WorldWideScience

Sample records for styrene methyl methacrylate

  1. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  2. Copolymerization kinetics of methyl methacrylate-styrene obtained by PLP-MALDI-ToF-MS.

    Science.gov (United States)

    Willemse, Robin X E; van Herk, Alex M

    2006-04-05

    The combination of MALDI-ToF-MS and pulsed laser polymerization has been used to study the propagation rate coefficients for the copolymer system styrene-methyl methacrylate. For the first time, complete information regarding mode of termination, reactivity of photoinitiator-derived radicals, copolymer molecular mass, chemical composition, and copolymerization rates is obtained interrelated. The polymerizations were carried out in bulk with varying styrene concentrations at a temperature of 15.2 degrees C by an excimer pulsed laser with varying frequencies. Both chemical composition distributions and molecular weight distributions were determined by MALDI-ToF-MS. The data were fitted to the implicit penultimate unit model and have resulted in new point estimates of the monomer and radical reactivity ratios for the copolymer system styrene-methyl methacrylate: r(St) = 0.517, r(MMA) = 0.420, s(St) = 0.296, s(MMA) = 0.262. Comparison between Monte Carlo simulations and the obtained results further confirmed the very successful combination of pulsed laser copolymerization experiments with MALDI-ToF-MS. The obtained results are believed to be the most accurate and complete set of copolymerization parameters to date.

  3. Development of microporous drug-releasing films cast from artificial nanosized latexes of poly(styrene-co-methyl methacrylate) or poly(styrene-co-ethyl methacrylate).

    Science.gov (United States)

    Otto, Daniel P; Vosloo, Hermanus C M; Liebenberg, Wilna; de Villiers, Melgardt M

    2008-08-01

    Two sets of copolymers comprising of styrene and either methyl or ethyl methacrylate as comonomer were conveniently synthesized by microemulsion copolymerization. The purified materials were characterized by GPC-MALLS and were shown to form artificial nanolatexes in THF. ATR-FTIR analysis revealed differences in copolymer composition and based on the copolymer properties, a selection of copolymers was chosen to cast drug-loaded, microporous films that exhibit microencapsulation of drug agglomerates. The contact angles of the copolymers suggested potential applications in medical devices to prevent the formation of bacterial biofilms that commonly result in infections. Additionally, the different copolymeric films showed two phases of drug release characterized by a rapid initial drug release followed by a zero-order phase. Depending on the application, one could select the copolymer films that best suited the application i.e. for short-term drug release applications such as urinary catheters or long-term applications such as artificial implants.

  4. Synthesis and Characterization of Amphiphilic Graft Copolymers of Poly (1,3dioxolane) Macromonomers with Styrene and Methyl Methacrylate

    Science.gov (United States)

    Bendaikha, H.; Clisson, G.; Khoukh, A.; François, J.; Kada, S. Ould; Krallafa, A.

    2008-08-01

    Methacrylate-terminated Poly (1,3dioxolane) (PDXL) macromonomers were synthesized by cationic ring-opening polymerization in the presence of 2-hydroxypropyl methacrylate (2-HPMA) as transfer agent. Molecular weights and polydispersity index of the PDXL macromonomers were evaluated by size exclusion chromatography (SEC) and 1H-NMR. Copolymerizations of PDXL macromonomers with styrene (St) and methyl methacrylate (MMA) were carried out using various feed molar ratios. Monomer reactivity ratios between the macromonomers and the comonomers were estimated from the copolymerization results. Glass transition temperatures of the copolymers were found to decrease with an increase in the amount of PDXL in the copolymers.

  5. Iron-Mediated ICAR ATRP of Styrene and Methyl Methacrylate in the Absence of Thermal Radical Initiator.

    Science.gov (United States)

    Zhang, Lifen; Miao, Jie; Cheng, Zhenping; Zhu, Xiulin

    2010-02-02

    Initiators for continuous activator regeneration in atom transfer radical polymerization (ICAR ATRP) is a new technique for conducting ATRP. ICAR ATRP has many strong advantages over normal ATRP, such as forming the reductive transition metal species in situ using oxidatively stable transition metal species and a lower amount of metal catalyst in comparison with the normal ATRP system. In this work, the iron-mediated ICAR ATRP of styrene and methyl methacrylate are reported for the first time using oxidatively stable FeCl(3)  · 6H(2) O as the catalyst in the absence of any thermal radical initiator. The kinetics of the polymerizations and effect of different polymerization conditions are studied. It is found that the polymerization of styrene can be conducted well even if the amount of iron(III) is as low as 50 ppm. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Free radical (co)polymerization of methyl methacrylate and styrene in room temperature ionic liquids

    Science.gov (United States)

    Zhang, Hongwei

    Conventional free radical polymerizations were carried out in a variety of room temperature ionic liquids (RTILs). Generally, methyl methacrylate (MMA) and styrene (St) were used as typical monomers to compare the polymerization behavior both in RTILs and in common volatile organic compound solvents (VOCs). In most cases, it was observed that both yields and molecular weights are enhanced in the RTIL. While we believe the "diffusion-controlled termination" mechanism makes the termination of the radical propagating chains difficult due to the highly viscous nature of RTIL, other researchers have suggested that the rapid polymerization rates are due to the high polarity of these reaction media. By employing more than a dozen RTILs with a wide range of anions and cations, we attempted to correlate the viscosity and polarity of the RTILs with the molecular weights and polymerization rates. This correlation was not successful, suggesting that other parameters may also play a role in affecting the polymerization behavior. Other kinds of polymerizations have also been attempted including nitroxide-mediated living radical polymerizations of St and MMA in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6), and redox initiation system initiated polymerization of MMA through redox pair formed by cation of trihexyl-tetradecyl-phosphonium bis(2,4,4-trimethylpentyl) phosphinate ([H3TDP] [(PM3) 2P]) and BPO. The formation of PSt-b-PMMA by sequential monomer addition through the standard free radical polymerization mechanism, using BPO as initiator, can be realized in [BMIM]PF6 due to the insolubility of polymerized first block---PSt in [BMIM]PF6. The macroradicals wrapped inside the chain coils have prolonged lifetimes because of the diminished termination, which allow some of these radicals to initiate polymerization of MMA at room temperature to form diblock copolymer. Solvents effects on reactivity ratios for free radical statistical copolymerization have been

  7. Wood-polymer composite: physical and mechanical properties of some wood species impregnated with styrene and methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Denise Ortigosa Stolf

    2004-12-01

    Full Text Available This study aimed to demonstrate the feasibility of obtaining wood-polymer composites (WPC displaying a performance superior to that of untreated wood from reforested genera. To this end, wood samples of Pine (Pinus caribaea and Eucalyptus (Eucalyptus grandis, whose density is compatible with this process, were impregnated with the polymeric monomers styrene and methyl methacrylate, using benzoyl peroxide to initiate the polymerization process forming free radicals. The vacuum-pressure method was used to impregnate the samples with monomer-initiator solution. The results indicated a significant improvement of all the properties investigated, including dimensional stability, for the Pine-WPC, while Eucalyptus-WPC, owing to the wood's low permeability, showed only increased values of hardness parallel and perpendicular to grain.

  8. A silicone rubber based composites using n-octadecane/poly (styrene-methyl methacrylate) microcapsules as energy storage particle

    Science.gov (United States)

    Wu, W. L.; Chen, Z.

    A phase-change energy-storage material, silicone rubber (SR) coated n-octadecane/poly (styrene-methyl methacrylate) (SR/OD/P(St-MMA)) microcapsule composites, was prepared by mixing SR and OD/P(St-MMA) microcapsules. The microcapsule content and silicone rubber coated method were investigated. The morphology and thermal properties of the composites were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and heat storage properties. The results showed that the thermal and mechanical properties of SR/OD/P(St-MMA) composites were excellent when the microcapsules were coated with room temperature vulcanized silicone rubber (RTVSR), of which content was 2 phr (per hundred rubber). The enthalpy value of the composites was 67.6 J g-1 and the composites were found to have good energy storage function.

  9. Expanded corn starch as a versatile material in atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate.

    Science.gov (United States)

    Bansal, Ankushi; Kumar, Arvind; Latha, Patnam Padma; Ray, Siddharth Sankar; Chatterjee, Alok Kumar

    2015-10-05

    Polymerization of styrene (St) and methyl methacrylate (MMA) was performed by surface initiated (SI) and activator generated by electron transfer (AGET) systems of atom transfer radical polymerization (ATRP) using renewable expanded corn starch (ECS) as a support. This prepared ECS is found to have V type crystallinity with 50 m(2)g(-1) surface area (<1m(2)g(-1) for corn starch (CS)) and average pore volume of 0.43 cm(3)g(-1) (<0.1cm(3)g(-1) for CS). In SI-ATRP, hydroxyl groups on ECS were converted into macro-initiator by replacing with 2-bromoisobutyryl bromide (BIBB) with a 0.06 degree of substitution determined from NMR. In AGET-ATRP, CuBr2/ligand complex get adsorbed on ECS (Cu(II)/ECS=10 wt.%) to catalyze the polymerization. Synthesized PS/PMMA was characterized by SEM, FT-IR, (1)H NMR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Co-polymerization of methyl methacrylate and styrene via surfactant-free emulsion polymerization, as a potential material for photonic crystal application

    Science.gov (United States)

    Kassim, Syara; Zahari, Siti Balqis; Tahrin, Rabiatul Addawiyah Azwa; Harun, Noor Aniza

    2017-09-01

    Photonic crystals are being the great interest of researcher to studies due to a variety of potential application for the interaction of light including the solar cells, optical sensors and paints. In order to evaluate the fabrication of photonic crystals thin film, a free-emulsifier emulsion copolymerization of styrene and methyl methacrylate was carried out. By using the self -assembly approach, this method offers the opportunity to produce crystalline polymer sphere in more ease operation, low cost and environmental friendly. The influences of the mixing ratio of monomer and amount of initiators were studied. In advance, the presence of styrene as co-monomer had improved the thermal degradation of polymer methyl methacrylate. While in changing the mixing ratio of styrene and methyl methacrylate resulted in particle size of the sphere. The size of polymer particles slightly increased on increasing volume of styrene monomer ratio. This occurred because the properties of styrene in water where it sparingly soluble and lead to coagulation of particles. This simple, yet effective method for preparing functional complex 3D structures has the potential to be used generically to fabricate a variety of functional porous 3D structures that could find application not only in new or improved photonic crystal (PC) devices but also in areas such as catalysis, solar cell, separation, fuel cells technology, microelectronics and optoelectronics.

  11. Synthesis and characterization of poly(styrene-co-methyl methacrylate); Sintese e caracterizacao do poli(estireno-co-metacrilato de metila)

    Energy Technology Data Exchange (ETDEWEB)

    Augustinho, Tiago R.; Abarca, Silvia A.C.; Machado, Ricardo A.F. [Departamento de Engenharia Quimica e Alimentos - Universidade Federal de Santa Catarina - UFSC, Florianopolis, SC (Brazil)

    2011-07-01

    Polystyrene (PS) is nowadays commonly used due its advantages over competitors. PS presents a lower cost when compared with Acrylonitrile Butadiene Styrene (ABS) and with Polyethylene Tere-phthalate (PET), and can be easier processed than polypropylene (PP). At expandable form (EPS), can be used as projective equipment, thermal insulation, floating boards, refrigerators, isothermal, and low cost applications such as packaging and disposable material. Searching for more resistant materials and with a low cost, researches with copolymers materials are being developed. In this study, copolymerization reactions were carried out by suspension polymerization using monomers styrene and methyl methacrylate (MMA) with styrene. Styrene was in the highest percentage in relation to the MMA. The MMA was selected because is a monomer that presents a higher resistance than PS. The copolymerization was confirmed by performing infrared spectroscopy (IR), nuclear magnetic resonance of hydrogen (RMN{sup 1}H), differential scanning calorimetry (DSC) and thermogravimetry (TGA). (author)

  12. A silicone rubber based composites using n-octadecane/poly (styrene-methyl methacrylate microcapsules as energy storage particle

    Directory of Open Access Journals (Sweden)

    W.L. Wu

    Full Text Available A phase-change energy-storage material, silicone rubber (SR coated n-octadecane/poly (styrene-methyl methacrylate (SR/OD/P(St-MMA microcapsule composites, was prepared by mixing SR and OD/P(St-MMA microcapsules. The microcapsule content and silicone rubber coated method were investigated. The morphology and thermal properties of the composites were characterized by scanning electron microscopy (SEM, thermogravimetric analysis (TG, differential scanning calorimetry (DSC and heat storage properties. The results showed that the thermal and mechanical properties of SR/OD/P(St-MMA composites were excellent when the microcapsules were coated with room temperature vulcanized silicone rubber (RTVSR, of which content was 2 phr (per hundred rubber. The enthalpy value of the composites was 67.6 J g−1 and the composites were found to have good energy storage function. Keywords: n-Octadecane, Silicone rubber, Microcapsule, Energy-storage, Composites

  13. Nanostructured Double Hydrophobic Poly(Styrene-b-Methyl Methacrylate) Block Copolymer Membrane Manufactured Via Phase Inversion Technique

    KAUST Repository

    Karunakaran, Madhavan

    2016-03-11

    In this paper, we demonstrate the formation of nanostructured double hydrophobic poly(styrene-b-methyl methacrylate) (PS-b-PMMA) block copolymer membranes via state-of-the-art phase inversion technique. The nanostructured membrane morphologies are tuned by different solvent and block copolymer compositions. The membrane morphology has been investigated using FESEM, AFM and TEM. Morphological investigation shows the formation of both cylindrical and lamellar structures on the top surface of the block copolymer membranes. The PS-b-PMMA having an equal block length (PS160K-b-PMMA160K) exhibits both cylindrical and lamellar structures on the top layer of the asymmetric membrane. All membranes fabricated from PS160K-b-PMMA160K shows an incomplete pore formation in both cylindrical and lamellar morphologies during the phase inversion process. However, PS-b-PMMA (PS135K-b-PMMA19.5K) block copolymer having a short PMMA block allowed us to produce open pore structures with ordered hexagonal cylindrical pores during the phase inversion process. The resulting PS-b-PMMA nanostructured block copolymer membranes have pure water flux from 105-820 l/m2.h.bar and 95% retention of PEG50K

  14. Kinetics and thermodynamics of H. transfer from (eta5-C5R5)Cr(CO)3H (R = Ph, Me, H) to methyl methacrylate and styrene.

    Science.gov (United States)

    Tang, Lihao; Papish, Elizabeth T; Abramo, Graham P; Norton, Jack R; Baik, Mu-Hyun; Friesner, Richard A; Rappé, Anthony

    2003-08-20

    The rates of H/D exchange have been measured between (a) the activated olefins methyl methacrylate-d(5) and styrene-d(8), and (b) the Cr hydrides (eta(5)-C(5)Ph(5))Cr(CO)(3)H (2a), (eta(5)-C(5)Me(5))Cr(CO)(3)H (2b), and (eta(5)-C(5)H(5))Cr(CO)(3)H (2c). With a large excess of the deuterated olefin the first exchange goes to completion before subsequent exchanges begin, at a rate first order in olefin and in hydride. (Hydrogenation is insignificant except with styrene and CpCr(CO)(3)H; in most cases, the radicals arising from the first H. transfer are too hindered to abstract another H. .) Statistical corrections give the rate constants k(reinit) for H. transfer to the olefin from the hydride. With MMA, k(reinit) decreases substantially as the steric bulk of the hydride increases; with styrene, the steric bulk of the hydride has little effect. At longer times, the reaction of MMA or styrene with 2a gives the corresponding metalloradical 1a as termination depletes the concentration of the methyl isobutyryl radical 3 or the alpha-methylbenzyl radical 4; computer simulation of [1a] as f(t) gives an estimate of k(tr), the rate constant for H. transfer from 3 or 4 back to Cr. These rate constants imply a DeltaG (50 degrees C) of +11 kcal/mol for H. transfer from 2a to MMA, and a DeltaG (50 degrees C) of +10 kcal/mol for H. transfer from 2a to styrene. The CH(3)CN pK(a) of 2a, 11.7, implies a BDE for its Cr-H bond of 59.6 kcal/mol, and DFT calculations give 58.2 kcal/mol for the Cr-H bond in 2c. In combination the kinetic DeltaG values, the experimental BDE for 2a, and the calculated DeltaS values for H. transfer imply a C-H BDE of 45.6 kcal/mol for the methyl isobutyryl radical 3 (close to the DFT-calculated 49.5 kcal/mol), and a C-H BDE of 47.9 kcal/mol for the alpha-methylbenzyl radical 4 (close to the DFT-calculated 49.9 kcal/mol). A solvent cage model suggests 46.1 kcal/mol as the C-H BDE for the chain-carrying radical in MMA polymerization.

  15. [Bonding of MMA-BPO. DMPT resin to bovine tooth coated by poly (methyl methacrylate-co-p-styrene sulfonic acid)].

    Science.gov (United States)

    Kinoshita, T; Yamamoto, T; Nagata, K; Nakabayashi, N

    1989-11-01

    The objective of this study was to prepare a new type water-soluble bonding agent, methyl methacrylate (MMA)-p-styrene sulfonic acid copolymer (MS), and to investigate the effect of MS on bonding between resins and tooth substrates. MS is cross-linked with Ca2+ released from ground enamel and dentin and could be immobilized on their surface. A sample was prepared by bonding an acrylic rod with a BPO-amine catalyzed self-curing resin to ground enamel and dentin coated with an aqueous mixture of FeCl3 and 10 wt% MS. After immersion in water for 24 hrs, the tensile bond strength was measured. The bond strength to both enamel and dentin was only 2 MPa and adhesive failure occurred at the interface between cured MS and self-curing resin. This suggested that cured MS could adversely effect the polymerization of self-curing resins. A second treatment of cured MS on the tooth surface with metallic cations was carried out to minimize the amount of free sulfonic acids in the MS disturbing radical formation in self-curing resin. The second treatment improved the bond strength to 6 MPa.

  16. Second-order nonlinear optical properties of composite material of an azo-chromophore with a tricyanodiphenyl acceptor in a poly(styrene-co-methyl methacrylate) matrix

    Science.gov (United States)

    Shelkovnikov, Vladimir; Selivanova, Galina; Lyubas, Gleb; Korotaev, Sergey; Shundrina, Inna; Tretyakov, Evgeny; Zueva, Ekaterina; Plekhanov, Alexander; Mikerin, Sergey; Simanchuk, Andrey

    2017-07-01

    The composite material of new synthesized 4-((4-(N,N-n-dibutylamino) phenyl)diazenyl)-biphenyl-2,3,4-tricarbonitrile (GAS dye) in commercial poly(styrene-co-methyl methacrylate) (PSMMA) was prepared, poled and its nonlinear optical properties compared with DR1 dye were studied. High thermal stability of the composite material was revealed, and the maximal concentration of the chromophore was found to reach ∼20 wt%. The dipole moment, polarizability tensor, and first hyperpolarizability tensor of the investigated dyes were calculated by within the framework of the coupled perturbed density functional theory. A nanosecond second-harmonic generation Maker fringes technique was used which is capable of providing the magnitude of the second-order nonlinearity of optical materials at a wavelength of 1064 nm. For the tested GAS-PSMMA composite material, maximal coefficient d33 was found to be 50 pm/V. The nonlinear optical response, which was achieved here, shows possible usefulness of the GAS dye as a component for molecular design of nonlinear-optical materials with advanced characteristics.

  17. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  18. Methyl Methacrylate and Alpha-Methyl Styrene: New Strategy for Synthesis of Bloc Copolymers for Use in Potential Biomedical Applications Generated by an Ecologic Catalyst Called Maghnite (Algerian MMT

    Directory of Open Access Journals (Sweden)

    Moulkheir Ayat

    2016-10-01

    Full Text Available A new model for synthesis of the plastics, block copolymers were prepared from methyl methacrylate (MMA and alpha-methyl styrene (α-MS by cationic copolymerization in the presence of a new and efficient catalyst of “Maghnite-Na” at 0 °C in bulk. In this paper, the copolymerization of α-MS and MMA was induced in heterogeneous phase catalyzed by Maghnite-Na was investigated under suitable conditions. The “Maghnite-Na” is a montmorillonite sheet silicate clay, with exchanged sodium cations to produce Na-Montmorillonite (Na+-MMT obtained from Tlemcen, Algeria, was investigated to remove heavy metal ion from wastewater as an efficient catalyst for cationic polymerization of many vinylic and heterocyclic monomers. The synthesized copolymer were characterized by Nuclear Magnetic Resonance (NMR-1H, NMR-13C, FT-IR spectroscopy, Differential Scanning Calorimetry (DSC, and Gel Permeation Chromatography (GPC to elucidate structural characteristics and thermal properties of the resulting copolymers. The structure compositions of “MMT”, “H+-MMT” and “Na+-MMT” have been developed. The effect of the MMA/α-MS molar ratio on the rate of copolymerization, the amount of catalyst, temperature and time of copolymerization on yield of copolymers was studied. The yield of copolymerization depends on the amount of Na+-MMT used and the reaction time. The kinetic studies indicated that the polymerization rate is first order with respect to monomer concentration. A possible mechanism of this cationic polymerization is discussed based on the results of the 1H-NMR Spectroscopic analysis of these model reactions. A cationic mechanism for the reaction studies showed that monomer was inserted into the growing chains. Copyright © 2016 BCREC GROUP. All rights reserved Received: 2nd May 2015; Revised: 24th February 2016; Accepted: 15th March 2016 How to Cite: Ayat, M., Belbachir, M., Rahmouni, A. (2016. Methyl Methacrylate and Alpha-Methyl Styrene: New

  19. 76 FR 69659 - Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether Methacrylate Graft...

    Science.gov (United States)

    2011-11-09

    ... AGENCY 40 CFR Part 180 Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether... residues of methacrylic acid-methyl methacrylate- polyethylene glycol monomethyl ether methacrylate graft... permissible level for residues of methacrylic acid-methyl methacrylate-polyethylene glycol monomethyl ether...

  20. Effects of surfactants on the properties of mortar containing styrene/methacrylate superplasticizer.

    Science.gov (United States)

    Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA.

  1. Effects of Surfactants on the Properties of Mortar Containing Styrene/Methacrylate Superplasticizer

    Science.gov (United States)

    Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA. PMID:24955426

  2. Effects of Surfactants on the Properties of Mortar Containing Styrene/Methacrylate Superplasticizer

    Directory of Open Access Journals (Sweden)

    El-Sayed Negim

    2014-01-01

    Full Text Available The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS and either 1.5% polyvinyl alcohol (PVA or 1.5% polyoxyethylene glycol monomethyl ether (POE. Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA, styrene/methyl methacrylate (St/MMA, and styrene/glycidyl methacrylate (St/GMA, in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA.

  3. Facile synthesis of thick films of poly(methyl methacrylate), poly(styrene), and poly(vinyl pyridine) from Au surfaces.

    Science.gov (United States)

    Saha, Sampa; Bruening, Merlin L; Baker, Gregory L

    2011-08-01

    Atom transfer radical polymerization (ATRP) is commonly used to grow polymer brushes from Au surfaces, but the resulting film thicknesses are usually significantly less than with ATRP from SiO(2) substrates. On Au, growth of poly(methyl methacrylate) (PMMA) blocks from poly(tert-butyl acrylate) brushes occurs more rapidly than growth of PMMA from initiator monolayers, suggesting that the disparity between growth rates from Au and SiO(2) stems from the Au surface. Radical quenching by electron transfer from Au is probably not the termination mechanism because polymerization from thin, cross-linked initiators gives film thicknesses that are essentially the same as the thicknesses of films grown from SiO(2) under the same polymerization conditions. However, this result is consistent with termination through desorption of thiols from noncross-linked films, and reaction of these thiols with growing polymer chains. The enhanced stability of cross-linked initiators allows ATRP at temperatures up to ∼100 °C and enables the growth of thick films of PMMA (350 nm), polystyrene (120 nm) and poly(vinyl pyridine) (200 nm) from Au surfaces in 1 h. At temperatures >100 °C, the polymer brush layers delaminate as large area films.

  4. Effect of modified graphene and microwave irradiation on the mechanical and thermal properties of poly(styrene-co-methyl methacrylate)/graphene nanocomposites

    KAUST Repository

    Zubair, Mukarram

    2014-08-04

    The effect of modified graphene (MG) and microwave irradiation on the interaction between graphene (G) and poly(styrene-co-methyl meth acrylate) [P(S-co-MMA)] polymer matrix has been studied in this article. Modification of graphene was performed using nitric acid. P(S-co-MMA) polymer was blended via melt blending with pristine and MG. The resultant nanocomposites were irradiated under microwave at three different time intervals (5, 10, and 20 min). Compared to pristine graphene, MG showed improved interaction with P(S-co-MMA) polymer (P) after melt mixing and microwave irradiation. The mechanism of improved dispersion and interaction of modified graphene with P(S-co-MMA) polymer matrix during melt mixing and microwave irradiation is due to the presence of oxygen functionalities on the surface of MG as confirmed from Fourier transform infrared spectroscopy. The formation of defects on modified graphene and free radicals on P(S-co-MMA) polymer chains after irradiation as explained by Raman spectroscopy and X-Ray diffraction studies. The nanocomposites with 0.1 wt% G and MG have shown a 26% and 38% increase in storage modulus. After irradiation (10 min), the storage modulus further improved to 11.9% and 27.6% of nanocomposites. The glass transition temperature of nanocomposites also improved considerably after melt mixing and microwave irradiation (but only for polymer MG nanocomposite). However, at higher irradiation time (20 min), degradation of polymer nanocomposites occurred. State of creation of crosslink network after 10 min of irradiation and degradation after 20 min of irradiation of nanocomposites was confirmed from SEM studies. Copyright © 2014 John Wiley & Sons, Ltd.

  5. 76 FR 77709 - Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption

    Science.gov (United States)

    2011-12-14

    ... AGENCY 40 CFR Part 180 Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption AGENCY...-propenoate and ethenylbenzene (CAS Reg. No. 25036-16-2); also known as butyl acrylate-methacrylic acid...-risk polymers are described in 40 CFR 723.250(d). Butyl acrylate-methacrylic acid-styrene polymer...

  6. Well-defined iron complexes as efficient catalysts for "green" atom-transfer radical polymerization of styrene, methyl methacrylate, and butyl acrylate with low catalyst loadings and catalyst recycling.

    Science.gov (United States)

    Nakanishi, So-Ichiro; Kawamura, Mitsunobu; Kai, Hidetomo; Jin, Ren-Hua; Sunada, Yusuke; Nagashima, Hideo

    2014-05-05

    Environmentally friendly iron(II) catalysts for atom-transfer radical polymerization (ATRP) were synthesized by careful selection of the nitrogen substituents of N,N,N-trialkylated-1,4,9-triazacyclononane (R3 TACN) ligands. Two types of structures were confirmed by crystallography: "[(R3 TACN)FeX2 ]" complexes with relatively small R groups have ionic and dinuclear structures including a [(R3 TACN)Fe(μ-X)3 Fe(R3 TACN)](+) moiety, whereas those with more bulky R groups are neutral and mononuclear. The twelve [(R3 TACN)FeX2 ]n complexes that were synthesized were subjected to bulk ATRP of styrene, methyl methacrylate (MMA), and butyl acrylate (BA). Among the iron complexes examined, [{(cyclopentyl)3 TACN}FeBr2 ] (4 b) was the best catalyst for the well-controlled ATRP of all three monomers. This species allowed easy catalyst separation and recycling, a lowering of the catalyst concentration needed for the reaction, and the absence of additional reducing reagents. The lowest catalyst loading was accomplished in the ATRP of MMA with 4 b (59 ppm of Fe based on the charged monomer). Catalyst recycling in ATRP with low catalyst loadings was also successful. The ATRP of styrene with 4 b (117 ppm Fe atom) was followed by precipitation from methanol to give polystyrene that contained residual iron below the calculated detection limit (0.28 ppm). Mechanisms that involve equilibria between the multinuclear and mononuclear species were also examined. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... reporting. (1) The chemical substance identified generically as modified methyl methacrylate, 2-hydroxyethyl... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified methyl methacrylate, 2... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL...

  8. DEGRADATION OF POLY(METHYL METHACRYLATE) IN SOLUTION

    Science.gov (United States)

    The rate of degradation of poly(methyl methacrylate) (PMMA) to methyl methacrylate (MMA) was investigated in the liquid phase with toluene as the solvent. The degradation experiments were carried out in a tubular flow reactor at 1000 psig (6.8 MPa) and at four different temperat...

  9. [Electrokinetic chromatographic properties of amphiphilic copolymer poly (styrene-co-methacrylic acid) self-assembled micelle pseudostationary phase].

    Science.gov (United States)

    Ma, Xinyu; Ni, Xinjiong; Lu, Jie; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun

    2015-04-01

    The amphiphilic copolymer poly (styrene-co-methacrylic acid) (P (St-co-MAA)) with molar ratios of 6:4 and 7:3 self-assembled to form micelles. The polymeric micelles were used as pseudostationary phase (PSP) in micellar electrokinetic chromatography ( MEKC). Their physicochemical properties and MEKC performance were investigated as well in the present work. The critical micelle concentration ( CMC) , polarity, surface charge density and hydrodynamic diameter were used to characterize the solution physicochemical properties, while the methylene group selectivity was evaluated with n-alkylphenone homologous series. The time window and linear solvation energy relationship (LSER) analysis were used to characterize the MEKC retention behavior and the selectivity. All of these were compared with poly (methyl methacrylate-co-methacrylic acid) (P (MMA-co-MAA)) with the molar ratio of 7:3 and sodium dodecyl sulfate (SDS) micellar systems. The results showed that P ( St-co-MAA) system had the minimum CMC, the widest time window and the best methylene group selectivity. LSER analysis results showed that the hydrophobic effect was the most important interaction between solutes and PSPs, and the hydrogen-bonding acidity was the second significant factor on selectivity and MEKC retention behavior. P (St-co-MAA) system, especially with the molar ratio of 7 :3, had the highest effective parameter in LSER and showed a high separation selectivity of PSP.

  10. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Science.gov (United States)

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  11. Raft approach to the copolymerisation of methyl methacrylate based ...

    African Journals Online (AJOL)

    Raft approach to the copolymerisation of methyl methacrylate based polymeric micelles. ... (GPC), nuclear magnetic resonance spectroscopy(NMR), fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and dynamic light scattering (DLS) analyses. The results ...

  12. -Styrene)

    KAUST Repository

    Sutisna, Burhannudin

    2017-10-04

    Membranes are prepared by self-assembly and casting of 5 and 13 wt% poly(styrene-b-butadiene-b-styrene) (PS-b-PB-b-PS) copolymers solutions in different solvents, followed by immersion in water or ethanol. By controlling the solution-casting gap, porous films of 50 and 1 µm thickness are obtained. A gradient of increasing pore size is generated as the distance from the surface increased. An ordered porous surface layer with continuous nanochannels can be observed. Its formation is investigated, by using time-resolved grazing incident small angle X-ray scattering, electron microscopy, and rheology, suggesting a strong effect of the air-solution interface on the morphology formation. The thin PS-b-PB-b-PS ordered films are modified, by promoting the photolytic addition of thioglycolic acid to the polybutadiene groups, adding chemical functionality and specific transport characteristics on the preformed nanochannels, without sacrificing the membrane morphology. Photomodification increases fivefold the water permeance to around 2 L m(-2) h(-1) bar(-1) , compared to that of the unmodified one. A rejection of 74% is measured for methyl orange in water. The membranes fabrication with tailored nanochannels and chemical functionalities can be demonstrated using relatively lower cost block copolymers. Casting on porous polyacrylonitrile supports makes the membranes even more scalable and competitive in large scale.

  13. Thin Film Behavior of Poly(methyl methacrylates). 9. Crystallization of Isotactic Poly(methyl methacrylate) in Mixed Monolayers

    NARCIS (Netherlands)

    Brinkhuis, R.H.G.; Schouten, A.J.

    1992-01-01

    The crystallization behavior of isotactic poly(methyl methacrylate) (i-PMMA) in monolayers of mixtures with a noncrystallizable component was investigated. The monolayer crystallization process in mixtures with high molecular weight condensed type polymers such as syndiotactic poly(methyl

  14. The Synthesis and Characterization of Poly(methyl methacrylate-tourmaline acrylate)

    National Research Council Canada - National Science Library

    Hu, Yingmo; Chen, Xubo; Li, Yunhua

    2016-01-01

    ... and then copolymerization with methyl methacrylate to get poly(methyl methacrylate-tourmaline acrylate). The synthetic processes were optimized, and the structures of the as-prepared samples were characterized by IR, SEM, and X-ray fluorescence analysis...

  15. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Guo Baochun [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)], E-mail: psbcguo@scut.edu.cn; Lei Yanda; Chen Feng; Liu Xiaoliang; Du Mingliang; Jia Demin [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2008-12-30

    Methacrylic acid (MAA) was used to improve the performance of styrene-butadiene rubber (SBR)/halloysite nanotubes (HNTs) nanocomposites by direct blending. The detailed interaction mechanisms of MAA and the in situ formed zinc methacrylate (ZDMA) were revealed by X-ray diffraction (XRD), surface area and porosity analysis, X-ray photoelectron spectroscopy (XPS) together with crosslink density determination. The strong interfacial bonding between HNTs and rubber matrix is resulted through ZDMA and MAA intermediated linkages. ZDMA connects SBR and HNTs via grafting/complexation mechanism. MAA bonds SBR and HNTs through grafting/hydrogen bonding mechanism. Significantly improved dispersion of HNTs in virtue of the interactions between HNTs and MAA or ZDMA was achieved. Effects of MAA content on the vulcanization behavior, morphology and mechanical properties of the nanocomposites were investigated. Promising mechanical properties of MAA modified SBR/HNTs nanocomposites were obtained. The changes in vulcanization behavior, mechanical properties and morphology were correlated with the interactions between HNTs and MAA or ZDMA and the largely improved dispersion of HNTs.

  16. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer, so...

  17. 21 CFR 882.5030 - Methyl methacrylate for aneurysmorrhaphy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Methyl methacrylate for aneurysmorrhaphy. 882.5030 Section 882.5030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... reinforce intracranial aneurysms that are not amenable to conservative management, removal, or obliteration...

  18. Highly selective dry etching of polystyrene-poly(methyl methacrylate) block copolymer by gas pulsing carbon monoxide-based plasmas

    Science.gov (United States)

    Miyazoe, Hiroyuki; Jagtiani, Ashish V.; Tsai, Hsin-Yu; Engelmann, Sebastian U.; Joseph, Eric A.

    2017-05-01

    We propose a very selective PMMA removal method from poly(styrene-block-methyl methacrylate) (PS-b-PMMA) copolymer using gas pulsing cyclic etching. Flow ratio of hydrogen (H2) added to carbon monoxide (CO) plasma was periodically changed to control etch and deposition processes on PS. By controlling the process time of each etch and deposition step, full PMMA removal including etching of the neutral layer was demonstrated at 28 nm pitch, while PS thickness remained intact. This is more than 10 times higher etch selectivity than conventional continuous plasma etch processes using standard oxygen (O2), CO-H2 and CO-O2-based chemistries.

  19. Kinetics and mechanism of polymerization of methyl methacrylate ...

    Indian Academy of Sciences (India)

    Homopolymerization of methyl methacrylate (MMA) was carried out in the presence of triphenylstibonium 1,2,3,4-tetraphenyl-cyclopentadienylide as an initiator in dioxane at 65°C ± 0·1°C. The system follows non-ideal radical kinetics ( ∝ [M]1.4 [I]0.44) due to primary radical termination as well as degradative ...

  20. Kinetics and mechanism of polymerization of methyl methacrylate ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Homopolymerization of methyl methacrylate (MMA) was carried out in the presence of triphenylstibonium 1,2,3,4-tetraphenyl-cyclopentadienylide as an initiator in dioxane at 65°C ± 0⋅1°C. The system follows non-ideal radical kinetics (Rp ∝ [M]1⋅4 [I]0⋅44) due to primary radical termination as well as degradative ...

  1. Effect of methacrylic acid:methyl methacrylate monomer ratios on polymerization rates and properties of polymethyl methacrylates.

    Science.gov (United States)

    Chen, T; Kusy, R P

    1997-08-01

    Five binary formulations were prepared from methyl methacrylate (MMA) and methacrylic acid (MAA) monomers, and six ternary formulations were prepared from polysols of 30% wt polymethyl methacrylate (PMMA)/MMA and MAA. Using thermal analyses (DSC and TGA) the polymerization kinetics, condition of postcuring, relative amount of residual monomers, and glass transition temperature (Tg) were determined. From bar-shaped samples, 25 x 5 x 0.9 mm in dimensions, mechanical properties [flexural moduli (E) and maximum strengths (sigma)] were measured in three-point bending. Polymerization kinetics of binary formulations improved over pure PMMA (from 15 to 4 min) as a result of over a 60-fold increase in propagation-to-termination constants (Kp/Kt) of MAA/MMA. The further addition of PMMA increased the viscosity, slowed down termination, and, consequently, improved the polymerization kinetics twofold. These enhancements occurred without a substantive change in the Tg of the ternary system (ca. 107 degrees C) over pure PMMA (ca. 112 degrees C). Moreover, the Es of the four ternary formulations averaged 2.94 GPa, which was comparable with many values reported in the literature. In contrast the sigma s of these same formulations averaged 97 MPa, which was about 25% better than earlier investigations of pure acrylic. When a thermoplastic material is required for pultruding profiles that cure fast and have good thermal-mechanical properties, ternaries of PMMA/MMA/MAA should be considered.

  2. Solid Dye Lasers Based on 2-Hydroxypropyl Methacrylate and Methyl Methacrylate Copolymers

    Science.gov (United States)

    Fan, Rong-Wei; Li, Xiao-Hui; Yue, Sai-Sai; Jiang, Yu-Gang; Xia, Yuan-Qin; Chen, De-Ying

    2008-02-01

    Polymers are a kind of attractive hosts for laser dyes because of their superior optical homogeneity, and high transparency in pumping and lasing range. Copolymers usually have higher damage threshold and better photostability than mono-polymers. Solid dye samples based on copolymer of methyl methacrylate (MMA) with 2-hydroxypropyl methacrylate (HPMA) doped with 1-, 3-, 5-, 7-, 8-pentamethyl-2, 6-diethylpyrromethene-BF2 (PM567) are prepared. Spectra and lasing properties of the samples are studied. Compared to the samples based on monopolymer polymethyl methacrylate (PMMA), enhanced slope efficiency and photostability are obtained in the copolymers. The highest slope efficiency is 45.1%, and nearly one-fold increase of photostability is obtained. The longest useful lifetime of 4390 pumping pulses is presented with the pump energy as high as 183 mJ per pulse at repetition rate of 10 Hz. The results indicate that the laser performances of solid dye mediums can be greatly increased using copolymer of MMA with HPMA as host.

  3. Cobalt hexacyanoferrate-poly(methyl methacrylate) composite: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zanotto, Antonio, E-mail: zanotto.antonio@gmail.com [Dipartimento di Chimica Fisica ' F. Accascina' , Universita di Palermo, and INSTM UdR Palermo, Parco d' Orleans II, Viale delle Scienze pad. 17, Palermo 90128 (Italy); Matassa, Roberto [Centro Grandi Apparecchiature, UniNetLab, Universita di Palermo, Via Marini 14, Palermo 90128 (Italy); Saladino, Maria Luisa [Dipartimento di Chimica Fisica ' F. Accascina' , Universita di Palermo, and INSTM UdR Palermo, Parco d' Orleans II, Viale delle Scienze pad. 17, Palermo 90128 (Italy); Berrettoni, Mario; Giorgetti, Marco [Department of Physical and Inorganic Chemistry, University of Bologna and Unita di Ricerca INSTM di Bologna, Viale del Risorgimento 4, 40136 Bologna (Italy); Zamponi, Silvia [Dipartimento di Scienze Chimiche, Universita di Camerino Via S. Agostino 1, Camerino 62032 (Italy); Caponetti, Eugenio [Dipartimento di Chimica Fisica ' F. Accascina' , Universita di Palermo, and INSTM UdR Palermo, Parco d' Orleans II, Viale delle Scienze pad. 17, Palermo 90128 (Italy); Centro Grandi Apparecchiature, UniNetLab, Universita di Palermo, Via Marini 14, Palermo 90128 (Italy)

    2010-03-15

    Graphical abstract: The preparation of cobalt hexacyanoferrate nanoparticles-poly(methyl methacrylate) (CoHCF-PMMA) composites are described together with their characterization and thermochromic properties. CoHCF nanoparticles - investigated by dynamic light scattering - were prepared by optimizing solvent composition and temperature to obtain nanoparticles with a reduced degree of aggregation. The nanoparticles were embedded in a PMMA matrix to obtain a transparent coloured composite which was studied by transmission electron microscopy. The nanoparticle chromic features, enhanced by their reduced sizes, were investigated by UV-vis and FT-IR spectroscopy. - Abstract: The preparation of cobalt hexacyanoferrate nanoparticles-poly(methyl methacrylate) (CoHCF-PMMA) composites are described together with their characterization and thermochromic properties. CoHCF nanoparticles - investigated by dynamic light scattering - were prepared by optimizing solvent composition and temperature to obtain nanoparticles with a reduced degree of aggregation. The nanoparticles were embedded in a PMMA matrix to obtain a transparent coloured composite which was studied by transmission electron microscopy. The nanoparticle chromic features, enhanced by their reduced sizes, were investigated by UV-vis and FT-IR spectroscopy.

  4. Bonding metals to poly(methyl methacrylate) using aryldiazonium salts.

    Science.gov (United States)

    Alageel, Omar; Abdallah, Mohamed-Nur; Luo, Zhong Yuan; Del-Rio-Highsmith, Jaime; Cerruti, Marta; Tamimi, Faleh

    2015-02-01

    Many dental devices, such as partial dentures, combine acrylic and metallic parts that are bonded together. These devices often present catastrophic mechanical failures due to weak bonding between their acrylic and metallic components. The bonding between alloys and polymers (e.g. poly(methyl methacrylate), PMMA) usually is just a mechanical interlock, since they do not chemically bond spontaneously. The aim of this study was to develop a new method to make a strong chemical bond between alloys and polymers for dental prostheses based on diazonium chemistry. The method was based on two steps. In the first step (primer), aryldiazonium salts were grafted onto the metallic surfaces. The second step (adhesive) was optimized to achieve covalent binding between the grafted layer and PMMA. The chemical composition of the treated surfaces was analyzed with X-ray photoelectron spectroscopy (XPS), and the tensile or shear bonding strength between metals and poly(methyl methacrylate) was measured. XPS and contact angle measurements confirmed the presence of a polymer coating on the treated metallic surfaces. Mechanical tests showed a significant increase in bond strength between PMMA and treated titanium or stainless steel wire by 5.2 and 2.5 folds, respectively, compared to the untreated control group (p<0.05). Diazonium chemistry is an effective technique for achieving a strong chemical bond between alloys and PMMA, which can help improve the mechanical properties of dental devices. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Kinetics and products of gas-phase reactions of ozone with methyl methacrylate, methyl acrylate, and ethyl acrylate.

    Science.gov (United States)

    Bernard, F; Eyglunent, G; Daële, V; Mellouki, A

    2010-08-19

    The kinetics and products of the gas-phase reactions of ozone with methyl methacrylate, methyl acrylate, and ethyl acrylate have been investigated at 760 Torr total pressure of air and 294 +/- 2 K. The rate coefficients obtained (in cm(3) molecule(-1) s(-1) units) were as follows: k(methyl methacrylate) = (6.7 +/- 0.9) x 10(-18), k(methyl acrylate) = (0.95 +/- 0.07) x 10(-18), and k(ethyl acrylate) = (1.3 +/- 0.1) x 10(-18). In addition to formaldehyde being observed as a product of the three reactions, the other major reaction products were methyl pyruvate from reaction of ozone with methyl methacrylate, methyl glyoxylate from reaction of ozone with methyl acrylate, and ethyl glyoxylate from reaction of ozone with ethyl acrylate. Possible reaction mechanisms leading to the observed products are presented and discussed.

  6. Poly(methyl methacrylate) particulate carriers in drug delivery.

    Science.gov (United States)

    Bettencourt, Ana; Almeida, António J

    2012-01-01

    Poly(methyl methacrylate) (PMMA) is one of the most widely explored biomedical materials because of its biocompatibility, and recent publications have shown an increasing interest in its applications as a drug carrier. PMMA-based particulate carriers (PMMA(P)) can be prepared either by polymerization methods or from pre-formed polymer-based techniques. Potential biomedical application of these particles includes their use as adjuvant for vaccines and carrier of many drugs as antibiotics and antioxidants via different routes of administration. Release of drugs from PMMA(P) occurs typically in a biphasic way with an incomplete drug release. To improve release profiles, recent strategies are focusing on increasing polymer hydrophilicity by synthesizing functionalized PMMA microspheres or by formulating PMMA composites with hydrophilic polymers. This review examines the current status of preparation techniques, drug release kinetics, biomedical applications and toxicity of these nano/micro PMMA-based particulate carriers.

  7. Admicellar polymerization of methyl methacrylate on aluminum pigments.

    Science.gov (United States)

    Karlsson, Philip M; Esbjörnsson, Neo B; Holmberg, Krister

    2009-09-15

    Micrometer-sized aluminum particles used as pigments in silver inks and coatings are reactive in water-based formulations. This leads to hydrogen gas evolution in the paint containers and loss of the silvery appearance of the coating. The protection of aluminum pigments from water is called inhibition and it was shown in earlier work that anionic surfactants of the phosphate ester type are effective as inhibitors, forming a protective bilayer on the aluminum pigment surface. In this work, the protection of aluminum pigments has been extended by means of an encapsulating polymer layer. A poly(methyl methacrylate) (PMMA) coating was applied on aluminum pigment particles by admicellar polymerization of methyl methacrylate. A surfactant is first adsorbed on the aluminum pigment surface and a hydrophobic monomer and initiator is subsequently solubilized inside the hydrophobic domain of the surfactant aggregates that cover the pigment. Diffuse Reflective Infrared Fourier Transform (DRIFT) spectrometry showed that PMMA was formed on the pigment particles and the amount of organic material was up to 24% of the particle weight, as measured by Thermo Gravimetric Analysis (TGA). A hydrophobic initiator, such as benzoyl peroxide, gave good results but the hydrophilic sodium persulfate resulted in poor yield of encapsulating polymer. Sodium dodecyl sulfate, which by itself is not an efficient inhibitor, was used as surfactant. Good results were obtained in terms of protection from an alkaline solution, indicating that the polymer coating per se is an efficient inhibitor. The highest amount of polymer formed on the pigment surface was obtained when the surfactant concentration was around the CMC.

  8. Conventional and atom transfer radical copolymerization of phenoxycarbonylmethyl methacrylate-styrene and thermal behavior of their copolymers

    Directory of Open Access Journals (Sweden)

    2007-08-01

    Full Text Available The atom transfer radical polymerization (ATRP of phenoxycarbonylmethyl methacrylate (PCMMA with styrene (St were performed in bulk at 110°C in the presence of ethyl 2-bromoacetate, cuprous(Ibromide (CuBr, and N,N,N’,N”,N”-pentamethyldiethyltriamine. Also, a series conventional free-radical polymerization (CFRP of PCMMA and styrene were carried out in the presence of 2,2’-azobisisobutyronitrile in 1,4-dioxane solvent at 60°C. The structure of homo and copolymers was characterized by IR, 1H and 13C-NMR techniques. The composition of the copolymers was calculated by 1H-NMR spectra. The average-molecular weight of the copolymers were investigated by Gel Permeation Chromatography (GPC. For copolymerization system, their monomer reactivity ratios were obtained by using both Kelen-Tüdõs and Fineman-Ross equations. Thermal analysis measurements of homo- and copolymers prepared CFRP and ATRP methods were measured by TGA-50 and DSC-50. Blends of poly(PCMMA and poly(St obtained via ATRP method have been prepared by casting films from dichlorormethane solution. The blends were characterized by differential scanning calorimetry. The initial decomposition temperatures of the resulting copolymers increased with increasing mole fraction of St.

  9. Wireless Connection between Guide Wires and Bone Cement: Extravasated Methyl Methacrylate Mimicking a Retained Guide Wire

    Directory of Open Access Journals (Sweden)

    Kevin C. Ching

    2013-01-01

    Full Text Available We present the case of a 56-year-old double lung transplant recipient with chest pain who underwent an attempted endovascular retrieval of what was described as a retained guide wire in the azygos vein. After successfully grasping the tip, the object further migrated to the right pulmonary artery complicating the retrieval. It was realized that the “wire” was extravasated methyl methacrylate from a recent percutaneous kyphoplasty. This is believed to be the first report of attempted endovascular retrieval of extravasated methyl methacrylate in the azygos system. We include the details of this case and briefly review the current literature on the management of extravasated methyl methacrylate from vertebral augmentation procedures. Extravasated methyl methacrylate in the venous system is a common finding after vertebral augmentation procedures and any radiopaque stripe arising from a cemented vertebral body should be first described as probable cement leakage.

  10. Synthesis and photophysical properties of a poly(methyl methacrylate) polymer with carbazolyl side groups

    National Research Council Canada - National Science Library

    Tatiana D. Martins; Richard G. Weiss; Teresa D. Z. Atvars

    2008-01-01

    The photophysical properties of solutions and films of poly(methyl methacrylate) (PMMA) containing 1.6 mol % of randomly distributed pendant ethyl carbazolyl groups have been studied under steady-state and time-resolved conditions...

  11. Manufacture of poly(methyl methacrylate) microspheres using membrane emulsification.

    Science.gov (United States)

    Bux, Jaiyana; Manga, Mohamed S; Hunter, Timothy N; Biggs, Simon

    2016-07-28

    Accurate control of particle size at relatively narrow polydispersity remains a key challenge in the production of synthetic polymer particles at scale. A cross-flow membrane emulsification (XME) technique was used here in the preparation of poly(methyl methacrylate) microspheres at a 1-10 l h(-1) scale, to demonstrate its application for such a manufacturing challenge. XME technology has previously been shown to provide good control over emulsion droplet sizes with careful choice of the operating conditions. We demonstrate here that, for an appropriate formulation, equivalent control can be gained for a precursor emulsion in a batch suspension polymerization process. We report here the influence of key parameters on the emulsification process; we also demonstrate the close correlation in size between the precursor emulsion and the final polymer particles. Two types of polymer particle were produced in this work: a solid microsphere and an oil-filled matrix microcapsule.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. © 2016 The Author(s).

  12. Methyl Methacrylate Polymerization in Nanoporous Matrix: Reactivity and Resulting Properties

    Science.gov (United States)

    Zhao, Haoyu; Begum, Fatema; Simon, Sindee

    2012-02-01

    Nanoconfinement is well known to affect the properties of polymers, including changes in the glass transition temperature (Tg). In this work, the focus is on the influence of nanoconfinement on free radical polymerization reaction kinetics and the properties of the polymer produced. Controlled pore glass (CPG) is used as a nanoconfining matrix for methyl methacrylate (MMA) polymerization with pore diameters of 13 nm, 50 nm, and 110 nm. The reaction is followed by measuring heat flow as a function of reaction time during isothermal polymerization at temperatures ranging from 60 C to 95 C using differential scanning calorimetry (DSC). After reaction, the properties of the polymer are measured, including Tg, molecular weight, and tacticity. Nanoconfiment is found to result in earlier onset of autoacceleration, presumablely due to a decrease in the rate of termination arising from decreases in chain diffusivity in the confined state. In addition, Tg and molecular weight of the resulting PMMA are found to increase. A model of the nanoconfined reaction is able to quantitatively capture these effects by accounting for changes in chain diffusivity, and in native pores, also accounting for changes in intrinsic reaction rates.

  13. Poly(methyl methacrylate) films for organic vapour sensing

    CERN Document Server

    Capan, R; Hassan, A K; Tanrisever, T

    2003-01-01

    Optical constants and fabrication parameters are investigated using surface plasmon resonance (SPR) studies on spun films of poly(methyl methacrylate) (PMMA) derivatives in contact with two different dielectric media. A value of 1.503 for the refractive index of PMMA films produced from a solution having concentration of 1 mg ml sup - sup 1 at the speed of 3000 rpm is in close agreement with the data obtained from ellipsometric measurements. The film thickness shows a power-law dependence on the spin speed but the thickness increases almost linearly with the concentration of the spreading solution. These results are in good agreement with the hydrodynamic theory for a low-viscosity and highly volatile liquid. On the basis of SPR measurements under dynamic conditions, room temperature response of PMMA films to benzene vapours is found to be fast, highly sensitive and reversible. The sensitivity of detection of toluene, ethyl benzene and m-xylene is much smaller than that of benzene.

  14. Simulation and fabrication of poly methyl methacrylate infrared lenses

    Science.gov (United States)

    Tsui, Chun-Chao; Su, Guo-Dung J.

    2011-10-01

    Infrared thermography is a promising solution that can help improve our lives. However, most of the common materials used to fabricate lenses, such as glass, are opaque in the infrared range. Silicon and germanium are better solutions. But shaping these two materials are truly complicated and time-consuming. Many research works have been devoted to develop cost-effective infrared lenses. Due to material restriction, traditional lenses to focus infrared light are expensive. On the other hand, we found that PMMA (Poly methyl methacrylate) is an ubiquitous polymer material. It is cheap and transparent in mid-IR range. More importantly, liquid PMMA can be shaped and solidified easily. Therefore, we chose PMMA as the material to design and make our IR lenses. In this paper, we choose PMMA and discuss its optical properties in mid-IR range. We believe that PMMA is a highly potential material for low-cost infrared lenses. Also, we show simulation results of an f/1.39, diameter = 11mm and focal length = 13.9mm Fresnel lens made by PMMA to demonstrate its feasibility. We made a PMMA Fresnel lens, by using MEMS processes and embossing. The experimental results agree well with simulation data.

  15. The effect of poly(methyl methacrylate) surface treatments on the adhesion of silicone-based resilient denture liners.

    Science.gov (United States)

    Cavalcanti, Yuri Wanderley; Bertolini, Martinna Mendonça; Cury, Altair Antoninha Del Bel; da Silva, Wander José

    2014-12-01

    Different surface treatment protocols of poly(methyl methacrylate) have been proposed to improve the adhesion of silicone-based resilient denture liners to poly(methyl methacrylate) surfaces. The purpose of this study was to evaluate the effect of different poly(methyl methacrylate) surface treatments on the adhesion of silicone-based resilient denture liners. Poly(methyl methacrylate) specimens were prepared and divided into 4 treatment groups: no treatment (control), methyl methacrylate for 180 seconds, acetone for 30 seconds, and ethyl acetate for 60 seconds. Poly(methyl methacrylate) disks (30.0 × 5.0 mm; n = 10) were evaluated regarding surface roughness and surface free energy. To evaluate tensile bond strength, the resilient material was applied between 2 treated poly(methyl methacrylate) bars (60.0 × 5.0 × 5.0 mm; n = 20 for each group) to form a 2-mm-thick layer. Data were analyzed by 1-way ANOVA and the Tukey honestly significant difference tests (α = .05). A Pearson correlation test verified the influence of surface properties on tensile bond strength. Failure type was assessed, and the poly(methyl methacrylate) surface treatment modifications were visualized with scanning electron microscopy. The surface roughness was increased (P methyl methacrylate treatment. For the acetone and ethyl acetate groups, the surface free energy decreased (P methyl methacrylate and ethyl acetate groups (P methyl methacrylate presented a cleaner surface, whereas the ethyl acetate treatment produced a porous topography. The methyl methacrylate and ethyl acetate surface treatment protocols improved the adhesion of a silicone-based resilient denture liner to poly(methyl methacrylate). Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Molecularly imprinted films of acrylonitrile/methyl methacrylate/acrylic acid terpolymers: influence of methyl methacrylate in the binding performance of L-ephedrine imprinted films.

    Science.gov (United States)

    Brisbane, Carrie; McCluskey, Adam; Bowyer, Michael; Holdsworth, Clovia I

    2013-05-07

    Molecularly imprinted polymeric films (MIPFs) highly selective to 1R,2S(-)ephedrine (L-ephedrine, EPD) were produced by phase inversion post-polymerization imprinting on poly(acrylonitrile-co-methyl methacrylate-co-acrylic acid) (PAMA) terpolymers. The inclusion of methyl methacrylate (MMA) to the polymer formulation resulted in enhanced EPD selectivity which appears to be dictated by polymer composition to achieve the necessary balance between polymer rigidity and porosity. Substitution of MMA with methyl acrylate, ethyl acrylate and n-butyl acrylate resulted in a loss of EPD selectivity and EPD entrapment within the polymer matrix not observed in PAMA MIPFs. MMA, by virtue of its methyl group, is able to provide the scaffolding and rigidity necessary for stability and preservation of imprinted cavities within the PAMA MIPF leading to high EPD selectivity.

  17. Poly(methacrylic acid-co-methyl methacrylate) beads promote vascularization and wound repair in diabetic mice.

    Science.gov (United States)

    Martin, Daniel C; Semple, John L; Sefton, Michael V

    2010-05-01

    Topical application of beads made from poly(methacrylic acid-co-methyl methacrylate) (45 mol % methacrylic acid, MAA) increased the number of blood vessels and improved 1.5 x 1.5 cm full thickness wound closure in a diabetic mouse (db/db) model. Three groups were compared: MAA beads, control poly(methyl methacrylate) beads (PMMA), and no bead blanks. MAA bead treatment significantly increased percent wound closure at all timepoints (7, 14, and 21 days) with MAA bead-treated wounds almost closed at day 21 (91 +/- 5.4% MAA vs. 79 +/- 3.2% PMMA or 76 +/- 4.8% no beads; p < 0.05). This was consistent with the expected significant increase in vascularity in the MAA group at days 7 and 14. For example at day 14, MAA bead-treated wounds had a vascular density of 22.7 +/- 2.6 vessels/hpf compared with 17.0 +/- 2.0 vessels/hpf in the PMMA bead group (p < 0.05). Epithelial gap and migration measurements suggested that the increased vascularity leads to enhanced epithelial cell migration as a principal means of wound closure. Although studies are underway to elucidate the mechanism of this angiogenic response, the results presented here support the notion that such materials, perhaps in other forms, may be useful in wound care or in other situations where vascularity is to be enhanced without the use of exogenous growth factors. Copyright 2009 Wiley Periodicals, Inc.

  18. Thin-Film Behavior of Poly(methyl methacrylates). 4. Stereocomplexation of Isotactic and Syndiotactic Poly(methyl methacrylate) at the Air-Water Interface

    NARCIS (Netherlands)

    Brinkhuis, R.H.G.; Schouten, A.J.

    1992-01-01

    Under the proper conditions, a transition can be observed in compression isotherms of mixed monolayers of isotactic and syndiotactic poly(methyl methacrylate), which is shown to correspond to a pressure-induced stereocomplexation process between the isotactic and syndiotactic components, analogous

  19. Association of Stereoregular Poly(methyl methacrylates). 6. Double-Stranded Helical Structure of the Stereocomplex of Isotactic and Syndiotactic Poly(methyl methacrylate)

    NARCIS (Netherlands)

    Bosscher, Flip; Brinke, Gerrit ten; Challa, Ger

    1982-01-01

    In 1965 Liquori et al. proposed a model of the stereocomplex of isotactic and syndiotadic poly(methyl methacrylate) (it- and st-PMMA). Although this model could not explain most experimental results, e.g., those of template polymerization, no other models were published. However, Tadokoro et al.

  20. Horseradish peroxidase mediated free radical polymerization of methyl methacrylate.

    Science.gov (United States)

    Kalra, B; Gross, R A

    2000-01-01

    This paper reports the free radical polymerization of methyl methacrylate (MMA) catalyzed by horseradish peroxidase (HRP). A novel method was developed whereby MMA polymerization can be carried out at ambient temperatures in the presence of low concentrations of hydrogen peroxide and 2,4-pentanedione in a mixture of water and a water-miscible solvent. Polymers of MMA formed were highly stereoregular with predominantly syndiotactic sequences (syn-dyad fractions from 0.82 to 0.87). Analyses of the chloroform-soluble fraction of syndio-PMMA products by GPC showed that they have number-average molecular weights, Mn, that range from 7500 to 75,000. By using 25% v/v of the cosolvents dioxane, tetrahydrofuran, acetone, and dimethylformamide, 85, 45, 7 and 2% product yields, respectively, resulted after 24 h. Increasing the proportion of dioxane to water from 1:3 to 1:1 and 3:1 resulted in a decrease in polymer yield from 45 to 38 and 7%, respectively. Increase in the enzyme concentration from 70 to 80 and 90 mg/mL resulted in increased reaction kinetics. By adjustment of the molar ratio of 2,4-pentanedione to hydrogen peroxide between 1.30:1.0 and 1.45:1.0, the product yields and Mn values were increased. On the basis of the catalytic properties of HRP and studies herein, we believe that the keto-enoxy radicals from 2,4-pentanedione are the first radical species generated. Then, initiation may take place through this radical or by the radical transfer to another molecule.

  1. Poly(methyl-methacrylate) nanocomposites with low silica addition.

    Science.gov (United States)

    Balos, Sebastian; Pilic, Branka; Markovic, Dubravka; Pavlicevic, Jelena; Luzanin, Ognjan

    2014-04-01

    Poly(methyl-methacrylate) (PMMA) represents the most popular current denture material. However, its major drawbacks are insufficient ductility and strength. The purpose of this study was to improve the mechanical properties of PMMA in denture base application by adding small quantities of nanosilica. Silica nanoparticles were added to the liquid component of the tested materials. The standard heat polymerizing procedure was followed to obtain 6 PMMA--silicon dioxide (/SiO2) concentrations (0.023%, 0.046%, 0.091%, 0.23%, 0.46%, and 0.91% by volume). Microhardness and fracture toughness of each set of specimens was compared with the unmodified specimens. Furthermore, differential scanning calorimetry and scanning electron microscopy analyses were conducted, and the results obtained were correlated with the results of mechanical properties. It was found that the maximum microhardness and fracture toughness values of the materials tested were obtained for the lowest nanosilica content. A nanosilica content of 0.023% resulted in an almost unchanged glass transition temperature (Tg), whereas the maximum amount of nanosilica induced a considerable increase in Tg. A higher Tg indicated the possible existence of a thicker interfacial layer caused by the chain immobility due to the presence of the particles. However, scanning electron microscopy results demonstrated extensive agglomeration at 0.91% nanosilica, which may have prevented the formation of a homogenous reinforced field. At a nanosilica content of 0.023%, no agglomeration was observed, which probably influenced a more homogenous distribution of nanoparticles as well as uniform reinforcing fields. Low nanoparticle content yields superior mechanical properties along with the lower cost of nanocomposite synthesis. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Radiation synthesis and characterization of zinc phthalocyanine composite based on 2-hydroxyethyl methacrylate/methyl methacrylate copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Ghaffar, A.M., E-mail: am_abdelghaffar@yahoo.com [Radiation Research of Polymer Chemistry Department, Industrial Irradiation Division, National Center for Radiation Research and Technology, Atomic Energy Authority P.O. Box 29, Nasr City, Cairo (Egypt); Youssef, Tamer E. [Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Center, Dokki, Cairo, 12622 (Egypt); Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah, 21589 (Saudi Arabia); Mohamed, Hanan H. [Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo (Egypt)

    2016-08-01

    The synthesis and characterization of new 2-hydroxyethyl methacrylate-co-methyl methacrylate/zinc phthalocyanine composite Poly(HEMA/MMA/ZnPc) is described for the first time in this study. The aim of this research is to present possibility of radiation synthesis of the newly zinc phthalocyanine composites as potential candidates for wide range of applications. Gel (%) and swelling for Poly(hydroxyethyl methacrylate) Poly(HEMA) and the based Poly(hydroxyethyl methacrylate/methyl methacrylate) copolymer Poly(HEMA/MMA) with different composition 100/0, 95/5, 90/10 and 80/20 wt % were evaluated. It was found that Poly(HEMA/MMA) copolymer with composition 95/5 wt % characterized by its high swelling property at pH 7.4. The prepared composites I and II Poly(HEMA/MMA/ZnPc) with composition (95/5/1 wt%) and (95/5/1.5 wt%) respectively have been characterized by FTIR and TGA. The effect of gamma irradiation on the chemical properties of composite I was described. It is observed that the Zinc phthalocyanine with low concentration 1 wt % enhance chemical, thermal properties and stabilization against gamma radiation of the prepared composite I. - Highlights: • The preparation of Poly(HEMA/MMA/ZnPc) by radiation forming modified composites. • The low concentration of ZcPc (1 or 1.5 wt %) lead to form outstanding properties. • These composites are a potential candidate for wide range of applications.

  3. Nonconventional Emulsion Polymerization of Methyl Methacrylate. Effect of Cu(II)/Histidine Complex Catalyst and Different Peroxo-Salts

    National Research Council Canada - National Science Library

    Sahoo, Prafulla Kumar; Sahu, Gobinda Chandra; Swain, Sarat Kumar

    2003-01-01

    The characteristics of nonconventional (soap-free) aqueous emulsion polymerization reactions of methyl methacrylate were evaluated by the catalytic effect of in situ developed different transition metal (II...

  4. Transparent and luminescent ionogels composed of Eu(3+)-coordinated ionic liquids and poly(methyl methacrylate).

    Science.gov (United States)

    Zhou, Fan; Wang, Tianren; Li, Zhiqiang; Wang, Yige

    2015-12-01

    We report here on transparent and luminescent ionogels that consist of ionic ternary europium (III) complexes and the inexpensive non-toxic compound, poly(methyl methacrylate) (PMMA) and that were formed by dissolving these complexes in methacrylate (MMA) monomers followed by in situ polymerization. The resulting ionogels show a bright red emission under near-UV light irradiation. Luminescence data confirm the energy transfer from terpyridine-functionalized ionic liquid to Eu(3+) ions. Copyright © 2015 John Wiley & Sons, Ltd.

  5. In vitro–in vivo evaluation of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate hydrogel implants containing cisplatin

    Directory of Open Access Journals (Sweden)

    Madhu Babu

    2011-12-01

    Full Text Available The aim of this study was to prepare hydrogel disc implants containing cisplatin from hydroxyethyl methacrylate (HEMA and methyl methacrylate (MMA. To control drug release, the monomers were cross-linked with ethyleneglycol dimethacrylate (EGDMA. Implants were characterized by FTIR, DSC and SEM and evaluated for drug content, swelling, tensile strength, in vitro and in vivo drug release, in vitro and in vivo biodegradation of the polymer and histopathological studies. The in vitro results showed that increasing the concentration of either MMA or EGDMA decreased drug release and prolonged the implant life. Histopathological studies showed that the implants were histocompatible with surrounding tissue. Stability studies on the optimized formulation showed it was stable over 90 days at 25±3 °C. The implants can be used to achieve controlled release of drug and attain effective treatment with reduced side effects.

  6. Impact of modified graphene and microwave irradiation on thermal stability and degradation mechanism of poly (styrene-co-methyl meth acrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, Mukarram [Department of Environmental Engineering, University of Dammam, 31982 Dammam (Saudi Arabia); Shehzad, Farrukh [Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia, (Saudi Arabia); Al-Harthi, Mamdouh A., E-mail: mamdouh@kfupm.edu.sa [Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia, (Saudi Arabia); Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, 31261 Dhahran (Saudi Arabia)

    2016-06-10

    Highlights: • Modified graphene imparts thermal stability to Poly (styrene-co-methyl methacrylate) [P(st-mma)]. • The thermal stability of P(st-mma) decreased with microwave irradiation. • The thermal stability of P(st-mma)/MG nanocomposites increased with irradiation time up to 10 min and decreased subsequently. • The degradation of P(st-mma) and P(st-mma)/MG is governed by random scission model. - Abstract: Poly (styrene-co-methyl methacrylate) [P(st-mma)] composite containing 0.1 wt% modified graphene (MG) was prepared via melt blending. MG was prepared by oxidation method using nitric acid. The P(st-mma) and P(st-mma)MG composite were irradiated using microwave radiation. The degradation mechanism and thermal stability of the irradiated and un-irradiated samples was analyzed by TGA. P(st-mma)MG showed high thermal stability. The average activation energy of thermal degradation was found to be 200 kJ/mol for P(st-mma), 214 kJ/mol for P(st-mma)MG. The activation energy was highest for 10 min irradiated nanocomposites indicating an improvement in stability. The degradation mechanism was investigated by comparing the master plots constructed using the experimental data with theoretical master plots of various kinetic models. The thermal degradation of P(st-mma) and P(st-mma)MG composite before and after irradiation governs the random scission mechanism. SEM and TEM micrographs showed improved interactions and degradation of composites after 10 min and 20 min irradiation respectively.

  7. Glass transition of poly (methyl methacrylate) filled with nanosilica and core-shell structured silica

    DEFF Research Database (Denmark)

    Song, Yihu; Bu, Jing; Zuo, Min

    2017-01-01

    Core-shell (CS) nanocomposite particles with 53.4 wt% cross-linked poly (methyl methacrylate) (PMMA) shell of 11.6 nm in thickness were fabricated via miniemulsion polymerization of methyl methacrylate in the presence of modified nanosilica. The influence of nanosilica and CS nanoparticles on glass...... transition and segmental dynamics of PMMA in the nanocomposites prepared via solution casting was compared. The remarkable depression (≥10 °C) of glass transition temperature (Tg) induced by the incorporation of SiO2 and CS was both observed at low loadings. Here, different mechanisms were responsible...

  8. The Mark-Houwink-Sakurada Relation for Poly(Methyl Methacrylate)

    Science.gov (United States)

    Wagner, Herman L.

    1987-04-01

    In this third review of a series, the literature values for the viscosity-molecular weight relationship (Mark-Houwink-Sakurada) for poly(methyl methacrylate) have been critically evaluated. Although most of the studies have been concerned with conventionally produced poly(methyl methacrylate), some work has also been done with the isotactic polymer. The Mark-Houwink relations for the following solvents are discussed: benzene, toluene, acetone, chloroform, 2-butanone, and tetrahydrofuran, as well as for several other infrequently used solvents. The values of the coefficient K in the relation [η]=KM0.5 for several theta solvents are also reported.

  9. Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye

    CSIR Research Space (South Africa)

    Zongo, S

    2015-06-01

    Full Text Available . Bixa Orellana dye-doped Poly(methyl methacrylate) (PMMA) thin films were prepared through spin coating process for linear and nonlinear optical properties investigation. Atomic force microscopy (AFM) was used to evaluate the roughness of the thin films...

  10. Catalytic effects of poly (methyl methacrylate)-supported β-diketone ...

    Indian Academy of Sciences (India)

    Poly(methyl methacrylate)-supported -diketone-linked palladium complexes on refluxing with olefins at 70°C in methanol-water medium for 10 h afforded carbonyl compounds. The course of the reaction was found to be influenced by the degree of cross-linking of the polymer matrix and the structural environment of the ...

  11. Mössbauer studies of iron doped poly(methyl methacrylate) before ...

    Indian Academy of Sciences (India)

    Unknown

    Mössbauer studies of iron doped poly(methyl methacrylate) before and after ion beam modification. D R S SOMAYAJULU, C N MURTHY†, D K AWASTHI‡, N V PATEL and M SARKAR. Physics Department, Faculty of Science, MS University of Baroda, Vadodara 390 002, India. †Applied Chemistry Department, Faculty ...

  12. Refractive microlenses produced by excimer laser machining of poly(methyl methacrylate)

    DEFF Research Database (Denmark)

    Jensen, Martin Frøhling; Krühne, Ulrich; H., L.

    2005-01-01

    A method has been developed whereby refractive microlenses can be produced in poly (methyl methacrylate) by excimer laser irradiation at λ = 248 nm. The lenses are formed by a combined photochemical and thermal process. The lenses are formed as depressions in the substrate material (negative foca...

  13. Polydimethylsiloxane microspheres with poly(methyl methacrylate) coating: Modelling, preparation, and characterization

    DEFF Research Database (Denmark)

    Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren

    2015-01-01

    functional PDMS microspheres were coated with poly(methyl methacrylate) (PMMA) by spin coating with different concentrations of PMMA solutions. The quality of the resulting PMMA shell is investigated using rheological measurements at 50 8C with a timesweep procedure. The results strongly suggest that PMMA...

  14. Tuning Surface Properties of Poly(methyl methacrylate) Film Using Poly(perfluoromethyl methacrylate)s with Short Perfluorinated Side Chains.

    Science.gov (United States)

    Sohn, Eun-Ho; Ha, Jong-Wook; Lee, Soo-Bok; Park, In Jun

    2016-09-27

    To control the surface properties of a commonly used polymer, poly(methyl methacrylate) (PMMA), poly(perfluoromethyl methacrylate)s (PFMMAs) with short perfluorinated side groups (i.e., -CF3, -CF2CF3, -(CF3)2, -CF2CF2CF3) were used as blend components because of their good solubility in organic solvents, low surface energies, and high optical transmittance. The surface energies of the blend films of PFMMA with the -CF3 group and PMMA increased continuously with increasing PMMA contents from 17.6 to 26.0 mN/m, whereas those of the other polymer blend films remained at very low levels (10.2-12.6 mN/m), similar to those of pure PFMMAs, even when the blends contained 90 wt %PMMA. Surface morphology and composition measurements revealed that this result originated from the different blend structures, such as lateral and vertical phase separations. We expect that these PFMMAs will be useful in widening the applicable window of PMMA.

  15. Solid-phase peptide synthesis of endothelin receptor antagonists on novel flexible, styrene-acryloyloxyhydroxypropyl methacrylate-tripropyleneglycol diacrylate [SAT] resin.

    Science.gov (United States)

    Siyad, M A; Nair, Arun S V; Kumar, G S Vinod

    2010-03-08

    Novel cross-linked polymeric support by the copolymerization of styrene and 3-(acryloyloxy)-2-hydroxypropyl methacrylate with Tri(propyleneglycol) diacryalte (SAT) for solid-phase peptide synthesis is presented here. The synthesis of SAT is based on the cross-linking of 3-(acryloyloxy)-2-hydroxypropyl methacrylate with styrene by free-radical suspension polymerization, consisting of an ester and a secondary hydroxyl group. An additional cross-linker tri(propyleneglycol) diacryalte provides a hydrophilic environment throughout the resin, which will enhance the physicochemical properties of the resin toward organic synthesis. The resins were synthesized in various cross-linking densities to check the swelling property, mechanical stability, and functional loading capacity. The resin was characterized by the IR, (13)C NMR, and SEM techniques. The extent of swelling properties of the polymer of different cross-linking densities were studied and compared with Merrifield resin and TentaGel. To demonstrate the efficiency of SAT support was proved by synthesizing the challenging peptide sequence of acyl carrier protein (ACP) and compared with commercially available Merrifield resin. It was further tested by synthesizing endothelial receptor antagonist peptides using SAT resin and compared with commercially available TentaGel resin. The standard Fmoc strategy was adopted for peptide synthesis and was characterized by MALDI-TOF MS and analyzed the purity of peptides by HPLC.

