice. Next, we administered an NO donor (S-nitrosoglutathione, GSNO), to test whether NO has the telogen elongation effects. The NO donor was sufficient to induce telogen elongation in wild-type mice. Together, our data indicate that iNOS-derived NO plays a role in telogen elongation under the inflammatory conditions associated with diabetes in mice. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Facial nerve palsy after reactivation of herpes simplex virus type 1 in diabetic mice.

    Science.gov (United States)

    Esaki, Shinichi; Yamano, Koji; Katsumi, Sachiyo; Minakata, Toshiya; Murakami, Shingo

    2015-04-01

    Bell's palsy is highly associated with diabetes mellitus (DM). Either the reactivation of herpes simplex virus type 1 (HSV-1) or diabetic mononeuropathy has been proposed to cause the facial paralysis observed in DM patients. However, distinguishing whether the facial palsy is caused by herpetic neuritis or diabetic mononeuropathy is difficult. We previously reported that facial paralysis was aggravated in DM mice after HSV-1 inoculation of the murine auricle. In the current study, we induced HSV-1 reactivation by an auricular scratch following DM induction with streptozotocin (STZ). Controlled animal study. Diabetes mellitus was induced with streptozotocin injection in only mice that developed transient facial nerve paralysis with HSV-1. Recurrent facial palsy was induced after HSV-1 reactivation by auricular scratch. After DM induction, the number of cluster of differentiation 3 (CD3)(+) T cells decreased by 70% in the DM mice, and facial nerve palsy recurred in 13% of the DM mice. Herpes simplex virus type 1 deoxyribonucleic acid (DNA) was detected in the facial nerve of all of the DM mice with palsy, and HSV-1 capsids were found in the geniculate ganglion using electron microscopy. Herpes simplex virus type 1 DNA was also found in some of the DM mice without palsy, which suggested the subclinical reactivation of HSV-1. These results suggested that HSV-1 reactivation in the geniculate ganglion may be the main causative factor of the increased incidence of facial paralysis in DM patients. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice

    Directory of Open Access Journals (Sweden)

    Hsu Cheng-chin

    2009-08-01

    Full Text Available Abstract Background Caffeic acid (CA and ellagic acid (EA are phenolic acids naturally occurring in many plant foods. Cardiac protective effects of these compounds against dyslipidemia, hypercoagulability, oxidative stress and inflammation in diabetic mice were examined. Methods Diabetic mice were divided into three groups (15 mice per group: diabetic mice with normal diet, 2% CA treatment, or 2% EA treatment. One group of non-diabetic mice with normal diet was used for comparison. After 12 weeks supplement, mice were sacrificed, and the variation of biomarkers for hypercoagulability, oxidative stress and inflammation in cardiac tissue of diabetic mice were measured. Results The intake of CA or EA significantly increased cardiac content of these compounds, alleviated body weight loss, elevated plasma insulin and decreased plasma glucose levels in diabetic mice (p p p p p p p Conclusion These results support that CA and EA could provide triglyceride-lowering, anti-coagulatory, anti-oxidative, and anti-inflammatory protection in cardiac tissue of diabetic mice. Thus, the supplement of these agents might be helpful for the prevention or attenuation of diabetic cardiomyopathy.

  17. Concomitant alteration in number and affinity of P2X and muscarinic receptors are associated with bladder dysfunction in early stage of diabetic rats.

    Science.gov (United States)

    Yoshizawa, Tsuyoshi; Hayashi, Yukio; Yoshida, Akira; Yoshida, Shohei; Ito, Yoshihiko; Yamaguchi, Kenya; Yamada, Shizuo; Takahashi, Satoru

    2018-03-01

    To investigate time course of bladder dysfunction and concurrent changes in number and affinity of the muscarinic and P 2 X receptor in the early stage of streptozotocin (STZ)-induced diabetic rats. Diabetic rats were prepared by the intraperitoneal injection of 50 mg/kg of STZ to 7-week-old female Wistar rats. We performed recording of 24-h voiding behavior and cystometry at 1, 4, 8, and 12 weeks after the induction of diabetes. A muscle strip experiments with electrical field stimulation (EFS), carbachol, and α,β-methylene adenosine 5'-triphosphate (α,β-MeATP) were also performed at the same time-points. Additionally, concurrent changes in number and affinity of bladder muscarinic and P 2 X receptor were measured by a radioreceptor assay using [N-methyl- 3 H] scopolamine methyl chloride ([ 3 H]NMS) and α,β-methylene-ATP (2,8- 3 H) tetrasodium salt ([ 3 H]α,β-MeATP). In STZ-induced diabetic rats, polydipsic polyuric pollakiuria were noted on recording of 24-h voiding behavior from early stage. Also, the residual urine volume markedly increased in diabetic rats on cystometry. In the muscle strip experiment, the detrusor contractions induced by EFS, carbachol, and α,β-MeATP were enhanced in STZ-induced diabetic rats. Based on the radioreceptor assay, the maximum number of sites (Bmax) for the specific binding of [ 3 H]NMS and [ 3 H]α,β-MeATP was concurrently increased in the bladder from diabetic rats. Increased bladder contractility is found in early stage of diabetic rats. Then, bladder dysfunction is associated with increased number of muscarinic and P 2 X receptors in STZ-induced diabetic rats.

  18. Effect of alphatocopherol on diameter of proximal convoluted tubules of kidney in diabetic mice

    International Nuclear Information System (INIS)

    Rashid, S.

    2014-01-01

    Objective: To evaluate the effects of alphatocopherol supplement on proximal convoluted tubular diameter of kidney in diabetic mice. Methods: The randomised controlled trials was conducted partly at the National Institute of Health (NIH), Islamabad, and partly in Army Medical College, Rawalpindi, from November 2009 to November 2010. Thirty adult female mice BALB/C were randomly divided into three equal groups. Group A served as the control group. Group B was made diabetic by the intraperitoneal injection of streptozotocin. Group C received injection streptozotocin and was fed with alphatocopherol (vitamin E) supplemented diet. After 12 weeks, the animals were sacrificed and their kidneys were removed for histomorphological study. Results: Diabetes caused significant changes in the diameter of proximal tubule of Experimental Group B (diabetic) compared to the controls in Group A, but these changes were prevented in alphatocopherol treated Group C. Tubular diameter in Group B was significantly reduced compared to the Control Group A (p 0.05). Conclusion: Significant difference in proximal tubular diameter of kidneys between diabetic and alphatocopherol treated diabetic mice confirm that vitamin E does extend a protective role in improving diabetic nephropathy. (author)

  19. Curcumin ameliorates skeletal muscle atrophy in type 1 diabetic mice by inhibiting protein ubiquitination.

    Science.gov (United States)

    Ono, Taisuke; Takada, Shingo; Kinugawa, Shintaro; Tsutsui, Hiroyuki

    2015-09-01

    What is the central question of this study? We sought to examine whether curcumin could ameliorate skeletal muscle atrophy in diabetic mice by inhibiting protein ubiquitination, inflammatory cytokines and oxidative stress. What is the main finding and its importance? We found that curcumin ameliorated skeletal muscle atrophy in streptozotocin-induced diabetic mice by inhibiting protein ubiquitination without affecting protein synthesis. This favourable effect of curcumin was possibly due to the inhibition of inflammatory cytokines and oxidative stress. Curcumin may be beneficial for the treatment of muscle atrophy in type 1 diabetes mellitus. Skeletal muscle atrophy develops in patients with diabetes mellitus (DM), especially in type 1 DM, which is associated with chronic inflammation. Curcumin, the active ingredient of turmeric, has various biological actions, including anti-inflammatory and antioxidant properties. We hypothesized that curcumin could ameliorate skeletal muscle atrophy in mice with streptozotocin-induced type 1 DM. C57BL/6 J mice were injected with streptozotocin (200 mg kg(-1) i.p.; DM group) or vehicle (control group). Each group of mice was randomly subdivided into two groups of 10 mice each and fed a diet with or without curcumin (1500 mg kg(-1) day(-1)) for 2 weeks. There were significant decreases in body weight, skeletal muscle weight and cellular cross-sectional area of the skeletal muscle in DM mice compared with control mice, and these changes were significantly attenuated in DM+Curcumin mice without affecting plasma glucose and insulin concentrations. Ubiquitination of protein was increased in skeletal muscle from DM mice and decreased in DM+Curcumin mice. Gene expressions of muscle-specific ubiquitin E3 ligase atrogin-1/MAFbx and MuRF1 were increased in DM and inhibited in DM+Curcumin mice. Moreover, nuclear factor-κB activation, concentrations of the inflammatory cytokines tumour necrosis factor-α and interleukin-1β and oxidative

  20. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes

    DEFF Research Database (Denmark)

    Funda, D.P.; Kaas, A.; Tlaskalova-Hogenova, H.

    2008-01-01

    BACKGROUND: Environmental factors such as nutrition or exposure to infections play a substantial role in the pathogenesis of type 1 diabetes (T1D). We have previously shown that gluten-free, non-purified diet largely prevented diabetes in non-obese diabetic (NOD) mice. In this study we tested...... hypothesis that early introduction of gluten-enriched (gluten+) diet may increase diabetes incidence in NOD mice. METHODS: Standard, gluten-free, gluten+ modified Altromin diets and hydrolysed-casein-based Pregestimil diet were fed to NOD females and diabetes incidence was followed for 310 days. Insulitis...... score and numbers of gut mucosal lymphocytes were determined in non-diabetic animals. RESULTS: A significantly lower diabetes incidence (p diet (5.9%, n = 34) and Pregestimil diet (10%, n = 30) compared to mice on the standard Altromin diet (60.6%, n...

  1. Hydrogen sulfide improves diabetic wound healing in ob/ob mice via attenuating inflammation.

    Science.gov (United States)

    Zhao, Huichen; Lu, Shengxia; Chai, Jiachao; Zhang, Yuchao; Ma, Xiaoli; Chen, Jicui; Guan, Qingbo; Wan, Meiyan; Liu, Yuantao

    2017-09-01

    The proposed mechanisms of impaired wound healing in diabetes involve sustained inflammation, excess oxidative stress and compromised agiogenesis. Hydrogen sulfide (H 2 S) has been reported to have multiple biological activities. We aim to investigate the role of H 2 S in impaired wound healing in ob/ob mice and explore the possible mechanisms involved. Full-thickness skin dorsal wounds were created on ob/ob mice and C57BL/6 mice. Cystathionine-γ-lyase (CSE) expression and H 2 S production were determined in granulation tissues of the wounds. Effects of NaHS on wound healing were evaluated. Inflammation and angiogenesis in granulation tissues of the wounds were examined. CSE expression, and H 2 S content were significantly reduced in granulation tissues of wounds in ob/ob mice compared with control mice. NaHS treatment significantly improved wound healing in ob/ob mice, which was associated with reduced neutrophil and macrophage infiltration, decreased production of tumor necrosis factor (TNF)-α, interleukin (IL)-6. NaHS treatment decreased metalloproteinase (MMP)-9, whereas increased collagen deposition and vascular-like structures in granulation tissues of wounds in ob/ob mice. CSE down-regulation may play a role in the pathogenesis of diabetic impaired wound healing. Exogenous H 2 S could be a potential agent to improve diabetic impaired wound healing by attenuating inflammation and increasing angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Pivotal role of oxidative stress in tumor metastasis under diabetic conditions in mice.

    Science.gov (United States)

    Ikemura, Mai; Nishikawa, Makiya; Kusamori, Kosuke; Fukuoka, Miho; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2013-09-10

    Diabetic patients are reported to have a high incidence and mortality of cancer, but little is known about the linkage. In this study, we investigated whether high oxidative stress is involved in the acceleration of tumor metastasis in diabetic mice. Murine melanoma B16-BL6 cells stably labeled with firefly luciferase (B16-BL6/Luc) were inoculated into the tail vein of streptozotocin (STZ)-treated or untreated mice. A luciferase assay demonstrated that tumor cells were present largely in the lung of untreated mice, whereas large numbers of tumor cells were detected in both the lung and liver of STZ-treated mice. Repeated injections of polyethylene glycol-conjugated catalase (PEG-catalase), a long-circulating derivative, reduced the elevated fasting blood glucose levels and plasma lipoperoxide levels of STZ-treated mice, but had no significant effects on these parameters in untreated mice. In addition, the injections significantly reduced the number of tumor cells in the lung and liver in both untreated and STZ-treated mice. Culture of B16-BL6/Luc cells in medium containing over 45 mg/dl glucose hardly affected the proliferation of the cells, whereas the addition of plasma of STZ-treated mice to the medium significantly increased the number of cells. Plasma samples of STZ-treated mice receiving PEG-catalase exhibited no such effect on proliferation. These findings indicate that a hyperglycemia-induced increase in oxidative stress is involved in the acceleration of tumor metastasis, and the removal of systemic hydrogen peroxide by PEG-catalase can inhibit the progression of diabetic conditions and tumor metastasis in diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Plasma lipid oxidation predicts atherosclerotic status better than cholesterol in diabetic apolipoprotein E deficient mice

    DEFF Research Database (Denmark)

    Petersen, Karen Ekkelund; Lykkesfeldt, Jens; Raun, Kirsten

    2017-01-01

    Increased levels of oxidative stress have been suggested to play a detrimental role in the development of diabetes-related vascular complications. Here, we investigated whether the concentration of malondialdehyde, a marker of lipid oxidation correlated to the degree of aortic plaque lesions...... in a proatherogenic diabetic mouse model. Three groups of apolipoprotein E knockout mice were studied for 20 weeks, a control, a streptozotocin-induced diabetic, and a diabetic enalapril-treated group. Enalapril was hypothesized to lower oxidative stress level and thus the plaque burden. Both diabetic groups were...... significantly different from the control group as they had higher blood glucose, HbA1c, total cholesterol, low-density lipoprotein, very low-density lipoprotein, together with a lower high-density lipoprotein concentration and body weight. Animals in the diabetic group had significantly higher plaque area...

  4. Antidiabetic Activity of Aqueous Leaves Extract of Sesbania sesban (L) Merr. in Streptozotocin Induced Diabetic Rats

    Science.gov (United States)

    Pandhare, Ramdas B.; Sangameswaran, B.; Mohite, Popat B.; Khanage, Shantaram G.

    2011-01-01

    The aqueous leaves extract of Sesbania sesban (L) Merr. (Family: Fabaceae) was evaluated for its antidiabetic potential on normal and streptozotocin (STZ)-induced diabetic rats. In the chronic model, the aqueous extract was administered to normal and STZ- induced diabetic rats at the doses of 250 and 500 mg/kg body weight (b.w.) p.o. per day for 30 days. The fasting Blood Glucose Levels (BGL), serum insulin level and biochemical data such as glycosylated hemoglobin, Total Cholesterol (TC), Triglycerides (TG), High Density Lipoproteins (HDL) and Low Density Lipoproteins (LDL) were evaluated and all were compared to that of the known anti-diabetic drug glibenclamide (0.25 mg/kg b.w.). The statistical data indicated significant increase in the body weight, liver glycogen, serum insulin and HDL levels and decrease in blood glucose, glycosylated hemoglobin, total cholesterol and serum triglycerides when compared with glibenclamide. Thus the aqueous leaves extract of Sesbania sesban had beneficial effects in reducing the elevated blood glucose level and lipid profile of STZ-induced diabetic rats. PMID:23407749

  5. Capparis spinosa L. aqueous extract evokes antidiabetic effect in streptozotocin-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Mohamed Eddouks

    2017-02-01

    Full Text Available Objective: As the aqueous extract of Capparis spinosa (CS possess antidiabetic effect, he present study aims to reveal the possible  mechanism of action of CS in diabetic mice.Materials and Methods: Both single and repeated oral administrations of aqueous extract of CS were performed in multi-low dose streptozotocin-induced (MLDS diabetic mice. Euglycemic hyperinsulinemic clamp was used in association with the endogenous glucose production (perfusion rate of 3-3H glucose to evaluate the effect of CS aqueous extract on insulin sensitivity.Results: Our study showed that aqueous extract of CS possess a potent hypoglycaemic activity in MLDS diabetic mice. Furthermore, the analysis perfusion of 3-3H glucose demonstrated  the parallel decrease of basal endogenous glucose production (EGP with the hypoglycaemic activity. EGP was lower in CS-Treated group when compared to the control group (p

  6. Effect of Turmeric Etanol Extract (Curcuma Longa L on Low Density Lipoprotein Level and Liver Histopathology Image in Type 1 Diabetes Mellitus Rat Model Induced by Streptozotocin

    Directory of Open Access Journals (Sweden)

    Herlina Pratiwi

    2017-02-01

    Full Text Available This study was conducted to determine levels of LDL and liver damage in rats (Rattus norvegicus models of type 1 diabetes mellitus inducted by streptozotocin (STZ with etanol extract of turmeric (Curcuma Longa L therapy. Animals used rat (Rattus norvegicus 3-month-old males who were divided into 5 groups, each group consisting of four mice. The group was divided according to treatment: negative control (not induced by STZ, the positive control group (STZ induced, groups of rats DM 1 with etanol turmeric extract therapy a dose of 1.2 g / kg, groups of rats DM 1 with etanol turmeric extract therapy a dose of 1.8 g / kg, and groups of rats DM 1 with etanol turmeric extract therapy a dose of 2.7 g / kg. LDL levels measured by direct method and the severity of liver damage was observed through histopatology picture. The results showed that the etanol extract of turmeric dose of 2.7 g / kg in a rats model of type 1 diabetes mellitus can lower LDL levels up to 59.55%, and reduced the severity of fatty liver with reduced fat vacuoles. The conclusion from this study that the etanol extract of turmeric contains antioxidants that can lower LDL levels and reduced the severity of fatty liver in type 1 diabetes mellitus.

  7. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    Science.gov (United States)

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes.

  8. Effects of angiotensin II type 1 receptor blocker on bones in mice with type 1 diabetes induced by streptozotocin.

    Science.gov (United States)

    Zhang, Yan; Diao, Teng-Yue; Gu, Sa-Sa; Wu, Shu-Yan; Gebru, Yoseph A; Chen, Xi; Wang, Jing-Yu; Ran, Shu; Wong, Man-Sau

    2014-09-01

    This study was performed to address the pathological roles of the skeletal renin-angiotensin system (RAS) in type 1 diabetes-induced osteoporosis and the effects of the angiotensin II type 1 receptor blocker losartan on bones in diabetic mice. Bone histomorphology was detected by H&E staining, Safranin O staining and X-ray radiography. Micro-CT was performed for the analysis of bone parameters. Gene and protein expression were determined by RT-PCR and immunoblotting. Type 1 diabetic mice displayed osteopenia phenotype, and losartan treatment had no osteoprotective effects on diabetic mice as shown by the reduction of bone mineral density and microarchitectural parameters at the proximal metaphysis of the tibia. The mRNA expression of AGT, renin receptor and ACE, and protein expression of renin and AT1R were markedly up-regulated in the bones of vehicle-treated diabetic mice compared to those of non-diabetic mice. The treatment with losartan further significantly increased the expression of AGT, renin, angiotensin II and AT1R, and reduced the expression of AT2R receptor as compared to those of diabetic mice. Local bone RAS functionally played a role in the development of type 1 diabetic osteoporosis, and losartan had no bone-sparing function in diabetes mice because of enhance skeletal RAS activity. © The Author(s) 2013.

  9. Paracrine GABA and insulin regulate pancreatic alpha cell proliferation in a mouse model of type 1 diabetes.

    Science.gov (United States)

    Feng, Allen L; Xiang, Yun-Yan; Gui, Le; Kaltsidis, Gesthika; Feng, Qingping; Lu, Wei-Yang

    2017-06-01

    This study aimed to elucidate the mechanism of increased proliferation of alpha cells in recent-onset type 1 diabetes. Pancreatic beta cells express GAD and produce γ-aminobutyric acid (GABA), which inhibits alpha cell secretion of glucagon. We explored the roles of GABA in alpha cell proliferation in conditions corresponding to type 1 diabetes in a mouse model and in vitro. Type 1 diabetes was induced by injecting the mice with streptozotocin (STZ). Some of the STZ-injected mice were treated with GABA (10 mg/kg daily) for 12 days. Isolated pancreatic islets were treated with STZ or STZ together with GABA for 2 days. The effects of GABA treatment on STZ-induced alpha cell proliferation in vivo and in vitro were assessed. The effect of muscimol, a GABA receptor agonist, on αTC1-6 cell proliferation was also examined. STZ injection substantially decreased levels of GAD, GABA and insulin in pancreatic beta cells 12 h after injection; this was followed by an upsurge of phosphorylated mechanistic target of rapamycin (p-mTOR) in the alpha cells at day 1, and a significant increase in alpha cell mass at day 3. Treating STZ-injected mice with GABA largely restored the immunodetectable levels of insulin and GAD in the beta cells and significantly decreased the number of aldehyde dehydrogenase 1 family, member A3 (ALDH1a3)-positive cells, alpha cell mass and hyperglucagonaemia. STZ treatment also increased alpha cell proliferation in isolated islets, which was reversed by co-treatment with GABA. Muscimol, together with insulin, significantly lowered the level of cytosolic Ca 2+ and p-mTOR, and decreased the proliferation rate of αTC1-6 cells. GABA signalling critically controls the alpha cell population in pancreatic islets. Low intraislet GABA may contribute to alpha cell hyperplasia in early type 1 diabetes.

  10. Hypoglycemic Effects of Achillea Wilhelmsii in Normal and Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    H Sadeghi

    2009-04-01

    Full Text Available ABSTRACT Introduction & Objective: Diabetes mellitus is a syndrome, initially characterized by a loss of glucose homeostasis resulting from defects in Insulin secretion, insulin action both is resulting in impaired metabolism of glucose and other energy yielding fuels as lipids and protein. Several medicinal herbs have been described with hypoglycemic effects. These include: Allium Sativum, Trigonella Foenum, Marus nigra, Ocimum Sanctum, and Astragalus Ovinus. The main purpose of the present study was to determine the effect of Achillea Wilhelmsii C. Koch on blood glucose levels of diabetic rats induced by stereptozotocine (STZ. Materials & Methods: In this experimental research, forty-eight male Wistar rats were divided into two groups: non-diabetic (normal and STZ-induced diabetic mice. Each group was further divided into four groups: control (induced by normal saline and treatment received 100, 200.and 300 mg/kg aqueous- alcoholic extract of Achillea Wilhelmsii C. Koch daily for one month. The blood glucose level was measured and Data were analyzed by t-test and ANOVA. Results: At the end of first month, significant decrease was observed in blood glucose level in diabetic rats which received 100 mg/kg (p<0/001, 200mg/kg(p<0/01, 300mg/kg (p<0/001 of aqueous alcoholic extract of Achillea Wilhelmsii C. Koch in comparison with control groups. The extract had not have any significant effects on the blood glucose level of normal groups except in those which received 300mg/kg of the extract. Conclusion: The results of this study showed that aqueous- alcoholic extract of Achillea Wilhelmsii C. Koch have a significant effect on reducing the blood glucose level of diabetic rats.

  11. Influence of kaempferol, a flavonoid compound, on membrane-bound ATPases in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Al-Numair, Khalid S; Veeramani, Chinnadurai; Alsaif, Mohammed A; Chandramohan, Govindasamy

    2015-01-01

    Kaempferol is a flavonoid found in many edible plants (e.g. tea, cabbage, beans, tomato, strawberries, and grapes) and in plants or botanical products commonly used in traditional medicine. Numerous preclinical studies have shown that kaempferol have a wide range of pharmacological activities, including antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, and antidiabetic activities. The present study investigates the effect of kaempferol on membrane-bound ATPases in erythrocytes and in liver, kidney, and heart of streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into adult male albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 d to normal and STZ-induced diabetic rats. The effects of kaempferol on membrane-bound ATPases (total ATPase, Na(+)/K(+)-ATPase, Ca(2+)-ATPase, and Mg(2+)-ATPase) activity in erythrocytes and in liver, kidney, and heart were determined. In our study, diabetic rats had significantly (p kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) for a period of 45 d resulted in significant (p kaempferol has the potential to restore deranged activity of membrane-bound ATPases in STZ-induced diabetic rats. Further detailed investigation is necessary to discover kaempferol's action mechanism.

  12. Effect of whey protein on plasma amino acids in diabetic mice

    OpenAIRE

    HAN, TING; CAI, DONGLIAN; GENG, SHANSHAN; WANG, YING; ZHEN, HUI; WU, PEIYING

    2013-01-01

    The aim of this study was to investigate the effect of whey protein on plasma amino acid levels in a mouse model of type II diabetes, using high-performance liquid chromatography (HPLC). The composition and content of amino acids in the whey proteins were analyzed using HPLC. Type I and type II diabetic mouse models were prepared using streptozotocin (STZ) and normal mice were used as a control. The ICR mice in each group were then randomly divided into four subgroups, to which 0, 10, 20 and ...

  13. Anti-Diabetic Effects of Dung Beetle Glycosaminoglycan on db Mice and Gene Expression Profiling.

    Science.gov (United States)

    Ahn, Mi Young; Kim, Ban Ji; Yoon, Hyung Joo; Hwang, Jae Sam; Park, Kun-Koo

    2018-04-01

    Anti-diabetes activity of Catharsius molossus (Ca, a type of dung beetle) glycosaminoglycan (G) was evaluated to reduce glucose, creatinine kinase, triglyceride and free fatty acid levels in db mice. Diabetic mice in six groups were administrated intraperitoneally: Db heterozygous (Normal), Db homozygous (CON), Heuchys sanguinea glycosaminoglycan (HEG, 5 mg/kg), dung beetle glycosaminoglycan (CaG, 5 mg/kg), bumblebee ( Bombus ignitus ) queen glycosaminoglycan (IQG, 5 mg/kg) and metformin (10 mg/kg), for 1 month. Biochemical analyses in the serum were evaluated to determine their anti-diabetic and anti-inflammatory actions in db mice after 1 month treatment with HEG, CaG or IQG treatments. Blood glucose level was decreased by treatment with CaG. CaG produced significant anti-diabetic actions by inhiting creatinine kinase and alkaline phosphatase levels. As diabetic parameters, serum glucose level, total cholesterol and triglyceride were significantly decreased in CaG5-treated group compared to the controls. Dung beetle glycosaminoglycan, compared to the control, could be a potential therapeutic agent with anti-diabetic activity in diabetic mice. CaG5-treated group, compared to the control, showed the up-regulation of 48 genes including mitochondrial yen coded tRNA lysine (mt-TK), cytochrome P450, family 8/2, subfamily b, polypeptide 1 (Cyp8b1), and down-regulation of 79 genes including S100 calcium binding protein A9 (S100a9) and immunoglobulin kappa chain complex (Igk), and 3-hydroxy-3-methylglutaryl-CoenzymeAsynthase1 (Hmgcs1). Moreover, mitochondrial thymidine kinase (mt-TK), was up-regulated, and calgranulin A (S100a9) were down-regulated by CaG5 treatment, indicating a potential therapeutic use for anti-diabetic agent.

  14. L-ARGININE PREVENTS METABOLIC EFFECTS OF HIGH GLUCOSE IN DIABETIC MICE

    OpenAIRE

    West, Matthew B.; Ramana, Kota V.; Kaiserova, Karin; Srivastava, Satish K.; Bhatnagar, Aruni

    2008-01-01

    We tested the hypothesis that activation of the polyol pathway and protein kinase C (PKC) during diabetes is due to loss of NO. Our results show that after 4 weeks of streptozotocin-induced diabetes, treatment with L-arginine restored NO levels and prevented tissue accumulation of sorbitol in mice, which was accompanied by an increase in glutathiolation of aldose reductase. L-arginine treatment decreased superoxide generation in the aorta, total PKC activity and PKC-βII phosphorylation in the...

