WorldWideScience

Sample records for students pursuing science

  1. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers

    Science.gov (United States)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.

    2013-12-01

    undergraduates from diverse backgrounds serve as teaching assistants. Pre-college and community college students can more easily relate to these young role models, which can make pursuing an ocean or earth science career seem more attainable. (7) Organizing career fairs and informal career mixers, to promote one-on-one interactions between students of all ages and diverse career professionals in a range of ocean, earth and environmental science occupations. (8) Forming relationships with minority-serving recruiting organizations and programs to ensure we reach our intended audience. Through such partnerships, we have reached students from underrepresented communities in Hawai';i and throughout the Pacific.

  2. Choosing Science: A Mixed-Methods Study of Factors Predicting Latino and Latina High School Students' Decisions to Pursue Science Degrees

    Science.gov (United States)

    Stein, Rachel S.

    Latino/as are an increasingly large subset of the United States population; however, they continue to be underrepresented in science careers. Because of this increase, research regarding Latino/as has improved, but there are still many gaps in regards to gender-specific predictors to pursue science careers. To address this lack of literature, the purpose of this study is to extend previous research and to develop a model of variables that significantly contribute to science career choice among Latino and Latina students when they graduate from high school. In particular the study addressed the following research questions: (1) What are the differences in science outcomes for Latino and Latina students? (2) What are the differences in factors involved in science outcomes for Latino and Latina students? (3) For Latino and Latina students what are the differences in the factors that predict students' choice to pursue a science degree and/or high scores on the Future Plans in Science Scale? (4) What are the differences in how Latino and Latina students experience science, which account for high achieving students to choose to pursue a science major? This study utilized an explanatory mixed-method approach to examine how cognitive, institutional, and motivational factors may be interrelated and play a role in Latino/as choice to pursue science. The first phase of the study incorporated the collection of survey and database information from 12th grade students at two Southern California high schools. The second phase of the study utilized follow-up focus group interviews to explore the specific differential experiences and views of Latino and Latina students. The results of the study demonstrated multiple significant predictors. Science self-concept and views towards science outside of school were the most significant predictors of students' choice to pursue science. Male students also had major predictors of Spanish proficiency, teacher encouragement, religious views

  3. Motivating Young Native American Students to Pursue STEM Learning Through a Culturally Relevant Science Program

    Science.gov (United States)

    Stevens, Sally; Andrade, Rosi; Page, Melissa

    2016-12-01

    Data indicate that females and ethnic/race minority groups are underrepresented in the science and engineering workforce calling for innovative strategies to engage and retain them in science education and careers. This study reports on the development, delivery, and outcomes of a culturally driven science, technology, engineering, mathematics (STEM) program, iSTEM, aimed at increasing engagement in STEM learning among Native American 3rd-8th grade students. A culturally relevant theoretical framework, Funds of Knowledge, informs the iSTEM program, a program based on the contention that the synergistic effect of a hybrid program combining two strategic approaches (1) in-school mentoring and (2) out-of-school informal science education experiences would foster engagement and interest in STEM learning. Students are paired with one of three types of mentors: Native American community members, university students, and STEM professionals. The iSTEM program is theme based with all program activities specifically relevant to Native people living in southern Arizona. Student mentees and mentors complete interactive flash STEM activities at lunch hour and attend approximately six field trips per year. Data from the iSTEM program indicate that the program has been successful in engaging Native American students in iSTEM as well as increasing their interest in STEM and their science beliefs.