  16. Enhanced surface segregation of poly(methyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate by introduction of a second block.

    Science.gov (United States)

    Ni, Huagang; Gao, Jie; Li, Xuehua; Hu, Yanyan; Yan, Donghuan; Ye, XiuYun; Wang, Xinping

    2012-01-01

    New fluorinated copolymers of poly(methyl methacrylate)-b-poly(butyl methacrylate) or poly(n-octadecyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate (PMMA(x)-b-PBMA(y)-ec-PFMA(z) or PMMA(x)-b-PODMA(y)-ec-PFMA(z)) were synthesized by living atom transfer radical polymerization. Thin films made of PMMA(230)-b-PODMA(y)-ec-PFMA(1) were characterized by differential scanning calorimetry, angle-resolved X-ray photoelectron spectroscopy and X-ray diffraction. These films were found to exhibit robust surface segregation of the end groups. Furthermore, the fluorine enrichment factor at the film surface was found to increase linearly with increasing degree of polymerization of poly(n-octadecyl methacrylate) and its increasing fusion enthalpy in the second block, which enhances the segregation of the fluorinated moieties. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Investigation of Complexation of Linear Poly(N-vinyl-2-pyrrolidone with Poly(methacrylic acid-co-methyl methacrylate Gel

    Directory of Open Access Journals (Sweden)

    Guoqin Liu

    2011-01-01

    Full Text Available The contraction of poly(methacrylic acid-co-methyl methacrylate (P(MAA-co-MMA gel induced by complexation with linear poly(N-vinyl-2-pyrrolidone (PVP is quite different from that of poly(acrylic acid (PAA or poly(methacrylic acid (PMAA gel. It was found that the concentration of PVP has a strong effect on the complexation with P(MAA-co-MMA gel. When PVP was introduced into the P(MAA-co-MMA network, its dynamic mechanic properties vary greatly between complexed and uncomplexed networks. It had the following results: (1 the higher modulus ratio; (2 a slight contraction of gel.

  18. Structural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) copolymer by nuclear magnetic resonance and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Giordanengo, Remi [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France); Viel, Stephane [Aix-Marseille Universite - CNRS, UMR 6263: Institut des Sciences Moleculaires de Marseille, Chimiometrie et Spectrometries, F-13397 Marseille (France); Hidalgo, Manuel; Allard-Breton, Beatrice [ARKEMA, Centre de Recherche Rhone Alpes, Rue Henri Moissan, F-69493 Pierre-Benite (France); Thevand, Andre [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France); Charles, Laurence, E-mail: laurence.charles@univ-provence.fr [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France)

    2009-11-03

    Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been combined to achieve the complete microstructural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) (PMAA-PMMA) copolymer synthesized by nitroxide-mediated polymerization. Various PMAA-PMMA species could be identified which mainly differ in terms of terminaisons. {sup 1}H and {sup 13}C NMR experiments revealed the structure of the end-groups as well as the proportion of each co-monomer in the copolymers. These end-group masses were further confirmed from m/z values of doubly charged copolymer anions detected in the single stage mass spectrum. In contrast, copolymer composition derived from MS data was not consistent with NMR results, obviously due to strong mass bias well known to occur during electrospray ionization of these polymeric species. Tandem mass spectrometry could reveal the random nature of the copolymer based on typical dissociation reactions, i.e., water elimination occurred from any two contiguous MAA units while MAA-MMA pairs gave rise to the loss of a methanol molecule. Polymer backbone cleavages were also observed to occur and gave low abundance fragment ions which allowed the structure of the initiating end-group to be confirmed.

  19. STUDIES ON THE INITIATION MECHANISM OF ORGANIC PEROXIDE AND N-METHACRYLOYLOXYETHYL-N-METHYL ANILINE IN METHYL METHACRYLATE POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; GUO Dajie; GUO Xinqiu; FENG Xinde

    1990-01-01

    The initiation mechanism of methyl methacrylate (MMA) polymerization by organic peroxide and polymerizable aromatic tertiary amine such as N-methacryloyloxyethyl-N-methyi aniline (MEMA) binary system has been studied. The kinetics of polymerization of MMA and the ESR spectra of organic peroxide/MEMA system were determined. Based on the ESR study and the end-group analysis by UV spectra of the polymer formed, the initiation mechanism is proposed.

  20. Mechanical Properties of Surface-Charged Poly(Methyl Methacrylate as Denture Resins

    Directory of Open Access Journals (Sweden)

    Sang E. Park

    2009-01-01

    Full Text Available The aim of this study was to examine the mechanical properties of a new surface-modified denture resin for its suitability as denture base material. This experimental resin is made by copolymerization of methacrylic acid (MA to poly(methyl methacrylate (PMMA to produce a negative charge. Four experimental groups consisted of Orthodontic Dental Resin (DENTSPLY Caulk as a control and three groups of modified PMMA (mPMMA produced at differing ratios of methacrylic acid (5 : 95, 10 : 90, and 20 : 80 MA : MMA. A 3-point flexural test using the Instron Universal Testing Machine (Instron Corp. measured force-deflection curves and a complete stress versus strain history to calculate the transverse strength, transverse deflection, flexural strength, and modulus of elasticity. Analysis of Variance and Scheffe Post-test were performed on the data. Resins with increased methacrylic acid content exhibited lower strength values for the measured physical properties. The most significant decrease occurred as the methacrylic acid content was increased to 20% mPMMA. No significant differences at P<.05 were found in all parameters tested between the Control and 5% mPMMA.

  1. Laminin-Coated Poly(Methyl Methacrylate) (PMMA) Nanofiber Scaffold Facilitates the Enrichment of Skeletal Muscle Myoblast Population

    National Research Council Canada - National Science Library

    Nor Kamalia Zahari; Ruszymah Binti Haji Idrus; Shiplu Roy Chowdhury

    2017-01-01

    .... To overcome these limitations, this study was carried out to establish a 3D culture environment using nanofiber scaffolds to enrich the myoblast population during construct formation. Poly(methyl methacrylate) (PMMA) nanofiber (PM...

  2. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Adam, Nurul Ilham [Faculty of Applied Sciences, Universiti Teknologi MARA, KampusTapah, 35400 Tapah Road, Tapah, Perak (Malaysia); Yahya, Muhd Zu Azhan [Faculty of Defence Sciences and Technology, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia); Ali, Ab Malik Marwan [Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2015-08-28

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ({sup 1}HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in {sup 1}HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF{sub 3}SO{sub 3} show the highest conductivity. The complexation between EMG30 and LiCF{sub 3}SO{sub 3} were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)

  3. Synthesis of poly(vinyl acetate-methyl methacrylate) copolymer microspheres using suspension polymerization.

    Science.gov (United States)

    Islam, Md Shahidul; Yeum, Jeong Hyun; Das, Ajoy Kumar

    2012-02-15

    Poly(vinyl acetate-methyl methacrylate) (VAc-MMA) copolymer microspheres were prepared using suspension polymerization at low temperature initiated with 2,2'-azobis(2,4-dimethyl valeronitrile) (ADMVN). The poly(VAc-MMA) copolymer microspheres can be used over a large area where homopolymers, polyvinyl acetate (PVAc) and methyl methacrylate (PMMA) microspheres are capable of being put to use. The prepared microspheres were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Obtained copolymer microspheres which have 200 μm average diameter and higher thermal stability than those of homopolymer. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  4. Review of methyl methacrylate (MMA)/tributylborane (TBB)-initiated resin adhesive to dentin

    OpenAIRE

    Taira, Yohsuke; Imai, Yohji

    2014-01-01

    This review, focusing mainly on research related to methyl methacrylate/tributylborane (MMA/TBB) resin, presents the early history of dentin bonding and MMA/TBB adhesive resin, followed by characteristics of resin bonding to dentin. Bond strengths of MMA/TBB adhesive resin to different adherends were discussed and compared with other bonding systems. Factors affecting bond strength (such as conditioners, primers, and medicaments used for dental treatment), bonding mechanism, and polymerizatio...

  5. Blend miscibility of cellulose propionate with poly(N-vinyl pyrrolidone-co-methyl methacrylate).

    OpenAIRE

    Sugimura, Kazuki; Teramoto, Yoshikuni; NISHIO, Yoshiyuki

    2013-01-01

    The blend miscibility of cellulose propionate (CP) with poly(N-vinyl pyrrolidone-co-methyl methacrylate) (P(VP-co-MMA)) was investigated. The degree of substitution (DS) of CP used ranged from 1.6 to >2.9, and samples for the vinyl polymer component were prepared in a full range of VP:MMA compositions. Through DSC analysis and solid-state (13)C NMR and FT-IR measurements, we revealed that CPs of DS

  6. New results in pulsed laser deposition of poly-methyl-methacrylate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R.; Socol, G.; Mihailescu, I.N.; Popescu, M.; Sava, F.; Ion, E.; Morosanu, C.O.; Stamatin, I

    2003-03-15

    Thin organic films based on poly-methyl-methacrylate (PMMA) polymer have been obtained by pulsed laser deposition (PLD) on silicon substrates. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Raman spectroscopy (RS). We observed that the film composition and structure depend on the laser fluence and on the temperature of the substrate during deposition.

  7. Synthesis and Characterization of Metal Sulfides Nanoparticles/Poly(methyl methacrylate) Nanocomposites

    OpenAIRE

    Peter A. Ajibade; Johannes Z. Mbese

    2014-01-01

    Metal sulfides nanoparticles in poly(methyl methacrylate) matrices were prepared and characterized by infrared spectroscopy, thermogravimetric analysis, powder X-ray diffraction, scanning electron microscope (SEM), and transmission electron microscope (TEM). The FTIR confirms the dispersion of the nanoparticles in PMMA matrices with the C=O and C–O–C bonds of the PMMA shifting slightly which may be attributed to the interactions between the nanoparticles and PMMA. The ZnS nanoparticles in PMM...

  8. Fabrication of Poly(methyl Methacrylate) microfluidic chips by redox-initiated polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiang; Lin, Yuehe; Chen, Gang

    2007-08-16

    In this report, a method based on the redox-initiated polymerization of methyl methacrylate (MMA) has been developed for the rapid fabrication of PMMA microfluidic chips.The new fabrication approach obviates the need for special equipment and significantly simplifies the process of fabricating microdevices. The attractive performance of the novel PMMA microchips has been demonstrated in connection with contactless conductivity detection for the separation and detection of ionic species.

  9. Optical Properties of Nanocellulose Dispersions in Water, Dimethylformamide and Poly(Methyl Methacrylate)

    Science.gov (United States)

    2013-10-01

    measurements for cellulose and PMMA thin-films. ..13  v List of Tables Table 1. Recorded optical data for nanocellulose in water...broad array of Army platforms. A common approach is to use optically transparent fiber or particulate additives for reinforcement. However, there are...and poly(methyl methacrylate) ( PMMA ). Liquid suspensions were analyzed using a unique cuvette that could accommodate the optical measuring device

  10. The thermal stability of poly(methyl methacrylate prepared by RAFT polymerisation

    Directory of Open Access Journals (Sweden)

    LYNNE KATSIKAS

    2008-08-01

    Full Text Available Poly(methyl methacrylate, PMMA, was prepared by reversible addition–fragmentation chain transfer, RAFT, polymerisation using 2-(2-cyanopropyl-dithiobenzoate, CPDB, as the RAFT agent. The thermal stability of the resulting polymer approached that of anionically prepared PMMA, as determined by thermogravimetry. This was the consequence of the RAFT prepared polymer having no head-to-head links and no chain end double bonds, which are responsible for the relatively low thermal stability of radically prepared PMMA.

  11. Low-weight Impact Behaviour of Carbon Fibre Reinforced Methyl Methacrylate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Virginija Jankauskaitė

    2015-06-01

    Full Text Available Inthis study, the carbon fibre reinforced methyl methacrylate (CF/MMA compositetoecap for safety shoes was manufactured to increase the energy absorptioncapacity during impact. Different types of nanofillers such as organic andinorganic nanotubes, unmodified and organically modified nanoclays were appliedto modify matrix impact properties. The drop-weight impact tests of thenanocomposite toecap were performed with respect to nanofiller nature andcarbon fibre stacking sequence. It was found that the most influence on thestiffness and impact damage of the carbon fibre methyl methacrylatenanocomposite toecaps besides stacking sequence show organic and inorganic nanotubesor unmodified nanoclay.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.7075

  12. Probing competitive enantioselective approach vectors operating in the Jacobsen-Katsuki epoxidation: a kinetic study of methyl-substituted styrenes.

    Science.gov (United States)

    Fristrup, Peter; Dideriksen, Brian B; Tanner, David; Norrby, Per-Ola

    2005-10-05

    This paper describes a study of reactivity and enantioselectivity for a series of methyl-substituted styrenes in the Jacobsen-Katsuki (Mn(salen)-catalyzed) epoxidation reaction. Competition experiments provided kinetic data for the reactivity of the seven possible methyl-substituted styrenes (mono-, di- and trisubstituted) relative to styrene itself, ee values were measured by chiral GC, and absolute configurations were secured by chemical correlation. Of particular interest was the switch in absolute configuration at the benzylic position of the epoxides derived from (Z)- and (E)-alpha,beta-dimethylstyrene, respectively. The results could be rationalized in terms of an approach vector with the phenyl substituent proximal to the salen. As opposed to alkyl groups, a proximal phenyl group has very little effect on the rate of the reaction. Consideration of distal vs proximal approach allows prediction of absolute stereochemistry as a function of alkene substitution pattern. Trisubstituted alkenes with one phenyl group cis to the alkene hydrogen can be identified as a favored substrate class in the title reaction, with both rate and selectivity close to the classic (Z)-beta-substituted styrene substrates.

  13. Graft Copolymerization of Methyl Methacrylate Monomer onto Starch and Natural Rubber Latex Initiated by Gamma Irradiation

    Directory of Open Access Journals (Sweden)

    S. Iskandar

    2011-04-01

    Full Text Available To obtain the degradable plastic, the graft copolymerization of methyl methacrylate onto starch and natural rubber latex was conducted by a simultaneous irradiation technique. Gamma-ray from cobalt-60 source was used as the initiator. The grafted copolymer of starch-polymethyl methacrylate and the grafted copolymer of natural rubber-polymethyl methacrylate were mixed in the blender, and dried it in the oven. The dried grafted copolymer mixture was then molded using hydraulic press machine. The effect of irradiation dose, composition of the grafted copolymer mixture, film forming condition and recycle effect was evaluated. The parameters observed were tensile strength, gel fraction and soil burial degradability of grafted copolymer mixture. It was found that the tensile strength of grafted copolymer mixture increased by -ray irradiation. Increasing of the grafted copolymer of natural rubber-polymethyl methacrylate content, the gel fraction and tensile strength of the grafted copolymer mixture increased. The tensile strength of the grafted copolymer mixture was increased from 18 MPa to 23 MPa after recycled (film forming reprocessed 3 times. The grafted copolymer mixture was degraded completely after soil buried for 6 months

  14. Poly(methyl methacrylate denture base materials modified with ditetrahydrofurfuryl itaconate: Significant applicative properties

    Directory of Open Access Journals (Sweden)

    Spasojević Pavle

    2015-01-01

    Full Text Available The aim of this work was to examine the possibility of modification of commercial denture base materials with itaconic acid esters, in order to obtain material with less toxicity and higher biocompatibility. Despite their relatively higher price compared to methacrylates, itaconic acid and itaconates are materials of choice for environmentally friendly applications, because they are not produced from petrochemical sources, but from plants. Commercial system based on poly(methyl methacrylate was modified using ditetrahydrofurfuryl itaconate (DTHFI, wherein the ratio of DTHFI was varied from 2.5 to 10% by weight. Copolymerization was confirmed using FTIR spectroscopy, while SEM analysis showed the absence of micro defects and pores in the structure. The effect of the itaconate content on the absorption of fluids, the residual monomer content, thermal, dynamic-mechanical and mechanical properties (hardness, toughness, stress and elongation at break was investigated. It was found that the addition of DTHFI significantly reduced the amount of residual methyl methacrylate, what made these materials less toxic. It was shown that the increase in DTHFI content gave materials with decreased glass transition temperature, as well as with decreased storage modulus, ultimate tensile strength and impact fracture resistance, however mechanical properties were in the rang prescribed by ADA standards, and can be used in practice. The deterioration of mechanical properties was therefore worth losing in order to gain lesser toxicity of the leached monomer. [Projekat Ministarstva nauke Republike Srbije, br. 172062: Synthesis and characterization of novel functional polymers and polymeric nanomaterials

  15. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Science.gov (United States)

    2010-04-01

    ... acetic acid, 50 percent ethanol, and n-heptane for 10 days at 120 °F. (2) The finished food-contact... to distilled water, 3 percent acetic acid and n-heptane at 190 °F for 2 hours, cooled to 120 °F (80... section may contain adjuvant substances required in its production. Such adjuvants may include substances...

  16. Synthesis and Characterization of an Injectable and Hydrophilous Expandable Bone Cement Based on Poly(methyl methacrylate).

    Science.gov (United States)

    Yang, Zhao; Chen, Lei; Hao, Yuxin; Zang, Yuan; Zhao, Xiong; Shi, Lei; Zhang, Yang; Feng, Yafei; Xu, Chao; Wang, Faqi; Wang, Xinli; Wang, Bowen; Liu, Chenxin; Tang, Yufei; Wu, Zixiang; Lei, Wei

    2017-11-22

    Poly(methyl methacrylate) (PMMA), the most common bone cement, has been used as a graft substitute in orthopedic surgeries such as vertebroplasty. However, an undesirable minor crack in the bone-cement interface provoked by shrinkage during polymerization and high elastic modulus of conventional PMMA bone cement dramatically increases the risk of vertebral body refracture postsurgery. Thus, herein, a hydrophilous expandable bone cement was synthesized based on a PMMA commercial cement (Mendec Spine Resin), acrylic acid (AA), and styrene (St). The two synthesized cements (PMMA-PAA, PMMA-PAA-PSt) showed excellent volumetric swelling in vitro and cohesive bone-cement contact in rabbit femur cavity defect. The elastic modulus and compressive strength of the new cements were lower than PMMA. Furthermore, the in vitro analysis indicated that the new cements had lower cytotoxicity than PMMA, including superior proliferation and lower apoptotic rates of Sprague-Dawly rat-derived osteoblasts. Western blotting for protein expression and RT-PCR analysis of osteogenesis-specific genes were conducted on SD rat-derived osteoblasts from both PMMA and new cements films; the results showed that new cements enhanced the expression of osteogenesis-specific genes. Scanning electron microscopy demonstrated improved morphology and attachment of osteoblast on new cement discs compared to the PMMA discs. Additionally, the histological morphologies of the bone-cement interface from the rabbit medial femoral condyle cavity defect model revealed direct and cohesive contact with the bone in the new cement groups in contrast to a minor crack in the PMMA cement group. The sign of a new bone growing into the cement has been found in the new cements after 12 weeks, thereby indicating the osteogenic capacity in vivo. In conclusion, the synthesized hydrophilous expandable bone cements based on PMMA and poly(acrylic acid) (PAA) are promising candidates for vertebroplasty.

  17. Biocompatible and Biodegradable Ultrafine Nanoparticles of Poly(Methyl Methacrylate-co-Methacrylic Acid) Prepared via Semicontinuous Heterophase Polymerization: Kinetics and Product Characterization

    OpenAIRE

    Henned Saade; María de Lourdes Guillén; Judith Cabello Romero; Jesús Cepeda; Anna Ilyna; Salvador Fernández; Francisco Javier Enríquez-Medrano; Raúl Guillermo López

    2016-01-01

    Ultrafine nanoparticles, less than 10 nm in mean diameter, of the FDA approved copolymer methyl methacrylate- (MMA-) co-methacrylic acid (MAA), 2/1 (mol/mol), were prepared. The method used for the preparation of these particles stabilized in a latex containing around 11% solids includes the dosing of the monomers mixture on a micellar solution preserving monomer starved conditions. It is thought that the operation at these conditions combined with the hydrophilicity of MMA and MAA units favo...

  18. Reduced hydrophobic interaction of polystyrene surfaces by spontaneous segregation of block copolymers with oligo (ethylene glycol) methyl ether methacrylate blocks: force measurements in water using atomic force microscope with hydrophobic probes.

    Science.gov (United States)

    Zhang, Rui; Seki, Akiko; Ishizone, Takashi; Yokoyama, Hideaki

    2008-05-20

    Reduction of hydrophobic interaction in water is important in biological interfaces. In our previous work, we have found that poly(styrene- b-triethylene glycol methyl ether methacrylate) (PS-PME3MA) segregates the PME3MA block to the surface in hydrophobic environment, such as in air or in a vacuum, and shows remarkable resistance against adsorption or adhesion of proteins, platelets, and cells in water. In this paper, we report that atomic force microscopy (AFM) with hydrophobic probes can directly monitor the reduced hydrophobic interaction of the PS surfaces modified by poly(styrene- b-origoethylene glycol methyl ether methacrylate) (PS-PME NMA), where N is the number of ethylene glycol units. The pull-off forces between the hydrophobic probes that are coated with octyltrichlorosilane (OLTS) and the PS-PME NMA modified polystyrene (PS) surfaces in water were measured. The absolute spring constants and tip-curvatures of the AFM cantilevers were measured to compute the work of adhesion by the Johnson, Kendall, and Roberts (JKR) theory, which relates the pull-off force at which the separation occurs between a hemisphere and a plane to the work of adhesion. The hydrophobic interactions between the hydrophobic tip and polymer surfaces in water were greatly reduced with the segregated PME NMA blocks. The hydrophobic interactions decrease with increasing N of the series of PS-PME NMA and show a correlation with the amount of protein adsorbed.

  19. Well-defined inorganic/organic nanocomposite by nano silica core-poly(methyl methacrylate/butylacrylate/trifluoroethyl methacrylate) shell.

    Science.gov (United States)

    Chang, Gang; He, Ling; Zheng, Wei; Pan, Aizhao; Liu, Jing; Li, Yingjun; Cao, Ruijun

    2013-04-15

    The novel inorganic/organic core-shell SiO2/P(MMA/BA/3FMA) nanocomposite for coating application is synthesized in this paper by seed emulsion polymerization, in which the inorganic phase is composed of nano-SiO2 modified by vinyl-trimethoxysilane (VMS) or γ-methacryloxy propyl trimethoxylsilane (MPMS), and the organic phase is made of terpolymer by 2,2,2-trifluoroethyl methacrylate (3FMA), methyl methacrylate (MMA), and n-butyl acrylate (BA). The chemical structure of SiO2/P(MMA/BA/3FMA) is characterized by FTIR. The effect of surfactant polyvinylpyrrolidone (PVP), sodium dodecyl sulfate (SDS)/octyl phenyl polyoxyethylene ether (TX-10), sodium dodecyl benzene sulfonate (SDBS)/TX-10 and sodium hexametaphosphate (SHMP) on the grafting ratio (GR) of VMS and MPMS, the dispersion of nano-SiO2 particles and the film properties of SiO2/P(MMA/BA/3FMA) are investigated by TGA, DLS, TEM, SEM, and XPS. The morphology variation and the particle size distributions of SiO2/P(MMA/BA/3FMA) with the content of surfactant and P(MMA/BA/3FMA) are characterized. It is found that MPMS is more effective than VMS in improving GR and the dispersion of nano-SiO2 particles. The surfactants are favor of gaining the higher GR in the multilayer grafted nano-SiO2, especially SDS/TX-10 for 17.6% GR. The morphology of SiO2/P(MMA/BA/3FMA) is controlled by the amount of SDS/TX-10 and P(MMA/BA/3FMA) as the core-shell particles, the stacked pomegranate seed with multicore and the multicore-single shell structure when w(MMA)/w(BA)/w(3FMA)=1.3/1/1. Among the different surfactants, SDBS/TX-10 and PVP could give the monodispersing nano-SiO2 in the terpolymer matrix of the films, but SDS/TX-10 and SDBS/TX-10 could perform the fluorine-rich surface. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  20. Computational evidence for self-initiation in spontaneous high-temperature polymerization of methyl methacrylate.

    Science.gov (United States)

    Srinivasan, Sriraj; Lee, Myung Won; Grady, Michael C; Soroush, Masoud; Rappe, Andrew M

    2011-02-17

    This paper presents computational evidence for the occurrence of diradical mechanism of self-initiation in thermal polymerization of methyl methacrylate. Two self-initiation mechanisms of interest were explored with first-principles density functional theory calculations. Singlet and triplet potential energy surfaces were constructed. The formation of two Diels-Alder adducts, cis- and trans-dimethyl 1,2-dimethylcyclobutane-1,2-dicarboxylate and dimethyl 2-methyl-5-methylidene-hexanedioate, on the singlet surface was identified. Transition states were calculated using B3LYP/6-31G* and assessed using MP2/6-31G*. The calculated energy barriers and rate constants with different levels of theory were found to show good agreement to corresponding data obtained from laboratory experiments. The presence of a diradical intermediate on the triplet surface was identified. When MCSCF/6-31G* was used, the spin-orbit coupling constant for the singlet to triplet crossover was calculated to be 2.5 cm(-1). The mechanism of monoradical generation via a hydrogen abstraction by both triplet and singlet diradicals from a third monomer was identified to be the most likely mechanism of initiation in spontaneous polymerization of methyl methacrylate.

  1. Hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chips using positive temperature coefficient ceramic heater.

    Science.gov (United States)

    Wang, Xia; Zhang, Luyan; Chen, Gang

    2011-11-01

    As a self-regulating heating device, positive temperature coefficient ceramic heater was employed for hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chip because it supplied constant-temperature heating without electrical control circuits. To emboss a channel plate, a piece of poly(methyl methacrylate) plate was sandwiched between a template and a microscopic glass slide on a positive temperature coefficient ceramic heater. All the assembled components were pressed between two elastic press heads of a spring-driven press while a voltage was applied to the heater for 10 min. Subsequently, the embossed poly(methyl methacrylate) plate bearing negative relief of channel networks was bonded with a piece of poly(methyl methacrylate) cover sheet to obtain a complete microchip using a positive temperature coefficient ceramic heater and a spring-driven press. High quality microfluidic chips fabricated by using the novel embossing/bonding device were successfully applied in the electrophoretic separation of three cations. Positive temperature coefficient ceramic heater indicates great promise for the low-cost production of poly(methyl methacrylate) microchips and should find wide applications in the fabrication of other thermoplastic polymer microfluidic devices.

  2. Aggregation and coarsening of ligand-stabilized gold nanoparticles in poly(methyl methacrylate) thin films.

    Science.gov (United States)

    Meli, Luciana; Green, Peter F

    2008-06-01

    Dodecanethiol-stabilized gold nanoparticles (5 nm diameter) are shown to self-organize to form a two-dimensional hexagonal structure in poly(methyl methacrylate) films upon spin-casting from solution onto a substrate, using high-angle annular dark-field scanning transmission electron microscopy. Through use of the distribution functions describing particle distributions, we show that the particle coarsening dynamics is self-similar, characterized by two distinct growth stages. During the initial stage, coarsening occurs via simultaneous Ostwald ripening and coalescence mechanisms, whereas during the second stage, the dominant coarsening mechanism is coalescence.

  3. Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (methyl methacrylate Template

    Directory of Open Access Journals (Sweden)

    Zhang Chunxiang

    2008-01-01

    Full Text Available AbstractSuperfine powders of poly (methyl methacrylate (PMMA have been prepared by means of an emulsion polymerization method. These have been used as templates in the synthesis of tetragonal phase mesoporous zirconia by the sol–gel method, using zirconium oxychloride and oxalic acid as raw materials. The products have been characterized by infrared spectroscopy, X-ray diffraction analysis, transmission electron microscopy, N2adsorption-desorption isotherms, and pore size distribution. The results indicate that the average pore size was found to be 3.7 nm.

  4. Kinetics of Vinyl Polymerization of Methyl Methacrylate Initiated by Ce(IV)-Vanillin Redox System

    OpenAIRE

    M. Palanivelu; K. E. N. Nalla Mohamed; T. Hidayathulla Khan; M. Prem Nawaz

    2012-01-01

    The kinetics of polymerization of methyl methacrylate initiated by Ce(IV)-Vanillin redox system was studied in aqueous solution of sulfuric acid at 40°C. The rate of polymerization (Rp) and the reaction orders with respect to monomer, initiator and ligand have been determined and found to be 1.5, 0.5 and 0.5 respectively. The effect of concentration of sulfuric acid on the polymerization was also studied. The rate of polymerization was found to increase with increasing temperature 30–60°C and...

  5. Controlled/living radical polymerization of methyl methacrylate using γ-radiation as an initiation source

    Science.gov (United States)

    Zhou, Ying; Zhu, Jian; Zhu, Xiulin; Cheng, Zhenping

    2006-04-01

    A controlled/living radical polymerization, initiated by γ-radiation and followed by a post-polymerization process, of methyl methacrylate (MMA) was carried out in the presence of 2-cyanoprop-2-yl 1-dithionaphthalate. The polymerization showed first-order kinetics. The molecular weights of the corresponding polymers increased linearly with conversion. The molecular weight distributions ( M/M) of the polymers decreased with the conversion (minimal M/M value: 1.09). The polymers were characterized by 1H NMR and gel-permeation chromatograph. Chain-extension reaction was also successfully carried out to obtain higher molecular weight PMMA with narrow molecular weight distribution.

  6. Reinforcement of Natural Rubber with Core-Shell Structure Silica-Poly(Methyl Methacrylate) Nanoparticles

    OpenAIRE

    Qinghuang Wang; Yongyue Luo; Chunfang Feng; Zhifeng Yi; Quanfang Qiu; Kong, L. X.; Zheng Peng

    2012-01-01

    A highly performing natural rubber/silica (NR/SiO2) nanocomposite with a SiO2 loading of 2 wt% was prepared by combining similar dissolve mutually theory with latex compounding techniques. Before polymerization, double bonds were introduced onto the surface of the SiO2 particles with the silane-coupling agent. The core-shell structure silica-poly(methyl methacrylate), SiO2-PMMA, nanoparticles were formed by grafting polymerization of MMA on the surface of the modified SiO2 particles via in si...

  7. Properties of Eu3+ doped poly(methyl methacrylate) optical fiber

    Science.gov (United States)

    Miluski, Piotr; Kochanowicz, Marcin; Zmojda, Jacek; Dorosz, Dominik

    2017-02-01

    The proposition of trivalent europium as a luminescent dopant in poly(methyl methacrylate) (PMMA) host is presented. Optical characterization and fabrication technology of the Eu3+ doped polymeric fiber is shown. The proposed luminescent material exhibits an intense luminescence under 355- and 405-nm excitation. Additionally, the measured decay time (0.51 ms, D→F transition) at third harmonic Nd:YAG excitation showed low luminescence quenching in Eu3+ chelate doped PMMA. The luminescent properties and influence of spectral attenuations on the luminescence shape in fabricated fibers are also presented.

  8. Surface smoothing of poly(methyl methacrylate) film by laser induced photochemical etching

    Science.gov (United States)

    Kang, JoonHyun; Lee, Song-ee; Park, Joon-Suh; Kim, Young-Hwan; Han, Il Ki

    2017-09-01

    The surface of poly(methyl methacrylate) (PMMA) film was etched by laser irradiation under O2 and vacuum conditions. By activating the O2 molecules near the rough surface, oxygen radicals will preferably etch the protrusions on the PMMA surface. Three lasers of different wavelengths were used for comparison. Laser irradiation at a short wavelength such as 325 nm resulted in high etch rates whereas a long wavelength such as 532 nm resulted in no effect on the surface profile. The PMMA surface was not etched under the vacuum condition, indicating the necessity of O2 molecules in etching.

  9. Nano-engineered optical properties of iodine doped poly(methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Sheetal, E-mail: smehta-29@yahoo.com; Das, Kallol [Department of Physics, St. Aloysius College (Autonomous), Jabalpur, M.P. (India); Keller, Jag Mohan, E-mail: smehta-29@yahoo.com

    2016-05-23

    Poly (methyl methacrylate) (PMMA) and Iodine hybrid matrixes have been prepared and characterized. The optical properties of the prepared I-PMMA hybrid composites were characterized by linear absorption studies and these composites have been found to contain embedded Iodine nanoparticles. The size of the nanoparticles was found to be a function of the Iodine content of PMMA. Refractive index measurements were undertaken for different wavelengths. The results showed that the refractive index of the composite is dependent on thermal annealing and also varies nonlinearly with the doping concentration at low Iodine concentration or in the region of nanoparticles formation.

  10. Synthesis of tri-block copolymers through reverse atom transfer radical polymerization of methyl methacrylate using polyurethane macroiniferter

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Reverse atom transfer radical polymerization was successfully used for the first time to synthesis tri-block copolymers. Poly (methyl methacrylate-block-polyurethane-block-poly (methyl methacrylate tri-block copolymers were synthesized using tetraphenylethane-based polyurethane as a macroiniferter, copper(II halide as a catalyst and N, N, N′, N″, N″-pentamethyldiethylenetriamine as a ligand. Controlled nature of the polymerization was confirmed by the linear increase of number average molecular weight with increasing conversion. Mole contents of poly (methyl methacrylate present in the tri-block copolymers were calculated using proton nuclear magnetic resonance spectroscopy and the results were comparable with the gel permeation chromatography results. Differential scanning calorimetric results confirmed the presence of two different types of blocks in the tri-block copolymers.

  11. Nonlinear optical characterization of poly (methyl methacrylate) polymer doped with different dyes for laser waveguide fabrication

    Science.gov (United States)

    Sarkisov, Sergey S.; Darwish, Abdalla M.; Bryant, William; Venkateswarlu, Putcha; Abdeldayem, Hossin A.; Frazier, Donald O.

    1995-10-01

    The charactertization of light guiding and nonlinear optical properties of thin films based on poly(methyl methacrylate) doped with organic dyes 4-dicyanomethylene-2-methyl-6-p- dimethylaminostyryl-4H-pyran (DCM), Pyrromethene 567, and sulforhodamin was done using the prism coupling technique and nonlinear optical spectroscopy. Stimulated light emission in DCM doped waveguide with apparent pump threshold and spectrum narrowing was observed at transverse pumping with frequency doubled Q-switched Nd:YAG laser. PM-567 doped waveguide being transversely pumped with CW Ar+ laser at 514 nm demonstrated fluorescence with 0.19% energy conversion slope efficiency at 616 nm spectral peak. Upconverted fluorescence was found in the same waveguide at longitudinal CW infrared pumping. Sulforhodamin doped films demonstrated multiphoton excited fluorescence and surface enhanced second harmonic generation.

  12. Red-NIR luminescent hybrid poly(methyl methacrylate) containing covalently linked octahedral rhenium metallic clusters.

    Science.gov (United States)

    Molard, Yann; Dorson, Frederick; Brylev, Konstantin A; Shestopalov, Michael A; Le Gal, Yann; Cordier, Stéphane; Mironov, Yuri V; Kitamura, Noboru; Perrin, Christiane

    2010-05-17

    The embedding of functional inorganic entities into polymer matrices has become an intense field of investigation in which the main challenges are to keep the added value of the inorganic entities while preventing their self-aggregation within the organic matrix. We present a simple way to obtain a homogeneous highly red-NIR luminescent hybrid copolymer that contains covalently bonded nanometric-sized {Re(6)} octahedral clusters. The [Re(6)Se(i)(8)(OH)(a)(6)](4-) cluster complexes are primarily functionalized in two steps with tert-butylpyridine (TBP) and methacrylic acid (MAC) to give neutral [Re(6)Se(8)(TBP)(4)(MAC)(2)] building blocks that are copolymerized with methyl methacrylate (MMA) either in solution or in bulk in the presence of azobisisobutyronitrile as an initiator. Several samples containing 0, 0.025, 0.05, and 0.1 wt % of functionalized {Re(6)} clusters were prepared. As the {Re(6)} cluster/MMA ratio is very low, the obtained copolymers keep the entire processability of pure poly(methyl methacrylate) (PMMA), as demonstrated by differential scanning calorimetry and thermogravimetric analysis. Voltammetric and luminescence studies also indicate that the intrinsic properties of the clusters are preserved within the polymer matrix. All the samples show a bright (emission quantum yield=0.07), broad, and structureless emission band, which extends from lambda=600 nm to more than lambda=950 nm, with the maximum wavelength centered around lambda(em)=710 nm either in solution or in the solid state. Moreover, the high stability of the incorporated inorganic phosphors prevents the material from photobleaching, and thus the luminescence properties are kept entirely even after nine months of ageing.

  13. Poly(Poly(Ethylene Glycol Methyl Ether Methacrylate Grafted Chitosan for Dye Removal from Water

    Directory of Open Access Journals (Sweden)

    Bryan Tsai

    2017-03-01

    Full Text Available As the demand for textile products and synthetic dyes increases with the growing global population, textile dye wastewater is becoming one of the most significant water pollution contributors. Azo dyes represent 70% of dyes used worldwide, and are hence a significant contributor to textile waste. In this work, the removal of a reactive azo dye (Reactive Orange 16 from water by adsorption with chitosan grafted poly(poly(ethylene glycol methyl ether methacrylate (CTS-GMA-g-PPEGMA was investigated. The chitosan (CTS was first functionalized with glycidyl methacrylate and then grafted with poly(poly(ethylene glycol methyl ether methacrylate using a nitroxide-mediated polymerization grafting to approach. Equilibrium adsorption experiments were carried out at different initial dye concentrations and were successfully fitted to the Langmuir and Freundlich adsorption isotherm models. Adsorption isotherms showed maximum adsorption capacities of CTS-g-GMA-PPEGMA and chitosan of 200 mg/g and 150 mg/g, respectively, while the Langmuir equations estimated 232 mg/g and 194 mg/g, respectively. The fundamental assumptions underlying the Langmuir model may not be applicable for azo dye adsorption, which could explain the difference. The Freundlich isotherm parameters, n and K, were determined to be 2.18 and 17.7 for CTS-g-GMA-PPEGMA and 0.14 and 2.11 for chitosan, respectively. An “n” value between one and ten generally indicates favorable adsorption. The adsorption capacities of a chitosan-PPEGMA 50/50 physical mixture and pure PPEGMA were also investigated, and both exhibited significantly lower adsorption capacities than pure chitosan. In this work, CTS-g-GMA-PPEGMA proved to be more effective than its parent chitosan, with a 33% increase in adsorption capacity.

  14. Polyol mediated nano size zinc oxide and nanocomposites with poly(methyl methacrylate

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available Organophilic nano ZnO particles have been synthesized in various diols (ethylene glycol – EG, 1,2 propane diol – PD, 1,4 butane diol – BD and tetra(ethylene glycol – TEG in the presence of p-toluenesulfonic acid, p-TsOH, as an end capping agent. The addition of p-TsOH reduces the ZnO particle size and increases its crystallite size. With increasing diol main chain length the ZnO particle size increases (EG (32 nm < PD (33 nm < BD (72 nm < TEG (86 nm. Using the assynthesized and unmodified ZnO nanocomposites with poly(methyl methacrylate, PMMA, matrix have been prepared by the in-situ bulk polymerization of methyl methacrylate, MMA. The addition of surface modifiers is avoided which is an advantage for the application since they can influence other properties of the material. ZnO particles, especially those with smaller particle sizes (EG – 32 nm, PD – 33 nm showed enhanced effect on the thermal stability of PMMA, ultraviolet, UV, absorption and transparency for visible light. Transparent materials with high UV absorption and with enhanced resistance to sunlight were obtained by optimizing the nanocomposite preparation procedure using ZnO particles of about 30 nm size in concentrations between 0.05 and 0.1 wt%. The reported nanocomposite preparation procedure is compatible with the industrial process of PMMA sheet production.

  15. Fabrication of poly(methyl methacrylate) microfluidic chips by redox-initiated polymerization.

    Science.gov (United States)

    Chen, Jiang; Lin, Yuehe; Chen, Gang

    2007-08-01

    In this report, a method based on the redox-initiated polymerization of methyl methacrylate (MMA) has been developed for the rapid fabrication of poly(methyl methacrylate) (PMMA) microfluidic chips. MMA containing 2-2'-azo-bis-isobutyronitrile was allowed to prepolymerize in a water bath to form a viscous prepolymer solution that was subsequently mixed with MMA containing a redox-initiation couple of benzoyl peroxide/N,N-dimethylaniline. The dense molding solution was sandwiched between a silicon template and a piece of 1-mm-thick PMMA plate. The polymerization could complete within 50 min under ambient temperature. The images of raised microfluidic structures on the silicon template were precisely replicated into the synthesized PMMA substrate during the redox-initiated polymerization of the molding solution. The chips were subsequently assembled by the thermal bonding of the channel plates and the covers. The new fabrication approach obviates the need for special equipment and significantly simplifies the process of fabricating PMMA microdevices. The attractive performance of the novel PMMA microchips has been demonstrated in connection with contactless conductivity detection for the separation and detection of ionic species.

  16. Chalcogenide amorphous nanoparticles doped poly (methyl methacrylate) with high nonlinearity for optical waveguide

    Science.gov (United States)

    Xue, Xiaojie; Nagasaka, Kenshiro; Cheng, Tonglei; Deng, Dinghuan; Zhang, Lei; Liu, Lai; Suzuki, Takenobu; Ohishi, Yasutake

    2015-03-01

    Nonlinear optical polymers show promising potential applications in photonics, for example, electro-optical devices. Poly (methyl methacrylate) (PMMA) is widely used in optical waveguides, integrated optics and optical fibers. However, PMMA has not been used for nonlinear optical waveguides since it has a low nonlinear refractive index. We successfully prepared chalcogenide amorphous nanoparticles doped PMMA that had a high nonlinearity. The As3S7 bulk glass was dissolved in propylamine to form a cluster solution. Then the As3S7/propylamine solution was added into methyl methacrylate (MMA) containing photoinitiator Irgacure 184 about 0.5 wt%. After well mixing the As3S7 nanoparticle doped MMA was transparent. Under the irradiation by a 365 nm UV lamp, As3S7 nanoparticles doped PMMA was obtained with yellow color. The third-order nonlinear optical susceptibility of As3S7 nanoparticles doped PMMA was investigated. An optical waveguide array based on the As3S7 nanoparticles doped PMMA composite of high nonlinearity was fabricated.

  17. Antibacterial Adhesion of Poly(methyl methacrylate) Modified by Borneol Acrylate.

    Science.gov (United States)

    Sun, Xueli; Qian, Zhiyong; Luo, Lingqiong; Yuan, Qipeng; Guo, Ximin; Tao, Lei; Wei, Yen; Wang, Xing

    2016-10-26

    Poly(methyl methacrylate) (PMMA) is a widely used biomaterial. But there is still a challenge facing its unwanted bacterial adhesion because the subsequent biofilm formation usually leads to failure of related implants. Herein, we present a borneol-modified PMMA based on a facile and effective stereochemical strategy, generating antibacterial copolymer named as P(MMA-co-BA). It was synthesized by free radical polymerization and studied with different ratio between methyl methacrylate (MMA) and borneol acrylate (BA) monomers. NMR, GPC, and EA, etc., were used to confirm their chemical features. Their films were challenged with Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive), showing a BA content dependent antibacterial performance. The minimum effective dose should be 10%. Then in vivo subcutaneous implantations in mice demonstrated their biocompatibilities through routine histotomy and HE staining. Therefore, P(MMA-co-BA)s not only exhibited their unique antibacterial character but also suggested a potential for the safe usage of borneol-modified PMMA frame and devices for further implantation.

  18. Thermal stability and degradation of poly (N-phenylpropionamide homopolymer and copolymer of N-phenylpropionamide with methyl methacrylate

    Directory of Open Access Journals (Sweden)

    M.A. Diab

    2017-05-01

    Full Text Available Different concentrations of copolymer of (N-phenylpropionamide (PA with methyl methacrylate (MMA were prepared and the reactivity ratio values of copolymerization were calculated using the 1H-NMR technique. Thermal analysis of the copolymers showed that the thermal stability is an intermediate between poly(N-phenylpropionamide and poly(methyl methacrylate homopolymers. Thermal degradation products of the PPA were identified by GC–MS techniques. It seems that the mechanism of degradation of PPA homopolymer is characterized by free radical formation followed by recombination along the backbone chain. The activation energies of the thermal degradation of the copolymers were calculated using the Arrhenius relationship.

  19. Cast Nanostructured Films of Poly(methyl methacrylate-b-butyl acrylate)/Carbon Nanotubes: Influence of Poly(butyl acrylate) Content on Film Evaporation Rate, Morphology, and Electrical Resistance

    National Research Council Canada - National Science Library

    Soriano-Corral, F; Ramos-de Valle, L. F; Enríquez-Medrano, F. J; De León-Martínez, P. A; López-Quintanilla, M. L; Cabrera-Álvarez, E. N

    2012-01-01

      Nanocomposites of poly(methyl methacrylate-b-butyl acrylate)/multiwalled carbon nanotubes were prepared from different copolymers synthesized by RITP technique using iodine functionalized poly(methyl methacrylate...

  20. Poly(styrene-b-2-(N,N-dimethylamino)ethyl methacrylate) diblock copolymers: Micellization and application in the synthesis of photoluminescent CdS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Saswati; Mondal, Samiran [Department of Chemistry, Visva-Bharati University, Santiniketan 731 235 (India); Chatterjee, Uma, E-mail: uma_cin@yahoo.co.in [Polymer Science Unit, Indian Association for the Cultivation of Sciences, Kolkata 700 032 (India); Mandal, Debabrata, E-mail: dmandal.chemistry@gmail.com [Department of Chemistry, Visva-Bharati University, Santiniketan 731 235 (India)

    2009-08-15

    Fluorescence studies on amphiphilic diblock copolymers of styrene and 2-(N,N-dimethylamino)ethyl methacrylate using 1,8-anilinonaphthalenesulfonate (ANS) as fluorescent probe revealed the formation of stable micelles at extremely low polymer concentrations of {approx}0.05%. The micellar microenvironment was characterized by an average polarity of E{sub T}(30) = 44-48 kcal mol{sup -1}, similar to the moderately polar solvents, and extremely high microviscosity. Increase in hydrophilic: hydrophobic ratio of the copolymers resulted in an increase in the average polarity and decrease in microviscosity. The micelles proved to be excellent hosts for the synthesis and stabilization of photoluminescent CdS nanoparticles with a high degree of quantum confinement and broad photoluminescence, dominated by trap-state emission. Moreover, the size and size-related steady-state optical properties of CdS nanoparticles were significantly dependent on the microenvironment of the host micelle. In contrast, the photoluminescence dynamics of the nanoparticles, involving time-scales from 100 ps to 100 ns, are similar in all cases. Interestingly, the nanoparticles exhibit a large time-dependent Stokes shift, 75% of which is complete within the first {approx}100 ps after the excitation. The extremely rapid Stokes shift is attributed to the decay of the initially formed band-edge excitons in a time-scale too fast to be affected by the microenvironment surrounding the particle.

  1. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    Energy Technology Data Exchange (ETDEWEB)

    Buga, Mihaela-Ramona [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Zaharia, Cătălin, E-mail: zaharia.catalin@gmail.com [Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7, Gh. Polizu Street, Sector 1, 011061 Bucharest (Romania); Bălan, Mihai [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Bressy, Christine [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France); Ziarelli, Fabio [Fédération des Sciences Chimiques de Marseille, CNRS-FR1739, Spectropole, 13397 Marseille (France); Margaillan, André [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France)

    2015-06-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, {sup 13}C, {sup 29}Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents.

  2. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications.

    Science.gov (United States)

    Buga, Mihaela-Ramona; Zaharia, Cătălin; Bălan, Mihai; Bressy, Christine; Ziarelli, Fabio; Margaillan, André

    2015-06-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2'-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70°C for 24h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, (13)C, (29)Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. ToF-SIMS studies of poly(methyl methacrylate-co-methacrylic acid), poly(2,2,3,3,3-pentafluoropropyl methacrylate-co-4-vinylpyridine) and their blends

    Science.gov (United States)

    Huang, H. L.; Goh, S. H.; Lai, Doreen M. Y.; Huan, C. H. A.

    2004-04-01

    The surface properties of some polymers and their blends were investigated by both static and dynamic time-of-flight secondary ion mass spectrometry (ToF-SIMS). For poly(methyl methacrylate) (PMMA) and poly(methyl methacrylate-co-methacrylic acid) (MAA26, 26 denoting the mol% of methacrylic acid unit in the copolymer), the OCOCH 3 pendant chain of MMA unit is the dominant group at the air-polymer interface. For poly(2,2,3,3,3-pentafluoropropyl methacrylate) (PF0) and poly(2,2,3,3,3-pentafluoropropyl methacrylate-co-4-vinylpyridine) (PF40, 40 denoting the mol% of 4-vinylpyridine unit in the copolymer), the air-polymer interface is almost completely occupied by the fluorinated pendant chain because of its extremely low surface energy. When PF40 and MAA26 are blended, the fluorinated component accumulates on the blend surface with the fluorinated pendant chain dominating the blend surface. The results of depth profiling by dynamic ToF-SIMS are in agreement with the static ToF-SIMS results. The fluorinated pendant chain of PF0 rearranges on the polymer surface at a depth of about 2.5 nm, while the fluorinated component accumulates on the blend surface at a depth of about 5 nm. For blends containing 1.5 wt.% of fluorinated component, practically all the fluorinated component accumulates on the blend surface. The dynamic ToF-SIMS results also verify that the hydrogen-bonding interaction between PF40 and MAA26 does not completely eliminate surface enrichment of the fluorinated component.

  4. On the degelation of networks - Case of the radiochemical degradation of methyl methacrylate - ethylene glycol dimethacrylate copolymers

    Science.gov (United States)

    Richaud, Emmanuel; Gilormini, Pierre; Verdu, Jacques

    2016-05-01

    Methyl methacrylate networks were synthetized and submitted to radiochemical degradation. Ageing was monitored by means of sol-gel analysis and glass transition temperature measurements. Networks were shown to undergo exclusively chain scission process leading to the degelation of network. The critical conversion degree corresponding to degelation (loss of all elastically active chains) is discussed regarding a statistical theory.

  5. Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization

    Science.gov (United States)

    Hong Dong; Kenneth E. Strawhecker; James A. Snyder; Joshua A. Orlicki; Richard S. Reiner; Alan W. Rudie

    2012-01-01

    Uniform fibers composed of poly(methyl methacrylate) (PMMA) reinforced with progressively increasing contents of cellulose nanocrystals (CNCs), up to 41 wt% CNCs, have been successfully produced by electrospinning. The morphological, thermal and nanomechanical properties of the composite sub-micron fibers were investigated. The CNCs derived from wood pulp by sulfuric...

  6. Influence of the tacticity of poly(methyl methacrylate) on the miscibility with poly(vinyl chloride)

    NARCIS (Netherlands)

    Vorenkamp, E.J.; Brinke, G. ten; Meijer, J.G.; Challa, G.

    1985-01-01

    It can be concluded from earlier work that poly(vinyl chloride) (PVC) is more miscible with syndiotactic than with isotactic poly(methyl methacrylate) (PMMA). By choosing different molar masses for the various tactic forms of PMMA it is possible to obtain blends with PVC with similar phase

  7. Polymer-filler interactions in poly(vinyl chloride) filled with glass beads : effect of grafted poly(methyl methacrylate)

    NARCIS (Netherlands)

    Boven, Gert; Folkersma, Rudy; Challa, Ger; Schouten, Arend Jan; Bosma, Martin

    1992-01-01

    Adhesion between filler and matrix has been studied using a model system composed of glass bead filled poly(vinyl chloride) (PVC). Stress-strain and volume-strain tests and scanning electron microscopy revealed that adhesion is improved by grafting poly(methyl methacrylate) (PMMA), which is known to

  8. RADICAL GRAFTING OF POLY(METHYL METHACRYLATE) ONTO SILICON-WAFERS, GLASS SLIDES AND GLASS-BEADS

    NARCIS (Netherlands)

    FOLKERSMA, R; CHALLA, G; SCHOUTEN, AJ

    1991-01-01

    Poly(methyl methacrylate) was grafted onto glass beads, glass slides and silicon wafers using an immobilized radical initiator. The polymeric monolayers had thicknesses varying from a few hundred to 4000 angstrom, being up to 10 times larger than the radii of gyration of comparable free polymers.

  9. On the degelation of networks – Case of the radiochemical degradation of methyl methacrylate – ethylene glycol dimethacrylate copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Richaud, Emmanuel; Gilormini, Pierre; Verdu, Jacques [Arts et Métiers ParisTech, CNRS, PIMM UMR 8006, 151 bd de l’Hôpital, 75013 Paris (France)

    2016-05-18

    Methyl methacrylate networks were synthetized and submitted to radiochemical degradation. Ageing was monitored by means of sol-gel analysis and glass transition temperature measurements. Networks were shown to undergo exclusively chain scission process leading to the degelation of network. The critical conversion degree corresponding to degelation (loss of all elastically active chains) is discussed regarding a statistical theory.

  10. Synthesis of methyl methacrylate from coal-derived syngas: Quarterly report,, October 1-December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of three steps of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Over the last quarter, Eastman developed two new processes which have resulted in two new invention reports. One process deals with carbonylation of benzyl ether which represents a model for coal liquefaction and the second focuses on the acceleration of carbonylation rates for propionic acid synthesis, via use of polar aprotic solvents. These two inventions are major improvements in the novel Mo-catalyzed homogeneous process for propionic acid synthesis technology, developed by Eastman. Over the last quarter, RTI completed three reaction cycles and two regeneration cycles as a part of long-term reaction regeneration cycle study on a 10% Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst, for vapor phase condensation reaction of formaldehyde with propionic acid.

  11. Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins

    Science.gov (United States)

    Pietrucha, K.; Pȩkala, W.; Kroh, J.

    Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by the irradiation with 60Co ?-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high - ca 90% of monomer converts into copolymer and only 10% is converted into homopolymer. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The results reported seem to indicate that MMA may be used in the production of shoe upper and sole leathers. The mechanism of some of the processes occuring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed.

  12. Investigation of nanocomposites made with poly(methacrylic acid-co-methyl methacrylate)/poly(N-vinyl-2-pyrrolidone)/multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Guoqin, Liu; Wei, Miao [College of Material Science and Engineering, Henan University of Technology (China); Lin-Jian, Shangguan, E-mail: mikepolymer@126.com [School of Mechanical Engineering, North China University of Water Conservancy and Electric Power (China)

    2014-06-01

    Poly(methacrylic acid-co-methyl methacrylate) (P(MAA-co-MMA)) was prepared in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) and multi-walled carbon nanotubes (MWNTs) via ultrasonic assisted solution free radical polymerization, i.e., P(MAA-co-MMA)/PVP/MWNTs nanocomposites. The morphology, glassy-state storage modulus, thermal behavior and swelling characteristics of P(MAA-co-MMA)/PVP/MWNTs nanocomposites were investigated. Scanning electron micrographs (SEM) revealed that MWNTs at low concentration could be uniformly dispersed into P(MAA-co-MMA)/PVP blends. With increasing MWNTs weight fraction, the average glassy-state modulus, glass transition temperatures and decomposition temperature of the nanocomposites increased, but their swelling characteristics decreased. (author)

  13. Investigation of nanocomposites made with poly(methacrylic acid-co-methyl methacrylate/poly(N-vinyl-2-pyrrolidone/multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Liu Guoqin

    2014-01-01

    Full Text Available Poly(methacrylic acid-co-methyl methacrylate (P(MAA-co-MMA was prepared in the presence of poly(N-vinyl-2-pyrrolidone (PVP and multiwalled carbon nanotubes (MWNTs via ultrasonic assisted solution free radical polymerization, i.e., P(MAA-co-MMA/PVP/MWNTs nanocomposites. The morphology, glassy-state storage modulus, thermal behavior and swelling characteristics of P(MAA-co-MMA/PVP/MWNTs nanocomposites were investigated. Scanning electron micrographs (SEM revealed that MWNTs at low concentration could be uniformly dispersed into P(MAA-co-MMA/PVP blends. With increasing MWNTs weight fraction, the average glassy-state modulus, glass transition temperatures and decomposition temperature of the nanocomposites increased, but their swelling characteristics decreased.

  14. Biocompatible and Biodegradable Ultrafine Nanoparticles of Poly(Methyl Methacrylate-co-Methacrylic Acid Prepared via Semicontinuous Heterophase Polymerization: Kinetics and Product Characterization

    Directory of Open Access Journals (Sweden)

    Henned Saade

    2016-01-01

    Full Text Available Ultrafine nanoparticles, less than 10 nm in mean diameter, of the FDA approved copolymer methyl methacrylate- (MMA- co-methacrylic acid (MAA, 2/1 (mol/mol, were prepared. The method used for the preparation of these particles stabilized in a latex containing around 11% solids includes the dosing of the monomers mixture on a micellar solution preserving monomer starved conditions. It is thought that the operation at these conditions combined with the hydrophilicity of MMA and MAA units favors the formation of ultrafine particles; the propagation reaction carried out within so small compartments renders copolymer chains rich in syndiotactic units very likely as consequence of the restricted movements of the end propagation of the chains. Because of their biocompatibility and biodegradability as well as their extremely small size these nanoparticles could be used as vehicles for improved drug delivery in the treatment of chronic-degenerative diseases.

  15. Effect of laser treatment on the optical properties of poly(methyl methacrylate) thin films

    Science.gov (United States)

    Zahedi, Shima; Dorranian, Davoud

    2013-01-01

    In this work, the effect of laser pulse treatment on the optical properties of poly(methyl methacrylate) (PMMA) films has been studied experimentally. The second harmonic of a pulsed Nd:YAG laser at 532 nm and 6 ns pulse width with 10 Hz repetition rate was used to modify the surface of red-BS-dye-doped PMMA films. Samples were ablated with 50 and 100 laser pulses. Optical reflectance and transmittance spectra were obtained in the range of 200-2000 nm. The optical properties of the films were influenced by the pulse number significantly. The oscillator and dispersion energies of the films were determined using the Wemple-Didomenico model. The optical band gap energy was extracted using the Tauc method. Results show that the optical parameters of the films were changed significantly after laser treatment.

  16. Synthesis, characterization and stability of chitosan and poly(methyl methacrylate) grafted carbon nanotubes.

    Science.gov (United States)

    Carson, Laura; Hibbert, Kemar; Akindoju, Feyisayo; Johnson, Chevaun; Stewart, Melisa; Kelly-Brown, Cordella; Beharie, Gavannie; Fisher, Tavis; Stone, Julia; Stoddart, Dahlia; Oki, Aderemi; Neelgund, Gururaj M; Regisford, Gloria; Traisawatwong, Pasakorn; Zhou, Jianren; Luo, Zhiping

    2012-10-01

    The single walled carbon nanotubes (CNTs) were effectively functionalized through grafting with chitosan (CTS) and poly(methyl methacrylate) (PMMA). Prior to grafting reaction, the carboxylated SWNCTs (SWNCTs-COOH) were obtained by treating pristine CNTs with a mixture of 3:1 (v/v) H(2)SO(4) and HNO(3), and the successive treatment of SWNCTs-COOH with SOCl(2) yielded the acylated CNTs (CNTs-COCl). The functionalized derivatives of CNTs were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, atomic force microscopy, scanning electron microscopy and transmission electron microscopy. Both CTS and PMMA grafted CNTs showed better dispersability in acetic acid and tetrahydrofuran, in addition to higher stability in solution. Published by Elsevier B.V.

  17. BIODEGRADATION BEHAVIOR OF POLY(METHYL METHACRYLATE GRAFTED SAGO STARCH BIOPOLYMER

    Directory of Open Access Journals (Sweden)

    Isam Yassin Qudsieh

    2010-09-01

    Full Text Available The graft copolymerization of poly(methyl methacrylate (PMMA onto sago starch (sago starch-g-PMMA was carried out using ceric ammonium nitrate (CAN as an initiator. PMMA was grafted onto sago starch using CAN as an initiator under nitrogen gas atmosphere. The maximum percentage of grafting (%G was determined to be 246% at the optimum conditions. The copolymers produced were characterized by Fourier Transform Infrared Spectrophotometry (FTIR, The FTIR spectra of the copolymers clearly indicated the presence of characteristic peaks of PMMA and sago starch, which suggested that PMMA had been successfully grafted on the sago starch. Biodegradability studies of sago starch-g-PMMA and sago starch were carried out by ?-amylase enzyme. Maximum biodegradation of the biopolymer was achieved after 3 days of incubation, while for the product was 7 days. The maximum production of glucose was achieved when the concentration of -amylase was 50 ppm.

  18. Isothermal crystallization kinetics of poly(ethylene terephthalate and poly(methyl methacrylate blends

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available Different kinetic models like the Avrami, Tobin and Urbanovici-Segal models have been applied for determining the isothermal crystallization kinetics of virgin poly(ethylene terephthalate (PET and PET/poly(methyl methacrylate (PMMA blends. The different compositions investigated were PET90/PMMA10, PET75/PMMA25 and PET50/PMMA50 [wt/wt%]. The experimental data was fitted using Solver, a non-linear multi-variable regression program and linearization method. The effect of composition variation of PET/PMMA on parameters like crystallization rate constant and crystallization exponent were investigated. Urbanovici-Segal and Avrami models gave the best fit to the experimental data. Tobin model does not seem to fit the experimental data for the systems under investigation. Experimental results indicated that the crystallization rate constant values increased with decreasing temperatures.

  19. Stereocontrol of Methyl Methacrylate during Photoinduced Nitroxide-Mediated Polymerization in the Presence of Photosensitive Alkoxyamine

    Directory of Open Access Journals (Sweden)

    Juahui Su

    2016-01-01

    Full Text Available Photosensitive alkoxyamine 2,2,6,6-tetramethyl-1-(1-phenylethoxypiperidin-4-yl quinoline-2-carboxylate (PE-TEMPO-Q was synthesized. Photochemical properties of PE-TEMPO-Q were studied to develop photoinduced nitroxide-mediated polymerization of methyl methacrylate (MMA. Rapid and facile polymerization at ambient temperature with PE-TEMPO-Q as an initiator was confirmed to proceed in a controlled mechanism based on the linear growth in molecular weight combined with relative narrow polydispersity index (1.4–1.8 of the resulting polymers. The stereochemistry of obtained polymers was also investigated, and the syndiotacticity slightly increased compared with the typical photopolymerization. Dual-controlled photopolymerization of MMA was achieved in the presence of synthesized alkoxyamine.

  20. Phase continuity and inversion in polystyrene/poly(methyl methacrylate) blends

    DEFF Research Database (Denmark)

    Chuai, Chengzhi; Almdal, K.; Lyngaae-Jørgensen, Jørgen

    2003-01-01

    Dual-phase continuity and phase inversion of polystyrene (PS)/poly(methyl methacrylate) (PMMA) blends processed in a twin-screw extruder was investigated using a selective extraction technique and scanning electron microscopy. Emphasis was placed on investigating the effects of viscosity ratio......, blend composition, processing variables (mixing time and annealing) and diblock copolymer addition on the formation of bi-continuous phase structure (BPS) in PS/PMMA blends. The experimental results were compared with the volume fraction of phase inversion calculated with various semi-empirical models...... of volume fraction in which BPS exists. Quiescent annealing coarsened the structure but indicated no qualitative changes. Some model predictions for phase inversion could predict qualitative aspects of the observed windows of co-continuity but none of the models could account quantitatively for the observed...

  1. Review of methyl methacrylate (MMA)/tributylborane (TBB)-initiated resin adhesive to dentin.

    Science.gov (United States)

    Taira, Yohsuke; Imai, Yohji

    2014-01-01

    This review, focusing mainly on research related to methyl methacrylate/tributylborane (MMA/TBB) resin, presents the early history of dentin bonding and MMA/TBB adhesive resin, followed by characteristics of resin bonding to dentin. Bond strengths of MMA/TBB adhesive resin to different adherends were discussed and compared with other bonding systems. Factors affecting bond strength (such as conditioners, primers, and medicaments used for dental treatment), bonding mechanism, and polymerization characteristics of MMA/TBB resin were also discussed. This review further reveals the unique adhesion features between MMA/TBB resin and dentin: in addition to monomer diffusion into the demineralized dentin surface, graft polymerization of MMA onto dentin collagen and interfacial initiation of polymerization at the resin-dentin interface provide the key bonding mechanisms.

  2. Kinetics of Vinyl Polymerization of Methyl Methacrylate Initiated by Ce(IV-Vanillin Redox System

    Directory of Open Access Journals (Sweden)

    M. Palanivelu

    2012-01-01

    Full Text Available The kinetics of polymerization of methyl methacrylate initiated by Ce(IV-Vanillin redox system was studied in aqueous solution of sulfuric acid at 40°C. The rate of polymerization (Rp and the reaction orders with respect to monomer, initiator and ligand have been determined and found to be 1.5, 0.5 and 0.5 respectively. The effect of concentration of sulfuric acid on the polymerization was also studied. The rate of polymerization was found to increase with increasing temperature 30–60°C and decreases at higher temperature (>60°C. The overall activation energy (Ea was found to be 36.7 kJ/mol. A suitable kinetic scheme has been proposed.

  3. Hybrid nanocomposites based on luminescent colloidal nanocrystals in poly(methyl methacrylate): spectroscopical and morphological studies.

    Science.gov (United States)

    Tamborra, M; Striccoli, M; Curri, M L; Agostiano, A

    2008-02-01

    We report on preparation process and optical characterization of a nanocomposite material obtained dispersing colloidal semiconductor nanocrystals (NCs), namely CdS and CdSe@ZnS core-shell system in poly(methyl methacrylate) (PMMA). Such method allows a large flexibility on nanocrystal materials and on the choice of the polymer characteristics. Nanocomposite thin films were extensively investigated by means optical and morphological techniques. The effects on NC composition, concentration, size, and surface chemistry on the spectroscopical and structural behaviour of the nanocomposite properties were studied. The NC size dependent optical properties of the nanocomposites are mainly accounted by the NC composition and size, while the morphology of the films is explained on the base of the NC surface characteristics and their concentration in the nanocomposites.

  4. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate thin film

    Directory of Open Access Journals (Sweden)

    Minggang Xia

    2012-09-01

    Full Text Available The Raman spectra of bilayer graphene covered with poly(methyl methacrylate (PMMA were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMA in the strain engineering of graphene nanodevices.

  5. Preparation of Electrospun Nanocomposite Nanofibers of Polyaniline/Poly(methyl methacrylate with Amino-Functionalized Graphene

    Directory of Open Access Journals (Sweden)

    Hanan Abdali

    2017-09-01

    Full Text Available In this paper we report upon the preparation and characterization of electrospun nanofibers of doped polyaniline (PANI/poly(methyl methacrylate (PMMA/amino-functionalized graphene (Am-rGO by electrospinning technique. The successful functionalization of rGO with amino groups is examined by Fourier transforms infrared (FTIR, X-ray photoelectron spectroscopy (XPS and Raman microspectrometer. The strong electric field enables the liquid jet to be ejected faster and also contributes to the improved thermal and morphological homogeneity of PANI/PMMA/Am-rGO. This results in a decrease in the average diameter of the produced fibers and shows that these fibers can find promising uses in many applications such as sensors, flexible electronics, etc.

  6. Reversible-Deactivation Radical Polymerization of Methyl Methacrylate Induced by Photochemical Reduction of Various Copper Catalysts

    Directory of Open Access Journals (Sweden)

    Jaroslav Mosnáček

    2014-11-01

    Full Text Available Photochemically mediated reversible-deactivation radical polymerization of methyl methacrylate was successfully performed using 50–400 ppm of various copper compounds such as CuSO4·5H2O, copper acetate, copper triflate and copper acetylacetonate as catalysts. The copper catalysts were reduced in situ by irradiation at wavelengths of 366–546 nm, without using any additional reducing agent. Bromopropionitrile was used as an initiator. The effects of various solvents and the concentration and structure of ligands were investigated. Well-defined polymers were obtained when at least 100 or 200 ppm of any catalyst complexed with excess tris(2-pyridylmethylamine as a ligand was used in dimethyl sulfoxide as a solvent.

  7. Antiresonant guiding in a poly(methyl-methacrylate) hollow-core optical fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Nielsen, Kristian; Bang, Ole

    2015-01-01

    Strong antiresonant reflecting optical waveguiding is demonstrated in a novel poly (methyl-methacrylate) (PMMA) hollow-core fiber. The transmission spectrum of the fiber was characterized using a supercontinuum source and it revealed distinct resonances with resonant dips as strong as ~20 d......B in the wavelength range 480-900 nm, where PMMA has low absorption. The total propagation loss of the fiber was measured to have a minimum of ~45 dB m-1 at around 500 nm. The thermal sensitivity of the fiber is 256 ± 16 pm °C-1, defined as the red-shift of the resonances per °C, which is three times higher than...... the sensitivity of polymer fiber Bragg gratings....

  8. Antiresonant guiding in a poly(methyl-methacrylate) hollow-core optical fiber

    Science.gov (United States)

    Markos, Christos; Nielsen, Kristian; Bang, Ole

    2015-10-01

    Strong antiresonant reflecting optical waveguiding is demonstrated in a novel poly (methyl-methacrylate) (PMMA) hollow-core fiber. The transmission spectrum of the fiber was characterized using a supercontinuum source and it revealed distinct resonances with resonant dips as strong as ˜20 dB in the wavelength range 480-900 nm, where PMMA has low absorption. The total propagation loss of the fiber was measured to have a minimum of ˜45 dB m-1 at around 500 nm. The thermal sensitivity of the fiber is 256 ± 16 pm °C-1, defined as the red-shift of the resonances per °C, which is three times higher than the sensitivity of polymer fiber Bragg gratings.

  9. Interfacial interaction and glassy dynamics in stacked thin films of poly(methyl methacrylate)

    Science.gov (United States)

    Hayashi, Tatsuhiko; Segawa, Kenta; Sadakane, Koichiro; Fukao, Koji; Yamada, Norifumi L.

    2017-05-01

    Neutron reflectivity and dielectric permittivity of alternately stacked thin films of protonated and deuterated poly(methyl methacrylate) were measured to elucidate a correlation between the time evolution of the interfacial structure and the segmental dynamics in the stacked thin polymer films during isothermal annealing above the glass transition temperature. The roughness at the interface between two thin layers increases with the annealing time, whereas the relaxation rate and strength of the α-process decrease with an increase in the annealing time. A strong correlation between the time evolution of the interfacial structure and the dynamics of the α-process during annealing could be observed using neutron reflectivity and dielectric relaxation measurements.

  10. Luminescent Properties of Surface Functionalized BaTiO3 Embedded in Poly(methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Sebastian Requena

    2014-01-01

    Full Text Available As-received BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyltriethoxysilane (APTES and mixed with poly(methyl methacrylate/toluene solution. The nanocomposite solution was spin coated on Si substrates to form thin films. The photoluminescence spectrum of the pure powder was composed of a bandgap emission at 3.0 eV and multiple bands centered about 2.5 eV. Surface functionalization of the BaTiO3 powder via APTES increases overall luminescence at room temperature while only enhancing bandgap emission at low-temperature. Polymer coating of the functionalized nanoparticles significantly enhances bandgap emissions while decreasing emissions associated with near-surface lattice distortions at 2.5 eV.

  11. Tensile behaviour of blends of poly(vinylidene fluoride) with poly(methyl methacrylate)

    Science.gov (United States)

    Cebe, Peggy; Chung, Shirley Y.

    1990-01-01

    Blends of poly(vinylidene fluoride) (PVF2) and poly(methyl methacrylate) (PMMA) were prepared over a wide concentration range and tested in tension at the same relative temperature below the glass transition. In nearly all blends, under conditions favoring disentanglement, (decrease in strain rate, or increase in test temperature), the yield stress and drawing stress decreased while the breaking strain increased. For materials with about the same degree of crystallinity, those with a higher proportion of amorphous PVF2 exhibited brittle-like behavior as a result of interlamellar tie molecules. In the semicrystalline blends, yield stress remains high as the test temperature approaches Tg, whereas in the amorphous blends the yield stress falls to zero near Tg. Results of physical aging support the role of interlamellar ties which cause semicrystalline blends to exhibit aging at temperatures above Tg.

  12. Far infrared-assisted encapsulation of filter paper strips in poly(methyl methacrylate) for proteolysis.

    Science.gov (United States)

    Chen, Qiwen; Bao, Huimin; Zhang, Luyan; Chen, Gang

    2016-02-01

    Filter paper strips were enclosed between two poly(methyl methacrylate) plates to fabricate paper-packed channel microchips under pressure in the presence of far infrared irradiation. After the enclosed paper strip was oxidized by periodate, trypsin was covalently immobilized in them to fabricate microfluidic proteolysis bioreactor. The feasibility and performance of the unique bioreactor were demonstrated by digesting BSA and lysozyme. The results were comparable to those of conventional in-solution proteolysis while the digestion time was significantly reduced to ∼18 s. The suitability of the microfluidic paper-based bioreactors to complex proteins was demonstrated by digesting human serum. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Zinc oxide nanowire-poly(methyl methacrylate) dielectric layers for polymer capacitive pressure sensors.

    Science.gov (United States)

    Chen, Yan-Sheng; Hsieh, Gen-Wen; Chen, Shih-Ping; Tseng, Pin-Yen; Wang, Cheng-Wei

    2015-01-14

    Polymer capacitive pressure sensors based on a dielectric composite layer of zinc oxide nanowire and poly(methyl methacrylate) show pressure sensitivity in the range of 2.63 × 10(-3) to 9.95 × 10(-3) cm(2) gf(-1). This represents an increase of capacitance change by as much as a factor of 23 over pristine polymer devices. An ultralight load of only 10 mg (corresponding to an applied pressure of ∼0.01 gf cm(-2)) can be clearly recognized, demonstrating remarkable characteristics of these nanowire-polymer capacitive pressure sensors. In addition, optical transmittance of the dielectric composite layer is approximately 90% in the visible wavelength region. Their low processing temperature, transparency, and flexible dielectric film makes them a highly promising means for flexible touching and pressure-sensing applications.