  15. Systemic administration of high-molecular weight hyaluronan stimulates wound healing in genetically diabetic mice.

    Science.gov (United States)

    Galeano, Mariarosaria; Polito, Francesca; Bitto, Alessandra; Irrera, Natasha; Campo, Giuseppe M; Avenoso, Angela; Calò, Margherita; Lo Cascio, Patrizia; Minutoli, Letteria; Barone, Mauro; Squadrito, Francesco; Altavilla, Domenica

    2011-07-01

    Hyaluronic acid (HA), an essential component of the extracellular matrix, is an efficient space filler that maintains hydration, serves as a substrate for assembly of proteoglycans and is involved in wound healing. Although numerous pieces of evidence demonstrate beneficial effects in promoting wound healing in diabetes, a systemic approach has never been tested. We used an incisional wound healing model in genetically diabetic mice to test the effects of systemic injection of HA. Diabetic (n=56) and normoglycemic (n=56) mice were subjected to incision and randomized (8 groups of 7 animals each) to receive HA at different doses, 7.5, 15 and 30mg/kg/i.p., or vehicle (0.9% NaCl solution) for 12days. At the end of the experiment animals were sacrificed and skin wounds were excised for histological, biochemical and molecular analysis. Histology revealed that the most effective dose to improve wound repair and angiogenesis in diabetic mice was 30mg/kg. Furthermore HA injection (30mg/kg) improved the altered healing pattern in diabetic animals, increased skin remodeling proteins TGF-β and transglutaminase-II and restored the altered expression of cyclin B1/Cdc2 complex. Evaluation of skin from diabetic animals injected with HA revealed also an increase in HA content, suggesting that systemic injection may be able to restore the reduced intracellular HA pool of diabetic mice. Finally HA markedly improved skin mechanical properties. These promising results, if confirmed in a clinical setting, may improve the care and management of diabetic patients. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Inhibition of VEGF Signaling Reduces Diabetes-Exacerbated Brain Swelling, but Not Infarct Size, in Large Cerebral Infarction in Mice.

    Science.gov (United States)

    Kim, Eunhee; Yang, Jiwon; Park, Keun Woo; Cho, Sunghee

    2017-12-30

    In light of repeated translational failures with preclinical neuroprotection-based strategies, this preclinical study reevaluates brain swelling as an important pathological event in diabetic stroke and investigates underlying mechanism of the comorbidity-enhanced brain edema formation. Type 2 (mild), type 1 (moderate), and mixed type 1/2 (severe) diabetic mice were subjected to transient focal ischemia. Infarct volume, brain swelling, and IgG extravasation were assessed at 3 days post-stroke. Expression of vascular endothelial growth factor (VEGF)-A, endothelial-specific molecule-1 (Esm1), and the VEGF receptor 2 (VEGFR2) was determined in the ischemic brain. Additionally, SU5416, a VEGFR2 inhibitor, was treated in the type 1/2 diabetic mice, and stroke outcomes were determined. All diabetic groups displayed bigger infarct volume and brain swelling compared to nondiabetic mice, and the increased swelling was disproportionately larger relative to infarct enlargement. Diabetic conditions significantly increased VEGF-A, Esm1, and VEGFR2 expressions in the ischemic brain compared to nondiabetic mice. Notably, in diabetic mice, VEGFR2 mRNA levels were positively correlated with brain swelling, but not with infarct volume. Treatment with SU5416 in diabetic mice significantly reduced brain swelling. The study shows that brain swelling is a predominant pathological event in diabetic stroke and that an underlying event for diabetes-enhanced brain swelling includes the activation of VEGF signaling. This study suggests consideration of stroke therapies aiming at primarily reducing brain swelling for subjects with diabetes.

  17. Sympathetic Denervation Accelerates Wound Contraction but Inhibits Reepithelialization and Pericyte Proliferation in Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Zhifang Zheng

    2017-01-01

    Full Text Available Previous studies focused on the effects of sympathetic denervation with 6-hydroxydopamine (6-OHDA on nondiabetic wounds, but the effects of 6-OHDA on diabetic wounds have not been previously reported. In this study, treated mice received intraperitoneal 6-OHDA, and control mice received intraperitoneal injections of normal saline. Full-thickness wounds were established on the backs of mice. The wounds were sectioned (four mice per group for analysis at 2, 5, 7, 10, 14, 17, and 21 days after injury. The wound areas in the control group were larger than those in the treatment group. Histological scores for epidermal and dermal regeneration were reduced in the 6-OHDA-treated group on day 21. The mast cells (MCs in each field decreased after sympathectomy on days 17 and 21. The expression levels of norepinephrine, epidermal growth factor (EGF, interleukin-1 beta, NG2 proteoglycan, and desmin in the treatment group were less than those in the control group. In conclusion, 6-OHDA delays reepithelialization during wound healing in diabetic mice by decreasing EGF, but increases wound contraction by reducing IL-1β levels and the number of MCs. Besides, 6-OHDA led to reduced pericyte proliferation in diabetic wounds, which might explain the vascular dysfunction after sympathetic nerve loss in diabetic wounds.

  18. Proteomic profile in glomeruli of type-2 diabetic KKAy mice using 2-dimensional differential gel electrophoresis.

    Science.gov (United States)

    Liu, Xiaodan; Yang, Gang; Fan, Qiuling; Wang, Lining

    2014-12-17

    Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. To search for glomerular proteins associated with early-stage DN, glomeruli of spontaneous type 2 diabetic KKAy mice were analyzed by 2-dimensional differential gel electrophoresis (2D-DIGE). Glomeruli of 20-week spontaneous type 2 diabetic KKAy mice and age-matched C57BL/6 mice were isolated by kidney perfusion with magnetic beads. Proteomic profiles of glomeruli were investigated by using 2D-DIGE and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Western blot analysis was used to confirm the results of proteomics. Immunohistochemical and semi-quantitative analysis were used to confirm the differential expression of prohibitin and annexin A2 in glomeruli. We identified 19 differentially expressed proteins - 17 proteins were significantly up-regulated and 2 proteins were significantly down-regulated in glomeruli of diabetic KKAy mice. Among them, prohibitin and annexin A2 were up-regulated and Western blot analysis validated the same result in proteomics. Immunohistochemical analysis also revealed up-regulation of prohibitin and annexin A2 in glomeruli of KKAy mice. Our findings suggest that prohibitin and annexin A2 may be associated with early-stage DN. Further functional research might help to reveal the pathogenesis of DN.

  19. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    International Nuclear Information System (INIS)

    Lee, Y.S.; Kim, D.; Lee, E.K.; Kim, S.; Choi, C.S.; Jun, H.S.

    2015-01-01

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA on the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of glucose

  20. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.S.; Kim, D.; Lee, E.K. [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Kim, S. [Komipharm International Co. Ltd., 3188, Seongnam-dong, Jungwon-gu, Seongnam-si, Gyeonggi-do 462-827 (Korea, Republic of); Choi, C.S. [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Endocrinology, Internal Medicine, Gachon University Gil Medical Center, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of); Gachon Medical Research Institute, Gil Hospital, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of); Jun, H.S., E-mail: hsjun@gachon.ac.kr [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Gachon Medical Research Institute, Gil Hospital, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of)

    2015-04-15

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA on the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of glucose

  1. Increased lipids in non-lipogenic tissues are indicators of the severity of type 2 diabetes in mice

    DEFF Research Database (Denmark)

    Campbell-Tofte, J.; Hansen, H.S.; Mu, Huiling

    2007-01-01

    We hypothesised that the molecular changes triggered in type 2 diabetes might cause phenotypic changes in the lipid fraction of tissues. We compared tissue lipid profiles of inbred lean B6-Bom with those of the obese B6-ob/ob and diabetic BKS-db/db mice and found that genetically diabetic mice...... significantly accumulate fat (especially monounsaturated fatty acids, MUFA) in non-lipogenic tissues such as the eye (MUFA, 2-fold), skeletal muscle (MUFA, 13-fold) and pancreas (MUFA, 16-fold). In contrast, the B6-ob/ob mice which manifest a milder form of type 2 diabetes use the liver as their predominant...

  2. Fibronectin potentiates topical erythropoietin-induced wound repair in diabetic mice.

    Science.gov (United States)

    Hamed, Saher; Ullmann, Yehuda; Egozi, Dana; Daod, Essam; Hellou, Elias; Ashkar, Manal; Gilhar, Amos; Teot, Luc

    2011-06-01

    Diabetes mellitus disrupts all phases of the wound repair cascade and leads to development of chronic wounds. We previously showed that topical erythropoietin (EPO) can promote wound repair in diabetic rats. Fibronectin (FN) has a critical role throughout the process of wound healing, yet it is deficient in wound tissues of diabetic patients. Therefore, we investigated the effect of topical treatment of both EPO and FN (EPO/FN) on wound repair in diabetic mice. Full-thickness excisional skin wounds in diabetic and nondiabetic mice were treated with a cream containing vehicle, EPO, FN, or EPO/FN. We assessed the rate of wound closure, angiogenesis, apoptosis, and expression of inflammatory cytokines, endothelial nitric oxide synthase (eNOS) and β1-integrin, in the wound tissues. We also investigated the effect of EPO, FN, and EPO/FN on human dermal microvascular endothelial cells and fibroblasts cultured on fibrin-coated plates, or in high glucose concentrations. EPO/FN treatment significantly increased the rate of wound closure and this effect was associated with increased angiogenesis, increased eNOS and β1-integrin expression, and reduced expression of inflammatory cytokines and apoptosis. Our findings show that EPO and FN have an additive effect on wound repair in diabetic mice.

  3. In Vivo Hypoglycemic Effect of Kigelia africana (Lam): Studies With Alloxan-Induced Diabetic Mice.

    Science.gov (United States)

    Njogu, Stephen M; Arika, Wycliffe M; Machocho, Alex K; Ngeranwa, Joseph J N; Njagi, Eliud N M

    2018-01-01

    The claims by the traditional herbal medicine practitioners that Kigelia africana has bioactivity against several diseases, including diabetes mellitus, were investigated in this study. Type I diabetes mellitus was induced in mice by intraperitoneal administration of alloxan monohydrate followed by treatment with the therapeutic doses of the aqueous and ethyl acetate leaf extract of K africana to the experimentally diabetic mice. The treatment effects were compared with the normal control, diabetic control, and diabetic control rats treated with a standard antidiabetic drugs (insulin administered intraperitoneally at 1 IU/kg body weight in 0.1 mL physiological saline or glibenclamide administered orally at 3 mg/kg body weight in 0.1 mL physiological saline). Phytochemical composition of the leaf extract was assessed using standard procedures and mineral elements assessed using atomic absorption spectrophotometry and total reflection X-ray fluorescence system. Oral and intraperitoneal administration of the aqueous and ethyl acetate leaf extract caused a statistically significant dose-independent reduction in plasma glucose level in alloxan-induced diabetic mice. The observed hypoglycemic activity of this plant extract could be attributed to the observed phytochemicals and trace elements, which have been associated with exhibiting antidiabetic properties. Therefore, the data appear to support the hypoglycemic effects of K africana validating its folkloric usage.

  4. Inhibition of advanced glycation endproduct (AGE) rescues against streptozotocin-induced diabetic cardiomyopathy: Role of autophagy and ER stress.

    Science.gov (United States)

    Pei, Zhaohui; Deng, Qinqin; Babcock, Sara A; He, Emily Y; Ren, Jun; Zhang, Yingmei

    2018-03-01

    Diabetes mellitus leads to oxidative stress and contractile dysfunction in the heart. Although several rationales have been speculated, the precise mechanism behind diabetic cardiomyopathy remains elusive. This study was designed to assess the role of inhibition of advanced glycation endproducts (AGE) in streptozotocin (STZ)-induced diabetic cardiac dysfunction. Cardiac contractile function was assessed in normal C57BL/6 and STZ (200mg/kg, single injection and maintained for 2 wks)-induced diabetic mice treated with or without the AGE inhibitor aminoguanidine (50mg/kg/d in drinking water) for 2 weeks using echocardiography and IonOptix MyoCam techniques. Diabetes compromised cardiac contractile function shown as reduced fractional shortening and ejection fraction, enlarged left ventricular end systolic/diastolic diameters, decreased peak shortening, maximal velocity of shortening/relengthening, prolonged shortening and relengthening duration as well as impaired intracellular Ca 2+ homeostasis, the effects of which were alleviated or reversed by aminoguanidine treatment. Diabetes also inhibited autophagy, increased ER stress and phosphorylation of pro-hypertrophic signaling molecules Akt and mTOR, the effect of which was reversed by aminoguanidine. In vitro study revealed that methylglyoxal-derived AGE (MG-AGE) incubation in isolated cardiomyocytes promoted oxidation of sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA2a) and production of superoxide, the effects of which were negated by the autophagy inducer rapamycin, the ER stress chaperone TUDCA or the antioxidant N-acetylcysteine. Taken together, these data revealed that inhibition of AGE formation rescues against experimental diabetes-induced cardiac remodeling and contractile dysfunction possible through regulation of autophagy and ER stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mechanisms of Mycobacterium avium-induced resistance against insulin-dependent diabetes mellitus (IDDM) in non-obese diabetic (NOD) mice: role of Fas and Th1 cells.

    Science.gov (United States)

    Martins, T C; Aguas, A P

    1999-02-01

    NOD mice spontaneously develop autoimmune diabetes. One of the manipulations that prevent diabetes in NOD mice is infection with mycobacteria or immunization of mice with mycobacteria-containing adjuvant. Infection of NOD mice with Mycobacterium avium, done before the mice show overt diabetes, results in permanent protection of the animals from diabetes and this protective effect is associated with increased numbers of CD4+ T cells and B220+ B cells. Here, we investigate whether the M. avium-induced protection of NOD mice from diabetes was associated with changes in the expression of Fas (CD95) and FasL by immune cells, as well as alterations in cytotoxic activity, interferon-gamma (IFN-gamma) and IL-4 production and activation of T cells of infected animals. Our data indicate that protection of NOD mice from diabetes is a Th1-type response that is mediated by up-regulation of the Fas-FasL pathway and involves an increase in the cytotoxicity of T cells. These changes are consistent with induction by the infection of regulatory T cells with the ability of triggering deletion or anergy of peripheral self-reactive lymphocytes that cause the autoimmune disease of NOD mice.

  6. Immunomodulatory and Antidiabetic Effects of a New Herbal Preparation (HemoHIM) on Streptozotocin-Induced Diabetic Mice

    OpenAIRE

    Kim, Jong-Jin; Choi, Jina; Lee, Mi-Kyung; Kang, Kyung-Yun; Paik, Man-Jeong; Jo, Sung-Kee; Jung, Uhee; Park, Hae-Ran; Yee, Sung-Tae

    2014-01-01

    HemoHIM (a new herbal preparation of three edible herbs: Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia japonica Miyabe) was developed to protect immune, hematopoietic, and self-renewal tissues against radiation. This study determined whether or not HemoHIM could alter hyperglycemia and the immune response in diabetic mice. Both nondiabetic and diabetic mice were orally administered HemoHIM (100 mg/kg) once a day for 4 weeks. Diabetes was induced by single injection of streptozo...

  7. Suppressing effect of low-dose ionizing radiation on incidence of type I diabetes of NOD mice

    International Nuclear Information System (INIS)

    Nomura, T.; Makino, N.; Oda, T.; Sakai, K.

    2002-01-01

    In the present study we examined the effects of 0.5 Gy of ionizing radiation, given acutely or chronically, on the incidence of type I diabetes in non-obese diabetic mice was examined. NOD mice are characterized by a progressive loss of insulin-producing cells in the pancreas by autoimmune mechanisms. The results suggest that the suppressive effects on the onset of he diabetes by the low dose irradiation are explain by the induction of the antioxidative activity

  8. Muscle contractility decrement and correlated morphology during the pathogenesis of streptozotocin-diabetic mice.

    Science.gov (United States)

    Fahim, M A; el-Sabban, F; Davidson, N

    1998-06-01

    Peripheral neuropathy of both motor and sensory nerves has been well documented in diabetes mellitus, but the evidence for physiological and correlated morphological changes during the pathogenesis of myopathy is scarce. In the present report, we have chosen the dorsiflexor muscle of adult male mice as a model for studying in situ muscle contraction and neuromuscular ultrastructure during the pathogenesis of streptozotocin-induced diabetes. Thirty mice (30 g bodyweight) were injected once i.p. with streptozotocin solution (200 mg/Kg) to induce experimental diabetes mellitus. Comparative analyses of in situ muscle isometric contractile characteristics were studied (at 1 Hz, 5 Hz and 30 Hz nerve stimulation) in urethane-anesthetized (2 mg/g, i.p.) control and diabetic mice at three time points, 2 weeks, 4 weeks, and 8 weeks postinjection. Synaptic delay was also recorded in diabetic and age-matched control mice. There was a significant increase in synaptic delay in both 4-week and 8-week diabetic mice compared with control mice (8.9 +/- 1.2 msec and 7.6 +/- 0.6 msec, respectively, compared with 6.1 +/- 0.5 msec). At all three stimulation frequencies, diabetes did not affect muscle contractile speed but significantly reduced the twitch tension after 8 weeks, with no changes at 2 weeks or 4 weeks. The recorded single-twitch tension values were 2.6 +/- 0.3 g, 2.1 +/- 0.6 g, 2.2 +/- 0.7 g, and 1.2 +/- 0.1 g for control, 2 weeks, 4 weeks, and 8 weeks, respectively. At 30 Hz, the recorded tension values were 4.6 +/- 1.6 g, 3.1 +/- 1.2 g, 3.1 +/- 1.1 g, and 2.1 +/- 1.0 g for control, 2 weeks, 4 weeks, and 8 weeks, respectively. Ultrastructural changes in neuromuscular junctions were similar to those that have been described in disuse and aging. These changes were observed after 8 weeks and included serve loss of synaptic vesicles, electron-dense bodies, and myelin-like figures as well as degeneration of mitochondria. The results reveal that streptozotocin-induced diabetes

  9. Edaravone Protect against Retinal Damage in Streptozotocin-Induced Diabetic Mice

    Science.gov (United States)

    Liu, Xiaoyi; Chen, Xi; Xie, Ping; Yuan, Songtao; Zhang, Weiwei; Lin, Xiaojun; Liu, Qinghuai

    2014-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p.) treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs) damage was evaluated by recording the pattern electroretinogram (ERG). RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and the levels of reactive oxygen species (ROS) were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes. PMID:24897298

  10. Edaravone protect against retinal damage in streptozotocin-induced diabetic mice.

    Directory of Open Access Journals (Sweden)

    Dongqing Yuan

    Full Text Available Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one, a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p. treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs damage was evaluated by recording the pattern electroretinogram (ERG. RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining, and the levels of reactive oxygen species (ROS were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes.

  11. Mitochondrial dysfunction and apoptosis in cumulus cells of type I diabetic mice.

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2010-12-01

    Full Text Available Impaired oocyte quality has been demonstrated in diabetic mice; however, the potential pathways by which maternal diabetes exerts its effects on the oocyte are poorly understood. Cumulus cells are in direct contact with the oocyte via gap junctions and provide essential nutrients to support oocyte development. In this study, we investigated the effects of maternal diabetes on the mitochondrial status in cumulus cells. We found an increased frequency of fragmented mitochondria, a decreased transmembrane potential and an aggregated distribution of mitochondria in cumulus cells from diabetic mice. Furthermore, while mitochondrial biogenesis in cumulus cells was induced by maternal diabetes, their metabolic function was disrupted as evidenced by lower ATP and citrate levels. Moreover, we present evidence suggesting that the mitochondrial impairments induced by maternal diabetes, at least in part, lead to cumulus cell apoptosis through the release of cytochrome c. Together the deleterious effects on cumulus cells may disrupt trophic and signaling interactions with the oocyte, contributing to oocyte incompetence and thus poor pregnancy outcomes in diabetic females.

  12. Renal Protection by Genetic Deletion of the Atypical Chemokine Receptor ACKR2 in Diabetic OVE Mice

    Directory of Open Access Journals (Sweden)

    Shirong Zheng

    2016-01-01

    Full Text Available In diabetic nephropathy (DN proinflammatory chemokines and leukocyte infiltration correlate with tubulointerstitial injury and declining renal function. The atypical chemokine receptor ACKR2 is a chemokine scavenger receptor which binds and sequesters many inflammatory CC chemokines but does not transduce typical G-protein mediated signaling events. ACKR2 is known to regulate diverse inflammatory diseases but its role in DN has not been tested. In this study, we utilized ACKR2−/− mice to test whether ACKR2 elimination alters progression of diabetic kidney disease. Elimination of ACKR2 greatly reduced DN in OVE26 mice, an established DN model. Albuminuria was significantly lower at 2, 4, and 6 months of age. ACKR2 deletion did not affect diabetic blood glucose levels but significantly decreased parameters of renal inflammation including leukocyte infiltration and fibrosis. Activation of pathways that increase inflammatory gene expression was attenuated. Human biopsies stained with ACKR2 antibody revealed increased staining in diabetic kidney, especially in some tubule and interstitial cells. The results demonstrate a significant interaction between diabetes and ACKR2 protein in the kidney. Unexpectedly, ACKR2 deletion reduced renal inflammation in diabetes and the ultimate response was a high degree of protection from diabetic nephropathy.

  13. Long-term treadmill exercise-induced neuroplasticity and associated memory recovery of streptozotocin-induced diabetic rats: an experimenter blind, randomized controlled study.

    Science.gov (United States)

    You, Joshua Sung H; Kim, Chung-Ju; Kim, Mee Young; Byun, Yong Gwon; Ha, So Young; Han, Bong Suk; Yoon, Bum Chul

    2009-01-01

    We investigated a long-term exercise-induced neuroplasticity and spatial memory recovery in 15 rats in a treadmill as follows: normal control rats (NC), streptozotocin (STZ)-induced diabetic control rats (DC), and STZ-induced diabetic rats exercising in a treadmill (DE). As per the DE group, the running exercise in a treadmill was administered for 30 minutes a day for 6 weeks. Neuronal immediate-early gene (IEG) expression (c-Fos) in the hippocampus and radial arm maze (RAM) tests were measured and revealed that the c-Fos levels in DE were significantly higher than those in NC and DC (p memory performance scores, obtained from the RAM test, were significantly different among the three groups (p memory scores of NC and DE were higher than those of DC (p memory. This is the first experimental evidence in literature that supports the efficacy of exercise-induced neuroplasticity and spatial motor memory in diabetes care.

  14. Impaired Coronary and Renal Vascular Function in Spontaneously Type 2 Diabetic Leptin-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Helena U Westergren

    Full Text Available Type 2 diabetes is associated with macro- and microvascular complications in man. Microvascular dysfunction affects both cardiac and renal function and is now recognized as a main driver of cardiovascular mortality and morbidity. However, progression of microvascular dysfunction in experimental models is often obscured by macrovascular pathology and consequently demanding to study. The obese type 2 diabetic leptin-deficient (ob/ob mouse lacks macrovascular complications, i.e. occlusive atherosclerotic disease, and may therefore be a potential model for microvascular dysfunction. The present study aimed to test the hypothesis that these mice with an insulin resistant phenotype might display microvascular dysfunction in both coronary and renal vascular beds.In this study we used non-invasive Doppler ultrasound imaging to characterize microvascular dysfunction during the progression of diabetes in ob/ob mice. Impaired coronary flow velocity reserve was observed in the ob/ob mice at 16 and 21 weeks of age compared to lean controls. In addition, renal resistivity index as well as pulsatility index was higher in the ob/ob mice at 21 weeks compared to lean controls. Moreover, plasma L-arginine was lower in ob/ob mice, while asymmetric dimethylarginine was unaltered. Furthermore, a decrease in renal vascular density was observed in the ob/ob mice.In parallel to previously described metabolic disturbances, the leptin-deficient ob/ob mice also display cardiac and renal microvascular dysfunction. This model may therefore be suitable for translational, mechanistic and interventional studies to improve the understanding of microvascular complications in type 2 diabetes.

  15. A bispecific protein capable of engaging CTLA-4 and MHCII protects non-obese diabetic mice from autoimmune diabetes.

    Directory of Open Access Journals (Sweden)

    Hongmei Zhao

    Full Text Available Crosslinking ligand-engaged cytotoxic T lymphocyte antigen-4 (CTLA-4 to the T cell receptor (TCR with a bispecific fusion protein (BsB comprised of a mutant mouse CD80 and lymphocyte activation antigen-3 (LAG-3 has been shown to attenuate TCR signaling and to direct T-cell differentiation toward Foxp3(+ regulatory T cells (Tregs in an allogenic mixed lymphocyte reaction (MLR. Here, we show that antigen-specific Tregs can also be induced in an antigen-specific setting in vitro. Treatment of non-obese diabetic (NOD female mice between 9-12 weeks of age with a short course of BsB elicited a transient increase of Tregs in the blood and moderately delayed the onset of autoimmune type 1 diabetes (T1D. However, a longer course of treatment (10 weeks of 4-13 weeks-old female NOD animals with BsB significantly delayed the onset of disease or protected animals from developing diabetes, with only 13% of treated animals developing diabetes by 35 weeks of age compared to 80% of the animals in the control group. Histopathological analysis of the pancreata of the BsB-treated mice that remained non-diabetic revealed the preservation of insulin-producing β-cells despite the presence of different degrees of insulitis. Thus, a bifunctional protein capable of engaging CTLA-4 and MHCII and indirectly co-ligating CTLA-4 to the TCR protected NOD mice from developing T1D.

  16. INFLUENCE OF TYPE II DIABETES AND OBESITY ON THE DISPOSITION AND ELIMINATION OF TCDD IN MICE

    Science.gov (United States)

    INFLUENCE OF TYPE II DIABETES AND OBESITY ON THE DISPOSTION AND ELIMINATION OF TCDD IN MICE. MJ DeVito', JJ Diliberto', DG Ross', C Emond2, VM Richardson', and LS Birnbaum', 'ETD, NHEERL, ORD, US EPA, RTP, NC, 27711, USA, 2National Research Council.One possible explanation fo...

  17. Prevention or early cure of type 1 diabetes by intranasal administration of gliadin in NOD mice

    DEFF Research Database (Denmark)

    Funda, David; Fundova, Petra; Hansen, Axel Kornerup

    2014-01-01

    gluten-free diets prevent T1D in animal models. Herewith we investigated whether intranasal (i.n.) administration of gliadin or gluten may arrest the diabetogenic process. I.n. administration of gliadin to 4-week-old NOD mice significantly reduced the diabetes incidence. Similarly, the insulitis...

  18. Myeloid differentiation factor 88 (MyD88-deficiency increases risk of diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    Full Text Available BACKGROUND: Multiple lines of evidence suggest innate immune response pathways to be involved in the development of obesity-associated diabetes although the molecular mechanism underling the disease is unknown. Recent observations suggest that saturated fatty acids can act as a ligand for toll-like receptor (TLR 4, which is thought to mediate obesity-associated insulin resistance. Myeloid differentiation factor 88 (MyD88 is an adapter protein for TLR/IL-1 receptor signaling, which is involved in the activation of inflammatory pathways. To evaluate molecular mechanisms linking obesity-associated diabetes down-stream of TLR4, we investigated physiological role of MyD88 in high-fat diet (HFD-induced obesity. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we found MyD88-deficient mice fed a HFD had increased circulating levels of insulin, leptin and cholesterol, as well as liver dysfunction (increased induction of ALT levels, increased activation of JNK and cleavage of PARP, which were linked to the onset of severe diabetes. On the other hand, TNF-alpha would not be involved in HFD-induced diabetes in MyD88-deficient mice, because TNF-alpha level was attenuated in MyD88-deficient mice fed with HFD. CONCLUSIONS/SIGNIFICANCE: The present finding of an unexpected role for MyD88 in preventing diabetes may provide a potential novel target/strategy for treating metabolic syndrome.