  4. Motivating Young Native American Students to Pursue STEM Learning through a Culturally Relevant Science Program

    Science.gov (United States)

    Stevens, Sally; Andrade, Rosi; Page, Melissa

    2016-01-01

    Data indicate that females and ethnic/race minority groups are underrepresented in the science and engineering workforce calling for innovative strategies to engage and retain them in science education and careers. This study reports on the development, delivery, and outcomes of a culturally driven science, technology, engineering, mathematics…

  5. Encouraging Students with Different Profiles of Perceptions to Pursue Science by Choosing Appropriate Teaching Methods for Each Age Group

    Science.gov (United States)

    Potvin, Patrice; Hasni, Abdelkrim

    2017-06-01

    This research aimed at identifying student profiles of perceptions by means of a clustering method using a validated questionnaire. These profiles describe students' attraction to science and technology (S&T) studies and careers as a variable driven by school S&T self-concept and interest in school S&T. In addition to three rather predictable student profiles (confident enthusiast, average ambitious, and pessimistic dropout), the fourth fairly well-populated profile called confident indifferent was produced. Our second and third research questions allowed us to describe each profile in terms of the instructional methods to which their population was exposed (including the degree to which they were actively involved) and the instructional methods to which they would like more exposure. An analysis of the evolution of the profiles' population over time is also presented. The results suggest that pedagogical variety and active involvement in the decision to pursue S&T are important. The perception of the utility and importance of S&T both in and out of school may also play an important role in these decisions. Minor pedagogical preferences were also found in certain age groups.

  6. Pursuing transparency through science courts

    Energy Technology Data Exchange (ETDEWEB)

    Field, Thomas G. Jr. [Franklin Pierce Law Center, Concord, NH (United States)

    1999-12-01

    Many, disappointed with traditional ways to assess and manage health, safety and environmental risks, have sought alternatives that might better serve democratic values and truth. Arthur Kantrowitz proposed one in 1967. Named the 'Science Court' by the media, it sought to air opposing viewpoints publicly before an independent, neutral and technically competent panel of scientists. The idea has received considerable attention over the years, but some see it as too opaque and elitist. Ironically, others may view it as too transparent. Beyond that, as proposed it might have been too time-consuming and expensive, and few scientists would have welcomed a suggestion for cross-examination. Yet, its key features still offer promise for resolving difficult policy disputes and might be usefully integrated with notions since leading to the creation and endorsement of advisory science boards.

  7. Pursuing transparency through science courts

    International Nuclear Information System (INIS)

    Field, Thomas G. Jr.

    1999-01-01

    Many, disappointed with traditional ways to assess and manage health, safety and environmental risks, have sought alternatives that might better serve democratic values and truth. Arthur Kantrowitz proposed one in 1967. Named the 'Science Court' by the media, it sought to air opposing viewpoints publicly before an independent, neutral and technically competent panel of scientists. The idea has received considerable attention over the years, but some see it as too opaque and elitist. Ironically, others may view it as too transparent. Beyond that, as proposed it might have been too time-consuming and expensive, and few scientists would have welcomed a suggestion for cross-examination. Yet, its key features still offer promise for resolving difficult policy disputes and might be usefully integrated with notions since leading to the creation and endorsement of advisory science boards

  8. Pursuing transparency through science courts

    Energy Technology Data Exchange (ETDEWEB)

    Field, Jr, Thomas G [Franklin Pierce Law Center, Concord, NH (United States)

    1999-12-01

    Many, disappointed with traditional ways to assess and manage health, safety and environmental risks, have sought alternatives that might better serve democratic values and truth. Arthur Kantrowitz proposed one in 1967. Named the 'Science Court' by the media, it sought to air opposing viewpoints publicly before an independent, neutral and technically competent panel of scientists. The idea has received considerable attention over the years, but some see it as too opaque and elitist. Ironically, others may view it as too transparent. Beyond that, as proposed it might have been too time-consuming and expensive, and few scientists would have welcomed a suggestion for cross-examination. Yet, its key features still offer promise for resolving difficult policy disputes and might be usefully integrated with notions since leading to the creation and endorsement of advisory science boards.

  9. A Perspective of Middle Schools and the Motivating Factors that will Influence Students to Pursue Careers in Science

    Science.gov (United States)

    Hollins-Miller, Cornelia B.