  14. Optical Study on Poly(methyl methacrylate/Poly(vinyl acetate Blends

    Directory of Open Access Journals (Sweden)

    R. M. Ahmed

    2009-01-01

    Full Text Available Transparent films of poly(methyl methacrylate/poly(vinyl acetate blend with different concentrations were prepared by using solution-cast technique. FT-IR transmission spectra were carried for the samples to detect the influence of UV radiation. In addition, optical absorption measurements were carried out for the samples at room temperature across the 190–900 nm wavelength regions before and after exposure to UV and filtered radiation using xenon arc lamp. The study has been also extended to include the changes in the optical parameters including the band tail width and band gap energies for the samples. Moreover, the refractive index was calculated for the samples from specular reflection and absorption spectrum before and after exposure to UV and filtered radiation.

  15. Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites.

    Science.gov (United States)

    Littunen, Kuisma; Hippi, Ulla; Saarinen, Tapio; Seppälä, Jukka

    2013-01-02

    Composites of poly(methyl methacrylate) (PMMA) and nanofibrillated cellulose (NFC) were prepared by solution blending and further processed by injection and compression molding. To improve adhesion at the PMMA/NFC interface, the nanofibrils were covalently grafted with PMMA. Formation of a percolating nanofibril network was observed between 1 and 5 wt.% of NFC by dynamic rotational rheometry in molten state. This observation was further supported by the behavior of glass transition temperature which decreased at low NFC concentrations but recovered above the percolation threshold, indicating a decreased mobility of the matrix polymer. This effect was more pronounced with ungrafted NFC, possibly due to a stronger network. The unmodified NFC induced a minor degradation of the molar mass of PMMA. As thin plates, the composites were transparent at low NFC concentrations but became partially aggregated at the highest NFC concentrations. Despite the continuous NFC network, tensile testing showed no improvement of the mechanical properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Unique effects of microwave heating on polymerization kinetics of poly(methyl methacrylate) composites

    Energy Technology Data Exchange (ETDEWEB)

    Spasojević, Pavle [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Jovanović, Jelena, E-mail: jelenaj@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11001 Belgrade (Serbia); Adnadjevic, Borivoj [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11001 Belgrade (Serbia)

    2013-09-16

    The effects of heating mode (conventional and microwave) on the kinetics of isothermal polymerization of MMA composite materials were investigated. Isothermal kinetics curves at temperature range from 343 K to 363 K for both conventional (CH) and microwave heating (MWH) were determined. It was found that the polymerization of MMA composite materials was kinetically elementary reaction for both CH and MWH. The kinetics of CH polymerization can be described by the model of phase-boundary controlled process (contracting volume), whereas the kinetics of MWH polymerization can be described by the model of first-order chemical reaction. The kinetics parameters (E{sub a} and ln A) of the polymerization under microwave heating are lower than for conventional heating. The established decreases in the activation energy and pre-exponential factor under the MWH compared to the CH is explained with the increase in the energy of ground vibrational level of the C–O valence vibrations (ν = 987 cm{sup −1}) in methyl methacrylate molecule and with the decrease in its anharmonicity factor which is caused with the selective resonant transfer of energy from the energetic reservoir to the oscillators in methyl methacrylate molecules. - Graphical abstract: Display Omitted - Highlights: • The MWH speeds the MMA material polymerization and changes the kinetics model. • A novel concept of MWH action based on activation complexes formation is presented. • The Selective Energy Transfer model is used to explain the effects of MWH. • The kinetics parameters under MWH are lower than for CH. • The activation energy for both MWH and CH polymerization is quantized.

  17. Identification and Quantitation of Volatile Organic Compounds in Poly(methyl methacrylate) Kitchen Utensils by Headspace Gas Chromatography/Mass Spectrometry.

    Science.gov (United States)

    Ohno, Hiroyuki; Mutsuga, Motoh; Kawamura, Yoko

    2014-01-01

    A headspace GC/MS method was developed for identification and quantitation of residual volatile organic compounds in poly(methyl methacrylate) (PMMA) kitchen utensils. A sample was cut into small pieces, then N,N-dimethylacetamide was added in a headspace vial and sealed. After storing for more than 1 day at room temperature, the vial was incubated for 1 h at 90°C, and the headspace gas was analyzed by GC/MS. In 24 PMMA kitchen utensils, 16 volatile organic compounds including methyl methacrylate, methyl acrylate, toluene, 2-methyl-1-butene, 2-methyl-2-butene, 2-methylpropanal, methyl propionate, methyl isobutyrate, trans-3-heptene, heptane, cis-3-heptene, trans-2-heptene, cis-2-heptene, 2,4,4-trimethyl-1-pentene, 2,4,4-trimethyl-2-pentene, and 1-octene were identified and quantitated. These 15 volatile compounds except methyl methacrylate were found for the first time in PMMA kitchen utensils. Recovery rates from spiked samples were 97.4-104.0% with CV values of 2.8-9.6%. Samples contained 190-7900 μg/g of methyl methacrylate, 26-810 μg/g of methyl acrylate, and 2-1300 μg/g of toluene; other compounds were at levels less than 100 μg/g. Methyl methacrylate was the main monomer of PMMA and methyl acrylate was a comonomer; toluene should be used as a solvent.

  18. Comparison of human mesenchymal stem cells proliferation and differentiation on poly(methyl methacrylate) bone cements with and without mineralized collagen incorporation.

    Science.gov (United States)

    Wu, Jingjing; Xu, Suju; Qiu, Zhiye; Liu, Peng; Liu, Huiying; Yu, Xiang; Cui, Fu-Zhai; Chunhua, Zhao Robert

    2016-01-01

    Poly(methyl methacrylate) bone cement is widely used in vertebroplasty, joint replacement surgery, and other orthopaedic surgeries, while it also exposed many problems on mechanical property and biocompatibility. Better performance in mechanical match and bone integration is highly desirable. Recently, there reported that incorporation of mineralized collagen into poly(methyl methacrylate) showed positive results in mechanical property and osteointegration ability in vivo. In the present study, we focused on the comparison of osteogenic behavior between mineralized collagen incorporated in poly(methyl methacrylate) and poly(methyl methacrylate). Human marrow mesenchymal stem cells are used in this experiment. Adhesion and proliferation were used to characterize biocompatibility. Activity of alkaline phosphatase was used to assess the differentiation of human marrow mesenchymal stem cells into osteoblasts. Real-time PCR was performed to detect the expression of osteoblast-related markers at messenger RNA level. The results show that osteogenic differentiation on mineralized collagen incorporated in poly(methyl methacrylate) bone cement is more than two times higher than that of poly(methyl methacrylate) after culturing for 21 days. Thus, important mechanism on mineralized collagen incorporation increasing the osteogenetic ability of poly(methyl methacrylate) bone cement may be understood in this concern. © The Author(s) 2015.

  19. 1D and 2D NMR studies of isobornyl acrylate - Methyl methacrylate copolymers

    Science.gov (United States)

    Khandelwal, Deepika; Hooda, Sunita; Brar, A. S.; Shankar, Ravi

    2011-10-01

    Isobornyl acrylate - methyl methacrylate (B/M) copolymers of different compositions were synthesized by atom transfer radical polymerization (ATRP) using methyl-2-bromopropionate as an initiator and PMDETA copper complex as catalyst under nitrogen atmosphere at 70 °C. 1H NMR spectrum was used to determine the compositions of copolymer. The copolymer compositions were then used to determine the reactivity ratios of monomers. Reactivity ratios of co-monomers in B/M copolymer, determined from linear Kelen-Tudos method (KT) and non linear Error-in-Variable Method (EVM), are rB = 0.41 ± 0.11, rM = 1.11 ± 0.33 and rB = 0.52, rM = 1.31 respectively. The complete resonance assignments of 1H and 13C{ 1H} NMR spectra were carried out with the help of Distortion less Enhancement by Polarization Transfer (DEPT), two-dimensional Heteronuclear Single Quantum Coherence (HSQC). 2D HSQC assignments were further confirmed by 2D Total Correlation Spectroscopy (TOCSY). The carbonyl carbon of B and M units and methyl carbon of M unit were assigned up to triad compositional and configurational sequences whereas β-methylene carbons were assigned up to tetrad compositional and configurational sequences. Similarly the methine carbon of B unit was assigned up to pentad level. 1,3 and 1,4 bond order couplings of carbonyl carbon and quaternary carbon resonances with methine, methylene and methyl protons were studied in detail using 2D Hetero Nuclear Multiple Bond Correlation (HMBC) spectra.

  20. Zinc Ion Removal on Hybrid Pectin-Based Beads Containing Modified Poly(Methyl Methacrylate Waste

    Directory of Open Access Journals (Sweden)

    Agata Jakóbik-Kolon

    2017-12-01

    Full Text Available A new hybrid sorbent in the form of round beads containing modified poly(methyl methacrylate (PMMA waste immobilized in pectin and crosslinked with calcium ions was prepared. A previously obtained and characterized powdered poly(methyl methacrylate–based sorbent was used. Batch and column studies on the new material’s sorption-desorption properties were performed. Two kinetic models (pseudo-first- and pseudo-second-order and three isotherms (Langmuir, Langmuir bisite and Freundlich were used to describe the results. Breakthrough and elution curves were also obtained. Nitric, hydrochloric, and sulfuric acid of various concentrations were used in the desorption studies. Higher sorption affinity of zinc(II ions to hybrid sorbent than to pectin alone, reflected by higher values of the Langmuir and Freundlich model parameters, was observed. The maximum sorption capacities, calculated based on the best-fitted models, were 50.2 mg/g (Langmuir bisite and 42.2 mg/g (Langmuir for hybrid and only pectin beads, respectively. The stripping of Zn ions using 0.1 M solutions of mineral acids was similarly effective in the case of both sorbents. The mass balance calculated for the column studies showed about 100% recovery of zinc in a sorption-desorption cycle. By applying the hybrid sorbent under the studied conditions it is possible to purify Zn in water to the level permitted by law and concentrate Zn(II ions by about 60 times.

  1. Effects of metal ions on entero-soluble poly(methacrylic acid-methyl methacrylate) coating: a combined analysis by ATR-FTIR spectroscopy and computational approaches.

    Science.gov (United States)

    Cilurzo, Francesco; Gennari, Chiara G M; Selmin, Francesca; Vistoli, Giulio

    2010-04-05

    Poly(methacrylic acid-methyl methacrylate)s (HPMMs) are pH-dependent polymers which ionize and form salts (PMMs) in neutral conditions. Despite their wide use in tablet coating, the interactions of PMMs with electrolytes present in biorelevant media and luminal fluids have been scantly investigated. The data generated in the current work provide the basic information on the effect of bivalent cations, namely, Ca2+, Zn2+ and Mn2+, on the HPMMs' solubility and, consequently, on the performances (disintegration and drug dissolution) of acetaminophen gastroresistant tablets when exposed to fluid containing such salts. The interactions between polymers and metal ions were analyzed by ATR-FTIR spectroscopy and in silico combining molecular dynamics simulations to explore the conformational profiles of several oligomers with different M(w), taken as model of the polymers, with ab initio and semiempirical calculations in the gas phase. The computational results agree with the experimental data in terms of spatial disposition of the bications with respect to PMMs (Ca2+ and Mn2+ as bidentate form and Zn2+ as monodentate ligand) and interaction strength (Zn2+ > Mn(2+) > Ca2+). The tablet disintegration and dissolution rate of acetaminophen were strongly affected by the interactions of the dissolving copolymer with the metal ions which led to coating insolubilization. These preliminary results underline that the ingestion of metal ions at high concentrations could affect the drug liberation from gastroresistant dosage forms.

  2. Synthesis of hollow silver spheres using poly-(styrene-methyl acrylic acid) as templates in the presence of sodium polyacrylate

    Science.gov (United States)

    Wang, Aili; Yin, Hengbo; Ge, Chen; Ren, Min; Liu, Yumin; Jiang, Tingshun

    2010-02-01

    Hollow silver spheres were successfully prepared by reducing AgNO 3 with ascorbic acid and using negatively charged poly-(styrene-methyl acrylic acid) (PSA) spheres as templates in the presence of sodium polyacrylate as a stabilizer. Firstly, silver cations adsorbed on the surface of PSA spheres via electrostatic attraction between the carboxyl groups and silver cations were reduced in situ by ascorbic acid. The silver nanoparticles deposited on the surface of PSA spheres served as seeds for the further growth of silver shells. After that, extra amount of AgNO 3 and ascorbic acid solutions were added to form PSA/Ag composites with thick silver shells. In order to obtain compact silver shells, the as-prepared PSA/Ag composites were heated at 150 °C for 3 h. Then hollow silver spheres were prepared by dissolving PSA templates with tetrahydrofuran.

  3. Thermo-Mechanical Properties of Semi-Degradable Poly(β-amino ester)-co-Methyl Methacrylate Networks under Simulated Physiological Conditions.

    Science.gov (United States)

    Safranski, David L; Crabtree, Jacob C; Huq, Yameen R; Gall, Ken

    2011-09-29

    Poly(β-amino ester) networks are being explored for biomedical applications, but they may lack the mechanical properties necessary for long term implantation. The objective of this study is to evaluate the effect of adding methyl methacrylate on networks' mechanical properties under simulated physiological conditions. The networks were synthesized in two parts: (1) a biodegradable crosslinker was formed from a diacrylate and amine, (2) and then varying concentrations of methyl methacrylate were added prior to photopolymerizing the network. Degradation rate, mechanical properties, and glass transition temperature were studied as a function of methyl methacrylate composition. The crosslinking density played a limited role on mechanical properties for these networks, but increasing methyl methacrylate concentration improved the toughness by several orders of magnitude. Under simulated physiological conditions, networks showed increasing toughness or sustained toughness as degradation occurred. This work establishes a method of creating degradable networks with tailorable toughness while undergoing partial degradation.

  4. Studies on single polymer composites of poly(methyl methacrylate) reinforced with electrospun nanofibers with a focus on their dynamic mechanical properties

    CSIR Research Space (South Africa)

    Matabola, KP

    2011-07-01

    Full Text Available The dynamic mechanical properties of single polymer composites of poly(methyl methacrylate) (PMMA) reinforced with electrospun PMMA nanofibers of different diameters are reported. The effect of electrospinning parameters on the morphology...

  5. Preparation of poly(methyl methacrylate) microcapsules by in situ polymerization on the surface of calcium carbonate particles.

    Science.gov (United States)

    Sato, Katsuhiko; Nakajima, Tatsuya; Anzai, Jun-ichi

    2012-12-01

    Poly(methyl methacrylate) (PMMA) microcapsules were prepared by the in situ polymerization of methyl methacrylate (MMA) and N,N'-methylenebisacrylamide on the surface of calcium carbonate (CaCO(3)) particles, followed by the dissolution of the CaCO(3) core in ethylenediaminetetraacetic acid solution. The microcapsules were characterized using fluorescence microscopy, atomic force microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. The average sizes of the CaCO(3) particles and PMMA capsules were 3.8±0.6 and 4.0±0.6 μm, respectively. A copolymer consisting of MMA and rhodamine B-bearing MMA was also used to prepare microcapsules for fluorescent microscopy observations. Fluorescein isothiocyanate-labeled bovine serum albumin was enclosed in the PMMA microcapsules and its release properties were studied. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. A simple sonochemical method for fabricating poly(methyl methacrylate)/stearic acid phase change energy storage nanocapsules.

    Science.gov (United States)

    Wang, Guxia; Xu, Weibing; Hou, Qian; Guo, Shengwei

    2015-11-01

    In this study, stearic acid suitable for thermal energy storage applications was nanoencapsulated in a poly(methyl methacrylate) shell. The nanocapsules were prepared using a simple ultrasonically initiated in situ polymerization method. The morphology and particle size of the poly(methyl methacrylate)/stearic acid phase change energy storage nanocapsules (PMS-PCESNs) were analyzed using transmission electron microscopy, scanning electron microscopy, atomic force microscopy and dynamic light scattering. The latent heat storage capacities of stearic acid and the PMS-PCESNs were determined using differential scanning calorimetry. The chemical composition of the nanocapsules was characterized using Fourier transform infrared spectroscopy. All of the results show that the PMS-PCESNs were synthesized successfully and that the latent heat storage capacity and encapsulation efficiency were 155.6 J/g and 83.0%, respectively, and the diameter of each nanocapsule was 80-90 nm. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Study of castor oil polyurethane - poly(methyl methacrylate) semi-interpenetrating polymer network (SIPN) reaction parameters using a 2³ factorial experimental design

    OpenAIRE

    Fernanda Oliveira Vieira da Cunha; Diogo Henrique Roesler Melo; Vinicius Bassanesi Veronese; Maria Madalena de Camargo Forte

    2004-01-01

    In this work was employed a 2³ factorial experiment design to evaluate the castor oil polyurethane-poly(methyl methacrylate) semi-IPN synthesis. The reaction parameters used as independent variables were NCO/OH molar ratio, polyurethane polymerization time and methyl methacrylate (MMA) content. The semi-IPNs were cured over 28 h using two thermal treatments. The polymers were characterized by infrared and Raman spectroscopy, thermal analysis and swelling profiles in n-hexane. The glass transi...

  8. Effect of Graphene Oxide on the Reaction Kinetics of Methyl Methacrylate In Situ Radical Polymerization via the Bulk or Solution Technique

    OpenAIRE

    Ioannis S. Tsagkalias; Triantafyllos K. Manios; Achilias, Dimitris S.

    2017-01-01

    The synthesis of nanocomposite materials based on poly(methyl methacrylate) and graphene oxide (GO) is presented using the in situ polymerization technique, starting from methyl methacrylate, graphite oxide, and an initiator, and carried out either with (solution) or without (bulk) in the presence of a suitable solvent. Reaction kinetics was followed gravimetrically and the appropriate characterization of the products took place using several experimental techniques. X-ray diffraction (XRD) d...

  9. The effect of fiber reinforcement on the dimensional changes of poly methyl methacrylate resin after processing and after immersion in water: an in vitro study.

    Science.gov (United States)

    Ranganath, L M; Shet, Ravindra Ganguly Keshav; Rajesh, A G; Abraham, Sathish

    2011-07-01

    To evaluate and compare the effect of fiber reinforcement on the dimensional changes of heat-cured poly (methyl methacrylate) resin after processing and immersion in water. Three different heat-cure resins were selected for the present study: (1) Nonreinforced heat-cure methyl methacrylate resin, (2) High Impact heat-cured methyl methacrylate resin and (3) Fiberglass reinforced methyl methacrylate resin. Ninety samples were prepared using three different resins and denture bases obtained for the same. The amount of space between the tissue surface and the cast in the anterior, middle and posterior regions is measured after processing and immersion in water for 17 days using a traveling microscope having a least count of 0.001 cm. Mean and standard deviation were calculated for the dimensional changes and were subjected to statistical analysis (Student t-test, unpaired). Among the three groups of resins, fiber reinforced heat-cured methyl methacrylate resin was found to be statistically highly significant in terms of dimensional changes when compared with the nonreinforced and high impact heat-cured resins. Dimensional changes were evident in all the planes in the three groups studied and were in the following decreasing order-fiberglass reinforced heat-cured poly (methyl methacrylate) resin, high impact heat-cured poly (methyl methacrylate) resin and nonreinforced heat-cured poly (methyl methacrylate) resin. The fibers are added in order to increase the strength of acrylic resin. Considering only the strength may in turn affect the dimensional accuracy of the acrylic resin resulting in loss of retention and stability, affecting the fit of the denture.

  10. Pilot-scale Synthesis And Rheological Assessment Of Poly(methyl Methacrylate) Polymers: Perspectives For Medical Application.

    OpenAIRE

    Linan, Lamia Zuniga; Nascimento Lima, Nádson M; Filho, Rubens Maciel; Sabino, Marcos A; Kozlowski, Mark T.; Manenti, Flavio

    2016-01-01

    This work presents the rheological assessment of poly(methyl methacrylate) (PMMA) polymers synthesized in a dedicated pilot-scale plant. This material is to be used for the construction of scaffolds via Rapid Prototyping (RP). The polymers were prepared to match the physical and biological properties required for medical applications. Differential Scanning Calorimetry (DSC) and Size Exclusion Chromatography (SEC) measurements verified that the synthesized polymers were atactic, amorphous and ...

  11. Bonding at Compatible and Incompatible Amorphous Interfaces of Polystyrene and Poly(Methyl Methacrylate) Below the Glass Transition Temperature

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    Films of high-molecular-weight amorphous polystyrene (PS, M-w = 225 kg/mol, M-w/M-n = 3, T-g-bulk = 97degreesC, where T-g-bulk is the glass transition temperature of the bulk sample) and poly(methyl methacrylate) (PMMA, M-w = 87 kg/mol, M-w/M-n = 2, Tg-bulk = 109degreesC) were brought into contact...

  12. Preparation, structural characterization, and thermomechanical properties of poly(methyl methacrylate)/organoclay nanocomposites by melt intercalation.

    Science.gov (United States)

    Matadi, R; Makradi, A; Ahzi, S; Sieffert, J G; Etienne, S; Rush, D; Vaudemont, R; Muller, R; Bouquey, M

    2009-05-01

    Poly(methyl methacrylate) (PMMA) based nanocomposites were synthesized by melt intercalation technique using organoclays (Cloisite 30B and Cloisite 20A) as fillers. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to determine the dispersion and the morphology of the nanocomposites obtained. Thermomechanical tests including tensile test and dynamic mechanical analysis (DMA) were used to evaluate the Young's modulus, storage modulus and the glass transition temperature. Thermogravimetric analysis (TGA) is conducted on the poly(methyl methacrylate) based nanocomposites to determine their thermal stability. The effect of filler content is studied by considering samples with filler contents varying from 1 to 5 wt%. The mechanical properties obtained from the tensile tests show an increase in the Young's modulus and a decrease in the strain to failure as function of the nanoclays concentration. Relative to the pure poly(methyl methacrylate), the dynamic mechanical analyses show an increase in the storage modulus and the glass transition temperature of both nanocomposites. The thermogravimetric analysis shows an increase of the thermal stability of both nanocomposites.

  13. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via photo-initiated graft polymerization of poly(ethylene glycol)

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaomeng [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Luan Shifang, E-mail: sfluan@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yang Huawei; Shi Hengchong; Zhao Jie; Jin Jing [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin Jinghua, E-mail: yinjh@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Stagnaro, Paola [Istituto per Io Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova (Italy)

    2012-01-15

    Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) copolymer biomedical elastomer was covalently grafted with poly(ethylene glycol) methyl ether methacrylate (PEGMA) via a photo-initiated graft polymerization technique. The surface graft polymerization of SEBS with PEGMA was verified by ATR-FTIR and XPS. Effect of graft polymerization parameters, i.e., monomer concentration, UV irradiation time and initiator concentration on the grafting density was investigated. Comparing with the virgin SEBS film, the PEGMA-modified SEBS film presented an enhanced wettability and a larger surface energy. Besides, the surface grafting of PEGMA imparted excellent anti-platelet adhesion and anti-protein adsorption to the SEBS surface.

  14. Invivo absorption behaviour of theophylline from starch-methyl methacrylate matrix tablets in beagle dogs.

    Science.gov (United States)

    Fernández-Campos, F; Ferrero, C; Colom, H; Jiménez-Castellanos, M R

    2015-01-30

    This study evaluates in vivo the drug absorption profiles from potato starch-methyl methacrylate matrices(*) using theophylline as a model drug. Healthy beagle dogs under fasting conditions were used for in vivo studies and plasma samples were analyzed by a fluorescence polarization immunoassay analysis (FPIA method). Non-compartmental and compartmental (population approach) analysis was performed to determine the pharmacokinetic parameters. The principle of superposition was applied to predict multiple dose plasma concentrations from experimental single dose data. An in vitro-in vivo correlation (IVIVC) was also assessed. The sustained absorption kinetics of theophylline from these formulations was demonstrated by comparison with two commercially available oral sustained-release theophylline products (Theo-Dur(®) and Theolair(®)). A one-compartment model with first order kinetics without lag-time best describes the absorption/disposition of theophylline from the formulations. Results revealed a theophylline absorption rate in the order FD-HSMMA≥Theo-Dur(®)≥OD-CSMMA>Theolair(®)≥FD-CSMMA. On the basis of simulated plasma theophylline levels, a twice daily dosage (every 12h) with the FD-CSMMA tablets should be recommended. A Level C IVIVC was found between the in vitrot50% and the in vivo AUC/D, although further optimization of the in vitro dissolution test would be needed to adequately correlate with in vivo data. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Nanopillar formation from two-shot femtosecond laser ablation of poly-methyl methacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Baset, F.; Popov, K.; Villafranca, A.; Alshehri, A.M.; Guay, J.-M.; Ramunno, L.; Bhardwaj, V.R., E-mail: ravi.bhardwaj@uottawa.ca

    2015-12-01

    Highlights: • We studied morphological evolution and dynamics of two-pulse laser ablation in PMMA. • Nanopillar and volcanic eruption like structures are formed within the ablation crater. • Reflection of shockwave induced by the second laser pulse creates the structures. • Shockwave reflects from the boundary created by the first pulses. • Reflected shockwave causes density pinching in the middle of the ablation region. - Abstract: We present experimental and numerical studies on the morphological evolution and dynamics of femtosecond laser ablation of bulk poly-methyl methacrylate (PMMA) irradiated with a pair of pulses. We show that a nanopillar-like structure is formed in the middle of the ablation crater for pulse energies below single-shot ablation threshold. The nanopillar is ∼400 nm long, lies adjacent to a nanopore, and protrudes ∼150 nm above the sample surface. As the pulse energy is increased gradually, the nanopillar disappears and the nanopore inside the ablation crater becomes larger. At higher pulse energies, a volcanic eruption like structure appears in the middle of the crater whose size and height increases with energy. 2D molecular dynamics simulations reveal that a nanojet and other features observed at higher pulse energies can be formed when the reflection of a shockwave, induced by the second laser pulse, causes density pinching in the middle of the interaction region that rapidly pushes out molten material towards the surface. The shockwave is reflected from the cold boundaries of a modified region created by the first laser pulse.

  16. Proportionate cancer mortality in methyl methacrylate-exposed orthopedic surgeons compared to general surgeons.

    Science.gov (United States)

    Diaz, James Henry

    2011-06-01

    Methyl methacrylate (MMA), a volatile liquid used to make dentures, hearing aids, joint prostheses, and medical adhesives, has been associated with colorectal carcinomas in acrylic sheet manufacturing workers. A case-control proportionate cancer mortality investigation was conducted to determine cancer death differences in orthopedic surgeons performing total joint replacements (TJRs) (MMA-exposed cases) and general surgeons not performing TJRs (unexposed controls). The American Colleges of Orthopedic Surgeons and General Surgeons provided complete demographic information on 468 male orthopedic surgeons and 1,890 male general surgeons who died during 1991-2001. Decedent data was submitted to the National Death Index for matching with underlying causes of death on state death certificates. Proportionate differences in ages at death, deaths from cancer, and deaths from site-specific cancers were analyzed for statistically significant differences by unpaired, two-tailed t tests for continuous variables and by both proportionate cancer mortality ratios and Yates-corrected chi squares for categorical variables. Orthopedic surgeons died of cancer more often (χ (2) = 7.699, P = 0.006) and at younger (t = 5.53, P MMA and are proportionately more likely to die from cancer, especially esophageal and myeloproliferative cancers, than general surgeons. MMA-exposed healthcare workers may be at increased risks of untimely deaths from site-specific malignancies.

  17. Blend miscibility of cellulose propionate with poly(N-vinyl pyrrolidone-co-methyl methacrylate).

    Science.gov (United States)

    Sugimura, Kazuki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2013-10-15

    The blend miscibility of cellulose propionate (CP) with poly(N-vinyl pyrrolidone-co-methyl methacrylate) (P(VP-co-MMA)) was investigated. The degree of substitution (DS) of CP used ranged from 1.6 to >2.9, and samples for the vinyl polymer component were prepared in a full range of VP:MMA compositions. Through DSC analysis and solid-state (13)C NMR and FT-IR measurements, we revealed that CPs of DSMMA)s of VP≥~10mol% on a scale within a few nanometers, in virtue of hydrogen-bonding interactions between CP-hydroxyls and VP-carbonyls. When the DS of CP exceeded 2.7, the miscibility was restricted to the polymer pairs using P(VP-co-MMA)s of VP=ca. 10-40 mol%; the scale of mixing in the blends concerned was somewhat larger (ca. 5-20 nm), however. The appearance of such a "miscibility window" was interpretable as an effect of intramolecular repulsion in the copolymer component. Results of DMA and birefringence measurements indicated that the miscible blending of CP with the vinyl polymer invited synergistic improvements in thermomechanical and optical properties of the respective constituent polymers. Additionally, it was found that the VP:MMA composition range corresponding to the miscibility window was expanded by modification of the CP component into cellulose acetate propionate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Electrospinning of functional poly(methyl methacrylate) nanofibers containing cyclodextrin-menthol inclusion complexes

    Energy Technology Data Exchange (ETDEWEB)

    Uyar, Tamer; Besenbacher, Flemming [Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C (Denmark); Nur, Yusuf; Hacaloglu, Jale [Department of Chemistry, Middle East Technical University, Ankara, 06530 (Turkey)], E-mail: tamer@inano.dk, E-mail: tamer@unam.bilkent.edu.tr

    2009-03-25

    Electrospinning of nanofibers with cyclodextrin inclusion complexes (CD-ICs) is particularly attractive since distinct properties can be obtained by combining the nanofibers with specific functions of the CD-ICs. Here we report on the electrospinning of poly(methyl methacrylate) (PMMA) nanofibers containing cyclodextrin-menthol inclusion complexes (CD-menthol-ICs). These CD-menthol-IC functionalized nanofibers were developed with the purpose of producing functional nanofibers that contain fragrances/flavors with high temperature stability, and menthol was used as a model fragrance/flavor material. The PMMA nanofibers were electrospun with CD-menthol-ICs using three type of CD: {alpha}-CD, {beta}-CD, and {gamma}-CD. Direct pyrolysis mass spectrometry (DP-MS) studies showed that the thermal evaporation of menthol occurred over a very high and a broad temperature range (100-355 deg. C) for PMMA/CDmenthol-IC nanowebs, demonstrating the complexation of menthol with the CD cavity and its high temperature stability. Furthermore, as the size of CD cavity increased in the order {alpha}-CD<{beta}-CD<{gamma}-CD, the thermal evolution of menthol shifted to higher temperatures, suggesting that the strength of interaction between menthol and the CD cavity is in the order {gamma}-CD>{beta}-CD>{alpha}-CD.

  19. Electrospinning of functional poly(methyl methacrylate) nanofibers containing cyclodextrin-menthol inclusion complexes

    Science.gov (United States)

    Uyar, Tamer; Nur, Yusuf; Hacaloglu, Jale; Besenbacher, Flemming

    2009-03-01

    Electrospinning of nanofibers with cyclodextrin inclusion complexes (CD-ICs) is particularly attractive since distinct properties can be obtained by combining the nanofibers with specific functions of the CD-ICs. Here we report on the electrospinning of poly(methyl methacrylate) (PMMA) nanofibers containing cyclodextrin-menthol inclusion complexes (CD-menthol-ICs). These CD-menthol-IC functionalized nanofibers were developed with the purpose of producing functional nanofibers that contain fragrances/flavors with high temperature stability, and menthol was used as a model fragrance/flavor material. The PMMA nanofibers were electrospun with CD-menthol-ICs using three type of CD: α-CD, β-CD, and γ-CD. Direct pyrolysis mass spectrometry (DP-MS) studies showed that the thermal evaporation of menthol occurred over a very high and a broad temperature range (100-355 °C) for PMMA/CDmenthol-IC nanowebs, demonstrating the complexation of menthol with the CD cavity and its high temperature stability. Furthermore, as the size of CD cavity increased in the order α-CDmenthol shifted to higher temperatures, suggesting that the strength of interaction between menthol and the CD cavity is in the order γ-CD>β-CD>α-CD.

  20. Photomechanical actuator device based on disperse red 1 doped poly(methyl methacrylate) optical fiber

    Science.gov (United States)

    Ye, Xianjun

    The photomechanical effect is the phenomenon involving any mechanical property change of a material induced by light exposure. Photomechanical devices can be built with superior performance over traditional devices and offer versatile control tactics. Previous experiments show that disperse red 1 azobenzene (DR1) doped poly(methyl methacrylate) (PMMA) optical fiber has a fast photomechanical response upon asymmetrical 633nm laser irradiation originating in photoisomerization of the dopants between the cis and trans forms, which causes an elongation of the polymer fiber. In this work, laser light of 355nm wavelength is used to investigate the dynamics of the trans to cis photoisomerization process, which should result in length contraction of the DR1 doped PMMA polymer fiber. A three-point-contact optically-actuated beam controlling tilt mount is made and used as the measurement apparatus to study this process. The photomechanical fiber is observed to elongate upon UV irradiation. Numerical simulations, which take into account the coupled effect between the laser-induced temperature increase and population density change of the dye molecules, show that contraction of the fiber due to direct trans-cis photoisomerization is overwhelmed by elongation due to the photo-thermally-stimulated cis-trans isomerization under high intensity. An ink coated entrance face of the fiber is placed in the measurement tilt mount and is found to exhibit contraction in the fast process under low intensity without sacrificing the good signal to noise ratio enjoyed in the high intensity case.

  1. Hydrogen peroxide filled poly(methyl methacrylate) microcapsules: potential oxygen delivery materials.

    Science.gov (United States)

    Mallepally, Rajendar R; Parrish, Chance C; Mc Hugh, Mark A M; Ward, Kevin R

    2014-11-20

    This paper describes the synthesis of H₂O₂-H₂O filled poly(methyl methacrylate) (PMMA) microcapsules as potential candidates for controlled O₂ delivery. The microcapsules are prepared by a water-in-oil solvent emulsion and evaporation method. The results of this study describe the effect of process parameters on the characteristics of the microcapsules and on their in vitro performance. The size of the microcapsules, as determined from scanning electron microscopy, ranges from ∼5 to 30 μm and the size distribution is narrow. The microcapsules exhibit an internal morphology with entrapped H₂O₂-H₂O droplets randomly distributed in the PMMA continuous phase. In vitro release studies of 4.5 wt% H₂O₂-loaded microcapsules show that ∼70% of the H₂O₂ releases in 24h. This corresponds to a total O₂ production of ∼12 cc/gram of dry microcapsules. Shelf-life studies show that the microcapsules retain ∼84 wt% of the initially loaded H₂O₂ after nine months storage at 2-8 °C, which is an attractive feature for clinical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Risk factors for anterior capsule contraction syndrome with polypropylene or poly(methyl methacrylate) haptics.

    Science.gov (United States)

    Gallagher, S P; Pavilack, M A

    1999-10-01

    To determine the effect of haptic composition on the development of anterior capsule contraction syndrome (CCS) requiring neodymium: YAG anterior capsulotomy. Ophthalmology practice in Lancaster, Pennsylvania, USA. This retrospective study covered a 30 month period during which 1 surgeon discontinued implanting AMO SI-30NB intraocular lenses (IOLs) with polypropylene haptics (n = 216) in favor of SI-40NB IOLs with poly(methyl methacrylate) (PMMA) haptics (n = 127). The transition was motivated by the suspicion that the PMMA haptics would maintain the capsulorhexis opening better and reduce the need for an anterior capsulotomy. Three eyes with SI-30NB IOLs (1.4%) required anterior capsulotomies; 2 eyes had preoperative pseudoexfoliation syndrome and required the capsulotomy within 3 months of surgery. Three eyes with SI-40NB IOLs (2.4%) required anterior capsulotomies within 4 months; 2 eyes had preoperative pseudoexfoliation syndrome and 1 had traumatic zonular weakness. The incidence of anterior capsulotomy did not differ significantly between the 2 IOL populations (P > .5), although preoperative pseudoexfoliation syndrome was a significant risk factor in both groups (P PMMA haptics of the SI-40NB IOL did not differ significantly in their ability to prevent CCS requiring anterior capsulotomy. Regardless of IOL haptic composition, eyes with preoperative zonular weakness associated with pseudoexfoliation syndrome or ocular trauma can develop CCS within 3 months of surgery and should, therefore, be followed closely in the early postoperative weeks to minimize the sequelae of anterior capsule fibrosis.

  3. Micro-deformation mechanisms in thermoformed alumina trihydrate reinforced poly(methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Gunel, E.M., E-mail: emgunel@buffalo.edu [Civil, Structural and Environmental Engineering, State University of New York at Buffalo, Buffalo, NY 14260 (United States); Basaran, C., E-mail: cjb@buffalo.edu [Civil, Structural and Environmental Engineering, State University of New York at Buffalo, Buffalo, NY 14260 (United States)

    2009-10-15

    Micro-deformation mechanisms involved in thermoforming of alumina trihydrate (ATH) reinforced poly(methyl methacrylate) (PMMA) was investigated in a new experimental method replicating industrial heavy-gage thermoforming procedure. Uniaxial tension tests under non-steady thermal conditions were carried out at different forming rates and forming temperatures. Stress-strain curves and load-displacement histories of thermoformed samples were studied in terms of specimen temperature at different forming conditions. Neat PMMA samples were stretched to 50% strain under identical thermoforming conditions as PMMA/ATH for comparison purposes. Stress whitening in thermoformed PMMA/ATH samples was monitored with optical microscope and degree of stress whitening was characterized by an index obtained from optical image histograms. Micro-deformation features on the surface of PMMA and PMMA/ATH samples were examined by scanning electron microscopy (SEM). Micro-deformation in neat PMMA was in the form of homogenous drawing and did not include any type of void formation. SEM images of PMMA/ATH samples showed that particle cracking is the dominant deformation mechanism at low-forming temperatures, while at high-forming temperatures, combined particle disintegration and interfacial failure are dominant mechanisms. Stress whitening was not observed in neat PMMA which was attributed to absence of micro-voids or craze-like structures. On the other hand, PMMA/ATH samples displayed different levels of stress whitening depending on density, size and type of micro-deformation features.

  4. Wax inhibitor based on ethylene vinyl acetate with methyl methacrylate and diethanolamine for crude oil pipeline

    Science.gov (United States)

    Anisuzzaman, S. M.; Abang, S.; Bono, A.; Krishnaiah, D.; Karali, R.; Safuan, M. K.

    2017-06-01

    Wax precipitation and deposition is one of the most significant flow assurance challenges in the production system of the crude oil. Wax inhibitors are developed as a preventive strategy to avoid an absolute wax deposition. Wax inhibitors are polymers which can be known as pour point depressants as they impede the wax crystals formation, growth, and deposition. In this study three formulations of wax inhibitors were prepared, ethylene vinyl acetate, ethylene vinyl acetate co-methyl methacrylate (EVA co-MMA) and ethylene vinyl acetate co-diethanolamine (EVA co-DEA) and the comparison of their efficiencies in terms of cloud point¸ pour point, performance inhibition efficiency (%PIE) and viscosity were evaluated. The cloud point and pour point for both EVA and EVA co-MMA were similar, 15°C and 10-5°C, respectively. Whereas, the cloud point and pour point for EVA co-DEA were better, 10°C and 10-5°C respectively. In conclusion, EVA co-DEA had shown the best % PIE (28.42%) which indicates highest percentage reduction of wax deposit as compared to the other two inhibitors.

  5. The Effect of Nanoconfinemnt on Methyl Methacrylate Polymerization: Reactivity and Resulting Properties

    Science.gov (United States)

    Zhao, Haoyu; Yu, Ziniu; Hedden, Ronald; Simon, Sindee

    2014-03-01

    The effect of nanoconfinement is well known to affect the properties of polymers. In this work, free radical polymerization of methyl methacrylate (MMA) is performed in hydrophilic or hydrophobic 13 nm diameter controlled pore glass (CPG). Changes in polymerization kinetics and the properties of the synthesized polymer are quantified. Reaction kinetics and glass transition temperatures are followed by differential scanning calorimetry (DSC). After polymerization, the changes in the molecular weights and tacticity are measured using gel permeation chromatography (GPC) and 1H nuclear magnetic resonance (1H NMR). Nanoconfinement is found to result in earlier onset of autoacceleration leading to the increase in both number-average and weight-average molecular weights, whereas the polydispersity index at full conversion decreases relative to the bulk value. Moreover, for both pore surfaces, the glass transition temperature increases compared with the bulk, but the increase in hydrophilic pores is more pronounced at 20 °C. In addition to the changes in molecular weight and Tg, the tacticity changes from syndiotactic-rich triads for the bulk PMMA to a higher percentage of isotacticity under nanoconfinement. Funding from the National Science Foundation CMMI 0826437 and CRIF MU grant CHE-1048553 is gratefully acknowledged.

  6. Noninvasive in vivo EPR monitoring of the methyl methacrylate polymerization during the bone cement formation.

    Science.gov (United States)

    Gallez, Bernard; Beghein, Nelson

    2002-12-01

    The curing of poly(methyl methacrylate) (PMMA) bone cement is done by a free radical polymerization. As the amount of free radicals present is a marker of the amount of unpolymerized chains present in the polymer, it is assumed that this could be related to the mechanical properties such as strength or density. In this study, the direct observation of the free radicals produced during the PMMA bone cement formation was obtained for the first time in vivo using low-frequency EPR spectrometers (1.2 GHz). Low frequency permits measurements in live animals due to the increased microwave penetration. The amount of polymerization radicals was carried out noninvasively over days on the same animals. The decay rates obtained in vitro and in vivo were compared: the decay rates were significantly lower when the curing process occurred in vivo compared to the situation in vitro. As the kinetics are rather different in vitro and in vivo, this emphasizes the value of the present method that permits the noninvasive monitoring of the curing process directly in vivo. Copyright 2002 Elsevier Science Ltd.

  7. A methyl methacrylate-HEMA-CL(n) copolymerization investigation: from kinetics to bioapplications.

    Science.gov (United States)

    Ferrari, Raffaele; Rooney, Thomas R; Lupi, Monica; Ubezio, Paolo; Hutchinson, Robin A; Moscatelli, Davide

    2013-10-01

    The radical copolymerization kinetics of methyl methacrylate (MMA) and poly-ϵ-caprolactone macromonomer functionalized with a vinyl end group (HEMA-CL(n)) is studied using a pulsed-laser technique. The reactivity ratios for this system are near unity, while a linear relationship between k(p,cop), the copolymer-averaged propagation rate coefficient, and the composition of macromonomer in the feed (0-80 wt% range) is determined. At 50 wt% macromonomer in the feed, a 1.67 ± 0.02 and 1.64 ± 0.06 increase in k(p,cop)/k(p,MMA) is determined for HEMA-CL3 and HEMA-CL2, respectively. These macromonomers are adopted to synthesize nanoparticles (NPs) in the range of 100-150 nm through batch emulsion free radical polymerization (BEP) to produce partially degradable drug delivery carriers. The produced NPs are tested in 4T1 cell line and show excellent characteristics as carriers: they do not affect cell proliferation, and a relevant number of NPs, thousands per cell, are internalized. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Investigation of free-radical copolymerization propagation kinetics of vinyl acetate and methyl methacrylate.

    Science.gov (United States)

    Dossi, Marco; Liang, Kun; Hutchinson, Robin A; Moscatelli, Davide

    2010-04-01

    The free-radical copolymerization propagation kinetics of vinyl acetate (VAc) and methyl methacrylate (MMA) at 50 degrees C were investigated through an experimental study combined with a computational analysis based on quantum chemistry. Copolymer composition data, obtained using pulsed laser polymerization followed by size exclusion chromatography (PLP-SEC) and proton nuclear magnetic resonance (NMR), were well represented by the terminal model using monomer reactivity ratios obtained with the computational approach (r(VAc) = 0.001 and r(MMA) = 27.9). Concerning the composition-averaged copolymerization propagation rate coefficient k(p,cop), the differences between the terminal model and the implicit penultimate unit effect (IPUE) model (s(MMA) = 0.544 and s(VAc) = 0.173) are small for VAc/MMA, with the terminal model sufficient to describe the experimental k(p,cop) data measured by PLP-SEC. Monomer and radical charge distributions determined computationally are used to explain the reactivity exhibited by the VAc/MMA system.

  9. Drug release behaviour from methyl methacrylate-starch matrix tablets: effect of polymer moisture content.

    Science.gov (United States)

    Bravo-Osuna, I; Ferrero, C; Jiménez-Castellanos, M R

    2008-05-01

    The aim of this work was to study the effect of the initial moisture content of the polymer on the tabletting and drug release behaviour of controlled release inert matrices elaborated with methyl methacrylate (MMA)-starch copolymers. The copolymers, obtained by free radical polymerisation and dried by two different methods (oven-drying or freeze-drying), were equilibrated at different relative humidities (0%, 25%, 50% and 75% RH) at room temperature. From these copolymers, matrix systems were directly compressed containing either a slightly water-soluble drug (anhydrous theophylline) or a freely water-soluble drug (salbutamol sulphate), and their compaction properties and in vitro dissolution profiles were evaluated. The release profiles were compared following model-independent methods, such as the Qt parameter and the similarity factor f2. Moreover, several kinetic models were employed to evaluate the possible changes in the release mechanism. For anhydrous theophylline, the initial moisture content of the copolymers did not affect the release characteristics from the inert matrices under study, and a typical Fickian diffusion mechanism was observed for the different formulations. However, in case of salbutamol sulphate, the presence of moisture might induce a fast drug dissolution, promoting the weakness of the matrix structure and hence, its partial disintegration. So, an "anomalous" mixed phenomenon of diffusion and erosion was found, influenced by the initial moisture content of the copolymer.

  10. Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye

    Science.gov (United States)

    Zongo, S.; Kerasidou, A. P.; Sone, B. T.; Diallo, A.; Mthunzi, P.; Iliopoulos, K.; Nkosi, M.; Maaza, M.; Sahraoui, B.

    2015-06-01

    Natural dyes with highly delocalized π-electron systems are considered as promising organic materials for nonlinear optical applications. Among these dyes, Bixa Orellana dye with extended π-electron delocalization is one of the most attractive dyes. Bixa Orellana dye-doped Poly(methyl methacrylate) (PMMA) thin films were prepared through spin coating process for linear and nonlinear optical properties investigation. Atomic force microscopy (AFM) was used to evaluate the roughness of the thin films. The optical constants n and k were evaluated by ellipsometric spectroscopy. The refractive index had a maximum of about 1.456 at 508.5, 523.79 and 511.9 nm, while the maximum of k varies from 0.070 to 0.080 with the thickness. The third order nonlinear optical properties of the hybrid Bixa Orellana dye-PMMA polymer were investigated under 30 ps laser irradiation at 1064 nm with a repetition rate of 10 Hz. In particular the third-order nonlinear susceptibility has been determined by means of the Maker Fringes technique. The nonlinear third order susceptibility was found to be 1.00 × 10-21 m2 V-2 or 0.72 × 10-13 esu. Our studies provide concrete evidence that the hybrid-PMMA composites of Bixa dye are prospective candidates for nonlinear material applications.

  11. Surface Roughening of Polystyrene and Poly(methyl methacrylate in Ar/O2 Plasma Etching

    Directory of Open Access Journals (Sweden)

    Amy E. Wendt

    2010-12-01

    Full Text Available Selectively plasma-etched polystyrene-block-poly(methyl methacrylate (PS-b-PMMA diblock copolymer masks present a promising alternative for subsequent nanoscale patterning of underlying films. Because mask roughness can be detrimental to pattern transfer, this study examines roughness formation, with a focus on the role of cross-linking, during plasma etching of PS and PMMA. Variables include ion bombardment energy, polymer molecular weight and etch gas mixture. Roughness data support a proposed model in which surface roughness is attributed to polymer aggregation associated with cross-linking induced by energetic ion bombardment. In this model, RMS roughness peaks when cross-linking rates are comparable to chain scissioning rates, and drop to negligible levels for either very low or very high rates of cross-linking. Aggregation is minimal for very low rates of cross-linking, while very high rates produce a continuous cross-linked surface layer with low roughness. Molecular weight shows a negligible effect on roughness, while the introduction of H and F atoms suppresses roughness, apparently by terminating dangling bonds. For PS etched in Ar/O2 plasmas, roughness decreases with increasing ion energy are tentatively attributed to the formation of a continuous cross-linked layer, while roughness increases with ion energy for PMMA are attributed to increases in cross-linking from negligible to moderate levels.

  12. Gold-Poly(methyl methacrylate Nanocomposite Films for Plasmonic Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Muthukumaram Packirisamy

    2011-10-01

    Full Text Available Gold-poly(methyl methacrylate nanocomposites are prepared by an in situ method, by irradiating spin-coated films containing the polymer and the gold precursor dissolved in acetone. The reduction of gold ions results in the formation of Au that nucleates and grows within the polymer film. It is shown that, depending on the energy source, gold nanoparticles with different shapes can be formed. Nanocomposites prepared through UV-, thermal-, and MW-irradiation, respectively, show a low sensitivity toward the environment. However, by annealing the samples at temperatures well above the glass transition temperature of the polymer, the response to dielectric environment appears to be enhanced significantly. The sensitivity of samples synthesized through the three different methods is found to be comparable, around 100 nm/RIU. The increased sensitivity of the annealed sample is accounted for by the increased mobility of both polymer chains and gold nanoparticles in the rubbery state of the material and the presence of the monomer. Gold nanoparticles “freed” from the strong interaction with the polymer are now able to feel the molecules from the surrounding environment. The results show that, by using adequate post-synthesis heat treatments, gold-polymer nanocomposites can be used as plasmonic sensing platforms.

  13. Superparamagnetic poly(methyl methacrylate) beads for nattokinase purification from fermentation broth.

    Science.gov (United States)

    Yang, Chengli; Xing, Jianmin; Guan, Yueping; Liu, Huizhou

    2006-09-01

    An effective method for purification of nattokinase from fermentation broth using magnetic poly(methyl methacrylate) (PMMA) beads immobilized with p-aminobenzamidine was proposed in this study. Firstly, magnetic PMMA beads with a narrow size distribution were prepared by spraying suspension polymerization. Then, they were highly functionalized via transesterification reaction with polyethylene glycol. The surface hydroxyl-modified magnetic beads obtained were further modified with chloroethylamine to transfer the surface amino-modified magnetic functional beads. The morphology and surface functionality of the magnetic beads were examined by scanning electron microscopy and Fourier transform infrared. An affinity ligand, p-aminobenzamidine was covalently immobilized to the amino-modified magnetic beads by the glutaraldehyde method for nattokinase purification directly from the fermentation broth. The purification factor and the recovery of the enzyme activity were found to be 8.7 and 85%, respectively. The purification of nattokinase from fermentation broth by magnetic beads only took 40 min, which shows a very fast purification of nattokinase compared to traditional purification methods.

  14. Photon Conversion and Radiation Synergism in Eu/Tb Complexes Incorporated Poly Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    P. Xiao

    2016-01-01

    Full Text Available Green and red emissions in terbium and europium benzoic acids (TBA and EBA incorporated poly methyl methacrylates (PMMA are exhibited. Larger intensity parameters Ω2 (11.13×10-20 cm2 and Ω4 (13.15×10-20 cm2 of Eu3+ indicate a high inversion asymmetrical and strong covalent environment around lanthanide (Ln ions and maximum emission cross section σem-max (2.45×10-21 cm2 for the dominant transition D50→F27 of Eu3+ reveals the effective photon conversion capacity in EBA incorporated PMMA. Color variation and fluorescence enhancement are validated to be originated from energy transfer and synergistic effect in TBA/EBA coincorporated PMMA system. The results indicate that Eu and Tb complexes incorporated PMMA with effective photon conversion hold great prospect in increment of lighting quality and enhancement of solar-cell efficiency employed in outer space.

  15. Rapid Prototyping of Poly(methyl methacrylate) Microfluidic Systems Using Solvent Imprinting and Bonding

    Science.gov (United States)

    Sun, Xiuhua; Peeni, Bridget A.; Yang, Weichun; Becerril, Hector A.

    2011-01-01

    We have developed a method for rapid prototyping of hard polymer microfluidic systems using solvent imprinting and bonding. We investigated the applicability of patterned SU-8 photoresist on glass as an easily fabricated template for solvent imprinting. Poly(methyl methacrylate) (PMMA) exposed to acetonitrile for 2 min then had an SU-8 template pressed into the surface for 10 min, which provided appropriately imprinted channels and a suitable surface for bonding. After a PMMA cover plate had also been exposed to acetonitrile for 2 min, the imprinted and top PMMA pieces could be bonded together at room temperature with appropriate pressure. The total fabrication time was less than 15 min. Under the optimized fabrication conditions, nearly 30 PMMA chips could be replicated using a single patterned SU-8 master with high chip-to-chip reproducibility. Relative standard deviations were 2.3% and 5.4% for the widths and depths of the replicated channels, respectively. Fluorescently labeled amino acid and peptide mixtures were baseline separated using these PMMA microchips in <15 s. Theoretical plate numbers in excess of 5000 were obtained for a ~3 cm separation distance, and the migration time relative standard deviation for an amino acid peak was 1.5% for intra-day and 2.2% for inter-day analysis. This new solvent imprinting and bonding approach significantly simplifies the process for fabricating microfluidic structures in hard polymers such as PMMA. PMID:17466320

  16. Hydrophobic modification of cellulose isolated from Agave angustifolia fibre by graft copolymerisation using methyl methacrylate.

    Science.gov (United States)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan; Mohamed, Faizal

    2015-07-10

    Graft copolymerisation of methyl methacrylate (MMA) onto Agave angustifolia was conducted with ceric ammonium nitrate (CAN) as the redox initiator. The maximum grafting efficiency was observed at CAN and MMA concentrations of 0.91 × 10(-3) and 5.63 × 10(-2)M, respectively, at 45°C for 3h reaction time. Four characteristic peaks at 2995, 1738, 1440, and 845 cm(-1), attributed to PMMA, were found in the IR spectrum of grafted cellulose. The crystallinity index dropped from 0.74 to 0.46, while the thermal stability improved upon grafting. The water contact angle increased with grafting yield, indicating increased hydrophobicity of cellulose. SEM images showed the grafted cellulose to be enlarged and rougher. The changes in the physical nature of PMMA-grafted cellulose can be attributed to the PMMA grafting in the amorphous regions of cellulose, causing it to expand at the expense of the crystalline component. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Poly (acrylonitrile-co-methyl methacrylate nanoparticles: I. Preparation and characterization

    Directory of Open Access Journals (Sweden)

    M.S. Mohy Eldin

    2017-12-01

    Full Text Available This work concerns the preparation and characterization of poly (acrylonitrile-co-methyl methacrylate Copolymer, P(AN-co-MMA, nano-particles using precipitation polymerization technique. Potassium per-sulfate redox initiation system was used to perform polymerization process in an alcoholic aqueous system. The impact of different polymerization conditions such as comonomer concentration and ratio, polymerization time, polymerization temperatures, initiator concentration and co-solvent composition on the polymerization yield and particle size was studied. Maximum polymerization yield, 70%, was obtained with MMA:AN (90%:10% comonomer composition. Particle sizes ranging from 16 nm to 1483 nm were obtained and controlled by variation of polymerization conditions. The co-polymerization process was approved by FT-IR and TGA analysis. The copolymer composition was investigated by nitrogen content analysis. Copolymers with a progressive percentage of PAN show thermal stabilities close to PAN Homopolymer. SEM photographs prove spherical structure of the produced copolymers. The investigated system shows promising future in the preparation of nanoparticles from comonomers without using emulsifiers or dispersive agents.

  18. Near-infrared fluorescence in neodymium acetylacetonate hydrate doped poly methyl methacrylate

    Science.gov (United States)

    Du, Yangyang; Chen, Baojie; Liu, Ke; Zhao, Xin; Wang, Zhiqiang; Lin, Hai

    2014-05-01

    Neodymium acetylacetonate hydrate (NAH) doped poly methyl methacrylate (PMMA) has been prepared and near-infrared (NIR) 1069 and 1342 nm emissions possessing the full widths at half maximum of correspondingly 61 and 75 nm have been observed. Judd-Ofelt intensity parameters Ω (t=2, 4, 6) are respectively derived to be 16.34×10, 11.35×10, and 9.50×10-20 cm2, indicating a high asymmetrical and covalent environment of Nd in NAH doped PMMA. The spontaneous emission probabilities for F4→I4 and F4→I4 transitions are severally 2542.4 and 456.9 s-1, from which the associated maximum stimulated emission cross sections have been determined to be 3.19×10 and 1.28×10-20 cm2, respectively. High emission probabilities and large emission cross sections of NIR fluorescence in NAH doped PMMA reveal its potential as an NIR polymer optical material in practical applications as optical thin films and fibers.

  19. Polymer PCF Bragg grating sensors based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, Ian P; Webb, David J; Kalli, Kyriacos

    2011-01-01

    Fibre Bragg grating (FBG) sensors have been fabricated in polymer photonic crystal fibre (PCF). Results are presented using two different types of polymer optical fibre (POF); first multimode PCF with a core diameter of 50μm based on poly(methyl methacrylate) (PMMA) and second, endlessly single...... mode PCF with a core diameter of 6μm based on TOPAS cyclic olefin copolymer. Bragg grating inscription was achieved using a 30mW continuous wave 325nm helium cadmium laser. Both TOPAS and PMMA fibre have a large attenuation of around 1dB/cm in the 1550nm spectral region, limiting fibre lengths...... of a grating fabricated in PMMA fibre at 827nm has been monitored whilst the POF is thermally annealed at 80°C for 7 hours. The large length of POF enables real time monitoring of the grating, which demonstrates a permanent negative Bragg wavelength shift of 24nm during the 7 hours. This creates...

  20. Dynamical property of water droplets of different sizes adsorbed onto a poly(methyl methacrylate) surface.

    Science.gov (United States)

    Lee, Wen-Jay; Ju, Shin-Pon

    2010-01-05

    A molecular dynamics approach has been employed to study the dynamical behavior of a water droplet adsorbed on a poly(methyl methacrylate) (PMMA) surface. Several sizes of water droplets are considered in order to understand the size influence of the droplet on the dynamical properties of water molecules on the PMMA substrate. The local density profile of water molecules in the droplet upon impact with the PMMA surface is calculated, and the result shows an increase in water penetration with a decrease in the size of the droplet. By examining the velocity field, the regular motion of the water droplet is found both during the equilibrium process and after the droplet reaches the equilibrium state. The dynamical behavior of water molecule is studied by the velocity autocorrelation function (VACF) in different regions for different sizes of water droplets. The result shows that VACFs in different regions are significantly influenced for the droplet with 500 water molecules than for that with 2000 water molecules. Calculations in different regions are made for the vibrational spectrum of the oxygen atom, as well as for hydrogen bond dynamics, the lifetime, and the relaxation time of the hydrogen bond. The changes in the hydrogen bond dynamics are consistent with the change in the distribution of the hydrogen bond angle. We conclude that the dynamical properties of the water molecule are significantly affected by the region relative to the surface but only weakly influenced by the size of the droplet.

  1. A study of gamma attenuation parameters in poly methyl methacrylate and Kapton

    Science.gov (United States)

    Manjunatha, H. C.

    2017-08-01

    Poly methyl methacrylate (PMMA) and Kapton polyimide are polymers used for various aerospace applications. We have measured the gamma attenuation parameters such as mass attenuation coefficient, effective atomic number and electron density of PMMA and Kapton polyimide for various gamma sources of energy ranging from 84 keV to 1330 keV (170Tm, 57Co, 141Ce, 203Hg, 51Cr, 113Sn, 22Na, 137Cs, 60Co, 22Na and 60Co). The measured values agree with the theoretical values. In the present work, we have also computed energy absorption build-up factors and exposure buildup factor of PMMA and Kapton polyimide for wide energy range (0.015-15 MeV) up to the penetration depth of 40 mean free path using Geometrical Progression fitting method. The values of these parameters have been found to change with energy and interaction of gamma with the medium. The present study on gamma attenuation parameters are expected to be helpful in dosimetry, radiation shielding and other radiation physics based applications. The experimental data on the mass attenuation coefficients for Kapton and PMMA is not available in literature. To my knowledge data available e.g. in the NIST data base are based on extrapolations from the measurement of mass attenuation coefficients for the elements. Hence this work is first of its kind and it is useful in the various field of Polymers.

  2. Dehydrogenation mechanism of LiBH{sub 4} by Poly(methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianmei [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Yan, Yurong [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); Ouyang, Liuzhang, E-mail: meouyang@scut.edu.cn [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Key Laboratory for Fuel Cell Technology in Guangdong Province, South China University of Technology, Guangzhou 510641 (China); Wang, Hui [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Zhu, Min, E-mail: memzhu@scut.edu.cn [School of Materials Science and Engineering, and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China)

    2015-10-05

    Highlights: • LiBH{sub 4} is amorphous after modified with PMMA. • Dehydrogenation temperature of LiBH{sub 4} decreases by 120 °C after modifying with PMMA. • The LiBH{sub 4}@PMMA composite releases 10 wt.% hydrogen at 360 °C within 1 h. • C=O group of PMMA weakens the B−H bonds to lower dehydrogenation temperature. - Abstract: We investigated the dehydrogenation properties and mechanism of Poly(methyl methacrylate) (PMMA) confined LiBH{sub 4}. Thermal stability of LiBH{sub 4} was reduced by PMMA, with a decrease in dehydrogenation temperature by 120 °C. At 360 °C, the composite showed fast dehydrogenation kinetics with 10 wt.% of hydrogen released within 1 h. The improved dehydrogenation performance was mainly attributed to the reaction between LiBH{sub 4} and PMMA forming Li{sub 3}BO{sub 3} as a final product. Furthermore, the presence of electrostatic interaction between B atom of LiBH{sub 4} and O atom in the carbonyl group of PMMA may weaken the B−H bonding of [BH{sub 4}]{sup −} and lower the hydrogen desorption temperature.

  3. Biomolecular functionalization for enhanced cell-material interactions of poly(methyl methacrylate) surfaces.

    Science.gov (United States)

    Punet, Xavier; Mauchauffé, Rodolphe; Rodríguez-Cabello, José C; Alonso, Matilde; Engel, Elisabeth; Mateos-Timoneda, Miguel A

    2015-09-01

    The integration of implants or medical devices into the body tissues requires of good cell-material interactions. However, most polymeric materials used for these applications lack on biological cues, which enhanced mid- and long-term implant failure due to weak integration with the surrounding tissue. Commonly used strategies for tissue-material integration focus on functionalization of the material surface by means of natural proteins or short peptides. However, the use of these biomolecules involves major drawbacks such as immunogenic problems and oversimplification of the constructs. Here, designed elastin-like recombinamers (ELRs) are used to enhance poly(methyl methacrylate) surface properties and compared against the use of short peptides. In this study, cell response has been analysed for different functionalization conditions in the presence and absence of a competing protein, which interferes on surface-cell interaction by unspecific adsorption on the interface. The study has shown that ELRs can induce higher rates of cell attachment and stronger cell anchorages than short peptides, being a better choice for surface functionalization.

  4. Preparation and biocompatibility of poly (methyl methacrylate reinforced with bioactive particles

    Directory of Open Access Journals (Sweden)

    Pereira Marivalda de Magalhães

    2003-01-01

    Full Text Available Calcium phosphates and bioactive glasses have been used in many biomedical applications for more than 30 years due basically to their bioactive behavior. However, ceramics are too brittle for applications that require high levels of toughness and easy processability. In this work, a biphasic calcium phosphate (BCP and a bioactive glass composition (BG were combined with polymers to produce composites with tailorable properties and processability. The BCP particles were synthesized by a precipitation technique. The BG particles were produced by sol-gel processing. The BCP particles were treated with a silane agent to improve the compatibility between particles and the polymer matrix. Dense samples were produced by hot pressing (200 °C a mixture of 30 wt.% of particles in poly (methyl methacrylate. The samples produced were characterized by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Mechanical properties were evaluated by a three point bending test. Samples were also submitted to in vitro bioactivity test and in vivo toxicity test. Results showed that the production of the composites was successfully achieved, yielding materials with particles well dispersed within the matrices. Evaluation of the in vivo inflammatory response showed low activity levels for all composites although composites with silane treated BCP particles led to milder inflammatory responses than composites with non-treated particles.

  5. Use of Polycaprolactone Electrospun Nanofibers as a Coating for Poly(methyl methacrylate) Bone Cement.

    Science.gov (United States)

    Khandaker, Morshed; Riahinezhad, Shahram; Jamadagni, Harsha G; Morris, Tracy L; Coles, Alexis V; Vaughan, Melville B

    2017-07-10

    Poly(methyl methacrylate) (PMMA) bone cement has limited biocompatibility. Polycaprolactone (PCL) electrospun nanofiber (ENF) has many applications in the biomedical field due to its excellent biocompatibility and degradability. The effect of coating PCL ENF on the surface topography, biocompatibility, and mechanical strength of PMMA bone cement is not currently known. This study is based on the hypothesis that the PCL ENF coating on PMMA will increase PMMA roughness leading to increased biocompatibility without influencing its mechanical properties. This study prepared PMMA samples without and with the PCL ENF coating, which were named the control and ENF coated samples. This study determined the effects on the surface topography and cytocompatibility (osteoblast cell adhesion, proliferation, mineralization, and protein adsorption) properties of each group of PMMA samples. This study also determined the bending properties (strength, modulus, and maximum deflection at fracture) of each group of PMMA samples from an American Society of Testing Metal (ASTM) standard three-point bend test. This study found that the ENF coating on PMMA significantly improved the surface roughness and cytocompatibility properties of PMMA (p 0.05). Therefore, the PCL ENF coating technique should be further investigated for its potential in clinical applications.

  6. Effect of physical aging on stress relaxation of poly/methyl methacrylate/

    Science.gov (United States)

    Cizmecioglu, M.; Fedors, R. F.; Hong, S. D.; Moacanin, J.

    1981-01-01

    A study was made on the stress relaxation behavior at 25 C of poly(methyl methacrylate) in uniaxial tension as a function of physical aging at both room temperature and 60 C. Test specimens were compression molded at 165 C, then quenched to room temperature and allowed to age for up to 30 days prior to testing. Stress relaxation curves measured after different aging times could be superposed to a single master curve for each aging temperature. Superposition was achieved by applying vertical and horizontal shifts. Hence, the shape of the response curves was not changed by aging. This is in accordance with observations made by Struik for tensile creep curves. Volume changes as a function of physical aging were also determined. Simple exponential relationships were observed between volume and both horizontal and vertical shifts. The horizontal shift implies a shift in the effective time scale caused by a change in free volume. The vertical shifts could be correlated with changes in Young's modulus caused by a change in density. For the range of aging studied, the response time scale varied over nearly two decades of log-time. For the same conditions modulus varied by 30 percent.

  7. Synthesis and Characterization of Metal Sulfides Nanoparticles/Poly(methyl methacrylate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2014-01-01

    Full Text Available Metal sulfides nanoparticles in poly(methyl methacrylate matrices were prepared and characterized by infrared spectroscopy, thermogravimetric analysis, powder X-ray diffraction, scanning electron microscope (SEM, and transmission electron microscope (TEM. The FTIR confirms the dispersion of the nanoparticles in PMMA matrices with the C=O and C–O–C bonds of the PMMA shifting slightly which may be attributed to the interactions between the nanoparticles and PMMA. The ZnS nanoparticles in PMMA have average crystallite sizes of 4–7 nm while the CdS has particle size of 10 nm and HgS has crystallite sizes of 8–20 nm. The increasing order of particle sizes as calculated from the XRD is ZnS/PMMA

  8. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.

    Science.gov (United States)

    Dong, Hong; Sliozberg, Yelena R; Snyder, James F; Steele, Joshua; Chantawansri, Tanya L; Orlicki, Joshua A; Walck, Scott D; Reiner, Richard S; Rudie, Alan W

    2015-11-18

    Cellulose nanofibrils (CNFs) are a class of cellulosic nanomaterials with high aspect ratios that can be extracted from various natural sources. Their highly crystalline structures provide the nanofibrils with excellent mechanical and thermal properties. The main challenges of CNFs in nanocomposite applications are associated with their high hydrophilicity, which makes CNFs incompatible with hydrophobic polymers. In this study, highly transparent and toughened poly(methyl methacrylate) (PMMA) nanocomposite films were prepared using various percentages of CNFs covered with surface carboxylic acid groups (CNF-COOH). The surface groups make the CNFs interfacial interaction with PMMA favorable, which facilitate the homogeneous dispersion of the hydrophilic nanofibrils in the hydrophobic polymer and the formation of a percolated network of nanofibrils. The controlled dispersion results in high transparency of the nanocomposites. Mechanical analysis of the resulting films demonstrated that a low percentage loading of CNF-COOH worked as effective reinforcing agents, yielding more ductile and therefore tougher films than the neat PMMA film. Toughening mechanisms were investigated through coarse-grained simulations, where the results demonstrated that a favorable polymer-nanofibril interface together with percolation of the nanofibrils, both facilitated through hydrogen bonding interactions, contributed to the toughness improvement in these nanocomposites.

  9. Oriented growth of rat Schwann cells on aligned electrospun poly(methyl methacrylate) nanofibers.

    Science.gov (United States)

    Xia, Haijian; Sun, Xiaochuan; Liu, Dan; Zhou, Yudong; Zhong, Dong

    2016-10-15

    Transplanted Schwann cells have the potential to serve as a support for regenerating neurites after spinal cord injury. However, implanted Schwann cells die off rapidly once transplanted partly owing to the absence of a proper matrix support, with a glia scar and a cavity being present instead at the injury site. For this report, we evaluated aligned electrospun poly(methyl methacrylate) nanofibers as a Schwann cell-loading scaffold in vitro. By monitoring the fluorescence of green fluorescence protein-containing Schwann cells cultured on nanofibers, we found that aligned nanofibers provided better support for the cells than did non-aligned nanofibers. The cells elongated along the long axes of the aligned nanofibers and formed longer cell processes than when the substrate was non-aligned nanofibers. By coculturing Schwann cells with dorsal root ganglion neurons, it was also found that Schwann cells and neurites of dorsal root ganglion neurons could share and both elongate along the orientation of aligned nanofibers and thus they had a higher chance of colocalization than cocultured on film and non-aligned fibers, which might be beneficial to the ensuring process of myelination. The results of the study indicate that aligned electrospun nanofibers may serve as a Schwann cell-loading scaffold for future implantation research. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Durability of poly(methyl methacrylate) lenses used in concentrating photovoltaic modules

    Science.gov (United States)

    Miller, David C.; Gedvilas, Lynn M.; To, Bobby; Kennedy, Cheryl E.; Kurtz, Sarah R.

    2010-08-01

    Concentrating photovoltaic (CPV) technology has recently gained interest based on their expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems use Fresnel lenses made of poly(methyl methacrylate) (PMMA) to obtain a high optical flux density. The optical and mechanical durability of such components, however, are not well established relative to the desired service life of 30 years. Specific reliability issues may include: reduced optical transmittance, discoloration, hazing, surface erosion, embrittlement, crack growth, physical aging, shape setting (warpage), and soiling. The initial results for contemporary lens- and material-specimens aged cumulatively to 6 months are presented. The study here uses an environmental chamber equipped with a xenon-arc lamp to age specimens at least 8x the nominal field rate. A broad range in the affected characteristics (including optical transmittance, yellowness index, mass loss, and contact angle) has been observed to date, depending on the formulation of PMMA used. The most affected specimens are further examined in terms of their visual appearance, surface roughness (examined via atomic force microscopy), and molecular structure (via Fourier transform infrared spectroscopy).

  11. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Gedvilas, L. M.; To, B.; Kennedy, C. E.; Kurtz, S. R.

    2010-08-01

    Concentrating photovoltaic (CPV) technology has recently gained interest based on their expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems use Fresnel lenses made of poly(methyl methacrylate)(PMMA) to obtain a high optical flux density. The optical and mechanical durability of such components, however, are not well established relative to the desired service life of 30 years. Specific reliability issues may include: reduced optical transmittance, discoloration, hazing, surface erosion, embrittlement, crack growth, physical aging, shape setting (warpage), and soiling. The initial results for contemporary lens- and material-specimens aged cumulatively to 6 months are presented. The study here uses an environmental chamber equipped with a xenon-arc lamp to age specimens at least 8x the nominal field rate. A broad range in the affected characteristics (including optical transmittance, yellowness index, mass loss, and contact angle) has been observed to date, depending on the formulation of PMMA used. The most affected specimens are further examined in terms of their visual appearance, surface roughness (examined via atomic force microscopy), and molecular structure (via Fourier transform infrared spectroscopy).

  12. Radiation effects on poly(methyl methacrylate) induced by pulsed laser irradiations

    Science.gov (United States)

    Torrisi, L.; Italiano, A.; Amato, E.; Caridi, F.; Cutroneo, M.; Squeri, C. A.; Squeri, G.; Roszkowska, A. M.

    2012-09-01

    Poly(methyl methacrylate) (PMMA) was irradiated using a medical UV-ArF excimer laser operating at the fundamental wavelength of 193 nm. Characterized by a beam diameter of 1.8 mm and energy of 180 mJ with a Gaussian energy profile, it operates in a single mode or at 30 Hz repetition rate. Mechanical profilometry was carried out on ablation craters in order to study the rugosity and the ablation yield in the various operative conditions. Optical transmission and reflection measurements at six wavelengths were conducted in order to characterize the optical properties of the irradiated surfaces. Measured crater depths in PMMA were lower with respect to the forecasted ones in corneal tissue, while the lateral crater aperture was maintained. The rugosity produced at the crater bottom after irradiation was about 0.3 μm, and the ablation yield was about 1015 molecules/laser pulse, while etching depth and diameter show a roughly linear dependence on the number of laser shots. These experiments constitute a base for deeper clinical investigations.