  19. Hypoglycemic effect of methanolic extract of Musa paradisiaca (Musaceae) green fruits in normal and diabetic mice.

    Science.gov (United States)

    Ojewole, J A O; Adewunmi, C O

    2003-01-01

    Diabetes mellitus is a debilitating hormonal disorder in which strict glycemic control and prevention of associated complications are of crucial importance. This study was designed to evaluate the hypoglycemic effect of methanolic extract of mature, green fruits of Musa paradisiaca (MEMP) in normal (normoglycemic) and streptozotocin (STZ)-treated, diabetic (hyperglycemic) mice, using chlorpropamide as the reference antidiabetic agent. MEMP (100-800 mg/kg p.o.) induced significant, dose-related (p < 0.05-0.001) reductions in the blood glucose concentrations of both normal and diabetic mice. Chlorpropamide (250 mg/kg p.o.) also produced significant (p < 0.01-0.001) reductions in the blood glucose concentrations of normal and diabetic mice. The results of this experimental study indicate that, in the mammalian model used, MEMP possesses hypoglycemic activity. Although the precise mechanism of the hypoglycemic action of MEMP is still unclear and will have to await further studies, it could be due, at least in part, to stimulation of insulin production and subsequent glucose utilization. Nevertheless, the findings of this experimental animal study indicate that MEMP possesses hypoglycemic activity, and thus lends credence to the suggested folkloric use of the plant in the management and/or control of adult-onset, type-2 diabetic mellitus among the Yoruba-speaking people of South-Western Nigeria.

  20. Human embryonic stem cell-derived pancreatic endoderm alleviates diabetic pathology and improves reproductive outcome in C57BL/KsJ-Lep(db/+) gestational diabetes mellitus mice.

    Science.gov (United States)

    Xing, Baoheng; Wang, Lili; Li, Qin; Cao, Yalei; Dong, Xiujuan; Liang, Jun; Wu, Xiaohua

    2015-07-01

    Gestational diabetes mellitus is a condition commonly encountered during mid to late pregnancy with pathologic manifestations including hyperglycemia, hyperinsulinemia, insulin resistance, and fetal maldevelopment. The cause of gestational diabetes mellitus can be attributed to both genetic and environmental factors, hence complicating its diagnosis and treatment. Pancreatic progenitors derived from human embryonic stem cells were shown to be able to effectively treat diabetes in mice. In this study, we have developed a system of treating diabetes using human embryonic stem cell-derived pancreatic endoderm in a mouse model of gestational diabetes mellitus. Human embryonic stem cells were differentiated in vitro into pancreatic endoderm, which were then transplanted into db/+ mice suffering from gestational diabetes mellitus. The transplant greatly improved glucose metabolism and reproductive outcome of the females compared with the control groups. Our findings support the feasibility of using differentiated human embryonic stem cells for treating gestational diabetes mellitus patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Multi-tissue computational modeling analyzes pathophysiology of type 2 diabetes in MKR mice.

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    Full Text Available Computational models using metabolic reconstructions for in silico simulation of metabolic disorders such as type 2 diabetes mellitus (T2DM can provide a better understanding of disease pathophysiology and avoid high experimentation costs. There is a limited amount of computational work, using metabolic reconstructions, performed in this field for the better understanding of T2DM. In this study, a new algorithm for generating tissue-specific metabolic models is presented, along with the resulting multi-confidence level (MCL multi-tissue model. The effect of T2DM on liver, muscle, and fat in MKR mice was first studied by microarray analysis and subsequently the changes in gene expression of frank T2DM MKR mice versus healthy mice were applied to the multi-tissue model to test the effect. Using the first multi-tissue genome-scale model of all metabolic pathways in T2DM, we found out that branched-chain amino acids' degradation and fatty acids oxidation pathway is downregulated in T2DM MKR mice. Microarray data showed low expression of genes in MKR mice versus healthy mice in the degradation of branched-chain amino acids and fatty-acid oxidation pathways. In addition, the flux balance analysis using the MCL multi-tissue model showed that the degradation pathways of branched-chain amino acid and fatty acid oxidation were significantly downregulated in MKR mice versus healthy mice. Validation of the model was performed using data derived from the literature regarding T2DM. Microarray data was used in conjunction with the model to predict fluxes of various other metabolic pathways in the T2DM mouse model and alterations in a number of pathways were detected. The Type 2 Diabetes MCL multi-tissue model may explain the high level of branched-chain amino acids and free fatty acids in plasma of Type 2 Diabetic subjects from a metabolic fluxes perspective.

  2. The modulative effects of microcurrent electrical nerve stimulation on diabetic mice.

    Science.gov (United States)

    Huang, Wen-Ching; Chang, Wen-Chieh; Hsu, Yi-Ju; Huang, Chun-Feng; Huang, Chi-Chang; Kao, Cheng-Yan; Lin, Che-Li

    2017-02-28

    Diabetes (one of non-communicable diseases) is serious due to its complications, such like, cardiovascular ailments, neuropathy, nephropathy, retinopathy, wound gangrene and sexual impotence. Diabetes and associated chronic conditions are rapidly emerging as major health problems. In clinical, there were different drugs for diabetes treatment on different mechanisms. However, there were limited studies on the efficacy of electric stimulations on diabetes therapeutic application. In current study, we try to evaluate the effect of microcurrent electrical nerve stimulator (MENS) on diabetes modulation as an alternative medicine. A total of 36 male ICR mice of 6 weeks old were randomly divided into 4 groups [1] Control, [2] MENS only, [3] DM, [4] DM with MENS. During 8 weeks treatments, the diabetes-associated assessments included body weight, diet utilization, blood glucose measurement, other biochemistries and histopathological observations. The diabetes animal model induced by STZ had 180 mg/dl fasting blood glucose (GLU-AC) before MENS intervention. After 3 and 6 weeks administration, the GLU-AC of DM+MENS group significantly decreased 31.97% and 50.82% (P < 0.0001), respectively, as compared to DM group and the OGTT also demonstrated the similar significant results. The diabetic syndromes of polydipsia and polyphagia were also significantly ameliorated by MENS intervention. In other biochemical indexes, the glycated hemoglobin (HbA1c), hyperinsulinemia, liver functions (AST & ALT) and kidneys function (BUN & Creatinine) were also significantly mitigated by MENS under diabetes model. The histological observation also showed the MENS administration improved the diabetes-related pathological characteristics in liver, kidney and pancreas tissues. Our results suggest that administration of MENS could significantly improve diabetes animal model on blood sugar homeostasis, diabetic polydipsia, biochemistries, and tissue damage. In the health conditions, the MENS didn

  3. Improved glycemic control, pancreas protective and hepatoprotective effect by traditional poly-herbal formulation “Qurs Tabasheer” in streptozotocin induced diabetic rats

    Science.gov (United States)

    2013-01-01

    Background The present study was undertaken to evaluate the antihyperglycemic, antihyperlipidemic and hepatoprotective effect of a traditional unani formulation “Qurs Tabasheer” in streptozotocin (STZ) induced diabetic wistar rats. Up till now no study was undertaken to appraise the efficacy of “Qurs Tabasheer” in the diabetic rats. Qurs Tabasheer is a unani formulation restraining preparations from five various herbs namely Tukhme Khurfa (Portulaca oleracea seed), Gule Surkh (Rosa damascena flower), Gulnar (Punica granatum flower), Tabasheer (Bambusa arundinasia dried exudate on node), Tukhme Kahu (Lactuca sativa Linn seed). Methods Effect of Qurs Tabasheer was assessed in STZ (60 mg/kg, i.p single shot) induced diabetic wistar rats. STZ produced a marked increase in the serum glucose, Total Cholesterol, LDL cholesterol, VLDL Cholesterol, Triglycerides and trim down the HDL level. We have weighed up the effect of Qurs Tabasheer on hepatic activity through estimating levels of various liver enzymes viz. Hexokinase, Glucose-6-Phosphatase and Fructose-1-6-biphosphatase in STZ diabetic wistar rats. Results In STZ-induced diabetic wistar rats level of Hexokinase, and Glucose-6-Phosphatase was decreased to a significant level while the level of fructose-1-6-biphophatase was augmented. Therapy with Qurs Tabasheer for 28 days to STZ-induced diabetic rats significantly reduces the level of serum glucose, total cholesterol, triglycerides, glucose-6-phosphatase and fructose-1-6-biphosphatase, while magnitude of HDL cholesterol and hexokinase was amplified. Conclusion Antihyperglycemic, antihyperlipidemic activity of Qurs Tabasheer extract in STZ- induced wistar rats was found to be more effective than standard oral hypoglycemic drug Glimepiride. PMID:23305114

  4. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice

    Science.gov (United States)

    Zhang, Yanqiao; Lee, Florence Ying; Barrera, Gabriel; Lee, Hans; Vales, Charisse; Gonzalez, Frank J.; Willson, Timothy M.; Edwards, Peter A.

    2006-01-01

    Farnesoid X receptor (FXR) plays an important role in maintaining bile acid and cholesterol homeostasis. Here we demonstrate that FXR also regulates glucose metabolism. Activation of FXR by the synthetic agonist GW4064 or hepatic overexpression of constitutively active FXR by adenovirus-mediated gene transfer significantly lowered blood glucose levels in both diabetic db/db and wild-type mice. Consistent with these data, FXR null mice exhibited glucose intolerance and insulin insensitivity. We further demonstrate that activation of FXR in db/db mice repressed hepatic gluconeogenic genes and increased hepatic glycogen synthesis and glycogen content by a mechanism that involves enhanced insulin sensitivity. In view of its central roles in coordinating regulation of both glucose and lipid metabolism, we propose that FXR agonists are promising therapeutic agents for treatment of diabetes mellitus. glucose | GW4064 | farnesoid X receptor-VP16 | triglyceride | cholesterol

  5. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice

    Directory of Open Access Journals (Sweden)

    Eom SooHyun

    2010-07-01

    Full Text Available Abstract Background Oxidative stress is imperative for its morbidity towards diabetic complications, where abnormal metabolic milieu as a result of hyperglycemia, leads to the onset of several complications. A biological antioxidant capable of inhibiting oxidative stress mediated diabetic progressions; during hyperglycemia is still the need of the era. The current study was performed to study the effect of biologically synthesized gold nanoparticles (AuNPs to control the hyperglycemic conditions in streptozotocin induced diabetic mice. Results The profound control of AuNPs over the anti oxidant enzymes such as GSH, SOD, Catalase and GPx in diabetic mice to normal, by inhibition of lipid peroxidation and ROS generation during hyperglycemia evidence their anti-oxidant effect during hyperglycemia. The AuNPs exhibited an insistent control over the blood glucose level, lipids and serum biochemical profiles in diabetic mice near to the control mice provokes their effective role in controlling and increasing the organ functions for better utilization of blood glucose. Histopathological and hematological studies revealed the non-toxic and protective effect of the gold nanoparticles over the vital organs when administered at dosage of 2.5 mg/kilogram.body.weight/day. ICP-MS analysis revealed the biodistribution of gold nanoparticles in the vital organs showing accumulation of AuNPs in the spleen comparatively greater than other organs. Conclusion The results obtained disclose the effectual role of AuNPs as an anti-oxidative agent, by inhibiting the formation of ROS, scavenging free radicals; thus increasing the anti-oxidant defense enzymes and creating a sustained control over hyperglycemic conditions which consequently evoke the potential of AuNPs as an economic therapeutic remedy in diabetic treatments and its complications.

  6. Effect of Vaccinium bracteatum Thunb. leaves extract on blood glucose and plasma lipid levels in streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Wang, Li; Zhang, Xue Tong; Zhang, Hai Yan; Yao, Hui Yuan; Zhang, Hui

    2010-08-09

    To investigate the hypoglycemic effects of Vaccinium bracteatum Thunb. leaves (VBTL) extract in streptozotocin-induced diabetic mice. After administration of VBTL extract for 4 weeks, the body weight, organ weight, blood glucose (BG), insulin and plasma lipid levels of streptozotocin-induced diabetic mice were measured. Body weights of diabetic mice treated with VBTL extract were partly recovered. The BG levels of AEG (diabetic mice treated with VBTL aqueous extract) were reduced to 91.52 and 85.82% at week 2 and week 4, respectively (P0.05). The insulin levels of AEG and EEG were obviously higher (P<0.05) than those of MC (diabetic mice in model control group). Comparing with MC, AEG and EEG had significantly lower (P<0.05) TC or TG levels and similar HDL-cholesterol or LDL-cholesterol levels. In comparison with non-diabetic control mice, AEG had similar plasma lipid levels except higher LDL-cholesterol level, while EEG had higher TC, TG and LDL-cholesterol levels and lower HDL-cholesterol levels. Both aqueous and ethanolic extract of VBTL possess a potential hypoglycemic effect in streptozotocin-induced diabetic mice. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice.

    Directory of Open Access Journals (Sweden)

    Savita Khanna

    2010-03-01

    Full Text Available Chronic inflammation is a characteristic feature of diabetic cutaneous wounds. We sought to delineate novel mechanisms involved in the impairment of resolution of inflammation in diabetic cutaneous wounds. At the wound-site, efficient dead cell clearance (efferocytosis is a pre-requisite for the timely resolution of inflammation and successful healing.Macrophages isolated from wounds of diabetic mice showed significant impairment in efferocytosis. Impaired efferocytosis was associated with significantly higher burden of apoptotic cells in wound tissue as well as higher expression of pro-inflammatory and lower expression of anti-inflammatory cytokines. Observations related to apoptotic cell load at the wound site in mice were validated in the wound tissue of diabetic and non-diabetic patients. Forced Fas ligand driven elevation of apoptotic cell burden at the wound site augmented pro-inflammatory and attenuated anti-inflammatory cytokine response. Furthermore, successful efferocytosis switched wound macrophages from pro-inflammatory to an anti-inflammatory mode.Taken together, this study presents first evidence demonstrating that diabetic wounds suffer from dysfunctional macrophage efferocytosis resulting in increased apoptotic cell burden at the wound site. This burden, in turn, prolongs the inflammatory phase and complicates wound healing.

  8. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice.

    Science.gov (United States)

    Moura, Liane I F; Dias, Ana M A; Suesca, Edward; Casadiegos, Sergio; Leal, Ermelindo C; Fontanilla, Marta R; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-01-01

    Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT-loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (phealing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (pdiabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone. © 2013.

  9. Platelet-Rich Fibrin Accelerates Skin Wound Healing in Diabetic Mice.

    Science.gov (United States)

    Ding, Yinjia; Cui, Lei; Zhao, Qiming; Zhang, Weiqiang; Sun, Huafeng; Zheng, Lijun

    2017-09-01

    Diabetic foot ulcers (DFUs) are associated with an increased risk of secondary infection and amputation. Platelet-rich fibrin (PRF), a platelet and leukocyte concentrate containing several cytokines and growth factors, is known to promote wound healing. However, the effect of PRF on diabetic wound healing has not been adequately investigated. The aim of the study was to investigate the effect of PRF on skin wound healing in a diabetic mouse model. Platelet-rich fibrin was prepared from whole blood of 8 healthy volunteers. Two symmetrical skin wounds per mouse were created on the back of 16 diabetic nude mice. One of the 2 wounds in each mouse was treated with routine dressings (control), whereas the other wound was treated with PRF in addition to routine dressings (test), each for a period of 14 days. Skin wound healing rate was calculated.Use of PRF was associated with significantly improved skin wound healing in diabetic mice. On hematoxylin and eosin and CD31 staining, a significant increase in the number of capillaries and CD31-positive cells was observed, suggesting that PRF may have promoted blood vessel formation in the skin wound. In this study, PRF seemed to accelerate skin wound healing in diabetic mouse models, probably via increased blood vessel formation.

  10. Akt-mediated cardioprotective effects of aldosterone in type 2 diabetic mice.

    Science.gov (United States)

    Fazal, Loubina; Azibani, Feriel; Bihry, Nicolas; Coutance, Guillaume; Polidano, Evelyne; Merval, Régine; Vodovar, Nicolas; Launay, Jean-Marie; Delcayre, Claude; Samuel, Jane-Lise

    2014-06-01

    Studies have shown that aldosterone would have angiogenic effects and therefore would be beneficial in the context of cardiovascular diseases. We thus investigated the potential involvement of aldosterone in triggering a cardiac angiogenic response in the context of type-2 diabetes and the molecular pathways involved. Male 3-wk-old aldosterone synthase (AS)-overexpressing mice and their control wild-type (WT) littermates were fed a standard or high-fat, high-sucrose (HFHS) diet. After 6 mo of diet treatment, mice were euthanized, and cardiac samples were assayed by RT-PCR, immunoblotting, and immunohistology. HFHS diet induced type-2 diabetes in WT (WT-D) and AS (AS-D) mice. VEGFa mRNAs decreased in WT-D (-43%, P<0.05 vs. WT) and increased in AS-D mice (+236%, P< 0.01 vs. WT-D). In WT-D mouse hearts, the proapoptotic p38MAPK was activated (P<0.05 vs. WT and AS-D), whereas Akt activity decreased (-64%, P<0.05 vs. WT). The AS mice, which exhibited a cardiac up-regulation of IGF1-R, showed an increase in Akt phosphorylation when diabetes was induced (P<0.05 vs. WT and AS-D). Contrary to WT-D mice, AS-D mouse hearts did not express inflammatory markers and exhibited a normal capillary density (P<0.05 vs. WT-D). To our knowledge, this is the first study providing new insights into the mechanisms whereby aldosterone prevents diabetes-induced cardiac disorders. © FASEB.

  11. [The experimental study of captopril and valsartan on the preventing and treatment of diabetic retinopathy in diabetic mice].

    Science.gov (United States)

    Xie, Xi-Wei; Zhao, Ping

    2004-11-01

    To evaluate the action of Angiotensin II (AngII) on the occurrence and development of diabetic retinopathy and the effect of captopril and valsartan on preventing and treating diabetic retinopathy. Male C57BL/KsJ db/+ mice were obtained at 3 weeks of age and maintained on diets enriched animal fat for 4 weeks. After exposure to high-fat diet for 4 weeks, mice were injected intraperitoneally with streptozotocin (STZ) 100 mg/kg body weight. After 2 weeks, nonfasting plasma glucose concentration was measured by nipping the distal part of the tail. Mice whose plasma glucose concentrations were higher than 11.1 mmol/L were selected for the study as model groups. Starting from day 2, captopril 12.5 mg/kg or valsartan 40 mg/kg was given to treatment group via the oral route After treatment for 4, 8, 12 weeks, respectively, eyeballs of mice from each group were enucleated, embedded in paraffin to make tissue sections for immunohistochemistry analysis. The instrument for computer image-analysis was used to analyze the expression of AngII and VEGF in ganglion cell layer. The analyzed indices were mean gray scale value and area density value. With increased duration of diabetes, the mean gray scale values of AngII and VEGF decreased significantly. At the same time, area density values of AngII and VEGF increased significantly. The area density values of VEGF in captopril treated-group was significantly lower than that in valsartan-treated group for the same duration. Moreover, the area density values of VEGF at 4 weeks was significantly lower than that at 8 weeks or 12 weeks. The area density value in captopril treated-group had a significant negative correlation with diabetes duration. AngII had significant positive correlation with VEGF. AngII possibly participated directly and/or indirectly in the occurrence and development of diabetic retinopathy via the upregulation the expression of VEGF. Early treatment with angiotensin-converting enzyme inhibitors (ACEi) and

  12. Recovery of Corneal Sensitivity and Increase in Nerve Density and Wound Healing in Diabetic Mice After PEDF Plus DHA Treatment.

    Science.gov (United States)

    He, Jiucheng; Pham, Thang Luong; Kakazu, Azucena; Bazan, Haydee E P

    2017-09-01

    Diabetic keratopathy decreases corneal sensation and tear secretion and delays wound healing after injury. In the current study, we tested the effect of treatment with pigment epithelium-derived factor (PEDF) in combination with docosahexaenoic acid (DHA) on corneal nerve regeneration in a mouse model of diabetes with or without corneal injury. The study was performed in streptozotocin-induced diabetic mice (C57BL/6). Ten weeks after streptozotocin injection, diabetic mice showed significant decreases of corneal sensitivity, tear production, and epithelial subbasal nerve density when compared with age-matched normal mice. After diabetic mice were wounded in the right eye and treated in both eyes with PEDF+DHA for 2 weeks, there was a significant increase in corneal epithelial nerve regeneration and substance P-positive nerve density in both wounded and unwounded eyes compared with vehicle-treated corneas. There also was elevated corneal sensitivity and tear production in the treated corneas compared with vehicle. In addition, PEDF+DHA accelerated corneal wound healing, selectively recruited type 2 macrophages, and prevented neutrophil infiltration in diabetic wounded corneas. These results suggest that topical treatment with PEDF+DHA promotes corneal nerve regeneration and wound healing in diabetic mice and could potentially be exploited as a therapeutic option for the treatment of diabetic keratopathy. © 2017 by the American Diabetes Association.

  13. Beneficial Effect of Leptin on Spatial Learning and Memory in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohsen Ghasemi

    2016-02-01

    Full Text Available Background: Diabetes mellitus is a chronic disease which may be accompanied by cognitive impairments. The expression of the obesity gene (ob is decreased in insulin-deficient diabetic animals and increased after the administration of insulin or leptin. Plasma leptin levels are reduced in the streptozotocin (STZ-induced diabetic rats. Therefore, the deleterious effects of diabetes on memory may be due to the reduction of leptin. Aims: Investigate the effect of subcutaneous injection of leptin on spatial learning and memory in STZ-induced diabetic rats. Study Design: Animal experimentation. Methods: The rats were divided into three groups: 1- control, 2- diabetic, and 3- diabetic-leptin. Diabetes was induced in groups 2 and 3 by STZ injection (55 mg/kg intraperitoneally (i.p. The animals received leptin (0.1 mg/kg or saline subcutaneously (s.c for 10 days before behavioral studies. Then, they were examined in the Morris water maze over 3 blocks after 3 days of the last injection of leptin. Results: The travelled path length and time spent to reach the platform significantly increased in the diabetic group (p<0.001 and decreased with leptin treatment (p<0.01 & p<0.001 respectively; also, a significant increase in path length and time was observed between the diabetic-leptin group and the diabetic group (p<0.01, p<0.001, respectively in the probe test. Conclusion: Leptin can exert positive effects on memory impairments in diabetic rats.

  14. Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Oliveira, Wilma Helena; Nunes, Ana Karolina; França, Maria Eduarda Rocha; Santos, Laise Aline; Lós, Deniele Bezerra; Rocha, Sura Wanessa; Barbosa, Karla Patrícia; Rodrigues, Gabriel Barros; Peixoto, Christina Alves

    2016-08-01

    The aim of the present study was to analyze the action of metformin on short-term memory, glial cell activation and neuroinflammation caused by experimental diabetic encephalopathy in C57BL/6 mice. Diabetes was induced by the intraperitoneal injection of a dose of 90mg/kg of streptozotocin on two successive days. Mice with blood glucose levels ≥200dl/ml were considered diabetic and were given metformin hydrochloride at doses of 100mg/kg and 200mg/kg (by gavage, twice daily) for 21 days. On the final day of treatment, the mice underwent a T-maze test. On the 22nd day of treatment all the animals were anesthetized and euthanized. Diabetic animals treated with metformin had a higher spatial memory score. The hippocampus of the diabetic animals presented reactive gliosis, neuronal loss, NF-kB signaling activation, and high levels of IL-1 and VEGF. In addition, the T-maze test scores of these animals were low. Treatment with metformin reduced the expression of GFAP, Iba-1 (astrocyte and microglial markers) and the inflammation markers (p-IKB, IL-1 and VEGF), while enhancing p-AMPK and eNOS levels and increasing neuronal survival (Fox-1 and NeuN). Treatment with metformin also improved the spatial memory scores of diabetic animals. In conclusion, the present study showed that metformin can significantly reduce neuroinflammation and can decrease the loss of neurons in the hippocampus of diabetic animals, which can subsequently promote improvements in spatial memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice.

    Science.gov (United States)

    Bodin, Johanna; Kocbach Bølling, Anette; Wendt, Anna; Eliasson, Lena; Becher, Rune; Kuper, Frieke; Løvik, Martinus; Nygaard, Unni Cecilie

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune destruction of insulin producing pancreatic beta-cells due to a genetic predisposition and can be triggered by environmental factors. We have previously shown that bisphenol A (BPA) accelerates the spontaneous development of diabetes in non-obese diabetic (NOD) mice. Here, we hypothesized that oral exposure to a mixture of the endocrine disruptors BPA and phthalates, relevant for human exposure, would accelerate diabetes development compared to BPA alone. NOD mice were exposed to BPA (1 mg/l), a mixture of phthalates (DEHP 1 mg/l, DBP 0.2 mg/l, BBP 10 mg/l and DiBP 20 mg/l) or a combination of BPA and the phthalate mixture through drinking water from conception and throughout life. Previous observations that BPA exposure increased the prevalence of diabetes and insulitis and decreased the number of tissue resident macrophages in pancreas were confirmed, and extended by demonstrating that BPA exposure also impaired the phagocytic activity of peritoneal macrophages. None of these effects were observed after phthalate exposure alone. The phthalate exposure in combination with BPA seemed to dampen the BPA effects on macrophage number and function as well as diabetes development, but not insulitis development. Exposure to BPA alone or in combination with phthalates decreased cytokine release (TNFα, IL-6, IL-10, IFNγ, IL-4) from in vitro stimulated splenocytes and lymph node cells, indicating systemic changes in immune function. In conclusion, exposure to BPA, but not to phthalates or mixed exposure to BPA and phthalates, accelerated diabetes development in NOD mice, apparently in part via systemic immune alterations including decreased macrophage function.

  16. Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice

    Directory of Open Access Journals (Sweden)

    Johanna Bodin

    2015-01-01

    Full Text Available Type 1 diabetes mellitus (T1DM is an autoimmune destruction of insulin producing pancreatic beta-cells due to a genetic predisposition and can be triggered by environmental factors. We have previously shown that bisphenol A (BPA accelerates the spontaneous development of diabetes in non-obese diabetic (NOD mice. Here, we hypothesized that oral exposure to a mixture of the endocrine disruptors BPA and phthalates, relevant for human exposure, would accelerate diabetes development compared to BPA alone. NOD mice were exposed to BPA (1 mg/l, a mixture of phthalates (DEHP 1 mg/l, DBP 0.2 mg/l, BBP 10 mg/l and DiBP 20 mg/l or a combination of BPA and the phthalate mixture through drinking water from conception and throughout life. Previous observations that BPA exposure increased the prevalence of diabetes and insulitis and decreased the number of tissue resident macrophages in pancreas were confirmed, and extended by demonstrating that BPA exposure also impaired the phagocytic activity of peritoneal macrophages. None of these effects were observed after phthalate exposure alone. The phthalate exposure in combination with BPA seemed to dampen the BPA effects on macrophage number and function as well as diabetes development, but not insulitis development. Exposure to BPA alone or in combination with phthalates decreased cytokine release (TNFα, IL-6, IL-10, IFNγ, IL-4 from in vitro stimulated splenocytes and lymph node cells, indicating systemic changes in immune function. In conclusion, exposure to BPA, but not to phthalates or mixed exposure to BPA and phthalates, accelerated diabetes development in NOD mice, apparently in part via systemic immune alterations including decreased macrophage function.

  17. Analysis of the Endoplasmic Reticulum Subproteome in the Livers of Type 2 Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Sang-Oh Kwon

    2012-12-01

    Full Text Available Type 2 diabetes is a chronic metabolic disease that results from insulin resistance in the liver, muscle, and adipose tissue and relative insulin deficiency. The endoplasmic reticulum (ER plays a crucial role in the regulation of the cellular response to insulin. Recently, ER stress has been known to reduce the insulin sensitivity of the liver and lead to type 2 diabetes. However, detailed mechanisms of ER stress response that leads to type 2 diabetes remains unknown. To obtain a global view of ER function in type 2 diabetic liver and identify proteins that may be responsible for hepatic ER stress and insulin resistance, we performed proteomics analysis of mouse liver ER using nano UPLC-MSE. A total of 1584 proteins were identified in control C57 and type 2 diabetic db/db mice livers. Comparison of the rER and sER proteomes from normal mice showed that proteins involved in protein synthesis and metabolic process were enriched in the rER, while those associated with transport and cellular homeostasis were localized to the sER. In addition, proteins involved in protein folding and ER stress were found only in the rER. In the livers of db/db mice, however, the functions of the rER and sER were severely disrupted, including the capacity to resolve ER stress. These results provide new insight into the research on hepatic insulin resistance and type 2 diabetes and are suggestive of the potential use of the differentially expressed hepatic ER proteins as biomarkers for hepatic insulin resistance and type 2 diabetes.