    This dissertation project will determine what factors are being used to engage students to obtain careers in science. It will explore factors and other theories that contribute to persuading students to think about careers in science after college. The participants of the study included counselors, parents, principals, middle school students and teachers. All of the participants were surveyed. Information from the participants was collected and analyzed according to their responses. The results indicated that there were many contributing factors that the participants thought changed their attitudes about science and engaging in a science career.

  10. Interactive physics apparatus: influence on interest of secondary school students in pursuing a career path in science, technology, engineering and mathematics (STEM)

    Science.gov (United States)

    Lubrica, Joel V.; Abiasen, Jovalson T.; Dolipas, Bretel B.; Ramos, Jennifer Lyn S.

    2017-01-01

    In this article, we present results of our endeavours as physics educators to facilitate and support pedagogical change and development in the educational system of a developing country, the Philippines. We have discovered that the interaction of junior high school (years 7-10) students with physics apparatus can influence students’ interest in pursuing a career in science, technology, engineering and mathematics (STEM). This assertion stems from self-reports of students who gave their views immediately after their exposure to interactive apparatus in their own school, outside of their usual lessons. Participants claimed that their interest in following a STEM career path was ‘greatly increased’ due to their exposure to these apparatus. This was true even for students who were intending to take a non-STEM career path. Thus, we recommend that, in settings that have constraints involving access to practical equipment, ways to introduce school level interactive physics apparatus to secondary school students be conducted in order to attract more students towards STEM courses. Possibly, policies encouraging this type of exposure should also be formulated.

  11. Cognitive and Motivational Factors that Inspire Hispanic Female Students to Pursue STEM-Related Academic Programs that Lead to Careers in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Morel-Baker, Sonaliz

    Hispanics, and women in particular, continue to be underrepresented in the fields of science, technology, engineering, and mathematics (STEM). The purpose of this study was to analyze cognitive and motivational factors that inspired Hispanic female college students to major in STEM programs and aspire to academic success. This mixed methods study was conducted using both quantitative and qualitative data collection and analysis techniques in a sequential phase. Quantitative data were collected through the use of the 80-item Honey and Mumford Learning Styles Questionnaire, which was focused on the students' learning styles and how they impact Hispanic female students upon engaging in a STEM-related curriculum. Qualitative data were collected during interviews focusing on factors that led students to select, participate in, and make a commitment to some aspect of a STEM-related program. The questions that were asked during the interviews were intended to examine whether the existence of role models and STEM initiatives motivate Hispanic female students to major in STEM-related academic programs and aspire to academic success. The participants in this study were undergraduate Hispanic female students majoring in STEM-related academic programs and at a four-year university. The results indicate that the majority of the participants (88%) identified as reflectors, 4% as activists, 4% as theorists, and 4% as pragmatists. The results from the interviews suggested that the existence of role models (family members, educators, or STEM professionals) was a factor that motivated Hispanic females to major in STEM-related subjects and that exposure to STEM initiatives during K-12 education motivated Hispanic females to pursue a career in STEM.

  12. Factors influencing US medical students' decision to pursue surgery.

    Science.gov (United States)