  13. The Influence of Nanofillers on the Mechanical Properties of Carbon Fibre Reinforced Methyl Methacrylate Composite

    Directory of Open Access Journals (Sweden)

    Tomas ŽUKAS

    2012-09-01

    Full Text Available The influence of different types of nanofillers – carbon nanotubes (CNT and organically modified nanoclay – on the flexural properties and nail penetration resistance of carbon fiber reinforced methyl methacrylate (MMA composite have been investigated. An ultrasonic mixing was used to distribute various content of nanofillers (0.7 wt.% – 3.0 wt.% in MMA resin. Scanning electron microscopy and X-ray diffraction analyses confirmed formation of intercalated MMA clay nanocomposites. Two different stacking sequences, [0/90]3 or [0/90/45]2, and two types of carbon fibre, with or without epoxy binder, were used for composites preparation. The composites with stacking sequence of [0/90]3 show higher resistance to the mechanical loading. Epoxy binder increases fibre adhesion interaction with MMA resin, however, almost does not influences on the fibre reinforced composite strength properties. The results demonstrated that only low content (up to 1 wt.% of organically modified nanoclay Cloisite 10A increases the carbon fibre reinforced composites resistance to flexure and nail penetration. The low content of CNT also increases flexural stress and modulus, but decreases resistance to the nail penetration.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2434

  14. Methyl Methacrylate Polymer-Concrete for Bomb Damage Repair. Phase 1

    Science.gov (United States)

    1980-06-01

    Monomer Initiator System MMA Peroxide Promoter BP DMPT Cogonomers Cross-Linking Agents BA AA TMPTMA EHMA HPMA TTEGDA IDMA MM Plasticizers DOP 5 U...Acid MAA Methacrylic Acid HPMA Hydroxypropyl Methacrylate Initiator Agents BP (also BPO or BZP) Benzoyl Peroxide DNMPT (also DMT) Dimethyl Para Touli...8217oisture o; Splittina Tensile Stre.nqth of Silika- R7/Bw 84 S~I II _ _"__ _ _ _ 4! methacrylate ( HPMA ), TTEGDA, water soluble epoxies, and silane j coupling

  15. Preparation and characterization of pH-sensitive and antifouling poly(vinylidene fluoride) microfiltration membranes blended with poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid).

    Science.gov (United States)

    Ju, Junping; Wang, Chao; Wang, Tingmei; Wang, Qihua

    2014-11-15

    Functional terpolymer of poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid) (P(MMA-HEMA-AA)) was synthesized via a radical polymerization method. The terpolymer could be directly blended with poly(vinylidene fluoride) (PVDF) to prepare the microfiltration (MF) membranes via phase separate process. The synthesized polymers were characterized by Fourier transform infrared (FTIR), the nuclear magnetic resonance proton spectra ((1)H NMR). The membrane had the typical asymmetric structure and the hydrophilic side chains tended to aggregate on the membrane surface. The surface enrichment of amphiphilic copolymer and morphology of MF membranes were characterized by Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) and scanning electron microscopy (SEM). The contact angle (CA) and water uptake were also tested to assess the hydrophilicity and wetting characteristics of the polymer surface. The water filtration properties were measured. It was found the modified membranes showed excellent pH-sensitivity and pH-reversibility behavior. Furthermore, the hydrophilicity of the blended membranes increased, and the membranes showed good protein antifouling property. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Relationship between water structure and properties of poly(methyl methacrylate-b-2-hydroxyethyl methacrylate) by solid-state NMR.

    Science.gov (United States)

    Mochizuki, Akira; Miwa, Yuko; Miyoshi, Riko; Namiki, Takahiro

    We previously reported that the platelet compatibility of methyl methacrylate (MMA)-2-hydroxyethyl methacrylate (HEMA) diblock copolymers is related to the characteristic water structure in the copolymer, as the copolymer has an excess amount of nonfreezing water when compared with that estimated from the amounts of water in HEMA and MMA homopolymers. Thus, in this study, the relationship between water structure and polymer structure, including the heterogeneity and mobility of the copolymer, was investigated using differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR) spectroscopy. The prepared copolymers were classified into two groups: copolymers with a short, constant polyMMA segment length (Mn = ~2900) and copolymers with a constant polyHEMA segment length (Mn = ~9500), whereas the lengths of the counter segments varied. DSC analysis showed that when the polyMMA and polyHEMA segment lengths are similar, the amount of nonfreezing water increases, regardless of the total molecular weight of the copolymer. NMR analysis showed that heterogeneity of the copolymer is enhanced and the mobility of the copolymer decreases when the segment lengths are similar. These findings suggested that the excess amount of nonfreezing water is formed when the properties of water near the HEMA unit change from freezing to nonfreezing owing to interactions with the MMA unit. In addition, it is suggested that the heterogeneity of the copolymer structure or the mobility of the polymer are involved in the generation of excess nonfreezing water.

  17. Study of the water structure in poly(methyl methacrylate-block-2-hydroxyethyl methacrylate) and its relationship to platelet adhesion on the copolymer surface.

    Science.gov (United States)

    Mochizuki, Akira; Namiki, Takahiro; Nishimori, Yusuke; Ogawa, Haruki

    2015-01-01

    The water structure and platelet compatibility of poly(methyl methacrylate (MMA)-block-2-hydroxyethyl methacrylate (HEMA)) were investigated. The molecular weight (Mn) of the polyHEMA segment was kept constant (average: 9600), while the Mn of the polyMMA segment was varied from 1340 to 7390. The equilibrium water content of the copolymers was found to be mainly governed by the HEMA content. The water structure in the copolymers was characterized in terms of the amounts of non-freezing and freezing water (abbreviated as Wnf and Wfz, respectively) using differential scanning calorimetry. It was found that the Wnf for the copolymers were higher than those estimated from the Wnf for the HEMA and MMA homopolymers and that the amount of excess non-freezing water depended on the polyMMA segment length. In addition, X-ray diffraction analysis revealed that some of the copolymers had cold-crystallizable water. These facts suggested that the polyMMA segments were involved in determining the water structures in the copolymers. Furthermore, the platelet compatibility of the copolymers was improved as compared to that of the HEMA homopolymer. It was therefore concluded that the platelet compatibility of the copolymer was related to the amount of excess non-freezing water.

  18. Thermal properties of a methyl methacrylate-based orthodontic bonding adhesive.

    Science.gov (United States)

    Rueggeberg, F A; Maher, F T; Kelly, M T

    1992-04-01

    Methyl methacrylate-based (MMA-based) bonding resins have been used in orthodontics because they offer easy removal of both the bonded bracket and the residual adhesive at case completion. However, these materials are not cross-linked, and the brackets bonded with this type of product may undergo drifting when subjected to temperatures slightly higher than those in the mouth. This research investigated the influence of heat on the debonding characteristics of a MMA-based bonding resin compared with those of a BIS-GMA-based system. The temperature of initial bracket movement, as well as of final bracket displacement, was noted for a variety of applied loads (141, 226, 425, 934, and 1727 gm) with stainless steel brackets bonded to etched bovine enamel. The results showed that the MMA-based material underwent a glass transition near 47 degrees C in which the initiation of bracket drift resulted on the tooth surface. This temperature proved independent of the applied load. Further heating resulted in the release of heat from the resin as a result of further curing. The extent of bracket drift associated with this secondary heat release was dependent on the applied load. The debonding temperature of the BIS-GMA-based system was three to six times greater than that of the MMA-based product. Practitioners should be aware that brackets bonded with MMA-based resins have the potential for drifting when subjected to temperatures within the normal range of hot fluids consumed by their patients. Bracket drift could result in deactivation of orthodontic force and could prolong the treatment time.

  19. Preparation and Characterization of Injectable Brushite Filled-Poly (Methyl Methacrylate) Bone Cement

    Science.gov (United States)

    Rodriguez, Lucas C.; Chari, Jonathan; Aghyarian, Shant; Gindri, Izabelle M.; Kosmopoulos, Victor; Rodrigues, Danieli C.

    2014-01-01

    Powder-liquid poly (methyl methacrylate) (PMMA) bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cement viscosity, poor handling and reduced mechanical performance. This has limited the use of such cements in applications requiring delivery through small cannulas and in load bearing. The goal of this study is to design an alternative cement system that can better accommodate calcium-phosphate additives while preserving cement rheological properties and performance. In the present work, a number of brushite-filled two-solution bone cements were prepared and characterized by studying their complex viscosity-versus-test frequency, extrusion stress, clumping tendency during injection through a syringe, extent of fill of a machined void in cortical bone analog specimens, and compressive strength. The addition of brushite into the two-solution cement formulations investigated did not affect the pseudoplastic behavior and handling properties of the materials as demonstrated by rheological experiments. Extrusion stress was observed to vary with brushite concentration with values lower or in the range of control PMMA-based cements. The materials were observed to completely fill pre-formed voids in bone analog specimens. Cement compressive strength was observed to decrease with increasing concentration of fillers; however, the materials exhibited high enough strength for consideration in load bearing applications. The results indicated that partially substituting the PMMA phase of the two-solution cement with brushite at a 40% by mass concentration provided the best combination of the

  20. Preparation and Characterization of Injectable Brushite Filled-Poly (Methyl Methacrylate Bone Cement

    Directory of Open Access Journals (Sweden)

    Lucas C. Rodriguez

    2014-09-01

    Full Text Available Powder-liquid poly (methyl methacrylate (PMMA bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cement viscosity, poor handling and reduced mechanical performance. This has limited the use of such cements in applications requiring delivery through small cannulas and in load bearing. The goal of this study is to design an alternative cement system that can better accommodate calcium-phosphate additives while preserving cement rheological properties and performance. In the present work, a number of brushite-filled two-solution bone cements were prepared and characterized by studying their complex viscosity-versus-test frequency, extrusion stress, clumping tendency during injection through a syringe, extent of fill of a machined void in cortical bone analog specimens, and compressive strength. The addition of brushite into the two-solution cement formulations investigated did not affect the pseudoplastic behavior and handling properties of the materials as demonstrated by rheological experiments. Extrusion stress was observed to vary with brushite concentration with values lower or in the range of control PMMA-based cements. The materials were observed to completely fill pre-formed voids in bone analog specimens. Cement compressive strength was observed to decrease with increasing concentration of fillers; however, the materials exhibited high enough strength for consideration in load bearing applications. The results indicated that partially substituting the PMMA phase of the two-solution cement with brushite at a 40% by mass concentration provided the best

  1. Self-assembly and omniphobic property of fluorinated unit end-functionalized poly(methyl methacrylate)

    Science.gov (United States)

    Junyan, Liang; Pingdi, Xu; Jingxian, Bao; Ling, He; Nan, Zhu

    2018-03-01

    The self-assembly behavior of fluorinated unit end-functionalized poly(methyl methacrylate) (PDFHM-ef-PMMA) in solution and its influence on the surface microstructure, elemental composition and omniphobic property of cast film was investigated in this work. Specifically, three mixed solutions of tetrahydrofuran (THF)/methanol (MeOH), THF/H2O and THF/H2O/MeOH in various compositions were employed separately as the selective solvents. In THF/MeOH solution, the aggregate morphologies of PDFHM-ef-PMMA changed gradually from core-shell spheres to worm, and then to elliptical vesicles as MeOH content increased. In THF/H2O solution, spherical and bowl-shaped aggregates with significantly larger sizes than those in THF/MeOH solution were favored despite lower H2O content. The further addition of MeOH to THF/H2O mixture could reduce the size of aggregate but hardly change original aggregate morphology. During the film formation process, those self-assembled aggregates in THF/MeOH solution fused with one another to form a smooth surface. When such surface was fully covered by fluorinated segments, the outstanding hexadecane and water slide-off properties and ink-resistant property required for antifouling application were demonstrated. Instead, the aggregates formed in THF/H2O/MeOH mixture were subjected to secondary aggregation of PDFHM-ef-PMMA chains during solvent evaporation, leading to the formation of a particulate film with poor adhesion towards glass plate and hexadecane-repellent property.

  2. Characterization of γ-radiation induced polymerization in ethyl methacrylate and methyl acrylate monomers solutions

    Science.gov (United States)

    Baccaro, Stefania; Casieri, Cinzia; Cemmi, Alessia; Chiarini, Marco; D'Aiuto, Virginia; Tortora, Mariagrazia

    2017-12-01

    The present work is focused on the γ-radiation induced polymerization of ethyl methacrylate (EMA) and methyl acrylate (MA) monomers mixture to obtain a co-polymer with specific features. The effect of the irradiation parameters (radiation absorbed dose, dose rate) and of the environmental atmosphere on the features of the final products was investigated. Attenuated Total Reflectance - Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Nuclear Magnetic Resonance high-resolution analyses of hydrogen and carbon nuclei (1H and 13C NMR) were applied to follow the γ-induced modifications by monitoring the co-polymerization process and allowed the irradiation parameters optimization. Diffusion-Ordered NMR (DOSY-NMR) data were used to evaluate the co-polymers polydispersity and polymerization degree. Since the last parameter is strongly influenced by the γ radiation and environmental conditions, a comparison among samples prepared and irradiated in air and under nitrogen atmosphere was carried out. In presence of oxygen, higher radiation was required to obtain a full solid co-polymer since a partial amount of energy released to the samples was involved in competitive processes, i.e. oxygen-containing free radicals formation and primary radicals recombination. Irrespectively to the environmental atmosphere, more homogeneous samples in term of polymerization degree dispersion was achieved at lower dose rates. At radiation absorbed doses higher than those needed for the formation of the co-polymer, while in case of samples irradiated in air heavy depolymerization was verified, a sensible increase of the samples stability was attained if the irradiation was performed under nitrogen atmosphere.

  3. Fabrication of 3D Microfluidic Devices by Thermal Bonding of Thin Poly(methyl methacrylate) Films

    KAUST Repository

    Perez, Paul

    2012-07-01

    The use of thin-film techniques for the fabrication of microfluidic devices has gained attention over the last decade, particularly for three-dimensional channel structures. The reasons for this include effective use of chip volume, mechanical flexibility, dead volume reduction, enhanced design capabilities, integration of passive elements, and scalability. Several fabrication techniques have been adapted for use on thin films: laser ablation and hot embossing are popular for channel fabrication, and lamination is widely used for channel enclosure. However, none of the previous studies have been able to achieve a strong bond that is reliable under moderate positive pressures. The present work aims to develop a thin-film process that provides design versatility, speed, channel profile homogeneity, and the reliability that others fail to achieve. The three building blocks of the proposed baseline were fifty-micron poly(methyl methacrylate) thin films as substrates, channel patterning by laser ablation, and device assembly by thermal-fusion bonding. Channel fabrication was characterized and tuned to produce the desired dimensions and surface roughness. Thermal bonding was performed using an adapted mechanical testing device and optimized to produce the maximum bonding strength without significant channel deformation. Bonding multilayered devices, incorporating conduction lines, and integrating various types of membranes as passive elements demonstrated the versatility of the process. Finally, this baseline was used to fabricate a droplet generator and a DNA detection chip based on micro-bead agglomeration. It was found that a combination of low laser power and scanning speed produced channel surfaces with better uniformity than those obtained with higher values. In addition, the implemented bonding technique provided the process with the most reliable bond strength reported, so far, for thin-film microfluidics. Overall, the present work proved to be versatile

  4. Reconstruction of large cranial defects with poly-methyl-methacrylate (PMMA) using a rapid prototyping model and a new technique for intraoperative implant modeling.

    Science.gov (United States)

    Unterhofer, Claudia; Wipplinger, Christoph; Verius, Michael; Recheis, Wolfgang; Thomé, Claudius; Ortler, Martin

    Reconstruction of large cranial defects after craniectomy can be accomplished by free-hand poly-methyl-methacrylate (PMMA) or industrially manufactured implants. The free-hand technique often does not achieve satisfactory cosmetic results but is inexpensive. In an attempt to combine the accuracy of specifically manufactured implants with low cost of PMMA. Forty-six consecutive patients with large skull defects after trauma or infection were retrospectively analyzed. The defects were reconstructed using computer-aided design/computer-aided manufacturing (CAD/CAM) techniques. The computer file was imported into a rapid prototyping (RP) machine to produce an acrylonitrile-butadiene-styrene model (ABS) of the patient's bony head. The gas-sterilized model was used as a template for the intraoperative modeling of the PMMA cranioplasty. Thus, not the PMMA implant was generated by CAD/CAM technique but the model of the patients head to easily form a well-fitting implant. Cosmetic outcome was rated on a six-tiered scale by the patients after a minimum follow-up of three months. The mean size of the defect was 74.36cm2. The implants fitted well in all patients. Seven patients had a postoperative complication and underwent reoperation. Mean follow-up period was 41 months (range 2-91 months). Results were excellent in 42, good in three and not satisfactory in one patient. Costs per implant were approximately 550 Euros. PMMA implants fabricated in-house by direct molding using a bio-model of the patients bony head are easily produced, fit properly and are inexpensive compared to cranial implants fabricated with other RP or milling techniques. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  5. A comparative study of the decomposition of pig carcasses in a methyl methacrylate box and open air conditions.

    Science.gov (United States)

    Li, Liangliang; Wang, Jiangfeng; Wang, Yu

    2016-08-01

    Analysis of the process of decomposition is essential in establishing the postmortem interval. However, despite the fact that insects are important players in body decomposition, their exact function within the decay process is still unclear. There is also limited knowledge as to how the decomposition process occurs in the absence of insects. In the present study, we compared the decomposition of a pig carcass in open air with that of one placed in a methyl methacrylate box to prevent insect contact. The pig carcass in the methyl methacrylate box was in the fresh stage for 1 day, the bloated stage from 2 d to 11 d, and underwent deflated decay from 12 d. In contrast, the pig carcass in open air went through the fresh, bloated, active decay and post-decay stages; and 22.3 h (0.93 d), 62.47 h (2.60 d), 123.63 h (5.15 d) and 246.5 h (10.27 d) following the start of the experiment respectively, prior to entering the skeletonization stage. A large amount of soft tissue were remained on the pig carcass in the methyl methacrylate box on 26 d, while only scattered bones remained on the pig carcass in open air. The results indicate that insects greatly accelerate the decomposition process. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  6. Identification of covalent binding sites of ethyl 2-cyanoacrylate, methyl methacrylate and 2-hydroxyethyl methacrylate in human hemoglobin using LC/MS/MS techniques.

    Science.gov (United States)

    Jeppsson, Marina C; Mörtstedt, Harriet; Ferrari, Giovanni; Jönsson, Bo A G; Lindh, Christian H

    2010-10-01

    Acrylates are used in vast quantities, for instance in paints, adhesive glues, molding. They are potent contact allergens and known to cause respiratory hypersensitivity and asthma. Here we study ethyl 2-cyanoacrylate (ECA), methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA). There are only limited possibilities to measure the exposure to acrylates, especially for biological monitoring. The aim of the present study was to investigate the chemical structures of adducts formed after reaction of hemoglobin (Hb) with ECA, MMA, and HEMA. This information may be used to identify adducted Hb peptides for biological monitoring of exposure to acrylates. Hb-conjugates with ECA, MMA, and HEMA were synthesized in vitro. The conjugates were digested by trypsin and pronase E. Adducted peptides were characterized and analyzed by liquid chromatography and nano electro spray/hybrid quadrupole time-of-flight mass spectrometry (MS) as well as tandem quadrupole MS. The search for the adducted peptides was facilitated by visualizing the MS data by different computer programs. The results showed that ECA binds covalently to cysteines at the 104 position in the α and the position 112 in the β-chains in Hb. MMA and HEMA bound to all the cysteines in both chains, Cys(104) in the α-chain and Cys(93) and 112 in the β-chain. The full-length spectra of in un-digested Hb confirmed this binding pattern. There was no reaction with N-acetyl-L-lysine at physiological pH. The adducted peptides were possible to measure using LC/MS/MS in selected reaction monitoring mode. These peptides may be used for biological monitoring of exposure to ECA, MMA and HEMA. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Plasma graft of poly(ethylene glycol) methyl ether methacrylate (PEGMA) on RGP lens surface for reducing protein adsorption

    Science.gov (United States)

    Yin, Shiheng; Ren, Li; Wang, Yingjun

    2017-01-01

    Poly(ethylene glycol) methyl ether methacrylate (PEGMA) was grafted on fluorosilicone acrylate rigid gas permissible contact lens surface by means of argon plasma induced polymerization to improve surface hydrophilicity and reduce protein adsorption. The surface properties were characterized by contact angle measurement, x-ray photoelectron spectroscopy (XPS) and atomic force microscopy respectively. The surface protein adsorption was evaluated by lysozyme solution immersion and XPS analysis. The results indicated that a thin layer of PEGMA was successfully grafted. The surface hydrophilicity was bettered and surface free energy increased. The lysozyme adsorption on the lens surface was reduced greatly. The study was supported by National Natural Science Foundation of China (No. 51273072).

  8. Sm(DBM)3Phen-doped poly(methyl methacrylate) for three-dimensional multilayered optical memory

    Science.gov (United States)

    Jiu, Hongfang; Tang, Huohong; Zhou, Jingli; Xu, Jie; Zhang, Qijin; Xing, Hui; Huang, Wenhao; Xia, Andong

    2005-04-01

    We report on the formation of submicrometer voids within Sm(DBM)3Phen-doped poly(methyl methacrylate) (PMMA) under multiphoton absorption excited by an infrared laser beam. An ultrashort-pulsed laser beam with a pulse width of 200 fs at a wavelength of 800 nm is focused into doped PMMA. The large changes in refractive index and the fluorescence associated with a void allow conventional optical microscopy and reflection-type confocal microscopy to be used as detection methods. Voids can be arranged in a three-dimensional multilayered structure for high-density optical data storage.

  9. The influence of UV-irradiation and support type on surface properties of poly(methyl methacrylate) thin films

    Science.gov (United States)

    Kaczmarek, Halina; Chaberska, Hanna

    2006-09-01

    Thin poly(methyl methacrylate) (PMMA) films were prepared by a solution casting on different supports (glass and aluminium plates with different gloss). UV-irradiation ( λ = 254 nm) was used for polymer modification. Surface properties of PMMA were studied by contact angle measurements, attenuated total reflection infrared spectroscopy and optical microscopy. It was found that support type has no influence on surface properties of virgin PMMA, however, the changes in these properties were observed during UV modification of polymer film. The most efficient photochemical reactions appeared in sample placed on the rough Al, whereas the smallest effect was observed in polymer on the glass.

  10. Holographic Recording of Bragg Gratings for Wavelength Division Multiplexing in Doped and Partially Polymerized Poly(methyl methacrylate)

    Science.gov (United States)

    Beyer, Oliver; Nee, Ingo; Havermeyer, Frank; Buse, Karsten

    2003-01-01

    Bragg gratings are recorded in doped and partially polymerized poly(methyl methacrylate) with green light (wavelength, 532 nm) in transmission geometry, and the gratings are read in reflection geometry with infrared light (wavelength, ~1550 nm). Diffraction efficiencies of more than 99% with a wavelength bandwidth of ~1 nm are obtained for single gratings with a typical length of 15 mm. Superposition of four gratings in a volume sample has been demonstrated as well. The material is promising for use in the fabrication of add-drop filters, attenuators, switches, and multiplexers-demultiplexers for optical networks that use wavelength division multiplexing.

  11. Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit

    DEFF Research Database (Denmark)

    Sáez-Rodríguez, D.; Nielsen, Kristian; Bang, Ole

    2014-01-01

    In this Letter, we provide evidence suggesting that the main photosensitive mechanism of an undoped poly(methyl methacrylate)-based microstructured optical fiber under UV radiation at 325 nm is a competitive process of both photodegradation and polymerization. We found experimentally...... that increasing strain during photo-inscription leads to an increased photosensitivity, which is evidence of photodegradation. Likewise, refractive index change in the fiber was measured to be positive, which provides evidence for further polymerization of the material. Finally, we relate the data obtained...

  12. Molecular structure of poly(methyl methacrylate) surface II: Effect of stereoregularity examined through all-atom molecular dynamics.

    Science.gov (United States)

    Jha, Kshitij C; Zhu, He; Dhinojwala, Ali; Tsige, Mesfin

    2014-11-04

    Utilizing all-atom molecular dynamics (MD), we have analyzed the effect of tacticity and temperature on the surface structure of poly(methyl methacrylate) (PMMA) at the polymer-vacuum interface. We quantify these effects primarily through orientation, measured as the tilt with respect to the surface normal, and the surface number densities of the α-methyl, ester-methyl, carbonyl, and backbone methylene groups. Molecular structure on the surface is a complex interplay between orientation and number densities and is challenging to capture through sum frequency generation (SFG) spectroscopy alone. Independent quantification of the number density and orientation of chemical groups through all-atom MD presents a comprehensive model of stereoregular PMMA on the surface. SFG analysis presented in part I of this joint publication measures the orientation of molecules that are in agreement with MD results. We observe the ester-methyl groups as preferentially oriented, irrespective of tacticity, followed by the α-methyl and carbonyl groups. SFG spectroscopy also points to ester-methyl being dominant on the surface. The backbone methylene groups show a very broad angular distribution, centered along the surface plane. The surface number density ratios of ester-methyl to α-methyl groups show syndiotactic PMMA having the lowest value. Isotactic PMMA has the highest ratios of ester- to α-methyl. These subtle trends in the relative angular orientation and number densities that influence the variation of surface structure with tacticity are highlighted in this article. A more planar conformation of the syndiotactic PMMA along the surface (x-y plane) can be visualized through the trajectories from all-atom MD. Results from conformation tensor calculations for chains with any of their segments contributing to the surface validate the visual observation.

  13. Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye

    Energy Technology Data Exchange (ETDEWEB)

    Zongo, S., E-mail: sidiki@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, POBox 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); Kerasidou, A.P. [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers Cedex (France); Sone, B.T.; Diallo, A. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, POBox 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research, P O Box 395, Pretoria 0001 (South Africa); Iliopoulos, K. [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers Cedex (France); Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras (Greece); Nkosi, M. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); and others

    2015-06-15

    Highlights: • We studied the linear and nonlinear optical properties of hybrid Bixa Orellana dye doped PMMA thin film. • We investigated the linear optical properties by means of UV/Vis, FTIR and Fluorescence. • We used Tauc - Lorentz model to evaluate linear optical parameters (n &k) with relative maximum of 1.456 at 508.5, 523.79 and 511.9 nm for n is observed while the maximum of k varies from 0.070 to 0.080. • We evaluated nonlinear third order susceptibility which was found to be 1.00 × 10{sup −21} m{sup 2} V{sup −2} or 0.72 × 10{sup −13} esu. - Abstract: Natural dyes with highly delocalized π-electron systems are considered as promising organic materials for nonlinear optical applications. Among these dyes, Bixa Orellana dye with extended π-electron delocalization is one of the most attractive dyes. Bixa Orellana dye-doped Poly(methyl methacrylate) (PMMA) thin films were prepared through spin coating process for linear and nonlinear optical properties investigation. Atomic force microscopy (AFM) was used to evaluate the roughness of the thin films. The optical constants n and k were evaluated by ellipsometric spectroscopy. The refractive index had a maximum of about 1.456 at 508.5, 523.79 and 511.9 nm, while the maximum of k varies from 0.070 to 0.080 with the thickness. The third order nonlinear optical properties of the hybrid Bixa Orellana dye-PMMA polymer were investigated under 30 ps laser irradiation at 1064 nm with a repetition rate of 10 Hz. In particular the third-order nonlinear susceptibility has been determined by means of the Maker Fringes technique. The nonlinear third order susceptibility was found to be 1.00 × 10{sup −21} m{sup 2} V{sup −2} or 0.72 × 10{sup −13} esu. Our studies provide concrete evidence that the hybrid-PMMA composites of Bixa dye are prospective candidates for nonlinear material applications.

  14. Facile synthesis of silver immobilized-poly(methyl methacrylate)/polyethyleneimine core-shell particle composites

    Energy Technology Data Exchange (ETDEWEB)

    Jenjob, Somkieath [Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand); Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400 (Thailand); Tharawut, Teeralak [Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand); Sunintaboon, Panya, E-mail: panya.sun@mahidol.ac.th [Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand); Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400 (Thailand); Center for Alternative Energy, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand)

    2012-10-01

    A facile route to synthesize silver-embedded-poly(methyl methacrylate)/polyethyleneimine (PMMA/PEI-Ag) core-shell particle composites was illustrated in this present work. PMMA/PEI core-shell particle templates were first prepared by a surfactant-free emulsion polymerization. PEI on the templates' surface was further used to complex and reduce Ag{sup +} ions (from silver nitrate solution) to silver nanoparticles (AgNPs) at ambient temperature, resulting in the PMMA/PEI-Ag particle composites. The formation of AgNPs was affected by the pHs of the reaction medium. The pH of reaction medium at 6.5 was optimal for the formation of PMMA/PEI-Ag with good colloidal stability, which was confirmed by size and size distribution, FTIR spectroscopy, UV-vis spectroscopy and X-ray diffraction. Moreover, the amount of AgNO{sub 3} solution (4.17-12.50 g) was found to affect the formation of AgNPs. Transmission electron microscopy (TEM) indicated that the AgNPs were incorporated in the PMMA/PEI core-shell matrix, and had 6-10 nm in diameter. AgNPs immobilized on PMMA/PEI core-shell particles were also investigated by energy dispersive X-ray spectroscopy analysis mode extended from scanning electron microscopy (SEM/EDS). Furthermore, the presence of AgNPs was found to influence the thermal degradation behavior of PMMA/PEI particle composites as observed through thermogravimetric analysis (TGA). Highlights: Black-Right-Pointing-Pointer A 2-step synthesis of Ag immobilized-PMMA/PEI particle composites was shown. Black-Right-Pointing-Pointer PMMA/PEI core-shell templates were first formed and PEI assisted AgNP formation. Black-Right-Pointing-Pointer Formation of PMMA/PEI-Ag was affected by pH of medium and amount of AgNO{sub 3}. Black-Right-Pointing-Pointer PMMA/PEI-Ag can be confirmed by color change, UV-vis, TEM, SEM with EDS, and X-ray. Black-Right-Pointing-Pointer Effect of AgNPs on thermal degradation of PMMA/PEI-Ag can be observed through TGA.

  15. Influence of ultrasonic condition on phase transfer catalyzed radical polymerization of methyl methacrylate in two phase system - A kinetic study.

    Science.gov (United States)

    Marimuthu, Elumalai; Murugesan, Vajjiravel

    2017-09-01

    An ultrasonic condition assisted phase transfer catalyzed radical polymerization of methyl methacrylate was investigated in an ethyl acetate/water two phase system at 60±1°C and 25kHz, 300W under inert atmosphere. The influence of monomer, initiator, catalyst and temperature, volume fraction of aqueous phase on the rate of polymerization was examined in detail. The reaction order was found to be unity for monomer, initiator and catalyst. Generally, the reaction rate was relatively fast in two phase system, when a catalytic amount of phase transfer catalyst was used. The combined approach, use of ultrasonic and PTC condition was significantly enhances the rate of polymerization. An ultrasonic and phase transfer catalyzed radical polymerization of methyl methacrylate has shown about three fold enhancements in the rate compared with silent polymerization of MMA using cetyltrimethylammonium bromide as PTC. The resultant kinetics was evaluated with silent polymerization and an important feature was discussed. The activation energy and other thermodynamic parameters were computed. Based on the obtained results an appropriate radical mechanism has been derived. TGA showed the polymer was stable up to 150°C. The FT-IR and DSC analysis validates the atactic nature of the obtained polymer. The XRD pattern reveals the amorphous nature of polymer was dominated. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The effects of solvents on the properties of ultra-thin poly (methyl methacrylate) films prepared by spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Tippo, T. [Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520 (Thailand); Thanachayanont, C.; Muthitamongkol, P.; Junin, C. [National Metal and Materials Technology Center, Thailand Science Park, Klong 1, KlongLuang, Pathumthani 12120 (Thailand); Hietschold, M. [Chemnitz University of Technology, Institute of Physics, Solid Surface Analysis Group, D-09107 Chemnitz (Germany); Thanachayanont, A., E-mail: ktapinun@kmitl.ac.th [Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520 (Thailand)

    2013-11-01

    Poly (methyl methacrylate) (PMMA) is extensively used as an insulating layer in organic electronic devices. In this study, spin coating method was used to cast thin layers of PMMA for dielectric application from solutions in three different solvents, namely dimethylformamide (DMF), n-butyl acetate and toluene. The solvent's vapor pressure causes the solvent to vaporize at different rates leading to layer's distortion and different surface roughnesses. Preparation of suitable surface morphologies, for example, pinhole-free and crack-free was studied. A step profilometer was used to measure the film thicknesses. Alternatively an equation correlating final film thickness to spin speed and solution concentration was proposed. A metal/insulator/metal parallel plate capacitor structure was fabricated and the current density dependence on the applied electric field was measured. The resulting low surface roughness, low leakage currents, high breakdown voltage, and high dielectric constant were obtained for the 100 nm-thick PMMA film prepared with DMF. - Highlights: • Solvent effect on quality of poly (methyl methacrylate) films • Thickness, surface morphology, and electrical properties were studied. • Best surface morphology and electrical properties obtained using dimethylformamide.

  17. Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile-poly(methyl methacrylate) core-shell composite nanoparticles.

    Science.gov (United States)

    Wei, Dafu; Zhang, Youwei; Fu, Jinping

    2017-01-01

    Carbon nanospheres with a high Brunauer-Emmett-Teller (BET) specific surface area were fabricated via the pyrolysis of polyacrylonitrile-poly(methyl methacrylate) (PAN-PMMA) core-shell nanoparticles. Firstly, PAN-PMMA nanoparticles at high concentration and low surfactant content were controllably synthesized by a two-stage azobisisobutyronitrile (AIBN)-initiated semicontinuous emulsion polymerization. The carbon nanospheres were obtained after the PAN core domain was converted into carbon and the PMMA shell was sacrificed via the subsequent heat treatment steps. The thickness of the PMMA shell can be easily adjusted by changing the feeding volume ratio (FVR) of methyl methacrylate (MMA) to acrylonitrile (AN). At an FVR of 1.6, the coarse PAN cores were completely buried in the PMMA shells, and the surface of the obtained PAN-PMMA nanoparticles became smooth. The thick PMMA shell can inhibit the adhesion between carbon nanospheres caused by cyclization reactions during heat treatment. The carbon nanospheres with a diameter of 35-65 nm and a high BET specific surface area of 612.8 m2/g were obtained from the PAN-PMMA nanoparticles synthesized at an FVR of 1.6. The carbon nanospheres exhibited a large adsorption capacity of 190.0 mg/g for methylene blue, thus making them excellent adsorbents for the removal of organic pollutants from water.

  18. Chemical grafting of poly(ethylene glycol) methyl ether methacrylate onto polymer surfaces by atmospheric pressure plasma processing.

    Science.gov (United States)

    D'Sa, Raechelle A; Meenan, Brian J

    2010-02-02

    This article reports the use of atmospheric pressure plasma processing to induce chemical grafting of poly(ethylene glycol) methyl ether methacrylate (PEGMA) onto polystyrene (PS) and poly(methyl methacrylate) (PMMA) surfaces with the aim of attaining an adlayer conformation which is resistant to protein adsorption. The plasma treatment was carried out using a dielectric barrier discharge (DBD) reactor with PEGMA of molecular weights (MW) 1000 and 2000, PEGMA(1000) and PEGMA(2000), being grafted in a two step procedure: (1) reactive groups are generated on the polymer surface followed by (2) radical addition reactions with the PEGMA. The surface chemistry, coherency, and topography of the resulting PEGMA grafted surfaces were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and atomic force microscopy (AFM), respectively. The most coherently grafted PEGMA layers were observed for the 2000 MW PEGMA macromolecule, DBD processed at an energy dose of 105.0 J/cm(2) as indicated by ToF-SIMS images. The effect of the chemisorbed PEGMA layer on protein adsorption was assessed by evaluating the surface response to bovine serum albumin (BSA) using XPS. BSA was used as a model protein to determine the grafted macromolecular conformation of the PEGMA layer. Whereas the PEGMA(1000) surfaces showed some protein adsorption, the PEGMA(2000) surfaces appeared to absorb no measurable amount of protein, confirming the optimum surface conformation for a nonfouling surface.

  19. Design and fabrication of a mid-wavelength infrared Fresnel lens via liquid poly(methyl methacrylate)

    Science.gov (United States)

    Tsui, Chun-Chao; Wei, Hsiang-Chun; Chang, Wen-Fa; Su, Guo-Dung John

    2012-04-01

    Most popular materials for lenses, such as glass, have high absorption in the infrared range. Due to material restriction, infrared lenses are usually much more expensive. In this paper, we discussed a ubiquitous polymer material, poly(methyl methacrylate) (PMMA), for mid-wavelength infrared (MWIR) applications. PMMA is a low cost material and is widely used in daily life. We examined its optical properties in the mid-infrared range and found that poly(methyl methacrylate) is a highly promising material for MWIR lenses. Besides, liquid PMMA can be formed and solidified easily. Utilizing these characteristics, we proposed a novel way to fabricate PMMA lenses for MWIR range (wavelength from 3.6 to 5 µm). The fabrication process is much easier and less expensive compared with traditional machining processes. We have designed a PMMA Fresnel lens, which has f-number of 1.40, diameter of 10 mm and focal length of 14 mm. We also successfully fabricated the PMMA Fresnel lens using the molding process. Both structure and optical analyses show that the PMMA Fresnel lenses could meet the design parameters.

  20. Selective Synthesis, Characterization and Kinetics Studies of poly(α-Methyl styrene induced by Maghnite-Na+ Clay (Algerian MMT

    Directory of Open Access Journals (Sweden)

    Moulkheir Ayat

    2016-10-01

    Full Text Available A new and efficient catalyst of Na-Montmorillonite (Na+-MMT was employed in this paper for α-methylstyrene (AMS cationic polymerization. Maghnite clay, obtained from Tlemcen Algeria, was investigated to remove heavy metal ion from wastewater. “Maghnite-Na” is a Montmorillonite sheet silicate clay, exchanged with sodium as an efficient catalyst for cationic polymerization of many vinylic and heterocyclic monomers. The various techniques, including 1H-NMR, 13C-NMR, IR, DSC and Ubbelohde viscometer, were used to elucidate structural characteristics and thermal properties of the resulting polymers. The structure compositions of “MMT”, “H+-MMT” and “Na+-MMT” have been developed. It was found that the cationic polymerization of AMS is initiated by Na+-MMT at 0 °C in bulk and in solution. The influences of reaction temperature, solvent, weight ratio of initiator/monomer and reaction time on the yield of monomer and the molecular weight are investigated. The kinetics indicated that the polymerization rate is first order with respect to the monomer concentration. A possible mechanism of this cationic polymerization is discussed based on the results of the 1H-NMR Spectroscopic analysis of these model reactions. A cationic mechanism for the reaction was proposed. From the mechanism studies, it was showed that monomer was inserted into the growing chains. Copyright © 2016 BCREC GROUP. All rights reserved. Received: 6th September 2016; Revised: 27th April 2016; Accepted: 7th June 2016 How to Cite: Ayat, M., Belbachir, M., Rahmouni, A. (2016. Selective Synthesis, Characterization and Kinetics Studies of poly(α-Methyl styrene induced by Maghnite-Na+ Clay (Algerian MMT. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3: 376-388 (doi:10.9767/bcrec.11.3.578.376-388 Permalink/DOI: http://doi.org/10.9767/bcrec.11.3.578.376-388

  1. Fracture-induced mechanophore activation and solvent healing in poly(methyl methacrylate)

    Science.gov (United States)

    Celestine, Asha-Dee N.

    Damage detection is a highly desirable functionality in engineering materials. The potential of using mechanophores, stress-sensitive molecules, as material stress sensors has been established through tensile, compressive and shear tests. Spiropyran (SP) has been the chosen mechanophore and this molecule undergoes a ring opening reaction (activation) upon the application of mechanical stress. This activation is accompanied by a change in color and fluorescence as the colorless SP is converted to the highly colored merocyanine (MC) form. One requirement for SP activation in bulk polymers is large scale plastic deformation. In order to induce this plastic deformation during fracture testing of SP-linked brittle polymers such as poly(methyl methacrylate) (PMMA), rubber nanoparticles can be incorporated into the matrix material. These nanoparticles facilitate the increased shear yielding necessary for SP activation during mechanical testing. Cross-linked SP-PMMA, containing 7.3 wt% rubber nanoparticles is synthesized via a free radical polymerization. Specimens of this material are fabricated for Single Edge Notch Tension (SENT) testing. The rubber toughened SP-PMMA specimens are first prestretched to approximately 35% axial strain to align the spiropyran molecules in the direction of applied force and thus increase the likelihood of fracture-induced activation. After prestretching the specimens are pre-notched and irradiated with 532 nm wavelength light to revert the colored merocyanine to the colorless spiropyran form. Specimens are then fracture tested to failure using the SENT test. The evolution of mechanophore activation is monitored via in situ fluorescence imaging and inspection of the specimens after testing. Activation of the SP is observed ahead of the crack tip and along the propagated crack. Also, the degree of activation is found to increase with crack growth and the size of the activation zone is linearly correlated to the size of the plastic zone ahead

  2. New phosphated poly(methyl methacrylate polymers for the prevention of denture-induced microbial infection: an in vitro study

    Directory of Open Access Journals (Sweden)

    Periathamby Antony Raj

    2011-03-01

    Full Text Available Periathamby Antony Raj1, Andrew R Dentino1,21Division of Research and Development, Perident Therapeutics, Inc, Milwaukee, WI, USA; 2Division of Periodontics, Department of Surgical Sciences, Marquette University, Milwaukee, WI, USAPurpose: Poly(methyl methacrylate (PMMA has been widely used as a denture-base acrylic resin due to its excellent physical and mechanical properties. However, the material is highly prone to microbial fouling that often leads to Candida-associated denture stomatitis. Incorporation of phosphate groups into PMMA could facilitate adsorption of salivary antimicrobials and inhibit microbial adherence on the polymer surface. An in vitro study evaluated PMMA polymers containing varying amounts of phosphate group for their efficacy to inhibit Candida albicans adhesion, adsorb salivary histatin 5, and exhibit candidacidal activity.Methods: Six PMMA polymers containing 0%, 5%, 15%, 10%, 20%, and 25% of phosphate group were synthesized by bead (suspension polymerization technique using mixtures of methyl methacrylate and methallyl phosphate as monomers. The efficacy of the polymers to inhibit the adherence of C. albicans was examined by using human saliva-coated polymer beads and radio-labeled C. albicans cells, as compared with that of PMMA. The potency of the phosphated PMMA polymers to adsorb histatin 5 was determined by measuring the radioactivity of the adsorbed labeled-peptide on the polymer surface. The candidacidal activity of the histatin 5-adsorbed polymers was assessed by using the fluorescence technique. The percent release of the fluorescent probe calcein from the C. albicans membrane caused by the disruption of the cell membrane was determined. The data were analyzed statistically by one-way ANOVA followed by Scheffé’s test (α = 0.05 and n = 6.Results: The presence of ≥15% phosphate content in PMMA significantly reduced the saliva-mediated adhesion of C. albicans. Phosphated PMMA polymers showed significantly

  3. Solution polymerization of methyl methacrylate at high conversion in a recycle tubular reactor

    OpenAIRE

    Fleury, P. A.; Meyer, T.; Renken, A.

    1992-01-01

    The kinetics of the soln. polymn. of Me methacrylate is characterized by a strong increase of viscosity of ?6 orders of magnitude and autoacceleration of the reaction rate due to the gel effect. This can lead to thermal and kinetic reactor instabilities. The kinetics is detd. sep. using DSC and described with a modified published model. The model predictions are verified in pilot plant expts. at 130-170 Deg. [on SciFinder (R)

  4. Thin-Film Behavior of Poly(methyl methacrylates) (PMMA). 7. Stereocomplexation in Mixed Monolayers of Isotactic PMMA and Partially Hydrolyzed Syndiotactic PMMA

    NARCIS (Netherlands)

    Brinkhuis, R.H.G.; Schouten, A.J.

    1992-01-01

    In an attempt to find a monolayer stereocomplexing system in which phase separation phenomena are less restrictive than for the s-PMMA/i-PMMA couple, the monolayer behavior of partially hydrolyzed syndiotactic poly(methyl methacrylate) (s-PMMA) was studied. For low carboxyl group contents, the

  5. Redox-Initiated Poly(methyl methacrylate) Emulsion Polymerizations Stabilized with Block Copolymers Based on Methoxy-Poly(ethylene glycol), epsilon-Caprolactone, and Linoleic Acid

    NARCIS (Netherlands)

    Tan, Boonhua; Nabuurs, Tijs; Feijen, Jan; Grijpma, Dirk W.

    2009-01-01

    A redox initiating system, consisting of t-butyl hydroperoxide (tBHPO), isoascorbic acid (iAA), and ethylenediaminetetraacetic acid ferric-sodium salt (FeEDTA) was employed in emulsion polymerizations of methyl methacrylate (MMA) at high solids contents of 30 wt % in water. The system was stabilized

  6. Affinity Monolith-Integrated Poly(methyl Methacrylate) Microchips for On-Line Protein Extraction and Capillary Electrophoresis

    Science.gov (United States)

    Sun, Xiuhua; Yang, Weichun; Pan, Tao; Woolley, Adam T.

    2008-01-01

    Immunoaffinity monolith pretreatment columns have been coupled with capillary electrophoresis separation in poly(methyl methacrylate) (PMMA) microchips. Microdevices were designed with 8 reservoirs to enable the electrically controlled transport of selected analytes and solutions to carry out integrated immunoaffinity extraction and electrophoretic separation. The PMMA microdevices were fabricated reproducibly and with high fidelity by solvent imprinting and thermal bonding methods. Monoliths with epoxy groups for antibody immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene dimethacrylate in a porogenic solvent consisting of 70% dodecanol and 30% hexanol. Anti-fluorescein isothiocyanate (FITC) was utilized as a model affinity group in the monoliths, and the immobilization process was optimized. A mean elution efficiency of 92% was achieved for the monolith-based extraction of FITC-tagged human serum albumin. FITC-tagged proteins were purified from a contaminant protein and then separated electrophoretically using these devices. The developed immunoaffinity column/capillary electrophoresis microdevices show great promise for combining sample pretreatment and separation in biomolecular analysis. PMID:18479142

  7. Influence of the volumes of bis-acryl and poly(methyl methacrylate) resins on their exothermic behavior during polymerization.

    Science.gov (United States)

    Ha, Jung-Yun; Kim, Sung-Hun; Kim, Kyo-Han; Kwon, Tae-Yub

    2011-01-01

    This study aimed to evaluate the influence of the volumes of a bis-acryl resin (Luxatemp) and a poly(methyl methacrylate) resin (Jet) on their exothermic behaviors during polymerization based on vinyl group conversion. The number of vinyl groups reacted and exotherm were determined based on weight percent of methacrylate groups using FTIR spectroscopy. Temperature changes during polymerization at 23°C were recorded for 20 minutes using a multiple cavity mold overlying a thermocouple. The number of vinyl groups reacted and exotherm of Luxatemp were consistently lower than those of Jet at each resin volume. Mean peak temperature rises of Luxatemp and Jet were in the range of 2.0-6.6°C and 4.2-11.6°C respectively, with Luxatemp and Jet taking 2 and 10 minutes respectively to reach their peak temperatures. As their resin volumes increased, their peak temperatures and total peak areas were also observed to increase significantly (p<0.01).

  8. Surface modification of glycidyl-containing poly(methyl methacrylate) microchips using surface-initiated atom-transfer radical polymerization.

    Science.gov (United States)

    Sun, Xuefei; Liu, Jikun; Lee, Milton L

    2008-02-01

    Fabrication of microfluidic systems from polymeric materials is attractive because of simplicity and low cost. Unfortunately, the surfaces of many polymeric materials can adsorb biological samples. Therefore, it is necessary to modify their surfaces before these polymeric materials can be used for separation and analysis. Oftentimes it is difficult to modify polymeric surfaces because of their resistance to chemical reaction. Recently, we introduced a surface-reactive acrylic polymer, poly(glycidyl methacrylate-co-methyl methacrylate) (PGMAMMA), which can be modified easily and is suitable for fabrication of microfluidic devices. Epoxy groups on the surface can be activated by air plasma treatment, hydrolysis, or aminolysis. In this work, the resulting hydroxyl or amino groups were reacted with 2-bromoisobutylryl bromide to introduce an initiator for surface-initiated atom-transfer radical polymerization (SI-ATRP). Polyethylene glycol (PEG) layers grown on the surface using this method were uniform, hydrophilic, stable, and resistant to protein adsorption. Contact angle measurement and X-ray photoelectron spectroscopy (XPS) were used to characterize activated polymer surfaces, initiator-bound surfaces, and PEG-grafted surfaces. We obtained excellent capillary electrophoresis (CE) separations of proteins and peptides with the PEG-modified microchips. A separation efficiency of 4.4 x 10(4) plates for a 3.5 cm long separation channel was obtained.

  9. Interfacial chemistry of poly(methyl methacrylate) arising from exposure to vacuum-ultraviolet light and atomic oxygen.

    Science.gov (United States)

    Yuan, Hanqiu; Killelea, Daniel R; Tepavcevic, Sanja; Kelber, Scott I; Sibener, S J

    2011-04-28

    We herein report on the chemical and physical changes that occur in thin films of poly(methyl methacrylate), PMMA, induced by exposure to high-energy vacuum ultraviolet radiation and a supersonic beam of neutral, ground electronic state O((3)P) atomic oxygen. A combination of in situ quartz crystal microbalance and in situ Fourier-transform infrared reflection-absorption spectroscopy were used to determine the photochemical reaction kinetics and mechanisms during irradiation. The surface morphological changes were measured with atomic force microscopy. The results showed there was no enhancement in the mass loss rate during simultaneous exposure of vacuum ultraviolet (VUV) radiation and atomic oxygen. Rather, the rate of mass loss was impeded when the polymer film was exposed to both reagents. This study elucidates the kinetics of photochemical and oxidative reaction for PMMA, and shows that the synergistic effect involving VUV irradiation and exposure to ground state atomic oxygen depends substantially on the relative fluxes of these reagents.

  10. Photoluminescent study of surface-functionalized BaTiO 3 nanoparticles in a poly(methyl methacrylate) matrix

    Science.gov (United States)

    Requena, Sebastian

    BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyl)triethoxysilane (3APTS) and mixed with poly(methyl methacrylate)/toluene solution. Nanocomposite thin films were synthesized by solution spin-coating on to Si substrates. The nanocomposites films morphology and chemical structure were studied via AFM and FTIR. The photoluminescence spectrum of the pure nanoparticles was composed of an emission at 3.0 eV and multiple bands centered at 2.5 eV. Surface functionalization of the BaTiO3 nanoparticles via 3APTS increased overall luminescence at room temperature while only enhancing the 3.0 eV emission at low-temperature. Polymer coating of the functionalized nanoparticles significantly enhances 3.0 eV emissions while decreasing emissions associated with near-surface lattice distortions at 2.5 eV.

  11. Adhesive 4-META/MMA-TBB opaque resin with poly(methyl methacrylate)-coated titanium dioxide.

    Science.gov (United States)

    Matsumura, H; Nakabayashi, N

    1988-01-01

    An adhesive opaque resin for veneering on cast metal was developed with 4-methacryloxyethyl trimellitate anhydride and poly (methyl methacrylate)-coated titanium dioxide prepared by aqueous phase polymerization. The opaque resin was a modified 4-META/MMA-TBB resin. The powder consisted of 20% of the encapsulated material and 80% PMMA instead of pure PMMA powder. This resin hides the metal color when the thickness of the resin is as thin as 50 microns. The opaque resin bonded strongly to both cobalt-chromium alloy and visible-light-cured veneering resin. This self-curing opaque resin is applicable not only for bonding veneering resin to an alloy surface but also for bonding fixed partial dentures to enamel surfaces.

  12. Athermal silicon nitride ring resonator by photobleaching of Disperse Red 1-doped poly(methyl methacrylate) polymer.

    Science.gov (United States)

    Qiu, Feng; Yu, Feng; Spring, Andrew M; Yokoyama, Shiyoshi

    2012-10-01

    To fabricate athermal silicon nitride waveguides, the dimensions of both the core and cladding, refractive index, and thermo-optic coefficients must be controlled precisely. We present a simple and effective method for the postfabrication trimming of silicon nitride ring resonators that overcomes the highly demanding fabrication. In order to manipulate the polymer's refractive index and thermo-optic coefficient, we bleached the Disperse Red 1-doped poly(methyl methacrylate) (DR1/PMMA) top cladding using UV irradiation. After a suitable bleaching time, the temperature-dependent wavelength shift of the ring resonator was reduced from -9.8 to -0.018 pm/°C, which is the lowest shift that we are aware of for an athermal waveguide realized by overlaying a polymer cladding to date.

  13. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Tea; Chu, Daping, E-mail: dpc31@cam.ac.uk [Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Neeves, Matthew; Placido, Frank [Thin Film Centre, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Smithwick, Quinn [Disney Research, 521 Circle Seven Drive, Glendale, Los Angeles, California 91201 (United States)

    2014-11-10

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO{sub x} thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm{sup 2}, exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively.

  14. Synthesis of poly(methyl methacrylate)-block-poly(L-histidine) and its use as a hybrid silver nanoparticle conjugate.

    Science.gov (United States)

    Shin, Nam Ho; Lee, Jin Kyu; Li, Haiqing; Ha, Chang-Sik; Shchipunov, Yury A; Kim, Il

    2010-10-01

    Poly[(methyl methacrylate)-block-poly(L-histidine)] (PMMA-b-PHIS) was synthesized by combining atom transfer radical polymerization and living ring-opening polymerization of alpha-amino acid-N-carboxyanhydride. The resulting hybrid block copolymer forms reverse micelles in the mixture solution of water and N,N-dimethylformamide (DMF) and self-assembles into PHIS/PMMA core/shell spheres with controllable size in the range of 80 to 250 nm depending on the micellization temperature. The self-assembly of PMMA-b-PHIS was carried out in H2O/DMF (3/7) mixture in the presence of AgNO3. Reduction of the resulting Ag ions encapsulated inside of the reverse micelles yielded an attractive Ag nanoparticle core/polymer shell conjugate system.

  15. Controlled release in hard to access places by poly(methyl methacrylate) microcapsules triggered by gamma irradiation

    DEFF Research Database (Denmark)

    Kostrzewska, Malgorzata; Ma, Baoguang; Javakhishvili, Irakli

    2015-01-01

    Gamma irradiation was investigated as a triggering stimulus for the activation of poly(methyl methacrylate) (PMMA) microcapsules. PMMA was exposed to varying doses of irradiation and analyzed by differential scanning calorimetry, size-exclusion chromatography, and nuclear magnetic resonance....... It was found that the glass transition temperature (Tg) of the polymer decreases at low irradiation doses. Additionally, Tg can be physically adjusted by adding a plasticizer, and both kinds of microcapsules were successfully prepared with non-plasticized and plasticized PMMA shell. Finally, impermeable...... microcapsules were shown to become permeable after irradiation and release an encapsulated cross-linker, which enables the remotely controlled formation of polydimethylsiloxanes in traditionally unavailable places. Therefore, the activation method has significant implications for industrial application....

  16. Atmospheric Oxidation Mechanism and Kinetic Studies for OH and NO3 Radical-Initiated Reaction of Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Rui Gao

    2014-03-01

    Full Text Available The mechanism for OH and NO3 radical-initiated oxidation reactions of methyl methacrylate (MMA was investigated by using density functional theory (DFT molecular orbital theory. Geometrical parameters of the reactants, intermediates, transition states, and products were fully optimized at the B3LYP/6-31G(d,p level. Detailed oxidation pathways were presented and discussed. The rate constants were deduced by the canonical variational transition-state (CVT theory with the small-curvature tunneling (SCT correction and the multichannel Rice-Ramspergere-Kassele-Marcus (RRKM theory, based on the potential energy surface profiles over the general atmospheric temperature range of 180–370 K. The calculated results were in reasonable agreement with experimental measurement.

  17. Kinetic study of Candida antarctica lipase B immobilization using poly(methyl methacrylate) nanoparticles obtained by miniemulsion polymerization as support.

    Science.gov (United States)

    Valério, Alexsandra; Nicoletti, Gabrieli; Cipolatti, Eliane P; Ninow, Jorge L; Araújo, Pedro H H; Sayer, Cláudia; de Oliveira, Débora

    2015-03-01

    With the objective to obtain immobilized Candida antarctica lipase B (CalB) with good activity and improved utilization rate, this study evaluated the influence of enzyme and crodamol concentrations and initiator type on the CalB enzyme immobilization in nanoparticles consisting of poly(methyl methacrylate) (PMMA) obtained by miniemulsion polymerization. The kinetic study of immobilized CalB enzyme in PMMA nanoparticles was evaluated in terms of monomer conversion, particle size, zeta potential, and relative activity. The optimum immobilization condition for CalB was compared with free enzyme in the p-NPL hydrolysis activity measurement. Results showed a higher CalB enzyme stability after 20 hydrolysis cycles compared with free CalB enzyme; in particular, the relative immobilized enzyme activity was maintained up to 40%. In conclusion, PMMA nanoparticles proved to be a good support for the CalB enzyme immobilization and may be used as a feasible alternative catalyst in industrial processes.

  18. Nanotextured Morphology of Poly(methyl methacrylate and Ultraviolet Curable Poly(urethane acrylate Blends via Phase Separation

    Directory of Open Access Journals (Sweden)

    Ju-Hyung Kim

    2015-01-01

    Full Text Available Domain structures of spin-coated immiscible poly(methyl methacrylate (PMMA and ultraviolet (UV curable poly(urethane acrylate (PUA blends were studied using atomic force microscopy (AFM. Spin casting the PMMA/PUA blends in propylene glycol monomethyl ether acetate (PGMEA was accompanied with phase separation, and PUA was subsequently cross-linked under UV radiation. Selective dissolution of PMMA in the phase-separated films was feasible using tetrahydrofuran (THF solvent after the UV curing process, because the cured PUA material is highly stable against THF. Morphology of phase-separated structure, including domain size and height, could be controlled by varying total concentration of the blended solution, and various nanoscale features such as island-like and hole-like structures were achieved by changing weight ratio of the two immiscible polymers.

  19. Evaluation of Excess Free Volume and Internal Pressure in Binary Mixtures of Methyl Methacrylate(MMA with Alcohols

    Directory of Open Access Journals (Sweden)

    R. Vadamalar

    2009-01-01

    Full Text Available Methyl methacrylate (MMA is an important monomer attracting the attention of industrialists and scientists because of its various applications and reactivity. The knowledge of thermodynamic and transport properties of MMA in alcohols and other organic solvents is useful in industrial processes. Ultrasonic and viscometric parameters offer simple, easy and accurate ways for calculating several physical parameters which throw light on molecular interactions in solutions. In this paper, the interactions of two alcohols; tert-butanol and iso-butanol with MMA are reported for the first time. Comparison has been made on the interactive nature of the two alcohols. Computation of free volume, internal pressure and excess free volume has been made for the entire concentration range. Existence of mesomeric effects of MMA is clearly seen and the role of structure of alcohols is observed.

  20. A symmetric supercapacitor based on 30% poly (methyl methacrylate) grafted natural rubber (MG30) polymer and activated carbon electrodes

    Science.gov (United States)

    Zaki, Nur Hamizah Mohd; Mahmud, Zaidatul Salwa; Hassan, Oskar Hasdinor; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2017-08-01

    This article focuses on polymer-based gel electrolytes because basic features good self-standing characteristics, conductivity, and excellent window stability for supercapacitor devices when compared to aqueous electrolytes. Gel polymer electrolytes (GPEs) based on 30% poly (methyl methacrylate) grafted natural rubber (MG30) doped with ammonium triflate (NH4CF3SO3) and plasticized with ethylene carbonate (EC) were prepared by a solution casting method. Owing to being plasticized, the GPEs exhibit high room temperature ionic conductivity of 9.61×10-4 S.cm-1 at the composition of 26:14:60 wt% for MG30: NH4CF3SO3: EC. Linear sweep voltammogram study shows the highest conducting GPE exhibited electrochemical window stability of 2.7V. The GPEs has been employed to demonstrate the possibility of fabricating supercapacitor. Symmetric devices assembled using activated carbon as electrodes and GPEs (highest conducting) exhibit a specific capacitance of 32 F.g-1.

  1. Effect of interfacial structure on bioinert properties of poly(2-methoxyethyl acrylate)/poly(methyl methacrylate) blend films in water.

    Science.gov (United States)

    Hirata, T; Matsuno, H; Kawaguchi, D; Yamada, N L; Tanaka, M; Tanaka, K

    2015-07-14

    In this study, we found that the surface made of a mixture of poly(2-methoxyethyl acrylate) (PMEA) and poly(methyl methacrylate) (PMMA) exhibited excellent blood compatibility by inhibiting platelet adhesion. To obtain a better understanding of this bioinertness, the polymer/water interface was characterized by neutron reflectivity measurements and sum frequency generation spectroscopy, in conjunction with bubble contact angle measurements. Based on the results, we can say that the outermost region of the blend film was reorganized in water. When the orientation of PMEA segments at the water interface became random with increasing immersion time, the fractional amount of lower-coordinated water molecules increased at the interface. Such an interfacial structure caused the suppression of platelet adhesion.

  2. Enhancement of impact strength of poly (methyl methacrylate) with surface fine-tuned nano-silica

    Science.gov (United States)

    Wen, Bin; Dong, Yixiao; Wu, Lili; Long, Chao; Zhang, Chaocan

    2015-07-01

    Highly dispersible nanoparticles in organic solvent always receive wide interests due to their compatibility with polymer materials. This paper reported a kind of isopropanol alcohol silica dispersion which obtained using a method of azeotropic distillation. The isopropanol alcohol dispersed silica (IPADS) were treated with coupling agents to fine-tune their surface properties. Polymethyl methacrylate (PMMA) was then used as a research object to test the compatibility between IPADS and polymer. UV-vis spectra indicate that IPADS would reach its high compatibility with PMMA if coupling with trimethoxypropylsilane (PTMS). Followed experiments on PMMA proved that the high compatibility can prominently enhance the impact strength about 30%. The results may provide reference both for nano-silica modification and better understanding of nano-enhanced materials.

  3. Reduction of ethylenediaminetetraacetic acid iron(III) by Klebsiella sp. FD-3 immobilized on iron(II, III) oxide poly (styrene-glycidyl methacrylate) magnetic porous microspheres: effects of inorganic compounds and kinetic study of effective diffusion in porous media.

    Science.gov (United States)

    Zhou, Zuo-Ming; Wang, Xiao-Yan; Lin, Tian-Ming; Jing, Guo-Hua

    2014-11-01

    Fe3O4 poly (styrene-glycidyl methacrylate) magnetic porous microspheres (MPPMs) were introduced to immobilize Klebsiella sp. FD-3, an iron-reducing bacterium applied to reduce Fe(III)EDTA. The effects of potential inhibitors (S(2-), SO3(2-), NO3(-), NO2(-) and Fe(II)EDTA-NO) on Fe(III)EDTA reduction were investigated. S(2-) reacted with Fe(III)EDTA as an electron-shuttling compound and enhanced the reduction. But Fe(III)EDTA reduction was inhibited by SO3(2-) and Fe(II)EDTA-NO due to their toxic to microorganisms. Low concentrations of NO3(-) and NO2(-) accelerated Fe(III)EDTA reduction, but high concentrations inhibited the reduction, whether by free or immobilized FD-3. The immobilized FD-3 performed better than freely-suspended style. The substrate mass transfer and diffusion kinetics in the porous microspheres were calculated. The value of Thiele modulus and effectiveness factors showed that the intraparticle diffusion was fairly small and neglected in this carrier. Fe(III)EDTA reduction fitted first-order model at low Fe(III)EDTA concentration, and changed to zero-order model at high concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Flexible fiber-reinforced composites with improved interfacial adhesion by mussel-inspired polydopamine and poly(methyl methacrylate) coating.

    Science.gov (United States)

    Yi, Mi; Sun, Hongyang; Zhang, Hongcheng; Deng, Xuliang; Cai, Qing; Yang, Xiaoping

    2016-01-01

    To obtain a kind of light-curable fiber-reinforced composite for dental restoration, an excellent interfacial adhesion between the fiber and the acrylate resin matrix is quite essential. Herein, surface modification on glass fibers were carried out by coating them with poly(methyl methacrylate) (PMMA), polydopamine (PDA), or both. The PMMA or PDA coating was performed by soaking fibers in PMMA/acetone solution or dopamine aqueous solution. PDA/PMMA co-coated glass fibers were obtained by further soaking PDA-coated fibers in PMMA/acetone solution. These modified fibers were impregnated with bisphenol A glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (5:5, w/w) dental resin at a volume fraction of 75%, using unmodified fibers as reference. Light-cured specimens were submitted to evaluations including flexural properties, morphological observation, dynamic mechanical thermal analysis (DMTA) and pull-out test. In comparison with unmodified glass fibers, all the modified glass fibers showed enhancements in flexural strength and modulus of Bis-GMA/TEGDMA resin composites. Results of DMTA and pull-out tests confirmed that surface modification had significantly improved the interfacial adhesion between the glass fiber and the resin matrix. Particularly, the PDA/PMMA co-coated glass fibers displayed the most efficient reinforcement and the strongest interfacial adhesion due to the synergetic effects of PDA and PMMA. It indicated that co-coating method was a promising approach in modifying the interfacial compatibility between inorganic glass fiber and organic resin matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Blood perfusion and remodelling activity in canine tibial diaphysis after filling with a new bone cement compared to bone wax and poly(methyl methacrylate) cement.

    Science.gov (United States)

    Stürup, J; Nimb, L; Jensen, J S

    1995-07-01

    Six dogs each had one tibia filled with standard poly(methyl methacrylate) (PMMA) bone cement and the contralateral tibia filled with a new methyl methacrylate-n-decyl methacrylate-isobornyl methacrylate (MMA-DMA-IBMA) bone cement (Boneloc) with lowered polymerization heat and monomer leakage. An additional six dogs each had one tibia filled with MMA-DMA-IBMA and the contralateral tibia filled with bone wax. There was a higher diaphyseal blood flow, measured with a microsphere technique, in the legs filled with MMA-DMA-IBMA than in those filled with PMMA. The wax-filled bones presented higher blood perfusion than those with MMA-DMA-IBMA. We found a tendency towards higher 99mtechnetium-labelled methylene diphosphonate (99mTcMDP) uptake, and autoradiograms revealed a tendency towards larger subperiosteal apposition and more blackening, both at the subperiosteal apposition and the cortex, in the bones filled with new bone cement in the first series, but in wax-filled bone in the second series. It is concluded that the new bone cement, compared to standard acrylic bone cement, seems to inhibit the vascular response and bone remodelling activity less, making earlier remodelling possible. However, the new bone cement still seems to inhibit bone blood perfusion compared to bone wax.

  6. Synthesis and characterization of poly(methoxyl ethylene glycol-caprolactone-co-methacrylic acid-co-poly(ethylene glycol) methyl ether methacrylate) pH-sensitive hydrogel for delivery of dexamethasone.

    Science.gov (United States)

    Wang, Ke; Xu, Xu; Wang, YuJun; Yan, Xi; Guo, Gang; Huang, MeiJuan; Luo, Feng; Zhao, Xia; Wei, YuQuan; Qian, ZhiYong

    2010-04-15

    In this work, a novel pH-sensitive hydrogels based on macromonomer of methoxyl poly(ethylene glycol)-poly(caprolactone)-acryloyl chloride (MPEG-PCL-AC, PCE-AC), poly(ethylene glycol) methyl ether methacrylate (MPEGMA), and methacrylic acid (MAA) were successfully synthesized by heat-initiated free radical polymerization method. The obtained macromonomers and hydrogels were characterized by (1)H NMR and FT-IR, respectively. Morphology study, swelling behavior, in vitro drug release behavior, acute oral toxicity of hydrogels, and cytotoxicity of PCE-AC macromonomer were also investigated in this paper. Finally, the hydrogels demonstrated that the sharp change in different pH value, thus believing to be promising the suitability of the candidate for oral drug-delivery systems. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Synthesis of ultrathin poly(methyl methacrylate) model coatings bound via organosilanes to zinc and investigation of their delamination kinetics.

    Science.gov (United States)

    Iqbal, Danish; Rechmann, Julian; Sarfraz, Adnan; Altin, Abdulrahman; Genchev, Georgi; Erbe, Andreas

    2014-10-22

    Polymer coatings are widely used to protect metals from corrosion. Coating adhesion to the base material is critical for good protection, but coatings may fail because of cathodic delamination. Most of the experimental studies on cathodic delamination use polymers to study the corrosion behavior under conditions where the interfacial chemistry at the metal(oxide)/polymer interface is not well-defined. Here, ultrathin linear and cross-linked poly(methyl methacrylate) [PMMA] coatings that are covalently bound to oxide-covered zinc via a silane linker have been prepared. For preparation, zinc was functionalized with vinyltrimethoxysilane (VTS), yielding a vinyl monomer-covered surface. These samples were subjected to thermally initiated free radical polymerization in the presence of methyl methacrylate (MMA) to yield surface-bound ultrathin PMMA films of 10-20 nm thickness, bound to the surface via Zn-O-Si bonds. A similar preparation was also carried out in the presence of different amounts of the cross-linkers ethylene glycol diacrylate and hexanediol diacrylate. Functionalized and polymer-coated zinc samples were characterized by infrared (IR) spectroscopy, secondary ion mass spectrometry (SIMS), ellipsometry, and X-ray photoelectron spectroscopy (XPS). Coating stability toward cathodic delamination has been evaluated by scanning Kelvin probe (SKP) experiments. In all cases, the covalently linked coatings show lower delamination rates of 0.02-0.2 mm h(-1) than coatings attached to the surface without covalent bonds (rates ∼10 mm h(-1)). Samples with a higher fraction of cross-linker delaminate slower, with rates down to 0.03-0.04 mm h(-1), compared to ∼0.3 mm h(-1) without cross-linker. Samples with longer hydrophobic alkyl chains also delaminate slower, with the lowest observed delamination rate of 0.028 mm h(-1) using hexanediol diacrylate. For the coatings studied here, delamination kinetics is not diffusion limited, but the rate is controlled by a chemical

  8. Study of castor oil polyurethane - poly(methyl methacrylate semi-interpenetrating polymer network (SIPN reaction parameters using a 2³ factorial experimental design

    Directory of Open Access Journals (Sweden)

    Fernanda Oliveira Vieira da Cunha

    2004-12-01

    Full Text Available In this work was employed a 2³ factorial experiment design to evaluate the castor oil polyurethane-poly(methyl methacrylate semi-IPN synthesis. The reaction parameters used as independent variables were NCO/OH molar ratio, polyurethane polymerization time and methyl methacrylate (MMA content. The semi-IPNs were cured over 28 h using two thermal treatments. The polymers were characterized by infrared and Raman spectroscopy, thermal analysis and swelling profiles in n-hexane. The glass transition temperature (Tg and the swelling were more affect by the NCO/OH molar ratio variation. The semi-IPNs showed Tg from - 27 to - 6 °C and the swelling range was from 3 to 22%, according to the crosslink density. The IPN mechanical properties were dependent on the cure temperature and MMA content in it. Lower elastic modulus values were observed in IPNs cured at room temperature.

  9. Facile Synthesis of Novel Polyethylene-Based A-B-C Block Copolymers Containing Poly(methyl methacrylate) Using a Living Polymerization System.

    Science.gov (United States)

    Song, Xiangyang; Ma, Qiong; Cai, Zhengguo; Tanaka, Ryo; Shiono, Takeshi; Grubbs, Robert B

    2016-02-01

    Ethylene-propylene-methyl methacrylate (MMA) and ethylene-hexene-MMA A-B-C block copolymers with high molecular weight (>100,000) are synthesized using fluorenylamide-ligated titanium complex activated by modified methylaluminoxane and 2,6-di-tert-butyl-4-methylphenol for the first time. After diblock copolymerization of olefin is conducted completely, MMA is added and activated by aluminum Lewis acid to promote anionic polymerization. The length of polyolefin and poly (methyl methacrylate) (PMMA) is controllable precisely by the change of the additive amount of olefin and polymerization time, respectively. A soft amorphous polypropylene or polyhexene segment is located between two hard segments of semicrystalline polyethylene and glassy PMMA blocks. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Single-mode visible and mid-infrared periodically poled lithium niobate optical parametric oscillator amplified in perylene red doped poly(methyl methacrylate)

    Science.gov (United States)

    Schlup, Philip; W. Baxter, Glenn; McKinnie, Iain T.

    2000-10-01

    We have demonstrated a simple grazing-incidence optical parametric oscillator (OPO) based on periodically poled lithium niobate (PPLN) capable of generating single-mode visible (619-640 nm) and infrared (3.16-3.77 μm) radiation. The single-mode (poly(methyl methacrylate) disc was used to amplify the signal wavelength up to 114 μJ in a single pass without broadening the optical bandwidth.

  11. Effect of Anatase Titanium Dioxide Nanoparticles on the Flexural Strength of Heat Cured Poly Methyl Methacrylate Resins: An In-Vitro Study

    OpenAIRE

    Nazirkar, Girish; Bhanushali, Shilpa; Singh, Shailendra; Pattanaik, Bikash; Raj, Naveen

    2014-01-01

    Poly methyl methacrylate (PMMA) resin is the most widely used material for fabrication of dentures since 1937 as it exhibits adequate physical, mechanical and esthetic properties. But one of the major problems faced using this material is that, it is highly prone to plaque accumulation due to surface porosities and its food retentive properties. This in turn increases the bacterial activity causing denture stomatitis. In efforts to impart antimicrobial property to these resins, various nanopa...

  12. Improvement of the T-peel Strength of Polypropylene Adhesion Joints by Surface Photografting Pre-Treatment with Methyl Methacrylate

    Science.gov (United States)

    Balart, R.; Sánchez-Nácher, L.; Balart, J.; Fombuena, V.; España, J. M.

    2010-06-01

    Although polypropylene is one of the most used polymers at industrial level due to good balanced properties, it presents some restrictions in applications that require good adhesion properties as well as coating and painting. These restrictions are related to its non polar nature which leads to low wetting properties. So that, in most cases, it is necessary a previous surface pre-treatment in order to improve adhesion properties. These surface treatments could be physical or chemical. Among the wide variety of physical processes, plasma technologies are useful from both technical and environmental points of view. If we take into account economic considerations, chemical processes are interesting due to low cost equipment and procedures. In particular, we have used photografting of methyl methacrylate (MMA) monomer on polypropylene substrates with UV radiation and initiators. This process is useful to promote chemical modification of polypropylene surface by grafting MMA monomers into polypropylene polymer chains. Due to polarity of some groups in MMA monomers, it is possible to increase surface wettability thus promoting a remarkable increase in adhesion properties of polypropylene. In this work, changes in wettability of polypropylene surfaces in terms of the exposure time to UV radiation in presence of MMA monomers and initiators has been investigated. Furthermore, chemical changes have been characterized by FTIR analysis and mechanical performance of adhesion joints has been evaluated by T-peel tests.