  18. B lymphocyte "original sin" in the bone marrow enhances islet autoreactivity in type 1 diabetes-prone nonobese diabetic mice.

    Science.gov (United States)

    Henry-Bonami, Rachel A; Williams, Jonathan M; Rachakonda, Amita B; Karamali, Mariam; Kendall, Peggy L; Thomas, James W

    2013-06-15

    Effective central tolerance is required to control the large extent of autoreactivity normally present in the developing B cell repertoire. Insulin-reactive B cells are required for type 1 diabetes in the NOD mouse, because engineered mice lacking this population are protected from disease. The Cg-Tg(Igh-6/Igh-V125)2Jwt/JwtJ (VH125Tg) model is used to define this population, which is found with increased frequency in the periphery of NOD mice versus nonautoimmune C57BL/6 VH125Tg mice; however, the ontogeny of this disparity is unknown. To better understand the origins of these pernicious B cells, anti-insulin B cells were tracked during development in the polyclonal repertoire of VH125Tg mice. An increased proportion of insulin-binding B cells is apparent in NOD mice at the earliest point of Ag commitment in the bone marrow. Two predominant L chains were identified in B cells that bind heterologous insulin. Interestingly, Vκ4-57-1 polymorphisms that confer a CDR3 Pro-Pro motif enhance self-reactivity in VH125Tg/NOD mice. Despite binding circulating autoantigen in vivo, anti-insulin B cells transition from the parenchyma to the sinusoids in the bone marrow of NOD mice and enter the periphery unimpeded. Anti-insulin B cells expand at the site of autoimmune attack in the pancreas and correlate with increased numbers of IFN-γ-producing cells in the repertoire. These data identify the failure to cull autoreactive B cells in the bone marrow as the primary source of anti-insulin B cells in NOD mice and suggest that dysregulation of central tolerance permits their escape into the periphery to promote disease.

  19. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Science.gov (United States)

    Toque, Haroldo A; Nunes, Kenia P; Yao, Lin; Xu, Zhimin; Kondrikov, Dmitry; Su, Yunchao; Webb, R Clinton; Caldwell, Ruth B; Caldwell, R William

    2013-01-01

    Elevated arginase (Arg) activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO) synthase (NOS) and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC) from Akita mice. Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT) mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP) was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC) compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH) reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177) (in aorta and CC) and nNOS expression (in CC) were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks. Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  20. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Directory of Open Access Journals (Sweden)

    Haroldo A Toque

    Full Text Available Elevated arginase (Arg activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO synthase (NOS and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC from Akita mice.Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177 (in aorta and CC and nNOS expression (in CC were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks.Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  1. Curcumin restores mitochondrial functions and decreases lipid peroxidation in liver and kidneys of diabetic db/db mice

    Directory of Open Access Journals (Sweden)

    María G Soto-Urquieta

    2014-01-01

    Full Text Available BACKGROUND: Nitrosative and oxidative stress play a key role in obesity and diabetes-related mitochondrial dysfunction. The objective was to investigate the effect of curcumin treatment on state 3 and 4 oxygen consumption, nitric oxide (NO synthesis, ATPase activity and lipid oxidation in mitochondria isolated from liver and kidneys of diabetic db/db mice. RESULTS: Hyperglycaemia increased oxygen consumption and decreased NO synthesis in liver mitochondria isolated from diabetic mice relative to the control mice. In kidney mitochondria, hyperglycaemia increased state 3 oxygen consumption and thiobarbituric acid-reactive substances (TBARS levels in diabetic mice relative to control mice. Interestingly, treating db/db mice with curcumin improved or restored these parameters to normal levels; also curcumin increased liver mitochondrial ATPase activity in db/db mice relative to untreated db/db mice. CONCLUSIONS: These findings suggest that hyperglycaemia modifies oxygen consumption rate, NO synthesis and increases TBARS levels in mitochondria from the liver and kidneys of diabetic mice, whereas curcumin may have a protective role against these alterations.

  2. Left ventricular dysfunction with reduced functional cardiac reserve in diabetic and non-diabetic LDL-receptor deficient apolipoprotein B100-only mice

    Directory of Open Access Journals (Sweden)

    Bosch Fatima

    2011-06-01

    Full Text Available Abstract Background Lack of suitable mouse models has hindered the studying of diabetic macrovascular complications. We examined the effects of type 2 diabetes on coronary artery disease and cardiac function in hypercholesterolemic low-density lipoprotein receptor-deficient apolipoprotein B100-only mice (LDLR-/-ApoB100/100. Methods and results 18-month-old LDLR-/-ApoB100/100 (n = 12, diabetic LDLR-/-ApoB100/100 mice overexpressing insulin-like growth factor-II (IGF-II in pancreatic beta cells (IGF-II/LDLR-/-ApoB100/100, n = 14 and age-matched C57Bl/6 mice (n = 15 were studied after three months of high-fat Western diet. Compared to LDLR-/-ApoB100/100 mice, diabetic IGF-II/LDLR-/-ApoB100/100 mice demonstrated more calcified atherosclerotic lesions in aorta. However, compensatory vascular enlargement was similar in both diabetic and non-diabetic mice with equal atherosclerosis (cross-sectional lesion area ~60% and consequently the lumen area was preserved. In coronary arteries, both hypercholesterolemic models showed significant stenosis (~80% despite positive remodeling. Echocardiography revealed severe left ventricular systolic dysfunction and anteroapical akinesia in both LDLR-/-ApoB100/100 and IGF-II/LDLR-/-ApoB100/100 mice. Myocardial scarring was not detected, cardiac reserve after dobutamine challenge was preserved and ultrasructural changes revealed ischemic yet viable myocardium, which together with coronary artery stenosis and slightly impaired myocardial perfusion suggest myocardial hibernation resulting from chronic hypoperfusion. Conclusions LDLR-/-ApoB100/100 mice develop significant coronary atherosclerosis, severe left ventricular dysfunction with preserved but diminished cardiac reserve and signs of chronic myocardial hibernation. However, the cardiac outcome is not worsened by type 2 diabetes, despite more advanced aortic atherosclerosis in diabetic animals.

  3. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes.

    Science.gov (United States)

    Funda, David P; Kaas, Anne; Tlaskalová-Hogenová, Helena; Buschard, Karsten

    2008-01-01

    Environmental factors such as nutrition or exposure to infections play a substantial role in the pathogenesis of type 1 diabetes (T1D). We have previously shown that gluten-free, non-purified diet largely prevented diabetes in non-obese diabetic (NOD) mice. In this study we tested hypothesis that early introduction of gluten-enriched (gluten+) diet may increase diabetes incidence in NOD mice. Standard, gluten-free, gluten+ modified Altromin diets and hydrolysed-casein-based Pregestimil diet were fed to NOD females and diabetes incidence was followed for 310 days. Insulitis score and numbers of gut mucosal lymphocytes were determined in non-diabetic animals. A significantly lower diabetes incidence (p gluten-free diet (5.9%, n = 34) and Pregestimil diet (10%, n = 30) compared to mice on the standard Altromin diet (60.6%, n = 33). Surprisingly, gluten+ diet also prevented diabetes incidence, even at the level found with the gluten-free diet (p gluten+, gluten-free, Pregestimil) diets, did that slightly later compared to those on the standard diet. Lower insulitis score compared to control mice was found in non-diabetic NOD mice on the gluten-free, and to a lesser extent also gluten+ and Pregestimil diets. No substantial differences in the number of CD3(+), TCR-gammadelta(+), and IgA(+) cells in the small intestine were documented. Gluten+ diet prevents diabetes in NOD mice at the level found with the non-purified gluten-free diet. Possible mechanisms of the enigmatic, dual effect of dietary gluten on the development of T1D are discussed. 2007 John Wiley & Sons, Ltd

  4. Mice deficient for ERAD machinery component Sel1L develop central diabetes insipidus.

    Science.gov (United States)

    Bichet, Daniel G; Lussier, Yoann

    2017-10-02

    Deficiency of the antidiuretic hormone arginine vasopressin (AVP) underlies diabetes insipidus, which is characterized by the excretion of abnormally large volumes of dilute urine and persistent thirst. In this issue of the JCI, Shi et al. report that Sel1L-Hrd1 ER-associated degradation (ERAD) is responsible for the clearance of misfolded pro-arginine vasopressin (proAVP) in the ER. Additionally, mice with Sel1L deficiency, either globally or specifically within AVP-expressing neurons, developed central diabetes insipidus. The results of this study demonstrate a role for ERAD in neuroendocrine cells and serve as a clinical example of the effect of misfolded ER proteins retrotranslocated through the membrane into the cytosol, where they are polyubiquitinated, extracted from the ER membrane, and degraded by the proteasome. Moreover, proAVP misfolding in hereditary central diabetes insipidus likely shares common physiopathological mechanisms with proinsulin misfolding in hereditary diabetes mellitus of youth.

  5. Chronic Co-Administration of Sepiapterin and L-Citrulline Ameliorates Diabetic Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury in Obese Type 2 Diabetic Mice.

    Science.gov (United States)

    Baumgardt, Shelley L; Paterson, Mark; Leucker, Thorsten M; Fang, Juan; Zhang, David X; Bosnjak, Zeljko J; Warltier, David C; Kersten, Judy R; Ge, Zhi-Dong

    2016-01-01

    Diabetic heart disease is associated with tetrahydrobiopterin oxidation and high arginase activity, leading to endothelial nitric oxide synthase dysfunction. Sepiapterin (SEP) is a tetrahydrobiopterin precursor, and L-citrulline (L-Cit) is converted to endothelial nitric oxide synthase substrate, L-arginine. Whether SEP and L-Cit are effective at reducing diabetic heart disease is not known. The present study examined the effects of SEP and L-Cit on diabetic cardiomyopathy and ischemia/reperfusion injury in obese type 2 diabetic mice. Db/db and C57BLKS/J mice at 6 to 8 weeks of age received vehicle, SEP, or L-Cit orally alone or in combination for 8 weeks. Cardiac function was evaluated with echocardiography. Db/db mice displayed hyperglycemia, obesity, and normal blood pressure and cardiac function compared with C57BLKS/J mice at 6 to 8 weeks of age. After vehicle treatment for 8 weeks, db/db mice had reduced ejection fraction, mitral E/A ratio, endothelium-dependent relaxation of coronary arteries, tetrahydrobiopterin concentrations, ratio of endothelial nitric oxide synthase dimers/monomers, and nitric oxide levels compared with vehicle-treated C57BLKS/J mice. These detrimental effects of diabetes mellitus were abrogated by co-administration of SEP and L-Cit. Myocardial infarct size was increased, and coronary flow rate and ± dP/dt were decreased during reperfusion in vehicle-treated db/db mice subjected to ischemia/reperfusion injury compared with control mice. Co-administration of SEP and L-Cit decreased infarct size and improved coronary flow rate and cardiac function in both C57BLKS/J and db/db mice. Co-administration of SEP and L-Cit limits diabetic cardiomyopathy and ischemia/reperfusion injury in db/db mice through a tetrahydrobiopterin/endothelial nitric oxide synthase/nitric oxide pathway. © 2016 American Heart Association, Inc.

  6. Evaluation of Anticonvulsive ٍEffect of Magnesium Oxide Nanoparticles in Comparison with Conventional MgO in Diabetic and Non-diabetic Male Mice

    Directory of Open Access Journals (Sweden)

    Leila Jahangiri

    2014-05-01

    Full Text Available Introduction: Some studies show magnesium has anticonvulsive effect in some animal models. Despite of the availability of well-studied anticonvulsant drugs, this evaluation was not carried on new kind of magnesium supplement, magnesium oxide nanoparticles (nMgO. According to the interaction between magnesium and convulsion, this study was designed to evaluate the effect of nMgO on strychnine-induced convulsive model in compared to its conventional in diabetic and normal mice. Methods: Healthy male albino mice were divided to 10 groups. Diabete mellitus was induced by streptozocin in 5 groups. Conventional and nanoparticle MgO (5&10mg/kg in presence and absence diabetes injected to mice, then strychnine injected and onset of convulsions and time of death were measured after strychnine administration. Results: Convulsive parameters did not change in normal and diabetic mice. cMgO pretreatment did not have anticonvulsant effect in strychnine-induced convulsion in normal and diabetic mice. But nMgO significantly changed convulsion onset and death time after strychnine administration in normal and diabetic status. Discussion: According to our results It seems that nMgO may be important in prevention or treatment of epilepsy and has more efficacy than its conventional form to showing anticonvulsive effect that probably is related to the physicochemical properties of nMgO, specially in diabetic subjects, a point that need to further investigation.

  7. Photobiomodulation Mitigates Diabetes-Induced Retinopathy by Direct and Indirect Mechanisms: Evidence from Intervention Studies in Pigmented Mice.

    Science.gov (United States)

    Saliba, Alexandra; Du, Yunpeng; Liu, Haitao; Patel, Shyam; Roberts, Robin; Berkowitz, Bruce A; Kern, Timothy S

    2015-01-01

    Daily application of far-red light from the onset of diabetes mitigated diabetes-induced abnormalities in retinas of albino rats. Here, we test the hypothesis that photobiomodulation (PBM) is effective in diabetic, pigmented mice, even when delayed until weeks after onset of diabetes. Direct and indirect effects of PBM on the retina also were studied. Diabetes was induced in C57Bl/6J mice using streptozotocin. Some diabetics were exposed to PBM therapy (4 min/day; 670 nm) daily. In one study, mice were diabetic for 4 weeks before initiation of PBM for an additional 10 weeks. Retinal oxidative stress, inflammation, and retinal function were measured. In some mice, heads were covered with a lead shield during PBM to prevent direct illumination of the eye, or animals were treated with an inhibitor of heme oxygenase-1. In a second study, PBM was initiated immediately after onset of diabetes, and administered daily for 2 months. These mice were examined using manganese-enhanced MRI to assess effects of PBM on transretinal calcium channel function in vivo. PBM intervention improved diabetes-induced changes in superoxide generation, leukostasis, expression of ICAM-1, and visual performance. PBM acted in part remotely from the retina because the beneficial effects were achieved even with the head shielded from the light therapy, and because leukocyte-mediated cytotoxicity of retinal endothelial cells was less in diabetics treated with PBM. SnPP+PBM significantly reduced iNOS expression compared to PBM alone, but significantly exacerbated leukostasis. In study 2, PBM largely mitigated diabetes-induced retinal calcium channel dysfunction in all retinal layers. PBM induces retinal protection against abnormalities induced by diabetes in pigmented animals, and even as an intervention. Beneficial effects on the retina likely are mediated by both direct and indirect mechanisms. PBM is a novel non-pharmacologic treatment strategy to inhibit early changes of diabetic retinopathy.

  8. Photobiomodulation Mitigates Diabetes-Induced Retinopathy by Direct and Indirect Mechanisms: Evidence from Intervention Studies in Pigmented Mice.

    Directory of Open Access Journals (Sweden)

    Alexandra Saliba

    Full Text Available Daily application of far-red light from the onset of diabetes mitigated diabetes-induced abnormalities in retinas of albino rats. Here, we test the hypothesis that photobiomodulation (PBM is effective in diabetic, pigmented mice, even when delayed until weeks after onset of diabetes. Direct and indirect effects of PBM on the retina also were studied.Diabetes was induced in C57Bl/6J mice using streptozotocin. Some diabetics were exposed to PBM therapy (4 min/day; 670 nm daily. In one study, mice were diabetic for 4 weeks before initiation of PBM for an additional 10 weeks. Retinal oxidative stress, inflammation, and retinal function were measured. In some mice, heads were covered with a lead shield during PBM to prevent direct illumination of the eye, or animals were treated with an inhibitor of heme oxygenase-1. In a second study, PBM was initiated immediately after onset of diabetes, and administered daily for 2 months. These mice were examined using manganese-enhanced MRI to assess effects of PBM on transretinal calcium channel function in vivo.PBM intervention improved diabetes-induced changes in superoxide generation, leukostasis, expression of ICAM-1, and visual performance. PBM acted in part remotely from the retina because the beneficial effects were achieved even with the head shielded from the light therapy, and because leukocyte-mediated cytotoxicity of retinal endothelial cells was less in diabetics treated with PBM. SnPP+PBM significantly reduced iNOS expression compared to PBM alone, but significantly exacerbated leukostasis. In study 2, PBM largely mitigated diabetes-induced retinal calcium channel dysfunction in all retinal layers.PBM induces retinal protection against abnormalities induced by diabetes in pigmented animals, and even as an intervention. Beneficial effects on the retina likely are mediated by both direct and indirect mechanisms. PBM is a novel non-pharmacologic treatment strategy to inhibit early changes of diabetic

  9. Rauwolfia serpentina improves altered glucose and lipid homeostasis in fructose-induced type 2 diabetic mice.

    Science.gov (United States)

    Azmi, Muhammad Bilal; Qureshi, Shamim A

    2016-09-01

    Rauwolfia serpentina is well-reported in traditional medicines for the treatment of hypertensive and neurological disorders. However, its antidiabetic potential has been currently described in both alloxan-treated and normoglycemic mice. Present effort was carried out to investigate the effect of methanol root extract (MREt) of R.serpentina in fructose-induced type 2 diabetic mice. Experimental mice were grouped into normal control (distilled water 1ml/kg) and fructose-induced type 2 diabetic groups (10% fructose 1 ml/kg).The second group sub-divided into negative (0.05% DMSO 1ml/kg) control, positive (pioglitazone 15mg/kg) control and three test groups (MREt 10, 30 & 60 mg/kg). Each treatment was given orally for 14 days consecutively then mice were sacrificed in order to collect serum and liver samples to analyze physical, biochemical as well as hematological markers. MREt significantly improved percent body weight and glycemic change along with serum insulin, total cholesterol (TC), triglycerides (TG), low density lipoprotein (LDL-c), very low-density lipoprotein (VLDL-c), high-density lipoprotein-cholesterols (HDL-c), total hemoglobin, glycosylated hemoglobin, hepatic glycogen, coronary risk and fasting insulin resistance indices while suppressed down the activity of 3-hydroxy-3-methylglutaryl Coenzyme A reductase enzyme in test groups when compared with diabetic controls. The present findings conclude that MREt of R. serpentina can effectively betters the carbohydrate and lipid homeostasis by either inhibiting fructose absorption in intestine or decreasing insulin resistance in fructose-induced type 2 diabetic mice.

  10. Long term low dose rate irradiation causes recovery from type II diabetes and suppression of aging in type II diabetes-prone mice

    International Nuclear Information System (INIS)

    Namura, T.; Oda, T.

    2003-01-01

    The effects of low dose rate gamma irradiation on model C57BL/KsJ-db/db mice with Type II diabetes mellitus was investigated. These mice develop Type II diabetes by 10 weeks of age, due to obesity, and are characterized by hyperinsulinemia. A group of 12 female 10-week old mice were irradiated at 0.65 mGy/hr in the low dose rate irradiation facility in the Low Dose Radiation Research Center. The urine glucose levels of all of the mice were strongly positive at the beginning of the irradiation. In the irradiated group, a decrease in the glucose level was observed in three mice, one in the 35th week, another in the 52nd week and the third in the 80th week. No recovery from the diabetes was observed in the 12 mice of non-irradiated control group. There was no systematic change of body weight or consumption of food and drinking water between the irradiated group and the non-irradiated group or between the recovered mice and the non-recovered mice. Survival was better in the irradiated group. The surviving fraction at the age of 90 weeks was 75 % in the irradiated group but only 40 % in the non-irradiated. A marked difference was also observed in the appearance of the coat hair, skin and tail. The irradiated group was in much better condition. Mortality was delayed and the healthy appearance was prolonged in the irradiated mice by about 20-30 weeks compared with the control mice. These results suggest that the low dose irradiation modified the condition of the diabetic mice, leading not only to recovery from diabetes, but also to suppression of the aging process

  11. Short term supplementation of dietary antioxidants selectively regulates the inflammatory responses during early cutaneous wound healing in diabetic mice

    Directory of Open Access Journals (Sweden)

    Park Na-Young

    2011-11-01

    Full Text Available Abstract Background Diabetic foot ulcers are serious complications for diabetic patients, yet the precise mechanism that underlines the treatment of these diabetic complications remains unclear. We hypothesized that dietary antioxidant supplementation with vitamin C, combined either with vitamin E or with vitamin E and NAC, improves delayed wound healing through modulation of blood glucose levels, oxidative stress, and inflammatory response. Methods Diabetes was induced by administration of alloxan monohydrate. Mice were divided into 4 groups; CON (non-diabetic control mice fed AIN 93 G purified rodent diet, DM (diabetic mice fed AIN 93 G purified rodent diet, VCE (diabetic mice fed 0.5% vitamin C and 0.5% vitamin E supplemented diet, and Comb (diabetic mice fed 0.5% vitamin C, 0.5% vitamin E, and 2.5% NAC supplemented diet. After 10 days of dietary antioxidant supplementation, cutaneous full-thickness excisional wounds were performed, and the rate of wound closure was examined. TBARS as lipid peroxidation products and vitamin E levels were measured in the liver. Expression levels of oxidative stress and inflammatory response related proteins were measured in the cutaneous wound site. Results Dietary antioxidant supplementation improved blood glucose levels and wound closure rate and increased liver vitamin E, but not liver TBARS levels in the diabetic mice as compared to those of the CON. In addition, dietary antioxidant supplementation modulated the expression levels of pIκBα, HO-1, CuZnSOD, iNOS and COX-2 proteins in the diabetic mice. Conclusions These findings demonstrated that delayed wound healing is associated with an inflammatory response induced by hyperglycaemia, and suggests that dietary antioxidant supplementation may have beneficial effects on wound healing through selective modulation of blood glucose levels, oxidative stress, and inflammatory response.

  12. Recovery Effect and Life Prolong Effect of Long Term Low-Dose Rate Irradiation on Type II Diabetes Model Mice

    International Nuclear Information System (INIS)

    Nomura, T.; Makino, N.; Oda, T.; Suzuki, I.; Sakai, K

    2004-01-01

    The effects of low-dose rate gamma-irradiation were investigated on model mice for type II diabetes mellitus, C57BL/KsJ-db/db. The mice develop the type II diabetes by 10 weeks of age due to obesity and are characterized by hyperinsulinemia. Female 10-week old mice, a group of 12 mice, were irradiated at 0.65 mGy/hr from 137-Cs (370 GBq). The urine glucose levels of all of the mice were strongly positive at the beginning of the irradiation. In the irradiated group, the decrease in the glucose level was observed in 3 mice. Such recovery from the diabetes was never observed in 12 mice of non-irradiated control group. There is no systematic difference in the change of body weight, food assumption, and amount of drinking water, between the irradiated group and the non-irradiated group or between the recovered mice and the non-recovered mice. The survival was better in the irradiated group: the surviving fraction at the age of 90 weeks was 75% in the irradiated group, while 40% in the non-irradiated. Marked difference was also observed in the appearance of the coat hair, skin, and tail; better condition was kept in the irradiated group. In the irradiated mice mortality was delayed and the healthy appearance was prolonged in the irradiated mice by about 20 ? 30 weeks compared with the non-irradiated mice. These results suggest that the low-dose irradiation modified the condition of the diabetic mice, which lead not only to the recovery of the diabetes, but also to the suppression of the aging process. (Author)

  13. Critical role of IFN-gamma in CFA-mediated protection of NOD mice from diabetes development.

    Science.gov (United States)

    Mori, Yoshiko; Kodaka, Tetsuro; Kato, Takako; Kanagawa, Edith M; Kanagawa, Osami

    2009-11-01

    IFN-gamma signaling-deficient non-obese diabetic (NOD) mice develop diabetes with similar kinetics to those of wild-type NOD mice. However, the immunization of IFN-gamma signaling-deficient NOD mice with CFA failed to induce long-term protection, whereas wild-type NOD mice receiving CFA remained diabetes-free. CFA also failed to protect IFN-gamma receptor-deficient (IFN-gammaR(-/-)) NOD mice from the autoimmune rejection of transplanted islets, as it does in diabetic NOD mice, and from disease transfer by spleen cells from diabetic NOD mice. These data clearly show that the pro-inflammatory cytokine IFN-gamma is necessary for the CFA-mediated protection of NOD mice from diabetes. There is no difference in the T(h)1/T(h)17 balance between IFN-gammaR(-/-) NOD and wild-type NOD mice. There is also no difference in the total numbers and percentages of regulatory T (Treg) cells in the lymph node CD4(+) T-cell populations between IFN-gammaR(-/-) NOD and wild-type NOD mice. However, pathogenic T cells lacking IFN-gammaR are resistant to the suppressive effect of Treg cells, both in vivo and in vitro. Therefore, it is likely that CFA-mediated protection against diabetes development depends on a change in the balance between Treg cells and pathogenic T cells, and IFN-gamma signaling seems to control the susceptibility of pathogenic T cells to the inhibitory activity of Treg cells.

  14. Hypoglycemic and Hypolipidemic Effects of the Cracked-Cap Medicinal Mushroom Phellinus rimosus (Higher Basidiomycetes) in Streptozotocin-Induced Diabetic Rats.

    Science.gov (United States)

    Rony, Kuttikkadan A; Ajith, Thekkuttuparambil A; Janardhanan, Kainoor K

    2015-01-01

    Phellinus rimosus is a parasitic host specific polypore mushroom with profound antioxidant, antihepatotoxic, anti-inflammatory, antitumor, and antimutagenic activities. This study investigated the hypoglycemic and hypolipidemic activities of the wood-inhabiting polypore mushroom Ph. Rimosus in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by single intraperitoneal injection of STZ (45 mg/kg) to Wistar rats. The effects of 30 days treatment with Ph. Rimosus (50 and 250 mg/ kg) and glibenclamide (0.65 mg/kg) on blood glucose level, serum insulin, serum lipid profile, liver glycogen, liver function enzymes, and non-enzymic and enzymic antioxidants activities in pancreas, liver, and kidney were evaluated in STZ-induced diabetic rats. Oral administration of Ph. Rimosus extract exhibited a significant reduction in blood glucose, triacylglycerol, total cholesterol, LDL-cholesterol, and liver function enzymes, and increased serum insulin, liver glycogen, and HDL-cholesterol levels in STZ-induced diabetic rats. Furthermore, Ph. Rimosus treatment increased antioxidant status in pancreas, liver, and kidney tissues with concomitant decreases in levels of thiobarbituric acid- reactive substances. Results of this study indicated that Ph. Rimosus possessed significant hypoglycemic and hypolipidemic activities and this effect may be related to its insulinogenic and antioxidant effect.