    Schmidt, Lauren E; Cooper, Clairice A; Guo, Weidun Alan

    2016-06-01

    Interest and applications to surgery have steadily decreased over recent years in the United States. The goal of this review is to collect the current literature regarding US medical students' experience in surgery and factors influencing their intention to pursue surgery as a career. We hypothesize that multiple factors influence US medical students' career choice in surgery. Six electronic databases (PubMed, SCOPUS, Web of Science, Education Resources Information Center, Embase, and PsycINFO) were searched. The inclusion criteria were studies published after the new century related to factors influencing surgical career choice among US medical students. Factors influencing US medical student surgical career decision-making were recorded. A quality index score was given to each article selected to minimize risk of bias. We identified 38 relevant articles of more than 1000 nonduplicated titles. The factors influencing medical student decision for a surgical career were categorized into five domains: mentorship and role model (n = 12), experience (clerkship n = 9, stereotype n = 4), timing of exposure (n = 9), personal (lifestyle n = 8, gender n = 6, finance n = 3), and others (n = 2). This comprehensive systemic review identifies mentorship, experience in surgery, stereotypes, timing of exposure, and personal factors to be major determinants in medical students' decisions to pursue surgery. These represent areas that can be improved to attract applicants to general surgery residencies. Surgical faculty and residents can have a positive influence on medical students' decisions to pursue surgery as a career. Early introduction to the field of surgery, as well as recruitment strategies during the preclinical and clinical years of medical school can increase students' interest in a surgical career. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Intent to Pursue Further Studies among Chinese Students

    Science.gov (United States)

    To, W. M.; Lai, Linda S. L.; Lung, Jane W. Y.; Lai, T. M.

    2014-01-01

    The number of students pursuing graduate qualifications has increased, especially in Asian countries and cities, such as China, Macao and Hong Kong. This paper examines the intent to pursue further studies among Chinese students according to the theory of planned behaviour. Based on responses from 321 final-year students in higher education…

  14. Factors influencing medical students in pursuing a career in surgery ...

    African Journals Online (AJOL)

    Background: Many factors play a role in the decision of a medical student to pursue a career in surgery. With a decline in numbers of applications into surgical programmes seen globally, the aim of this study was to determine the factors that influence medical students in pursuing a career in surgery. Methods: A descriptive ...

  15. Supporting new science teachers in pursuing socially just science education

    Science.gov (United States)

    Ruggirello, Rachel; Flohr, Linda

    2017-10-01

    This forum explores contradictions that arose within the partnership between Teach for America (TFA) and a university teacher education program. TFA is an alternate route teacher preparation program that places individuals into K-12 classrooms in low-income school districts after participating in an intense summer training program and provides them with ongoing support. This forum is a conversation about the challenges we faced as new science teachers in the TFA program and in the Peace Corps program. We both entered the teaching field with science degrees and very little formal education in science education. In these programs we worked in a community very different from the one we had experienced as students. These experiences allow us to address many of the issues that were discussed in the original paper, namely teaching in an unfamiliar community amid challenges that many teachers face in the first few years of teaching. We consider how these challenges may be amplified for teachers who come to teaching through an alternate route and may not have as much pedagogical training as a more traditional teacher education program provides. The forum expands on the ideas presented in the original paper to consider the importance of perspectives on socially just science education. There is often a disconnect between what is taught in teacher education programs and what teachers actually experience in urban classrooms and this can be amplified when the training received through alternate route provides a different framework as well. This forum urges universities and alternate route programs to continue to find ways to authentically partner using practical strategies that bring together the philosophies and goals of all stakeholders in order to better prepare teachers to partner with their students to achieve their science learning goals.

  16. Student Motivation for Pursuing a Minor in Environmental Sustainability

    Science.gov (United States)

    Lewis, Luanne Woods

    2013-01-01

    Environmental sustainability dominates the global conversation seeking to increase awareness and change the culture of thinking concerning the relationship between humans and the Earth. Because many universities offer programs relative to environmental sustainability, a need exists to understand why students pursue these programs. This study…

  17. How do STEM-interested students pursue multiple interests in their higher educational choice?

    Science.gov (United States)

    Vulperhorst, Jonne Pieter; Wessels, Koen Rens; Bakker, Arthur; Akkerman, Sanne Floor

    2018-05-01

    Interest in science, technology, engineering and mathematics (STEM) has lately received attention in research due to a gap between the number of STEM students and the needs of the labour market. As interest seems to be one of the most important factors in deciding what to study, we focus in the present study on how STEM-interested students weigh multiple interests in making educational choices. A questionnaire with both open-ended and closed-ended items was administered to 91 STEM-interested students enrolled in a STEM programme of a Dutch University for secondary school students. Results indicate that students find it important that a study programme allows them to pursue multiple interests. Some students pursued multiple interests by choosing to enrol in two programmes at the same time. Most students chose one programme that enabled them to combine multiple interests. Combinations of pursued interests were dependent on the disciplinary range of interests of students. Students who were interested in diverse domains combined interests in an educational programme across academic and non-academic domains, whilst students who were mainly interested in STEM combined only STEM-focused interests. Together these findings stress the importance of taking a multiple interest perspective on interest development and educational choice.