  13. Synthesis and characterization of poly(methyl methacrylate-butyl acrylate)/nano-titanium oxide composite particles.

    Science.gov (United States)

    Guo, Gang; Yu, Jie; Luo, Zhu; Zhou, LiangXue; Liang, Hang; Luo, Feng; Qian, ZhiYong

    2011-06-01

    Poly(methyl methacrylate-butyl acrylate) [P(MMA-BA)]/nanosized titanium oxide (nano-TiO2) composite particles were prepared via insitu emulsion polymerization of MMA and BA in presence of nano-TiO2 particles. Before polymerization, the nano-TiO2 particles were modified by coupling agent. The structure and thermal properties of the obtained P(MMA-BA)/nano-TiO2 composite particles were characterized by Fourier transform infrared spectra (FTIR), wide-angle X-ray diffraction (WAXD) and thermogravimetric analysis (TGA). The results showed that there are covalent bond bindings between P(MMA-BA) and nano-TiO2 particles, meaning that P(MMA-BA) and nano-TiO2 particles were not simply blended or mixed up and that there is a strong interaction between P(MMA-BA) and nano-TiO2 particles. TGA and DSC measurements indicated an enhancement of thermal stability. Transmission electron microscopy (TEM) results showed that P(MMA-BA) enhanced the dispersibility of nano-TiO2 particles. The dispersion stabilization of modified nano-TiO2 particles in aqueous system was significantly improved due to the introduction of grafted polymer on the surface of nano-particles.

  14. Radiation-grafting of 2-hydroxyethylmethacrylate and oligo (ethylene glycol) methyl ether methacrylate onto polypropylene films by one step method

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Jimenez, Alejandro [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico); Alvarez-Lorenzo, Carmen; Concheiro, Angel [Departamento de Farmacia y Tecnologia Farmaceutica, Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain); Bucio, Emilio, E-mail: ebucio@nucleares.unam.mx [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico)

    2012-01-15

    Polypropylene films were modified with 2-hydroxyethylmethacrylate (HEMA) and oligo (ethylene glycol) methyl ether methacrylate (OEGMA) using the pre-irradiation method with gamma-rays (one step method). The effect of absorbed dose from 10 to 100 kGy, temperature (50, 60, and 70 {sup o}C), monomer concentration between 12.5% and 62.5%, monomers ratio from 10% to 90% and reaction time from 5 to 50 h; on the degree of grafting was determined. The grafted samples were analyzed by FTIR-ATR, TGA, DSC, swelling, and contact angle. Grafts onto polymeric films between 3% and 109% were obtained at doses from 10 to 100 kGy and a dose rate around 7.4 kGy/h. The graft percent increased with the content in HEMA in the HEMA:OEGMA feed mixture, which indicates a lower reactivity of OEGMA compared to HEMA. The hydrogel layer grafted on the polypropylene substrate increases the hydrophilicity of the surface and also provides certain temperature-responsiveness, which may be of interest for biomedical applications. - Highlights: > PP was grafted with a hydrogel layer applying the {gamma}-ray pre-irradiation method. > Effects of radiation dose, time, temperature and monomers concentration were evaluated. > Grafted layer increases the hydrophilicity of PP films. > HEMA and OEGMA grafted onto PP may be of interest for biomedical applications.

  15. Preparation and Characterization of ZnS, CdS and HgS/Poly(methyl methacrylate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Johannes Z. Mbese

    2014-09-01

    Full Text Available The synthesis and characterization of ZnS/PMMA (poly(methyl methacrylate, CdS/PMMA and HgS/PMMA nanocomposites are presented. Hexadecylamine (HDA-capped ZnS, CdS and HgS nanoparticles were synthesized using dithiocarbamate single molecule precursors at 180 °C. FTIR (Fourier transform infrared spectroscopy spectra measurement confirmed the dispersion of the metal sulfide nanoparticles in the PMMA matrices to form the metal sulfides/PMMA nanocomposites. Powder X-ray diffraction confirmed the presence of the amorphous PMMA in the nanocomposites. The ZnS and HgS particles were indexed to the cubic phase, while the HgS particles correspond to the hexagonal phase. Thermogravimetric analyses showed that the metal sulfide nanocomposites are thermally more stable than their corresponding precursor complexes. The TEM (Transmission electron microscope analyses revealed that the ZnS nanoparticles have a particle size of 3–5 nm; the crystallite size of the CdS nanoparticles is 6–12 nm, and HgS nanoparticles are 6–12 nm.

  16. Pilot-scale synthesis and rheological assessment of poly(methyl methacrylate) polymers: perspectives for medical application.

    Science.gov (United States)

    Linan, Lamia Zuniga; Nascimento Lima, Nádson M; Filho, Rubens Maciel; Sabino, Marcos A; Kozlowski, Mark T; Manenti, Flavio

    2015-06-01

    This work presents the rheological assessment of poly(methyl methacrylate) (PMMA) polymers synthesized in a dedicated pilot-scale plant. This material is to be used for the construction of scaffolds via Rapid Prototyping (RP). The polymers were prepared to match the physical and biological properties required for medical applications. Differential Scanning Calorimetry (DSC) and Size Exclusion Chromatography (SEC) measurements verified that the synthesized polymers were atactic, amorphous and linear in chains. Rheological properties such as viscosity, storage and loss modulus, beyond the loss factor, and creep and recovery were measured in a plate-plate sensor within the viscoelastic linear region. The results showed the relevant influence of the molecular weight on the viscosity and elasticity of the material, and how, as the molecular weight increases, the viscoelastic properties are getting closer to those of human bone. This article demonstrates that by using the implemented methodology it is possible to synthesize a polymer, with properties comparable to commercially-available PMMA. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Synthesis of ZnPc loaded poly(methyl methacrylate) nanoparticles via miniemulsion polymerization for photodynamic therapy in leukemic cells.

    Science.gov (United States)

    Feuser, Paulo Emilio; Gaspar, Pamela Cristina; Jacques, Amanda Virtuoso; Tedesco, Antônio Claudio; Santos Silva, Maria Claudia Dos; Ricci-Júnior, Eduardo; Sayer, Claudia; de Araújo, Pedro Henrique Hermes

    2016-03-01

    The goal of this work was to synthesize and characterize ZnPc loaded poly(methyl methacrylate) (PMMA) nanoparticles (NPs) by miniemulsion polymerization. Biocompatibility assays were performed in murine fibroblast (L929) cells and human peripheral blood lymphocytes (HPBL). Finally, photobiological assays were performed in two leukemic cells: chronic myeloid leukemia in blast crisis (K562) and acute lymphoblastic leukemia (Jurkat). ZnPc loaded PMMA NPs presented an average diameter of 97±2.5 nm with a low polydispersity index and negative surface charge. The encapsulation efficiency (EE %) of ZnPc PMMA NPs was 87%±2.12. The release of ZnPc from PMMA NPs was slow and sustained without the presence of burst effect, indicating homogeneous drug distribution in the polymeric matrix. NP biocompatibility was observed on the treatment of peripheral blood lymphocytes and L929 fibroblast cells. Phototoxicity assays showed that the ZnPc loaded in PMMA NPs was more phototoxic than ZnPc after activation with visible light at 675 nm, using a low light dose of 2J/cm(2) in both leukemic cells (Jurkat and K562). The results from fluorescence microscopy (EB/OA) and DNA fragmentation suggest that the ZnPc loaded PMMA NPs induced cell death by apoptosis. Based on presented results, our study suggests that PDT combined with the use of polymeric NPs, may be an excellent alternative for leukemia treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Release of methyl methacrylate from heat-cured and autopolymerized resins: cytotoxicity testing related to residual monomer.

    Science.gov (United States)

    Kedjarune, U; Charoenworaluk, N; Koontongkaew, S

    1999-03-01

    Three heat-cured and three autopolymerized acrylic denture bases with different mixing proportions and/or processing methods were investigated for the amount of residual monomer content and methyl methacrylate (MMA) released into saliva after incubation during the first and second 24 hours after processing. A corresponding range of concentrations of MMA was also used to test for cell cytotoxicity using a culture of human oral fibroblasts. The results showed that the amount of residual monomer was dependent not only on the type of polymerization but also on the amount of liquid in the mixture ratio and the processing method. The acrylic resin that had the lowest residual monomer also released the smallest amount of MMA but resins which have higher residual monomer may not necessarily release higher amounts of MMA. MMA, tested in the same range of concentration as the MMA found leached from acrylic resin in this study, was found to be toxic in the cell culture. Therefore, it is recommended that dentists attempt to reduce the amount of leachable substances before insertion of new dentures. In addition, it is recommended that dentists advise their patients not to wear newly made dentures overnight, as this may cause mucosal irritation from the potential accumulation of leachable substances.

  19. Radiolytic stabilization of industrial poly(methyl methacrylate); Estabilizacao radiolitica do poli(metacrilato de metila) industrial

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Katia Aparecida da Silva

    2005-03-15

    Poly(methyl methacrylate), PMMA, Acrigel, a Brazilian polymer, is used in the manufacture of medical supplies sterilisable by ionizing radiation. However, when PMMA is gamma-irradiated it undergoes main chain scissions, which promote molecular degradation causing reduction in its physical properties. Therefore, radiolytic stabilization of PMMA is important for to become it commercially radio sterilisable. In this work we investigated the radiolytic stabilization of PMMA by using HALS (Hindered Amine Light Stabilizer) additive, commercially used for photo and thermo oxidative stabilization of polymers. The investigation of the radiation-induced main chain scissions was carried out by viscometric method. The additive added to the polymer system at 0.3 % w/w promotes a molecular radioprotection of 61%. That means a reduction of G value (scissions/100 eV) from 2.6 to 1.0. In addition, the glassy transition temperature (Tg) of PMMA (no additive), significantly changed by radiation, does not change when PMMA (with additive) is irradiated. TGA analysis showed that the additive promotes thermal stability to the system, increasing decomposition temperature of PMMA. Spectroscopy analysis, FT-IR and RMN ({sup 1}H), showed that the radioprotector additive added to the system does not change the PMMA structure. Analysis on mechanical (tensile strength and elongation at break) and optical (yellowness index and refractive index) properties showed a good influence of the additive on polymer system. (author)

  20. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, Paulo Emilio [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil); Jacques, Amanda Virtuoso [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin [Federal University of Paraná, Department of Biochemistry and Molecular Biology (Brazil); Santos-Silva, Maria Claudia dos [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Sayer, Claudia; Araújo, Pedro H. Hermes de, E-mail: pedro.h.araujo@ufsc.br [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil)

    2016-04-15

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  1. Sonochemical synthesis of copper II sulfide nanoparticles and their use as radiolytic stabilizer in poly(methyl methacrylate) matrix

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Marilia Cordeiro C. de; Aquino, Katia Aparecida da Silva; Araujo, Elmo S., E-mail: aquino@ufpe.b [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    Copper (II) sulfide (CuS) was synthesized by sonochemical method. Cu S crystals with hexagonal structure exhibit irregular particles with an average size in the range of 250-900 nm. Commercial Poly(methyl methacrylate) (PMMA) containing CuS nanoparticles (PMMA/Cu) at concentrations of 0.15; 0.30; 0.45 and 0.60 wt% were investigated. The samples were irradiated with gamma radiation ({sup 60}Co) at room temperature and air atmosphere. The viscosity-average molar mass (Mv) was measured for PMMA systems without nanoparticles and with nanoparticles. Decrease in molar mass observed when the systems were gamma irradiated reflect the random scission effects that take place in the main chain. Degradation index (DI) value was also obtained by viscosity analysis. DI results showed that the addition of CuS nanoparticles at 0.3 wt% into PMMA matrix decreased the number of main chain scissions at dose of 25 kGy and was calculated a protection of 50% in PMMA matrix. CuS nanoparticles act as free radical scavenger into gamma-irradiated PMMA systems. Changes in the infrared spectra of PMMA systems indicate that polymer molecules interact with CuS nanoparticles. Improvement of mechanical properties was found for PMMA/Cu films. An increase of 38% of Young's modulus value and a decrease of 22% on the elongation at break value were recorded for PMMA/Cu films exposed to gamma irradiation. (author)

  2. Stereocomplexation of polylactide enhanced by poly(methyl methacrylate): improved processability and thermomechanical properties of stereocomplexable polylactide-based materials.

    Science.gov (United States)

    Samuel, Cédric; Cayuela, Julien; Barakat, Ibrahim; Müller, Alejandro J; Raquez, Jean-Marie; Dubois, Philippe

    2013-11-27

    Stereocomplexable polylactides (PLAs) with improved processability and thermomechanical properties have been prepared by one-step melt blending of high-molecular-weight poly(l-lactide) (PLLA), poly(d-lactide) (PDLA), and poly(methyl methacrylate) (PMMA). Crystallization of PLA stereocomplexes occurred during cooling from the melt, and, surprisingly, PMMA enhanced the amount of stereocomplex formation, especially with the addition of 30-40 % PMMA. The prepared ternary blends were found to be miscible, and such miscibility is likely a key factor to the role of PMMA in enhancing stereocomplexation. In addition, the incorporation of PMMA during compounding substantially raised the melt viscosity at 230 °C. Therefore, to some extent, the use of PMMA could also overcome processing difficulties associated with low viscosities of stereocomplexable PLA-based materials. Semicrystalline miscible blends with good transparency were recovered after injection molding, and in a first approach, the thermomechanical properties could be tuned by the PMMA content. Superior storage modulus and thermal resistance to deformation were thereby found for semicrystalline ternary blends compared to binary PLLA/PMMA blends. The amount of PLA stereocomplexes could be significantly increased with an additional thermal treatment, without compromising transparency. This could result in a remarkable thermal resistance to deformation at much higher temperatures than with conventional PLA. Consequently, stereocomplex crystallization into miscible PLLA/PDLA/PMMA blends represents a relevant approach to developing transparent, heat-resistant, and partly biobased polymers using conventional injection-molding processes.

  3. Fabrication of poly(methyl methacrylate)-MoS{sub 2}/graphene heterostructure for memory device application

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Sachin M.; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2014-12-07

    Combination of two dimensional graphene and semi-conducting molybdenum disulfide (MoS{sub 2}) is of great interest for various electronic device applications. Here, we demonstrate fabrication of a hybridized structure with the chemical vapor deposited graphene and MoS{sub 2} crystals to configure a memory device. Elongated hexagonal and rhombus shaped MoS{sub 2} crystals are synthesized by sulfurization of thermally evaporated molybdenum oxide (MoO{sub 3}) thin film. Scanning transmission electron microscope studies reveal atomic level structure of the synthesized high quality MoS{sub 2} crystals. In the prospect of a memory device fabrication, poly(methyl methacrylate) (PMMA) is used as an insulating dielectric material as well as a supporting layer to transfer the MoS{sub 2} crystals. In the fabricated device, PMMA-MoS{sub 2} and graphene layers act as the functional and electrode materials, respectively. Distinctive bistable electrical switching and nonvolatile rewritable memory effect is observed in the fabricated PMMA-MoS{sub 2}/graphene heterostructure. The developed material system and demonstrated memory device fabrication can be significant for next generation data storage applications.

  4. Solution Properties of Water-Soluble “Smart” Poly(N-acryloyl-N′-ethyl piperazine-co-methyl methacrylate

    Directory of Open Access Journals (Sweden)

    G. Roshan Deen

    2012-01-01

    Full Text Available Water-soluble copolymers of N-acryloyl-N′-ethylpiperazine (AcrNEP with methyl methacrylate (MMA were synthesized to high conversion by free-radical solution polymerization. The composition of the copolymers was determined using Fourier Transform Infra-red Spectroscopy (FTIR. Copolymers containing AcrNEP content above 44 mol% were readily soluble in water and exhibited the critical solution temperature behavior. The copolymers were strongly responsive to changes in pH of the external medium due to the presence of tertiary amine functions that could be protonated at low pH. The influence of various factors such as copolymer composition, pH, temperature, salt and surfactant concentration on the LCST of the copolymers were systematically studied. The intrinsic viscosity of the copolymers in dimethyl formamide decreased with increase in temperature due to a decrease in thermodynamic affinity between polymer chains and solvent molecules. The viscosity behavior of the copolymers in sodium chloride solution was similar to that of classical polyelectrolytes and hydrophobically modified polyacrylate systems.

  5. Effects of propylene, methyl methacrylate and isopropanol poisoning on spatial performance of a proton exchange membrane fuel cell

    Science.gov (United States)

    Reshetenko, Tatyana V.; St-Pierre, Jean

    2018-02-01

    This paper studies the effects of propylene, methyl methacrylate (MMA) and isopropanol (IPA) in air on the spatial performance of proton exchange membrane fuel cells (PEMFCs). The introduction of 100 ppm C3H6 into the oxidant stream resulted in a performance decrease of 130 mV at 1.0 A cm-2, whereas 20 ppm MMA caused a voltage loss of 80 mV. A moderate performance decline of 60 mV was detected in the presence of 5.3ṡ103 ppm IPA in air. Spatial electrochemical impedance spectroscopy (EIS) data showed an increase in charge and mass transfer resistances under exposure to C3H6 and MMA, although IPA did not affect the impedance. The observed PEMFC performances, local current redistributions and EIS data can be explained by the adsorption of contaminants on the Pt surface, their subsequent transformations, and their impacts on the electrochemical surface area and oxygen reduction mechanism. It was assumed that the studied contaminants were oxidized mainly to CO2 via electrochemical and chemical pathways under the operating conditions and at the cathode potential. Self-recovery of PEMFC performance was observed for each contaminant after halting its introduction into the air. Possible contaminant oxidation/reduction mechanisms and their correlations with spatial performance and EIS are presented and discussed.

  6. Sustained release of hydrophilic drug from polyphosphazenes/poly(methyl methacrylate) based microspheres and their degradation study.

    Science.gov (United States)

    Akram, Muhammad; Yu, Haojie; Wang, Li; Khalid, Hamad; Abbasi, Nasir M; Zain-ul-Abdin; Chen, Yongsheng; Ren, Fujie; Saleem, Muhammad

    2016-01-01

    Drug delivery system is referred as an approach to deliver the therapeutic agents to the target site safely in order to achieve the maximum therapeutic effects. In this perspective, synthesis of three new polyphosphazenes and their blend fabrication system with poly(methyl methacrylate) is described and characterized with (1)H NMR, (31)P NMR, GPC and DSC. Furthermore, these novel blends were used to fabricate microspheres and evaluated for sustain release of hydrophilic drug (aspirin as model drug). Microspheres of the two blends showed excellent encapsulation efficacy (about 93%), controlled burst release (2.3% to 7.93%) and exhibited sustain in vitro drug release (13.44% to 32.77%) up to 218 h. At physiological conditions, the surface degradation of microspheres and diffusion process controlled the drug release sustainability. Furthermore, it was found that the degree of porosity was increased with degradation and the resulting porous network was responsible for water retention inside the microspheres. The percentage water retention was found to be interrelated with degradation time and percentage drug release. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. In situ Poly(methyl methacrylate)/Graphene Composite Gel Electrolytes for Highly Stable Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Kang, Yu-il; Moon, Jun Hyuk

    2015-11-01

    Dye-sensitized solar cells (DSCs) with long-term stability are produced using polymer-gel electrolytes (PGEs). In this study, we introduce the formation of PGEs using in situ gelation with poly(methyl methacrylate) (PMMA) particles and graphene fillers that are pre-deposited on the counter electrodes. We obtain a high concentration PMMA-based PGEs (i.e., over 10 wt%). A DSC composed of a PMMA/graphene composite PGEs exhibits an 8.49% photon-to-electric conversion efficiency, which is comparable to conventional liquid electrolyte DSCs. This finding is attributed to increased ion diffusivity and conductivity of the PMMA-based PGEs resulting from the incorporation of graphene nanofillers. The PMMA-based PGE DSCs exhibit highly stable long-term efficiencies, maintaining up to 90% of their initial efficiency during thermal soaking, whereas the efficiencies of liquid electrolyte cells decrease significantly, by up to 60%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Improved properties of chemically modified graphene/poly(methyl methacrylate nanocomposites via a facile in-situ bulk polymerization

    Directory of Open Access Journals (Sweden)

    X. Y. Yuan

    2012-10-01

    Full Text Available The nanosheet of graphene was chemically modified by long alkyl chain for enhanced compatibility with polymer matrix and graphene/poly(methyl methacrylate (PMMA nanocomposites with homogeneous dispersion of the nanosheets and enhanced nanofiller-matrix interfacial interaction were fabricated via a facile in-situ bulk polymerization. The nanocomposites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy and thermogravimetry. The results showed that the graphene nanosheets were fully exfoliated in PMMA matrix and the thermal and mechanical properties of the nanocomposites were significantly improved at low graphene loadings. Large shifts of 15°C in the glass transition temperature and 27°C improvement of onset thermal degradation temperature were achieved with graphene loading as low as 0.07 wt%. A 67% increase in tensile strength was also observed by the addition of only 0.5 wt% graphene. The method used in this study provided a novel route to other graphene-based polymers.

  9. SP-PLP-EPR Investigations into the Chain-Length-Dependent Termination of Methyl Methacrylate Bulk Polymerization.

    Science.gov (United States)

    Barth, Johannes; Buback, Michael

    2009-11-02

    Termination kinetics of methyl methacrylate (MMA) bulk polymerization has been studied via the single pulsed laser polymerization-electron paramagnetic resonance method. MMA-d(8) has been investigated to enhance the signal-to-noise quality of microsecond time-resolved measurement of radical concentration. Chain-length-dependent termination rate coefficients of radicals of identical size, k ti,i, are reported for 5-70 °C and up to i = 100. k ti,i decreases according to the power-law expression $k_{\\rm t}^{i,i} = k_{\\rm t}^{{\\rm 1,1}} \\cdot i^{ - \\alpha }$. At 5 °C, k(t) for two MMA radicals of chain-length unity is k t1,1 = (5.8 ± 1.3) · 10(8)  L · mol(-1)  · s(-1) . The associated activation energy and power-law exponent are: E(A) (k t1,1) ≈ 9 ± 2 kJ · mol(-1) and α ≈ 0.63 ± 0.15, respectively. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Facile iron-mediated dispersant-free suspension polymerization of methyl methacrylate via reverse ATRP in water.

    Science.gov (United States)

    Cao, Jun; Zhang, Lifen; Jiang, Xiaowu; Tian, Chun; Zhao, Xiaoning; Ke, Qi; Pan, Xiangqiang; Cheng, Zhenping; Zhu, Xiulin

    2013-11-01

    An iron-mediated reverse ATRP of methyl methacrylate (MMA) is successfully carried out in water in the absence of any dispersants, using a water-soluble 2,2'-azobis(2-methylpropionamidine) dihydrochloride (V-50) as the initiator and the stabilizer, and using an oil-soluble N,N-butyldithiocarbamate ferrum (Fe(S2 CN(C4 H9 )2 )3 ) as the catalyst without adding any additional ligands. Micron-sized PMMA particles with UV light-sensitive -S2 CN(C4 H9 )2 end group are obtained, and monomer droplet nucleation and suspension polymerization mechanism are proposed. Polymerization results demonstrated typical "living"/controlled characteristics of ATRP: first-order polymerization kinetics, linear increase of molecular weights with monomer conversion and narrow molecular weight distributions for the resultant PMMA particles. NMR spectroscopy and chain-extension experiments under UV light irradiation confirm the attachment and livingness of UV light-sensitive -S2 CN(C4 H9 )2 group in the chain end. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of reactive adhesives on the tensile bond strength of polyvinyl siloxane impression materials to methyl methacrylate tray material.

    Science.gov (United States)

    Ona, Masahiro; Takahashi, Hidekazu; Sato, Masayuki; Igarashi, Yoshimasa; Wakabayashi, Noriyuki

    2010-05-01

    The effect of new adhesives on the bond strength of elastomeric impression materials to acrylic trays was evaluated. Two polyvinyl siloxane impression materials (Fusion and Imprinsis) with reactive adhesives and one (Examix) with a conventional adhesive were tested. Flat, double-sided plates of auto-polymerizing methyl methacrylate (10 x 10 x 2.5 mm) were prepared with one of the adhesives. Five specimens were prepared by injecting each impression material into a 2-mm gap between the two plates. Tensile tests were conducted until separation failure occurred. The mean bond strengths of Fusion (1.0 MPa) and Imprinsis (0.8 MPa) were significantly greater than that of Examix (0.2 MPa). On the contrary, one of five Fusion showed adhesive failure mode while all the Imprinsis exhibited mixed failure. The conflicting results were presumably attributed to the mean tear strength of Fusion (0.8 N/mm) being higher than that of Imprinsis (0.5 N/mm).

  12. Glyco-Nanoparticles Made from Self-Assembly of Maltoheptaose-block-Poly(methyl methacrylate): Micelle, Reverse Micelle, and Encapsulation.

    Science.gov (United States)

    Zepon, Karine M; Otsuka, Issei; Bouilhac, Cécile; Muniz, Edvani C; Soldi, Valdir; Borsali, Redouane

    2015-07-13

    The synthesis and the solution-state self-assembly of the "hybrid" diblock copolymers, maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA), into large compound micelles (LCMs) and reverve micelle-type nanoparticles, are reported in this paper. The copolymers were self-assembled in water and acetone by direct dissolution method, and the morphologies of the nanoparticles were investigated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), atomic force microscopy (AFM), proton nuclear magnetic resonance ((1)H NMR), and fluorescence spectroscopy as a function of the volume fraction of the copolymer hydrophobic block, copolymer concentration, stirring speed, and solvent polarity. The DLS measurements and TEM images showed that the hydrodynamic radius (Rh) of the LCMs obtained in water increases with the copolymer concentration. Apart from that, increasing the stirring speed leads to polydispersed aggregations of the LCMs. On the other hand, in acetone, the copolymers self-assembled into reverse micelle-type nanoparticles having Rh values of about 6 nm and micellar aggregates, as revealed the results obtained from DLS, AFM, and (1)H NMR analyses. The variation in micellar structure, that is, conformational inversion from LCMs to reverse micelle-type structures in response to polarity of the solvent, was investigated by apparent water contact angle (WCA) and (1)H NMR analyses. This conformational inversion of the nanoparticles was further confirmed by encapsulation and release of hydrophobic guest molecule, Nile red, characterized by fluorescence spectroscopy.

  13. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Science.gov (United States)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  14. Poly(tetrahydropyranyl-2-methyl methacrylate): comparative study in solution and at the air/water interface.

    Science.gov (United States)

    Leiva, A; Gargallo, L; González, A; Radić, D

    2005-12-15

    In this work a comparative study of different molecular-weight fractions of the amphiphilic polymer poly(tetrahydropyranyl-2-methyl methacrylate) (PTHPMM) in solution and at the air/water interface is reported. The synthesis of the polymer was carried out in solution by radical polymerization. The polymer was fractionated and five fractions were studied in solution and at the air/water interface. The weight-average molecular weight M(w), the second virial coefficient A(2), and the radius of gyration R(g) were determined in toluene by static light scattering. Intrinsic viscosities [eta] of the polymer fractions in three solvents were obtained. The Kuhn-Mark-Houwink-Sakurada relationships were established. The Langmuir isotherms for different polymer fractions were obtained at the air/water interface by monolayer compression at constant temperature. The overlap surface concentrations were determined, and from these results the radius of gyration in two dimensions was calculated. The thermodynamic power of the toluene and the air/water interface for PTHPMM were estimated from the empirical relationship between the radius of gyration in two and three dimensions and the weight-average molecular weight.

  15. Supercritical CO2 drying of poly(methyl methacrylate) photoresist for deep x-ray lithography: a brief note

    Science.gov (United States)

    Shukla, Rahul; Abhinandan, Lala; Sharma, Shivdutt

    2017-07-01

    Poly(methyl methacrylate) (PMMA) is an extensively used positive photoresist for deep x-ray lithography. The post-development release of the microstructures of PMMA becomes very critical for high aspect ratio fragile and freestanding microstructures. Release of high aspect ratio comb-drive microstructure of PMMA made by one-step x-ray lithography (OXL) is studied. The effect of low-surface tension Isopropyl alcohol (IPA) over water is investigated for release of the high aspect ratio microstructures using conventional and supercritical (SC) CO2 drying. The results of conventional drying are also compared for the samples released or dried in both in-house developed and commercial SC CO2 dryer. It is found that in all cases the microstructures of PMMA are permanently deformed and damaged while using SC CO2 for drying. For free-standing high aspect ratio microstructures of PMMA made by OXL, it is advised to use low-surface tension IPA over DI water. However, this brings a limitation on the design of the microstructure.

  16. Hydrophilic surface modification of poly(methyl methacrylate)-based ocular prostheses using poly(ethylene glycol) grafting.

    Science.gov (United States)

    Ko, JaeSang; Cho, Kanghee; Han, Sang Won; Sung, Hyung Kyung; Baek, Seung Woon; Koh, Won-Gun; Yoon, Jin Sook

    2017-10-01

    Ocular prostheses are custom-made polymeric inserts that can be placed in anophthalmic sockets for cosmetic rehabilitation. Prosthetic eye wearers have reduced tear amount, and they often experience dry eye symptoms including dryness, irritation, discomfort, and discharge. Most modern ocular prostheses are made of poly(methyl methacrylate) (PMMA), which is highly hydrophobic. Previous research has shown that improving the wettability of contact lens materials decreases its wearers discomfort by increasing lubrication. Therefore, hydrophilic modification of PMMA-based ocular prostheses might also improve patient discomfort by improving lubrication. We modified the surfaces of PMMA-based ocular prostheses using poly(ethylene glycol) (PEG), which is hydrophilic. To do this, we used two strategies. One was a "grafting from" method, whereby PEG was polymerized from the PMMA surface. The other was a "grafting to" method, which involved PEG being covalently bonded to an amine-functionalized PMMA surface. Assessments involving the water contact angle, ellipsometry, and X-ray photoelectron spectroscopy indicated that PEG was successfully introduced to the PMMA surfaces using both strategies. Scanning electron microscopy and atomic force microscopy images revealed that neither strategy caused clinically significant alterations in the PMMA surface morphology. In vitro bacterial adhesion assessments showed that the hydrophilic modifications effectively reduced bacterial adhesion without inducing cytotoxicity. These results imply that hydrophilic surface modifications of conventional ocular prostheses may decrease patient discomfort and ocular prosthesis-related infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Reinforcing Heat-cured Poly-methyl-methacrylate Resins using Fibers of Glass, Polyaramid, and Nylon: An in vitro Study.

    Science.gov (United States)

    Kumar, Gautam Vs; Nigam, Anupama; Naeem, Ahmad; Gaur, Abhishek; Pandey, Kaushik Kumar; Deora, Abhimanyu

    2016-11-01

    As civilization has progressed, there has been continued refinement of materials available for dental practice. The applications of resins have been extended to increased practical uses in numerous areas of prosthetic and restorative dentistry. Certain significant alterations in the technique of manipulation and nature of the dental product have influenced the range of application in dentistry. The present study was done to measure and compare the fracture strength of heat polymerized poly-methyl-methacrylate (PMMA) resin reinforced with fibers of glass, polyaramid, and nylon. The present study was conducted in vitro on 40 PMMA denture base resin specimens. Specimens were divided into four subgroups with ten specimens each and tested for transverse strength using universal testing machine. In group I, the transverse strength mean value was 67.82 MPa. In group II, the transverse strength mean value was 59.47 MPa. In group III, the transverse strength mean value was 66.87 MPa, while in group IV, the transverse strength mean value was 66.47 MPa. Incorporation of 4% weight glass fibers in loose form significantly increased the transverse strength of denture base PMMA, while 4% of polyaramid fiber in random distribution significantly increased the transverse strength of denture base PMMA.

  18. Prediction of Three-Dimensional Downward Flame Spread Characteristics over Poly(methyl methacrylate) Slabs in Different Pressure Environments.

    Science.gov (United States)

    Zhao, Kun; Zhou, Xiao-Dong; Liu, Xue-Qiang; Lu, Lei; Wu, Zhi-Bo; Peng, Fei; Ju, Xiao-Yu; Yang, Li-Zhong

    2016-11-22

    The present study is aimed at predicting downward flame spread characteristics over poly(methyl methacrylate) (PMMA) with different sample dimensions in different pressure environments. Three-dimensional (3-D) downward flame spread experiments on free PMMA slabs were conducted at five locations with different altitudes, which provide different pressures. Pressure effects on the flame spread rate, profile of pyrolysis front and flame height were analyzed at all altitudes. The flame spread rate in the steady-state stage was calculated based on the balance on the fuel surface and fuel properties. Results show that flame spread rate increases exponentially with pressure, and the exponent of pressure further shows an increasing trend with the thickness of the sample. The angle of the pyrolysis front emerged on sample residue in the width direction, which indicates a steady-burning stage, varies clearly with sample thicknesses and ambient pressures. A global non-dimensional equation was proposed to predict the variation tendency of the angle of the pyrolysis front with pressure and was found to fit well with the measured results. In addition, the dependence of average flame height on mass burning rate, sample dimension and pressure was proposed based on laminar diffusion flame theory. The fitted exponent of experimental data is 1.11, which is close to the theoretical value.

  19. Fabrication and characterizations of films made of Te/TeO{sub 2} nanopowder consolidated by poly(methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Palomba, M.; Carotenuto, G. [Institute for Polymers, Composites and Biomaterials - UOS Napoli/Portici-National Research Council, Portici (Italy); Coscia, U. [Department of Physics, University of Naples ' Federico II' , Napoli (Italy); CNISM, Naples Unit, Napoli (Italy); De Nicola, S. [SPIN Institute, National Research Council, Napoli (Italy); Ambrosone, G. [Department of Physics, University of Naples ' Federico II' , Napoli (Italy); SPIN Institute, National Research Council, Napoli (Italy)

    2015-12-15

    Tellurium based material was obtained by binding nanosized tellurium grains, produced by dry vibration milling technique, with poly(methyl methacrylate) (PMMA). The morphology, structural and electrical properties of Te/PMMA films were investigated. The photoelectrical properties of the films were studied under white light illumination varying the optical power density from 2 to 170mW/cm{sup 2} and turning on and off the light cyclically. In order to determine the effects of milling technique two sets of Te/PMMA samples were produced by binding the ''as received'' and milled Te powders with PMMA. A quite prompt and evident photoresponse was observed for the material prepared with Te nanopowder, while not significant variations of the conductivity were detected in a reference sample fabricated with the as received coarse Te powder and illuminated in the same optical power density range. The origin of the photoconduction can be attributed to the enhancement of the ratio between TeO{sub 2} and Te phases in the nanopowder occurring during the milling stage. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Fabrication of highly luminescent and concentrated quantum dot/poly(methyl methacrylate) nanocomposites by matrix-free methods

    Science.gov (United States)

    Yoon, Cheolsang; Kim, Hyo-Jun; Kim, Myeong-Hoon; Shin, Kyusoon; Kim, Young-Joo; Lee, Kangtaek

    2017-10-01

    We present matrix-free methods for fabricating highly luminescent and transparent CdSe/ZnS quantum dot (QD)/polymer nanocomposites utilizing poly(methyl methacrylate) (PMMA)-grafted QDs with various molecular weights. We found that the QD-PMMA nanocomposites prepared by these matrix-free methods were superior to those prepared by a simple blending method in relation to their optical property, QD dispersion, and quantum efficiency (QE). In particular, a matrix-free nanocomposite containing PMMA with a molecular weight of 2000 had the highest QE (52.8%) and transmittance of all the samples studied even at a very high QD concentration (49 wt%). This finding was attributed to the enhanced passivation of the QD surface due to the higher grafting density of the PMMA ligands and reduced energy transfer due to more uniform dispersion of QDs. Finally, we applied the nanocomposites to LED devices, and found that the matrix-free nanocomposite exhibited a higher color conversion efficiency and smaller redshift in the peak emission wavelength than that prepared using a simple blending method.

  1. Atomic level cleaning of poly-methyl-methacrylate residues from the graphene surface using radiolized water at high temperatures

    Science.gov (United States)

    Islam, Ahmad Ehteshamul; Zakharov, Dmitri N.; Carpena-NuÅez, Jennifer; Hsiao, Ming-Siao; Drummy, Lawrence F.; Stach, Eric A.; Maruyama, Benji

    2017-09-01

    Large-scale application of graphene requires its clean transfer from thin metal films, where it is grown via chemical vapor deposition (CVD), to any other substrates of interest. All the existing transfer methodologies, however, leave residues at different degrees on graphene surfaces and can only provide atomically clean graphene surfaces in areas as large as ˜10-4 μm2. Here, we transfer CVD-grown graphene using Poly-methyl-methacrylate (PMMA) and present a method that can atomically clean the PMMA residues from a larger surface area of graphene using radiolized water obtained via electron-water interaction at high temperatures. The cleaning process was monitored in-situ using an environmental-mode transmission electron microscopy and electron energy loss spectroscopy. These showed the effectiveness of PMMA removal over areas as large as ˜0.02 μm2, whose size was only limited by the size of the electron beam and the presence of inorganic residues after the transfer process. By overcoming these limitations, we may achieve atomically clean graphene transfer to even larger areas—enabling more challenging device applications.

  2. Removal of naphthalene from aqueous systems by poly(divinylbenzene) and poly(methyl methacrylate-divinylbenzene) resins.

    Science.gov (United States)

    da Silva, Carla M F; Rocha, Quéren da C; Rocha, Paulo Cristiano S; Louvisse, Ana Maria T; Lucas, Elizabete F

    2015-07-01

    Treatment of the oily wastewater from crude oil extraction is a growing challenge due to rising concern for the environment. Polyaromatic hydrocarbons (PAHs) deserve special attention because of their high toxicity. There is a need to develop processes able to minimize the discharge of these compounds and analytic techniques to monitor the levels of PAHs in aqueous media. In this study poly(methyl methacrylate-divinylbenzene) (MMA-DVB) and poly(divinylbenzene) (DVB) were assessed with respect to their capacity to retain naphthalene (NAF) in continuous flow and batch processes (adsorption equilibrium and kinetics). The analytic techniques applied were gas chromatography and spectrofluorimetry, which was adapted for quantification of NAF. The batch adsorption studies showed that DVB is more efficient in adsorption than MMA-DVB, and the Freundlich model and pseudo-second-order model better fitted the equilibrium data and adsorption kinetics, respectively. The elution results showed that both resins are highly efficient in removing NAF, with DVB outperforming MMA-DVB. However, MMA is cheaper raw material, making MMA-DVB more competitive for treatment of oily wastewater. The resins were regenerated by eluting about 7.2 and 2.5 L of methanol:water (70:30 v/v), respectively for DVB and MMA-DVB. Regarding to the useful life after regeneration, the resins presented a reduction about 30%, relating to zero concentration of NAF. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Potassium diperiodatocuprate-mediated preparation of poly(methyl methacrylate/organo-montmorillonite composites via in situ grafting copolymerization

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available In this study, potassium diperiodatocuprate (Cu3+ was selected as an initiator to prepare poly(methyl methacrylate/organo-montmorillonite composites (OMMT-g-PMMA by in situ graft copolymerization. Three synthetic parameters were systematically evaluated as a function of the temperature, the concentration of initiator, pH and the ratio of MMA to OMMT. It was found that Cu3+ was a highly efficient initiator for the preparation of OMMT-g-PMMA i.e., monomer conversion and grafting efficiency were as higher as 95%. The X-ray diffraction measurement showed the intercalation of PMMA chains into OMMT layers on base of an increasing basal spacing after polymerization. FTIR analysis also suggested that the PMMA chains were effectively grafted onto OMMT substrate. The enhanced thermal stabilities of OMMT-g-PMMA composites were confirmed by the thermal gravimetric analysis (TGA. Finally, a single-electron-transfer mechanism was proposed to illustrate the formation of radicals and the preparation process of OMMT-g-PMMA composites. Cu3+ can be used as an effective and practical initiator in preparing the organic/inorganic composite due to its high grafting efficiency and the milder reaction condition.

  4. Effect of silver ion-induced disorder on morphological, chemical and optical properties of poly (methyl methacrylate)

    Science.gov (United States)

    Arif, Shafaq; Saleemi, Farhat; Rafique, M. Shahid; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Aziz, Uzma

    2016-11-01

    Ion implantation is a versatile technique to tailor the surface properties of polymers in a controlled manner. In the present study, samples of poly (methyl methacrylate) (PMMA) have been implanted with 400 keV silver (Ag+) ion beam to various ion fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The effect of Ag+ ion-induced disorder on morphological, chemical and optical properties of PMMA is analyzed using Atomic Force Microscope (AFM), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy. Furthermore, the electrical conductivity of pristine and implanted PMMA is measured using four probe apparatus. The AFM images revealed the growth of nano-sized grainy structures and hillocks above the surface of implanted PMMA. The FTIR spectra confirmed the modifications in chemical structure of PMMA along with the formation of sbnd Cdbnd Csbnd carbon contents. The refractive index, extinction coefficient and photoconductivity of implanted PMMA have been found to increase as a function of ion fluence. Simultaneously, indirect optical band gap is reduced from 3.13 to 0.81 eV at a relatively high fluence (5 × 1015 ions/cm2). A linear correlation has been established between the band gap and Urbach energies. Moreover, the electrical conductivity of Ag+ implanted PMMA has increased from 2.14 × 10-10 (pristine) to 9.6 × 10-6 S/cm.

  5. Miscible blends of biobased poly(lactide) with poly(methyl methacrylate): Effects of chopped glass fiber incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Dylan S. [Chemical and Biological Engineering Department, Colorado School of Mines, Golden Colorado 80401; Lowe, Corinne [Chemical and Biological Engineering Department, Colorado School of Mines, Golden Colorado 80401; Swan, Dana [Arkema, King of Prussia Pennsylvania; Barsotti, Robert [Arkema, King of Prussia Pennsylvania; Zhang, Mingfu [Johns Manville, Littleton Colorado; Gleich, Klaus [Johns Manville, Littleton Colorado; Berry, Derek [National Renewable Energy Laboratory, Golden Colorado; Snowberg, David [National Renewable Energy Laboratory, Golden Colorado; Dorgan, John R. [Chemical and Biological Engineering Department, Colorado School of Mines, Golden Colorado 80401

    2017-02-22

    Poly(lactide) (PLA) and poly(methyl methacrylate) (PMMA) are melt compounded with chopped glass fiber using laboratory scale twin-screw extrusion. Physical properties are examined using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), tensile testing, impact testing, X-ray computed tomography (CT) scanning, and field emission scanning electron microscopy (FE-SEM). Molecular weight is determined using gel permeation chromatography (GPC). Miscibility of the blends is implied by the presence of a single glass transition temperature and homogeneous morphology. PLA/PMMA blends tend to show positive deviations from a simple linear mixing rule in their mechanical properties (e.g., tensile toughness, modulus, and stress at break). The addition of 40 wt % glass fiber to the system dramatically increases physical properties. Across all blend compositions, the tensile modulus increases from roughly 3 GPa to roughly 10 GPa. Estimated heat distortion temperatures (HDTs) are also greatly enhanced; the pure PLA sample HDT increases from 75 degrees C to 135 degrees C. Fiber filled polymer blends represent a sustainable class of earth abundant materials which should prove useful across a range of applications.

  6. Temperature dependent luminescence of a europium complex incorporated in poly(methyl methacrylate).

    Science.gov (United States)

    Liang, Hao; Xie, Fang; Ren, Xiaojun; Chen, Yifa; Chen, Biao; Guo, Fuquan

    2013-12-01

    An europium β-diketonate complex with a dipyrazolyltriazine derivative ligand, Eu(TTA)3DPBT, has been incorporated into poly(methyl methacryate) (PMMA). The influence of temperature on its luminescence properties has been investigated. The fluorescence emission spectra and luminescence lifetimes showed temperature sensitivity. The analysis of the relative intensity ratio (R) of (5)D0 → (7)F2 to (5)D0 → (7)F1 transition and Judd-Ofelt experimental intensity parameters Ω2 indicated that the local structure and asymmetry in the vicinity of europium ions show no obvious change when the temperature is increased. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Hepatitis B surface antibody purification with hepatitis B surface antibody imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tyrosine methyl ester) particles.

    Science.gov (United States)

    Uzun, Lokman; Say, Ridvon; Unal, Serhat; Denizli, Adil

    2009-01-15

    Hepatitis B surface antibody imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tyrosine methyl ester) particles were prepared for the purification of hepatitis B surface antibody from human plasma. N-methacryloyl-L-tyrosine methyl ester was chosen as a complexing agent for hepatitis B surface antibodies. Hepatitis B surface antibody imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tyrosine methyl ester) particles were characterized by surface area measurements, swelling test, scanning electron microscopy, elemental analysis, and Fourier transform infrared spectroscopy. Ethylene glycol (1.0M) was used as desorption agent. Adsorption studies were performed from hepatitis B surface antibody and anti-hepatitis A antibody positive human plasma. Effects of antibody concentration, contact time, N-methacryloyl-L-tyrosine methyl ester content and temperature on the adsorption capacity were investigated. The amount of hepatitis B surface antibody adsorbed per unit mass increased with increasing hepatitis B surface antibody concentration, then reached saturation. Maximum hepatitis B surface antibody adsorption amount was 21.4 mIU/mg. Adsorption process reached the equilibrium in 60 min. Competitive adsorption of hepatitis B surface antibody, total anti-hepatitis A antibody and total immunoglobulin E was investigated for showing the selectivity. Hepatitis B surface antibody-imprinted particles could adsorb hepatitis B surface antibody 18.3 times more than anti-hepatitis A antibody and 2.2 times more than immunoglobulin E. It can be concluded that hepatitis B surface antibody-imprinted particles have significant selectivity for hepatitis B surface antibody.

  8. Synthesis and characterization of poly(methyl methacrylate)-based experimental bone cements reinforced with TiO2-SrO nanotubes.

    Science.gov (United States)

    Khaled, S M Z; Charpentier, Paul A; Rizkalla, Amin S

    2010-08-01

    In an attempt to overcome existing limitations of experimental bone cements we here demonstrate a simple approach to synthesizing strontium-modified titania nanotubes (n-SrO-TiO(2) tubes) and functionalize them using the bifunctional monomer methacrylic acid. Then, using 'grafting from' polymerization with methyl methacrylate, experimental bone cements were produced with excellent mechanical properties, radiopacity and biocompatibility. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy mapping and backscattered SEM micrographs revealed a uniform distribution of SrO throughout the titanium matrix, with retention of the nanotubular morphology. Nanocomposites were then reinforced with 1, 2, 4 and 6 wt.% of the functionalized metal oxide nanotubes. Under the mixing and dispersion regime employed in this study, 2 wt.% appeared optimal, exhibiting a more uniform dispersion and stronger adhesion of the nanotubes in the poly(methyl methacrylate) matrix, as shown by TEM and SEM. Moreover, this optimum loading provided a significant increase in the fracture toughness (K(IC)) (20%) and flexural strength (40%) in comparison with the control matrix (unfilled) at Pnanotubes interlocking with the acrylic matrix and crack bridging during fracture. On modifying the n-TiO(2) tubes with strontium oxide the nanocomposites exhibited a similar radiopacity to a commercial bone cement (CMW 1), while exhibiting a significant enhancement of osteoblast cell proliferation (242%) in vitro compared with the control at P<0.05. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Effect of emulsion polymerization and magnetic field on the adsorption of albumin on poly(methyl methacrylate)-based biomaterial surfaces.

    Science.gov (United States)

    Nita, Loredana E; Chiriac, Aurica P

    2010-08-01

    The adsorption of bovine serum albumin (BSA) onto the surfaces of poly(methyl methacrylate) (PMMA) and of methyl methacrylate copolymer with 2,3-epoxypropyl methacrylate, it was investigated. The polymeric matrices were obtained through radical emulsion polymerization with and without the presence of a continuous external magnetic field (MF) of 1,500 Gs intensity. Two types of surfactant agents were used for polymers' synthesis: a classic one sodium lauryl sulphate (SLS) and beta-cyclodextrin (CD). The protein adsorption was conducted in the presence as well as in the absence of MF, by varying the coupling conditions, respectively, the temperature, pH and albumin/polymer ratio. The study underlines the assistance of MF during the adsorption process, materialized into growth of the BSA adsorbed quantity. Thus, MF presence during adsorption determines the doubling of the BSA adsorbed quantity onto the surface of polymers prepared in the MF. The adsorption process was also related to the tensioactive used for the synthesis of polymeric matrices. The higher content of the adsorbed BSA corresponds to the polymers with CD instead of SLS. The fact was attributed to the catalytic activity of the MF, which determines the molecules distortions, the growth of distance interactions and the modifications of the angles between bonds, with benefit effect upon adsorption.

  10. Synthesis of poly(methyl methacrylate) core/chitosan-mixed-polyethyleneimine shell nanoparticles and their antibacterial property.

    Science.gov (United States)

    Inphonlek, Supharat; Pimpha, Nuttaporn; Sunintaboon, Panya

    2010-06-01

    The core-shell nanoparticles possessing poly(methyl methacrylate) (PMMA) core coated with chitosan (CS), polyethyleneimine (PEI), and chitosan-mixed-polyethyleneimine (CS/PEI) shells were synthesized in this work. The emulsifier-free emulsion polymerization triggered by a redox initiating system from t-butylhydroperoxide (TBHP) and amine groups on CS and/or PEI was used as a synthetic method. In the CS/PEI systems, the amount of CS was kept constant (0.5g), while the amount of PEI was varied from 0.1 to 0.5g. The surface and physico-chemical properties of prepared nanoparticles were then examined. FTIR spectra indicated the presence of grafted PMMA on CS and/or PEI, and the weight fraction of incorporated PEI in the CS/PEI nanoparticles. All nanoparticles were spherical in shape with uniform size distribution illustrated by scanning electron microscopy (SEM). The introduction of PEI to CS nanoparticles yielded the higher monomer conversion, grafting efficiency, and grafting percentage compared with the CS nanoparticles. The size of CS/PEI nanoparticles was smaller than the original CS and PEI nanoparticles, and tended to decrease with increasing amount of PEI introduced. The introduction of PEI also brought the higher colloidal stability to the nanoparticles as indicated by zeta-potential measurement and isoelectric point analysis. The nanoparticles exhibited a promising antibacterial activity against Staphylococcus aureus and Escherichia coli. The nanoparticle-bacteria interaction was studied via SEM. The results suggested that they would be useful as effective antibacterial agents. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Correlation between molecular structure and self healing in a series of anthraquinone derivatives doped in poly(methyl methacrylate)

    Science.gov (United States)

    Dhakal, Prabodh

    Using absorbance spectroscopy and fluorescence spectroscopy as a probe, we studied photodegradation and recovery of a series of anthraquinone derivatives doped in (poly)methyl methacrylate (PMMA) thin films. We observed that many anthraquinone derivatives recover their optical properties after they are photodamaged. The mechanism that is responsible for their recovery is not well understood. Previous research, which uses non-linear methods such as Amplified spontaneous emission (ASE), two photon absorption, and indirect linear methods such as transmittance imaging, have focussed on one of the derivatives of the anthraquinone class named dispersed orange 11 (DO11) dye doped in PMMA. Since no direct measurements have yet been reported on a variety of anthraquinone derivatives, we have extended our research on a series of anthraquinone derivatives using direct measurement techniques such as linear absorption spectroscopy, fluorescence spectroscopy and photochroism measurements as a function of dye concentration and sample temperature. The data obtained from temperature-dependent photodecay and recovery as well as concentration-dependent photodecay are found to be in qualitative agreement with the Correlated Chromophore Domain Model (CCrDM). We also applied the depth dependent absorption model to estimate the degree of self-absorption of the fluorescence signal emitted by the sample. This analysis allows us to determine the depth dependent damage profile and time dependence of the damage profile. Our results show that damage decreases as a function of depth into the sample and increases as a function of time of exposure of the pump beam. The degree of self-absorption is found to increase with sample thickness. We also did a numerical analysis to find the intensity dependent decay rate constant alpha and the recovery rate beta for fluorescence. We then used the data to test the CCrDM to find the average number of molecules in a domain, number density of molecules and

  12. Kinetics for the Sequential Infiltration Synthesis of Alumina in Poly(methyl methacrylate): An Infrared Spectroscopic Study

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Mahua; Libera, Joseph A.; Darling, Seth B.; Elam, Jeffrey W.

    2015-01-01

    Sequential infiltration synthesis (SIS) is a method for growing inorganic materials within polymers in an atomically controlled fashion. This technique can increase the etch resistance of optical, electron-beam, and block copolymer (BCP) lithography resists and is also a flexible strategy for nanomaterials synthesis. Despite this broad utility, the kinetics of SIS remain poorly understood, and this knowledge gap must be bridged in order to gain firm control over the growth of inorganic materials inside polymer films at a large scale. In this paper, we explore the reaction kinetics for Al2O3 SIS in PMMA using in situ Fourier transform infrared spectroscopy. First, we establish the kinetics for saturation adsorption and desorption of trimethyl aluminum (TMA) in PMMA over a range of PMMA film thicknesses deposited on silicon substrates. These observations guide the selection of TMA dose and purge times during SIS lithography to achieve robust organic/inorganic structures. Next, we examine the effects of TMA desorption on BCP lithography by performing SIS on silicon surfaces coated with polystyrene-block-poly(methyl methacrylate) films. After etching the organic components, the substrates are examined using scanning electron microcopy to evaluate the resulting Al2O3 patterns. Finally, we examine the effects of temperature on Al2O3 SIS in PMMA to elucidate the infiltration kinetics. The insights provided by these measurements will help extend SIS lithography to larger substrate sizes for eventual commercialization and expand our knowledge of precursor-polymer interactions that will benefit the SIS of a wide range of inorganic materials in the future.

  13. Simulated body fluid and water absorption effects on poly(methyl methacrylate/hydroxyapatite denture base composites

    Directory of Open Access Journals (Sweden)

    2010-09-01

    Full Text Available Poly(methyl methacrylate (PMMA/hydroxyapatite (HA composite has potential application in denture base materials. The denture base materials should exhibit good mechanical properties and dimensional stability in moist environment. Silane coupling agent [3-methacryloxypropyltrimethoxy silane (γ-MPS] was used to treat the HA fillers in order to enhance the interfacial interaction between the PMMA and HA. In this research, the kinetics and effects of Simulated Body Fluid (SBF and water absorption on the flexural properties of PMMA/HA composites were studied for an immersion duration of 2 months. The mathematical treatment used in analyzing the data was the single free phase model of diffusion, which assumed Fickian diffusion and utilized Fick’s second law of diffusion. The kinetics of water absorption of the PMMA/HA composites conformed to Fickian law behavior, whereby the initial moisture absorption follows a linear relationship between the percentage gain at any time t and t1/2, followed by saturation. It was found that the equilibrium moisture content and the diffusion coefficient are depending on the concentration of γ-MPS in PMMA/5HA composites. The reduction of equilibrium moisture content of PMMA/5HA is due to the hydrophobic behavior of γ-MPS and compatibility of PMMA with HA. The retention ability in flexural modulus and strength of PMMA/HA composites upon subjected towater absorption are considerably good. The reduction of flexural strength of the PMMA/HA composites after water absorption and SBF absorption could be attributed to the plasticizing effect of water molecules.

  14. Laminin-Coated Poly(Methyl Methacrylate (PMMA Nanofiber Scaffold Facilitates the Enrichment of Skeletal Muscle Myoblast Population

    Directory of Open Access Journals (Sweden)

    Nor Kamalia Zahari

    2017-10-01

    Full Text Available Myoblasts, the contractile cells of skeletal muscle, have been invaluable for fundamental studies of muscle development and clinical applications for muscle loss. A major limitation to the myoblast-based therapeutic approach is contamination with non-contractile fibroblasts, which overgrow during cell expansion. To overcome these limitations, this study was carried out to establish a 3D culture environment using nanofiber scaffolds to enrich the myoblast population during construct formation. Poly(methyl methacrylate (PMMA nanofiber (PM scaffolds were fabricated using electrospinning techniques and coated with extracellular matrix (ECM proteins, such as collagen or laminin, in the presence or absence of genipin. A mixed population of myoblasts and fibroblasts was isolated from human skeletal muscle tissues and cultured on plain surfaces, as well as coated and non-coated PM scaffolds. PMMA can produce smooth fibers with an average diameter of 360 ± 50 nm. Adsorption of collagen and laminin on PM scaffolds is significantly enhanced in the presence of genipin, which introduces roughness to the nanofiber surface without affecting fiber diameter and mechanical properties. It was also demonstrated that laminin-coated PM scaffolds significantly enhance myoblast proliferation (0.0081 ± 0.0007 h−1 and migration (0.26 ± 0.04 μm/min, while collagen-coated PM scaffolds favors fibroblasts proliferation (0.0097 ± 0.0009 h−1 and migration (0.23 ± 0.03 μm/min. Consequently, the myoblast population was enriched on laminin-coated PM scaffolds throughout the culture process. Therefore, laminin coating of nanofiber scaffolds could be a potential scaffold for the development of a tissue-engineered muscle substitute.

  15. Iron-Mediated Homogeneous ICAR ATRP of Methyl Methacrylate under ppm Level Organometallic Catalyst Iron(III Acetylacetonate

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-01-01

    Full Text Available Atom Transfer Radical Polymerization (ATRP is an important polymerization process in polymer synthesis. However, a typical ATRP system has some drawbacks. For example, it needs a large amount of transition metal catalyst, and it is difficult or expensive to remove the metal catalyst residue in products. In order to reduce the amount of catalyst and considering good biocompatibility and low toxicity of the iron catalyst, in this work, we developed a homogeneous polymerization system of initiators for continuous activator regeneration ATRP (ICAR ATRP with just a ppm level of iron catalyst. Herein, we used oil-soluble iron (III acetylacetonate (Fe(acac3 as the organometallic catalyst, 1,1′-azobis (cyclohexanecarbonitrile (ACHN with longer half-life period as the thermal initiator, ethyl 2-bromophenylacetate (EBPA as the initiator, triphenylphosphine (PPh3 as the ligand, toluene as the solvent and methyl methacrylate (MMA as the model monomer. The factors related with the polymerization system, such as concentration of Fe(acac3 and ACHN and polymerization kinetics, were investigated in detail at 90 °C. It was found that a polymer with an acceptable molecular weight distribution (Mw/Mn = 1.43 at 45.9% of monomer conversion could be obtained even with 1 ppm of Fe(acac3, making it needless to remove the residual metal in the resultant polymers, which makes such an ICAR ATRP process much more industrially attractive. The “living” features of this polymerization system were further confirmed by chain-extension experiment.

  16. Mechanical characterization and validation of poly (methyl methacrylate)/multi walled carbon nanotube composite for the polycentric knee joint.

    Science.gov (United States)

    Arun, S; Kanagaraj, S

    2015-10-01

    Trans femoral amputation is one of the most uncomfortable surgeries in patient׳s life, where the prosthesis consisting of a socket, knee joint, pylon and foot is used to do the walking activities. The artificial prosthetic knee joint imitates the functions of human knee to achieve the flexion-extension for the above knee amputee. The objective of present work is to develop a light weight composite material for the knee joint to reduce the metabolic cost of an amputee. Hence, an attempt was made to study the mechanical properties of multi walled carbon nanotubes (MWCNT) reinforced Poly (methyl methacrylate) (PMMA) prepared through melt mixing technique and optimize the concentration of reinforcement. The PMMA nanocomposites were prepared by reinforcing 0, 0.1, 0.2, 0.25, 0.3 and 0.4 wt% of MWCNT using injection moulding machine via twin screw extruder. It is observed that the tensile and flexural strength of PMMA, which were studied as per ASTM D638 and D790, respectively, were increased by 32.9% and 26.3% till 0.25 wt% reinforcement of MWCNT. The experimental results of strength and modulus were compared with theoretical prediction, where a good correlation was noted. It is concluded that the mechanical properties of PMMA were found to be increased to maximum at 0.25 wt% reinforcement of MWCNT, where the Pukanszky model and modified Halpin-Tsai model are suggested to predict the strength and modulus, respectively, of the PMMA/MWCNT composite, which can be opted as a suitable materiel for the development of polycentric knee joint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of silver ion-induced disorder on morphological, chemical and optical properties of poly (methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Shafaq, E-mail: sarif2005@gmail.com [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Saleemi, Farhat [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Rafique, M. Shahid [Department of Physics, University of Engineering & Technology, Lahore 54000 (Pakistan); Naab, Fabian; Toader, Ovidiu [Department of Nuclear Engineering and Radiological Sciences, Michigan Ion Beam Laboratory, University of Michigan, MI 48109-2104 (United States); Mahmood, Arshad; Aziz, Uzma [National Institute of Lasers & Optronics (NILOP), P.O. Nilore, Islamabad (Pakistan)

    2016-11-15

    Ion implantation is a versatile technique to tailor the surface properties of polymers in a controlled manner. In the present study, samples of poly (methyl methacrylate) (PMMA) have been implanted with 400 keV silver (Ag{sup +}) ion beam to various ion fluences ranging from 5 × 10{sup 13} to 5 × 10{sup 15} ions/cm{sup 2}. The effect of Ag{sup +} ion-induced disorder on morphological, chemical and optical properties of PMMA is analyzed using Atomic Force Microscope (AFM), Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV–Vis) spectroscopy. Furthermore, the electrical conductivity of pristine and implanted PMMA is measured using four probe apparatus. The AFM images revealed the growth of nano-sized grainy structures and hillocks above the surface of implanted PMMA. The FTIR spectra confirmed the modifications in chemical structure of PMMA along with the formation of −C=C− carbon contents. The refractive index, extinction coefficient and photoconductivity of implanted PMMA have been found to increase as a function of ion fluence. Simultaneously, indirect optical band gap is reduced from 3.13 to 0.81 eV at a relatively high fluence (5 × 10{sup 15} ions/cm{sup 2}). A linear correlation has been established between the band gap and Urbach energies. Moreover, the electrical conductivity of Ag{sup +} implanted PMMA has increased from 2.14 × 10{sup −10} (pristine) to 9.6 × 10{sup −6} S/cm.

  18. Laminin-Coated Poly(Methyl Methacrylate) (PMMA) Nanofiber Scaffold Facilitates the Enrichment of Skeletal Muscle Myoblast Population.

    Science.gov (United States)

    Zahari, Nor Kamalia; Idrus, Ruszymah Binti Haji; Chowdhury, Shiplu Roy

    2017-10-30

    Myoblasts, the contractile cells of skeletal muscle, have been invaluable for fundamental studies of muscle development and clinical applications for muscle loss. A major limitation to the myoblast-based therapeutic approach is contamination with non-contractile fibroblasts, which overgrow during cell expansion. To overcome these limitations, this study was carried out to establish a 3D culture environment using nanofiber scaffolds to enrich the myoblast population during construct formation. Poly(methyl methacrylate) (PMMA) nanofiber (PM) scaffolds were fabricated using electrospinning techniques and coated with extracellular matrix (ECM) proteins, such as collagen or laminin, in the presence or absence of genipin. A mixed population of myoblasts and fibroblasts was isolated from human skeletal muscle tissues and cultured on plain surfaces, as well as coated and non-coated PM scaffolds. PMMA can produce smooth fibers with an average diameter of 360 ± 50 nm. Adsorption of collagen and laminin on PM scaffolds is significantly enhanced in the presence of genipin, which introduces roughness to the nanofiber surface without affecting fiber diameter and mechanical properties. It was also demonstrated that laminin-coated PM scaffolds significantly enhance myoblast proliferation (0.0081 ± 0.0007 h-1) and migration (0.26 ± 0.04 μm/min), while collagen-coated PM scaffolds favors fibroblasts proliferation (0.0097 ± 0.0009 h-1) and migration (0.23 ± 0.03 μm/min). Consequently, the myoblast population was enriched on laminin-coated PM scaffolds throughout the culture process. Therefore, laminin coating of nanofiber scaffolds could be a potential scaffold for the development of a tissue-engineered muscle substitute.

  19. Bond strength of poly(methyl methacrylate) denture base material to cast titanium and cobalt-chromium alloy.

    Science.gov (United States)

    Matsuda, Yasuhiro; Yanagida, Hiroaki; Ide, Takako; Matsumura, Hideo; Tanoue, Naomi

    2010-06-01

    The shear bond strength of an auto-polymerizing poly(methyl methacrylate) denture base resin material to cast titanium and cobalt-chromium alloy treated with six conditioning methods was investigated. Disk specimens (10 mm in diameter and 2.5 mm in thickness) were cast from pure titanium and cobalt-chromium alloy. The specimens were wet ground to a final surface finish of 600 grit, air dried, and treated with the following bonding systems: 1) air abraded with 50-70-microm-grain alumina (SAN); 2) air abraded with 50-70-microm-grain alumina + conditioned with Alloy Primer (ALP); 3) air abraded with 50-70-microm-grain alumina + conditioned with AZ Primer (AZP); 4) air abraded with 50-70-microm-grain alumina + conditioned with Estenia Opaque Primer (EOP); 5) air abraded with 50-70-microm-grain alumina + conditioned with Metal Link Primer (MLP), and 6) treated with ROCATEC system (ROC). A denture base material (Palapress Vario) was then applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. The strengths decreased after thermocycling in all combinations. Among the treatment methods assessed, groups 2 and 4 showed significantly (p < 0.05) enhanced shear bond strengths for both metals. In group 4, the strength in MPa (n = 7) after thermocycling for cobalt-chromium alloy was 38.3, which was statistically (p < 0.05) higher than that for cast titanium (34.7). Air abrasion followed by the application of two primers containing a hydrophobic phosphate monomer (MDP) effectively improved the strength of the bond of denture base material to cast titanium and cobalt-chromium alloy.

  20. Antimicrobial properties of poly (methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria.

    Science.gov (United States)

    Sodagar, Ahmad; Khalil, Soufia; Kassaee, Mohammad Zaman; Shahroudi, Atefe Saffar; Pourakbari, Babak; Bahador, Abbas

    2016-01-01

    To assess the effects of adding nano-titanium dioxide (nano-TiO2) and nano-silicon dioxide (nano-SiO2) and their mixture to poly (methyl methacrylate) (PMMA) to induce antimicrobial activity in acrylic resins. Acrylic specimens in size of 20 mm × 20 mm × 1 mm of 0.5% and 1% of nano-TiO2 (21 nm) and nano-SiO2 (20 nm) and their mixture (TiO2/SiO2 nanoparticles) (1:1 w/w) were prepared from the mixture of acrylic liquid containing nanoparticles and acrylic powder. To obtain 0.5% and 1% concentration, 0.02 g and 0.04 g of the nanoparticles was added to each milliliter of the acrylic monomer, respectively. Antimicrobial properties of six specimens of these preparations, as prepared, were assessed against planktonic Lactobacillus acidophilus and Streptococcus mutans at 0, 15, 30, 45, 60, 75, and 90 min follow-up by broth dilution assay. The specimens of each group were divided into three subgroups: Dark, daylight, or ultraviolet A (UVA). The percent of bacterial reduction is found out from the counts taken at each time point. Data were analyzed using one-way analysis of variance and Tukey's post hoc analysis. Exposure to PMMA containing the nanoparticles reduced the bacterial count by 3.2-99%, depending on the nanoparticles, bacterial types, and light conditions. Planktonic cultures of S. mutans and L. acidophilus exposed to PMMA containing 1% of TiO2/SiO2 nanoparticles showed a significant decrease (P 0.05) was observed in the counts of S. mutans and L. acidophilus in PMMA without the nanoparticles exposed to UVA. PMMA resins incorporated with TiO2/SiO2 nanoparticles showed strong antimicrobial activity against the cariogenic bacteria.

  1. Poly(methyl methacrylate) particles for local drug delivery using shock wave lithotripsy: In vitro proof of concept experiment.

    Science.gov (United States)

    Shaked, Eliav; Shani, Yoav; Zilberman, Meital; Scheinowitz, Mickey

    2015-08-01

    To leverage current local drug delivery systems methodology, there is vast use of polymeric particles serving as drug carriers to assure minimal invasive therapy with little systemic distribution of the released drug. There is an increasing interest in poly(methyl methacrylate) (PMMA) serving as carriers in drug delivery. The study aims to develop PMMA carriers for localized drug delivery and release system, combining innovative biomaterial technology and shock wave lithotripsy (SWL), and to study the effect of SWL on various concentrations of PMMA particles. We prepared PMMA particles that contain horseradish peroxidase (HRP) using a double emulsion technique, and investigated the mechanism of in vitro drug release from the carriers following exposure to SWL. We investigated the correlation between production method modifications, concentrations of the carriers subjected to SWL, and shock wave patterns. We successfully produced PMMA particles as drug carriers and stimulated the release of their contents by SWL; their polymeric shell can be shattered externally by SWL treatment, leading to release of the encapsulated drug. HRP enzyme activity was maintained following the encapsulation process and exposure to high dose of SWL pulses. Increased shock wave number results in increased shattering and greater fragmentation of PMMA particles. The results demonstrate a dose-response release of HRP; quantitation of the encapsulated HRP from the carriers rises with the number of SWL. Moreover, increased concentration of particles subjected to the same dose of SWL results in a significant increase of the total HRP release. Our research offers novel technique and insights into new, site-specific drug delivery and release systems. © 2014 Wiley Periodicals, Inc.

  2. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement.

    Science.gov (United States)

    Khandaker, Morshed; Vaughan, Melville B; Morris, Tracy L; White, Jeremiah J; Meng, Zhaotong

    2014-01-01

    The most common bone cement material used clinically today for orthopedic surgery is poly(methyl methacrylate) (PMMA). Conventional PMMA bone cement has several mechanical, thermal, and biological disadvantages. To overcome these problems, researchers have investigated combinations of PMMA bone cement and several bioactive particles (micrometers to nanometers in size), such as magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica. A study comparing the effect of these individual additives on the mechanical, thermal, and cell functional properties of PMMA would be important to enable selection of suitable additives and design improved PMMA cement for orthopedic applications. Therefore, the goal of this study was to determine the effect of inclusion of magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica additives in PMMA on the mechanical, thermal, and cell functional performance of PMMA. American Society for Testing and Materials standard three-point bend flexural and fracture tests were conducted to determine the flexural strength, flexural modulus, and fracture toughness of the different PMMA samples. A custom-made temperature measurement system was used to determine maximum curing temperature and the time needed for each PMMA sample to reach its maximum curing temperature. Osteoblast adhesion and proliferation experiments were performed to determine cell viability using the different PMMA cements. We found that flexural strength and fracture toughness were significantly greater for PMMA specimens that incorporated silica than for the other specimens. All additives prolonged the time taken to reach maximum curing temperature and significantly improved cell adhesion of the PMMA samples. The results of this study could be useful for improving the union of implant-PMMA or bone-PMMA interfaces by incorporating nanoparticles into PMMA cement for orthopedic and orthodontic applications.

  3. Intervertebral disc degeneration induced by intradiscal poly(methyl methacrylate) leakage after spine augmentation in an in vivo rabbit model.

    Science.gov (United States)

    Mao, Haiqing; Geng, Dechun; Zhu, Xuesong; Ji, Shundong; Zhu, Mo; Gao, Maofeng; Zou, Jun; Yang, Huilin

    2014-07-01

    Although intradiscal cement leakage is a common complication of spine augmentation, the effects of cement leakage into the intervertebral disc (IVD) have not been well investigated. This study aimed to determine the effects of cement leakage on IVD degeneration in rabbits. Poly(methyl methacrylate) (PMMA) particles were injected into lumbar discs of rabbits using 26 G needles. Tissue effects were assessed using disc height, sagittal T2-weighted images, histology and immunohistochemistry. The results showed that stimulation with PMMA particles significantly reduced disc height compared with that in the sham-operation group at 3 weeks after injection. The mean signal intensity of the operated discs showed little to no changes among all groups at 3 weeks post-operation. After 6 weeks, the signal intensity of the PMMA-injected group decreased by 22% compared with that in the sham-operation group. Histological and quantitative immunohistochemical examination indicated phenotypic tissue changes from cartilaginous tissue into fibrotic tissue, with apparent degeneration in the PMMA group. Additionally, more collagen type II-containing tissues, but fewer matrix metalloproteinase-7-positive cells or apoptotic cells, were detected in the sham-operation group. The PMMA particle-induced degeneration rate was slower than that of the degeneration group, whereas the histologic data showed no difference in the progression of degeneration between the two groups. These data suggest that PMMA particles can moderately accelerate disc degeneration compared with the 18 G needle puncture model. In conclusion, intradiscal injection of PMMA particles induced significant IVD degeneration in vivo. Therefore, further study of the adverse effects of PMMA leakage on IVD degeneration is required. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Synthesis and applications of shell cross-linked thermoresponsive hybrid micelles based on poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate).

    Science.gov (United States)

    Wei, Hua; Cheng, Cheng; Chang, Cong; Chen, Wen-Qin; Cheng, Si-Xue; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2008-05-06

    Shell cross-linked (SCL) thermoresponsive hybrid micelles consisting of a cross-linked thermoresponsive hybrid hydrophilic shell and a hydrophobic core domain were synthesized from poly(N-isopropylacrylamide-co-3- (trimethoxysilyl)propyl methacrylate)-b-polymethyl methacrylate (P(NIPAAm-co-MPMA)-b-PMMA) amphiphilic block copolymers. Transmission electron microscopy (TEM) images showed that the SCL micelles formed regularly globular nanoparticles. The SCL micelles showed reversible dispersion/aggregation in response to temperature cycles through an outer polymer shell lower critical solution temperature (LCST) for PNIPAAm at around 33 degrees C, observed by turbidity measurements and dynamic light scattering (DLS). The drug loading and in vitro drug release properties of the SCL micelles bearing a silica-reinforced PNIPAAm shell were further studied, which showed that the SCL micelles exhibited a much improved entrapment efficiency (EE) as well as a slower release rate which allowed the entrapped molecules to be slowly released over a much longer period of time as compared with pure PNIPAAm-b-PMMA micelles.