  15. Sildenafil ameliorates long term peripheral neuropathy in type II diabetic mice.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Diabetic peripheral neuropathy is a common complication of long-standing diabetes mellitus. To mimic clinical trials in which patients with diabetes enrolled have advanced peripheral neuropathy, we investigated the effect of sildenafil, a specific inhibitor of phosphodiesterase type 5 enzyme, on long term peripheral neuropathy in middle aged male mice with type II diabetes. Treatment of diabetic mice (BKS.Cg-m+/+Leprdb/J, db/db at age 36 weeks with sildenafil significantly increased functional blood vessels and regional blood flow in the sciatic nerve, concurrently with augmentation of intra-epidermal nerve fiber density in the skin and myelinated axons in the sciatic nerve. Functional analysis showed that the sildenafil treatment considerably improved motor and sensory conduction velocities in the sciatic nerve and peripheral thermal stimulus sensitivity compared with the saline treatment. In vitro studies showed that mouse dermal endothelial cells (MDE cultured under high glucose levels exhibited significant down regulation of angiopoietin 1 (Ang1 expression and reduction of capillary-like tube formation, which were completely reversed by sildenafil. In addition, incubation of dorsal root ganglia (DRG neurons with conditioned medium harvested from MDE under high glucose levels suppressed neurite outgrowth, where as conditional medium harvested from MDE treated with sildenafil under high glucose levels did not inhibit neurite outgrowth of DRG neurons. Moreover, blockage of the Ang1 receptor, Tie2, with a neutralized antibody against Tie2 abolished the beneficial effect of sildenafil on tube formation and neurite outgrowth. Collectively, our data indicate that sildenafil has a therapeutic effect on long term peripheral neuropathy of middle aged diabetic mice and that improvement of neurovascular dysfunction by sildenafil likely contributes to the amelioration of nerve function. The Ang1/Tie2 signaling pathway may play an important role in these

  16. Methadone ameliorates multiple-low-dose streptozotocin-induced type 1 diabetes in mice

    International Nuclear Information System (INIS)

    Amirshahrokhi, K.; Dehpour, A.R.; Hadjati, J.; Sotoudeh, M.; Ghazi-Khansari, M.

    2008-01-01

    Type 1 diabetes is an autoimmune disease characterized by inflammation of pancreatic islets and destruction of β cells by the immune system. Opioids have been shown to modulate a number of immune functions, including T helper 1 (Th1) and T helper 2 (Th2) cytokines. The immunosuppressive effect of long-term administration of opioids has been demonstrated both in animal models and humans. The aim of this study was to determine the effect of methadone, a μ-opioid receptor agonist, on type 1 diabetes. Administration of multiple low doses of streptozotocin (STZ) (MLDS) (40mg/kg intraperitoneally for 5 consecutive days) to mice resulted in autoimmune diabetes. Mice were treated with methadone (10mg/kg/day subcutaneously) for 24days. Blood glucose, insulin and pancreatic cytokine levels were measured. Chronic methadone treatment significantly reduced hyperglycemia and incidence of diabetes, and restored pancreatic insulin secretion in the MLDS model. The protective effect of methadone can be overcome by pretreatment with naltrexone, an opioid receptor antagonist. Also, methadone treatment decreased the proinflammatory Th1 cytokines [interleukin (IL)-1β, tumor necrosis factor-α and interferon-γ] and increased anti-inflammatory Th2 cytokines (IL-4 and IL-10). Histopathological observations indicated that STZ-mediated destruction of β cells was attenuated by methadone treatment. It seems that methadone as an opioid agonist may have a protective effect against destruction of β cells and insulitis in the MLDS model of type 1 diabetes

  17. Comparative study of telmisartan with pioglitazone on insulin resistance in type 2 diabetic mice

    International Nuclear Information System (INIS)

    Khan, A.; Qayyum, A.; Khan, B.T.

    2017-01-01

    Objective: To evaluate and compare the effects of telmisartan and pioglitazone on peripheral insulin resistance in diabetic mice. Study Design: Randomized control trail. Place and Duration of Study: National Institute of Health, Islamabad and pharmacology dept, Army Medical College, from 17th March to 17th June 2014. Material and Methods: Twenty four BALB/c mice, both male and female, of 35 to 40 grams were used for this study. Animals were randomly divided into four groups. Two were taken as control groups, one was normal control and the other was diabetic control. Two were taken as interventional groups and received either pioglitazone or telmisartan for four weeks after induction of diabetes. Results: After treatment, pioglitazone reduced all the biochemical parameters significantly when compared with diabetic control. Negative correlation between glucose and insulin was changed into positive correlation (r-value, 0.92) with significant p-value (0.015) in pioglitazone treated group, while telmisartan only managed to convert a negative correlation between insulin and glucose into statistically non-significant positive. Conclusion: Telmisartan although reduces glucose levels and improves beta cell mass but the effect is statistically non-significant as compared to pioglitazone. In hypertensive type 2 diabetics a combination of these two drugs may help in reducing the dose of pioglitazone and consequently the cardiovascular adverse effects of pioglitazone. (author)

  18. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice.

    Science.gov (United States)

    Mallol, Cristina; Casana, Estefania; Jimenez, Veronica; Casellas, Alba; Haurigot, Virginia; Jambrina, Claudia; Sacristan, Victor; Morró, Meritxell; Agudo, Judith; Vilà, Laia; Bosch, Fatima

    2017-07-01

    Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a

  19. Effects of Tang Mai Kang Capsule on Angioneurotic Lesions in Alloxan-Induced Diabetic Mice

    Institute of Scientific and Technical Information of China (English)

    李华; 王军; 高丽君; 郭永成

    2004-01-01

    The effects of Tang Mai Kang Capsule (糖脉康胶囊) on blood sugar level, gangrene of the tail-tip, pain threshold and learning and memory abilities were investigated in alloxan-induced diabetic mice. The results showed that Tang Mai Kang Capsule could significantly decrease blood sugar level and incidence rate of gangrene of the tail-tip, increase pain threshold, and strengthen learning and memory abilities, suggesting that Tang Mai Kang Capsule functions to decrease blood sugar level and improve the complicated angioneurotic lesions of diabetes.

  20. Angiotensin converting enzyme 2 amplification limited to the circulation does not protect mice from development of diabetic nephropathy

    Science.gov (United States)

    Wysocki, Jan; Ye, Minghao; Khattab, Ahmed M.; Fogo, Agnes; Martin, Aline; David, Nicolae Valentin; Kanwar, Yashpal; Osborn, Mark; Batlle, Daniel

    2016-01-01

    Blockers of the renin-angiotensin system are effective in the treatment of experimental and clinical diabetic nephropathy. An approach different from blocking the formation or action of angiotensin II(1-8) that could also be effective involves fostering its degradation. Angiotensin converting enzyme 2 (ACE2) is a monocarboxypeptidase than cleaves angiotensin II (1-8) to form angiotensin (1-7). Therefore, we examined the renal effects of murine recombinant ACE2 in mice with streptozotocin-induced diabetic nephropathy as well as that of amplification of circulating ACE2 using minicircle DNA delivery prior to induction of experimental diabetes. This delivery resulted in a long-term sustained and profound increase in serum ACE2 activity and enhanced ability to metabolize an acute angiotensin II (1-8) load. In mice with streptozotocin-induced diabetes pretreated with minicircle ACE2, ACE2 protein in plasma increased markedly and this was associated with a more than 100-fold increase in serum ACE2 activity. However, minicircle ACE2 did not result in changes in urinary ACE2 activity as compared to untreated diabetic mice. In both diabetic groups, glomerular filtration rate increased significantly and to the same extent as compared to non-diabetic controls. Albuminuria, glomerular mesangial expansion, glomerular cellularity and glomerular size, were all increased to a similar extent in minicircle ACE2-treated and untreated diabetic mice, as compared to non-diabetic controls. Recombinant mouse ACE2 given for 4 weeks by intraperitoneal daily injections in mice with streptozotocin-induced diabetic nephropathy also failed to improve albuminuria or kidney pathology. Thus, a profound augmentation of ACE2 confined to the circulation failed to ameliorate the glomerular lesions and hyperfiltration characteristic of early diabetic nephropathy. These findings emphasize the importance of targeting the kidney rather than the circulatory renin angiotensin system to combat diabetic

  1. Evaluation of the Hypoglycemic Effect of Composite Rice Flour in Diabetic Mice.

    Science.gov (United States)

    Ding, Zhigang; Gao, Hongmei; Du, Chuanlai; Zheng, Yimei; Guo, Yuanxin; Pan, Dongmei

    2016-03-01

    To study the hypoglycemic effect of composite rice flour, the diabetic mouse model was established through the intraperitoneal injection of alloxan saline (twice, 200 mg/kg bw). The mice were randomly divided into 4 groups: negative control, positive control, metformin medication group, and composite rice flour feed group. After 21 days, the fasting blood glucose levels were determined by glucose oxidase method and followed with a glucose tolerance test. The results show that the body weight growth rate of mice in the rice flour group was significantly higher than that of the medication group (P rice flour group were significantly lower, and the glucose tolerance was significantly increased in rice flour group (P rice flour has obvious hypoglycemic and protective effect for diabetic mouse model.

  2. Mitochondrial dysfunction contribute to diabetic neurotoxicity induced by streptozocin in mice: protective effect of Urtica dioica and pioglitazone.

    Science.gov (United States)

    Shokrzadeh, Mohammad; Mirshafa, Atefeh; Yekta Moghaddam, Niusha; Birjandian, Behnoosh; Shaki, Fatemeh

    2018-04-18

    Uncontrolled chronic hyperglycemia in diabetic patients could result in various complications, including neurotoxicity. Urtica dioica L. (UD) is known for its hypoglycemic and antioxidant effects. In this study, we evaluated the efficacy of UD and pioglitazone (PIO) in reduction of neurotoxicity and oxidative stress in streptozocin-induced diabetic mice. Male mice were divided into seven groups: control, diabetic, dimethyl sulfoxide-treated control, PIO-treated, UD-treated, UD-PIO-treated, and vitamin E-treated. For induction of diabetes, streptozocin was injected in a single dose (65 mg/kg, i.p.). All treatments were performed for 5 weeks. Neurotoxicity was evaluated through hot plate and formalin test. Then, animals were killed, brain tissue was separated and the mitochondrial fraction was isolated with different centrifuge technique. Also, oxidative stress markers (reactive oxygen species, lipid peroxidation, protein carbonyl, glutathione) were measured in brain. Mitochondrial function was evaluated by MTT test in brain isolated mitochondria. Elevation of oxidative stress markers and mitochondrial damage were observed in diabetic mice compared to control group. Administration of PIO and UD ameliorated the oxidative stress and mitochondrial damage (p < 0.05) in diabetic mice. Also increase in pain score was shown in diabetic mice that treatment with UD and PIO diminished elevation of pain score in diabetic mice. Interestingly, simultaneous administration of PIO and UD showed synergism effect in attenuation of oxidative stress and hyperglycemia. UD showed a therapeutic potential for the attenuation of oxidative stress and diabetes-induced hyperglycemia that can be considered as co-treatment in treatment of diabetic neurotoxicity.

  3. Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-Ay mice

    Directory of Open Access Journals (Sweden)

    Beppu Fumiaki

    2012-09-01

    Full Text Available Abstract Background Fucoxanthin is a xanthophyll present in brown seaweeds and has several beneficial effects, including anti-obesity and anti-diabetic effects. However, we and another group previously observed that fucoxanthin increases serum cholesterol levels in rodents. Cholesterol is an important component of cell membranes and biosynthesis of bile acids. Serum cholesterol levels are also closely associated with atherosclerosis. Therefore, we sought to identify the mechanism underlying the increase in serum cholesterol levels by fucoxanthin. Methods Diabetic/obese KK-Ay mice were fed a diet containing 0.2% fucoxanthin for 4 weeks. The mice were sacrificed, and total blood samples were collected for the measurement of serum total cholesterol, HDL-cholesterol and non-HDL-cholesterol levels. Cholesterol content in tissues was also analyzed. Real-time PCR and Western blotting were performed to determine hepatic mRNA and protein expression of genes involved in cholesterol metabolism, respectively. Results Dietary fucoxanthin significantly increased serum HDL and non-HDL cholesterol levels, and reduced hepatic cholesterol content. In liver, the expression of SREBP1, SREBP2 and their target genes involved in cholesterol biosynthesis significantly increased and tended to increase in the fucoxanthin-fed mice, respectively. In contrast, hepatic levels of LDLR and SR-B1 proteins which is important factors for LDL-cholesterol and HDL-cholesterol uptake in the liver from serum, decreased to 60% and 80% in the fucoxanthin-fed mice, respectively, compared with the control mice. Further, we found that dietary fucoxanthin significantly increased the mRNA expression of proprotein convertase subtilisin/kexin type 9 (PCSK9, which enhances intracellular degradation of LDLR in lysosomes. Conclusions Fucoxanthin increased HDL-cholesterol and non-HDL-cholesterol levels in KK-Ay mice by inducing SREBP expression and reduced cholesterol uptake in the liver via

  4. Though active on RINm5F insulinoma cells and cultured pancreatic islets, recombinant IL-22 fails to modulate cytotoxicity and disease in a protocol of streptozotocin-induced experimental diabetes.

    Directory of Open Access Journals (Sweden)

    Anika eBerner

    2016-01-01

    Full Text Available Interleukin (IL-22 is a cytokine displaying tissue protective and pro-regenerative functions in various preclinical disease models. Anti-bacterial, pro-proliferative, and anti-apoptotic properties mediated by activation of the transcription factor signal transducer and activator of transcription (STAT-3 are key to biological functions of this IL-10 family member. Herein, we introduce RINm5F insulinoma cells as rat ß-cell line that, under the influence of IL-22, displays activation of STAT3 with induction of its downstream gene targets Socs3, Bcl3, and Reg3ß. In addition, IL-22 also activates STAT1 in this cell type. To refine those observations, IL-22 biological activity was evaluated using ex vivo cultivated murine pancreatic islets. In accord with data on RINm5F cells, islet exposure to IL-22 activated STAT3 and upregulation of STAT3-inducible Socs3, Bcl3, and STEAP4 was evident under those conditions. As these observations supported the hypothesis that IL-22 may exert protective functions in toxic ß-cell injury, application of IL-22 was investigated in murine multiple-low-dose streptozotocin (STZ-induced diabetes. For that purpose, recombinant IL-22 was administered thrice either immediately before and at disease onset (at d4, d6, d8 or closely thereafter (at d8, d10, d12. These two IL-22-treatment periods coincide with two early peaks of ß-cell injury detectable in this model. Notably, none of the two IL-22-treatment strategies affected diabetes incidence or blood glucose levels in STZ-treated mice. Moreover, pathological changes in islet morphology analyzed 28 days after disease induction were not ameliorated by IL-22 administration. Taken together, despite being active on rat RINm5F insulinoma cells and murine pancreatic islets, recombinant IL-22 fails to protect pancreatic ß-cells in the tested protocols from toxic effects of STZ and thus is unable to ameliorate disease in the widely used model of STZ-induced diabetes.

  5. Overexpression of PTPN2 in Visceral Adipose Tissue Ameliorated Atherosclerosis via T Cells Polarization Shift in Diabetic Apoe-/- Mice

    Directory of Open Access Journals (Sweden)

    Ya Li

    2018-03-01

    Full Text Available Background/Aims: Dysregulated inflammation in adipose tissue, marked by increased pro-inflammatory T-cell accumulation and reduced regulatory T cells (Treg, contributes to diabetes-associated insulin resistance and atherosclerosis. However, the molecular mechanisms underlying T-cell-mediated inflammation in adipose tissue remain largely unknown. Methods: Sixty apolipoprotein E (ApoE-/- mice were randomly divided into chow and diabetes groups. Diabetes was induced by a high-fat and high-sugar diet combined with low-dose streptozotocin. Then we transferred a recombinant adenovirus carrying the protein tyrosine phosphatase non-receptor type 2 (PTPN2 gene into epididymal white adipose tissue (EWAT of ApoE-/- mice. After transfection, all mice were euthanized to evaluate the effects of PTPN2 on T cells polarization and atherosclerosis. Results: PTPN2 was downregulated in EWAT of diabetic ApoE-/- mice. PTPN2 overexpression in EWAT reversed the high Th1/Treg and Th17/Treg ratios in EWAT of diabetic mice. In addition, PTPN2 overexpression in EWAT could significantly reduce macrophages infiltration, the ratio of M1/M2 macrophages and the expression of pro-inflammatory cytokines in EWAT, improving insulin resistance. In aortic root lesions, the vulnerability index were significantly decreased by overexpression of PTPN2 in EWAT. Conclusion: These data suggested that PTPN2 overexpression in EWAT would inhibit systemic inflammation and increase the plaque stability via T cells polarization shift in diabetic mice.

  6. Reversal of Type 1 Diabetes in Mice by Brown Adipose Tissue Transplant

    OpenAIRE

    Gunawardana, Subhadra C.; Piston, David W.

    2012-01-01

    Current therapies for type 1 diabetes (T1D) involve insulin replacement or transplantation of insulin-secreting tissue, both of which suffer from numerous limitations and complications. Here, we show that subcutaneous transplants of embryonic brown adipose tissue (BAT) can correct T1D in streptozotocin-treated mice (both immune competent and immune deficient) with severely impaired glucose tolerance and significant loss of adipose tissue. BAT transplants result in euglycemia, normalized gluco...

  7. An aqueous extract of Portulaca oleracea ameliorates diabetic nephropathy through suppression of renal fibrosis and inflammation in diabetic db/db mice.

    Science.gov (United States)

    Lee, An Sook; Lee, Yun Jung; Lee, So Min; Yoon, Jung Joo; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Diabetic nephropathy is one of the most common microvascular complications of diabetes and the leading cause of end-stage renal disease. In the present study, we investigated the renoprotective effect of the aqueous extract of Portulaca oleracea (AP) on diabetic nephropathy accelerated by renal fibrosis and inflammation in type 2 diabetic db/db mice. The mice were treated with AP (300 mg/kg/day, p.o.) for ten weeks to examine the long-term effects on diabetic nephropathy and renal dysfunction. We found that AP treatment markedly lowered blood glucose to 412 ± 11.4 mg/dl and plasma creatinine level to 2.3 ± 0.8 mg/dl compared to db/db mice (p < 0.05, p < 0.01, respectively). This study also showed that treatment with AP significantly decreased water intake and urine volume in diabetic db/db mice (p < 0.05). In immunohistological study, the renal expression of transforming growth factor-β1 (TGF-β1), advanced glycation end products (AGE), and intercellular adhesion molecule (ICAM)-1 markedly increased in the renal cortex of untreated db/db mice (p < 0.01). In contrast, AP treatment significantly reduced these expressions to 50 ± 2.1%, 48 ± 2.8%, 61 ± 1.1%, respectively (p < 0.01). Furthermore, NF-κB p65 activation in renal tissues markedly increased in untreated db/db mice, which was significantly suppressed by AP treatment. Taken together, these findings suggest that AP attenuates diabetic nephropathy through inhibition of renal fibrosis and inflammation in db/db mice.

  8. A controlled-release mitochondrial protonophore reverses hypertriglyceridemia, nonalcoholic steatohepatitis, and diabetes in lipodystrophic mice.

    Science.gov (United States)

    Abulizi, Abudukadier; Perry, Rachel J; Camporez, João Paulo G; Jurczak, Michael J; Petersen, Kitt Falk; Aspichueta, Patricia; Shulman, Gerald I

    2017-07-01

    Lipodystrophy is a rare disorder characterized by complete or partial loss of adipose tissue. Patients with lipodystrophy exhibit hypertriglyceridemia, severe insulin resistance, type 2 diabetes, and nonalcoholic steatohepatitis (NASH). Efforts to ameliorate NASH in lipodystrophies with pharmacologic agents have met with limited success. We examined whether a controlled-release mitochondrial protonophore (CRMP) that produces mild liver-targeted mitochondrial uncoupling could decrease hypertriglyceridemia and reverse NASH and diabetes in a mouse model (fatless AZIP/F-1 mice) of severe lipodystrophy and diabetes. After 4 wk of oral CRMP (2 mg/kg body weight per day) or vehicle treatment, mice underwent hyperinsulinemic-euglycemic clamps combined with radiolabeled glucose to assess liver and muscle insulin responsiveness and tissue lipid measurements. CRMP treatment reversed hypertriglyceridemia and insulin resistance in liver and skeletal muscle. Reversal of insulin resistance could be attributed to reductions in diacylglycerol content and reduced PKC-ε and PKC-θ activity in liver and muscle respectively. CRMP treatment also reversed NASH as reflected by reductions in plasma aspartate aminotransferase and alanine aminotransferase concentrations; hepatic steatosis; and hepatic expression of IL-1α, -β, -2, -4, -6, -10, -12, CD69, and caspase 3 and attenuated activation of the IRE-1α branch of the unfolded protein response. Taken together, these results provide proof of concept for the development of liver-targeted mitochondrial uncoupling agents as a potential novel therapy for lipodystrophy-associated hypertriglyceridemia, NASH and diabetes.-Abulizi, A., Perry, R. J., Camporez, J. P. G., Jurczak, M. J., Petersen, K. F., Aspichueta, P., Shulman, G. I. A controlled-release mitochondrial protonophore reverses hypertriglyceridemia, nonalcoholic steatohepatitis, and diabetes in lipodystrophic mice. © FASEB.

  9. Amelioration of Auditory Response by DA9801 in Diabetic Mouse

    Directory of Open Access Journals (Sweden)

    Yeong Ro Lee

    2015-01-01

    Full Text Available Diabetes mellitus (DM is a metabolic disease that involves disorders such as diabetic retinopathy, diabetic neuropathy, and diabetic hearing loss. Recently, neurotrophin has become a treatment target that has shown to be an attractive alternative in recovering auditory function altered by DM. The aim of this study was to evaluate the effect of DA9801, a mixture of Dioscorea nipponica and Dioscorea japonica extracts, in the auditory function damage produced in a STZ-induced diabetic model and to provide evidence of the mechanisms involved in enhancing these protective effects. We found a potential application of DA9801 on hearing impairment in the STZ-induced diabetic model, demonstrated by reducing the deterioration produced by DM in ABR threshold in response to clicks and normalizing wave I–IV latencies and Pa latencies in AMLR. We also show evidence that these effects might be elicited by inducing NGF related through Nr3c1 and Akt. Therefore, this result suggests that the neuroprotective effects of DA9801 on the auditory damage produced by DM may be affected by NGF increase resulting from Nr3c1 via Akt transformation.

  10. Animal Models of Diabetes Mellitus for Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Naoaki Sakata

    2012-01-01

    Full Text Available Due to current improvements in techniques for islet isolation and transplantation and protocols for immunosuppressants, islet transplantation has become an effective treatment for severe diabetes patients. Many diabetic animal models have contributed to such improvements. In this paper, we focus on 3 types of models with different mechanisms for inducing diabetes mellitus (DM: models induced by drugs including streptozotocin (STZ, pancreatomized models, and spontaneous models due to autoimmunity. STZ-induced diabetes is one of the most commonly used experimental diabetic models and is employed using many specimens including rodents, pigs or monkeys. The management of STZ models is well established for islet studies. Pancreatomized models reveal different aspects compared to STZ-induced models in terms of loss of function in the increase and decrease of blood glucose and therefore are useful for evaluating the condition in total pancreatomized patients. Spontaneous models are useful for preclinical studies including the assessment of immunosuppressants because such models involve the same mechanisms as type 1 DM in the clinical setting. In conclusion, islet researchers should select suitable diabetic animal models according to the aim of the study.

  11. Gut microbial markers are associated with diabetes onset, regulatory imbalance, and IFN-γ level in NOD mice

    DEFF Research Database (Denmark)

    Krych, Lukasz; Nielsen, Dennis Sandris; Hansen, Axel Kornerup

    2015-01-01

    Gut microbiota regulated imbalances in the host's immune profile seem to be an important factor in the etiology of type 1 diabetes (T1D), and identifying bacterial markers for T1D may therefore be useful in diagnosis and prevention of T1D. The aim of the present study was to investigate the link...... measured in diabetic and non-diabetic mice at 30 weeks of age. The early gut microbiota composition was found to be different between NOD mice that later in life were classified as diabetic or non-diabetic. Those differences were further associated with changes in FoxP3(+) regulatory T cells, CD11b......(+) dendritic cells, and IFN-γ production. The model proposed in this work suggests that operational taxonomic units classified to S24-7, Prevotella, and an unknown Bacteriodales (all Bacteroidetes) act in favor of diabetes protection whereas members of Lachnospiraceae, Ruminococcus, and Oscillospira (all...

  12. Portulaca oleracea L. alleviates liver injury in streptozotocin-induced diabetic mice

    Science.gov (United States)

    Peng, Hao; Gu, Wei; Li, Min; Chen, Zhe

    2018-01-01

    Purslane is a widespread succulent herb that exhibits various pharmacological effects. The purpose of this study was to evaluate the protective effect of Portulaca oleracea L. (purslane) on streptozotocin-induced diabetes in mice. Oral glucose-tolerance tests were carried out to assess blood glucose levels and body weight and food intake were recorded. The biochemical parameters anti-aspartate aminotransferase, alanine aminotransferase, insulin, triglycerides, total cholesterol, IL-6, IL-1β, and TNFα were also measured. The pathological condition of liver tissues were examined by hematoxylin–eosin staining. Rho, ROCK1, ROCK2, NFκBp65, p-NFκBp65, IκBα, and p-IκBα expression in liver tissue were analyzed by Western blot. Purslane increased body weight and decreased food intake. Purslane also significantly reduced concentrations of glucose, anti-aspartate aminotransferase, alanine aminotransferase, triglycerides, total cholesterol, IL-6, IL-1β, and TNFα in serum. Serum insulin was elevated with purslane treatment. In addition, pathologic liver changes in diabetic mice were also alleviated by purslane. Obtained data revealed that purslane restored the levels of Rho–NFκB signaling-related proteins in comparison with those of diabetic mice. Above all, it can be assumed that purslane might play a positive role in regulating streptozotocin-induced liver injury through suppressing the Rho–NFκB pathway. PMID:29343942

  13. Reversal of Type 1 Diabetes in Mice by Brown Adipose Tissue Transplant

    Science.gov (United States)

    Gunawardana, Subhadra C.; Piston, David W.

    2012-01-01

    Current therapies for type 1 diabetes (T1D) involve insulin replacement or transplantation of insulin-secreting tissue, both of which suffer from numerous limitations and complications. Here, we show that subcutaneous transplants of embryonic brown adipose tissue (BAT) can correct T1D in streptozotocin-treated mice (both immune competent and immune deficient) with severely impaired glucose tolerance and significant loss of adipose tissue. BAT transplants result in euglycemia, normalized glucose tolerance, reduced tissue inflammation, and reversal of clinical diabetes markers such as polyuria, polydipsia, and polyphagia. These effects are independent of insulin but correlate with recovery of the animals’ white adipose tissue. BAT transplants lead to significant increases in adiponectin and leptin, but with levels that are static and not responsive to glucose. Pharmacological blockade of the insulin receptor in BAT transplant mice leads to impaired glucose tolerance, similar to what is seen in nondiabetic animals, indicating that insulin receptor activity plays a role in the reversal of diabetes. One possible candidate for activating the insulin receptor is IGF-1, whose levels are also significantly elevated in BAT transplant mice. Thus, we propose that the combined action of multiple adipokines establishes a new equilibrium in the animal that allows for chronic glycemic control without insulin. PMID:22315305

  14. Impaired Albumin Uptake and Processing Promote Albuminuria in OVE26 Diabetic Mice

    Science.gov (United States)

    Long, Y. S.; Zheng, S.; Kralik, P. M.; Benz, F. W.