  18. Factors influencing a student's decision to pursue a communications degree in Spain

    Directory of Open Access Journals (Sweden)

    Javier Sierra Sánchez

    2012-04-01

    Full Text Available Purpose: This paper analyzes the factors that influence secondary school students’ choice of higher education options in Spain today and explores the implications and benefits of establishing provider-client relationships between universities and students.Design/methodology/approach: A quantitative approach using questionnaires to demonstrate the hypothesis and achieve the objectives. We have prepared a questionnaire via telematic LimeSurvey application consisting of twenty-four closed questions.Findings: Results depict that the leading criteria for Spanish students interested in pursuing studies in communication sciences were a university’s reputation and excellence and the quality of its educational programmes. In terms of sources of information related to universities and their degree programmes, Spanish communication sciences students placed the highest value on direct and experiential sources. Spanish students interested in pursuing degrees in communication sciences preferred public universities over private universities.Research limitations: It is a descriptive paper. The sample could have been larger and have covered the entire universe of communication schools in Spain.Practical implications: Gain in-depth insight into the academic, cultural, and sociodemographic characteristics of students who choose to pursue an undergraduate degree in communications sciences in Spain.Ascertain which sources of information proved to be the most valuable to prospective students in choosing a university and degree programme and the other factors that influenced their choices by means of a survey involving first-year undergraduate communication sciences students. Use the results of this survey to rank the criteria used by students when choosing a university and degree programme. Gain a clearer picture of how parents and friends influence a student’s choice of degree programmes and universities.Social implications: Knowing the factors of choice

  19. Factors that encourage females to pursue physical science careers: Testing five common hypotheses

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sadler, Philip M.; Sonnert, Gerhard

    2012-03-01

    There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using Propensity Score Matching (PSM) on national data (n=7505) drawn from the Persistence Research in Science and Engineering (PRiSE) project, we test five commonly held beliefs including having a single-sex physics class, having a female physics teacher, having female scientist guest speakers in physics class, discussing the work of women scientists in physics class, and discussing the under-representation of women in physics class. The effect of these experiences is compared for female students who are matched on several factors, including parental education, prior science/math interests, and academic background, thereby controlling for the effect of many confounding variables.

  20. The Lack of Motivation to Pursue Postsecondary Education among Hmong Students: A Grounded Theory Study

    Science.gov (United States)

    Lee, Xang

    2015-01-01

    In rural areas, a lack of motivation to pursue a postsecondary degree continues to affect Hmong students at the postsecondary education level. The purpose of this qualitative grounded theory research was to create a model based on the exploration of the lack of motivation to pursue postsecondary education among Hmong high school students.…

  1. A Parsimonious Instrument for Predicting Students' Intent to Pursue a Sales Career: Scale Development and Validation

    Science.gov (United States)

    Peltier, James W.; Cummins, Shannon; Pomirleanu, Nadia; Cross, James; Simon, Rob

    2014-01-01

    Students' desire and intention to pursue a career in sales continue to lag behind industry demand for sales professionals. This article develops and validates a reliable and parsimonious scale for measuring and predicting student intention to pursue a selling career. The instrument advances previous scales in three ways. The instrument is…

  2. Virginia Demonstration Project Encouraging Middle School Students in Pursuing STEM Careers

    Science.gov (United States)

    Bachman, Jane T.; Kota, Dena H.; Kota, Aaron J.