  5. Synthesis of block copolymers derived from N-trityl-(S)-serine and pyrene end-labeled poly(methyl methacrylate) or poly(N-isopropylacrylamide) via ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Emil C., E-mail: emilbur@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley 700487, Iasi (Romania); Podasca, Viorica; Buruiana, Tinca [Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley 700487, Iasi (Romania)

    2012-10-15

    A new monomer bearing N-trityl-L-serine methyl ester in structure, methacryloyloxyethyl carbamoyloxy-N-trityl methyl serine (MTS), was prepared to be further polymerized by atom transfer radical polymerization (ATRP) with pyrene-endcapped poly(methyl methacrylate) (Py-PMMA-Br) or poly(N-isopropylacrylamide) (Py-PNIPA-Br). The resulting block copolymers, poly(methyl methacrylate-block-methacryloyloxyethyl carbamoyloxy-N-trityl methyl serine) (Py-PMMA-b-PMTS) and poly(N-isopropylacrylamide-block-methacryloyloxyethyl carbamoyloxy-N-trityl methyl serine (Py-PNIPA-b-PMTS) were characterized by {sup 1}H ({sup 13}C) NMR, ultraviolet, FTIR and fluorescence spectroscopy, thermal analysis, differential scanning calorimetry (DSC), atomic force microscopy (AFM), scanning electron microscopy (SEM), and gel permeation chromatography (GPC) measurements. The chemical composition in Py-PMMA-b-PMTS was estimated from the {sup 1}H NMR analysis that indicated a ratio of the repeating units of 46:19 (MMA:MTS). For the Py-PNIPA-b-PMTS the composition rate in the copolymer was 61:25 (NIPA:MTS). Quenching of the pyrene species with N,N-diethylaniline, nitrobenzene, nitrophenol, potassium iodide, p-nitrotoluene and tetracyanoquinodimethane (TCNQ) in DMF solution excited at 348 nm was evidenced, more efficiently being nitrophenol and TCNQ. In this case, the monomer emission at 388-409 nm underwent a significant decrease caused of an electron transfer from the electron-reach photoexcited pyrene molecule to the electron-deficient quenchers. - Highlights: Black-Right-Pointing-Pointer Diblock copolymers combine the fluorescence of pyrene-PMMA (PNIPA) with the characteristics of PMTS. Black-Right-Pointing-Pointer Such copolymers could be used for nitroderivatives detecting. Black-Right-Pointing-Pointer UV/vis and fluorescence measurements give a good correlation for LCST of Py-PNIPA-Br.

  6. Fabrication and characterization of superparamagnetic and thermoresponsive hydrogels based on oleic-acid-coated Fe{sub 3}O{sub 4} nanoparticles, hexa(ethylene glycol) methyl ether methacrylate and 2-(acetoacetoxy)ethyl methacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Papaphilippou, Petri C., E-mail: mep6pp1@ucy.ac.c [Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Pourgouris, Antonis, E-mail: a_pourgouris@hotmail.co [Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Marinica, Oana, E-mail: marinica.oana@gmail.co [National Center for Engineering of Systems with Complex Fluids, University ' Politehnica' Timisoara, Bd. Mihai Viteazul No. 1, 300222 Timisoara (Romania); Taculescu, Alina, E-mail: alina_taculescu@yahoo.co [Center for Fundamental and Advanced Technical Research, Romanian Academy, Timisoara Branch, Bd. Mihai Viteazul, No. 24, 300223 Timisoara (Romania); Athanasopoulos, George I., E-mail: georgios.athanasopoulos@ucy.ac.c [Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Vekas, Ladislau, E-mail: vekas@acad-tim.tm.edu.r [Center for Fundamental and Advanced Technical Research, Romanian Academy, Timisoara Branch, Bd. Mihai Viteazul, No. 24, 300223 Timisoara (Romania); Krasia-Christoforou, Theodora, E-mail: krasia@ucy.ac.c [Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus)

    2011-03-15

    Stimuli-responsive hydrogel nanocomposites comprised of swollen polymer networks, in which magnetic nanoparticles are embedded, are a relatively new class of 'smart' soft materials presenting a significant impact on various technological and biomedical applications. A novel approach for the fabrication of hydrogel nanocomposites exhibiting temperature- and magneto-responsive behavior involves the random copolymerization of hexa(ethylene glycol) methyl ether methacrylate (HEGMA, hydrophilic, thermoresponsive) and 2-(acetoacetoxy)ethyl methacrylate (AEMA, hydrophobic, metal-chelating) in the presence of preformed oleic-acid-coated magnetite nanoparticles (OA.Fe{sub 3}O{sub 4}). In total, two series of hydrogel nanocomposites have been prepared in two different solvent systems: ethyl acetate (series A) and tetrahydrofuran (series B). The degrees of swelling (DSs) of all conetworks were determined in organic and in aqueous media. The nanocrystalline phase adopted by the embedded magnetic nanoparticles was investigated by X-ray diffraction (XRD) spectroscopy. The obtained diffraction patterns indicated the presence of magnetite (Fe{sub 3}O{sub 4}). Deswelling kinetic studies that were carried out at {approx}60 {sup o}C in water demonstrated the thermoresponsive properties of the hydrogel nanocomposites, attributed to the presence of the hexaethylene glycol side chains within the conetworks. Moreover, thermal gravimetric analysis (TGA) measurements showed that these materials exhibited superior thermal stability compared to the pristine hydrogels. Further to the characterization of compositional and thermal properties, the assessment of magnetic characteristics by vibrational sample magnetometry (VSM) disclosed superparamagnetic behavior. The tunable superparamagnetic behavior exhibited by these materials depending on the amount of magnetic nanoparticles incorporated within the networks combined with their thermoresponsive properties may allow for their future

  7. Polymerization of Methyl Methacrylate Catalyzed by Co(II), Cu(II), and Zn(II) Complexes Bearing N-Methyl-N-((pyridin-2-yl)methyl) cyclohexanamine

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Seoung Hyun; Lee, Hyosun [Kyungpook National University, Daegu (Korea, Republic of); Shin, Jongwon [POSTECH, Pohang (Korea, Republic of); Nayab, Saira [Shaheed Benazir Bhutto University, Sheringal (Pakistan)

    2016-05-15

    We demonstrated the synthesis and characterization of Co(II), Cu(II), and Zn(II) complexes ligated to N-methyl-N-((pyridin-2-yl)methyl)cyclohexanamine. The complex [Co(nmpc)Cl{sub 2}] in the presence of MMAO showed the highest catalytic activity for MMA polymerization at 60 °C compared with its Zn(II) and Cu(II) analogs. The metal center showed an obvious influence on the catalytic activity, although this appeared to have no effect on the stereo-regularity of the resultant PMMA. X-ray diffraction analysis revealed that [Co(nmpc)Cl{sub 2}] and [Zn(nmpc)Cl{sub 2}] crystallized in the monoclinic system with space group P2{sub 1}/c and existed as monomeric and solvent-free complexes.

  8. Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid.

    Science.gov (United States)

    Feuser, Paulo Emilio; Arévalo, Juan Marcelo Carpio; Junior, Enio Lima; Rossi, Gustavo Rodrigues; da Silva Trindade, Edvaldo; Rocha, Maria Eliane Merlin; Jacques, Amanda Virtuoso; Ricci-Júnior, Eduardo; Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H Hermes

    2016-12-01

    Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.

  9. Fluorescence technique for studying the sol-gel transition in the free-radical crosslinking copolymerization of methyl methacrylate and ethylene glycol dimethacrylate

    Science.gov (United States)

    Pekcan, Oe.; Ylmaz, Y.; Okay, O.

    1994-11-01

    The steady-state fluorescence technique was used to study the free-radical crosslinking copolymerization of methyl methacrylate and ethylene glycol dimethacrylate in the absence and presence of toluene at 75 C. A sol-gel phase transition was observed and monitored by an excited aromatic molecule during the gelation of the above system. Bond percolation theory was employed to quantify the results. The critical exponent and gel point were found to be around 0.45 and 0.36 both in bulk and solution polymerization.

  10. Fluorescence Technique for Studying the Sol--Gel Transition in the Free--Radical Crosslinking Copolymerization of Methyl Methacrylate and Ethylene Glycol Dimethacrylate

    Science.gov (United States)

    Pekcan, Önder; Yilmaz, Yalçýn; Okay, Oðuz

    1996-01-01

    The steady--state fluorescence technique was used to study the free--radical crosslinking copolymerization [1] of methyl methacrylate and ethylene glycol dimethacrylate in the absence and presence of toluene at 74°C. A sol--gel phase transition was observed and monitored by an excited aromatic molecule during the gelation of the above system. Bond percolation theory was employed to qualify the results [2,3]. The critical exponent and gel point were found to be 0.45 and 0.36 both in bulk and solution polymerization [4].

  11. Surface-Initiated Atom Transfer Radical Polymerization of Magnetite Nanoparticles with Statistical Poly(tert-butyl acrylate)-poly(poly(ethylene glycol) methyl ether methacrylate) Copolymers

    OpenAIRE

    Patcharin Kanhakeaw; Boonjira Rutnakornpituk; Uthai Wichai; Metha Rutnakornpituk

    2015-01-01

    This work presented the surface modification of magnetite nanoparticle (MNP) with poly[(t-butyl acrylate)-stat-(poly(ethylene glycol) methyl ether methacrylate)] copolymers (P[(t-BA)-stat-PEGMA]) via a surface-initiated “grafting from” atom transfer radical polymerization (ATRP). Loading molar ratio of t-BA to PEGMA was systematically varied (100 : 0, 75 : 25, 50 : 50, and 25 : 75, resp.) such that the degree of hydrophilicity of the copolymers, affecting the particle dispersibility in water,...

  12. Physicochemical properties of poly(lactic acid-co-glycolic acid film modified via blending with poly(butyl acrylate-co-methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Guoquan Zhu

    2013-01-01

    Full Text Available A series of poly(lactic acid-co-glycolic acid (PLGA/poly(butyl acrylate-co-methyl methacrylate (P(BA-co-MMA blend films with different P(BA-co-MMA mole contents were prepared by casting the polymer blend solution in chloroform. Surface morphologies of the PLGAP(BA-co-MMA blend films were studied by scanning electron microscopy (SEM. Thermal, mechanical, and chemical properties of PLGAP(BA-co-MMA blend films were investigated by differential scanning calorimeter (DSC, thermogravimetric analysis (TGA, tensile tests, and surface contact angle tests. The introduction of P(BA-co-MMA could modify the properties of PLGA films.

  13. Synthesis of tetraaza bromide macrocyclic and studies of its effect on poly(methyl methacrylate) grafted natural rubber (MG49) - lithium tertrafluoroborate (LiBF4) films

    Science.gov (United States)

    Mariam, Siti Nor; Yamin, Bohari M.; Ahmad, Azizan

    2013-11-01

    Good Poly(Methyl Methacrylate) Grafted natural Rubber (MG49) films with homogeneous and smooth surface were obtained in the presence of Lithium Tertrafluoroborate (LiBF4) and 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-dienium bromide, (Me6N4H4)Br2 as dopants. The conductivity was found to be 3.63×10-6 S/cm an increase by seven fold compare to the undoped MG49.

  14. Excited-state proton-transfer dynamics of 1-methyl-6-hydroxyquinolinium embedded in a solid matrix of poly(2-hydroxyethyl methacrylate).

    Science.gov (United States)

    Park, Sun-Young; Lee, Young-Shin; Jang, Du-Jeon

    2008-11-28

    The excited-state intrinsic proton transfer and its geminate recombination, as well as the ground-state equilibria, of 1-methyl-6-hydroxyquinolinium embedded in a solid matrix of poly(2-hydroxyethyl methacrylate) have been studied by measuring time-resolved and steady-state fluorescence spectra along with absorption and excitation spectra. Proton transfer takes place within 3.3 ns to form ion pairs while its back-reaction occurs on the time scale of 3.7 ns. The ion pairs in the rigid alcoholic matrix go through neither diffusion to form free ions nor subsequent electronic rearrangement to form the keto species within their excited-state lifetimes.

  15. Pulsed laser deposition of poly(methyl methacrylate) thin films: experimental evidence by XRD, XPS, AFM, optical microscopy, Raman spectroscopy, and FTIR

    Science.gov (United States)

    Cristescu, R.; Socol, Gabriel; Mihailescu, Ion N.; Morjan, Ion G.; Soare, Iulia; Popescu, Mihai A.; Sava, F.; Morosanu, C. O.; Stamatin, I.; Andrei, A.; Neamtu, Johny

    2003-11-01

    We report the obtaining of thin organic films based on poly(methyl methacrylate) polymer by Pulsed Laser Deposition on silicon substrates and quartz slides. The films were characterized by complementary techniques: x-ray Diffraction, x-ray Photoelectron Spectroscopy, Atomic Force Microscopy, Optical Microscopy, Raman Spectroscopy and Fourier Transform Infrared Spectroscopy. The obtained structures are amorphous. The film composition and structure depend on both the laser fluence as well as on the temperature of the substrate during deposition. We put in evidence in freshly deposited films the presence of diamond-like carbon while its amount strongly increases by annealing at ~400°C in Argon atmosphere.

  16. Acceleration of gene transfection efficiency in neuroblastoma cells through polyethyleneimine/poly(methyl methacrylate) core-shell magnetic nanoparticles

    Science.gov (United States)

    Tencomnao, Tewin; Klangthong, Kewalin; Pimpha, Nuttaporn; Chaleawlert-umpon, Saowaluk; Saesoo, Somsak; Woramongkolchai, Noppawan; Saengkrit, Nattika

    2012-01-01

    Background The purpose of this study was to demonstrate the potential of magnetic poly(methyl methacrylate) (PMMA) core/polyethyleneimine (PEI) shell (mag-PEI) nanoparticles, which possess high saturation magnetization for gene delivery. By using mag-PEI nanoparticles as a gene carrier, this study focused on evaluation of transfection efficiency under magnetic induction. The potential role of this newly synthesized nanosphere for therapeutic delivery of the tryptophan hydroxylase-2 (TPH-2) gene was also investigated in cultured neuronal LAN-5 cells. Methods The mag-PEI nanoparticles were prepared by one-step emulsifier-free emulsion polymerization, generating highly loaded and monodispersed magnetic polymeric nanoparticles bearing an amine group. The physicochemical properties of the mag-PEI nanoparticles and DNA-bound mag-PEI nanoparticles were investigated using the gel retardation assay, atomic force microscopy, and zeta size measurements. The gene transfection efficiencies of mag-PEI nanoparticles were evaluated at different transfection times. Confocal laser scanning microscopy confirmed intracellular uptake of the magnetoplex. The optimal conditions for transfection of TPH-2 were selected for therapeutic gene transfection. We isolated the TPH-2 gene from the total RNA of the human medulla oblongata and cloned it into an expression vector. The plasmid containing TPH-2 was subsequently bound onto the surfaces of the mag-PEI nanoparticles via electrostatic interaction. Finally, the mag-PEI nanoparticle magnetoplex was delivered into LAN-5 cells. Reverse-transcriptase polymerase chain reaction was performed to evaluate TPH-2 expression in a quantitative manner. Results The study demonstrated the role of newly synthesized high-magnetization mag-PEI nanoparticles for gene transfection in vitro. The expression signals of a model gene, luciferase, and a therapeutic gene, TPH-2, were enhanced under magnetic-assisted transfection. An in vitro study in neuronal cells

  17. Temperature dependent impedance spectroscopy and Thermally Stimulated Depolarization Current (TSDC) analysis of disperse red 1-co-poly(methyl methacrylate) copolymers

    Science.gov (United States)

    Ko, Yee Song; Cuervo-Reyes, Eduardo; Nüesch, Frank A.; Opris, Dorina M.

    2016-04-01

    The dielectric relaxation processes of polymethyl methacrylates that have been functionalized with Disperse Red 1 (DR1) in the side chain (DR1-co-MMA) were studied with temperature dependent impedance spectroscopy and thermally stimulated depolarization current (TSDC) techniques. Copolymers with dipole contents which varied between 10 mol% and 70 mol% were prepared. All samples showed dipole relaxations above the structural-glass transition temperature (Tg). The β-relaxation of the methyl methacrylate (MMA) repeating unit was most visible in DR1(10%)-co-MMA and rapidly vanishes with higher dipole contents. DSC data reveal an increase of the Tg by 20 °C to 125°C with the inclusion of the dipole into the polymethyl methacrylate (PMMA) as side chain. The impedance data of samples with several DR1 concentrations, taken at several temperatures above Tg, have been fitted with the Havriliak-Negami (HN) function. In all cases, the fits reveal a dielectric response that corresponds to power-law dipolar relaxations. TSDC measurements show that the copolymer can be poled, and that the induced polarization can be frozen by lowering the temperature well below the glass transition. Relaxation strengths ΔƐ estimated by integrating the depolarization current are similar to those obtained from the impedance data, confirming the efficient freezing of the dipoles in the structural glass state.

  18. Flexible resistive switching device based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/poly(4-vinylphenol) (PVP) composite and methyl red heterojunction

    Science.gov (United States)

    Hassan, Gul; Ali, Shawkat; Bae, Jinho; Lee, Chong Hyun

    2017-04-01

    To obtain a desired performance of non-volatile memory applications, heterojunction-based resistive switching devices have tremendous attractions. In this paper, we demonstrate resistive switching characteristics for heterojunction of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/poly(4-vinylphenol) (PVP) composite and methyl red sandwiched in between bottom and top silver (Ag) electrodes. The proposed heterojunction layers are fabricated through spin coater at 3000 rpm for 60 s each, and the Ag electrodes are deposited through a commercialized inkjet printer DMP-3000 on polyethyleneterephthalate (PET) substrate. To verify the proposed device, the resistive switching on dual polarity voltage of ±10.2 V is measured over more than 500 endurance cycles. The paper also presents an R off/ R on ratio which can adjust through an active layer's area and a blending ratio of the PEDOT:PSS and PVP. By applying the area of 100 μm2 and the blending ratio of 3:1, we achieve the higher R off/ R on ratio of 121, and its high resistance state (HRS) and low resistance state (LRS) are observed as 3000 kΩ and 24.7 kΩ, respectively. To maintain a long retention time, the device is encapsulated with PDMS, which changes a little variations of 52 Ω for HRS 498 Ω for LRS over 60 days. For the flexible realization to be utilized in wearable applications, it can be easily applied on a plastic substrate using printed technologies.

  19. Water soluble styrene butadiene rubber and sodium carboxyl methyl cellulose binder for ZnFe2O4 anode electrodes in lithium ion batteries

    Science.gov (United States)

    Zhang, Rongyu; Yang, Xu; Zhang, Dong; Qiu, Hailong; Fu, Qiang; Na, Hui; Guo, Zhendong; Du, Fei; Chen, Gang; Wei, Yingjin

    2015-07-01

    ZnFe2O4 nano particles as an anode material for lithium ion batteries are prepared by the glycine-nitrate combustion method. The mixture of styrene butadiene rubber and sodium carboxyl methyl cellulose (SBR/CMC) with the weight ratio of 1:1 is used as the binder for ZnFe2O4 electrode. Compared with the conventional polyvinylidene-fluoride (PVDF) binder, the SBR/CMC binder is much cheaper and environment benign. More significantly, this water soluble binder significantly improves the rate capability and cycle stability of ZnFe2O4. A discharge capacity of 873.8 mAh g-1 is obtained after 100 cycles at the 0.1C rate, with a very little capacity fading rate of 0.06% per cycle. Studies show that the SBR/CMC binder enhances the adhesion of the electrode film to the current collector, and constructs an effective three-dimensional network for electrons transport. In addition, the SBR/CMC binder helps to form a uniform SEI film thus prohibiting the formation of lithium dendrite. Electrochemical impedance spectroscopy shows that the SBR/CMC binder lowers the ohmic resistance of the electrode, depresses the formation of SEI film and facilitates the charge transfer reactions at the electrode/electrolyte interface. These advantages highlight the potential applications of SBR/CMC binder in lithium ion batteries.

  20. (methyl methacrylate) nanocomposites

    Indian Academy of Sciences (India)

    PMMA; polymer nanocomposite; sol–gel; SEM; FTIR. 1. Introduction ... 'sol–gel', was fol- lowed for the same (Schmidt 1998; Limmer et al 2002). In this paper, we propose a new method to prepare PMMA nanocomposite by free radical suspension polymerization ... the hydrophilic silica particles migrated to the polymer.

  1. Preclinical pharmacokinetic evaluation of praziquantel loaded in poly (methyl methacrylate) nanoparticle using a HPLC-MS/MS.

    Science.gov (United States)

    Malhado, Mayara; Pinto, Douglas P; Silva, Aline C A; Silveira, Gabriel P E; Pereira, Heliana M; Santos, Jorge G F; Guilarducci-Ferraz, Carla V V; Viçosa, Alessandra L; Nele, Márcio; Fonseca, Laís B; Pinto, José Carlos C S; Calil-Elias, Sabrina

    2016-01-05

    Praziquantel (PZQ) is the drug recommended by the World Health Organization for treatment of schistosomiasis. However, the treatment of children with PZQ tablets is complicated due to difficulties to adapt the dose and the extremely bitter taste of PZQ. For this reason, poly (methyl methacrylate) nanoparticles loaded with Praziquantel (PZQ-NP) were developed for preparation of a new formulation to be used in the suspension form. For this reason, the main aim of the present study was to evaluate the pharmacokinetic (PK) profile of PZQ-NP, through HPLC-MS/MS assays. Analyses were performed with an Omnisphere C18 column (5.0 μm×4.6 mm×150.0 mm), using a mixture of an aqueous solution containing 0.1 wt% of formic acid and methanol (15:85-v/v) as the mobile phase at a flow rate of 0.800mL/min. Detection was performed with a hybrid linear ion-trap triple quadrupole mass spectrometer with multiple reactions monitoring in positive ion mode via electrospray ionization. The monitored transitions were m/z 313.18>203.10 for PZQ and m/z 285.31>193.00 for the Internal Standard. The method was validated with the quantification limit of 1.00 ng/mL, requiring samples of 25 μL for analyses. Analytic responses were calibrated with known concentration data, leading to correlation coefficients (r) higher than 0.99. Validation performed with rat plasma showed that PZQ was stable for at least 10 months when stored below -70 °C (long-term stability), for at least 17 h when stored at room temperature (RT, 22 °C) (short-term stability), for at least 47 h when stored at room temperature in auto-sampler vials (post-preparative stability) and for at least 8 successive freeze/thaw cycles at -70 °C. For PK assays, Wistar rats, weighing between 200 and 300 g were used. Blood samples were collected from 0 to 24 h after oral administration of single doses of 60 mg/kg of PZQ-NP or raw PZQ (for the control group). PZQ was extracted from plasma by liquid-liquid extraction with terc-butyl methyl

  2. Corrosion resistance of siloxane–poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition

    Energy Technology Data Exchange (ETDEWEB)

    Kunst, S.R.; Cardoso, H.R.P. [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Oliveira, C.T. [ICET, University Feevale, RS-239, 2755 Novo Hamburgo, RS (Brazil); Santana, J.A.; Sarmento, V.H.V. [Department of Chemistry, Federal University of Sergipe – UFS, Av. Vereador Olímpio Grande s/n, Centro, Itabaiana, SE (Brazil); Muller, I.L. [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Malfatti, C.F., E-mail: celia.malfatti@ufrgs.br [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil)

    2014-04-01

    Highlights: • Siloxane–PMMA film was produced by dip-coating on tin plate substrate. • It was evaluated the influence of (TEOS) addition on siloxane–PMMA hybrid films. • Siloxane–PMMA films without TEOS presented a regular coverage and lowest roughness. • The TEOS addition decrease the corrosion resistance of siloxane–PMMA films. • Siloxane–PMMA without TEOS presented is higher durability in the film wear test. - Abstract: The aim of this paper is to study the corrosion resistance of hybrid films. Tin plate was coated with a siloxane–poly (methyl methacrylate) (PMMA) hybrid film prepared by sol–gel route with covalent bonds between the organic (PMMA) and inorganic (siloxane) phases obtained by hydrolysis and polycondensation of 3-(trimethoxysilylpropyl) methacrylate (TMSM) and polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as a thermic initiator. Hydrolysis reactions were catalyzed by acetic acid solution avoiding the use of chlorine or stronger acids in the film preparation. The effect of the addition of tetraethoxysilane (TEOS) on the protective properties of the film was evaluated. The hydrophobicity of the film was determined by contact angle measurements, and the morphology was evaluated by scanning electron microscopy (SEM) and profilometry. The local nanostructure was investigated by Fourier transform infrared spectroscopy (FT-IR). The electrochemical behavior of the films was assessed by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements in a 0.05 M NaCl solution. The mechanical behavior was evaluated by tribology. The results highlighted that the siloxane–PMMA hybrid films modified with acetic acid are promising anti-corrosive coatings that acts as an efficient diffusion barrier, protecting tin plates against corrosion. However, the coating properties were affected by the TEOS addition, which contributed for the thickness increase

  3. Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation: Effect of organoclay on thermal, mechanical and flammability properties

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, Lakshmi; Mohanty, Smita [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India); Nayak, Sanjay K., E-mail: drsknayak@gmail.com [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India); Ali, Anwar [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India)

    2011-05-15

    Research highlights: {yields} The present work deals with preparation and characterization of poly(methyl methacrylate) nanocomposites via melt intercalation technique. {yields} The effect of various modified nanoclays on the properties of base matrix has been investigated. {yields} It was observed that compatibilization using maleic anhydride improved the performance characteristics of PMMA/layered silicate nanocomposites. - Abstract: The PMMA nanocomposites were prepared by melt processing method. The influence of organoclay loading on extent of intercalation, thermal, mechanical and flammability properties of poly(methyl methacrylate) (PMMA)-clay nanocomposites were studied. Three different organoclay modifiers with varying hydrophobicity (single tallow vs. ditallow) were investigated. The nanocomposites were characterized by using wide angle X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. The intercalation of polymer chain within the silicate galleries was confirmed by WAXD and TEM. Mechanical properties such as tensile modulus (E), tensile strength, percentage elongation at break and impact strength were determined for nanocomposites at various clay loadings. Overall thermal stability of nanocomposites increased by 16-17 deg. C. The enhancement in T{sub g} of nanocomposite is merely by 2-4 deg. C. The incorporation of maleic anhydride as compatibilizer further enhanced all the properties indicating improved interface between PMMA and clay. The flammability characteristics were studied by determining the rate of burning and LOI.

  4. One-pot synthesis of biocompatible boronic acid-functionalized poly(methyl methacrylate) nanoparticles at sub-100 nm scale for glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Sakalak, Huseyin [Selcuk University, Metallurgy and Materials Engineering (Turkey); Ulasan, Mehmet; Yavuz, Emine [Selcuk University, Advanced Technology Research and Application Center (Turkey); Camli, Sevket Tolga, E-mail: tolgacamli@gmail.com [Biyotez Machinery Chemistry R& D Co. Ltd. (Turkey); Yavuz, Mustafa Selman, E-mail: selmanyavuz@selcuk.edu.tr [Selcuk University, Metallurgy and Materials Engineering (Turkey)

    2014-12-15

    Poly(methyl methacrylate) nanoparticles containing 4-vinylphenyl boronic acid were synthesized in one pot by surfactant-free emulsion polymerization. The nanoparticles were characterized by scanning electron microscopy and dynamic light scattering. Boron content in the nanoparticles was confirmed by electron-dispersive X-ray spectroscopy. In polymerization process, several co-monomer ratios were studied in order to obtain optimum nanoparticle size. Average hydrodynamic diameter and polydispersity index of nanoparticles versus variation of acetone percentage in the solvent mixture and total monomer concentration were investigated. The effect of boronic acid concentration in the monomer mixture on nanoparticle size and size distribution was also reported. Without further functionalization to the nanoparticles, the catechol dye, alizarin red S, was bound to boronic acid-containing nanoparticles. These nanoparticles behave as a nanosensor by which glucose or fructose can be easily detected. Dye-containing nanoparticles were undertaken displacement reaction by glucose or fructose. The glucose or fructose content was also monitored by UV–Visible spectrophotometer. Furthermore, cytotoxicity studies of boronic acid-carrying poly(methyl methacrylate) nanoparticles were carried out in 3T3 cells, which showed no toxicity effect on the cells.

  5. Effect of Graphene Oxide on the Reaction Kinetics of Methyl Methacrylate In Situ Radical Polymerization via the Bulk or Solution Technique

    Directory of Open Access Journals (Sweden)

    Ioannis S. Tsagkalias

    2017-09-01

    Full Text Available The synthesis of nanocomposite materials based on poly(methyl methacrylate and graphene oxide (GO is presented using the in situ polymerization technique, starting from methyl methacrylate, graphite oxide, and an initiator, and carried out either with (solution or without (bulk in the presence of a suitable solvent. Reaction kinetics was followed gravimetrically and the appropriate characterization of the products took place using several experimental techniques. X-ray diffraction (XRD data showed that graphite oxide had been transformed to graphene oxide during polymerization, whereas FTIR spectra revealed no significant interactions between the polymer matrix and GO. It appears that during polymerization, the initiator efficiency was reduced by the presence of GO, resulting in a reduction of the reaction rate and a slight increase in the average molecular weight of the polymer formed, measured by gel permeation chromatography (GPC, along with an increase in the glass transition temperature obtained from differential scanning calorimetry (DSC. The presence of the solvent results in the suppression of the gel-effect in the reaction rate curves, the synthesis of polymers with lower average molecular weights and polydispersities of the Molecular Weight Distribution, and lower glass transition temperatures. Finally, from thermogravimetric analysis (TG, it was verified that the presence of GO slightly enhances the thermal stability of the nano-hybrids formed.

  6. Vortex-assisted liquid-liquid micro-extraction and high-performance liquid chromatography for a higher sensitivity methyl methacrylate determination in biological matrices.

    Science.gov (United States)

    Sousa, Tiago F A; Aniceto, Marta C; Amorim, Célia G; Souto-Lopes, Mariana; Pérez-Mongiovi, Daniel; Montenegro, Maria C B S M; Araújo, Alberto N

    2014-05-01

    A vortex-assisted liquid-liquid micro-extraction coupled with high-performance liquid chromatography, with UV-vis, is proposed to pre-concentrate methyl methacrylate and to improve separation in biological matrices. The use of 1-octanol as extracting phase, its volume, the need for a dispersant agent, the agitation conditions and the cooling time before phase separation were evaluated. In optimum conditions, enrichment factors of 20 (±0.5) and enrichment recovery of 99% were obtained. The straightforward association of this extraction process with the HPLC method, previously regulated by the International Organization for Standardization, afforded a detection limit of 122 ng/mL and a quantification limit of 370 ng/mL. The within-batch precision, relative standard deviation, was 3% for a sample with 1.49 µg/mL and 4% for a sample with 13.4 µg/mL. The results showed a between batch-precision of 21% for experiments performed on five different days, for a sample with a concentration of 1.10 µg/mL in methyl methacrylate. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Drug-loading of poly(ethylene glycol methyl ether methacrylate) (PEGMEMA)-based micelles and mechanisms of uptake in colon carcinoma cells.

    Science.gov (United States)

    Chang, Teddy; Gosain, Pallavi; Stenzel, Martina H; Lord, Megan S

    2016-08-01

    In this study polymeric micelles formed from poly(poly(ethylene glycol) methyl ether methacrylate)-block-poly(methyl methacrylate) (P(PEGMEMA75)-b-PMMA80) block copolymer of approximately 25nm in diameter were used to encapsulate the model drug, Nile Red, with a loading efficiency of 0.08wt% and a chemotherapeutic drug, doxorubicin (DOX), with an efficiency of 2.75wt%. The release of DOX from the micelles was sufficient to be cytotoxic to human colon carcinoma cells, WiDr, while Nile Red and the unloaded micelles were found not to be cytotoxic when exposed to the cells at polymer concentrations up to 200μg/mL. Nile Red loaded micelles were used to analyze uptake of the micelles into the cells which were rapidly internalized within minutes of exposure. The three major endocytotic pathways were involved in the internalization of micelles; however other passive mechanisms were also at play as the addition of inhibitors to all three pathways did not completely inhibit the uptake of these nanoparticles. These data demonstrate the potential of the P(PEGMEMA)75-b-PMMA80 block copolymer micelles to be rapidly internalized by carcinoma cells and deliver low doses of drugs intracellularly for controlled drug release. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. Polimerizacija, toplinska stabilnost i mehanizam razgradnje kopolimera (metakril-dicikloheksiluree i (metakril-diizopropiluree sa stirenom i α-metilstirenom (Polymerization, Thermal Stability and Degradation Mechanism of (Methacryl-Dicyclohexylurea and (Methacryl-Diisopropylurea Copolymers with Styrene and α-Methylstyrene

    Directory of Open Access Journals (Sweden)

    Vuković, R.

    2006-05-01

    Full Text Available This paper describes the polymerization of N-acryl-N,N'-dicyclohexylurea (A-DCU, N-methacryl- N,N'-dicyclohexylurea (MA-DCU and N-methacryl-N,N'-diisopropylurea (MA-DiPrU monomers with styrene (St and α-methylstyrene (α-MeSt, thermal stability and degradation mechanism of prepared copolymers. Free-radical initiated polymerization was performed to low conversion by using dibenzoyl peroxyde (Bz2O2 in butanone at 70 °C under nitrogen stream. It was found that the pendant group in (methacrylic monomers have high influence to the polymerization as well as to the copolymer properties. A-DCU readily homopolymerized and copolymerized with St and r1,A-DCU = 0.72 and r2,α-MeSt= 0.07, while MA-DCU does not homopolymerized or copolymerized with α-MeSt under the same conditions, but copolymerized with St to randomly composed copolymers after a long heating of comonomers. Copolymers A-DCU with α-MeSt prepared under different monomer-to monomer-ratios in the feed have random composition with an azeotropic point at ratio of 0.75 (A-DCU to 0.25 (St. The initial rate of copolymerization indicates that the rate increases almost linearly with the increase of ratio of A-DCU in the comonomer feed. Reactivity ratios determined by the Kelen-Tüdös method are: r1,A-DCU = 0.72 and r2,α-MeSt = 0.07. Molar mass of copolymers increased from 8.5 to 30 (kg mol-1 when mole ratio of A-DCU to α-MeStin the feed increased from 0.1 to 0.9. Poly(A-DCU and copolymers with α-MeSt decomposed by two-step mechanism. Under TGA (nitrogen,10 °C min-1 conditions in the first step between 180 °C and 250 °C a quantitative yield of cyclohexylisocyanate (C6H11NCO separated by a decomposition of dicyclohexylurea (DCU. The thermally stable residue represented poly(acryl-cyclohexylamide, poly(A-CHA, and copolymer with α-MeSt, poly(A-CHA-co-α-MeSt. Glass transition temperature (Tg of poly(A-DCU was at 184 °C and Tg of residue, poly(A-CHA, was at 161 °C. Tg's of the copolymers are

  9. Production and characterization of poly(styrene-co-methylmethacrylate);Producao e caracterizacao de poliestireno-co-metacrilato de metila

    Energy Technology Data Exchange (ETDEWEB)

    Augustinho, Tiago R.; Coan, Thais; Abarca, Silvia A.C.; Testoni, Alex A.S.; Baumgarten, Bruno P.; Machado, Ricardo A.F., E-mail: tiagoqmc@gmail.co [Universidade Federal de Santa Catarina (UFSC), Florianopolis (Brazil). Dept. de Engenharia Quimica e Alimentos

    2009-07-01

    Polystyrene (PS) is a polymer used in diverse industrial segments. It is easy to process and has a low cost when compared to other materials. However, PS has low mechanical resistance, which limits its application in some areas. Thus, a methodology that is sufficiently used is the synthesis of a copolymer, formed of two or more monomers to get products that have characteristics that are not possible to obtain with only one monomer. In this work, the styrene and methyl methacrylate monomers had been carried through reactions of copolymerization by means of polymerization in suspension using (MMA) with styrene in a bigger percentage. MMA was selected for being a monomer that results in a polymeric configuration more resistant than the PS. The copolymerization was proven to occur by infra-red spectroscopy (IR) and Nuclear Magnetic Resonance (NMR). Different analyses were performed using different initiators, weight molar and conversion studies. (author)

  10. The role of hydroperoxides as a precursor in the radiation-induced graft polymerization of methyl methacrylate to ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Sekiguchi, Masayuki [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2010-06-15

    A graft polymerization of methyl methacrylate (MMA) to ultra-high molecular weight polyethylene (UHMWPE) with Co-60 gamma-ray irradiation in air at room temperature has been carried out. The grafting yields were measured as a function of the storage time (elapsed time from the end of irradiation to the start of grafting), and it was found that the yields reach at the maximum values at around several days since the end of irradiation. In order to clarify the precursor of the graft polymerization, changes of the radical yields and the carbonyl groups were measured as a function of storage time with ESR and microscopic FT-IR, respectively. From the similarities between the depth profiles of the hydroperoxide formation and the grafting products, it was concluded that the hydroperoxides can be main precursors of the grafting of the radiation-induced polymerization of MMA to UHMWPE under the given conditions.

  11. Ionogels Based on Poly(methyl methacrylate and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties

    Directory of Open Access Journals (Sweden)

    Kerstin Zehbe

    2016-03-01

    Full Text Available Ionogels (IGs based on poly(methyl methacrylate (PMMA and the metal-containing ionic liquids (ILs bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II, tetrachloride cobaltate(II, and tetrachlorido manganate(II have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic properties of IGs.

  12. Molecular weight dependence of the shear rheology of poly(methyl methacrylate) Langmuir films: a comparison between two different rheometry techniques.

    Science.gov (United States)

    Maestro, A; Ortega, F; Monroy, F; Krägel, J; Miller, R

    2009-07-07

    The surface shear rheology of Langmuir monolayers of poly(methyl methacrylate) (PMMA) has been studied as a function of polymer concentration (Gamma) and molecular weight (N). Two different rheology techniques were used, one based on free damped oscillations of a ring with a sharp edge and the other based on a forced oscillation of a biconical disk. Both instruments were used in the oscillatory mode at comparable oscillation frequency and amplitude, which gave access to the viscoelastic shear modulus (S). The two instruments, working in different viscosity ranges, provide complementary and mutually compatible data. The results obtained for four PMMA samples of molecular weight between 8x10(3) and 2.7x10(5) g.mol(-1) show powerlike behavior as S approximately Gamma10 and S approximately N4. These strong dependences suggest a structural scenario based on the 2D percolation of the polymer pancakes.

  13. New cobalt-mediated radical polymerization (CMRP of methyl methacrylate initiated by two single-component dinuclear β-diketone cobalt (II catalysts.

    Directory of Open Access Journals (Sweden)

    Feng Bao

    Full Text Available Two dinuclear cobalt complexes based on bis-diketonate ligands (ligand 1: 3,3'-(1,3-phenylenebis(1-phenylpropane-1,3-dione; ligand 2: 3,3'-(1,4-phenylenebis(1-phenylpropane-1,3-dione were successfully synthesized. The two neutral catalysts all showed satisfactory activities in the cobalt-mediated radical polymerization (CMRP of methyl methacrylate (MMA with the common initiator of azodiisobutyronitrile (AIBN. The resulting polymerizations have all of the characteristics of a living polymerization and displayed linear semilogarithmic kinetic plots, a linear correlation between the number-average molecular weight and the monomer conversion, and low polydispersities. Mono- or dicomponent low polydispersity polymers could be obtained by using the two dinuclear catalysts under proper reaction conditions. All these improvements facilitate the implementation of the acrylate CMRP and open the door to the scale-up of the syntheses and applications of the multicomponent low polydispersity polymers.

  14. Cd(II) and Zn(II) Complexes Containing N,N'-Bidentate N-(Pyridin-2-ylmethylene)cyclopentanamine: Synthesis, Characterisation and Methyl Methacrylate Polymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yu Jin; Lee, Ha Jun; Lee, Hyo Sun [Kyungpook National University, Daeju (Korea, Republic of)

    2014-09-15

    The reaction between [CdBr{sub 2}·4H{sub 2}O] and anhydrous [ZnCl{sub 2}] with N,N'-bidentate N-(pyridin-2-ylmethylene)- cyclopentanamine (impy) in ethanol yields dimeric [(impy)Cd(μ-Br)Br]2 and monomeric [(impy)ZnCl{sub 2}] complexes, respectively. The X-ray crystal structure of Cd(II) and Zn(II) complexes revealed that the cadmium atom in [(impy)Cd(μ-Br)Br]2 and zinc in [(impy)ZnCl{sub 2}] formed a distorted trigonal–bipyramidal and tetrahedral geometry, respectively. Both complexes showed moderate catalytic activity for the polymerisation of methyl methacrylate (MMA) in the presence of modified methylaluminoxane (MMAO), with polymethylmethacrylate (PMMA) syndiotacticity of about 0.70.

  15. Chemical imaging of the surface of self-assembled polystyrene-b-poly(methyl methacrylate) diblock copolymer films using apertureless near-field IR microscopy.

    Science.gov (United States)

    Mueller, Kerstin; Yang, Xiujuan; Paulite, Melissa; Fakhraai, Zahra; Gunari, Nikhil; Walker, Gilbert C

    2008-06-01

    The nanoscale chemical composition variations of the surfaces of thin films of polystyrene- b-poly(methyl methacrylate) (PS- b-PMMA) diblock copolymers are investigated using apertureless near-field IR microscopy. The scattering of the incident infrared beam from a modulated atomic force microscopy (AFM) tip is probed using homodyne detection and demodulation at the tip oscillation frequency. An increase in the IR attenuation is observed in the PMMA-rich domains with a wavenumber dependence that is consistent with the bulk absorption spectrum. The results indicate that even though a small topography-induced artifact can be observed in the near-field images, the chemical signature of the sample is detected clearly.

  16. Effects of the novel poly(methyl methacrylate) (PMMA)-encapsulated organic ultraviolet (UV) filters on the UV absorbance and in vitro sun protection factor (SPF).

    Science.gov (United States)

    Wu, Pey-Shiuan; Huang, Lan-Ni; Guo, Yi-Cing; Lin, Chih-Chien

    2014-02-05

    Sunscreens are thought to protect skin from many of the harmful effects of ultraviolet (UV) light and the photostability of sunscreens is thus an important concern in their application. Therefore, to discover new UV filters or to modify well-known UV filters are presents an important way for development of sunscreens. In this study, we presented several novel poly(methyl methacrylate) (PMMA) encapsulated organic UV filters, including encapsulated benzophenone-3 (TB-MS), avobenzone (TA-MS), octyl methoxycinnamate (TO-MS) and diethylamino hydroxybenzoyl hexyl benzoate (TD-MS). Our results have demonstrated that PMMA-encapsulated UV filters have improved safety, photoprotective ability and photostability. We proposed therefore that these PMMA-encapsulated UV filters can be used as ingredients for sunscreen products in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Preparation and characterization of pH-sensitive methyl methacrylate-g-starch/hydroxypropylated starch hydrogels: in vitro and in vivo study on release of esomeprazole magnesium.

    Science.gov (United States)

    Kumar, Pankaj; Ganure, Ashok Laxmanrao; Subudhi, Bharat Bhushan; Shukla, Shubhanjali

    2015-06-01

    In the present study, novel hydrogels were prepared through graft copolymerization of methyl methacrylate onto starch and hydroxypropylated starch for intestinal drug delivery. The successful grafting has been confirmed by FTIR, NMR spectroscopy, and elemental analysis. Morphological examination of copolymeric hydrogels by scanning electron microscopy (SEM) confirms the macroporous nature of the copolymers. The high decomposition temperature was observed in thermograms indicating the thermal stability of the hydrogels. To attain a hydrogel with maximum percent graft yield, the impact of reaction variables like concentration of ceric ammonium nitrate as initiator and methyl methacrylate as monomer were consistently optimized. X-ray powder diffraction and differential scanning calorimetric analysis supported the successful entrapment of the drug moiety (esomeprazole magnesium; proton pump inhibitor) within the hydrogel network. Drug encapsulation efficiency of optimized hydrogels was found to be >78%. Furthermore, swelling capacity of copolymeric hydrogels exhibited a pH-responsive behavior which makes the synthesized hydrogels potential candidates for controlled delivery of medicinal agents. In vitro drug release was found to be sustained up to 14 h with 80-90% drug release in pH 6.8 solution; however, the cumulative release was 40-45% in pH 1.2. The gastrointestinal transit behavior of optimized hydrogel was determined by gamma scintigraphy, using (99m)Tc as marker. The amount of radioactive tracer released from the labeled hydrogel was minimal when the hydrogel was in the stomach, whereas it increased as hydrogel reached in intestine. Well-correlated results of in vitro and in vivo analysis proved their controlled release behavior with preferential delivery into alkaline pH environment.

  18. The adsorption of methyl methacrylate and vinyl acetate polymers on α-quartz surface: A molecular dynamics study

    Science.gov (United States)

    Yan, Lijing; Yang, Yan; Jiang, Hui; Zhang, Bingjian; Zhang, Hui

    2016-01-01

    The molecular dynamics simulation was used to investigate the adsorption of polymethyl methacrylate (PMMA) and polyvinyl acetate (PVA), the commonly used surface coating materials, on α-quartz surface. The objective is to understand the interactions between quartz surface and polymers. The results clearly show adsorption of both polymers onto the quartz surface. Carbonyl group plays a significant role in the adsorption process. The adsorption energies of PMMA and PVA on α-quartz surface did not show significant difference, however, more hydrogen bonds were observed on the PVA/quartz system than PMMA/quartz. These observations might offer some insights on the polymer-quartz adhesion and its failure mechanism.

  19. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.

    Science.gov (United States)

    Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li+/Li, an ionic conductivity of 6.79 × 10-4 S cm-1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn2+ ions at 25 and 55 °C. Thus, the LiNi0.5Mn1.5O4/Li and LiNi0.5Mn1.5O4/Li4Ti5O12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

  20. Positron annihilation spectroscopy (PALS) the effect of crosslinking on free volume size in poly-methyl-methacrylate

    CERN Document Server

    Atevikj, A

    2000-01-01

    Positron annihilation Spectroscopy (PALS) is used for analyzing the samples of polymethyl-methacrylate (PMMA) with different contents of crosslinks. The measurements are performed at room temperature. The times of life (tau sub 1 , tau sub 2 , tau sub 3) and the intensities (I sub I , I sub 2 , 1 sub 3) of para-positronium, the free positrons and the orto-positrons are calculated for each type of polymer, but only (tau sub 3) and (I sub 3) are of interest because we can calculate the size of free volume. It is shown that the radius of free volume is proportional to the crosslinking density. Defects of sizes in the range of 0.1 to 1 nm are detected with Positron Spectroscopy, while other techniques do not give results. (Original)

  1. Photocontrol over the disorder-to-order transition in thin films of polystyrene-block-poly(methyl methacrylate) block copolymers containing photodimerizable anthracene functionality.

    Science.gov (United States)

    Chen, Wei; Wang, Jia-Yu; Zhao, Wei; Li, Le; Wei, Xinyu; Balazs, Anna C; Matyjaszewski, Krzysztof; Russell, Thomas P

    2011-11-02

    Reversible photocontrol over the ordering transition of block copolymers (BCPs) from a disordered state to an ordered state, namely the disorder-to-order transition (DOT), can be used to create long-range ordered nanostructures in self-assembled BCPs over macroscopic distances by photocombing, similar to the classic zone refining used to produce highly pure, large single crystals. Here, we have designed and synthesized an anthracene-functionalized tri-BCP containing deuterated polystyrene (d(8)-PS) and poly(methyl methacrylate) (PMMA) blocks, as well as a short middle block of poly(2-hydroxyethyl methacrylates) (PHEMA) that is randomly functionalized by anthracene. This tri-BCP maintains the order-to-disorder transition-type phase behavior of its parent d(8)-PS-b-PMMA di-BCPs. Under 365 nm UV irradiation, the junction between d(8)-PS and PMMA blocks is photocoupled through the anthracene photodimers, leading to a significant increase in the total molecular weight of the tri-BCP. As a consequence, when the tri-BCP is phase-mixed but close to the boundary of the ordering transition, it undergoes the DOT, as evidenced by small-angle neutron scattering and transmission electron microscopy. The tri-BCP could be reversibly brought through the DOT in thin films by taking advantage of photodimerization and thermal dissociation of anthracene. Currently, anthracene-functionalized d(8)-PS-b-PMMA BCP is one of the most promising candidates for the photocombing process to promote long-range laterally ordered nanostructures over macroscopic distances in a noninvasive manner.

  2. Conjugation of salmon calcitonin to a combed-shaped end functionalized poly(poly(ethylene glycol) methyl ether methacrylate) yields a bioactive stable conjugate.

    Science.gov (United States)

    Ryan, Sinéad M; Wang, Xuexuan; Mantovani, Guiseppe; Sayers, Claire T; Haddleton, David M; Brayden, David J

    2009-04-02

    Salmon calcitonin (sCT) was conjugated via its N-terminal cysteine to a comb-shaped end-functionalized poly(poly(ethylene glycol) methyl ether methacrylate) (PolyPEG, 6.5 kDa), and to linear PEG (5 kDa). Conjugate molecular weight and purity was assessed by SEC-HPLC and MALDI-TOF MS. Bioactivity of conjugates was measured by cyclic AMP assay in T47D cells. Calcium and calcitonin levels were measured in rats following intravenous injections. Stability of conjugates was tested against serine proteases, intestinal and liver homogenates and serum. Cytotoxicity of conjugates was assessed by lactate dehydrogenase (LDH) assay and by haemolytic assay of rat red blood cells. Results showed that the two conjugates were of high purity with molecular weights similar to predictions. Both conjugates retained more than 85% bioactivity in vitro and had nanomolar EC(50) values similar to sCT. While both sCT-PolyPEG(6.5 K) and sCT-PEG(5 K) were resistant to metabolism by serine proteases, homogenates and serum, PolyPEG (6.5 K) was more so. Although both conjugates reduced serum calcium to levels similar to those achieved with sCT, PolyPEG(6.5 K) extended the T(1/2) and AUC of serum sCT over values achieved with sCT-PEG and sCT itself. None of PolyPEG, PEG or methacrylic acid displayed significant cytotoxicity. PolyPEG may therefore have potential to improve pharmacokinetic profiles of injected peptides.

  3. In vitro Comparison of the Effct Cola Beverage on Surface Hardness of Siloran-Based (p90 and Methyl Methacrylate-Based (p60 Composites

    Directory of Open Access Journals (Sweden)

    Z.Khamverdi

    2016-11-01

    Full Text Available Introduction: Th characteristics of a suitable restoration material is having acceptable mechanical properties, protecting teeth against decay and ease of use in clinics. Diet can affct properties of restorative materials in the mouth. Since amongst important properties of composite restorations are mechanical properties such as hardness, the aim of this study was evaluation of the effct of Coca-Cola Beverages on surface hardness of a silorane based p90( and methyl methacrylate p60( composites. Methods: In this experimental study, thirty disc-shaped specimens 5 × 2 mm( of each of methyl methacrylate based Filtek p60, 3M Dental Products, USA( and a silorane based Filtek p90, 3M Dental Products, USA( composite resins were prepared, according to manufacturers' instructions. Specimens were randomly divided to four groups as follows N = 15(: G1: Filtek p90 without exposure to Coca-Cola, G2: Filtek p90 with exposure to Coca-Cola, G3: Filtek p60 without expure to Coca-Cola, G4: Filtek p60 with expure to Coca-Cola. Th specimens were exposed to regular sof drinks Coca-Cola, Khoshgovar, Tehran, Iran( at room temperature for seven days with a frequency of three times daily for 20 minutes at a time. In the remaining times of the day, they were kept in distilled water. Thn, micro hardness measurements were made for each specimen with a Vickers hardness testing machine Buehler, Lake Bluff IL, USA( under 500 g of force for 15 seconds. Data were analyzed using SPSS 18 and independent t-test at a signifiance level of 0.05. Results: Micro hardness values of four groups were G1: 68.28 ± 2.65; G2:59.56 ± 6.61; G3: 93.5 ± 2.38; and G4:86.76 ± 5.47, respectively. Th results of this study showed that Coca-Cola reduces the surface hardness of the two composite materials P > 0.05(. Conclusions: Th results showed the hardness of both Filtek p90 and Filtek p60 composite signifiantly decreases with Coca-Cola but the reduction was equal.

  4. Influence of the way of synthesis of poly(methyl methacrylate in the presence of surface modified TiO2 nanoparticles on the properties of obtained nanocomposites

    Directory of Open Access Journals (Sweden)

    Džunuzović Enis S.

    2010-01-01

    Full Text Available Incorporation of inorganic nanoparticles can significantly affect the properties of the polymer matrix. The properties of polymer nanocomposites depend on the type of incorporated nanoparticles, their size and shape, their concentration, and interactions with the polymer matrix. Homogeneity of polymer nanocomposites is influenced very much by the preparation method. In this study, TiO2 nanoparticles surface modified with 6-palmitate ascorbic acid (6-PAA were incapsulated in poly(methyl methacrylate (PMMA by in situ radical polymerization of methyl methacrylate initiated by 2,2'-azobisisobutyronitrile (AIBN. The surface modification of the TiO2 nanoparticles was achieved by the formation of a charge transfer complex between TiO2 nanoparticles and 6-palmitate ascorbic acid. The radical polymerization of MMA in the presence of TiO2-PAA nanoparticles was conducted in solution (PMMA/TiO2-PAA-R, in bulk (PMMA/TiO2-PAA-M or in suspension (PMMA/TiO2-PAA-S. The main purpose of this study was to investigate the influence of the preparation method on the molar masses and thermal properties of PMMA/TiO2-PAA nanocomposite. It was obtained that molar masses of PMMA extracted from the composites had smaller values compared to molar masses of pure PMMA synthesized in the same manner, which indicated that TiO2-PAA nanoparticles affected the reaction of termination. Thermal properties were investigated by DSC and TGA. The values of glass transition temperature, Tg, were influenced by the way the radical polymerization was conducted, even in the case of the pure PMMA. The Tg of composite samples was always smaller than the value of the corresponding PMMA sample and the smallest value was obtained for PMMA/TiO2-PAA-M since they contained the largest amount of low molar mass residue. The TGA results showed that thermal and thermooxidative stability of polymer composites obtained in solution and in suspension was better than for the pure PMMA obtained in the same way.

  5. RAFT "grafting-through" approach to surface-anchored polymers: Electrodeposition of an electroactive methacrylate monomer.

    Science.gov (United States)

    Grande, C D; Tria, M C; Felipe, M J; Zuluaga, F; Advincula, R

    2011-02-01

    The synthesis of homopolymer and diblock copolymers on surfaces was demonstrated using electrodeposition of a methacrylate-functionalized carbazole dendron and subsequent reversible addition-fragmentation chain transfer (RAFT) "grafting-through" polymerization. First, the anodically electroactive carbazole dendron with methacrylate moiety (G1CzMA) was electrodeposited over a conducting surface (i.e. gold or indium tin oxide (ITO)) using cyclic voltammetry (CV). The electrodeposition process formed a crosslinked layer of carbazole units bearing exposed methacrylate moieties. This film was then used as the surface for RAFT polymerization process of methyl methacrylate (MMA), styrene (S), and tert-butyl acrylate (TBA) in the presence of a free RAFT agent and a free radical initiator, resulting in grafted polymer chains. The molecular weights and the polydispersity indices (PDI) of the sacrificial polymers were determined by gel permeation chromatography (GPC). The stages of surface modification were investigated using X-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM) to confirm the surface composition, thickness, and film morphology, respectively. UV-Vis spectroscopy also confirmed the formation of an electro-optically active crosslinked carbazole film with a [Formula: see text] - [Formula: see text] absorption band from 450-650nm. Static water contact angle measurements confirmed the changes in surface energy of the ultrathin films with each modification step. The controlled polymer growth from the conducting polymer-modified surface suggests the viability of combining electrodeposition and grafting-through approach to form functional polymer ultrathin films.

  6. Cellular uptake and degradation behaviour of biodegradable poly(ethylene glycol-graft-methyl methacrylate) nanoparticles crosslinked with dimethacryloyl hydroxylamine.

    Science.gov (United States)

    Scheler, Stefan; Kitzan, Martina; Fahr, Alfred

    2011-01-17

    Crosslinked polymers with hydrolytically cleavable linkages are highly interesting materials for the design of biodegradable drug carriers. The aim of this study was to investigate if nanoparticles made of such polymers have the potential to be used also for intracellular drug delivery. PEGylated nanoparticles were prepared by copolymerization of methacrylic acid esters and N,O-dimethacryloylhydroxylamine (DMHA). The particles were stable at pH 5.0. At pH 7.4 and 9.0 the degradation covered a time span of about 14 days, following first-order kinetics with higher crosslinked particles degrading slower. Cellular particle uptake and cytotoxicity were tested with L929 mouse fibroblasts. The particle uptake rate was found to correlate linearly with the surface charge and to increase as the zeta potential becomes less negative. Coating of the particle surface with polysorbate 80 drops the internalization rate close to zero and the charge dependence disappears. This indicates the existence of a second effect apart from surface charge. A similar pattern of correlation with zeta potential and coating was also found for the degree of membrane damage while there was no effect of polysorbate on the cell metabolism which increased as the negative charge decreased. It is discussed whether exocytotic processes may explain this behaviour. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Radiolytic stabilization of poly(methyl methacrylate) in blends with polystyrene; Estabilizacao radiolitica do poli(metacrilato de metila) em misturas fisicas com poliestireno

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Ivania Soares de

    2002-04-01

    In this work the radiolytic stabilization of poly(methyl methacrylate) was analyzed by three radioprotective agents: polystyrene (PS) and hindered amine light stabilizers (HEALS), respectively, PMMA/PS systems, so a called polymeric blends were prepared with different compositions, where the miscibility of these blends were studied using viscometric, microscopy (SEM) and spectroscopy (FT-IR) techniques. The results show that PMMA/PS blends in the compositions below 10 wt% of PS are miscible, on films casting from solution of toluene and methyl-ethyl-ketone (1;1) mixture. On the other hand, in the composition above 10 wt% of PS, PMMA/PS blends show imminiscibility behavior. These polymer solutions were irradiated with gamma rays ({sup 60} Co) and viscometric, microscopic and spectroscopic experiments show gamma radiation-induced compatibilization on PMMA/PS blends on proportion 50/50 and 30/70 take place. Viscometric interaction parameters of miscible and compatibilized PMMA/PS bends were calculated in the range of - 50 kGy, with the goal to find out the polymeric interactions after irradiation of the films. G values of PMMA, PMMA/PS and PMMA+St systems were calculated in order to analyze the radioprotection of PS and St into PMMA matrix. The results show that (90/10) PMMA/PS and PMMA+1,5%St systems promote protection against the gamma the radiation-induced scissions, effect that leads to polymer degradation. Moreover, a small amount of crosslinking observed in irradiated blends has contributed to stabilize mechanical properties of PMMA films. PMMA+0,3% HALS system irradiated in doses above 60 kGy showed little stabilization of the mechanical properties of PMMA, since it was observed mechanical degradation this system. Based on these results, PS and St showed to be the best radioprotective agents to PMMA. (author)

  8. Effects of different epoxidation methods of soybean oil on the characteristics of acrylated epoxidized soybean oil-co-poly(methyl methacrylate copolymer

    Directory of Open Access Journals (Sweden)

    V. Tanrattanakul

    2013-11-01

    Full Text Available The effect of the type of epoxidation processes of soybean oil on the characteristics of epoxidized soybean oils (ESOs, acrylated epoxidized soybean oils (AESOs, and acrylated epoxidized soybean oil – poly(methyl metacrylate copolymers (AESO-co-PMMA has been investigated. Two epoxidation processes were used: an in situ chemical epoxidation using hydrogen peroxide and formic acid, and a chemo-enzymatic epoxidation using 2 enzymes: Novozyme® 435 (CALB and a homemade lipase/acyltransferase (CpLIP2. ESOs containing different numbers of epoxide groups/molecule were synthesized. A commercial ESO (Vikoflex® 7170 was employed and it had the highest number of epoxide groups. Acrylation of ESOs was carried out using acrylic acid, and copolymerized with a methyl methacrylate monomer. The chemo-enzymatic epoxidation produced high acid value, particularly from the CpLIP2 (~46–48% and indicated the formation of epoxidized free fatty acids. In contrast, the ESO synthesized from the chemical epoxidation showed a very low acid value, < 0.6%. The AESOs synthesized from the CALB-based ESO and the chemical-based ESO showed a similar number of acrylate groups/molecule while that from the CpLIP2-based ESO showed a very low number of acrylate groups because the carboxylic groups from the epoxidized free fatty acids impeded the acrylation reaction. The lower the number of acrylate groups the lower was the crosslink density, the Tg, and the gel content in the AESO-co-PMMA copolymer.

  9. Photochemical Stability and Photostabilizing Efficiency of Poly(methyl methacrylate Based on 2-(6-Methoxynaphthalen-2-ylpropanoate Metal Ion Complexes

    Directory of Open Access Journals (Sweden)

    Emad Yousif

    2015-06-01

    Full Text Available The photostabilization of poly(methyl methacrylate (PMMA films having 2-(6-methoxynaphthalen-2-ylpropanoate and Sn(II, Ni(II, Zn(II and Cu(II complexes was investigated. The production of PMMA films containing such complexes (0.5% by weight was carried out by the casting method using chloroform. The photostabilization activities of the compounds were determined by monitoring the hydroxyl index with irradiation time. The quantum yield of the chain scission (Φcs for the complexes in PMMA films and the changes in the viscosity average molecular weight of PMMA with irradiation time were evaluated. The rate of photostabilization for PMMA in the presence of the additives was found to follow the order NiL2 > CuL2 > ZnL2 > SnL2 (L, ligand. Depending on the structure of the additive, such as a peroxide decomposer, UV absorption or a radical scavenger for the photostabilizer, several mechanisms are suggested.

  10. Photochemical stability and photostabilizing efficiency of poly(methyl methacrylate based on 2-thioacetic acid-5-phenyl-1,3,4-oxadiazole complexes

    Directory of Open Access Journals (Sweden)

    Emad Yousif

    2016-09-01

    Full Text Available The photostabilization of poly(methyl methacrylate (PMMA films by new types of 2-thioacetic acid-5-phenyl-1,3,4-oxadiazole with Sn(II, Ni(II, Zn(II, and Cu(II complexes was investigated. The PMMA films containing concentration of complexes 0.5% by weight were produced by the casting method from chloroform solvent. The photostabilization activities of these compounds were determined by monitoring the hydroxyl index with irradiation time. The changes in viscosity average molecular weight of PMMA with irradiation time were also tracked (using benzene as a solvent. The quantum yield of the chain scission (Φcs of these complexes in PMMA films was evaluated and found to range between 5.22 × 10−5 and 7.75 × 10−5. Results obtained showed that the rate of photostabilization of PMMA in the presence of the additive followed the trend: Ni(L2>Ni(L2>Zn(L2>Sn(L2 According to the experimental results obtained, several mechanisms were suggested depending on the structure of the additive. Among them, UV absorption, peroxide decomposer and radical scavenger for photostabilizer mechanisms were suggested.

  11. Effect of end segment on physicochemical properties and platelet compatibility of poly(propylene glycol)-initiated poly(methyl methacrylate).

    Science.gov (United States)

    Fukuda, Chihiro; Yahata, Chie; Kinoshita, Takuya; Watanabe, Takafumi; Tsukamoto, Hideo; Mochizuki, Akira

    2017-10-01

    It is well known that polyether-based copolymers have good blood compatibility, although many mechanisms have been proposed to explain their favorable performance. Our objective in carrying out the present study was to obtain a better understanding of the effect of the (poly)ether segment on blood compatibility. Therefore, we synthesized poly(propylene glycol) (PPG)-based initiators for atom transfer polymerization, where the number of propylene glycol (PG) units in the PPG (Pn(PG) was varied from 1 to 94. Methyl methacrylate (MMA) was polymerized using the initiators, resulting in the formation of polyMMAs with a PG-based ether part at the polymer terminal. We mainly investigated the effects of Pn(PG) on the surface properties and platelet compatibility of the PPG-polyMMA. X-ray photoelectron spectroscopy and surface contact angle (CA) analysis revealed the exposure of the PG units at the surface of the polymer. The platelet compatibility of the polymers was improved compared with a commercial polyMMA, even when Pn(PG) = 1. These results suggest that PG units have an important influence on favorable blood compatibility, regardless of the Pn(PG) value. We also investigated protein adsorption behavior in terms of the amount and deformation of fibrinogen adsorbed on the polymer surface.

  12. Approach to knowledge of the interaction between the constituents of contact lenses and ocular tears: mixed monolayers of poly(methyl methacrylate) and dipalmitoyl phosphatidyl choline.

    Science.gov (United States)

    Miñones Conde, M; Conde, O; Trillo, J M; Miñones, J

    2011-04-05

    Mixed monolayers of poly(methyl methacrylate) (PMMA), the main component of hard contact lenses, and dipalmitoyl phosphatidyl choline (DPPC), a characteristic phospholipidic constituent of ocular tear films, were selected as an in vitro model in order to observe the behavior of contact lenses on the eye. Using Langmuir monolayer and Brewster angle microscopy (BAM) techniques, the interaction between both components was analyzed from the data of surface pressure-area isotherms, compressional modulus-surface pressure, and relative film thickness versus time elapsed from the beginning of compression, together with BAM images. Regardless of the surface pressure at which the molecular/monomer areas (A(m)) were recorded, the A(m) mole fractions of PMMA (X(PMMA)) plots show that the experimental results match the theoretical values calculated from additivity rule A(m) = X(PMMA)A(PMMA) + X(DPPC)A(DPPC). The application of the Crisp phase rule to the phase diagram of the PMMA-DPPC system can explain the existence of a mixed monolayer made up of miscible components with ideal behavior at surface pressures below 25 mN/m. However, at very high surface pressures, when collapse is reached (at 60 mN/m), the single collapsed components are segregated into two independent phases. These results allows us to argue that PMMA hard contact lenses in the eye do not alter the structural characteristics of the phospholipid (DPPC) in tears.

  13. Osteo-odonto-keratoprosthesis (OOKP) and the testing of three different adhesives for bonding bovine teeth with optical poly-(methyl methacrylate) (PMMA) cylinder.

    Science.gov (United States)

    Weisshuhn, K; Berg, I; Tinner, D; Kunz, C; Bornstein, M M; Steineck, M; Hille, K; Goldblum, D

    2014-07-01

    Preparation of the lamina during osteo-odonto-keratoprosthesis (OOKP) design is complex, and its longevity and watertightness important. To date, only acrylic bone cements have been used for bonding the optical cylinder to the tooth dentine. Our aim was to evaluate different dental adhesives for OOKP preparation. Specimens of bovine teeth were produced by preparing 1.5-mm thick dentine slices with holes having a diameter of 3.5 mm. Each group (n=10 per group) was luted with either classic poly-(methyl methacrylate) (PMMA) bone cement, universal resin cement or glass ionomer cement. All specimens underwent force measurement using a uniaxial traction machine. The highest mean force required to break the bond was measured for PMMA bone cement (128.2 N) followed by universal resin cement (127.9 N), with no statistically significant difference. Glass ionomer cement showed significantly lower force resistance (78.1 N). Excellent bonding strength combined with easy application was found for universal resin cement, and thus, it is a potential alternative to acrylic bone cement in OOKP preparation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. External Electric Field Effects on Excited-State Intramolecular Proton Transfer in 4'-N,N-Dimethylamino-3-hydroxyflavone in Poly(methyl methacrylate) Films.

    Science.gov (United States)

    Furukawa, Kazuki; Hino, Kazuyuki; Yamamoto, Norifumi; Awasthi, Kamlesh; Nakabayashi, Takakazu; Ohta, Nobuhiro; Sekiya, Hiroshi

    2015-09-17

    The external electric field effects on the steady-state electronic spectra and excited-state dynamics were investigated for 4'-N,N-(dimethylamino)-3-hydroxyflavone (DMHF) in a poly(methyl methacrylate) (PMMA) film. In the steady-state spectrum, dual emission was observed from the excited states of the normal (N*) and tautomer (T*) forms. Application of an external electric field of 1.0 MV·cm(-1) enhanced the N* emission and reduced the T* emission, indicating that the external electric field suppressed the excited-state intramolecular proton transfer (ESIPT). The fluorescence decay profiles were measured for the N* and T* forms. The change in the emission intensity ratio N*/T* induced by the external electric field is dominated by ESIPT from the Franck-Condon excited state of the N* form and vibrational cooling in potential wells of the N* and T* forms occurring within tens of picoseconds. Three manifolds of fluorescent states were identified for both the N* and T* forms. The excited-state dynamics of DMHF in PMMA films has been found to be very different from that in solution due to intermolecular interactions in a rigid environment.

  15. Synthesis and Self-Assembly of Rod2Coil Miktoarm Star Copolymers of Poly(3-dodecxylthiophene) and Poly(methyl methacrylate) with high rod fractions

    Science.gov (United States)

    Park, Jicheol; Moon, Hong Chul; Choi, Chung-Royng; Kim, Jin Kon

    2015-03-01

    Poly(3-dodecylthiophene)-b-poly(methyl methacrylate) diblock copolymer (P3DDT- b-PMMA) can self-assembled into various microdomains such as spheres, cylinders, and lamellae depending on weight fraction of P3DDT. However, only filbril morphology was formed when weight fraction of P3DDT (wP 3 DDT) was major (wP 3 DDT ~ 0.76). Here, we introduce a new approach to obtain microdomain structures even at high wP 3 DDT by using well-defined A2B miktoarm star copolymer composed of P3DDT and PMMA ((P3DDT)2PMMA. We found via small angle X-ray scattering and transmission electron microscopy that (P3DDT)2PMMA showed PMMA cylinder packed hexagonally in the matrix of P3DDT and body-centered-cubic spheres of PMMA for wP 3 DDT of 0.66 and 0.75, respectively. This because of much reduction of the rod-rod interaction in (P3DDT)2PMMA compared with P3DDT- b-PMMA diblock copolymers.

  16. Novel Cobalt(II) complexes containing N,N-di(2-picolyl)amine based ligands; Synthesis, characterization and application towards methyl methacrylate polymerisation

    Science.gov (United States)

    Ahn, Seoung Hyun; Choi, Sang-Il; Jung, Maeng Joon; Nayab, Saira; Lee, Hyosun

    2016-06-01

    The reaction of [CoCl2·6H2O] with N‧-substituted N,N-di(2-picolyl)amine ligands such as 1-cyclohexyl-N,N-bis(pyridin-2-ylmethyl)methanamine (LA), 2-methoxy-N,N-bis(pyridin-2-ylmethyl)ethan-1-amine (LB), and 3-methoxy-N,N-bis(pyridin-2-ylmethyl)propan-1-amine (LC), yielded [LnCoCl2] (Ln = LA, LB and LC), respectively. The Co(II) centre in [LnCoCl2] (Ln = LA, and LC) adopted distorted bipyramidal geometries through coordination of nitrogen atoms of di(2-picolyl)amine moiety to the Co(II) centre along with two chloro ligands. The 6-coordinated [LBCoCl2] showed a distorted octahedral geometry, achieved through coordination of the two pyridyl units, two chloro units, and bidentate coordination of nitrogen and oxygen in the N‧-methoxyethylamine to the Co(II) centre. [LCCoCl2] (6.70 × 104 gPMMA/molCo h) exhibited higher catalytic activity for the polymerisation of methyl methacrylate (MMA) in the presence of modified methylaluminoxane (MMAO) compared to rest of Co(II) complexes. The catalytic activity was considered as a function of steric properties of ligand architecture and increased steric bulk around the metal centre resulted in the decrease catalytic activity. All Co(II) initiators yielded syndiotactic poly(methylmethacrylate) (PMMA).

  17. Surface Modification of Multiwall Carbon Nanotubes with Cationic Conjugated Polyelectrolytes: Fundamental Interactions and Intercalation into Conductive Poly(methyl-methacrylate) Composites

    KAUST Repository

    Ezzeddine, Alaa

    2015-05-22

    This research investigates the modification and dispersion and of pristine multiwalled carbon nanotubes (MWCNTs) through a simple solution mixing technique based on noncovalent interactions between poly(phenylene ethynylene) based conjugated polyelectrolytes functionalized with cationic imidazolium solubilizing groups (PIM-2 and PIM-4) and MWCNTs. Spectroscopic studies demonstrated the ability of PIMs to strongly interact with and efficiently disperse MWCNTs in different solvents mainly due to π-interactions between the PIMs and MWCNTs. Transmission electron microscopy and atomic force microscopy revealed the coating of the polyelectrolytes on the walls of the nanotubes. Scanning electron microscopy (SEM) studies confirm the homogenous dispersion of PIM modified MWCNTs in poly(methyl methacrylate) (PMMA) matrix. The addition of 1 wt% PIM modified MWCNTs to the matrix has led to a significant decrease in DC resistivity of the composite (13 orders of magnitude). The increase in electrical conductivity and the improvement in thermal and mechanical properties of the membranes containing the PIM modified MWCNTs is ascribed to the formation of MWCNTs networks and cross-linking sites that provided channels for the electrons to move in throughout the matrix and reinforced the interface between MWCNTs and PMMA.

  18. Effect of temperature on the interfacial behavior of a polystyrene-b-poly(methyl methacrylate) diblock copolymer at the air/water interface.

    Science.gov (United States)

    Seo, Yongsok; Cho, Chung Yeon; Hwangbo, Minyoung; Choi, Hyoung Jin; Hong, Soon Man

    2008-03-18

    Monolayers of a polystyrene-poly(methyl methacrylate) (PS-PMMA) diblock copolymer at the air-water interface were studied by measuring the surface pressure-area isotherms at several temperatures. Langmuir film balance experiments and atomic force microscopy showed that the diblock copolymer molecules formed surface micelles. In the plot of the surface pressure versus surface area per repeating unit, the monolayer changed from the gas phase to the liquid expanded phase at lower surface pressure for systems at low temperature compared to those at high temperature. In addition, a plateau, corresponding to the transition from the liquid expanded to liquid condensed phase, appeared in that plot at lower surface pressure for systems with a higher subphase (water) temperature. Hysteresis was observed in the compression-expansion cycle process. Increasing the subphase temperature alleviated this hyteresis gap, especially at low surface pressures. The minimum in the plot of the surface pressure versus surface area per repeating unit in the expansion process (which arises from the transition) and the transition plateau appeared more vividly at higher water temperature. These dynamic experimental results show that PS-PMMA diblock copolymers, in which both blocks are insoluble in water, do not form complicated entanglements in two-dimensional space. Although higher water temperature provided more entropy to the chains, and thus more conformational freedom, it did not change the surface morphology of the condensed film because both blocks of PS-PMMA are insoluble in water.