    2016-01-01

    The importance of proximal tubules dysfunction to diabetic albuminuria is uncertain. OVE26 mice have the most severe albuminuria of all diabetic mouse models but it is not known if impaired tubule uptake and processing are contributing factors. In the current study fluorescent albumin was used to follow the fate of albumin in OVE26 and normal mice. Compared to normal urine, OVE26 urine contained at least 23 times more intact fluorescent albumin but only 3-fold more 70 kD fluorescent dextran. This indicated that a function other than size selective glomerular sieving contributed to OVE26 albuminuria. Imaging of albumin was similar in normal and diabetic tubules for 3 hrs after injection. However 3 days after injection a subset of OVE26 tubules retained strong albumin fluorescence, which was never observed in normal mice. OVE26 tubules with prolonged retention of injected albumin lost the capacity to take up albumin and there was a significant correlation between tubules unable to eliminate fluorescent albumin and total albuminuria. TUNEL staining revealed a 76-fold increase in cell death in OVE26 tubules that retained fluorescent albumin. These results indicate that failure to process and dispose of internalized albumin leads to impaired albumin uptake, increased albuminuria, and tubule cell apoptosis. PMID:27822483

  15. Protective effects of astragaloside IV on db/db mice with diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Yuzhi Ding

    Full Text Available Diabetic retinopathy (DR is a common diabetic eye disease which is well-known as the result of microvascular retinal changes. Although the potential biological functions of astragaloside IV (AS IV have long been described in traditional system of medicine, its protective effect on DR remains unclear. This study aims to investigate the function and mechanism of AS IV on type 2 diabetic db/db mice.Db/db mice were treated with AS IV (4.5 mg/kg or 9 mg/kg or physiological saline by oral gavage for 20 weeks along with db/m mice. In each group, retinal ganglion cell (RGC function was measured by pattern electroretinogram (ERG and apoptosis was determined by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining. Blood and retina aldose reductase (AR activity were quantified by chemiluminescence analysis. The expressions of phosporylated-ERK1/2, NF-κB were determined by Western blot analysis. Furthermore, the expression of related downstream proteins were quantified by Label-based Mouse Antibody Array.Administration of AS IV significantly improved the amplitude in pattern ERG and reduced the apoptosis of RGCs.in db/db mice. Furthermore, downregulation of AR activity, ERK1/2 phosphorylation, NF-κB and related cytokine were observed in AS IV treatment group.Our study indicated that AS IV, as an inhibitor of AR, could prevent the activation of ERK1/2 phosporylation and NF-kB and further relieve the RGCs disfunction in db/db mice with DR. It has provided a basis for investigating the clinical efficacy of AR inhibitors in preventing DR.

  16. Immune responses to an encapsulated allogeneic islet β-cell line in diabetic NOD mice

    International Nuclear Information System (INIS)

    Black, Sasha P.; Constantinidis, Ioannis; Cui, Hong; Tucker-Burden, Carol; Weber, Collin J.; Safley, Susan A.

    2006-01-01

    Our goal is to develop effective islet grafts for treating type 1 diabetes. Since human islets are scarce, we evaluated the efficacy of a microencapsulated insulin-secreting conditionally transformed allogeneic β-cell line (βTC-tet) in non-obese diabetic mice treated with tetracycline to inhibit cell growth. Relatively low serum levels of tetracycline controlled proliferation of βTC-tet cells without inhibiting effective control of hyperglycemia in recipients. There was no significant host cellular reaction to the allografts or host cell adherence to microcapsules, and host cytokine levels were similar to those of sham-operated controls. We conclude that encapsulated allogeneic β-cell lines may be clinically relevant, because they effectively restore euglycemia and do not elicit a strong cellular immune response following transplantation. To our knowledge, this is First extensive characterization of the kinetics of host cellular and cytokine responses to an encapsulated islet cell line in an animal model of type 1 diabetes

  17. β2-Adrenergic Receptor Knockout Mice Exhibit A Diabetic Retinopathy Phenotype

    Science.gov (United States)

    Jiang, Youde; Zhang, Qiuhua; Liu, Li; Tang, Jie; Kern, Timothy S.; Steinle, Jena J.

    2013-01-01

    There is considerable evidence from our lab and others for a functional link between β-adrenergic receptor and insulin receptor signaling pathways in retina. Furthermore, we hypothesize that this link may contribute to lesions similar to diabetic retinopathy in that the loss of adrenergic input observed in diabetic retinopathy may disrupt normal anti-apoptotic insulin signaling, leading to retinal cell death. Our studies included assessment of neural retina function (ERG), vascular degeneration, and Müller glial cells (which express only β1 and β2-adrenergic receptor subtypes). In the current study, we produced β2-adrenergic receptor knockout mice to examine this deletion on retinal neurons and vasculature, and to identify specific pathways through which β2-adrenergic receptor modulates insulin signaling. As predicted from our hypothesis, β2-adrenergic receptor knockout mice display certain features similar to diabetic retinopathy. In addition, loss of β2-adrenergic input resulted in an increase in TNFα, a key inhibitor of insulin receptor signaling. Increased TNFα may be associated with insulin-dependent production of the anti-apoptotic factor, Akt. Since the effects occurred in vivo under normal glucose conditions, we postulate that aspects of the diabetic retinopathy phenotype might be triggered by loss of β2-adrenergic receptor signaling. PMID:23894672

  18. [Study on total glucosides of peony preventing non-obese diabetic mice from sialoadenitis].

    Science.gov (United States)

    Li, Chun-Lei; He, Jing; Hua, Hong

    2011-04-01

    To investigate the immunosuppressive effect of total glucosides of peony (TGP) on sialoadenitis in non-obese diabetic mice (NOD mice) and explore its possible mechanism. 27 female five-week-old NOD mice were randomly divided into three groups: TGP, hydroxychloroquine (HCQ) and normal saline (NS) group. One week later, they were administered intragastrically in TGP, HCQ and NS respectively. Three mice from each group were sacrificed at the age of 10, 15 and 20 weeks. The saliva flow, serum and submandibular glands were collected at these time points. Histological changes of submandibular glands were examined by HE staining. The expression of autoantibodies (SSA, SSB and anti-alpha-fodrin) and associated cytokines in serum were detected by enzyme-linked immunosorbent assay (ELISA). Compared with the NS group, salivary flow was significantly increased, the extent of the histological changes were ameliorated, the autoantibodies in serum were significantly decreased and the imbalance of Th1/Th2 cytokines was remedied in the mice treated with TGP and HCQ. There were no significant differences between the two groups treated with TGP and HCQ (P > 0.05). TGP can effectively ameliorate sialoadenitis on NOD mice. The mechanism was thought to be associated with the protection of submandibular gland from intense inflammation and the correction of Th1/Th2 cytokines imbalance.

  19. Additional deleterious effects of alcohol consumption on sperm parameters and DNA integrity in diabetic mice.

    Science.gov (United States)

    Pourentezari, M; Talebi, A R; Mangoli, E; Anvari, M; Rahimipour, M

    2016-06-01

    The aim of this study was to survey the impact of alcohol consumption on sperm parameters and DNA integrity in experimentally induced diabetic mice. A total of 32 adult male mice were divided into four groups: mice of group 1 served as control fed on basal diet, group 2 received streptozotocin (STZ) (200 mg kg(-1) , single dose, intraperitoneal) and basal diet, group 3 received alcohol (10 mg kg(-1) , water soluble) and basal diet, and group 4 received STZ and alcohol for 35 days. The cauda epididymidis of each mouse was dissected and placed in 1 ml of pre-warm Ham's F10 culture medium for 30 min. The swim-out spermatozoa were analysed for count, motility, morphology and viability. Sperm chromatin quality was evaluated with aniline blue, toluidine blue, acridine orange and chromomycin A3 staining. The results showed that all sperm parameters had significant differences (P sperm chromatin was assessed with cytochemical tests. There were significant differences (P sperm parameters and chromatin quality. In addition, alcohol consumption in diabetic mice can intensify sperm chromatin/DNA damage. © 2015 Blackwell Verlag GmbH.

  20. Hypoglycemic effects of an aqueous extract of Bauhinia forficata on the salivary glands of diabetic mice.

    Science.gov (United States)

    Curcio, Sergio Augusto Fudaba; Stefan, Luciana Francine Bocchi; Randi, Bruno Azevedo; Dias, Marco Antonio; da Silva, Rodrigo Eduardo; Caldeira, Eduardo José

    2012-07-01

    The objective of this study was to evaluate the salivary glands in diabetic mice, analyzing alterations in the secretory epithelium and interactions with the stromal compartment acquired during a prolonged period of treatment with Bauhinia forficata extract. Female mice were divided into two groups: Nonobese diabetic (NOD) mice treated with Bauhinia forficata (I), and NOD mice not treated with the hypoglycemic agent (II). After treatment, the salivary glands were collected for analysis by transmitted and polarized light microscopy, complemented by three-dimensional analysis of these tissues. The results showed weight loss in animals of group II and weight recovery in treated animals. Glucose levels were elevated in group II, but declined in group I. In the two groups, the salivary glands were characterized by involution of the secretory epithelium, presence of an inflammatory infiltrate and an increase of extracellular fibrillar components. It can be concluded that treatment with Bauhinia forficata reduced glucose levels and contributed to weight recovery in treated animals. However, the observation of tissue destructuring and compromised epithelial-stromal interactions, with consequent impairment of glandular function, demonstrates that Bauhinia forficata exerts an effect on the recovery of body metabolism but this improvement does not influence in the tissue recovery.

  1. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Adolf, E-mail: ageiger@dreirosen-pharma.com; Walker, Audrey, E-mail: awalker@dreirosen-pharma.com; Nissen, Erwin, E-mail: enissen@dreirosen-pharma.com

    2015-11-13

    Diabetic ulcers represent a substantial societal and healthcare burden worldwide and scarcely respond to current treatment strategies. This study was addressed to evaluate the therapeutic potential of exosomes secreted by human circulating fibrocytes, a population of mesenchymal progenitors involved in normal wound healing via paracrine signaling. The exosomes released from cells sequentially stimulated with platelet-derived growth factor-BB and transforming growth factor-β1, in the presence of fibroblast growth factor 2, did not show potential immunogenicity. These exosomes exhibited in-vitro proangiogenic properties, activated diabetic dermal fibroblasts, induced the migration and proliferation of diabetic keratinocytes, and accelerated wound closure in diabetic mice in vivo. Important components of the exosomal cargo were heat shock protein-90α, total and activated signal transducer and activator of transcription 3, proangiogenic (miR-126, miR-130a, miR-132) and anti-inflammatory (miR124a, miR-125b) microRNAs, and a microRNA regulating collagen deposition (miR-21). This proof-of-concept study demonstrates the feasibility of the use of fibrocytes-derived exosomes for the treatment of diabetic ulcers. - Highlights: • Fibrocytes have shown potent wound healing properties in vitro and in vivo. • Their clinical use is precluded by low numbers and antigen-presenting function. • We isolated exosomes with no immunogenicity potential from human fibrocytes. • Their cargo included microRNAs and proteins that are known healing promoters. • They accelerated wound closure in diabetic mice in a dose-dependent manner.

  2. Comparison of biochemical properties of liver arginase from streptozocin-induced diabetic and control mice.

    Science.gov (United States)

    Spolarics, Z; Bond, J S

    1989-11-01

    Arginase activity is elevated in livers of diabetic animals compared to controls and there is evidence that this is due in part to increased specific activity (activity/mg arginase protein). To investigate the molecular basis of this increased activity, the physicochemical and kinetic properties of hepatic arginase from diabetic and control mice were compared. Two types of arginase subunits with molecular weights of 35,000 and 38,000 were found in both the diabetic and control animals and the subunits in these animals had similar, multiple ionic forms. Kinetic parameters of purified preparations of arginase for arginine (apparent Km and Vmax values) and the thermal stability of these preparations from diabetics and controls were also similar. Furthermore, no difference was found in the distribution of arginase activity among different subcellular liver fractions. Separation of basic and acidic oligomeric forms of arginase by fast-protein liquid chromatography resulted in a slightly different distribution of activity among the forms in the normal and diabetic group. The apparent Km values for Mn2+ of the basic form of the enzyme were 25 and 33 microM for the enzyme from normal and diabetic animals, respectively; for acidic forms, for which two apparent Km values were measured, the values were 8 and 197 microM for arginase from controls and 35 and 537 microM from diabetics. These results indicate that in diabetes, while no marked changes in the physicochemical characteristics of arginase are obvious, some changes are found in the interaction of arginase with its cofactor Mn.

  3. Alterations in the neural circuits from peripheral afferents to the spinal cord: possible implications for diabetic polyneuropathy in streptozotocin-induced type 1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Zhen-Zhen eKou

    2014-01-01

    Full Text Available Diabetic polyneuropathy (DPN presents as a wide variety of sensorimotor symptoms and affects approximately 50% of diabetic patients. Changes in the neural circuits may occur in the early stages in diabetes and are implicated in the development of DPN. Therefore, we aimed to detect changes in the expression of isolectin B4 (IB4, the marker for nonpeptidergic unmyelinated fibers and their cell bodies and calcitonin gene-related peptide (CGRP, the marker for peptidergic fibers and their cell bodies in the dorsal root ganglion (DRG and spinal cord of streptozotocin (STZ-induced type 1 diabetic rats showing alterations in sensory and motor function. We also used cholera toxin B subunit (CTB to show the morphological changes of the myelinated fibers and motor neurons. STZ-induced diabetic rats exhibited hyperglycemia, decreased body weight gain, mechanical allodynia and impaired locomotor activity. In the DRG and spinal dorsal horn, IB4-labeled structures decreased, but both CGRP immunostaining and CTB labeling increased from day 14 to day 28 in diabetic rats. In spinal ventral horn, CTB labeling decreased in motor neurons in diabetic rats. Treatment with intrathecal injection of insulin at the early stages of DPN could alleviate mechanical allodynia and impaired locomotor activity in diabetic rats. The results suggest that the alterations of the neural circuits between spinal nerve and spinal cord via the DRG and ventral root might be involved in DPN.

  4. Nuclear factor erythroid 2-related factor 2 deletion impairs glucose tolerance and exacerbates hyperglycemia in type 1 diabetic mice.

    Science.gov (United States)

    Aleksunes, Lauren M; Reisman, Scott A; Yeager, Ronnie L; Goedken, Michael J; Klaassen, Curtis D

    2010-04-01

    The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) induces a battery of cytoprotective genes after oxidative stress. Nrf2 aids in liver regeneration by altering insulin signaling; however, whether Nrf2 participates in hepatic glucose homeostasis is unknown. Compared with wild-type mice, mice lacking Nrf2 (Nrf2-null) have lower basal serum insulin and prolonged hyperglycemia in response to an intraperitoneal glucose challenge. In the present study, blood glucose, serum insulin, urine flow rate, and hepatic expression of glucose-related genes were quantified in male diabetic wild-type and Nrf2-null mice. Type 1 diabetes was induced with a single intraperitoneal dose (200 mg/kg) of streptozotocin (STZ). Histopathology and serum insulin levels confirmed depleted pancreatic beta-cells in STZ-treated mice of both genotypes. Five days after STZ, Nrf2-null mice had higher blood glucose levels than wild-type mice. Nine days after STZ, polyuria occurred in both genotypes with more urine output from Nrf2-null mice (11-fold) than wild-type mice (7-fold). Moreover, STZ-treated Nrf2-null mice had higher levels of serum beta-hydroxybutyrate, triglycerides, and fatty acids 10 days after STZ compared with wild-type mice. STZ reduced hepatic glycogen in both genotypes, with less observed in Nrf2-null mice. Increased urine output and blood glucose in STZ-treated Nrf2-null mice corresponded with enhanced gluconeogenesis (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase)- and reduced glycolysis (pyruvate kinase)-related mRNA expression in their livers. Furthermore, the Nrf2 activator oltipraz lowered blood glucose in wild-type but not Nrf2-null mice administered STZ. Collectively, these data indicate that the absence of Nrf2 worsens hyperglycemia in type I diabetic mice and Nrf2 may represent a therapeutic target for reducing circulating glucose levels.

  5. Prunus mume leaf extract lowers blood glucose level in diabetic mice.

    Science.gov (United States)

    Lee, Min Woo; Kwon, Jung Eun; Lee, Young-Jong; Jeong, Yong Joon; Kim, Inhye; Cho, Young Mi; Kim, Yong-Min; Kang, Se Chan

    2016-10-01

    Context Diabetes is a common metabolic disease with long-term complications. Prunus mume Sieb. et Zucc. (Rosaceae) fruits have shown to ameliorate glucose intolerance. However, the antidiabetic effects of P. mume leaves have not been investigated. Objective This study evaluated the effects of P. mume leaf 70% ethanol extract (PMLE) on alleviating diabetes in vivo and in vitro. Materials and methods PMLE was fractionated into n-hexane, dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (BuOH) and water. Polyphenol and flavonoid contents in PMLE fractions were determined using Folin-Ciocalteu reagent and the aluminium chloride colorimetric method, respectively. We evaluated α-glucosidase inhibition using a microplate reader at 400 nm. Adipocyte differentiation by lipid accumulation was measured using Nile Red staining. Male imprinting control region (ICR) mice were injected with streptozotocin (STZ, 100 mg/kg, i.p.). High-fat diets were provided for three weeks prior to PMLE treatments to induce type 2 diabetes. PMLE (0, 5, 25 or 50 mg/kg) was administrated for four weeks with high-fat diets. Results The EtOAc fraction of PMLE inhibited α-glucosidase activity (IC50 = 68.2 μg/mL) and contained 883.5 ± 14.9 mg/g of polyphenols and 820.1 ± 7.7 mg/g of flavonoids. The 50 mg/kg PMLE supplement reduced 40% of blood glucose level compared to obese/diabetes mice. Obese/diabetic mice treated with 50 mg/kg PMLE showed a lower level of triacylglycerol (320.7 ± 20.73 mg/dL) compared to obese/diabetes mice (494.9 ± 14.80 mg/dL). Conclusion The data demonstrate that P. mume leaves exert antidiabetic effects that may be attributable to high concentrations of polyphenols and flavonoids.

  6. Treated of type 1 diabetes mellitus in non-obese diabetic mice by transplantation of allogeneic bone marrow and pancreatic tissue

    International Nuclear Information System (INIS)

    Yasumizu, R.; Sugiura, K.; Iwai, H.

    1987-01-01

    Non-obese diabetic (NOD) mice provide a model for type 1 diabetes mellitus. We previously showed that allogeneic bone marrow transplantation (ABMT) can prevent and treat insulitis and overt diabetes in NOD mice. However, ABMT alone could not be used to treat overt diabetes in NOD mice whose islets had been completely destroyed. To provide insulin-producing cells, pancreatic tissue from newborn mice was grafted under the renal capsules in combination with ABMT. The aims of concomitant ABMT are as follows. (i) It induces immunological tolerance to the donor-type major histocompatibility complex determinants and permits the host to accept subsequent pancreatic allografts from the bone marrow donor. (ii) ABMT replaces abnormal stem cells with normal stem cells. After transplantation of bone marrow plus newborn pancreas, NOD mice showed reduction of the glycosuria and a normal response in the glucose-tolerance test. Immunohistological study revealed the presence of clustered insulin-containing beta cells in the grafted pancreatic transplants. ABMT may become a viable treatment of established type 1 diabetes mellitus in humans

  7. Favorable effects of vildagliptin on metabolic and cognitive dysfunctions in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    El Batsh, Maha M; El Batch, Manal M; Shafik, Noha M; Younos, Ibrahim H

    2015-12-15

    Progression of diabetes mellitus is accompanied by metabolic disorders together with psychological deficits including cognitive dysfunctions. Herein, we used a murine streptozotocin (STZ)-induced diabetes to investigate the beneficial effects of vildagliptin not only on metabolic abnormalities, but also on diabetes-induced cognitive decline. Sixty rats were divided randomly and equally into 2 groups; one remains normal and the other serves as STZ- induced diabetic. Both groups were further divided equally into 2 groups; one received vehicle and the other received oral vildagliptin for 8 weeks. Cognitive behavior was assessed using novel object recognition test. Blood samples were collected to measure metabolic parameters and dipeptidyl peptidase (DPP)-IV activity. Brains were removed and investigated for the levels of inflammatory and oxidative stress markers malondialdehyde (MDA), superoxide dismutase (SOD) and tumor necrosis factor-α (TNF-α), in addition to brain-derived neurotrophic factor (BDNF) and relative expression of nuclear factor kappa B (NF-κB)/p65. Treatment of STZ-induced diabetic rats with vildagliptin increased their body weight and corrected diabetes-induced memory and learning impairment. Moreover, vildagliptin significantly decreased serum levels of glucose and lipids (except high density lipoprotein) together with brain MDA, TNF-α, serum DPP-IV activities and NF-κB/p65 gene expression. On the other hand, vildagliptin significantly increased brain BDNF, SOD as well as serum insulin. Results suggested that vildagliptin has a protective role in counteracting both metabolic abnormalities and memory deficits in diabetic rats, possibly via its anti-hyperglycemic, anti-inflammatory, antioxidant effects, together with reduction of brain NF-κB/p65 over expression. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Podocyte specific knock out of selenoproteins does not enhance nephropathy in streptozotocin diabetic C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Carlson Bradley A

    2008-07-01

    Full Text Available Abstract Background Selenoproteins contain selenocysteine (Sec, commonly considered the 21st genetically encoded amino acid. Many selenoproteins, such as the glutathione peroxidases and thioredoxin reductases, protect cells against oxidative stress by functioning as antioxidants and/or through their roles in the maintenance of intracellular redox balance. Since oxidative stress has been implicated in the pathogenesis of diabetic nephropathy, we hypothesized that selenoproteins protect against this complication of diabetes. Methods C57BL/6 mice that have a podocyte-specific inability to incorporate Sec into proteins (denoted in this paper as PodoTrsp-/- and control mice were made diabetic by intraperitoneal injection of streptozotocin, or were injected with vehicle. Blood glucose, body weight, microalbuminuria, glomerular mesangial matrix expansion, and immunohistochemical markers of oxidative stress were assessed. Results After 3 and 6 months of diabetes, control and PodoTrsp-/- mice had similar levels of blood glucose. There were no differences in urinary albumin/creatinine ratios. Periodic acid-Schiff staining to examine mesangial matrix expansion also demonstrated no difference between control and PodoTrsp-/- mice after 6 months of diabetes, and there were no differences in immunohistochemical stainings for nitrotyrosine or NAD(PH dehydrogenase, quinone 1. Conclusion Loss of podocyte selenoproteins in streptozotocin diabetic C57BL/6 mice does not lead to increased oxidative stress as assessed by nitrotyrosine and NAD(PH dehydrogenase, quinone 1 immunostaining, nor does it lead to worsening nephropathy.

  9. Renoprotective Effects of Atorvastatin in Diabetic Mice: Downregulation of RhoA and Upregulation of Akt/GSK3

    Science.gov (United States)

    Bruder-Nascimento, Thiago; Callera, Glaucia; Montezano, Augusto Cesar; Antunes, Tayze T.; He, Ying; Cat, Aurelie Nguyen Dinh; Ferreira, Nathanne S.; Barreto, Pedro A.; Olivon, Vânia C.; Tostes, Rita C.; Touyz, Rhian M.

    2016-01-01

    Potential benefits of statins in the treatment of chronic kidney disease beyond lipid-lowering effects have been described. However, molecular mechanisms involved in renoprotective actions of statins have not been fully elucidated. We questioned whether statins influence development of diabetic nephropathy through reactive oxygen species, RhoA and Akt/GSK3 pathway, known to be important in renal pathology. Diabetic mice (db/db) and their control counterparts (db/+) were treated with atorvastatin (10 mg/Kg/day, p.o., for 2 weeks). Diabetes-associated renal injury was characterized by albuminuria (albumin:creatinine ratio, db/+: 3.2 ± 0.6 vs. db/db: 12.5 ± 3.1*; *Patorvastatin-treated db/db mice. Increased ROS generation in the renal cortex of db/db mice was also inhibited by atorvastatin. ERK1/2 phosphorylation was increased in the renal cortex of db/db mice. Increased renal expression of Nox4 and proliferating cell nuclear antigen, observed in db/db mice, were abrogated by statin treatment. Atorvastatin also upregulated Akt/GSK3β phosphorylation in the renal cortex of db/db mice. Our findings suggest that atorvastatin attenuates diabetes-associated renal injury by reducing ROS generation, RhoA activity and normalizing Akt/GSK3β signaling pathways. The present study provides some new insights into molecular mechanisms whereby statins may protect against renal injury in diabetes. PMID:27649495

  10. Fluoride Exposure Aggravates the Testicular Damage and Sperm Quality in Diabetic Mice: Protective Role of Ginseng and Banaba.

    Science.gov (United States)

    Sm, Saumya; Mahaboob Basha, P

    2017-06-01

    Fluoride toxicity is known to pose infertility in fluoride-intoxicated animals as well as in people residing in fluoride endemic zones. The present study addresses the degree of impairments caused due to co-exposure of high fluoride toxicity in diabetic mice. Swiss mice, Mus musculus, were subjected to fluoride toxicity by providing fluoride-supplemented drinking water (600 ppm NaF) for a period of 30 days after the confirmation of streptozotocin-induced diabetes(STZ, 50 mg/kgbw). Consequently, aggravated hyperglycemia and tissue fluoride accumulation were witnessed in fluoride-intoxicated diabetic mice; later, these toxicated mice were treated with ginseng extract (GE) and banaba leaf extract, (BLE) at dose of 150 mg/kgbw/day alone and in combination for 15 and 30-day duration to check the efficacy of phytoextracts in reversing the toxicity. The spermatological indices studied, such as sperm density, motility, viability and morphology as well as the testicular biochemical parameters showed enhanced impairment in reproductive status of fluoride-intoxicated diabetic mice. Further, 15-days administration of GE and BLE in combination at a dose of 150 mg/kgbw/day was found to be beneficial in normalizing the alterations observed upon fluoride intoxication to diabetic mice. However, the correlates showed moderate association between blood glucose levels and the spermatological as well as biochemical indices wherein the tissue fluoride levels correlate least.

  11. Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice.

    Directory of Open Access Journals (Sweden)

    João M N Duarte

    Full Text Available Diabetic conditions are associated with modified brain function, namely with cognitive deficits, through largely undetermined processes. More than understanding the underlying mechanism, it is important to devise novel strategies to alleviate diabetes-induced cognitive deficits. Caffeine (a mixed antagonist of adenosine A(1 and A(2A receptors emerges as a promising candidate since caffeine consumption reduces the risk of diabetes and effectively prevents memory deficits caused by different noxious stimuli. Thus, we took advantage of a novel animal model of type 2 diabetes to investigate the behavioural, neurochemical and morphological modifications present in the hippocampus and tested if caffeine consumption might prevent these changes. We used a model closely mimicking the human type 2 diabetes condition, NONcNZO10/LtJ mice, which become diabetic at 7-11 months when kept under an 11% fat diet. Caffeine (1 g/l was applied in the drinking water from 7 months onwards. Diabetic mice displayed a decreased spontaneous alternation in the Y-maze accompanied by a decreased density of nerve terminal markers (synaptophysin, SNAP25, mainly glutamatergic (vesicular glutamate transporters, and increased astrogliosis (GFAP immunoreactivity compared to their wild type littermates kept under the same diet. Furthermore, diabetic mice displayed up-regulated A(2A receptors and down-regulated A(1 receptors in the hippocampus. Caffeine consumption restored memory performance and abrogated the diabetes-induced loss of nerve terminals and astrogliosis. These results provide the first evidence that type 2 diabetic mice display a loss of nerve terminal markers and astrogliosis, which is associated with memory impairment; furthermore, caffeine consumption prevents synaptic dysfunction and astrogliosis as well as memory impairment in type 2 diabetes.

  12. Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice.

    Science.gov (United States)

    Duarte, João M N; Agostinho, Paula M; Carvalho, Rui A; Cunha, Rodrigo A

    2012-01-01

    Diabetic conditions are associated with modified brain function, namely with cognitive deficits, through largely undetermined processes. More than understanding the underlying mechanism, it is important to devise novel strategies to alleviate diabetes-induced cognitive deficits. Caffeine (a mixed antagonist of adenosine A(1) and A(2A) receptors) emerges as a promising candidate since caffeine consumption reduces the risk of diabetes and effectively prevents memory deficits caused by different noxious stimuli. Thus, we took advantage of a novel animal model of type 2 diabetes to investigate the behavioural, neurochemical and morphological modifications present in the hippocampus and tested if caffeine consumption might prevent these changes. We used a model closely mimicking the human type 2 diabetes condition, NONcNZO10/LtJ mice, which become diabetic at 7-11 months when kept under an 11% fat diet. Caffeine (1 g/l) was applied in the drinking water from 7 months onwards. Diabetic mice displayed a decreased spontaneous alternation in the Y-maze accompanied by a decreased density of nerve terminal markers (synaptophysin, SNAP25), mainly glutamatergic (vesicular glutamate transporters), and increased astrogliosis (GFAP immunoreactivity) compared to their wild type littermates kept under the same diet. Furthermore, diabetic mice displayed up-regulated A(2A) receptors and down-regulated A(1) receptors in the hippocampus. Caffeine consumption restored memory performance and abrogated the diabetes-induced loss of nerve terminals and astrogliosis. These results provide the first evidence that type 2 diabetic mice display a loss of nerve terminal markers and astrogliosis, which is associated with memory impairment; furthermore, caffeine consumption prevents synaptic dysfunction and astrogliosis as well as memory impairment in type 2 diabetes.