    2011-01-01

    Encouraging students at all grade levels to consider pursuing a career in Science, Technology, Engineering, and Mathematics (STEM) fields i s a national focus. In 2005, the Naval Surface Warfare Center, Dahlgren Division (NSWCDD), a Department of Defense laboratory located in Da hlgren, Virginia, began work on the Virginia Demonstration Project (VDP) with the goal of increasing more student interest in STEM educatio n and pursuing STEM careers. This goal continues as the program enters its sixth year. This project has been successful through the partici pation of NSWCDD's scientists and engineers who are trained as mentor s to work in local middle school classrooms throughout the school year, As an extension of the in-class activities, several STEM summer aca demies have been conducted at NSWCDD, These academies are supported by the Navy through the VDP and the STEM Learning Module Project. These projects are part of more extensive outreach efforts offered by the National Defense Education Program (NDEP), sponsored by the Director, Defense Research and Engineering. The focus of this paper is on the types of activities conducted at the summer academy, an overview of the academy planning process, and recommendations to help support a nati onal plan of integrating modeling and simulation-based engineering and science into all grade levels. based upon the lessons learned

  3. Mars Exploration Student Data Teams: Building Foundations and Influencing Students to Pursue STEM Careers through Experiences with Authentic Research

    Science.gov (United States)

    Turney, D.; Grigsby, B.; Murchie, S. L.; Buczkowski, D.; Seelos, K. D.; Nair, H.; McGovern, A.; Morgan, F.; Viviano, C. E.; Goudge, T. A.; Thompson, D.

    2013-12-01

    United States Senate was a chance for students to practice high level communication and presentation skills and was reported to have made a strong impression on the participating students. MESDT develops foundational abilities needed by all students such as critical thinking, problem solving, cooperative group work, and communication skills. The implications of having students involved in authentic data analysis from an orbiting spacecraft include increased technical abilities as well as increased confidence to pursue a STEM (Science, Technology, Engineering and Mathematics) major or career. Formative assessments and teacher, parent, and student testimonials show MESDT has had a definite impact on students and their decisions to pursue STEM related majors and careers, in addition to leading to student scholarships and awards.

  4. The Perspectives of Two First-Generation College Students Pursuing Doctoral Degrees in Music Education

    Science.gov (United States)

    Vasil, Martina; McCall, Joyce M.

    2018-01-01

    The purpose of this autoethnographic multiple case study was to compare experiences of two first-generation college students pursuing doctoral degrees in music education. Motivations for pursuing an advanced degree were to enact change in the field of music education and fulfill personal ambitions. Participants encountered two challenges,…

  5. Undocumented students pursuing medical education: The implications of deferred action for childhood arrivals (DACA).

    Science.gov (United States)

    Balderas-Medina Anaya, Yohualli; del Rosario, Mithi; Doyle, Lawrence Hy; Hayes-Bautista, David E

    2014-12-01

    There are about 1.8 million young immigrants in the United States who came or were brought to the country without documentation before the age of 16. These youth have been raised and educated in the United States and have aspirations and educational achievements similar to those of their native-born peers. However, their undocumented status has hindered their pursuit of higher education, especially in medical and other graduate health sciences. Under a new discretionary policy, Deferred Action for Childhood Arrivals (DACA), many of these young immigrants are eligible to receive permission to reside and work in the United States. DACA defers deportation of eligible, undocumented youth and grants lawful presence in the United States, work permits, Social Security numbers, and, in most states, driver's licenses. These privileges have diminished the barriers undocumented students traditionally have faced in obtaining higher education, specifically in pursuing medicine. With the advent of DACA, students are slowly matriculating into U.S. medical schools and residencies. However, this applicant pool remains largely untapped. In the face of a physician shortage and the implementation of the Affordable Care Act, an increase in matriculation of qualified undocumented students would be greatly beneficial. This Perspective is intended to begin discussion within the academic medicine community of the implications of DACA in reducing barriers for the selection and matriculation of undocumented medical students and residents. Moreover, this Perspective is a call to peers in the medical community to support undocumented students seeking access to medical school, residency, and other health professions.