  19. Modification of thermal and rheological behavior of asphalt binder by the addition of an ethylene-methyl acrylate-glycidyl methacrylate terpolymer and polyphosphoric acid

    Directory of Open Access Journals (Sweden)

    Gerson da Silva Pereira

    Full Text Available Abstract This study evaluated the modification effects of adding ethylene-methyl acrylate-glycidyl methacrylate terpolymer (EMGMA in the presence of polyphosphoric acid (PPA to an asphalt binder graded as 50/70 (0.1mm in the Brazilian penetration grade specification (AC 50/70. The EMGMA terpolymer has been presented as a new alternative to modify asphalt binders properties, as scientific literature is scarce on its usage in this context and also on the role of PPA when used in combination with reactive polymers. The characteristics of the modified binder were analyzed by standard and rheological testing, including Multiple Stress Creep Recovery test (MSCR and Fourier Transform Infrared Spectroscopy (FTIR analysis. The MSCR test showed that the modified binder presented lower values of non-recoverable compliances (Jnr and a higher percent recovery, when compared to the conventional binder. This behavior indicates that addition of EMGMA and PPA in asphalt binders could enhance the resistance to rutting of asphalt mixtures. The statistical evaluation showed that EMGMA had greater influence on the studied properties of Jnr (0.1kPa, MSCR recovery, softening point and elastic recovery at 25°C and that the PPA had also significant influence on these properties. FTIR analysis showed that chemical reactions occurred between the asphalt binder and EMGMA, forming a three-dimensional polymeric network, which promotes improved characteristics.

  20. Effect of barium-coated halloysite nanotube addition on the cytocompatibility, mechanical and contrast properties of poly(methyl methacrylate) cement.

    Science.gov (United States)

    Jammalamadaka, Uday; Tappa, Karthik; Weisman, Jeffery A; Nicholson, James Connor; Mills, David K

    2017-01-01

    Halloysite nanotubes (HNTs) were investigated as a platform for tunable nanoparticle composition and enhanced opacity in poly(methyl methacrylate) (PMMA) bone cement. Halloysite has been widely used to increase the mechanical properties of various polymer matrices, in stark contrast to other fillers such as barium sulfate that provide opacity but also decrease mechanical strength. The present work describes a dry deposition method for successively fabricating barium sulfate nanoparticles onto the exterior surface of HNTs. A sintering process was used to coat the HNTs in barium sulfate. Barium sulfate-coated HNTs were then added to PMMA bone cement and the samples were tested for mechanical strength and tailored opacity correlated with the fabrication ratio and the amount of barium sulfate-coated HNTs added. The potential cytotoxic effect of barium-coated HNTs in PMMA cement was also tested on osteosarcoma cells. Barium-coated HNTs were found to be completely cytocompatible, and cell proliferation was not inhibited after exposure to the barium-coated HNTs embedded in PMMA cement. We demonstrate a simple method for the creation of barium-coated nanoparticles that imparted improved contrast and material properties to native PMMA. An easy and efficient method for coating clay nanotubes offers the potential for enhanced imaging by radiologists or orthopedic surgeons.

  1. Radiolytic stabilization of poly(methyl methacrylate) using commercial additives; Estabilizacao radiolitica do poli(metacrilato de metila) usando aditivos comerciais

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Katia Aparecida da Silva

    2000-04-01

    Poly(methyl methacrylate), PMMA, Acrigel, a Brazilian polymer, is used in the manufacture of medical supplies sterelizable by ionizing radiation. However, when PMMA is gamma-irradiated it undergoes main chain scissions, which promote molecular degradation causing reduction in its mechanical properties. Therefore, radiolytic of PMMA is important for it to become commercially radiosterizable. In this work some commercial additives, originally used in photo-and thermo-oxidate stabilization of polymers, were tested. Only two additives, type HALS (Hindered Amine Light Stabilizer), denoted Scavenger, showed a good protective quality. The investigation of radiation-induced main scissions was carried out by viscosimetric method. The most effective additive, added to the polymer system at 0.3 w/w%, promotes a great molecular radioprotection of 93%. That means a reduction of G-value (scissions/100 eV) from 0.611 to 0.053. In addition, the glassy transition temperature (T{sub g}) of PMMA (no additive) significantly changed by radiation does not change when PMMA (with additive) is irradiated. The spectroscopy analysis, FT-IR and NMR ({sup 1}H), showed that the radioprotector added to the system does not change the PMMA structure. (author)

  2. Improved surface hydrophilicity and antifouling property of polysulfone ultrafiltration membrane with poly(ethylene glycol) methyl ether methacrylate grafted graphene oxide nanofillers

    Science.gov (United States)

    Wang, Haidong; Lu, Xiaofei; Lu, Xinglin; Wang, Zhenghui; Ma, Jun; Wang, Panpan

    2017-12-01

    In this study, the GO-g-P(PEGMA) nanoplates were first synthesized by grafting hydrophilic poly (poly (ethylene glycol) methyl ether methacrylate) via surface-initiated atom transfer radical polymerization (SI-ATRP) method. A novel polysulfone (PSF) nanocomposite membrane using GO-g-P(PEGMA) nanoplates as nanofillers was fabricated. FTIR, TGA, 1H NMR, GPC and TEM were applied to verify the successful synthesis of the prepared nanoplates, while SEM, AFM, XPS, contact angle goniometry and filtration experiments were used to characterize the fabricated nanocomposite membranes. It was found that the new prepared nanofillers were well dispersed in organic PSF matrix, and the PSF/GO-g-P(PEGMA) nanocomposite membrane showed significant improvements in water flux and flux recovery rate. Based on the results of resistance-in-series model, the nanocomposite membrane exhibited superior resistance to the irreversible fouling. The excellent filtration and antifouling performance are attributed to the segregation of GO-g-P(PEMGA) nanofillers toward the membrane surface and the pore walls. Notably, the blended nanofillers appeared a stable retention in/on nanocomposite membrane after 30 days of washing time. The demonstrated method of synthesis GO-g-P(PEGMA) in this study can also be extended to preparation of other nanocomposite membrane in future.

  3. Synthesis of Ethylene Glycol Dimethacrylate-Methyl Methacrylate Copolymers, Determination of their Reactivity Ratios, and a Study of Dopant and Temperature Effects on their Conductivities

    Directory of Open Access Journals (Sweden)

    Sreedhar Pingili

    2010-08-01

    Full Text Available Ultraviolet radiation was used as a photochemical initiator to synthesize ethylene glycol dimethacrylate-methyl methacrylate copolymers. Infrared spectroscopy was used to calculate reactivity ratios and to identify the type of copolymerization. The reactivity ratios of EGDMA and MMA were calculated as 0.6993 and 1.8635, respectively. The effect of lithium perchlorate as a dopant on copolymer conductivity and conversion was studied. The addition of dopant increased the conductivity of copolymers. For copolymers containing 5% MMA in the feed, dopant increased conductivity about 775 times; when the MMA percentage was 20% in the feed, dopant increased conductivity about 100 times. As MMA percentage increases in the copolymer, the conductivity values decrease from the mS to the µS region. This is consistent with the fact that PMMA has a lower conductivity than PEGDMA. The conductivity change of homopolymers and copolymers at various temperatures were studied. Both MMA and EGDMA polymers and their copolymers show a minimum in their conductivity vs. temperature graphs, indicating that they first act as a conductor and after a minimum temperature, become semiconductors and can be used to control current in electrical devices by temperature change. The measurement of conductivity change with time provided a new way to follow the kinetics of polymer/dopant reactions. The activation energy of interaction with dopant was calculated as 31.52 kJ/mol for MMA/EGDMA copolymers; for PEGDMA alone it was 54.7 kJ/mol.

  4. Surface-Initiated Atom Transfer Radical Polymerization of Magnetite Nanoparticles with Statistical Poly(tert-butyl acrylate-poly(poly(ethylene glycol methyl ether methacrylate Copolymers

    Directory of Open Access Journals (Sweden)

    Patcharin Kanhakeaw

    2015-01-01

    Full Text Available This work presented the surface modification of magnetite nanoparticle (MNP with poly[(t-butyl acrylate-stat-(poly(ethylene glycol methyl ether methacrylate] copolymers (P[(t-BA-stat-PEGMA] via a surface-initiated “grafting from” atom transfer radical polymerization (ATRP. Loading molar ratio of t-BA to PEGMA was systematically varied (100 : 0, 75 : 25, 50 : 50, and 25 : 75, resp. such that the degree of hydrophilicity of the copolymers, affecting the particle dispersibility in water, can be fine-tuned. The reaction progress in each step of the synthesis was monitored via Fourier transform infrared spectroscopy (FTIR. The studies in the reaction kinetics indicated that PEGMA had higher reactivity than that of t-BA in the copolymerizations. Gel permeation chromatography (GPC indicated that the molecular weights of the copolymers increased with the increase of the monomer conversion. Transmission electron microscopy (TEM revealed that the particles were spherical with averaged size of 8.1 nm in diameter. Dispersibility of the particles in water was apparently improved when the copolymers were coated as compared to P(t-BA homopolymer coating. The percentages of MNP and the copolymer in the composites were determined via thermogravimetric analysis (TGA and their magnetic properties were investigated via vibrating sample magnetometry (VSM.

  5. Synthesis of poly (methyl methacrylate)-b-polystyrene with high molecular weight by DPE seeded emulsion polymerization and its application in proton exchange membrane.

    Science.gov (United States)

    Wang, Wenwen; Zhang, Hepeng; Geng, Wangchang; Gu, Junwei; Zhou, Yanyang; Zhang, Junping; Zhang, Qiuyu

    2013-09-15

    In this article, we present poly (methyl methacrylate)-b-polystyrene (PMMA-b-PS) with different block ratios and high molecular weight, which was synthesized by environmentally friendly seeded emulsion polymerization with 1,1-diphenylethylene (DPE) as a chain transfer agent. Polymerization kinetics in the first and second stage was investigated. Stable latex and homogeneous latex particles were obtained with the characterization of laser light scattering (LLS) and transmission electron microscopy (TEM). SEC and (1)H NMR revealed the successful preparation of block copolymers with high molecular weight and two different block ratios. The morphology of microphase separation of block copolymer thin films was investigated by AFM, and long-range order lamellar morphology was observed after vapor-annealing. The block copolymer with block ratio of almost 1:1 and higher molecular weight than that of previous PMMA-b-PS was sulfonated with acetyl sulfate, and the sulfonation was confirmed by FTIR, (1)H NMR, and TGA. Then, the sulfonated PMMA-b-PS was casted as membranes. The electrochemical impedance spectroscopy displayed that membranes possessed favorable proton conductivity and fine dimensional stability, and they could be candidates as proton exchange membranes. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Influence of degree of methyl methacrylate polymerization on spectroscopic properties of ethyl 5-(4-aminophenyl)- and 5-(4-dimethylaminophenyl)-3-amino-2,4-dicyanobenzoate

    Energy Technology Data Exchange (ETDEWEB)

    Jozefowicz, M., E-mail: fizmj@univ.gda.pl [Institute of Experimental Physics, University of Gdansk, Wita Stwosza 57, 80-952 Gdansk (Poland); Bajorek, A.; Pietrzak, M.; Jedrzejewska, B. [Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences, Seminaryjna 3, 85-326 Bydgoszcz (Poland); Heldt, J.R.; Heldt, J. [Institute of Experimental Physics, University of Gdansk, Wita Stwosza 57, 80-952 Gdansk (Poland)

    2013-02-15

    The influence of degree of methyl methacrylate (MM) polymerization on the both emission modes (LE-locally excited and ICT-intramolecular charge transfer) of the fluorescence spectrum of ethyl 5-(4-aminophenyl)-3-amino-2,4-dicyanobenzoate (EAADCy) and ethyl 5-(4-dimethylaminophenyl)-3-amino-2,4-dicyanobenzoate (EDMAADCy) has been studied using steady-state and time-resolved spectroscopic technique. The purpose of these studies was to find a relationship between the changes in the spectroscopic characteristics (fluorescence intensity, wavelength of maximum intensity, fluorescence full-width at half maximum, emission anisotropy, fluorescence decay time) of the tested compounds and degree of monomer conversion into polymer. On the basis of the experimental results, it was shown that the ICT fluorescence full-width at half maximum for EDMAADCy shows a linear dependence on the time of MM polymerization. Our findings predestine the molecule EDMAADCy to be used as fluorescence probe for monitoring the polymerization process of MM. - Highlights: Black-Right-Pointing-Pointer The fluorescence excitation and emission spectra in MM possess a complex nature. Black-Right-Pointing-Pointer Fluorescence decay kinetics for different degrees of polymerization of MM were investigated. Black-Right-Pointing-Pointer The ICT fluorescence FWHM for EDMAADCy shows a linear dependence on the time of polymerization. Black-Right-Pointing-Pointer EDMAADCy can be used as fluorescence probe for monitoring the polymerization process of MM.

  7. Preparation of Oleyl Phosphate-Modified TiO2/Poly(methyl methacrylate Hybrid Thin Films for Investigation of Their Optical Properties

    Directory of Open Access Journals (Sweden)

    Masato Fujita

    2015-01-01

    Full Text Available TiO2 nanoparticles (NPs modified with oleyl phosphate were synthesized through stable Ti–O–P bonds and were utilized to prepare poly(methyl methacrylate- (PMMA- based hybrid thin films via the ex situ route for investigation of their optical properties. After surface modification of TiO2 NPs with oleyl phosphate, IR and 13C CP/MAS NMR spectroscopy showed the presence of oleyl groups. The solid-state 31P MAS NMR spectrum of the product revealed that the signal due to oleyl phosphate (OP shifted upon reaction, indicating formation of covalent Ti–O–P bonds. The modified TiO2 NPs could be homogeneously dispersed in toluene, and the median size was 16.1 nm, which is likely to be sufficient to suppress Rayleigh scattering effectively. The TEM images of TiO2/PMMA hybrid thin films also showed a homogeneous dispersion of TiO2 NPs, and they exhibited excellent optical transparency even though the TiO2 content was 20 vol%. The refractive indices of the OP-modified TiO2/PMMA hybrid thin films changed higher with increases in TiO2 volume fraction, and the hybrid thin film with 20 vol% of TiO2 showed the highest refractive index (n = 1.86.

  8. Investigation of thermodynamic properties of poly(methyl methacrylate-co-n-butylacrylate-co-cyclopentyl styryl-polyhedral oligomeric silsesquioxane) by inverse gas chromatography.

    Science.gov (United States)

    Zou, Qi-Chao; Zhang, Shi-Ling; Wang, Shi-Min; Wu, Li-Min

    2006-10-06

    The thermodynamic properties of poly(methyl methacrylate-co-butyl acrylate-co-cyclo -pentylstyryl polyhedral oligomeric silsesquioxane) (poly(MMA-co-BA-co-styryl-POSS)) were investigated by means of inverse gas chromatography (IGC) using 20 different kinds of solvents as the probes. Some thermodynamic parameters, such as molar heats of sorption, weight fraction activity coefficient, Flory-Huggins interaction parameter, partial molar heats of mixing and solubility parameter were obtained to judge the interactions between POSS-contained polymers and solvents and the solubility of the polymers in these solvents. It was found that acetates, aromatic hydrocarbons and hydrocarbon halides were good solvents, n-hexane, ethanol, n-propanol, n-butanol and n-pentanol were moderate solvents, while n-heptane, n-octane, n-nonane, n-decane and methanol were poor solvents for all POSS-contained polymers within the experimental temperature range. Incorporation of POSS in polymer increased the solubility of polymers in solvents, and the more the POSS in polymer was, the better the solubility was and stronger the hydrogen bonding interaction was, but the POSS content in polymers seemed to have no obvious influence on the solubility parameter of polymers.

  9. Late-onset, snowstorm-like appearance of calcium deposits coating a poly(methyl methacrylate) posterior chamber intraocular lens.

    Science.gov (United States)

    Driver, Todd H; Li, He J; Sharma, Anushree; Fram, Nicole; Smith, Ronald J; Werner, Liliana; Mamalis, Nick

    2016-06-01

    An 81-year-old man developed decreased vision associated with diffuse precipitates on his poly(methyl methacrylate) (PMMA) posterior chamber intraocular lens (IOL), on his corneal endothelium, and in his anterior chamber approximately 35 years after IOL implantation. Slitlamp evaluation showed diffuse white material on the surface of the IOL, white precipitates on the corneal endothelium, and visible debris in the anterior chamber. The patient had IOL exchange, and pathological analysis showed numerous calcium deposits within the Soemmerring ring that diffusely spread to the anterior surface of the PMMA IOL. This case of diffuse calcium precipitates on the IOL and the corneal endothelium and in the anterior chamber 35 years after implantation shows that even long after IOL implantation, lens epithelium proliferation and metabolism can result in sequestered material that can be released many years later. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. Effect of Storage in Distilled Water for Three Months on the Antimicrobial Properties of Poly(methyl methacrylate Denture Base Material Doped with Inorganic Filler

    Directory of Open Access Journals (Sweden)

    Grzegorz Chladek

    2016-04-01

    Full Text Available The colonization of poly(methyl methacrylate (PMMA denture base materials by pathogenic microorganisms is a major problem associated with the use of prostheses, and the incorporation of antimicrobial fillers is a method of improving the antimicrobial properties of these materials. Numerous studies have demonstrated the initial in vitro antimicrobial effectiveness of this type of material; however, reports demonstrating the stability of these fillers over longer periods are not available. In this study, silver sodium hydrogen zirconium phosphate was introduced into the powder component of a PMMA denture base material at concentrations of 0.25%, 0.5%, 1%, 2%, 4%, and 8% (w/w. The survival rates of the gram-positive bacterium Staphylococcus aureus, gram-negative bacterium Escherichia coli and yeast-type fungus Candida albicans were established after fungal or bacterial suspensions were incubated with samples that had been previously stored in distilled water. Storage over a three-month period led to the progressive reduction of the initial antimicrobial properties. The results of this study suggest that additional microbiological tests should be conducted for materials that are treated with antimicrobial fillers and intended for long-term use. Future long-term studies of the migration of silver ions from the polymer matrix and the influence of different media on this ion emission are required.

  11. Using X-PEEM to study biomaterials: Protein and peptide adsorption to a polystyrene-poly(methyl methacrylate)-b-polyacrylic acid blend

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Bonnie O. [Chemistry and Chemical Biology, BIMR, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Hitchcock, Adam P., E-mail: aph@mcmaster.ca [Chemistry and Chemical Biology, BIMR, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Cornelius, Rena M.; Brash, John L. [School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Scholl, Andreas; Doran, Andrew [Advanced Light Source, Berkeley Lab, Berkeley, CA 94720 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We review applications of synchrotron X-PEEM to biomaterials. Black-Right-Pointing-Pointer We report characterization of a PS/PMMA-b-PAA blend surface by AFM and X-PEEM. Black-Right-Pointing-Pointer We report quantitative mapping of protein (HSA) and peptide adsorption on PS/PMMA-b-PAA. Black-Right-Pointing-Pointer We report how this adsorption changes with pH. -- Abstract: Recent synchrotron-based soft X-ray photoemission electron microscopy (X-PEEM) studies of protein and peptide interaction with phase segregated and patterned polymer surfaces in the context of optimization of candidate biomaterials are reviewed and a study of a new system is reported. X-PEEM and atomic force microscopy (AFM) were used to investigate the morphology of a phase-segregated thin film of a polystyrene/poly(methyl methacrylate)-b-polyacrylic acid (PS/PMMA-PAA) blend, and its interactions with negatively charged human serum albumin (HSA) and positively charged SUB-6 (a cationic antimicrobial peptide, RWWKIWVIRWWR-NH{sub 2}) at several pHs. At neutral pH, where the polymer surface is partially negatively charged, HSA and SUB-6 peptide showed contrasting adsorption behavior which is interpreted in terms of differences in their electrostatic interactions with the polymer surface.

  12. Novel polymer monolith microextraction using a poly-(methyl methacrylate-co-ethylene dimethacrylate) monolith and its application to the determination of polychlorinated biphenyls in water samples.

    Science.gov (United States)

    Liu, Lu; Cheng, Jing; Matsadiq, Guzalnur; Li, Jun-Kai

    2011-05-01

    A novel and simple method based on polymer monolith microextraction (PMME) coupled to gas chromatography with electron-capture detection (GC-ECD) was developed for the determination of six polychlorinated biphenyls (PCBs) residues in water samples. The proposed method used poly-(methyl methacrylate-co-ethylene dimethacrylate) (MMA-co-EDMA) monolith as extraction media. Several factors affecting experiments such as sample flow rate, sample volume, the type of eluent, eluent volume, eluent flow rate, effect of salt addition and carry over effect were investigated and optimized systematically. The limits of detection (LODs) for six PCBs were 0.028-0.043 ng mL(-1) in water samples. The intra-day and inter-day precisions (R.S.D.) were less than 9.2% and 9.6%, respectively. The proposed method was successfully applied to the determination of six PCBs in tap water, lake water and industrial waste water and the trueness has been evaluated by recovery experiments. The obtained relative recoveries were in the range of 63.3-105.6%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. One-step method for the preparation of poly(methyl methacrylate) modified titanium-bioactive glass three-dimensional scaffolds for bone tissue engineering.

    Science.gov (United States)

    Han, Xiao; Lin, Huiming; Chen, Xiang; Li, Xin; Guo, Gang; Qu, Fengyu

    2016-04-01

    A novel three-dimensional (3D) titanium (Ti)-doping meso-macroporous bioactive glasses (BGs)/poly(methyl methacrylate) (PMMA) composite was synthesised using PMMA and EO20PO70EO20 (P123) as the macroporous and mesoporous templates, respectively. Unlike the usual calcination method, the acid steam technique was used to improve the polycondensation of Ti-BGs, and then PMMA was partially extracted via chloroform to induce the macroporous structure. Simultaneously, the residual PMMA which remained in the wall enhanced the compressive strength to 2.4 MPa (0.3 MPa for pure BGs). It is a simple and green method to prepare the macro-mesoporous Ti-BGs/PMMA. The materials showed the 3D interconnected hierarchical structure (250 and 3.4 nm), making the fast inducing-hydroxyapatite growth and the controlled drug release. Besides mentioned above, the good antimicrobial property and biocompatible of the scaffold also ensure it is further of clinical use. Herein, the fabricated materials are expected to have potential application on bone tissue regeneration.

  14. Vertical phase separation of 6,13-bis(triisopropylsilylethynyl) pentacene/poly(methyl methacrylate) blends prepared by electrostatic spray deposition for organic field-effect transistors

    Science.gov (United States)

    Onojima, Norio; Hara, Kazuhiro; Nakamura, Ayato

    2017-05-01

    Blend films composed of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) and poly(methyl methacrylate) (PMMA) were prepared by electrostatic spray deposition (ESD). ESD is considered as an intermediate process between dry and wet processes since the solvent present in small droplets can almost be evaporated before arriving at the substrate. Post-drying treatments with the time-consuming evaporation of residual solvents can be omitted. However, it is still not clear that a vertically phase-separated structure can be formed in the ESD process since the vertical phase separation of the blend films is associated with the solvent evaporation. In this study, we fabricated bottom-gate, top-contact organic field-effect transistors based on the blend films prepared by ESD and the devices exhibited transistor behavior with small hysteresis. This result demonstrates that the vertical phase separation of a blend film (upper TIPS pentacene active layer/bottom PMMA gate insulator) can occur in the facile one-step ESD process.

  15. Curcumin delivery from poly(acrylic acid-co-methyl methacrylate) hollow microparticles prevents dopamine-induced toxicity in rat brain synaptosomes.

    Science.gov (United States)

    Yoncheva, Krassimira; Kondeva-Burdina, Magdalena; Tzankova, Virginia; Petrov, Petar; Laouani, Mohamed; Halacheva, Silvia S

    2015-01-01

    The potential of poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) copolymers to form hollow particles and their further formulation as curcumin delivery system have been explored. The particles were functionalized by crosslinking the acrylic acid groups via bis-amide formation with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP) which simultaneously incorporated reversibility due to the presence of disulfide bonds within the crosslinker. Optical micrographs showed the formation of spherical hollow microparticles with a size ranging from 1 to 7 μm. Curcumin was loaded by incubation of its ethanol solution with aqueous dispersions of the cross-linked particles and subsequent evaporation of the ethanol. Higher loading was observed in the microparticles with higher content of hydrophobic PMMA units indicating its influence upon the loading of hydrophobic molecules such as curcumin. The in vitro release studies in a phosphate buffer showed no initial burst effect and sustained release of curcumin that correlated with the swelling of the particles under these conditions. The capacity of encapsulated and free curcumin to protect rat brain synaptosomes against dopamine-induced neurotoxicity was examined. The encapsulated curcumin showed greater protective effects in rat brain synaptosomes as measured by synaptosomal viability and increased intracellular levels of glutathione. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Elution of antibiotics from poly(methyl methacrylate) bone cement after extended implantation does not necessarily clear the infection despite susceptibility of the clinical isolates.

    Science.gov (United States)

    Swearingen, Matthew C; Granger, Jeffrey F; Sullivan, Anne; Stoodley, Paul

    2016-02-01

    Chronic orthopedic infections are commonly caused by bacterial biofilms, which are recalcitrant to antibiotic treatment. In many cases, the revision procedure for periprosthetic joint infection or trauma cases includes the implantation of antibiotic-loaded bone cement to kill infecting bacteria via the elution of a strong local dose of antibiotic(s) at the site. While many studies have addressed the elution kinetics of both non-absorbable and absorbable bone cements both in vitro and in vivo, the potency of ALBC against pathogenic bacteria after extended implantation time is not clear. In this communication, we use two case studies, a Viridans streptococci infected total knee arthroplasty (TKA) and a MRSA-polymicrobial osteomyelitis of a distal tibial traumatic amputation (TA) to demonstrate that an antibiotic-loaded poly(methyl methacrylate) (ALPMMA) coated intermedullary rod implanted for 117 days (TKA) and three ALPMMA suture-strung beads implanted for 210 days (TA) retained killing ability against Pseudomonas aeruginosa and Staphylococcus aureus in vitro, despite different clinical efficacies. The TKA infection resolved and the patient progressed to an uneventful second stage. However, the TA infection only resolved after multiple rounds of debridement, IV vancomycin and removal of the PMMA beads and placement of vancomycin and tobramycin loaded calcium sulfate beads. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Reduction of Line Edge Roughness of Polystyrene-block-Poly(methyl methacrylate) Copolymer Nanopatterns By Introducing Hydrogen Bonding at the Junction Point of Two Block Chains.

    Science.gov (United States)

    Lee, Kyu Seong; Lee, Jaeyong; Kwak, Jongheon; Moon, Hong Chul; Kim, Jin Kon

    2017-09-20

    To apply well-defined block copolymer nanopatterns to next-generation lithography or high-density storage devices, small line edge roughness (LER) of nanopatterns should be realized. Although polystyrene-block-poly(methyl methacrylate) copolymer (PS-b-PMMA) has been widely used to fabricate nanopatterns because of easy perpendicular orientation of the block copolymer nanodomains and effective removal of PMMA block by dry etching, the fabricated nanopatterns show poorer line edge roughness (LER) due to relatively small Flory-Huggins interaction parameter (χ) between PS and PMMA chains. Here, we synthesized PS-b-PMMA with urea (U) and N-(4-aminomethyl-benzyl)-4-hydroxymethyl-benzamide (BA) moieties at junction of PS and PMMA chains (PS-U-BA-PMMA) to improve the LER. The U-BA moieties serves as favorable interaction (hydrogen bonding) sites. The LER of PS line patterns obtained from PS-U-BA-PMMA was reduced ∼25% compared with that obtained from neat PS-b-PMMA without BA and U moieties. This is attributed to narrower interfacial width induced by hydrogen bonding between two blocks, which is confirmed by small-angle X-ray scattering. This result implies that the introduction of hydrogen bonding into block copolymer interfaces offers an opportunity to fabricate well-defined nanopatterns with improved LER by block copolymer self-assembly, which could be a promising alternative to next-generation extreme ultraviolet lithography.

  18. Using mid-Infrared External Reflectance Spectroscopy to Distinguish Between Different Commercially Produced Poly[Methyl MethAcrylate] (PMMA) Samples - A Null Result

    Science.gov (United States)

    Fajardo, Mario; Neel, Christopher; Lacina, David

    2017-06-01

    We report (null) results of experiments testing the hypothesis that mid-infrared (mid-IR) spectroscopy can be used to distinguish samples of poly[methyl methacrylate] (PMMA) obtained from different commercial suppliers. This work was motivated by the desire for a simple non-destructive and non-invasive test for pre-sorting PMMA samples prior to use in shock and high-strain-rate experiments, where PMMA is commonly used as a standard material. We discuss: our choice of mid-IR external reflectance spectroscopy, our approach to recording reflectance spectra at near-normal (θ = 0 + / - 5 degree) incidence and for extracting the wavelength-weighted absorption spectrum from the raw reflectance data via a Kramers-Krönig analysis. We employ extensive signal, which necessitates adopting a special experimental protocol to mitigate the effects of instrumental drift. Finally, we report spectra of three PMMA samples with different commercial pedigrees, and show that they are virtually identical (+ / - 1 % error, 95% confidence); obviating the use of mid-IR reflectance spectroscopy to tell the samples apart.

  19. Multidetector thermal field-flow fractionation as a unique tool for the tacticity-based separation of poly(methyl methacrylate)-polystyrene block copolymer micelles.

    Science.gov (United States)

    Greyling, Guilaume; Pasch, Harald

    2015-10-02

    Poly(methyl methacrylate)-polystyrene (PMMA-PS) micelles with isotactic and syndiotactic coronas are prepared in acetonitrile and subjected to thermal field-flow fractionation (ThFFF) analysis at various conditions of increasing temperature gradients. It is shown for the first time that multidetector ThFFF provides comprehensive information on important micelle characteristics such as size (Dh), shape (Rg/Rh), aggregation number (Z), thermal diffusion (DT) and Soret coefficients (ST) as a function of temperature from a single injection. Moreover, it is found that micelles exhibit a unique decreasing trend in DT as a function of temperature which is independent of the tacticity of the corona and the micelle preparation method used. It is also demonstrated that ThFFF can monitor micelle to vesicle transitions as a function of temperature. In addition to ThFFF, it is found from DLS analysis that the tacticity of the corona influences the critical micelle concentration and the magnitude to which micelles expand/contract with temperature. The tacticity does not, however, influence the critical micelle temperature. Furthermore, the separation of micelles based on the tacticity of the corona highlight the unique capabilities of ThFFF. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effect of modification degree of nanohydroxyapatite on biocompatibility and mechanical property of injectable poly(methyl methacrylate)-based bone cement.

    Science.gov (United States)

    Quan, Changyun; Tang, Yong; Liu, Zhenzhen; Rao, Minyu; Zhang, Wei; Liang, Peiqing; Wu, Nan; Zhang, Chao; Shen, Huiyong; Jiang, Qing

    2016-04-01

    The objective of this study is to prepare a biocompatible nanohydroxyapatite/poly(methyl methacrylate) (HA/PMMA) composite bone cement, which has good mechanical property and can be used for vertebroplasty. Up to 40 wt % of nanohydroxyapatite (nano-HA) in the power, which was surface modified with poly(methylmethacrylate-co-γ-methacryloxypropyl timethoxysilane) [P(MMA-co-MPS)] copolymer, was incorporated into the composite bone cement. The content of P(MMA-co-MPS) on the surface of nano-HA (18.7%, 22.8%, and 26%) was determined through thermogravimetric analysis (TGA). The morphology of biomineralized surface of composite bone cement was observed under scanning electron microscope (SEM). The mechanical measurements of the composite cements implied that the interfacial interaction between the HA and PMMA matrix may be greatly enhanced after surface modification of HA. Biochemical assays indicated that the HA/PMMA bone cement had no cytotoxicity and induced no hemolysis. The cell adhesion and alkaline phosphatase (ALP) activity assays indicated that the biocompatibility of HA/PMMA bone cement could be promoted, demonstrating that it can be used as an ideal weight-bearing bone repair materials on clinical application. © 2015 Wiley Periodicals, Inc.

  1. Synthesis and self-assembly of brush-type poly[poly(ethylene glycol)methyl ether methacrylate]-block-poly(pentafluorostyrene) amphiphilic diblock copolymers in aqueous solution.

    Science.gov (United States)

    Tan, B H; Hussain, H; Liu, Y; He, C B; Davis, T P

    2010-02-16

    Well-defined fluorinated brush-like amphiphilic diblock copolymers of poly[poly(ethylene glycol)methyl ether methacrylate] (P(PEGMA)) and poly(pentafluorostyrene) (PPFS) have been successfully synthesized via atom transfer radical polymerization (ATRP). The self-assembly behavior of these polymers in aqueous solutions was studied using (1)H NMR, fluorescence spectrometry, static and dynamic light scattering and transmission electron microscopy techniques. The micellar structure comprised of PPFS as the core and brush-like (hydrophobic main chain and hydrophilic branches) polymers as the coronas. The hydrodynamic radius (R(h)) of the micelles in aqueous solution was in the nanometer range, independent of the polymer concentration, consistent with a closed association model. Diblock copolymers with a longer P(PEGMA) block formed micelles with smaller R(h) and lower aggregation numbers consistent with an improved solubilization of the core. The micelles possessed a thick hydration layer as verified by the ratio of the radius of gyration, R(g) to the hydrodynamic radius, R(h). The aggregation number and ratio of R(g) to R(h) were observed to increase with temperature (20-50 degrees C), while the R(h) of the micelle decreased slightly over the same temperature range. An increase in temperature induced the brush-like PEG segments in the corona to dehydrate and shrink while forming micelles with larger aggregation numbers.

  2. Surface Modification of Multiwalled Carbon Nanotubes with Cationic Conjugated Polyelectrolytes: Fundamental Interactions and Intercalation into Conductive Poly(methyl methacrylate) Composites.

    Science.gov (United States)

    Ezzeddine, Alaa; Chen, Zhuo; Schanze, Kirk S; Khashab, Niveen M

    2015-06-17

    This research investigates the modification and dispersion and of pristine multiwalled carbon nanotubes (MWCNTs) through a simple solution mixing technique based on noncovalent interactions between poly(phenylene ethynylene)-based conjugated polyelectrolytes functionalized with cationic imidazolium solubilizing groups (PIM-2 and PIM-4) and MWCNTs. Spectroscopic studies demonstrated the ability of PIMs to strongly interact with and efficiently disperse MWCNTs in different solvents, mainly due to π interactions between the PIMs and the MWCNTs. Transmission electron microscopy and atomic force microscopy revealed the coating of the polyelectrolytes on the walls of the nanotubes. Scanning electron microscopy (SEM) studies confirm the homogeneous dispersion of PIM-modified MWCNTs in the poly(methyl methacrylate) (PMMA) matrix. The addition of 1 wt % PIM-modified MWCNTs to the matrix has led to a significant decrease in DC resistivity of the composite (13 orders of magnitude). The increase in electrical conductivity and the improvement in the thermal and mechanical properties of the membranes containing the PIM-modified MWCNTs is ascribed to the formation of MWCNT networks and cross-linking sites that provided channels for the electrons to move in throughout the matrix and reinforced the interface between MWCNTs and PMMA.

  3. Terpolymerization of 2-ethoxy ethylmethacrylate, styrene and maleic ...

    Indian Academy of Sciences (India)

    Terpolymerization of 2-ethoxyethyl methacrylate (2-EOEMA), styrene (St) and maleic anhydride (Ma) initiated by benzoyl peroxide was carried out in acetone as common solvent for three monomers. The structure and composition of terpolymer were determined by FTIR spectroscopy by recording analytical absorption bands ...

  4. Radiation-induced degradation of poly(styrene-co-methylmethacrylate) and blends of polystyrene and polymethylmethacrylate

    Science.gov (United States)

    Torikai, Ayako; Harayama, Ken-Ichi; Hayashi, Nobutomo; Mitsuoka, Takuya; Fueki, Kenji

    1994-05-01

    The γ-ray-induced degradation of poly(styrene-co-methyl-methacrylate) [poly(St-co-MMA)] and blends of polystyrene (PSt) and polymethylmethacrylate (PMMA) was investigated by ultraviolet (UV), Fourier transform infrared (FTIR) spectroscopy and viscosity measurements. The optical density around 250 nm decreases linearly with the electron fraction of PSt in the blends, but this does not hold in case of the degradation of poly(St-co-MMA). Similar trends are seen for the decrease in the amount of ester groups, oxidation product formation and the number of chain scission (Cs). A protective effect due to the St component was observed in case of the degradation of poly(St-co-MMA), but it was not observed for the blends. The spatial extent of protection affected by St unit was deduced by assuming a random distribution of MMA and St throughout the copolymer molecule.

  5. Effect of the different chain transfer agents on molecular weight and optical properties of poly(methyl methacrylate)

    Science.gov (United States)

    Çetinkaya, Onur; Demirci, Gökhan; Mergo, Paweł

    2017-08-01

    Investigation of molecular weight and optical properties of poly(methyl metacrylate) (PMMA) polymerized in house with different chain transfer agents was studied. Isopropyl alcohol (IPA), n-butyl mercaptan (nBMC) and pentamethyl disilane (PMDS) were used as chain transfer agents. The molecular weight (Mw) of PMMA samples were measured by Ostwald viscometer. Mw of bulk polymer samples were decreased with increase the concentration of chain transfer agents (CTA). Since reactivity of used CTAs is not same, molecular weights of samples which were produced with different type of CTA but same concentration of CTA was varied. Higher concentration of n-BMC showed higher scattering. Transmission of samples could not be correlated with different concentration of CTA. Refractive index of samples was not affected by concentration of CTA nevertheless higher molecular weight of CTA showed higher refractive index.

  6. Competitive sorption of Cd2+ and Pb2+ from a binary aqueous solution by poly (methyl methacrylate)-grafted montmorillonite clay nanocomposite

    Science.gov (United States)

    Bunhu, Tavengwa; Tichagwa, Lilian; Chaukura, Nhamo

    2017-09-01

    Poly(methyl methacrylate)-grafted montmorillonite (PMMAgMMT) clay and sodium-exchanged montmorillonite (NaMMT) clay were prepared through in situ graft polymerisation and used to remove Cd2+ and Pb2+ from synthetic wastewater. The modification of adsorbent materials was confirmed by fourier transform infra-red spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray powder diffraction (XRD) techniques. BET surface area measurements showed NaMMT had a higher surface area than PMMAgMMT. Batch experiments were used to assess the simultaneous uptake of Cd2+ and Pb2+ from a synthetic binary solution. Pb2+ was preferentially sorbed, exhibiting greater affinity for the sorbents compared to Cd2+ as shown by its relatively higher uptake onto the sorbents than Cd2+. The maximum sorption capacities for NaMMT and PMMAgMMT were 18.73 and 19.27 mg/g for Cd2+, and 30.03 and 34.25 mg/g for Pb2+, respectively. The sorption data obeyed the Langmuir model and the pseudo-second order kinetic model with R 2 of at least 0.9800 for both models. The sorbents could also be regenerated up to three cycles without a significant loss in the sorption capacity. FTIR measurements showed the presence of metal-oxygen bonds after sorption, confirming the occurrence of adsorption as one of the heavy metal removal processes. The work demonstrated the potential of using low-cost nanoscale composite material for the removal of Cd2+ and Pb2+ from aqueous solution.

  7. Effect of 3-piece AcrySof and downsized heparin-surface-modified poly(methyl methacrylate) intraocular lenses in infant rabbit eyes.

    Science.gov (United States)

    Lundvall, Anna; Zetterström, Charlotta; Lundgren, Björn; Kugelberg, Ulla

    2003-01-01

    To evaluate after-cataract formation, ocular growth, and intraocular lens (IOL) behavior in lensectomized infant rabbit eyes implanted with a downsized heparin-surface-modified poly(methyl methacrylate) (HSM PMMA) IOL with long haptics or a 3-piece AcrySof(R) IOL (Alcon Laboratories, Inc.). St. Erik's Eye Hospital, Stockholm, Sweden. Clear lens extraction was performed in both eyes of 3-week-old rabbits. In Group 1 (n = 9), a downsized HSM PMMA IOL with long haptics was implanted in 1 eye and in Group 2 (n = 9), a 3-piece AcrySof IOL was implanted in 1 eye. The fellow eyes remained aphakic. The amount of after-cataract was significantly less in the eyes with the IOLs than in the aphakic eyes. The eyes with the HSM PMMA IOL had significantly less after-cataract than those with the AcrySof IOL. No significant difference in axial length was noted between the IOL eyes and the aphakic eyes in either group. In the eyes with the 3-piece AcrySof IOL, there was anterior movement of the optic with occlusion of the pupil. Eyes with the HSM PMMA IOL and the AcrySof IOL had less after-cataract than the aphakic eyes. The HSM PMMA IOL, however, inhibited after-cataract production significantly better than the AcrySof IOL. The 3-piece AcrySof IOL was seriously deformed in the infant rabbit eyes and caused occlusion of the pupil. Surgeons should be cautious in implanting this AcrySof IOL in the eyes of newborns or in eyes with severe microphthalmia.

  8. Effect of barium-coated halloysite nanotube addition on the cytocompatibility, mechanical and contrast properties of poly(methyl methacrylate cement

    Directory of Open Access Journals (Sweden)

    Jammalamadaka U

    2017-06-01

    Full Text Available Uday Jammalamadaka,1 Karthik Tappa,1 Jeffery A Weisman,1 James Connor Nicholson,2 David K Mills1,3 1Center for Biomedical Engineering and Rehabilitation Science, 2Nanosystems Engineering, 3The School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA Abstract: Halloysite nanotubes (HNTs were investigated as a platform for tunable nanoparticle composition and enhanced opacity in poly(methyl methacrylate (PMMA bone cement. Halloysite has been widely used to increase the mechanical properties of various polymer matrices, in stark contrast to other fillers such as barium sulfate that provide opacity but also decrease mechanical strength. The present work describes a dry deposition method for successively fabricating barium sulfate nanoparticles onto the exterior surface of HNTs. A sintering process was used to coat the HNTs in barium sulfate. Barium sulfate-coated HNTs were then added to PMMA bone cement and the samples were tested for mechanical strength and tailored opacity correlated with the fabrication ratio and the amount of barium sulfate-coated HNTs added. The potential cytotoxic effect of barium-coated HNTs in PMMA cement was also tested on osteosarcoma cells. Barium-coated HNTs were found to be completely cytocompatible, and cell proliferation was not inhibited after exposure to the barium-coated HNTs embedded in PMMA cement. We demonstrate a simple method for the creation of barium-coated nanoparticles that imparted improved contrast and material properties to native PMMA. An easy and efficient method for coating clay nanotubes offers the potential for enhanced imaging by radiologists or orthopedic surgeons. Keywords: barium, bone cement, halloysite, imaging, PMMA, sintering

  9. Controlling Foam Morphology of Poly(methyl methacrylate via Surface Chemistry and Concentration of Silica Nanoparticles and Supercritical Carbon Dioxide Process Parameters

    Directory of Open Access Journals (Sweden)

    Deniz Rende

    2013-01-01

    Full Text Available Polymer nanocomposite foams have received considerable attention because of their potential use in advanced applications such as bone scaffolds, food packaging, and transportation materials due to their low density and enhanced mechanical, thermal, and electrical properties compared to traditional polymer foams. In this study, silica nanofillers were used as nucleating agents and supercritical carbon dioxide as the foaming agent. The use of nanofillers provides an interface upon which CO2 nucleates and leads to remarkably low average cell sizes while improving cell density (number of cells per unit volume. In this study, the effect of concentration, the extent of surface modification of silica nanofillers with CO2-philic chemical groups, and supercritical carbon dioxide process conditions on the foam morphology of poly(methyl methacrylate, PMMA, were systematically investigated to shed light on the relative importance of material and process parameters. The silica nanoparticles were chemically modified with tridecafluoro-1,1,2,2-tetrahydrooctyl triethoxysilane leading to three different surface chemistries. The silica concentration was varied from 0.85 to 3.2% (by weight. The supercritical CO2 foaming was performed at four different temperatures (40, 65, 75, and 85°C and between 8.97 and 17.93 MPa. By altering the surface chemistry of the silica nanofiller and manipulating the process conditions, the average cell diameter was decreased from 9.62±5.22 to 1.06±0.32 μm, whereas, the cell density was increased from 7.5±0.5×108 to 4.8±0.3×1011 cells/cm3. Our findings indicate that surface modification of silica nanoparticles with CO2-philic surfactants has the strongest effect on foam morphology.

  10. Molecular recognition at methyl methacrylate/n-butyl acrylate (MMA/nBA) monomer unit boundaries of phospholipids at p-MMA/nBA copolymer surfaces.

    Science.gov (United States)

    Yu, Min; Urban, Marek W; Sheng, Yinghong; Leszczynski, Jerzy

    2008-09-16

    Lipid structural features and their interactions with proteins provide a useful vehicle for further advances in membrane proteins research. To mimic one of potential lipid-protein interactions we synthesized poly(methyl methacrylate/ n-butyl acrylate) (p-MMA/nBA) colloidal particles that were stabilized by phospholipid (PLs). Upon the particle coalescence, PL stratification resulted in the formation of surface localized ionic clusters (SLICs). These entities are capable of recognizing MMA/nBA monomer interfaces along the p-MMA/nBA copolymer backbone and form crystalline SLICs at the monomer interface. By utilizing attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and selected area electron diffraction (SAD) combined with ab initio calculations, studies were conducted that identified the origin of SLICs as well as their structural features formed on the surface of p-MMA/nBA copolymer films stabilized by 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) PL. Specific entities responsible for SLIC formation are selective noncovalent bonds of anionic phosphate and cationic quaternary ammonium segments of DLPC that interact with two neighboring carbonyl groups of nBA and MMA monomers of the p-MMA/nBA polymer backbone. To the best of our knowledge this is the first example of molecular recognition facilitated by coalescence of copolymer colloidal particles and the ability of PLs to form SLICs at the boundaries of the neighboring MMA and nBA monomer units of the p-MMA/nBA chain. The dominating noncovalent bonds responsible for the molecular recognition is a combination of H-bonding and electrostatic interactions.

  11. Efficacy of citric acid denture cleanser on the Candida albicans biofilm formed on poly(methyl methacrylate): effects on residual biofilm and recolonization process.

    Science.gov (United States)

    Faot, Fernanda; Cavalcanti, Yuri Wanderley; Mendonça e Bertolini, Martinna de; Pinto, Luciana de Rezende; da Silva, Wander José; Cury, Altair Antoninha Del Bel

    2014-06-23

    It is well known that the use of denture cleansers can reduce Candida albicans biofilm accumulation; however, the efficacy of citric acid denture cleansers is uncertain. In addition, the long-term efficacy of this denture cleanser is not well established, and their effect on residual biofilms is unknown. This in vitro study evaluated the efficacy of citric acid denture cleanser treatment on C. albicans biofilm recolonization on poly(methyl methacrylate) (PMMA) surface. C. albicans biofilms were developed for 72 h on PMMA resin specimens (n = 168), which were randomly assigned to 1 of 3 cleansing treatments (CTs) overnight (8 h). CTs included purified water as a control (CTC) and two experimental groups that used either a 1:5 dilution of citric acid denture cleanser (CT5) or a 1:8 dilution of citric acid denture cleanser (CT8). Residual biofilms adhering to the specimens were collected and quantified at two time points: immediately after CTs (ICT) and after cleaning and residual biofilm recolonization (RT). Residual biofilms were analyzed by quantifying the viable cells (CFU/mL), and biofilm architecture was evaluated by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Denture cleanser treatments and evaluation periods were considered study factors. Data were analyzed using two-way ANOVA and Tukey's Honestly Significant Difference (HSD) test (α = 0.05). Immediately after treatments, citric acid denture cleansing solutions (CT5 and CT8) reduced the number of viable cells as compared with the control (p Citric acid denture cleansers can reduce C. albicans biofilm accumulation and cell viability. However, this CT did not prevent biofilm recolonization.

  12. Microfluidic devices fabricated in poly(methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection.

    Science.gov (United States)

    Qi, Shize; Liu, Xuezhu; Ford, Sean; Barrows, James; Thomas, Gloria; Kelly, Kevin; McCandless, Andrew; Lian, Kun; Goettert, Jost; Soper, Steven A

    2002-05-01

    High-aspect-ratio microstructures have been prepared using hot-embossing techniques in poly(methyl methacrylate) (PMMA) from Ni-based molding dies prepared using LIGA (Lithographie, Galvanoformung, Abformung). Due to the small amount of mask undercutting associated with X-ray lithography and the high energy X-ray beam used during photoresist patterning, deep structures with sharp and smooth sidewalls have been prepared. The Ni-electroforms produced devices with minimal replication errors using hot-embossing at a turn around time of approximately 5 min per device. In addition, several different polymers (with different glass transition temperatures) could be effectively molded with these Ni-electroforms and many devices (>300) molded with the same master without any noticeable degradation. The PMMA devices consisted of deep and narrow channels for insertion of a capillary for the automated electrokinetic loading of sample into the microfluidic device and also, a pair of optical fibers for shuttling laser light to the detection zone and collecting the resulting emission for fluorescence analysis. Electrophoretic separations of double-stranded DNA ladders Phi X174 digested with Hae III) were performed with fluorescence detection accomplished using near-IR excitation. It was found that the narrow width of the channels did not contribute significantly to electrophoretic zone broadening and the plate numbers generated in the extended length separation channel allowed sorting of the 271/281 base pair fragments associated with this sizing ladder when electrophoresed in methylcellulose entangled polymer solutions. The dual fiber detector produced sub-attomole detection limits with the entire detector, including laser source, electronics and photon transducer, situated in a single box measuring 3'' x 10" x 14".

  13. Stimulus-responsiveness and methyl violet release behaviors of poly(NIPAAm-co-AA) hydrogels chemically crosslinked with β-cyclodextrin polymer bearing methacrylates.

    Science.gov (United States)

    Zhao, Hui; Gao, Jun; Liu, Ruina; Zhao, Sanping

    2016-06-16

    To fabricate thermo- and pH-sensitive hydrogels functionalized with β-cyclodextrin (β-CD) moieties, β-CD polymer bearing methacrylate (CDP-g-GMA) used as a reactive and functional crosslinker was synthesized, and then copolymerized with N-isopropylacrylamide (NIPAAm) and acrylic acid (AA) in aqueous solution via UV-initiated free radical polymerization. The stimulus-responsiveness of the resultant hydrogels has been carried out by measuring the swelling ratio at different temperatures and pH values. The results showed that the thermo- and pH-sensitivities of the produced hydrogels were significantly dependent on the compositions of the hydrogels, and the dual sensitivities exhibited good reversible process. The interior morphology observed by SEM exhibited that the pore size of the hydrogels could be tailored by pH of the local medium. Using a water-soluble cationic dye methyl violet (MV) as a model drug, MV loading and release profiles of the hydrogels as potential drug controlled release carriers were evaluated. The MV release rate from CD-functionalized hydrogels was much slower than that from the hydrogel without β-CDs at both pH 2.0 and pH 7.4. The release of MV from CD-functionalized hydrogels at pH 2.0 was faster than that at pH 7.4, the release kinetics of MV from the CD-functionalized hydrogels displayed a sustained release profile, and the release mechanism followed Fickian diffusion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A novel functionalisation process for glucose oxidase immobilisation in poly(methyl methacrylate) microchannels in a flow system for amperometric determinations.

    Science.gov (United States)

    Cerqueira, Marcos Rodrigues Facchini; Grasseschi, Daniel; Matos, Renato Camargo; Angnes, Lucio

    2014-08-01

    Different materials like glass, silicon and poly(methyl methacrylate) (PMMA) are being used to immobilise enzymes in microchannels. PMMA shows advantages such as its low price, biocompatibility and attractive mechanical and chemical properties. Despite this, the introduction of reactive functional groups on PMMA is still problematic, either because of the complex chemistry or extended reaction time involved. In this paper, a new methodology was developed to immobilise glucose oxidase (GOx) in PMMA microchannels, with the benefit of a rapid immobilisation process and a very simple route. The new procedure involves only two steps, based on the reaction of 5.0% (w/w) polyethyleneimine (PEI) with PMMA in a dimethyl sulphoxide medium, followed by the immobilisation of glucose oxidase using a solution containing 100U enzymes and 1.0% (v/v) glutaraldehyde. The reactors prepared in this way were evaluated by a flowing system with amperometric detection (+0.60V) based on the oxidation of the H2O2 produced by the reactor. The microreactor proposed here was able to work with high bioconversion and a frequency of 60 samples h(-1), with detection and quantification limits of 0.50 and 1.66µmol L(-1), respectively. Michaelis-Menten parameters (Vmax and KM) were calculated as 449±47.7nmol min(-1) and 7.79±0.98mmol. Statistical evaluations were done to validate the proposed methodology. The content of glucose in natural and commercial coconut water samples was evaluated using the developed method. Comparison with spectrophotometric measurements showed that both methodologies have a very good correlation (tcalculated, 0.05, 4=1.35

  15. Surface chemical properties of nanoscale domains on UV-treated polystyrene-poly(methyl methacrylate) diblock copolymer films studied using scanning force microscopy.

    Science.gov (United States)

    Ibrahim, Shaida; Ito, Takashi

    2010-02-02

    This paper reports the surface chemical properties of ca. 20 nm wide domains on a UV-treated thin film of a polystyrene-poly(methyl methacrylate) diblock copolymer (PS-b-PMMA; 0.3 as the PMMA volume fraction). UV irradiation and subsequent acetic acid (AcOH) treatment were used for selectively etching horizontally aligned PMMA domains on a thin PS-b-PMMA film to obtain nanoscale trenches and ridges. The surface charge and hydrophilicity of the trenches (etched PMMA domains) and ridges (PS domains) were investigated using three approaches based on scanning force microscopy. Chemical force titration data with a COOH-terminated tip showed a prominent decrease in adhesion force from pH 3 to 4.5 due to electrostatic repulsion between negatively charged functional groups on the tip and film surface but could not clarify the difference in chemical properties between the two nanoscale domains. Friction force images in n-dodecane showed higher friction over etched PMMA and PS domains with an OH-terminated tip and a CH(3)-terminated tip, respectively, exhibiting higher hydrophilicity of the etched PMMA domains. In an atomic force microscopy image of a UV/AcOH-treated PS-b-PMMA film upon immersion in a ferritin solution, approximately 80% of the ferritin deposited on the film was found on the PS domains. The preferential deposition of ferritin on the PS domains was probably due to the electrostatic repulsion between negatively charged ferritin and negatively charged etched PMMA surface in addition to the hydrophobic interaction between ferritin and the PS surface. These results indicated that the etched PMMA domains were more hydrophilic than the PS domains due to the presence of acidic functional groups (e.g., -COOH groups) at a higher density.

  16. Effect of Anatase Titanium Dioxide Nanoparticles on the Flexural Strength of Heat Cured Poly Methyl Methacrylate Resins: An In-Vitro Study.

    Science.gov (United States)

    Nazirkar, Girish; Bhanushali, Shilpa; Singh, Shailendra; Pattanaik, Bikash; Raj, Naveen

    2014-12-01

    Poly methyl methacrylate (PMMA) resin is the most widely used material for fabrication of dentures since 1937 as it exhibits adequate physical, mechanical and esthetic properties. But one of the major problems faced using this material is that, it is highly prone to plaque accumulation due to surface porosities and its food retentive properties. This in turn increases the bacterial activity causing denture stomatitis. In efforts to impart antimicrobial property to these resins, various nanoparticles (NP) have been incorporated viz. Silver, Zirconia oxide, Titanium dioxide (TiO2), Silica dioxide (SiO2) etc. However, as additives they can affect the mechanical properties of the final product. Therefore, the aim of the present study was to evaluate and compare the effect of different concentration of TiO2 NP on the flexural strength of PMMA resins. Specimens made from heat polymerizing resin (DPI) without NP were used as a control group (Group A). The two experimental groups, (Group B and Group C) had 0.5 and 1 % concentration of TiO2 NP respectively. The specimens were stored in 37 °C distilled water for 50 ± 2 h. A three-point bending test for flexural strength measurement was conducted following ADA specification no. 12. The maximum mean flexural strength (90.65 MPa) belonged to the control group; and acrylic resin with 1 % TiO2 NP demonstrated the minimum mean flexural strength (76.38 MPa). But, the values of all the three groups exceeded the ADA Specification level of 65 MPa. Conclusion may be drawn from the present study that addition of TiO2 NP into acrylic resin can adversely affect the flexural strength of the final product and is directly proportional to the concentration of NP.

  17. Electronic energy migration on different time scales: concentration dependence of the time-resolved anisotropy and fluorescence quenching of Lumogen Red in poly(methyl methacrylate).

    Science.gov (United States)

    Colby, Kathryn A; Burdett, Jonathan J; Frisbee, Robert F; Zhu, Lingyan; Dillon, Robert J; Bardeen, Christopher J

    2010-03-18

    Electronic energy transfer plays an important role in many types of organic electronic devices. Forster-type theories of exciton diffusion provide a way to calculate diffusion constants and lengths, but their applicability to amorphous polymer systems must be evaluated. In this paper, the perylenediimide dye Lumogen Red in a poly(methyl methacrylate) host matrix is used to test theories of exciton motion over Lumogen Red concentrations (C(LR)'s) ranging from 1 x 10(-4) to 5 x 10(-2) M. Two experimental quantities are measured. First, time-resolved anisotropy decays in films containing only Lumogen Red provide an estimate of the initial energy transfer rate from the photoexcited molecule. Second, the Lumogen Red lifetime decays in mixed systems where the dyes Malachite Green and Rhodamine 700 act as energy acceptors are measured to estimate the diffusive quenching of the exciton. From the anisotropy measurements, it is found that theory accurately predicts both the C(LR)(-2) concentration dependence of the polarization decay time tau(pol), as well as its magnitude to within 30%. The theory also predicts that the diffusive quenching rate is proportional to C(LR)(alpha), where alpha ranges between 1.00 and 1.33. Experimentally, it is found that alpha = 1.1 +/- 0.2 when Malachite Green is used as an acceptor, and alpha = 1.2 +/- 0.2 when Rhodamine 700 is the acceptor. On the basis of the theory that correctly describes the anisotropy data, the exciton diffusion constant is projected to be 4-9 nm(2)/ns. By use of several different analysis methods for the quenching data, the experimental diffusion constant is found to be in the range of 0.32-1.20 nm(2)/ns. Thus the theory successfully describes the early time anisotropy data but fails to quantitatively describe the quenching experiments which are sensitive to motion on longer time scales. The data are consistent with the idea that orientational and energetic disorder leads to a time-dependent exciton migration rate

  18. Novel Molecular Spectroscopic Multimethod Approach for Monitoring Water Absorption/Desorption Kinetics of CAD/CAM Poly(Methyl Methacrylate) Prosthodontics.

    Science.gov (United States)

    Wiedemair, Verena; Mayr, Sophia; Wimmer, Daniel S; Köck, Eva Maria; Penner, Simon; Kerstan, Andreas; Steinmassl, Patricia-Anca; Dumfahrt, Herbert; Huck, Christian W

    2017-07-01

    Water absorbed to poly(methyl methacrylate) (PMMA)-based CAD/CAM (computer-assisted design/computer-assisted manufacturing) prosthodontics can alter their properties including hardness and stability. In the present contribution, water absorption and desorption kinetics under defined experimental conditions were monitored employing several supplementary and advanced Fourier transform infrared (FT-IR) spectroscopic techniques in combination with multivariate analysis (MVA). In this synergistic vibrational spectroscopic multimethod approach, first a novel near-infrared (NIR) diffuse fiber optic probe reflection spectroscopic method was established for time-resolved analysis of water uptake within seven days under controlled conditions. Near-infrared water absorbance spectra in a wavenumber range between 5288-5100 cm-1 (combination band) and 5424-5352 cm-1 (second overtone) were used establishing corresponding calibration and validation models to quantify the amount of water in the milligram range. Therefore, 14 well-defined samples exposed to prior optimized experimental conditions were taken into consideration. The average daily water uptake conducting reference analysis was calculated as 22 mg/day for one week. Additionally, in this study for the first time NIR two-dimensional correlation spectroscopy (2D-COS) was conducted to monitor and interpret the spectral dynamics of water absorption on the prosthodontics in a wavenumber range of 5100-5300 cm-1. For sensitive time-resolved recording of water desorption, a recently developed high-temperature, high-pressure FT-IR reaction cell with water-free ultra-dry in situ and operando operation was applied. The reaction cell, as well as the sample holder, was fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high temperature zone. Applying a temperature gradient in the range of 25-150 ℃, mid-infrared (MIR) 2D-COS was successfully conducted to get insights into the dynamic

  19. Determination of the effective diffusivity of water in a poly (methyl methacrylate) membrane containing carbon nanotubes using kinetic Monte Carlo simulations

    Science.gov (United States)

    Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G.; Mavrantzas, Vlasis G.

    2015-10-01

    A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, Deff, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, Deff is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for Deff as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on Deff (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them

  20. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Cemil; Sari, Ahmet [Gaziosmanpasa University, Department of Chemistry, Tasliciftlik, 60240 Tokat (Turkey)

    2008-02-15

    Fatty acids such as stearic acid (SA), palmitic acid (PA), myristic acid (MA), and lauric acid (LA) are promising phase change materials (PCMs) for latent heat thermal energy storage (LHTES) applications, but high cost is the most drawback which limits the utility area of them in thermal energy storage. The use of fatty acids as form-stable PCM will increase their feasibilities in practical LHTES applications due to reduced cost of the energy storage system. In this regard, a series of fatty acid/poly(methyl methacrylate) (PMMA) blends, SA/PMMA, PA/PMMA, MA/PMMA, and LA/PMMA were prepared as new kinds of form-stable PCMs by encapsulation of fatty acids into PMMA which acts as supporting material. The blends were prepared at different mass fractions of fatty acids (50, 60, 70, 80, and 90% w/w) to reach maximum encapsulation ratio. All blends were subjected to leakage test by heating the blends over the melting temperature of the PCM. The blends that do not allow leakage of melted PCM were identified as form-stable PCMs. The form-stable fatty acid/PMMA (80/20 wt.%) blends were characterized using optic microscopy (OM), viscosimetry, and Fourier transform infrared (FT-IR) spectroscopy methods, and the results showed that the PMMA was compatible with the fatty acids. In addition, thermal characteristics such as melting and freezing temperatures and latent heats of the form-stable PCMs were measured by using differential scanning calorimetry (DSC) technique and indicated that they had good thermal properties. On the basis of all results, it was concluded that form-stable fatty acid/PMMA blends had important potential for some practical LHTES applications such as under floor space heating of buildings and passive solar space heating of buildings by using wallboard, plasterboard or floor impregnated with a form-stable PCM due to their satisfying thermal properties, easily preparing in desired dimensions, direct usability without needing an add encapsulation and

  1. Optimization of a novel two-solution poly(methyl methacrylate) bone cement: Effect of composition on material properties and polymerization kinetics

    Science.gov (United States)

    Hasenwinkel, Julie Miller

    A novel two-solution poly(methyl methacrylate) bone cement was developed as an alternative to powder/liquid cements, which are used clinically for the fixation of total joint replacements. This material polymerizes via a free radical mechanism, initiated by the redox reaction of benzoyl peroxide (BPO) and N,N dimethyl-p-toluidine (DMPT). The two-solution concept is advantageous over powder/liquid formulations because it minimizes sources of porosity, produces a homogeneous microstructure, simplifies the mixing and delivery process, and reduces the dependence of material properties on surgical techniques. Experiments were performed to determine the effect of initiation chemistry on the material properties and polymerization kinetics of twelve cement compositions. Select material properties were also evaluated with respect to polymer/monomer ratio and initial polymer molecular weight. The results confirm the hypothesis that initiation chemistry affects material properties via the polymerization kinetics and resulting microstructural properties. The exotherm, setting time, flexural mechanical properties, fracture toughness, fatigue behavior, and residual monomer were evaluated, with respect to initiation chemistry. The flexural strength, modulus, and exotherm were maximized, while the residual monomer was minimized at a BPO:DMPT molar ratio of 1:1. High DMPT concentrations resulted in sub-optimal properties, with short setting times and reduced ductility, fracture toughness, and fatigue strength. Initial polymer molecular weight had no significant effect on the material properties. Polymer conversion and free radical concentration were measured by infrared (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. These data were used to calculate the polymerization reaction rates and kinetic rate constants for each composition. Stoichiometric concentrations of BPO and DMPT maximized the radical concentration and conversion. The BPO and DMPT concentrations

  2. Determination of the effective diffusivity of water in a poly (methyl methacrylate) membrane containing carbon nanotubes using kinetic Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G. [Department of Chemical Engineering, University of Patras, GR 26500 Patras (Greece); Institute of Chemical Engineering and High Temperature Chemical Processes, GR 26500 Patras (Greece); Mavrantzas, Vlasis G., E-mail: vlasis@chemeng.upatras.gr [Department of Chemical Engineering, University of Patras, GR 26500 Patras (Greece); Institute of Chemical Engineering and High Temperature Chemical Processes, GR 26500 Patras (Greece); Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH-Z, CH-8092 Zurich (Switzerland)

    2015-10-28

    A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, D{sub eff}, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, D{sub eff} is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for D{sub eff} as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on D{sub eff} (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate

  3. and poly(methyl methacrylate)

    Indian Academy of Sciences (India)

    tive charge carriers in the deep traps present in material due to structural defects, chain motions, presence of impurities, etc. When an external electric field is applied, these induced dipoles align themselves in the field direction and help in induced dipole polarization in the polyblend (Pillai et al. Figure 4. Charge released ...

  4. Síntese de copolímeros metacrílicos através da modificação química do poli(metacrilato de metila de massa molar Controlada Synthesis of methacrylic copolymers by chemical modification of poly(methyl methacrylate with controlled molecular weight

    Directory of Open Access Journals (Sweden)

    Maria A. F. César-Oliveira

    1999-12-01

    Full Text Available Poli(metacrilato de metila (PMMA de massa molar controlada foi sintetizado, em solução de tolueno, utilizando peróxido de benzoíla como iniciador e 1-dodecanotiol (DDM como agente de transferência de cadeia. O efeito da concentração de DDM sobre a massa molar do PMMA foi investigado. Copolímeros de metacrilato de metila e ácido metacrílico, P(MMA-MAA, foram sintetizados a partir da hidrólise parcial de homopolímeros de metacrilato de metila com variadas massas molares. Utilizando uma técnica inédita na literatura para a síntese de ésteres poliméricos, foi realizada a reação das unidades ácidas do P(MMA-MAA com álcoois de cadeia longa, na presença de 1,3-diciclo-carbodiimida e 4-dimetilamino-piridina, que produziu copolímeros contendo longos segmentos hidrocarbônicos pendentes, tais como o poli(metacrilato de metila-co-metacrilato de hexadecila.Controlled molecular weight poly(methyl methacrylate (PMMA was synthesized in toluene solution using benzoyl peroxide/dodecanethiol as initiator/chain transfer agent system. The effect of the thiol concentration on the molecular weight of PMMA was investigated. Methyl methacrylate and methacrylic acid copolymers, P(MMA-MAA, were prepared by partial hydrolysis of the PMMA homopolymers of different molecular weights. By reacting the acid residues of the copolymers with long chain alcohols, in the presence of 1,3-dicyclohexylcarbodiimide and 4-dimethylaminopyridine, copolymeric esters of PMMA with long chain substituents, such as hexadecyl, were obtained. This technique has not been reported in the literature for the synthesis of PMMA esters.

  5. In Situ Synthesis of Poly(methyl methacrylate/SiO2 Hybrid Nanocomposites via “Grafting Onto” Strategy Based on UV Irradiation in the Presence of Iron Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2012-01-01

    Full Text Available Poly(methyl methacrylate/SiO2 (PMMA/SiO2 hybrid composites were prepared via “grafting onto” strategy based on UV irradiation in the presence of iron aqueous solution. Two steps were used to graft polymethyl methacrylate (PMMA onto the surface of nanosilica, anchoring 3-(methacryloxy propyl trimethoxysilane (MPTS onto the surface of nanosilica to modify it with double bonds, and then grafting PMMA onto the surface of nanosilica with FeCl3 as photoinitiator. The products were characterized by FT-IR, TGA, TEM, DLS, and XPS. The results showed that it is easy to graft PMMA onto the surface of nanosilica under UV irradiation, and the hybrid particles are monodisperse and have core-shell structure with nanosilica as the core and PMMA layers as the shell. Furthermore, the products initiated by FeCl3 have higher monomer conversion, percent grafting, and better monodispersion compared with the products initiated by traditional photoinitiator such as 2-hydroxy-4-(2-hydroxyethoxy-2-methyl-propiophenone (Irgacure 2959.

  6. Complexation of AB+, AB+C, ACB+, and A(B+-stat-C) block copolymer micelles with poly(styrene sulfonate) as models for tunable gene delivery vectors

    Science.gov (United States)

    Laaser, Jennifer; Jiang, Yaming; Lohmann, Elise; Reineke, Theresa; Lodge, Timothy

    We investigate the complexation of poly(styrene sulfonate) with micelles with mixed cationic/hydrophilic coronas as models for tunable gene delivery vectors. The micelles are self-assembled from AB+, AB+C, ACB+, and A(B+-stat-C) block polymer architectures, where the hydrophobic A blocks (poly(styrene)) form the micelle cores, and the cationic B blocks (poly(dimethylamino ethyl methacrylate)) and hydrophilic, nonionic C blocks (poly(poly(ethylene glycol) methyl ether methacrylate)) form the coronas. We find that hydrophilic units do not change the colloidal stability of the complexes, and complexes based on all four micelle architectures form broad, multimodal size distributions. While complexes based on the AB+, AB+C, and ACB+polymer architectures are kinetically trapped at low ionic strength, however, those based on the A(B+-stat-C) architecture rapidly rearrange into single-micelle complexes when the linear polyanion is in excess. This suggests that the randomly-placed hydrophilic units break up the ion pairing between the cationic and anionic chains and promote formation of over-charged complexes. Design of the micelle architecture may thus provide a powerful way control the structure and stability of micelle-polyelectrolyte complexes for gene delivery applications.

  7. Heterocyclic methacrylates for clinical applications. I. Mechanical properties.

    Science.gov (United States)

    Patel, M P; Braden, M

    1991-09-01

    The mechanical properties of a number of heterocyclic and one cyclic methacrylate have been studied for their potential in low polymerization shrinkage systems. This study included both homopolymers and room temperature polymerizing systems using poly(ethyl methacrylate) powder with a heterocyclic methacrylate monomer. The one cyclic methacrylate studied, isobornyl methacrylate, gave an extremely brittle polymer; furthermore, it would not form a dough with poly(ethyl methacrylate). The homopolymers gave Young's moduli in the range 1.38-2.19 GN/m2, i.e. lower than poly(methyl methacrylate). The moduli of poly(ethyl methacrylate)/monomer systems are theoretically predictable from the moduli of the homopolymers involved. The above materials were generally ductile and the mechanical properties indicated a useful class of materials for clinical use.

  8. Synthesis and characterization of poly(methyl methacrylate-co-vinyl acetate) and its evaluation as filtrate reducer; Sintese e caracterizacao de poli(metacrilato de metila-co-acetato de vinila) e sua avaliacao como redutor de filtrado

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Rita de Cassia P.; Pires, Renata V.; Segtovich, Iuri V.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, (UFRJ), RJ (Brazil)], e-mail: repires@ima.ufrj.br

    2011-07-01

    The drilling of petroleum well is extremely important and requires the use of suitable drilling fluids in order to ensure an efficient operation without causing rock damage. Specific polymers have been used in controlling infiltration during drilling, ensuring the operation success. In this work, spherical microparticles of poly(methyl methacrylate-co-vinyl acetate) (PMMA-VAc), prepared by suspension polymerization, were evaluated in terms of their performance in controlling filtrate loss of aqueous fluids. A filter press test with ceramic disc, simulating the rock, was used. The performance of the synthesized materials was compared to that of commercial polymers. It was observed that the performance of the material is directly associated to the relation between particle size and pore size of rock specimen. Furthermore, when the particle size is suitable, the rubbery characteristic of the material produces a more efficient filter cake, for filtrate control. (author)

  9. A highly selective sorbent for removal of Cr(VI) from aqueous solutions based on Fe{sub 3}O{sub 4}/poly(methyl methacrylate) grafted Tragacanth gum nanocomposite: Optimization by experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Susan, E-mail: ssadeghi@birjand.ac.ir; Rad, Fatemeh Alavi; Moghaddam, Ali Zeraatkar

    2014-12-01

    In this work, poly(methyl methacrylate) grafted Tragacanth gum modified Fe{sub 3}O{sub 4} magnetic nanoparticles (P(MMA)-g-TG-MNs) were developed for the selective removal of Cr(VI) species from aqueous solutions in the presence of Cr(III). The sorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), a vibrating sample magnetometer (VSM), and thermo-gravimetric analysis (TGA). A screening study on operational variables was performed using a two-level full factorial design. Based on the analysis of variance (ANOVA) with 95% confidence limit, the significant variables were found. The central composite design (CCD) has also been employed for statistical modeling and analysis of the effects and interactions of significant variables dealing with the Cr(VI) uptake process by the developed sorbent. The predicted optimal conditions were situated at a pH of 5.5, contact time of 3.4 h, and 3.0 g L{sup −1} dose. The Langmuir, Freundlich, and Temkin isotherm models were used to describe the equilibrium sorption of Cr(VI) by the absorbent, and the Langmuir isotherm showed the best concordance as an equilibrium model. The adsorption process was followed by a pseudo-second-order kinetic model. Thermodynamic investigations showed that the biosorption process was spontaneous and exothermic. - Highlights: • Fe3O4 nanoparticles were modified with Poly(methyl methacrylate) grafted Tragacanth gum • P(MMA)-g-TG -MNPs can preferentially adsorb Cr(VI) in the presence of Cr(III) • The effects of operational parameters on Cr(VI) removal were evaluated by RSM • Adsorption mechanism, kinetics, and isotherm have been explored • The sorbent was successfully used to remove Cr(VI) from different water samples.

  10. Effect of porosity and environment on the mechanical behavior of acrylic bone cement modified with acrylonitrile-butadiene-styrene particles: part II. Fatigue crack propagation.

    Science.gov (United States)

    Vila, M M; Ginebra, M P; Gil, F J; Planell, J A

    1999-01-01

    The aim of this study was to investigate the effect of adding an elastomeric second phase, acrylonitrile-butadiene-styrene, on the fatigue crack propagation behavior of poly(methyl methacrylate) bone cement. Moreover, the influence of porosity and environmental conditions was studied. When comparing the plain cement to the modified cement, a decrease in the crack propagation rate was observed at between 1 and 2 orders of magnitude. The storage in a physiological environment (saline solution at 37 degrees C) also caused a decrease in the crack propagation rate of about 2 orders of magnitude for the plain and modified cement prepared in air or under a vacuum. Porosity did not have any noticeable effect on the fatigue crack propagation behavior of the cement.