  13. Portulaca oleracea L. alleviates liver injury in streptozotocin-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Zheng G

    2017-12-01

    Full Text Available Guoyin Zheng,1,* Fengfeng Mo,2,* Chen Ling,3,* Hao Peng,1 Wei Gu,1 Min Li,2 Zhe Chen1 1Department of Traditional Chinese Medicine, Changhai Hospital, 2Department of Military Hygiene, Second Military Medical University, 3Department of Biology, School of Life Science, Fudan University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Purslane is a widespread succulent herb that exhibits various pharmacological effects. The purpose of this study was to evaluate the protective effect of Portulaca oleracea L. (purslane on streptozotocin-induced diabetes in mice. Oral glucose-tolerance tests were carried out to assess blood glucose levels and body weight and food intake were recorded. The biochemical parameters anti-aspartate aminotransferase, alanine aminotransferase, insulin, triglycerides, total cholesterol, IL-6, IL-1β, and TNFα were also measured. The pathological condition of liver tissues were examined by hematoxylin–eosin staining. Rho, ROCK1, ROCK2, NFκBp65, p-NFκBp65, IκBα, and p-IκBα expression in liver tissue were analyzed by Western blot. Purslane increased body weight and decreased food intake. Purslane also significantly reduced concentrations of glucose, anti-aspartate aminotransferase, alanine ­aminotransferase, triglycerides, total cholesterol, IL-6, IL-1β, and TNFα in serum. Serum insulin was elevated with purslane treatment. In addition, pathologic liver changes in diabetic mice were also alleviated by purslane. Obtained data revealed that purslane restored the levels of Rho–NFκB signaling-related proteins in comparison with those of diabetic mice. Above all, it can be assumed that purslane might play a positive role in regulating streptozotocin-induced liver injury through suppressing the Rho–NFκB pathway. Keywords: Portulaca oleracea L., diabetes, liver injury, Rho–NFκB

  14. Hyperglycemia and xerostomia are key determinants of tooth decay in type 1 diabetic mice.

    Science.gov (United States)

    Yeh, Chih-Ko; Harris, Stephen E; Mohan, Sumathy; Horn, Diane; Fajardo, Roberto; Chun, Yong-Hee Patricia; Jorgensen, James; Macdougall, Mary; Abboud-Werner, Sherry

    2012-06-01

    Insulin-dependent type 1 diabetes mellitus (DM) and oral diseases are closely interrelated. Poor metabolic control in diabetics is associated with a high risk of gingivitis, periodontitis and tooth loss. Salivary flow declines in diabetics and patients suffer from xerostomia. Reduced saliva predisposes to enamel hypomineralization and caries formation; however, the mechanisms that initiate and lead to progression of tooth decay and periodontitis in type 1 DM have not been explored. To address this issue, we analyzed tooth morphology in Akita ⁻/⁻ mice that harbor a point mutation in the Ins2 insulin gene, which leads to progressive hyperglycemia. Mandibles from Akita ⁻/⁻ and wild-type littermates were analyzed by microCT, scanning EM and histology; teeth were examined for amelogenin (Amel) and ameloblastin (Ambn) expression. Mice were injected with pilocarpine to assess saliva production. As hyperglycemia may alter pulp repair, the effect of high glucose levels on the proliferation/differentiation of cultured MD10-F2 pulp cells was also analyzed. Results showed that Akita ⁻/⁻ mice at 6 weeks of age showed chalky white incisors that correlated with marked hyperglycemia and impaired saliva production. MicroCT of Akita ⁻/⁻ teeth revealed excessive enamel wearing and hypomineralization; immunostaining for Amel and Ambn was decreased. A striking feature was invasion of dentinal tubules with Streptococcus mitis and microabcesses that originated in the coronal pulp and progressed to pulp necrosis and periapical periodontitis. High levels of glucose also inhibited MD10-F2 cell proliferation and differentiation. Our findings provide the first evidence that hyperglycemia in combination with reduced saliva in a model of type1 DM leads to decreased enamel mineralization/matrix proteins and predisposes to excessive wearing and decay. Importantly, hyperglycemia adversely affects enamel matrix proteins and pulp repair. Early detection and treatment of hyperglycemia

  15. A comparative profile of methanol extracts of Allium cepa and Allium sativum in diabetic neuropathy in mice

    Science.gov (United States)

    Bhanot, Abhishek; Shri, Richa

    2010-01-01

    Introduction: Diabetic Neuropathy (DN) is a major microvascular complication of uncontrolled diabetes. This may result from increased oxidative stress that accompanies diabetes. Hence plants with antioxidant action play an important role in management of diabetes and its complications. Materials and Methods: This study was designed to evaluate preventive as well as curative effect of methanol extracts of outer scales and edible portions of two plants with established antioxidant action - Allium cepa and Allium sativum, in induced DN in albino mice. Mice were divided into control, diabetic and test extracts treated groups. Test extracts were administered daily at a dose of 200 mg/kg p.o. for 21 days, in the preventive group prior to onset of DN, and in the curative group after the onset of DN. Hyperalgesia and oxidative stress markers were assessed. STZ-diabetic mice showed a significant thermal hyperalgesia (as assessed by the tail-flick test), indicating development of DN. Results: Treatment with test extracts prevented loss in body weight, decreased plasma glucose level, and significantly ameliorated the hyperalgesia, TBARS, serum nitrite and GSH levels in diabetic mice. Conclusion: Methanol extract of outer scales of onion has shown most significant improvement; may be due to higher content of phenolic compounds in outer scales of A. cepa. PMID:21713142

  16. Antioxidant Role of Vitamin D in mice with Alloxan-Induced Diabetes.

    Science.gov (United States)

    Iqbal, Sarah; Khan, Saman; Naseem, Imrana

    2017-12-04

    The discovery of vitamin D receptors has revolutionized the understanding of vitamin D biology, which is now thought to influence a wide array of cell pathways. The antihyperglycemic actions of vitamin D involving calcium metabolism have been widely discussed, but studies are now suggesting a possibility of vitamin D-induced amelioration of oxidative stress. Despite its significance in disease pathogenesis, oxidative status remains poorly investigated with respect to vitamin D treatment in the biology of diabetes mellitus. The present study was aimed at assessing the antioxidant therapeutic potential of vitamin D in diabetes mellitus. Balb/c mice were induced to experimental diabetes with a single dose of alloxan. Following a 15-day treatment period, various parameters pertaining to glucose metabolism, oxidative stress, zinc concentration and DNA damage were analyzed. With the exception of superoxide dismutase and catalase, the antioxidant enzyme activities were slightly altered in various groups. However, improved glucose homeostasis and zinc concentration and reduced DNA damage were observed in the group treated with vitamin D. The present work accounts for the ubiquitous roles of vitamin D in various diseases and highlights its role as a therapeutic intervention in diabetes mellitus. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  17. Plasma Dihydroceramides Are Diabetes Susceptibility Biomarker Candidates in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Leonore Wigger

    2017-02-01

    Full Text Available Summary: Plasma metabolite concentrations reflect the activity of tissue metabolic pathways and their quantitative determination may be informative about pathogenic conditions. We searched for plasma lipid species whose concentrations correlate with various parameters of glucose homeostasis and susceptibility to type 2 diabetes (T2D. Shotgun lipidomic analysis of the plasma of mice from different genetic backgrounds, which develop a pre-diabetic state at different rates when metabolically stressed, led to the identification of a group of sphingolipids correlated with glucose tolerance and insulin secretion. Quantitative analysis of these and closely related lipids in the plasma of individuals from two population-based prospective cohorts revealed that specific long-chain fatty-acid-containing dihydroceramides were significantly elevated in the plasma of individuals who will progress to diabetes up to 9 years before disease onset. These lipids may serve as early biomarkers of, and help identify, metabolic deregulation in the pathogenesis of T2D. : Wigger et al. find that several sphingolipids in mouse plasma correlate with glucose tolerance and insulin secretion. Quantitative analysis of these and closely related lipids in human plasma from two cohorts reveal that dihydroceramides are significantly elevated in individuals progressing to diabetes, up to 9 years before disease onset. Keywords: diabetes, T2D, ceramides, dihydroceramides, biomarkers, lipidomics, prognostic, mouse, human, high-fat diet, metabolic challenge, glucose intolerance, insulin sensitivity, prospective cohort

  18. Cyclosporine toxicity in immunosuppressed streptozotocin-diabetic nonhuman primates

    International Nuclear Information System (INIS)

    Wijkstrom, Martin; Kirchhof, Nicole; Graham, Melanie; Ingulli, Elizabeth; Colvin, Robert B.; Christians, Uwe; Hering, Bernhard J.; Schuurman, Henk-Jan

    2005-01-01

    Streptozotocin (STZ) is widely applied in animal models of insulin-dependent diabetes mellitus. Adverse effects of STZ mainly concern liver and kidney. In nonhuman primates a single 100-150 mg/kg dose invariably induces diabetes with only rare adverse effects. We report one animal with renal failure necessitating sacrifice. Body weight (age) might be a confounding factor, i.e. older animals might be more vulnerable to STZ-related toxicity. We therefore recommended to administer STZ on a mg/m 2 basis and not on a mg/kg basis. In our islet transplantation program nonhuman primates with STZ-induced diabetes received transplants under chronic immunosuppression including calcineurin inhibitors (cyclosporine, tacrolimus), drugs in the rapamycin class affecting growth factor-induced cell proliferation, and the sphingosine 1-phosphate receptor antagonist FTY720. Four animals developed renal failure and had to be sacrificed, most likely caused by cyclosporine. Kidney histology was typical for cyclosporine toxicity including thrombotic microangiopathy in glomeruli and fibrinoid necrosis of arteries, and for STZ toxicity including acute tubular necrosis and accumulations of erythroid precursors. This adverse effect was observed at a pharmacologically active cyclosporine exposure. Additionally, six diabetic animals without major adverse effects during cyclosporine or tacrolimus treatment are presented. We conclude that cyclosporine facilitates renal dysfunction in animals with STZ-induced diabetes, presumably related to an increased vulnerability to a toxic insult after STZ administration

  19. Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice.

    Science.gov (United States)

    Sapieha, P; Chen, J; Stahl, A; Seaward, M R; Favazza, T L; Juan, A M; Hatton, C J; Joyal, J-S; Krah, N M; Dennison, R J; Tang, J; Kern, T S; Akula, J D; Smith, L E H

    2012-07-23

    Diabetic retinopathy (DR) is associated with hyperglycemia-driven microvascular pathology and neuronal compromise in the retina. However, DR is also linked to dyslipidemia. As omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are protective in proliferative retinopathy, we investigated the capacity of ω-3PUFAs to preserve retinal function in a mouse model of type 2 diabetes mellitus (T2DM). Male leptin-receptor-deficient (db/db) mice were maintained for 22 weeks (4 weeks-26 weeks of life) on calorically and compositionally matched diets, except for 2% enrichment in either ω-3 or ω-6PUFAs. Visual function was assessed at 9, 14 and 26 weeks by electroretinography. Retinal capillary and neuronal integrity, as well as glucose challenge responses, were assessed on each diet. The ω-3PUFA diet significantly preserved retinal function in the mouse model of T2DM to levels similar to those observed in nondiabetic control mice on normal chow. Conversely, retinal function gradually deteriorated in db/db mice on a ω-6PUFA-rich diet. There was also an enhanced ability of ω-3PUFA-fed mice to respond to glucose challenge. The protection of visual function appeared to be independent of cytoprotective or anti-inflammatory effects of ω-3PUFAs. This study identifies beneficial effects of dietary ω-3PUFAs on visual function in T2DM. The data are consistent with dyslipidemia negatively impacting retinal function. As ω-3PUFA lipid dietary interventions are readily available, safe and inexpensive, increasing ω-3PUFA intake in diabetic patients may slow the progression of vision loss in T2DM.

  20. Zinc Prevents the Development of Diabetic Cardiomyopathy in db/db Mice

    Directory of Open Access Journals (Sweden)

    Shudong Wang

    2017-03-01

    Full Text Available Diabetic cardiomyopathy (DCM is highly prevalent in type 2 diabetes (T2DM patients. Zinc is an important essential trace metal, whose deficiency is associated with various chronic ailments, including vascular diseases. We assessed T2DM B6.BKS(D-Leprdb/J (db/db mice fed for six months on a normal diet containing three zinc levels (deficient, adequate, and supplemented, to explore the role of zinc in DCM development and progression. Cardiac function, reflected by ejection fraction, was significantly decreased, along with increased left ventricle mass and heart weight to tibial length ratio, in db/db mice. As a molecular cardiac hypertrophy marker, atrial natriuretic peptide levels were also significantly increased. Cardiac dysfunction and hypertrophy were accompanied by significantly increased fibrotic (elevated collagen accumulation as well as transforming growth factor β and connective tissue growth factor levels and inflammatory (enhanced expression of tumor necrosis factor alpha, interleukin-1β, caspase recruitment domain family member 9, and B-cell lymphoma/leukemia 10, and activated p38 mitogen-activated protein kinase responses in the heart. All these diabetic effects were exacerbated by zinc deficiency, and not affected by zinc supplementation, respectively. Mechanistically, oxidative stress and damage, mirrored by the accumulation of 3-nitrotyrosine and 4-hydroxy-2-nonenal, was significantly increased along with significantly decreased expression of Nrf2 and its downstream antioxidants (NQO-1 and catalase. This was also exacerbated by zinc deficiency in the db/db mouse heart. These results suggested that zinc deficiency promotes the development and progression of DCM in T2DM db/db mice. The exacerbated effects by zinc deficiency on the heart of db/db mice may be related to further suppression of Nrf2 expression and function.

  1. Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A 1H NMR-based metabolomics investigation

    OpenAIRE

    Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang

    2016-01-01

    The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a 1H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glu...

  2. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    Science.gov (United States)

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  3. Anti-diabetic effect of balanced deep-sea water and its mode of action in high-fat diet induced diabetic mice.

    Science.gov (United States)

    Ha, Byung Geun; Shin, Eun Ji; Park, Jung-Eun; Shon, Yun Hee

    2013-10-29

    In this study, we investigated the effects of balanced deep-sea water (BDSW) on hyperglycemia and glucose intolerance in high-fat diet (HFD)-induced diabetic C57BL/6J mice. BDSW was prepared by mixing deep-sea water (DSW) mineral extracts and desalinated water to give a final hardness of 500-2000. Mice given an HFD with BDSW showed lowered fasting plasma glucose levels compared to HFD-fed mice. Oral and intraperitoneal glucose tolerance tests showed that BDSW improves impaired glucose tolerance in HFD-fed mice. Histopathological evaluation of the pancreas showed that BDSW recovers the size of the pancreatic islets of Langerhans, and increases the secretion of insulin and glucagon in HFD-fed mice. Quantitative reverse transcription polymerase chain reaction results revealed that the expression of hepatic genes involved in glucogenesis, glycogenolysis and glucose oxidation were suppressed, while those in glucose uptake, β-oxidation, and glucose oxidation in muscle were increased in mice fed HFD with BDSW. BDSW increased AMP-dependent kinase (AMPK) phosphorylation in 3T3-L1 pre- and mature adipocytes and improved impaired AMPK phosphorylation in the muscles and livers of HFD-induced diabetic mice. BDSW stimulated phosphoinositol-3-kinase and AMPK pathway-mediated glucose uptake in 3T3-L1 adipocytes. Taken together, these results suggest that BDSW has potential as an anti-diabetic agent, given its ability to suppress hyperglycemia and improve glucose intolerance by increasing glucose uptake.

  4. Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice.

    Science.gov (United States)

    Bodin, Johanna; Bølling, Anette Kocbach; Becher, Rune; Kuper, Frieke; Løvik, Martinus; Nygaard, Unni Cecilie

    2014-02-01

    Diabetes mellitus type 1 is an autoimmune disease with a genetic predisposition that is triggered by environmental factors during early life. Epidemiological studies show that bisphenol A (BPA), an endocrine disruptor, has been detected in about 90% of all analyzed human urine samples. In this study, BPA was found to increase the severity of insulitis and the incidence of diabetes in female non obese diabetic (NOD) mice offspring after transmaternal exposure through the dams' drinking water (0, 0.1, 1, and 10mg/l). Both the severity of insulitis in the pancreatic islets at 11 weeks of age and the diabetes prevalence at 20 weeks were significantly increased for female offspring in the highest exposure group compared to the control group. Increased numbers of apoptotic cells, a reduction in tissue resident macrophages and an increase in regulatory T cells were observed in islets prior to insulitis development in transmaternally exposed offspring. The detectable apoptotic cells were identified as mostly glucagon producing alpha-cells but also tissue resident macrophages and beta-cells. In the local (pancreatic) lymph node neither regulatory T cell nor NKT cell populations were affected by maternal BPA exposure. Maternal BPA exposure may have induced systemic immune changes in offspring, as evidenced by alterations in LPS- and ConA-induced cytokine secretion in splenocytes. In conclusion, transmaternal BPA exposure, in utero and through lactation, accelerated the spontaneous diabetes development in NOD mice. This acceleration appeared to be related to early life modulatory effects on the immune system, resulting in adverse effects later in life.

  5. Changes in pancreatic somatostatin content in spontaneously diabetic mice, as determined by radioimmunoassay and immunohistochemical methods

    International Nuclear Information System (INIS)

    Makino, H.; Matsushima, Y.; Kanatsuka, A.; Yamamoto, M.; Kumagai, A.; Nishimura, M.

    1979-01-01

    A specific RIA for somatostatin (SRIF) was used to determine the SRIF content of the pancreas and hypothalamus in spontaneously diabetic C57BL/KsJ dbdb and C57BL/6J obob mice. In addition, SRIF- and glucagon-containing cells were examined in the pancreatic islets with an immunohistochemical technique. In dbdb mice, immunoassayable pancreatic SRIF content was increased, as was the number of SRIF- or glucagon-containing cells. In obob mice, immunoassayable pancreatic SRIF content was also increased, but no increase was noted in the number of SRIF- or glucagon-containing cells. The hypothalamic SRIF content of either strain was not different from that of controls. These results regarding pancreatic SRIF content were in accord with some but not all previous reports. These differences may be related to the age of the mice or to the conditions in which they were bred. The pancreatic SRIF increase in both dbdb and obob mice may be attributable to hyperglucagonemia, hyperglycemia, or a decrease in insulin action. Further work is necessary to clearly delineate the mechanism

  6. Gender-Dimorphic Regulation of Skeletal Muscle Proteins in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Minji Choi

    2013-03-01

    Full Text Available Background: Despite the fact that sexual differences increase diabetic risk and contribute to the need for gender-specific care, there remain contradictory results as to whether or not sexual dimorphism increases susceptibility to the development of type 1 diabetes mellitus. Methods: To examine gender-dimorphic regulation of skeletal muscle proteins between healthy control and STZ-induced diabetic rats of both genders, we performed differential proteome analysis using two-dimensional electrophoresis combined with mass spectrometry. Results: Animal experiments revealed that STZ treatment rendered female rats more susceptible to induction of diabetes than their male littermates with significantly lower plasma insulin levels due to hormonal regulation. Proteomic analysis of skeletal muscle identified a total of 21 proteins showing gender-dimorphic differential expression patterns between healthy controls and diabetic rats. Most interestingly, gender-specific proteome comparison showed that male and female rats displayed differential regulation of proteins involved in muscle contraction, carbohydrate, and lipid metabolism, as well as oxidative phosphorylation and cellular stress. Conclusion: The current proteomic study revealed that impaired protein regulation was more prominent in the muscle tissue of female diabetic rats, which were more susceptible to STZ-induced diabetes. We expect that the present proteomic data can provide valuable information for evidence-based gender-specific treatment of diabetes.

  7. Beneficial effects of dietary acarbose in the streptozotocin-induced diabetic rat.

    Science.gov (United States)

    Katovich, M J; Meldrum, M J; Vasselli, J R

    1991-12-01

    Diabetes is characterized by hyperphagia, polydipsia, polyuria, and elevations in blood and urinary glucose. It has also been documented that beta-adrenergic responsiveness is reduced in diabetes. The intestinal glucosidase inhibitor, acarbose (BAY G 5421), decreases postprandial glycemia by delaying carbohydrate absorption. The purpose of this study was to evaluate the effects of chronic acarbose treatment (20 and 40 mg/100 g of diet) on the metabolic and adrenergic parameters altered in streptozotocin (STZ) (50 mg/kg, intravenously [IV] )-induced diabetes. Metabolic parameters were measured daily for 8 weeks. Diabetic rats were hyperphagic, polydipsic, and polyuric within 1 week of STZ treatment. Acarbose treatment did not consistently effect the food intake but did reduce water intake, urinary output, blood glucose, and the urinary loss of glucose associated with STZ-induced diabetes. Adrenergic responses were assessed by monitoring the increase in tail skin temperature (TST) associated with administration of isoproterenol. Diabetic rats were less responsive than controls and acarbose treatment restored responses toward that of the controls. Additionally, 3H-NE release from the tail artery was elevated in the diabetic rat and restored to normal in the acarbose-treated animals. Collectively these data suggest that acarbose treatment is effective in reducing the severity of metabolic and autonomic complications associated with STZ-induced diabetes.

  8. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI

    Directory of Open Access Journals (Sweden)

    Chandrasekaran Suresh

    2007-02-01

    Full Text Available Abstract Background Diabetes is associated with a cardiomyopathy that is independent of coronary artery disease or hypertension. In the present study we used in vivo magnetic resonance imaging (MRI and echocardiographic techniques to examine and characterize early changes in myocardial function in a mouse model of type 1 diabetes. Methods Diabetes was induced in 8-week old C57BL/6 mice with two intraperitoneal injections of streptozotocin. The blood glucose levels were maintained at 19–25 mmol/l using intermittent low dosages of long acting insulin glargine. MRI and echocardiography were performed at 4 weeks of diabetes (age of 12 weeks in diabetic mice and age-matched controls. Results After 4 weeks of hyperglycemia one marker of mitochondrial function, NADH oxidase activity, was decreased to 50% of control animals. MRI studies of diabetic mice at 4 weeks demonstrated significant deficits in myocardial morphology and functionality including: a decreased left ventricular (LV wall thickness, an increased LV end-systolic diameter and volume, a diminished LV ejection fraction and cardiac output, a decreased LV circumferential shortening, and decreased LV peak ejection and filling rates. M-mode echocardiographic and Doppler flow studies of diabetic mice at 4 weeks showed a decreased wall thickening and increased E/A ratio, supporting both systolic and diastolic dysfunction. Conclusion Our study demonstrates that MRI interrogation can identify the onset of diabetic cardiomyopathy in mice with its impaired functional capacity and altered morphology. The MRI technique will lend itself to repetitive study of early changes in cardiac function in small animal models of diabetic cardiomyopathy.

  9. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI)

    Science.gov (United States)

    Yu, Xichun; Tesiram, Yasvir A; Towner, Rheal A; Abbott, Andrew; Patterson, Eugene; Huang, Shijun; Garrett, Marion W; Chandrasekaran, Suresh; Matsuzaki, Satoshi; Szweda, Luke I; Gordon, Brian E; Kem, David C

    2007-01-01

    Background Diabetes is associated with a cardiomyopathy that is independent of coronary artery disease or hypertension. In the present study we used in vivo magnetic resonance imaging (MRI) and echocardiographic techniques to examine and characterize early changes in myocardial function in a mouse model of type 1 diabetes. Methods Diabetes was induced in 8-week old C57BL/6 mice with two intraperitoneal injections of streptozotocin. The blood glucose levels were maintained at 19–25 mmol/l using intermittent low dosages of long acting insulin glargine. MRI and echocardiography were performed at 4 weeks of diabetes (age of 12 weeks) in diabetic mice and age-matched controls. Results After 4 weeks of hyperglycemia one marker of mitochondrial function, NADH oxidase activity, was decreased to 50% of control animals. MRI studies of diabetic mice at 4 weeks demonstrated significant deficits in myocardial morphology and functionality including: a decreased left ventricular (LV) wall thickness, an increased LV end-systolic diameter and volume, a diminished LV ejection fraction and cardiac output, a decreased LV circumferential shortening, and decreased LV peak ejection and filling rates. M-mode echocardiographic and Doppler flow studies of diabetic mice at 4 weeks showed a decreased wall thickening and increased E/A ratio, supporting both systolic and diastolic dysfunction. Conclusion Our study demonstrates that MRI interrogation can identify the onset of diabetic cardiomyopathy in mice with its impaired functional capacity and altered morphology. The MRI technique will lend itself to repetitive study of early changes in cardiac function in small animal models of diabetic cardiomyopathy. PMID:17309798

  10. Altered Expression of Somatostatin Receptors in Pancreatic Islets from NOD Mice Cultured at Different Glucose Concentrations In Vitro and in Islets Transplanted to Diabetic NOD Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Eva Ludvigsen

    2011-01-01

    Full Text Available Somatostatin acts via five receptors (sst1-5. We investigated if the changes in pancreatic islet sst expression in diabetic NOD mice compared to normoglycemic mice are a consequence of hyperglycemia or the ongoing immune reaction in the pancreas. Pancreatic islets were isolated from NOD mice precultured for 5 days and further cultured for 3 days at high or low glucose before examined. Islets were also isolated from NOD mice and transplanted to normal or diabetic mice in a number not sufficient to cure hyperglycemia. After three days, the transplants were removed and stained for sst1-5 and islet hormones. Overall, changes in sst islet cell expression were more common in islets cultured in high glucose concentration in vitro as compared to the islet transplantation in vivo to diabetic mice. The beta and PP cells exhibited more frequent changes in sst expression, while the alpha and delta cells were relatively unaffected by the high glucose condition. Our findings suggest that the glucose level may alter sst expressed in islets cells; however, immune mechanisms may counteract such changes in islet sst expression.

  11. Gut microbial markers are associated with diabetes onset, regulatory imbalance, and IFN-γ level in NOD mice.

    Science.gov (United States)

    Krych, Ł; Nielsen, D S; Hansen, A K; Hansen, C H F

    2015-01-01

    Gut microbiota regulated imbalances in the host's immune profile seem to be an important factor in the etiology of type 1 diabetes (T1D), and identifying bacterial markers for T1D may therefore be useful in diagnosis and prevention of T1D. The aim of the present study was to investigate the link between the early gut microbiota and immune parameters of non-obese diabetic (NOD) mice in order to select alleged bacterial markers of T1D. Gut microbial composition in feces was analyzed with 454/FLX Titanium (Roche) pyro-sequencing and correlated with diabetes onset age and immune cell populations measured in diabetic and non-diabetic mice at 30 weeks of age. The early gut microbiota composition was found to be different between NOD mice that later in life were classified as diabetic or non-diabetic. Those differences were further associated with changes in FoxP3(+) regulatory T cells, CD11b(+) dendritic cells, and IFN-γ production. The model proposed in this work suggests that operational taxonomic units classified to S24-7, Prevotella, and an unknown Bacteriodales (all Bacteroidetes) act in favor of diabetes protection whereas members of Lachnospiraceae, Ruminococcus, and Oscillospira (all Firmicutes) promote pathogenesis.

  12. Hypoglycemic effects of Trichosanthes kirilowii and its protein constituent in diabetic mice: the involvement of insulin receptor pathway.

    Science.gov (United States)

    Lo, Hsin-Yi; Li, Tsai-Chung; Yang, Tse-Yen; Li, Chia-Cheng; Chiang, Jen-Huai; Hsiang, Chien-Yun; Ho, Tin-Yun

    2017-01-18

    Diabetes is a serious chronic metabolic disorder. Trichosanthes kirilowii Maxim. (TK) is traditionally used for the treatment of diabetes in traditional Chinese medicine (TCM). However, the clinical application of TK on diabetic patients and the hypoglycemic efficacies of TK are still unclear. A retrospective cohort study was conducted to analyze the usage of Chinese herbs in patients with type 2 diabetes in Taiwan. Glucose tolerance test was performed to analyze the hypoglycemic effect of TK. Proteomic approach was performed to identify the protein constituents of TK. Insulin receptor (IR) kinase activity assay and glucose tolerance tests in diabetic mice were further used to elucidate the hypoglycemic mechanisms and efficacies of TK. By a retrospective cohort study, we found that TK was the most frequently used Chinese medicinal herb in type 2 diabetic patients in Taiwan. Oral administration of aqueous extract of TK displayed hypoglycemic effects in a dose-dependent manner in mice. An abundant novel TK protein (TKP) was further identified by proteomic approach. TKP interacted with IR by docking analysis and activated the kinase activity of IR. In addition, TKP enhanced the clearance of glucose in diabetic mice in a dose-dependent manner. In conclusion, this study applied a bed-to-bench approach to elucidate the hypoglycemic efficacies and mechanisms of TK on clinical usage. In addition, we newly identified a hypoglycemic protein TKP from TK. Our findings might provide a reasonable explanation of TK on the treatment of diabetes in TCM.

  13. Effects of 1-Methylnicotinamide (MNA) on Exercise Capacity and Endothelial Response in Diabetic Mice.

    Science.gov (United States)

    Przyborowski, Kamil; Wojewoda, Marta; Sitek, Barbara; Zakrzewska, Agnieszka; Kij, Agnieszka; Wandzel, Krystyna; Zoladz, Jerzy Andrzej; Chlopicki, Stefan

    2015-01-01

    1-Methylnicotinamide (MNA), which was initially considered to be a biologically inactive endogenous metabolite of nicotinamide, has emerged as an anti-thrombotic and anti-inflammatory agent with the capacity to release prostacyclin (PGI2). In the present study, we characterized the effects of MNA on exercise capacity and the endothelial response to exercise in diabetic mice. Eight-week-old db/db mice were untreated or treated with MNA for 4 weeks (100 mg·kg-1), and their exercise capacity as well as NO- and PGI2-dependent response to endurance running were subsequently assessed. MNA treatment of db/db mice resulted in four-fold and three-fold elevation of urine concentrations of MNA and its metabolites (Met-2PY + Met-4PY), respectively (P<0.01), but did not affect HbA1c concentration, fasting glucose concentration or lipid profile. However, insulin sensitivity was improved (P<0.01). In MNA-treated db/db mice, the time to fatigue for endurance exercise was significantly prolonged (P<0.05). Post-exercise Δ6-keto-PGF1α (difference between mean concentration in the sedentary and exercised groups) tended to increase, and post-exercise leukocytosis was substantially reduced in MNA-treated animals. In turn, the post-exercise fall in plasma concentration of nitrate was not affected by MNA. In conclusion, we demonstrated for the first time that MNA improves endurance exercise capacity in mice with diabetes, and may also decrease the cardiovascular risk of exercise.

  14. Effects of 1-Methylnicotinamide (MNA on Exercise Capacity and Endothelial Response in Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Kamil Przyborowski

    Full Text Available 1-Methylnicotinamide (MNA, which was initially considered to be a biologically inactive endogenous metabolite of nicotinamide, has emerged as an anti-thrombotic and anti-inflammatory agent with the capacity to release prostacyclin (PGI2. In the present study, we characterized the effects of MNA on exercise capacity and the endothelial response to exercise in diabetic mice. Eight-week-old db/db mice were untreated or treated with MNA for 4 weeks (100 mg·kg-1, and their exercise capacity as well as NO- and PGI2-dependent response to endurance running were subsequently assessed. MNA treatment of db/db mice resulted in four-fold and three-fold elevation of urine concentrations of MNA and its metabolites (Met-2PY + Met-4PY, respectively (P<0.01, but did not affect HbA1c concentration, fasting glucose concentration or lipid profile. However, insulin sensitivity was improved (P<0.01. In MNA-treated db/db mice, the time to fatigue for endurance exercise was significantly prolonged (P<0.05. Post-exercise Δ6-keto-PGF1α (difference between mean concentration in the sedentary and exercised groups tended to increase, and post-exercise leukocytosis was substantially reduced in MNA-treated animals. In turn, the post-exercise fall in plasma concentration of nitrate was not affected by MNA. In conclusion, we demonstrated for the first time that MNA improves endurance exercise capacity in mice with diabetes, and may also decrease the cardiovascular risk of exercise.

  15. Comparison of cerebral microcirculation of alloxan diabetes and healthy mice using laser speckle contrast imaging

    Science.gov (United States)

    Timoshina, Polina A.; Shi, Rui; Zhang, Yang; Zhu, Dan; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.; Luo, Qingming

    2015-03-01

    The study of blood microcirculation is one of the most important problems of the medicine. This paper presents results of experimental study of cerebral blood flow microcirculation in mice with alloxan-induced diabetes using Temporal Laser Speckle Imaging (TLSI). Additionally, a direct effect of glucose water solution (concentration 20% and 45%) on blood flow microcirculation was studied. In the research, 20 white laboratory mice weighing 20-30 g were used. The TLSI method allows one to investigate time dependent scattering from the objects with complex dynamics, since it possesses greater temporal resolution. Results show that in brain of animal diabetic group diameter of sagittal vein is increased and the speed of blood flow reduced relative to the control group. Topical application of 20%- or 45%-glucose solutions also causes increase of diameter of blood vessels and slows down blood circulation. The results obtained show that diabetes development causes changes in the cerebral microcirculatory system and TLSI techniques can be effectively used to quantify these alterations.

  16. Renal protective effects of extracts from guava fruit (Psidium guajava L.) in diabetic mice.

    Science.gov (United States)

    Lin, Chia-Yu; Lin, Chia-Yun; Yin, Mei-Chin

    2012-09-01

    This study analyzed the content of phenolic acids and flavonoids in extracts of guava fruit (Psidium guajava L.), and examined the renal protective effects of guava aqueous extract (GAE) and ethanol extract (GEE) in diabetic mice. GAE had more caffeic acid, myricetin, and quercetin; and GEE had more cinnamic, coumaric and ferulic acids. GAE or GEE at 1 and 2 % was supplied in diet for 12 weeks. GAE or GEE intake at 2 % significantly reduced glucose and blood urea nitrogen levels, increased insulin level in plasma of diabetic mice (p < 0.05). GAE or GEE treatments dose-dependently reserved glutathione content, retained activity of catalase and glutathione peroxidase, and decreased reactive oxygen species, interleukin (IL)-6, tumor necrosis factor-α and IL-1β levels in kidney (p < 0.05). GAE and GEE treatments at 2 % significantly declined renal N (ε)-(carboxymethyl)lysine, pentosidine and fructose levels (p < 0.05), and suppressed renal activity of aldose reductase (p < 0.05). These findings support that guava fruit could protect kidney against diabetic progression via its anti-oxidative, anti-inflammatory and anti-glycative effects.

  17. Effects of two antioxidants; α-lipoic acid and fisetin against diabetic cataract in mice.

    Science.gov (United States)

    Kan, Emrah; Kiliçkan, Elif; Ayar, Ahmet; Çolak, Ramis

    2015-02-01

    The purpose of this study was to determine whether α-lipoic acid and fisetin have protective effects against cataract in a streptozotocin-induced experimental cataract model. Twenty-eight male BALB/C mice were made diabetic by the intraperitoneal administration of streptozotocin (200 mg/kg). Three weeks after induction of diabetes, mice were divided randomly into 4 groups in which each group contained 7 mice; fisetin-treated group (group 1), α-lipoic acid-treated group (group 2), fisetin placebo group (group 3), α-lipoic acid placebo group (group 4). Fisetin and α-lipoic acid were administered intraperitoneally weekly for 5 weeks. Cataract development was assessed at the end of 8 weeks by slit lamp examination, and cataract formation was graded using a scale. All groups developed at least grade 1 cataract formation. In the fisetin-treated group, the cataract stages were significantly lower than in the placebo group (p = 0.02). In the α-lipoic acid-treated group, the cataract stages were lower than in the placebo group but it did not reach to a significant value. Both fisetin and α-lipoic acid had a protective effect on cataract development in a streptozotocin-induced experimental cataract model. The protective effect of fisetin appears as though more effective than α-lipoic acid.

  18. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    International Nuclear Information System (INIS)

    Gao Xiaodong; Song Lujun; Shen Kuntang; Wang Hongshan; Niu Weixin; Qin Xinyu

    2008-01-01

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed β cells were in the process of proliferation. BrdU + insulin - PDX-1 + cells, Ngn3 + cells and insulin + glucagon + cells, which showed stem cells, were also found during β-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34 + cells can promote repair of pancreatic islets. Moreover, both proliferation of β cells and differentiation of pancreatic stem cells contribute to the regeneration of β cells

  19. Food restriction by intermittent fasting induces diabetes and obesity and aggravates spontaneous atherosclerosis development in hypercholesterolaemic mice.

    Science.gov (United States)

    Dorighello, Gabriel G; Rovani, Juliana C; Luhman, Christopher J F; Paim, Bruno A; Raposo, Helena F; Vercesi, Anibal E; Oliveira, Helena C F

    2014-03-28

    Different regimens of food restriction have been associated with protection against obesity, diabetes and CVD. In the present study, we hypothesised that food restriction would bring benefits to atherosclerosis- and diabetes-prone hypercholesterolaemic LDL-receptor knockout mice. For this purpose, 2-month-old mice were submitted to an intermittent fasting (IF) regimen (fasting every other day) over a 3-month period, which resulted in an overall 20 % reduction in food intake. Contrary to our expectation, epididymal and carcass fat depots and adipocyte size were significantly enlarged by 15, 72 and 68 %, respectively, in the IF mice compared with the ad libitum-fed mice. Accordingly, plasma levels of leptin were 50 % higher in the IF mice than in the ad libitum-fed mice. In addition, the IF mice showed increased plasma levels of total cholesterol (37 %), VLDL-cholesterol (195 %) and LDL-cholesterol (50 %). As expected, in wild-type mice, the IF regimen decreased plasma cholesterol levels and epididymal fat mass. Glucose homeostasis was also disturbed by the IF regimen in LDL-receptor knockout mice. Elevated levels of glycaemia (40 %), insulinaemia (50 %), glucose intolerance and insulin resistance were observed in the IF mice. Systemic inflammatory markers, TNF-α and C-reactive protein, were significantly increased and spontaneous atherosclerosis development were markedly increased (3-fold) in the IF mice. In conclusion, the IF regimen induced obesity and diabetes and worsened the development of spontaneous atherosclerosis in LDL-receptor knockout mice. Although being efficient in a wild-type background, this type of food restriction is not beneficial in the context of genetic hypercholesterolaemia.

  20. Inhibiting the NLRP3 Inflammasome Activation with MCC950 Ameliorates Diabetic Encephalopathy in db/db Mice

    Directory of Open Access Journals (Sweden)

    Yadong Zhai

    2018-02-01

    Full Text Available Diabetes is associated with a high risk of developing cognitive dysfunction and neuropsychiatric disabilities, and these disease symptomsare termed diabetic encephalopathy (DEP. Inflammation is involved in the development of DEP. The cleavage and maturation of the proinflammatory cytokine interleukin (IL-1β is regulated by the NLRP3 inflammasome. Obese and type 2 diabetic db/db mice show anxiety- and depression-like behaviors and cognitive disorders associated with hippocampal inflammation. The purpose of this study was to explore the role of NLRP3 inflammasome in DEP. Results showed that expression levels of inflammasome components including NLRP3, apoptosis-associated speck-like protein (ASC, and caspase-1, as well as IL-1β in the hippocampus of diabetic db/db mice were higher than those of non-diabetic db/m mice. Treatment of db/db mice with NLRP3 inflammasome inhibitor MCC950 ameliorated anxiety- and depression-like behaviors as well as cognitive dysfunction, and reversed increased NLRP3, ASC, and IL-1βexpression levels and caspase-1 activity in hippocampus. Moreover, MCC950 treatment significantly improved insulin sensitivity in db/db mice. These results demonstrate that inhibition of NLRP3 inflammasome activation may prove to be a potential therapeutic approach for DEP treatment.

  1. Annexin V Imaging Detects Diabetes-Accelerated Apoptosis and Monitors the Efficacy of Benfotiamine Treatment in Ischemic Limbs of Mice

    Directory of Open Access Journals (Sweden)

    Kyung-Ho Jung

    2014-05-01

    Full Text Available The role of apoptosis imaging for monitoring treatment response in ischemic limbs has not been properly explored. In this study, we investigated the ability of annexin V (AnxV imaging to assess the efficacy of antiapoptotic treatment in ischemic limbs of diabetic mice. Normal C57BL/6 mice and streptozotocin-induced diabetic mice were subject to hindlimb ischemia. AnxV-conjugated fluorescent streptavidin probes were intravenously injected, and optical imaging was performed. Tissue apoptosis was quantified by histochemistry and Western blotting. The AnxV probes showed specific targeting to apoptotic cells on confocal microscopy and flow cytometry. Intravenous AnxV probes displayed substantially greater accumulation in ischemic limbs of diabetic mice. Benfotiamine (BFT treatment of diabetic mice led to better perfusion recovery on laser Doppler imaging and reduced AnxV binding on optical imaging. TUNEL staining and cleaved caspase-3 Western blots confirmed accelerated apoptosis by diabetes and its suppression by BFT treatment. Furthermore, AnxV-SAv-PEcy5.5 uptake in the ischemic limbs closely correlated to cleaved caspase-3 expression. Thus, AnxV imaging may be useful for monitoring the efficacy of therapeutic agents designed to suppress ischemia-induced apoptosis.

  2. Annexin V imaging detects diabetes-accelerated apoptosis and monitors the efficacy of benfotiamine treatment in ischemic limbs of mice.

    Science.gov (United States)

    Jung, Kyung-Ho; Lee, Jin Hee; Park, Jin Won; Paik, Jin Young; Quach, Cung Hoa Thien; Lee, Eun Jeong; Lee, Kyung-Han

    2014-01-01

    The role of apoptosis imaging for monitoring treatment response in ischemic limbs has not been properly explored. In this study, we investigated the ability of annexin V (AnxV) imaging to assess the efficacy of antiapoptotic treatment in ischemic limbs of diabetic mice. Normal C57BL/6 mice and streptozotocin-induced diabetic mice were subject to hindlimb ischemia. AnxV-conjugated fluorescent streptavidin probes were intravenously injected, and optical imaging was performed. Tissue apoptosis was quantified by histochemistry and Western blotting. The AnxV probes showed specific targeting to apoptotic cells on confocal microscopy and flow cytometry. Intravenous AnxV probes displayed substantially greater accumulation in ischemic limbs of diabetic mice. Benfotiamine (BFT) treatment of diabetic mice led to better perfusion recovery on laser Doppler imaging and reduced AnxV binding on optical imaging. TUNEL staining and cleaved caspase-3 Western blots confirmed accelerated apoptosis by diabetes and its suppression by BFT treatment. Furthermore, AnxV-SAv-PEcy5.5 uptake in the ischemic limbs closely correlated to cleaved caspase-3 expression. Thus, AnxV imaging may be useful for monitoring the efficacy of therapeutic agents designed to suppress ischemia-induced apoptosis.

  3. Treatment of diabetic rats with encapsulated islets.

    Science.gov (United States)

    Sweet, Ian R; Yanay, Ofer; Waldron, Lanaya; Gilbert, Merle; Fuller, Jessica M; Tupling, Terry; Lernmark, Ake; Osborne, William R A

    2008-12-01

    Immunoprotection of islets using bioisolator systems permits introduction of allogeneic cells to diabetic patients without the need for immunosuppression. Using TheraCyte immunoisolation devices, we investigated two rat models of type 1 diabetes mellitus (T1DM), BB rats and rats made diabetic by streptozotocin (STZ) treatment. We chose to implant islets after the onset of diabetes to mimic the probable treatment of children with T1DM as they are usually diagnosed after disease onset. We encapsulated 1000 rat islets and implanted them subcutaneously (SQ) into diabetic biobreeding (BB) rats and STZ-induced diabetic rats, defined as two or more consecutive days of blood glucose>350 mg/dl. Rats were monitored for weight and blood glucose. Untreated BB rats rapidly lost weight and were euthanized at >20% weight loss that occurred between 4 and 10 days from implantation. For period of 30-40 days following islet implantation weights of treated rats remained steady or increased. Rapid weight loss occurred after surgical removal of devices that contained insulin positive islets. STZ-treated rats that received encapsulated islets showed steady weight gain for up to 130 days, whereas untreated control rats showed steady weight loss that achieved >20% at around 55 days. Although islet implants did not normalize blood glucose, treated rats were apparently healthy and groomed normally. Autologous or allogeneic islets were equally effective in providing treatment. TheraCyte devices can sustain islets, protect allogeneic cells from immune attack and provide treatment for diabetic-mediated weight loss in both BB rats and STZ-induced diabetic rats.

  4. FTY720-loaded poly(DL-lactide-co-glycolide) electrospun scaffold significantly increases microvessel density over 7 days in streptozotocin-induced diabetic C57b16/J mice: preliminary results.

    Science.gov (United States)

    Bowers, D T; Chhabra, P; Langman, L; Botchwey, E A; Brayman, K L

    2011-11-01

    Nanofiber scaffolds could improve islet transplant success by physically mimicking the shape of extracellular matrix and by acting as a drug-delivery vehicle. Scaffolds implanted in alternate transplant sites must be prevascularized or very quickly vascularized following transplantation to prevent hypoxia-induced islet necrosis. The local release of the S1P prodrug FTY720 induces diameter enlargement and increases in length density. The objective of this preliminary study was to evaluate length and diameter differences between diabetic and nondiabetic animals implanted with FTY720-containing electrospun scaffolds using intravital imaging of dorsal skinfold window chambers. Electrospun mats of randomly oriented fibers we created from polymer solutions of PLAGA (50:50 LA:GA) with and without FTY720 loaded at a ratio of 1:200 (FTY720:PLAGA by wt). The implanted fiber mats were 4 mm in diameter and ∼0.2 mm thick. Increases in length density and vessel diameter were assessed by automated analysis of images over 7 days in RAVE, a Matlab program. Image analysis of repeated measures of microvessel metrics demonstrated a significant increase in the length density from day 0 to day 7 in the moderately diabetic animals of this preliminary study (P < .05). Furthermore, significant differences in length density at day 0 and day 3 were found between recently STZ-induced moderately diabetic and nondiabetic animals in response to FTY720 local release (P < .05, Student t test). Driving the islet revascularization process using local release of factors, such as FTY720, from biodegradable polymers makes an attractive system for the improvement of islet transplant success. Preliminary study results suggest that a recently induced moderately diabetic state may potentiate the mechanism by which local release of FTY720 from polymer fibers increases length density of microvessels. Therefore, local release of S1P receptor-targeted drugs is under further investigation for improvement of

  5. Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice.

    Science.gov (United States)

    Chen, Sinuo; Li, Renren; Cheng, Chun; Xu, Jing-Ying; Jin, Caixia; Gao, Furong; Wang, Juan; Zhang, Jieping; Zhang, Jingfa; Wang, Hong; Lu, Lixia; Xu, Guo-Tong; Tian, Haibin

    2018-03-07

    Macrophages play critical roles in wound healing process. They switch from "classically activated" (M1) phenotype in the early inflammatory phase to "alternatively activated" (M2) phenotype in the later healing phase. However, the dynamic process of macrophage phenotype switching in diabetic wounds burdened with bacteria is unclear. In this report, Pseudomonas aeruginosa, frequently detected in diabetic foot ulcers, was inoculated into cutaneous wounds of db/db diabetic mice to mimic bacterium-infected diabetic wound healing. We observed that P. aeruginosa infection impaired diabetic wound healing and quickly promoted the expression of pro-inflammatory genes (M1 macrophage markers) tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β) and il-6 in wounds. The expression of markers of M2 macrophages, including il-10, arginase-1, and ym1 were also upregulated. In addition, similar gene expression patterns were observed in macrophages isolated directly from wounds. Immunostaining showed that P. aeruginosa infection increased both the ratios of M1 and M2 macrophages in wounds compared with that in control groups, which was further confirmed by in vitro culturing macrophages with P. aeruginosa and skin fibroblast conditioned medium. However, the ratios of the expression levels of pro-inflammatory genes to anti-inflammatory gene il-10 was increased markedly in P. aeruginosa infected wounds and macrophages compared with that in control groups, and P. aeruginosa prolonged the presence of M1 macrophages in the wounds. These data demonstrated that P. aeruginosa in diabetic wounds activates a mixed M1/M2 macrophage phenotype with an excessive activation of M1 phenotype or relatively inadequate activation of M2 phenotype. © 2018 International Federation for Cell Biology.

  6. A mixture of extracts from Peruvian plants (black maca and yacon) improves sperm count and reduced glycemia in mice with streptozotocin-induced diabetes.

    Science.gov (United States)

    Gonzales, Gustavo F; Gonzales-Castañeda, Cynthia; Gasco, Manuel

    2013-09-01

    We investigated the effect of two extracts from Peruvian plants given alone or in a mixture on sperm count and glycemia in streptozotocin-diabetic mice. Normal or diabetic mice were divided in groups receiving vehicle, black maca (Lepidium meyenii), yacon (Smallanthus sonchifolius) or three mixtures of extracts black maca/yacon (90/10, 50/50 and 10/90%). Normal or diabetic mice were treated for 7 d with each extract, mixture or vehicle. Glycemia, daily sperm production (DSP), epididymal and vas deferens sperm counts in mice and polyphenol content, and antioxidant activity in each extract were assessed. Black maca (BM), yacon and the mixture of extracts reduced glucose levels in diabetic mice. Non-diabetic mice treated with BM and yacon showed higher DSP than those treated with vehicle (p maca/yacon increased DSP, and sperm count in vas deferens and epididymis with respect to non-diabetic and diabetic mice treated with vehicle (p maca, and this was associated with higher antioxidant activity. The combination of two extracts improved glycemic levels and male reproductive function in diabetic mice. Streptozotocin increased 1.43 times the liver weight that was reversed with the assessed plants extracts. In summary, streptozotocin-induced diabetes resulted in reduction in sperm counts and liver damage. These effects could be reduced with BM, yacon and the BM+yacon mixture.

  7. Type 1 diabetes in NOD mice unaffected by mast cell deficiency.

    Science.gov (United States)

    Gutierrez, Dario A; Fu, Wenxian; Schonefeldt, Susann; Feyerabend, Thorsten B; Ortiz-Lopez, Adriana; Lampi, Yulia; Liston, Adrian; Mathis, Diane; Rodewald, Hans-Reimer

    2014-11-01

    Mast cells have been invoked as important players in immune responses associated with autoimmune diseases. Based on in vitro studies, or in vivo through the use of Kit mutant mice, mast cells have been suggested to play immunological roles in direct antigen presentation to both CD4(+) and CD8(+) T cells, in the regulation of T-cell and dendritic cell migration to lymph nodes, and in Th1 versus Th2 polarization, all of which could significantly impact the immune response against self-antigens in autoimmune disease, including type 1 diabetes (T1D). Until now, the role of mast cells in the onset and incidence of T1D has only been indirectly tested through the use of low-specificity mast cell inhibitors and activators, and published studies reported contrasting results. Our three laboratories have generated independently two strains of mast cell-deficient nonobese diabetic (NOD) mice, NOD.Cpa3(Cre/+) (Heidelberg) and NOD.Kit(W-sh/W-sh) (Leuven and Boston), to address the effects of mast cell deficiency on the development of T1D in the NOD strain. Our collective data demonstrate that both incidence and progression of T1D in NOD mice are independent of mast cells. Moreover, analysis of pancreatic lymph node cells indicated that lack of mast cells has no discernible effect on the autoimmune response, which involves both innate and adaptive immune components. Our results demonstrate that mast cells are not involved in T1D in the NOD strain, making their role in this process nonessential and excluding them as potential therapeutic targets. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Urine RAS components in mice and people with type 1 diabetes and chronic kidney disease.

    Science.gov (United States)

    Wysocki, Jan; Goodling, Anne; Burgaya, Mar; Whitlock, Kathryn; Ruzinski, John; Batlle, Daniel; Afkarian, Maryam

    2017-08-01

    The pathways implicated in diabetic kidney disease (DKD) are largely derived from animal models. To examine if alterations in renin-angiotensin system (RAS) in humans are concordant with those in rodent models, we measured concentration of angiotensinogen (AOG), cathepsin D (CTSD), angiotensin-converting enzyme (ACE), and ACE2 and enzymatic activities of ACE, ACE2, and aminopeptidase-A in FVB mice 13-20 wk after treatment with streptozotocin ( n = 9) or vehicle ( n = 15) and people with long-standing type 1 diabetes, with ( n = 37) or without ( n = 81) DKD. In streptozotocin-treated mice, urine AOG and CTSD were 10.4- and 3.0-fold higher than in controls, respectively ( P animals ( P animals ( P = 0.017). Compared with people without DKD, those with DKD had higher urine AOG (170 vs. 15 μg/g) and CTSD (147 vs. 31 μg/g). In people with DKD, urine ACE concentration was 1.8-fold higher (1.4 vs. 0.8 μg/g in those without DKD), while its enzymatic activity was 0.6-fold lower (1.0 vs. 1.6 × 10 9 RFU/g in those without DKD). Lower ACE activity, but not ACE protein concentration, was associated with ACE inhibitor (ACEI) treatment. After adjustment for clinical covariates, AOG, CTSD, ACE concentration, and ACE activity remained associated with DKD. In conclusion, in mice with streptozotocin-induced diabetes and in humans with DKD, urine concentrations and enzymatic activities of several RAS components are concordantly increased, consistent with enhanced RAS activity and greater angiotensin II formation. ACEI use was associated with a specific reduction in urine ACE activity, not ACE protein concentration, suggesting that it may be a marker of exposure to this widely-used therapy. Copyright © 2017 the American Physiological Society.

  9. Exploration of the preventive effect of ursolic acid on retinopathy in diabetic mice and its mechanism

    Institute of Scientific and Technical Information of China (English)

    Ai-Zhong Yu

    2016-01-01

    Objective:To study the preventive effect of ursolic acid on retinopathy in diabetic mice through adjusting insulin sensitivity, glucose transport, angiogenesis and inflammation. Methods:Male C57BL/6 mice were selected as experimental animals and randomly divided into control group (N group), model group (D group) and intervention group (D+UA group), D group and D+UA group established diabetes models through intraperitoneal injection of STZ, D+UA group received intragastric administration of ursolic acid, and then insulin sensitivity, glucose metabolism in retina as well as the expression levels of GLUTs, HIF-1α/VEGF/VEGFR2 pathway and IKKβ/IKBα/NF-κB pathway in retina tissue of three groups were detected. Results:AUC of D group was significantly lower than that of N group, and HOMA-IR, sugar content in retina tissue as well as GLUT-1, GLUT-3, HIF-1α, VEGF, VEGFR2, IKKβ, IKBα, NF-κB, TNF-α, ICAM-1, VCAM-1 and E-selectin levels were significantly higher than those of N group;AUC of D+UA group was significantly higher than that of D group, and HOMA-IR, sugar content in retina tissue as well as GLUT-1, GLUT-3, HIF-1α, VEGF, VEGFR2, IKK毬, IKBα, NF-κB, TNF-α, ICAM-1, VCAM-1 and E-selectin levels were significantly lower than those of D group. Conclusion:Ursolic acid can increase insulin sensitivity, reduce sugar content in retina tissue and inhibit angiogenesis and inflammation degree in retina tissue, and has preventive effect on retinopathy in diabetic mice.