  11. Crystallization analysis fractionation of poly(ethylene-co-styrene) produced by metallocene catalysts

    KAUST Repository

    Kamal, Muhammad Shahzad

    2013-06-06

    Ethylene homo polymer and ethylene-styrene copolymers were synthesized using Cp2ZrCl2 (1)/methyl aluminoxane (MAO) and rac-silylene-bis (indenyl) zirconium dichloride (2)/MAO catalyst systems by varying styrene concentration and reaction conditions. Crystallization analysis fractionation (CRYSTAF), DSC, FTIR and 1H NMR spectroscopy were used for characterizing the synthesized polymers. Interestingly, styrene was able to increase the activity of 1/MAO and 2/MAO catalyst systems at low concentrations, but at higher concentrations the activity decreases. The 1/MAO system at low and high pressure was unable to incorporate styrene, and the final product was pure polyethylene. On the other hand, with 2/MAO polymerization of ethylene and styrene yielded copolymer containing both styrene and ethylene. Results obtained from CRYSTAF and DSC reveal that on using 1/MAO system at high pressure, the resulting polymer in the presence of styrene has similar crystallinity as the polymer produced without styrene. Using both 1/MAO at low pressure and 2/MAO leads to decrease in crystallinity with increase in styrene concentration, even though the former does not incorporate styrene. © 2013 Springer-Verlag Berlin Heidelberg.

  12. pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) for controlled anticancer drug delivery.

    Science.gov (United States)

    Yang, You Qiang; Zhao, Bin; Li, Zhen Dong; Lin, Wen Jing; Zhang, Can Yang; Guo, Xin Dong; Wang, Ju Fang; Zhang, Li Juan

    2013-08-01

    A series of amphiphilic 4- and 6-armed star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) (4/6AS-PCL-b-PDEAEMA-b-PPEGMA) were developed by a combination of ring opening polymerization and continuous activators regenerated by electron transfer atom transfer radical polymerization. The critical micelle concentration values of the star co-polymers in aqueous solution were extremely low (2.2-4.0mgl(-1)), depending on the architecture of the co-polymers. The self-assembled blank and doxorubicin (DOX)-loaded three layer micelles were spherical in shape with an average size of 60-220nm determined by scanning electron microscopy and dynamic light scattering. The in vitro release behavior of DOX from the three layer micelles exhibited pH-dependent properties. The DOX release rate was significantly accelerated by decreasing the pH from 7.4 to 5.0, due to swelling of the micelles at lower pH values caused by the protonation of tertiary amine groups in DEAEMA in the middle layer of the micelles. The in vitro cytotoxicity of DOX-loaded micelles to HepG2 cells suggested that the 4/6AS-PCL-b-PDEAEMA-b-PPEGMA micelles could provide equivalent or even enhanced anticancer activity and bioavailability of DOX and thus a lower dosage is sufficient for the same therapeutic efficacy. The results demonstrate that the pH-sensitive multilayer micelles could have great potential application in delivering hydrophobic anticancer drugs for improved cancer therapy. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Binary and Ternary Vapor-Liquid Equilibrium Data of the System (Ethylbenzene+Styrene+4-Methyl-N-butylpyridinium Tetrafluoroborate) at Vacuum Conditions and Liquid-Liquid Equilibrium Data of Their Binary Systems

    NARCIS (Netherlands)

    Jongmans, Mark; Raijmakers, M.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    Ethylbenzene and styrene are currently separated by ordinary fractional distillation, which is challenging due the low relative volatility of this mixture of 1.3 to 1.4. Extractive distillation is a promising alternative to save capital and operational expenditures. Recently, ionic liquids (ILs)

  14. Solvent effect on infrared spectra of methyl methacrylate in CCl 4/C 6H 14, CHCl 3/C 6H 14 and C 2H 5OH/C 6H 14 binary solvent systems

    Science.gov (United States)

    Zheng, Jianping; Liu, Qing; Zhang, Hui; Fang, Danjun

    2004-11-01

    Research of methyl methacrylate (MMA) in three kinds of binary solvent systems (CCl 4/C 6H 14, CHCl 3/C 6H 14 and C 2H 5OH/C 6H 14) on the infrared (IR) spectra was reported. Two types of carbonyl stretching vibration bands for MMA in CHCl 3/C 6H 14 or C 2H 5OH/C 6H 14 mixtures were found with the changing of the mole fraction of CHCl 3 (X CHCl3) or C 2H 5OH (X C 2H 5OH ). The carbonyl stretching vibration bands at lower frequencies in the above two mixtures were attributed to the formation of hydrogen bonding between MMA and CHCl 3 or C 2H 5OH. While in CCl 4/C 6H 14 mixtures there was only one type of carbonyl stretching vibration band of MMA. Good linear correlations between the frequencies of CO or CC stretching vibration band of MMA and X CCl 4, X CHCl3 or X C 2H 5OH were found, respectively. The solute-solvent interactions in the three different binary solvent systems were discussed in detail.

  15. One-pot synthesis of zeolitic imidazolate framework-8/poly (methyl methacrylate-ethyleneglycol dimethacrylate) monolith coating for stir bar sorptive extraction of phytohormones from fruit samples followed by high performance liquid chromatography-ultraviolet detection.

    Science.gov (United States)

    You, Linna; He, Man; Chen, Beibei; Hu, Bin

    2017-11-17

    In this work, zeolitic imidazolate framework-8 (ZIF-8)/poly (methyl methacrylate-ethyleneglycol dimethacrylate) (MMA-EGDMA) composite monolith was in situ synthesized on stir bar by one-pot polymerization. Compared with the neat monolith, ZIF-8/poly(MMA-EGDMA) composite monolith has larger surface area and pore volume. It also exhibits higher extraction efficiency for target phytohormones than poly(MMA-EGDMA) monolith and commercial polyethylene glycol (PEG) coated stir bar. Based on it, a method of ZIF-8/poly(MMA-EGDMA) monolith coated stir bar sorptive extraction (SBSE)-high performance liquid chromatography-ultraviolet detection (HPLC-UV) was established for the analysis of five phytohormones in apple and pear samples. The developed method exhibited low limits of detection (0.11-0.51μg/L), wide linear range (0.5-500μg/L) and good recoveries (82.7-111%), which demonstrated good application potential of the ZIF-8/monolith coated stir bar in trace analysis of organic compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Cu(II)-mediated atom transfer radical polymerization of methyl methacrylate via a strategy of thermo-regulated phase-separable catalysis in a liquid/liquid biphasic system: homogeneous catalysis, facile heterogeneous separation, and recycling.

    Science.gov (United States)

    Pan, Jinlong; Zhang, Bingjie; Jiang, Xiaowu; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2014-09-01

    A strategy of thermo-regulated phase-separable catalysis (TPSC) is applied to the Cu(II)-mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in a p-xylene/PEG-200 biphasic system. Initiators for continuous activator regeneration ATRP (ICAR ATRP) are used to establish the TPSC-based ICAR ATRP system using water-soluble TPMA as a ligand, EBPA as an initiator, CuBr2 as a catalyst, and AIBN as a reducing agent. By heating to 70 °C, unlimited miscibility of both solvents is achieved and the polymerization can be carried out under homogeneous conditions; then on cooling to 25 °C, the mixture separates into two phases again. As a result, the catalyst complex remains in the PEG-200 phase while the obtained polymers stay in the p-xylene phase. The catalyst can therefore be removed from the resultant polymers by easily separating the two different layers and can be reused again. It is important that well-defined PMMA with a controlled molecular weight and narrow molecular weight distribution could be obtained using this TPSC-based ICAR ATRP system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Insertion of a pentacene layer into the gold/poly(methyl methacrylate)/heavily doped p-type Si/indium device leading to the modulation of resistive switching characteristics

    Science.gov (United States)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    In order to get a physical insight into the pentacene interlayer-modulated resistive switching (RS) characteristics, the Au/pentacene/poly(methyl methacrylate) (PMMA)/heavily doped p-type Si (p+-Si)/In and Au/PMMA/p+-Si/In devices are fabricated and the device performance is provided. The Au/pentacene/PMMA/p+-Si/In device shows RS behavior, whereas the Au/PMMA/p+-Si/In device exhibits the set/reset-free hysteresis current-voltage characteristics. The insertion of a pentacene layer is a noticeable contribution to the RS characteristic. This is because of the occurrence of carrier accumulation/depletion in the pentacene interlayer. The transition from carrier depletion to carrier accumulation (carrier accumulation to carrier depletion) in pentacene occurring under negative (positive) voltage induces the process of set (reset). The switching conduction mechanism is primarily described as space charge limited conduction according to the electrical transport properties measurement. The concept of a pentacene/PMMA heterostructure opens a promising direction for organic memory devices.

  18. Dry efficient cleaning of poly-methyl-methacrylate residues from graphene with high-density H{sub 2} and H{sub 2}-N{sub 2} plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cunge, G., E-mail: gilles.cunge@cea.fr; Petit-Etienne, C.; Davydova, A. [Laboratoire des Technologies de la Microélectronique, CNRS-UJF, 17 rue des Martyrs, 38054 Grenoble (France); Ferrah, D.; Renault, O. [CEA, LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Okuno, H. [CEA, INAC/SP2M/LEMMA, 17 rue des Martyrs, 38054 Grenoble (France); Kalita, D.; Bouchiat, V. [Institut Néel, CNRS-UJF-INP, BP 166, 38042 Grenoble Cedex 9 (France)

    2015-09-28

    Graphene is the first engineering electronic material, which is purely two-dimensional: it consists of two exposed sp{sup 2}-hybridized carbon surfaces and has no bulk. Therefore, surface effects such as contamination by adsorbed polymer residues have a critical influence on its electrical properties and can drastically hamper its widespread use in devices fabrication. These contaminants, originating from mandatory technological processes of graphene synthesis and transfer, also impact fundamental studies of the electronic and structural properties at the atomic scale. Therefore, graphene-based technology and research requires “soft” and selective surface cleaning techniques dedicated to limit or to suppress this surface contamination. Here, we show that a high-density H{sub 2} and H{sub 2}-N{sub 2} plasmas can be used to selectively remove polymeric residues from monolayer graphene without any damage on the graphene surface. The efficiency of this dry-cleaning process is evidenced unambiguously by a set of spectroscopic and microscopic methods, providing unprecedented insights on the cleaning mechanisms and highlighting the role of specific poly-methyl-methacrylate residues at the graphene interface. The plasma is shown to perform much better cleaning than solvents and has the advantage to be an industrially mature technology adapted to large area substrates. The process is transferable to other kinds of two-dimensional material and heterostructures.

  19. Water-stable diblock polystyrene-block-poly(2-vinyl pyridine) and diblock polystyrene-block-poly(methyl methacrylate) cylindrical patterned surfaces inhibit settlement of zoospores of the green alga Ulva.

    Science.gov (United States)

    Grozea, Claudia M; Gunari, Nikhil; Finlay, John A; Grozea, Daniel; Callow, Maureen E; Callow, James A; Lu, Zheng-Hong; Walker, Gilbert C

    2009-04-13

    Nanopatterned surfaces with hydrophobic and hydrophilic domains were produced using the diblock copolymer polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA). The PS-b-P2VP diblock copolymer, mixed with the cross-linker benzophenone and spin-coated onto silicon wafers, showed self-assembled cylindrical structures, which were retained after UV treatment for cross-linking. The thin films displayed cylindrical domains after immersion in water. This study shows that pattern retention in water is possible for a long period of time, at least for two weeks in pure water and three weeks in artificial seawater. The PS-b-PMMA diblock showed self-assembled cylindrical structures. PS-b-P2VP and PS-b-PMMA cylindrical patterned surfaces showed reduced settlement of zoospores of the green alga Ulva compared to unpatterned surfaces. The copolymers were investigated using atomic force microscopy and X-ray photoelectron spectroscopy.

  20. Radical polymerization of styrene controlled by half-sandwich Mo(III)/Mo(IV) couples: all basic mechanisms are possible.

    Science.gov (United States)

    Le Grognec, E; Claverie, J; Poli, R

    2001-10-03

    polymerization of methyl methacrylate.

  1. Binary and ternary vapor-liquid equilibrium data of the system ethylbenzene+styrene+3-methyl-N-butylpyridinium tetracyanoborate at vacuum conditions and liquid-liquid equilibrium data of their binary systems

    NARCIS (Netherlands)

    Jongmans, Mark; Hermens, E.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    In this study, binary LLE data at 313.2, 333.2, and 353.2 K, binary VLE data in the pressure range of 3–30 kPa and ternary VLE data at 5, 10, and 15 kPa have been determined for the system ethylbenzene + styrene + [3-mebupy][B(CN)4]. The IL [3-mebupy][B(CN)4] can increase the relative volatility of

  2. Facile "living" radical polymerization of methyl methacrylate in the presence of iniferter agents: homogeneous and highly efficient catalysis from copper(II) acetate.

    Science.gov (United States)

    Jiang, Hongjuan; Zhang, Lifen; Jiang, Xiaowu; Bao, Xiaoguang; Cheng, Zhenping; Zhu, Xiulin

    2014-08-01

    A facile homogeneous polymerization system involving the iniferter agent 1-cyano-1-methylethyl diethyldithiocarbamate (MANDC) and copper(II) acetate (Cu(OAc)2 ) is successfully developed in bulk using methyl methacylate (MMA) as a model monomer. The detailed polymerization kinetics with different molar ratios (e.g., [MMA]0 /[MANDC]0 /[Cu(OAc)2 ]0 = 500/1/x (x = 0.1, 0.2, 0.5, 1.0)) demonstrate that this system has the typical "living"/controlled features of "living" radical polymerization, even with ppm level catalyst Cu(OAc)2 , first order polymerization kinetics, a linear increase in molecular weight with monomer conversion and narrow molecular weight distributions for the resultant PMMA. (1) H NMR spectra and chain-extension experiments further confirm the "living" characteristics of this process. A plausible mechanism is discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Espectro Vibracional no Infravermelho Próximo dos Polímeros Poliestireno, Poli(Metacrilato de Metila e Policarbonato Near-Infrared Spectra of Polystyrene, Poly(Methyl Methacrylate and Polycarbonate

    Directory of Open Access Journals (Sweden)

    Sérgio C. de Araújo

    2001-01-01

    Full Text Available Os espectros no infravermelho próximo (NIR dos polímeros amorfos poliestireno (PS, poli(metacrilato de metila (PMMA e policarbonato (PC foram estudados. A tentativa de atribuição das bandas harmônicas e de combinação dos modos vibracionais do PS, PMMA e PC foi realizada baseando-se na teoria de modos locais e pelo uso do método matemático de ajuste de curvas. A correção de anarmonicidade e freqüência mecânica foi determinada em um gráfico de Birge-Sponer. Uma correção de anarmonicidade de 57 e 58 cm-1 foi obtida para os modos de estiramento dos grupos CH2 e CH do PS; 59 e 9 cm-1 para os modos de estiramento dos grupos CH3 e CO do PMMA e 53, 59 e 10 cm-1 para os modos de estiramento dos grupos CH, CH3 e CO do PC, respectivamente.The near-infrared (NIR spectra of the amorphous polymers polystyrene (PS, poly(methyl methacrylate (PMMA, and polycarbonate (PC have been studied. The tentative assignment of the overtone and combination frequencies is made using the curve fitting calculations and the local mode theory. Anharmonicity correction and mechanical frequency were determined from a Birge-Sponer plot. A tentative assignment of stretch overtone frequency of CH2 and CH functional groups of PS; CH3 and CO functional groups of PMMA and CH, CH3 and CO functional groups of PC has been made. An anharmonicity correction of 57 and 58 cm-1 was obtained for CH2 and CH stretch modes of PS; 59 and 9 cm-1 for CH3 and CO stretch modes of PMMA and 53, 59 and 10 cm-1 for CH, CH3 and CO stretch modes of PC, respectively.

  4. Methacrylate and acrylate allergy in dental personnel.

    Science.gov (United States)

    Aalto-Korte, Kristiina; Alanko, Kristiina; Kuuliala, Outi; Jolanki, Riitta

    2007-11-01

    Methacrylates are important allergens in dentistry. The study aimed to analyse patch test reactivity to 36 acrylic monomers in dental personnel in relation to exposure. We reviewed the test files at the Finnish Institute of Occupational Health from 1994 to 2006 for allergic reactions to acrylic monomers in dental personnel and analysed the clinical records of the sensitized patients. 32 patients had allergic reactions to acrylic monomers: 15 dental nurses, 9 dentists, and 8 dental technicians. The dentists and dental nurses were most commonly exposed to 2-hydroxyethyl methacrylate (2-HEMA), triethyleneglycol dimethacrylate (TREGDMA), and 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (bis-GMA). 8 dentists and 12 dental nurses were allergic to 2-HEMA. The remaining dentist was positive to bis-GMA and other epoxy acrylates. The remaining 3 dental nurses reacted to diethyleneglycol diacrylate (DEGDA) or triethyleneglycol diacrylate (TREGDA), but not to monofunctional and multifunctional methacrylates. Our dental technicians were mainly exposed and sensitized to methyl methacrylate (MMA) and ethyleneglycol dimethacrylate (EGDMA). 1 technician reacted only to 2-HEMA, and another to ethyl methacrylate (EMA) and ethyl acrylate (EA). 2-HEMA was the most important allergen in dentists and dental nurses, and MMA and EGDMA in dental technicians. Reactions to bis-GMA, DEGDA, TREGDA, EMA and EA were relevant in some patients.

  5. Influence of composition and powder/liquid ratio on setting characteristics and mechanical properties of autopolymerized hard direct denture reline resins based on methyl methacrylate and ethylene glycol dimethacrylate

    National Research Council Canada - National Science Library

    OKUYAMA, Yoshikazu; SHIRAISHI, Takanobu; YOSHIDA, Kazuhiro; KUROGI, Tadafumi; WATANABE, Ikuya; MURATA, Hiroshi

    2014-01-01

    ... (MMA, monomethacrylate) and ethylene glycol dimethacrylate [EGDMA, dimethacrylate (cross-linking agent)], with poly (ethyl methacrylate) used as the powder, and a mixture of MMA and EGDMA containing p-tolyldiethanolamine as the monomer...

  6. Evaluation of poly(methyl methacrylate)/poly(vinylpyrrolidone)/poly(ethylene oxide) blends by solution and solid state NMR; Avaliacao da mistura fisica de poli(metacrilato de metila)/polivinilpirrolidona/poli(oxido de etileno) por ressonancia magnetica nuclear em solucao e solido

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Teresinha M.F.F. [Instituto Nacional da Propriedade Industrial (INPI), Rio de Janeiro, RJ (Brazil)]. E-mail: teresinh@inpi.gov.br; Tavares, Maria Ines B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: mibt@ima.ufrj.br

    2001-07-01

    Ternary blends formed by poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP)/poly(ethylene oxide) (PEO) have been investigated applying solution and solid state nuclear magnetic resonance. From solution NMR it can be seen that no change in the chemical shift of the microstructure detected in the carbonyl and C quaternary carbons of PMMA was found. However a small change in the form of those signals was observed. This change was attributed to the plasticization effect. The solid state techniques showed that both PEO and PVP acts as a plasticizer in different ways, which depends on these proportions that derives from different dynamical behavior. (author)

  7. Highly selective Wacker reaction of styrene derivatives: a green and efficient aerobic oxidative process promoted by benzoquinone/NaNO2/HClO4 under mild conditions.

    Science.gov (United States)

    Zhang, Guofu; Xie, Xiaoqiang; Wang, Yong; Wen, Xin; Zhao, Yun; Ding, Chengrong

    2013-05-14

    A green and efficient catalytic redox system for the aerobic oxidative Wacker oxidation of styrene derivatives at room temperature using molecular oxygen as the terminal oxidant without copper chloride has been developed. The newly developed system exhibited excellent catalytic activity for the smooth transformation of terminal styrene derivatives to the desired methyl ketones with up to 96% yield and >99% selectivity.

  8. polyvinylchloride and poly(methyl methacrylate) polyblends

    Indian Academy of Sciences (India)

    TECS

    mechanism governing the conduction, the activation energies in low temperature (LTR) and high temperature. (HTR) regions have been calculated ... The physical mixing or blending of two polymers produces an alloy with quite different ... mainly to its high electrical and chemical resistance and its unique ability to be mixed ...

  9. Functionalized Nanochannels from Self-Assembled and Photomodified Poly(Styrene-b-Butadiene-b-Styrene).

    Science.gov (United States)

    Sutisna, Burhannudin; Polymeropoulos, George; Musteata, Valentina; Sougrat, Rachid; Smilgies, Detlef-M; Peinemann, Klaus-Viktor; Hadjichristidis, Nikolaos; Nunes, Suzana P

    2017-10-04

    Membranes are prepared by self-assembly and casting of 5 and 13 wt% poly(styrene-b-butadiene-b-styrene) (PS-b-PB-b-PS) copolymers solutions in different solvents, followed by immersion in water or ethanol. By controlling the solution-casting gap, porous films of 50 and 1 µm thickness are obtained. A gradient of increasing pore size is generated as the distance from the surface increased. An ordered porous surface layer with continuous nanochannels can be observed. Its formation is investigated, by using time-resolved grazing incident small angle X-ray scattering, electron microscopy, and rheology, suggesting a strong effect of the air-solution interface on the morphology formation. The thin PS-b-PB-b-PS ordered films are modified, by promoting the photolytic addition of thioglycolic acid to the polybutadiene groups, adding chemical functionality and specific transport characteristics on the preformed nanochannels, without sacrificing the membrane morphology. Photomodification increases fivefold the water permeance to around 2 L m(-2) h(-1) bar(-1) , compared to that of the unmodified one. A rejection of 74% is measured for methyl orange in water. The membranes fabrication with tailored nanochannels and chemical functionalities can be demonstrated using relatively lower cost block copolymers. Casting on porous polyacrylonitrile supports makes the membranes even more scalable and competitive in large scale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reactive processing of recycled polycarbonate/acrylonitrile butadiene styrene.

    Science.gov (United States)

    Jung, Woo-Hyuk; Choi, Yeon-Sil; Moon, Jung-Min; Tortorrela, Nathan; Beatty, Charles L; Lee, Jang-Oo

    2009-04-01

    Cellular phone housings were ground to make original particulates using a knife mill. Foams and adhesives with a lighter density than water were removed from ground mixtures using a sink-float process in water; ground metals, button rubbers, and wires were separated from desired materials by using a sink float process in salt All housing materials, consisting of seven thermoplastics included in cellular phone housings, showed better tensile properties than pure housing materials made of polycarbonate/acrylonitrile butadiene styrene, but they only had about half of the impact strength. In contrast, the low impact strength for all housing materials was improved by adding 25 wt % polyethylene elastomer and/or 2.4 wt % ground epoxy circuit boards for batch mixing. Impact strengths, tensile strengths, and the energy absorption ability of all housing materials were improved by adding 5.4wt% glycidyl methacrylate for twin screw extrusion.

  11. Thermoforming polymethyl methacrylate.

    Science.gov (United States)

    Jagger, R G; Okdeh, A

    1995-11-01

    This study characterized a range of commercially available polymethyl methacrylate sheets with respect to molecular weight, residual monomer content, and glass transition temperature and then developed a thermoforming procedure that produced visually satisfactory thermoformed polymethyl methacrylate specimens. Molecular weight values of Perspex material were considerably greater than those of the other materials. All materials but Diakon had residual monomer concentrations of less than 1% and glass transition temperature values greater than 100 degrees C. Perspex material was selected for further investigation. It was necessary to preheat Perspex sheets in an oven at 160 degrees C for at least 30 minutes before heating and forming on the thermoforming apparatus to obtain acceptable specimens.

  12. Kinetics and mechanism of polymer dispersion formation on based of (meth)acrylates. Part 2

    OpenAIRE

    GOLDFEIN M.D.; KOZHEVNIKOV N.V.; KOZHEVNIKOVA N.I.; ZAIKOV G.E.

    2015-01-01

    The aim of the present work was to establish the kinetics and mechanism of joint emulsion polymerization of methyl acrylate with metacrylic acid (MAA) or acrylonitrile, which underlies production of many commercial acrylic polymeric dispersions. The emulsion polymerization of methyl methacrylate (MMA) and copolymers with acrylonitrile (AN) and methacrylic acid (MAA) was studied. Also some aspects of kinetics and mechanism of polymeric latexes formation processes in absence of emulsifier were ...

  13. Compósitos Bioativos Obtidos a Partir da Inserção de Vidro Bioativo em Matriz de Poli(Metacrilato de Metila Bioactive Composites Obtained from Bioactive Glass Particles into Poly(Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Paulo E. Silva Junior

    2001-09-01

    materials in a wider range of applications. The goal of this research is to synthesize and characterize polymer matrices reinforced with bioactive glass particles that potentially can combine ability to bond to tissues (bioactivity, with mechanical properties comparable to damage tissues. The composites were produced by bulk polymerization of methyl methacrylate in the presence of bioactive glass particles and an initiator at 60ºC. Bioactive glass particles were added to the monomer in several concentrations to modify the mechanical properties and bioactivity of the composites. The bioactivity of the materials was evaluated by in vitro tests performed at 37ºC in a simulated body fluid for periods of time ranging from 1 hour to 30 days. The composites submitted to in vitro tests were characterized by infrared spectroscopy. The results revealed the deposition of a hidroxy-carbonate-apatite layer on the surface of the composites, confirming their bioactivity. It was also observed that the fraction of the bioactive phase in the composites can be used to control the overall kinetics of the bioactivity process.

  14. Syntheses and Post-Polymerization Modifications of Well-Defined Styrenic Polymers Containing Three-Membered Heterocyclic Functionalities

    Science.gov (United States)

    McLeod, David Charles

    Macromolecules that contain electrophilic moieties, such as benzyl halides, activated esters, and epoxides, will readily undergo efficient nucleophilic substitution reactions with a wide variety of compounds under mild conditions, and are therefore ideally suited to act as "universal" precursors to functional materials. Epoxide-containing polymers derived from the radical polymerization of commercially-available glycidyl methacrylate are often employed in this role; however, methacrylic polymers suffer from certain limitations as a result of the incorporated ester groups, which are not stabile in the presence of strong nucleophiles, acids, bases, or esterase enzymes. Styrenic polymers that do not contain labile carbonyl moieties are usually the precursors of choice when high chemical stability is desired in the end product, but the production of functional materials from epoxide-containing styrenic polymers is relatively unexplored. In this dissertation, improved methods were developed for synthesizing 4-vinylphenyloxirane (4VPO) and 4-vinylphenyl glycidyl ether (4VPGE), two of the better-known epoxide-containing styrenic monomers, in high-yield and purity. Well-defined, epoxide-containing styrenic polymers with targeted molecular weights, narrow molecular weight distributions, and controlled architectures (specifically, linear and star-shaped homopolymers, as well as linear block copolymers with styrene) were produced from 4VPO and 4VPGE for the first time using reversible-deactivation radical polymerization techniques, such as low-catalyst-concentration atom transfer radical polymerization (LCC ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. The robust nature and utility of poly4VPO and poly4VPGE were then demonstrated by the efficient, ring-opening modification of the pendant epoxide groups with a structurally- and functionally-diverse array of alcohols under acidic conditions at ambient temperature. The macromolecular

  15. Injectible bodily prosthetics employing methacrylic copolymer gels

    Energy Technology Data Exchange (ETDEWEB)

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  16. Screening for acrylate/methacrylate allergy in the baseline series: our experience in Sweden and Singapore.

    Science.gov (United States)

    Goon, Anthony Teik-Jin; Bruze, Magnus; Zimerson, Erik; Goh, Chee-Leok; Soo-Quee Koh, David; Isaksson, Marléne

    2008-11-01

    No studies to specifically determine the prevalence of contact allergy to acrylates/methacrylates in patch tested populations have been published. To determine the prevalence of acrylate/methacrylate allergy in all patients tested to the baseline patch test series. Five acrylate/methacrylate allergens (2-hydroxyethyl methacrylate, methyl methacrylate, ethylene glycol dimethacrylate, triethylene glycol diacrylate, and 2-hydroxypropyl acrylate) were included in the baseline series for at least 2 years in Malmö and Singapore. Thirty-eight patients in total had reacted to acrylate/methacrylate allergens in the baseline series during the study period in both populations. In Malmö, there were 26 (1.4%) patients with positive patch tests to acrylate/methacrylate allergens, 14 of whom had relevant reactions. In Singapore, there were 12 (1.0%) patients with positive patch tests to acrylate/methacrylate allergens, but only 1 had relevant reactions. If we had not added acrylate/methacrylate allergens to the baseline series, we would not have patch tested 13/26 (50%) of the positive reactors in Malmö and 11/12 (92%) of the positive reactors in Singapore. The overall proportion of missed positive reactors would have been 24/38 (63%). The prevalence of acrylate/methacrylate allergy in our patch tested dermatitis populations is 1.4% in Malmö and 1.0% in Singapore.

  17. Allylthioketone Mediated Free Radical Polymerization of Methacrylates

    Directory of Open Access Journals (Sweden)

    Feng Zhong

    2017-11-01

    Full Text Available By combination of high trapping free radical efficiency of the thioketone and resonance of the allylic radical, a new type of mediating agent, 1,3,3-triphenylprop-2-ene-1-thione (TPPT has been successfully synthesized, and then is used to study controlled free radical polymerization of methacrylates. Very stable TPPT radicals at the end of poly(methyl methacrylate (PMMA are detected in the polymerization of MMA using TPPT and AIBN as the control agent and initiator. The MALDI-TOF MS spectra are used to identify terminal groups of the resultant poly(glycidyl methacrylate (PGMA, and major component of the obtained polymer has the structure, (CH32(CNC-PGMA-C7H9O3. Chain extension reaction tests ascertain formation of the dead polymers during the polymer storage and purification process of the polymers. Owing to very slow fragmentation reaction of the TPPT-terminated polymethacrylate radical and addition reaction of this radical with a primary radical, the growing chain radicals are difficult to be regenerated, leading to an unobvious change of the molecular weight with monomer conversion. The molecular weights of polymers can be controlled by the ratios of monomer/initiator and TPPT/initiator. However, the first order kinetics of the polymerization and the polymers with narrow polydispersity are obtained, and these phenomena are discussed. This study provides useful information on how to design a better controlling agent.

  18. METHACRYLATE AND ACRYLATE ALLERGY IN DENTAL STUDENTS.

    Directory of Open Access Journals (Sweden)

    Maya Lyapina

    2013-09-01

    Full Text Available A multitude of acrylic monomers is used in dentistry, and when dental personnel, patients or students of dental medicine become sensitized, it is of great importance to identify the dental ;acrylic preparations to which the sensitized individual can be exposed. Numerous studies confirm high incidence of sensitization to (meth acrylates in dentatal professionals, as well as in patients undergoing dental treatment and exposed to resin-based materials. Quite a few studies are available aiming to evaluate the incidence of sensitization in students of dental medicineThe purpose of the study is to evaluate the incidence of contact sensitization to some (meth acrylates in students of dental medicine at the time of their education, in dental professionals (dentists, nurses and attendants and in patients, the manifestation of co-reactivity.A total of 139 participants were included in the study, divided into four groups: occupationally exposed to (methacrylates and acrylic monomers dental professionals, 3-4 year-of-education students of dental medicine, 6th year–of-education students of dental medicine and patients with suspected or established sensitization to acrylates, without occupational exposure. All of them were patch-tested with methyl methacrylate (MMA, triethyleneglycol dimethacrylate (TREGDMA, ethyleneglycol dimethacrylate (EGDMA, 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy phenyl]propane (bis-GMA, 2-hydroxyethyl methacrylate (2-HEMA, and tetrahidrofurfuril metacrylate. The overall sensitization rates to methacrylates in the studied population are comparative high – from 25.9% for MMA to 31.7% for TREGDMA. Significantly higher incidence of sensitization in the group of 3-4 course students compared to the one in the group of dental professionals for MMA and TREGDMA was observed. Highest was the incidence of sensitization to ethyleneglycol dimethacrylate, BIS-GMA, 2-HEMA and tetrahydrofurfuryl methacrylate in the group of patients, with

  19. Changes induced by gamma radiation in nanocomposites based on copper II and antimony sulfides in commercial poly(methyl methacrylate) matrix; Alteracoes induzidas pela radiacao gama em nanocompositos a base dos sulfetos de cobre II e de antimonio na matriz de poli(metacrilato de metila) comercial

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, M.C.C. de; Garcia, O.P.; Aquino, K.A.S.; Araujo, E.S., E-mail: esa@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2010-07-01

    Poly (methyl methacrylate) (PMMA) is a polymer with wide application in the manufacture of medical devices that is exposed to gamma irradiation. Currently the use of composite materials has been disseminated and PMMA is an excellent polymer matrix to package various materials. This study aimed to analyze the changes induced by gamma irradiation (25 kGy) on the properties of PMMA nanocomposites with nanoparticles of copper II sulfide (250nm-900nm) and antimony sulfite (300-500 nm). The nanoparticles were added to the polymer in different concentrations and synthesized by ultrasonic irradiation from the corresponding chlorides with thioacetamide. Viscometric results showed a good radioprotective effect of nanoparticles of copper and antimony. It was found a good protection of nanoparticles on PMMA matrix in the concentration of 0.3% wt. The protections of 75% and 50% were calculated for nanoparticles of antimony and copper II, respectively. (author)

  20. Survey of volatile substances in kitchen utensils made from acrylonitrile–butadiene–styrene and acrylonitrile–styrene resin in Japan

    National Research Council Canada - National Science Library

    Abe, Yutaka; Yamaguchi, Miku; Mutsuga, Motoh; Kawamura, Yoko; Akiyama, Hiroshi

    2014-01-01

    Residual levels of 14 volatile substances, including 1,3‐butadiene, acrylonitrile, benzene, ethylbenzene, and styrene, in 30 kitchen utensils made from acrylonitrile–butadiene–styrene resin ( ABS ) and acrylonitrile–styrene resin...

  1. Helbredsrisici ved eksponering for styren i glasfiberplastindustrien

    DEFF Research Database (Denmark)

    Kolstad, Henrik Albert; Ebbehøj, Nielse; Bonde, Jens Peter

    2012-01-01

    This is a summary of the health risks of occupational styrene exposure based on recent reviews. We conclude about the exposure levels that there is strong evidence that styrene causes acute irritation of eyes and respiratory tract above 25 ppm, genotoxic effects above 10 ppm, and persistent nervous...... or relevant exposure levels. We recommend reconsideration of the current Danish threshold limit value of 25 ppm, biological monitoring of styrene exposed workers, and epidemiological analyses of styrene exposure levels and long-term health effects among employees of the Danish reinforced plastics industry....... system effects with for instance reduced psychological performance, colour discrimination and hearing level following long-term styrene exposure above 10 ppm. There is moderate evidence of a causal association with cancer, but data are not sufficient to allow us to pinpoint specific cancers at risk...

  2. Acquired dyschromatopsia among styrene-exposed workers.

    Science.gov (United States)

    Gobba, F; Galassi, C; Imbriani, M; Ghittori, S; Candela, S; Cavalleri, A

    1991-07-01

    We investigated the occurrence of color vision loss in 75 styrene-exposed workers and in 60 referents. Color vision was evaluated by adopting the Lanthony D 15 desaturated panel, a test specifically suited to detect mild acquired dyschromatopsia. The results of the test were expressed as Color Confusion Index. Styrene exposure was evaluated with both environmental and biological monitoring. Airborne levels of the solvent were 3.2 to 549.5 mg/m3. In styrene-exposed workers color vision was significantly impaired when compared with referents matched for age. A significative correlation was found between environmental and urinary levels of styrene and Color Confusion Index excluding the influence of age in multiple regression analysis, indicating the possibility of a dose-effect relationship. The findings suggest that styrene can induce an early appearance of a dose-dependent color vision loss.

  3. Helbredsrisici ved eksponering for styren i glasfiberplastindustrien

    DEFF Research Database (Denmark)

    Kolstad, Henrik Albert; Ebbehøj, Nielse; Bonde, Jens Peter

    2012-01-01

    or relevant exposure levels. We recommend reconsideration of the current Danish threshold limit value of 25 ppm, biological monitoring of styrene exposed workers, and epidemiological analyses of styrene exposure levels and long-term health effects among employees of the Danish reinforced plastics industry.......This is a summary of the health risks of occupational styrene exposure based on recent reviews. We conclude about the exposure levels that there is strong evidence that styrene causes acute irritation of eyes and respiratory tract above 25 ppm, genotoxic effects above 10 ppm, and persistent nervous...... system effects with for instance reduced psychological performance, colour discrimination and hearing level following long-term styrene exposure above 10 ppm. There is moderate evidence of a causal association with cancer, but data are not sufficient to allow us to pinpoint specific cancers at risk...

  4. Semi-micro reversed-phase liquid chromatography for the separation of alkyl benzenes and proteins exploiting methacrylate- and polystyrene-based monolithic columns.

    Science.gov (United States)

    Masini, Jorge Cesar

    2016-05-01

    Monolithic columns were synthesized inside 1.02 mm internal diameter fused-silica lined stainless-steel tubing. Styrene and butyl, hexyl, lauryl, and glycidyl methacrylates were the functional monomers. Ethylene glycol dimethacrylate and divinylbenzene were the crosslinkers. The glycidyl methacrylate polymer was modified with gold nanoparticles and dodecanethiol (C12 ). The separation of alkylbenzenes was investigated by isocratic elution in 60:40 v/v acetonitrile/water. The columns based on polystyrene-co-divinylbenzene and poly(glycidyl methacrylate)-co-ethylene glycol dimethacrylate modified with dodecanethiol did not provide any separation of alkyl benzenes. The poly(hexyl methacrylate)-co-ethylene glycol dimethacrylate and poly(lauryl methacrylate)-co-ethylene glycol dimethacrylate columns separated the alkyl benzenes with plate heights between 30 and 60 μm (50 μL min(-1) and 60°C). Similar efficiency was achieved in the poly(butyl methacrylate)-co-ethylene glycol dimethacrylate column, but only at 10 μL min(-1) (0.22 mm s(-1) ). Backpressures varied from 0.38 MPa in the hexyl methacrylate to 13.4 MPa in lauryl methacrylate columns (50 μL min(-1) and 60°C). Separation of proteins was achieved in all columns with different efficiencies. At 100 μL min(-1) and 60°C, the lauryl methacrylate columns provided the best separation, but their low permeability prevented high flow rates. Flow rates up to 500 μL min(-1) were possible in the styrene, butyl and hexyl methacrylate columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Study of the mechanical properties of Acrylonitrile Butadiene Styrene - High Impact Polystyrene blends with Styrene Ethylene Butylene Styrene

    OpenAIRE

    PEYDRO Miguel Angel; JUAREZ David; Sanchez-Caballero, Samuel; PARRES Francisco

    2013-01-01

    A binary blend Acrylonitrile Butadiene Styrene ¿ High Impact Polystyrene (ABS-HIPS 50% wt) was prepared on a twin-screw extruder at 190-210 oC. The different mechanical properties were then analyzed using tensile strength and impact tests. The analysis of mechanical properties showed a decrease in elongation at break and impact strength. On the other hand, we have prepared ternary blends of ABS-HIPS- Styrene Ethylene Butylene Styrene (SEBS), varying the percentage of SEBS from 10 to 30 %wt us...

  6. Study of the Influence of adding styrene-ethylene/butadiene-styrene in acrylonitrile-butadiene-styrene and polyethylene blends

    OpenAIRE

    M.A. Peydro; F. Parres; Navarro Vidal, Raúl; Sanchez-Caballero, Samuel

    2014-01-01

    This work studies the recovery of two grades of acrylonitrile butadiene styrene (ABS) contaminated with low-density polyethylene (LDPE), by adding styrene ethylene/butadiene styrene (SEBS). To simulate contaminated ABS, virgin ABS was mixed with 1, 2, 4, and 8% of LDPE and then extruded at 220°C. After this, the ABS with the highest percentage of LDPE (8%) was mixed with 1, 2, 4, and 8% of SEBS and then extruded. Different blends were mechanically, rheologically, optically, and dimensionally ...

  7. Correlation between stated and measured concentrations of acrylate and methacrylate allergens in patch-test preparations.

    Science.gov (United States)

    Goon, Anthony Teik-Jin; Bruze, Magnus; Zimerson, Erik; Sörensen, Osten; Goh, Chee-Leok; Koh, David Soo-Quee; Isaksson, Marléne

    2011-01-01

    Contact allergy to acrylates and methacrylates is not uncommon. The allergy is confirmed by patch-testing patients with commercial patch-test preparations. To investigate acrylate and methacrylate allergens used for patch testing in nine different dermatology departments from Europe, America, Asia, and Australia. The acrylate and methacrylate (methyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, ethylene glycol dimethacrylate, and triethylene glycol diacrylate) allergen samples were analyzed with high-performance liquid chromatography to measure the allergen content. Variation in measured versus stated concentrations was seen in these samples. The ratio of measured to stated concentrations ranged from 0.11 to 1.1. Only 22 (63%) of 35 samples were within the arbitrary acceptable limits of 80 to 120% of the stated concentrations. The results may have implications for individual diagnosis and prevention and when test results from various centers are compared.

  8. Methacrylate-Based Copolymers for Polymer Optical Fibers

    Directory of Open Access Journals (Sweden)

    Daniel Zaremba

    2017-01-01

    Full Text Available Waveguides made of poly-methyl-methacrylate (PMMA play a major role in the homogeneous distribution of display backlights as a matrix for solid-state dye lasers and polymer optical fibers (POFs. PMMA is favored because of its transparency in the visible spectrum, low price, and well-controlled processability. Nevertheless, technical drawbacks, such as its limited temperature stability, call for new materials. In this work, the copolymerization technique is used to modify the properties of the corresponding homopolymers. The analytical investigation of fourteen copolymers made of methyl-methacrylate (MMA or ethyl-methacrylate (EMA as the basis monomer is summarized. Their polymerization behaviors are examined by NMR spectroscopy with subsequent copolymerization parameter evaluation according to Fineman-Ross and Kelen-Tüdös. Therefore, some r-parameter sets are shown to be capable of copolymerizations with very high conversions. The first applications as high-temperature resistant (HT materials for HT-POFs are presented. Copolymers containing isobornyl-methacrylate (IBMA as the comonomer are well-suited for this demanding application.

  9. Synthesis of acrylates and methacrylates from coal-derived syngas

    Energy Technology Data Exchange (ETDEWEB)

    Spivey, J.J.; Gogate, M.R.; Jang, B.W.L. [Bechtel, San Francisco, CA (United States)] [and others

    1995-12-31

    Acrylates and methacrylates are among the most widely used chemical intermediates in the world. One of the key chemicals of this type is methyl methacrylate. Of the 4 billion pounds produced each year, roughly 85% is made using the acetone-cyanohydrin process, which requires handling of large quantities of hydrogen cyanide and produces ammonium sulfate wastes that pose an environmental disposal challenge. The U.S. Department of Energy and Eastman Chemical Company are sharing the cost of research to develop an alternative process for the synthesis of methyl methacrylate from syngas. Research Triangle Institute is focusing on the synthesis and testing of active catalysts for the condensation reactions, and Bechtel is analyzing the costs to determine the competitiveness of several process alternatives. Results thus far show that the catalysts for the condensation of formaldehyde and the propionate are key to selectively producing the desired product, methacrylic acid, with a high yield. These condensation catalysts have both acid and base functions and the strength and distribution of these acid-base sites controls the product selectivity and yield.

  10. Physical properties of agave cellulose graft polymethyl methacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan [Polymer Research Centre (PORCE), School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor (Malaysia)

    2013-11-27

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm{sup −1} which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.

  11. Viscoelastic behaviour of polymethyl methacrylate networks with different crosslinking degrees

    OpenAIRE

    Alves, N. M.; Gómez Ribelles, J. L.; Gómez Tejedor, J. A.; Mano, J. F.

    2004-01-01

    The influence of the cross-linking degree on the dynamics of the segmental motions close to the glass transition of poly(methyl methacrylate), PMMA, networks was investigated by three different mechanical spectroscopy techniques: thermally stimulated recovery (TSR), dynamic mechanical analysis (DMA), and creep. The application of the time-temperature superposition principle to isothermal DMA and creep results permitted to successfully construct master curves for PMMA networks with...

  12. Methacrylate-Based Copolymers for Polymer Optical Fibers

    OpenAIRE

    Daniel Zaremba; Robert Evert; Laurie Neumann; Reinhard Caspary; Wolfgang Kowalsky; Henning Menzel; Hans-Hermann Johannes

    2017-01-01

    Waveguides made of poly-methyl-methacrylate (PMMA) play a major role in the homogeneous distribution of display backlights as a matrix for solid-state dye lasers and polymer optical fibers (POFs). PMMA is favored because of its transparency in the visible spectrum, low price, and well-controlled processability. Nevertheless, technical drawbacks, such as its limited temperature stability, call for new materials. In this work, the copolymerization technique is used to modify the properties of t...

  13. Grafting of styrene onto fluoropolymers films

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Adriana N.; Zen, Heloisa A.; Parra, Duclerc F.; Lugao, Ademar B.; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente], E-mail: angeral@ipen.br

    2007-07-01

    Grafting of styrene onto poly(vinylidenefluoride) (PVDF) and poly(tetrafluoroethylene) (PTFE) films was studied for the synthesis of ion exchange membranes. Radiation-induced grafting of styrene onto PVDF and PTFE films was investigated by simultaneous method using a Co{sup 60} source. The films of PVDF and PTFE were irradiated at total dose of 20 to 120 kGy and chemical changes were monitored after contact with styrene. Films of PTFE and PVDF were immersed in styrene/toluene 1:1 and were submitted to gamma radiation. After irradiation the samples were evaluated at periods of 0, 7, 14, 21 and 28 days, at room temperature in order to measure the grafting degree. Results of infrared spectroscopic analysis (FTIR), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA) and the degree of grafting (DOG) were evaluated. The characterization techniques showed that irradiated PVDF and PTFE films exhibited a much higher grafting degree at 120 kGy. (author)

  14. Free radical copolymerization kinetics of γ-methyl-α-methylene-γ-butyrolactone (MeMBL).

    Science.gov (United States)

    Cockburn, Robert A; Siegmann, Rebekka; Payne, Kevin A; Beuermann, Sabine; McKenna, Timothy F L; Hutchinson, Robin A

    2011-06-13

    The propagation kinetics and copolymerization behavior of the biorenewable monomer γ-methyl-α-methylene-γ-butyrolactone (MeMBL) are studied using the pulsed laser polymerization (PLP)/size exclusion chromatography (SEC) technique. The propagation rate coefficient for MeMBL is 15% higher than that of its structural analogue, methyl methacrylate (MMA), with a similar activation energy of 21.8 kJ·mol(-1). When compared to MMA, MeMBL is preferentially incorporated into copolymers when reacted with styrene (ST), MMA, and n-butyl acrylate (BA); the monomer reactivity ratios fit from bulk MeMBL/ST, MeMBL/MMA, and MeMBL/BA copolymerizations are r(MeMBL) = 0.80 ± 0.04 and r(ST) = 0.34 ± 0.04, r(MeMBL) = 3.0 ± 0.3 and r(MMA) = 0.33 ± 0.01, and r(MeMBL) = 7.0 ± 2.0 and r(BA) = 0.16 ± 0.03, respectively. In all cases, no significant variation with temperature was found between 50 and 90 °C. The implicit penultimate unit effect (IPUE) model was found to adequately fit the composition-averaged copolymerization propagation rate coefficient, k(p,cop), for the three systems.

  15. The effect of multifunctional monomers/oligomers Additives on electron beam radiation crosslinking of poly (styrene-block-isoprene/butadiene-block-styrene) (SIBS)

    Science.gov (United States)

    Wu, Jinping; Soucek, Mark D.

    2016-02-01

    The effect of multifunctional monomers or oligomers (MFM/O) additives on electron beam (E-beam) radiation induced crosslinking of poly (styrene-block-isoprene/butadiene-block-styrene) (SIBS) was studied. Ten types of MFM/O were investigated, including trimethylolpropane trimethacrylate (TMPTMA), trimethylolpropane triacrylate (TMPTA), triallyl cyanurate (TAC), polybutadiene diacrylate (PB-diacrylate), ethylene glycol dimethylacrylate (EGDMA), butylene glycol dimethacrylate (BGDMA), 1,2-polybutadiene. The effects of MFM/O concentration and E-beam radiation dose on properties of SIBS were studied including tensile strength, elongation-at-break, modulus, gel content, equilibrium swelling and crosslink density. TMPTA significantly improved the tensile modulus and crosslink density of SIBS. SIBS with TMPTMA and TMTPMA with inhibitor showed a 50% increase in tensile strength. The solubility of MFM/O in SIBS was also investigated by a selective swelling method. The MFM/O were found to be soluble in both phases of SIBS. The viscosity of SIBS with methacrylate type MFM/O was stable at 200 °C.

  16. 78 FR 6213 - Styrene-2-Ethylhexyl Acrylate Copolymer; Tolerance Exemption

    Science.gov (United States)

    2013-01-30

    ... AGENCY 40 CFR Part 180 Styrene-2-Ethylhexyl Acrylate Copolymer; Tolerance Exemption AGENCY: Environmental...; also known as styrene-2-ethylhexyl acrylate copolymer when used as an inert ingredient in a pesticide...-risk polymers are described in 40 CFR 723.250(d). Styrene-2-ethylhexyl acrylate copolymer conforms to...

  17. 21 CFR 177.1810 - Styrene block polymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene block polymers. 177.1810 Section 177.1810... FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1810 Styrene block polymers. The styrene...

  18. The potential dermal irritating effect of residual (meth)acrylic monomers in pressure sensitive adhesive tapes.

    Science.gov (United States)

    Tokumura, Fumio; Matsui, Tetsuya; Suzuki, Yasuko; Sado, Masashi; Taniguchi, Masaharu; Kobayashi, Ichiro; Kamiyama, Masashi; Suda, Shin; Nakamura, Atsushi; Yamazaki, Yuhiro; Yamori, Akira; Igarashi, Ryosuke; Kawai, Jun; Oka, Keiji

    2010-01-01

    It is generally thought that residual unpolymerized (meth)acrylic monomers commonly found in pressure sensitive adhesive tapes for medical use may cause dermal irritation, but a systematic study has never been carried out. Therefore, we assessed the potential dermal irritating effect of residual (meth)acrylic monomers. We studied seven acrylic monomers, acrylic acid (AA), methyl acrylate (MA), ethyl acrylate (EA), n-butyl acrylate (n-BA), n-hexyl acrylate (n-HA), 2-ethylhexyl acrylate (2-EHA) and 2-hydroxyethyl acrylate (HEA), as well as three methacrylic monomers, methacrylic acid (MAA), methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (2-HEMA). We first examined their cytotoxic effect on a cultured dermis model using the MTT method to determine their EC(50) and then performed a primary irritation test in rabbits using the monomers at three different concentrations (i.e., EC(50) , one-tenth EC(50) and 10 times EC(50)). Marked variations were found in cytotoxic and dermal irritating activities among the (meth)acrylic monomers tested. HEA exhibited the most potent dermal irritation having the lowest erythema dose (the concentration which gives a primary dermal irritation index of 1.00) of 460 ppm. But the other monomers exhibited less potent dermal irritation (lowest erythema doses > or =1000 ppm). For the monomers, significant correlation was found between cytotoxic activity and in vivo dermal irritating activity. Our results show that residual unpolymerized (meth)acrylic monomers in adhesive tapes are unlikely to induce skin irritation except for HEA. This study also suggests that cultured skin models are extremely useful as a screening method for chemical substances that could potentially cause dermal irritating activity.

  19. SYNTHESIS OF METHACRYLATES FROM COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Jang, B.W.L.; Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1999-12-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel have developed a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy/Fossil Energy Technology Center (DOE/FETC). This project has resulted in five US patents (four already published and one pending publication). It has served as the basis for the technical and economic assessment of the production of this high-volume intermediate from coal-derived synthesis gas. The three-step process consists of the synthesis of a propionate from ethylene carbonylation using coal-derived CO, condensation of the propionate with formaldehyde to form methacrylic acid (MAA); and esterification of MAA with methanol to yield MMA. The first two steps, propionate synthesis and condensation catalysis, are the key technical challenges and the focus of the research presented here.

  20. Survey of volatile substances in kitchen utensils made from acrylonitrile–butadiene–styrene and acrylonitrile–styrene resin in Japan

    OpenAIRE

    Abe, Yutaka; Yamaguchi, Miku; Mutsuga, Motoh; Kawamura, Yoko; Akiyama, Hiroshi

    2014-01-01

    Residual levels of 14 volatile substances, including 1,3-butadiene, acrylonitrile, benzene, ethylbenzene, and styrene, in 30 kitchen utensils made from acrylonitrile–butadiene–styrene resin (ABS) and acrylonitrile–styrene resin (AS) such as slicers, picks, cups, and lunch boxes in Japan were simultaneously determined using headspace gas chromatography/mass spectroscopy (HS-GC/MS). The maximum residual levels in the ABS and AS samples were found to be 2000 and 2800 μg/g of styrene, respectivel...

  1. 78 FR 55644 - Styrene, Copolymers with Acrylic Acid and/or Methacrylic Acid; Tolerance Exemption

    Science.gov (United States)

    2013-09-11

    ... 20156) on behalf of Akzo Nobel Surface Chemistry, (909 Mueller Ave., Chattanooga, TN 37406) submitted a petition to EPA under the Federal Food, Drug, and Cosmetic Act (FFDCA), requesting an exemption from the..., (7140 Heritage Village Plaza, Gainesville, VA 20156) on behalf of Akzo Nobel Surface Chemistry, (909...

  2. Polystyrene cups and containers: styrene migration.

    Science.gov (United States)

    Tawfik, M S; Huyghebaert, A

    1998-07-01

    The level of styrene migration from polystyrene cups was monitored in different food systems including: water, milk (0.5, 1.55 and 3.6% fat), cold beverages (apple juice, orange juice, carbonated water, cola, beer and chocolate drink), hot beverages (tea, coffee, chocolate and soup (0.0, 0.5, 1, 2, and 3.6% fat), take away foods (yogurt, jelly, pudding and ice-cream), as well as aqueous food simulants (3% acetic acid, 15, 50, and 100% ethanol) and olive oil. Styrene migration was found to be strongly dependent upon the fat content and storage temperature. Drinking water gave migration values considerably lower than all of the fatty foods. Ethanol at 15% showed a migration level equivalent to milk or soup containing 3.6% fat. Maximum observed migration for cold or hot beverages and take-away foods was 0.025% of the total styrene in the cup. Food simulants were responsible for higher migration (0.37% in 100% ethanol). A total of 60 food samples (yogurt, rice with milk, fromage, biogardes, and cheese) packed in polystyrene containers were collected from retail markets in Belgium, Germany, and the Netherlands. The level of styrene detected in the foods was always fat dependent.

  3. Catalytic dehydrogenations of ethylbenzene to styrene

    NARCIS (Netherlands)

    Kapteijn, F.; Makkee, M.; Nederlof, C.

    This research work on the catalytic dehydrogenation of ethylbenzene (EB) to styrene (ST) had a primary goal of developing improved catalysts for dehydrogenation processes both in CO2 as well as with O2 that can compete with the conventional dehydrogenation process in steam. In order to achieve this

  4. Graft Copolymerization and Characterization of Styrene with ...

    African Journals Online (AJOL)

    MBI

    2017-05-24

    May 24, 2017 ... 1Department of Chemistry, Faculty of Science, Northwest University, P.M.B 3220, Kano, Nigeria. 2Department of Pure and ... In this study, styrene was successfully grafted onto chitosan by conventional free radical polymerization technique, using ..... radical species is very high, chain transfer and reaction ...

  5. Phase behavior for the poly(alkyl methacrylate)+supercritical CO{sub 2}+DME mixture at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Seok; Chio, Sang-Won; Byun, Hun-Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2016-01-15

    The phase behavior curves of binary and ternary system were measured for poly(alkyl methacrylate) in supercritical CO{sub 2}, as well as for the poly(alkyl methacrylate)+dimethyl ether (DME) (or 1-butene) in CO{sub 2}. The solubility curves are reported for the poly(alkyl methacrylate)+DME in supercritical CO{sub 2} at temperature from (300 to 465) K and a pressure from (3.66 to 248) MPa. Also, The high-pressure static-type apparatus of cloud-point curve was tested by comparing the measured phase behavior data of the poly(methyl methacrylate) [PMMA]+CO{sub 2}+20.0 and 30.4 wt% methyl methacrylate (MMA) system with literature data of 10.4, 28.8 and 48.4 wt% MMA concentration. The phase behavior data for the poly(alkyl methacrylate)+CO{sub 2}+DME mixture were measured in changes of the pressure-temperature (p, T) slope and with DME concentrations. Also, the cloud-point pressure for the poly(alkyl methacrylate)+1- butene solution containing supercritical CO{sub 2} shows from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region at concentration range from (0.0 to 95) wt% 1-butene at below 455 K and at below 245MPa.

  6. Kinetics of the Reactions of NO3Radical with Methacrylate Esters.

    Science.gov (United States)

    Zhou, Li; Ravishankara, A R; Brown, Steven S; Idir, Mahmoud; Zarzana, Kyle J; Daële, Véronique; Mellouki, Abdelwahid

    2017-06-15

    Two different experimental methods (relative rate and absolute rate methods) were used to measure the rate coefficients for the reactions of NO 3 radical with six methacrylate esters: methyl methacrylate (MMA, k 1 ), ethyl methacrylate (EMA, k 2 ), propyl methacrylate (PMA, k 3 ), isopropyl methacrylate (IPMA, k 4 ), butyl methacrylate (BMA, k 5 ), and isobutyl methacrylate (IBMA, k 6 ). In the relative rate method, the loss of the esters relative to that of a reference compound was followed in a 7300 L Teflon-walled chamber at 298 ± 2 K and 1000 ± 5 hpa. In the absolute method, the temporal profiles of NO 3 and N 2 O 5 were followed by using a dual channel cavity ring-down spectrometer in the presence of an excess of ester in the 7300 L chamber. The rate coefficients from these two methods (weighted averages) in the units of 10 -15 cm 3 molecule -1 s -1 at 298 K are k 1 = 2.98 ± 0.35, k 2 = 4.67 ± 0.49, k 3 = 5.23 ± 0.60, k 4 = 7.9 1 ± 1.0 0 , k 5 = 5.91 ± 0.58, and k 6 = 6.24 ± 0.66. The quoted uncertainties are at the 2σ level and include estimated systematic errors. Unweighted averages are also reported. In addition, the rate coefficient k 7 for the reaction of NO 3 radical with deuterated methyl methacrylate (MMA-d 8 ) was measured by using the relative rate method to be essentially the same as k 1 . The trends in the measured rate coefficient with the length and nature of the alkyl group, along with the equivalence of k 1 and k 7 , strongly suggest that the reaction of NO 3 with the methacrylate esters proceeds via addition to the double bond on the methacrylate group. The present results are compared with those from previous studies. Using the measured values of the rate coefficients, along with those for reactions of these esters with OH, O 3 , and chlorine atoms, we calculated the atmospheric lifetimes of methacrylate esters. We suggest that NO 3 radicals do contribute to the atmospheric loss of these unsaturated esters, but to a lesser extent

  7. Separação de fases induzida por meio de reação química no sistema éter diglicidílico do bisfenol A e piperidina com poli(metacrilato de metila Phase separation induced by chemical reaction in the system of diglycidyl ether of bisphenol A and piperidine with poly(methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2003-12-01

    Full Text Available O comportamento da separação de fases e da gelificação do sistema epoxídico, constituído pelo éter diglicidílico do bisfenol A (DGEBA e a piperidina, modificado com poli(metacrilato de metila (PMMA, foi estudado na faixa de temperatura de 60 °C - 120 °C. A concentração de PMMA e a temperatura de cura causam mudanças significativas na morfologia gerada. A massa molecular de PMMA provoca ligeiras mudanças para a observação da separação de fases e não afeta a velocidade da reação. O sistema modificado com PMMA mostra o efeito de retardação cinético e a velocidade de separação de fases é maior que a velocidade de polimerização.The phase separation and gelification behavior of epoxy system based on diglycidyl ether of bisphenol-A (DGEBA and piperidine modified with poly(methyl methacrylate (PMMA were studied in the range between 60 °C and 120 °C. The morphology is influenced by the PMMA content in the blend and also by the cure temperature. The molecular weight of PMMA provokes slight changes on cloud point and does not affect the reaction rate. The systems modified by PMMA exhibited kinetic retardation effect but the cloud point rate was higher than the polymerization rate.

  8. Modified hydrogenated PBLH copolymer synthesis with styrene for proton exchange membranes fuel cell application; Derivados de PBLH hidrogenado na sintese de copolimeros com estireno, para a producao de membranas cationicas para celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Fernando A.; Oliveira, Angelo R.S.; Rodrigues, Maraiza F.; Groetzner, Mariana B.; Cesar-Oliveira, Maria Aparecida F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Polimeros Sinteticos (LABPOL)]. E-mails: ferraz@quimica.ufpr.br; angelorsoliveira@ig.com.br; maraiza@quimica.ufpr.br; marianabitt@brasilh2.com.br; mafco@quimica.ufpr.br; Cantao, Mauricio P. [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)]. E-mail: cantao@lactec.org.br

    2005-07-01

    Polymers used as electrolyte in fuel cells are expected to have functional groups in their structure which are responsible for proton conductivity. Since the use of hydroxylated liquid polybutadiene (PBLH) has not been mentioned in the literature as an ion exchange membrane for fuel cell application (PEMFC), and its structure can be modified for a later sulfonation, it has been studied. In this work, PBLH was modified through a hydrogenation reaction. Furthermore, hydrogenated polymeric esters were obtained by esterification and transesterification reactions (PBLH- estearate and PBLH- methacrylate). Reacting the PBLH methacrylate with styrene, it was generated a copolymer with appropriated structure for sulfonation, justifying researches for fuel cell. (author)

  9. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    Science.gov (United States)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  10. Study of the thermal properties of Acrylonitrile Butadiene Styrene - High Impact Polystyrene blends with Styrene Ethylene Butylene Styrene

    OpenAIRE

    PEYDRO Miguel Angel; JUAREZ David; Sanchez-Caballero, Samuel; PARRES Francisco

    2013-01-01

    A binary blend Acrylonitrile Butadiene Styrene ¿ High Impact Polystyrene (ABS-HIPS 50% wt) was prepared on a twin-screw extruder at 190-210 oC. The different properties were then analyzed using melt flow index (MFI), thermogravimetric analysis (TGA), and Fourier Transform Infrared spectroscopy (FTIR). FTIR analysis indicated heterogeneous distribution of the blend in injected pieces and SEM micrographs show heterogeneous distribution of both phase (ABS and HIPS). On the other hand, we have pr...

  11. Crystal structures of the polymer precursors 3-(2,5-dimethoxy-3,4,6-trimethylphenylpropyl methacrylate and 3-(2,4,5-trimethyl-3,6-dioxocyclohexa-1,4-dienylpropyl methacrylate

    Directory of Open Access Journals (Sweden)

    Shailesh K. Goswami

    2017-05-01

    Full Text Available The closely related title compounds, 3-(2,5-dimethoxy-3,4,6-trimethylphenylpropyl methacrylate, C18H26O4 (I, and 3-(2,4,5-trimethyl-3,6-dioxocyclohexa-1,4-dienylpropyl methacrylate, C16H20O4 (II, are monomers suitable for the preparation of redox polymers. They consist of a propylmethacrylate group and three methyl substituents on dimethoxybenzene and quinone cores, respectively. Both crystal structures feature weak C—H...O hydrogen bonds and C—H...π(ring contacts between methyl groups and the six-membered rings.

  12. Synthesis of methyl propanoate by Baeyer-Villiger monooxygenases

    NARCIS (Netherlands)

    van Beek, Hugo L.; Winter, Remko T.; Eastham, Graham R.; Fraaije, Marco W.

    2014-01-01

    Methyl propanoate is an important precursor for polymethyl methacrylates. The use of a Baeyer-Villiger monooxygenase (BVMO) to produce this compound was investigated. Several BVMOs were identified that produce the chemically non-preferred product methyl propanoate in addition to the normal product

  13. Styrene polymerization in three-component cationic microemulsions

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Luna, V.H.; Puig, J.E. (Universidad de Guadalajara (Mexico)); Castano, V.M. (Instituto de Fisica (Mexico)); Rodriguez, B.E.; Murthy, A.K.; Kaler, E.W. (Univ. of Delaware, Newark (USA))

    1990-06-01

    The polymerization of styrene in three-component dodecyltrimethylammonium bromide (DTAB) microemulsions is reported. The structure of the unpolymerized microemulsions, determined by conductimetry and quasielastic light scattering (QLS), is consistent with styrene-swollen micelles in equilibrium with regular micelles, both dispersed in an aqueous phase. Polymerization of these transparent microemulsions, monitored by QLS an dilatometry, produced stable, bluish monodisperse microlatices with particle radii ranging from 20 to 30 nm, depending on styrene content. Polymerization initiation appears to occur in the styrene-swollen micelles, and the polymer particles grow by recruiting monomer and surfactant from uninitiated droplets and small micelles.

  14. Síntese e caracterização de copolímeros à base de metacrilato de metila e divinilbenzeno com propriedades magnéticas Synthesis and characterization of copolymers based on methyl methacrylate and divinylbenzene with magnetic properties

    Directory of Open Access Journals (Sweden)

    Cristiane N. Costa

    2012-01-01

    Full Text Available Neste trabalho, foram sintetizados materiais binários baseados em copolímeros de metacrilato de metila reticulados com divinilbenzeno contendo partículas de ferro com propriedades magnéticas pela técnica de polimerização em suspensão. Foram estudados os efeitos da concentração de ferro adicionado na polimerização, da razão molar MMA/DVB, do tipo de agente de suspensão e da velocidade de agitação na formação do copolímero. Os copolímeros foram caracterizados quanto à morfologia, à estabilidade térmica, ao teor de ferro incorporado, à distribuição de tamanho de partículas, às propriedades magnéticas, à área superficial, ao volume e ao tamanho de poros. Foram obtidas microesferas poliméricas com propriedades magnéticas que apresentaram bom controle morfológico esférico e partículas de ferro aglomeradas por toda a superfície da microesfera. As análises de propriedades magnéticas mostraram que os materiais obtidos não apresentaram ciclos de histerese, estando assim próximos de um material com propriedades superparamagnéticas, com magnetização de saturação entre 8,0 e 13,0 emu.g-1.In this work, copolymers based on methyl methacrylate and divinylbenzene containing iron with magnetic properties were produced using the suspension polymerization method. An investigation was performed of the effect from the concentration of iron added to the polymerization, the MMA/DVB molar ratio in the copolymer formation, type of suspension agent and stirring speed on the synthesis of the copolymers. The copolymers morphology, thermal stability, contents of embedded iron, particle size distribution, magnetic properties, surface area, volume and pore size were evaluated. Polymeric microspheres with magnetic properties were successfully obtained. These materials showed good control of the spherical shape and agglomeration of iron particles under the surface of the microsphere. The analysis of magnetic properties pointed to

  15. Efeito da massa molar e do teor de poliuretano nas propriedades mecânicas de misturas poli(metacrilato de metila/poliuretano Effect of the molecular weight and polyurethane content on mechanical properties of poly(methyl methacrylate/polyurethane mixtures

    Directory of Open Access Journals (Sweden)

    Ubirajara F. Pinto

    2005-07-01

    Full Text Available Foi estudado o efeito da massa molar e do teor de três poliuretanos termoplásticos comerciais sobre as propriedades mecânicas de misturas físicas de poli(metacrilato de metila/poliuretano. As amostras foram preparadas em reômetro Haake a 180 °C/10 min e 60 rpm, e as composições das misturas foram 0/100, 10/90, 30/70, 50/50, 70/30, 90/10 e 100/0 de PMMA/TPU. Propriedades mecânicas como resistência à tração e alongamento na ruptura foram melhores para a amostra PU (85 A15, de menor massa molar mássica média (Mw = 138,000. Os resultados mostraram que o teor de TPU afeta fortemente as características do material cujas propriedades tornam-se progressivamente semelhantes às do componente em maior proporção. O estudo permitiu comparar os resultados de misturas obtidas por processamento em reômetro com dados relatados para IPNs simultâneos e sequenciais de PU/PMMA. O perfil do comportamento do módulo de elasticidade sugere a ocorrência de duas fases contínuas nas misturas TPU/PMMA de acordo com dados previstos por equações teóricas propostas para IPNsThe effect of the molecular weight and polyurethane content of three commercial thermoplastic polyurethanes (TPU on the mechanical properties of poly(methyl methacrylate/polyurethane physical mixtures was studied. The samples were prepared using a Haake rheometer at 180 °C/10min and 60rpm. The PMMA/TPU ratio of the blends was 0/100,10/90, 30/70, 50/50, 70/30, 90/10 and 100/0. The mechanical properties such as strain and stress at break are better for the sample PU(85 A15 of lower weight-average molecular mass (Mw = 138,000. The results showed that the TPU content influences strongly the characteristics of the material where the properties change progressively becoming similar to the high content component. The study allowed us to compare the results of blends obtained from rheometer processing with data reported for simultaneous and sequential PU/PMMA IPNs. The pattern of

  16. Morphology and Phase Transitions in Styrene-Butadiene-Styrene Triblock Copolymer Grafted with Isobutyl Substituted Polyhedral Oligomeric Silsesquioxanes (Postprint)

    National Research Council Canada - National Science Library

    Drazowski, Daniel B; Lee, Andre; Haddad, Timothy S

    2007-01-01

    Two symmetric triblock polystyrene-butadiene-polystyrene (SBS) copolymers with different styrene content were grafted with varying amounts of isobutyl-substituted polyhedral oligomeric silsesquioxane (POSS) molecules...

  17. Toward pH-responsive coating materials--high-throughput study of (meth)acrylic copolymers.

    Science.gov (United States)

    Krieg, Andreas; Arici, Elif; Windhab, Norbert; Schattka, Jan Hendrik; Schubert, Stephanie; Schubert, Ulrich S

    2014-08-11

    The release behavior of a model compound (β-naphthol orange) encapsulated in (meth)acrylate-based statistical copolymers under different environmental conditions was investigated. From monomers of varying polarity (methyl acrylate, ethyl acrylate, tert-butyl acrylate, 2-ethylhexyl methacrylate, and benzyl methacrylate) in combination with methacrylic acid, five polymer series were synthesized by free radical polymerization. The pH-dependent release kinetics were investigated via UV-vis spectroscopy at pH 1.2 and 6.8, simulating physiological conditions in the stomach and intestines. Furthermore, the influence of different ethanol contents (0 and 40 vol %) in the acidic medium was investigated. The whole approach was designed to meet the requirements of a high-throughput experimentation workflow.

  18. Styrene exposure during the manufacturing of reinforced fiberglass pipe

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K.E.

    1986-01-01

    Considering the large number of employees exposed to airborne styrene during the manufacturing of reinforced fiberglass pipe and the absence of appropriate information to define airborne styrene exposure and the resulting levels of urinary mandelic acid, it was necessary that these parameters be evaluated in an actual industrial setting in order to appropriately monitor and control health hazards in the work place. Styrene measurements were collected at eight work stations over a 5-year period at the world's largest manufacturer of styrenated reinforced fiberglass pipe. Pre- and post-shift urinary mandelic acid was measured for 16 employees for 3-consecutive days. The data obtained were statistically analyzed to determine the mean styrene exposure at each work station and the relationship between airborne styrene and pre-and post-shift urinary mandelic acid. The results of this study indicated that both the pre- and post-shift urinary mandelic acid measurements can be utilized to confirm human exposure to styrene. Post-shift measurements are more reflective of daily variations in styrene exposure, whereas pre-shift urinary mandelic acid was found to correlate best to the long-term airborne styrene concentrations (r = 0.787). The prediction equations of NIOSH and ACGIH for the arithmetic mean airborne styrene concentration from post-shift mandelic acid were not valid for the low levels of styrene exposure and urinary mandelic acid concentrations found in this study. Significant changes in the post-shift to pre-shift urinary mandelic acid concentrations were observed.

  19. Synthesis, Characterization and Bulk Properties of Amphiphilic Copolymers Containing Fluorinated Methacrylates from Sequential Copper-Mediated Radical Polymerization

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Gerstenberg, Michael; Haddleton, David M.

    2008-01-01

    ABSTRACT: The partly fluorinated monomers, 2,2,2-trifluoroethyl methacrylate (3FM), 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate (8FM), and 1,1,2,2-tetrahydroperfluorodecyl methacrylate (17FM) have been used in the preparation of block copolymers with methyl methacrylate (MMA), 2-methoxyethyl......-110 °C, with apparent rate constants of 1.6 . 10-4 S-l to 2.9 . 10-4 S-l. Various 3FM containing block copolymers with MMA are prepared by sequential monomer addition or from a PMMA macroinitiator in all cases with controlled characteristics. Block copolymers of 3FM and PEGMA resulted in block copolymers...... with PDI MMA with 8FM and 17 FM have PDI's

  20. Lipid-induced degradation in biocompatible poly(Styrene-Isobutylene-Styrene) (SIBS) thermoplastic elastomer.

    Science.gov (United States)

    Fittipaldi, Mauro; Grace, Landon R

    2017-04-01

    The thermoplastic elastomer Poly(Styrene-block-Isobutylene-block-Styrene) (SIBS) is highly biocompatible, which has led to its use in several commercially-available implants. However, lipid-induced degradation has been previously identified as a primary cause of failure in long-term SIBS implants subject to mechanical loading. Thus, understanding the mechanisms and extent of lipid-induced damage and the role of styrene-isobutylene ratio and molecular weight is critical to improving longevity of SIBS-based implants in order to fully exploit the biocompatibility advantages. Samples of four different SIBS formulations were fabricated via compression molding, immersed to lipid saturation contents from 5 to 80% by weight, and tested in uniaxial tension, stress relaxation, and dynamic creep modes. Degradation mechanisms were investigated via infrared spectroscopy, chromatography, and microscopy. No evidence of lipid-induced chemical interactions or chain scissoring was observed. However, a decrease in tensile strength, loss of dynamic creep performance and faster relaxation with increasing lipid content is attributed to strong internal straining. The magnitude of these losses is inversely proportional to both molecular weight and styrene content, suggesting that selection of these variables during the design phase should be based not only on the mechanical requirements of the application, but the expected degree of lipid exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.