  6. Motivation of French medical students to pursue surgical careers: results of national survey of 1742 students.

    Science.gov (United States)

    Lefèvre, Jeremie H; Karila, Laurent; Kerneis, Solen; Rouprêt, Morgan

    2010-06-01

    Analyze the aspirations and personal motivations behind the choice of surgical specialties in a large sample of students in their 6th year of medical school. In December 2008, 2588 students participated in a nation-wide mock exam, before taking the National Ranking Exam. When they looked for their grades on the web, the students were prompted to answer a questionnaire containing socio-demographic questions concerning their choice and motivation to pursue a career in a surgical specialty. The survey called also for listing the three main factors (out of a list of 11) motivating their choice. Students originated from 39 medical schools. Of the 2588 students, 1427 (55%) were women. The response rate to the questionnaire was 1742/2588=67%. Two hundred and twenty students (13%) did not express any specific professional orientation. Of the 1522 responses obtained, 522 students wanted to become surgeons. Gender was a determining factor as 44% of male students (n=252) versus 29% of female students wanted to become a surgeon; Pprivate practice (n=280, 18%) and life style (n=175, 11%) were the motivations most often cited to back their choice. One third of medical students want to become surgeons. Feminization, life style and income are the principal factors influencing the choice of the type of surgical subspecialization. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  7. Pursuing a Vendor-Endorsed ERP Award for Better Job Prospect: Students' Perceptions

    Science.gov (United States)

    Kung, LeeAnn; Kung, Hsiang-Jui

    2017-01-01

    This paper identifies factors that motivate students to pursue a vendor-endorsed ERP award by integrating concepts from motivation theory and constructs from technology acceptance literature. We developed a web-based survey with closed- and open-ended questions to collect both quantitative and qualitative data, respectively. Students in…

  8. Selling Sales: Factors Influencing Undergraduate Business Students' Decision to Pursue Sales Education

    Science.gov (United States)

    Allen, Concha; Kumar, Poonam; Tarasi, Crina; Wilson, Holt

    2014-01-01

    With a better understanding of the typical sales student, sales educators can design and deliver curriculum with a more customer-oriented approach. In order to better understand the decision to pursue sales education, more than 500 undergraduate business students at a large Midwestern university participated in a survey that examined the factors…

  9. The Readiness of High School Students to Pursue First Year Physics

    Science.gov (United States)

    Ramnarain, U.; Molefe, P.

    2012-01-01

    A high failure rate at first year physics is often attributed to the lack of readiness of high school students to pursue such studies. This research explores this issue and reports on the perceptions of five physics lecturers at a South African university on the preparedness of high school students for first year physics. Qualitative data was…

  10. Factors influencing the decision to pursue emergency medicine as a career among medical students in Singapore.

    Science.gov (United States)

    Chew, Shi Hao; Ibrahim, Irwani; Yong, Yan Zhen; Shi, Lu Ming; Zheng, Qi Shi; Samarasekera, Dujeepa D; Ooi, Shirley Beng Suat

    2018-03-01

    The introduction of the residency programme in Singapore allows medical students to apply for residency in their graduating year. Our study aimed to determine the interest levels and motivating factors for pursuing emergency medicine (EM) as a career among medical students in Singapore. A self-administered questionnaire was distributed to Year 1-5 medical students in 2012. Participants indicated their interest in pursuing EM as a career and the degree to which a series of variables influenced their choices. Influencing factors were analysed using multinomial logistic regression. A total of 800 completed questionnaires were collected. 21.0% of the participants expressed interest in pursuing EM. Perceived personality fit and having done an elective in EM were strongly positive influencing factors. Junior medical students were more likely to cite the wide diversity of medical conditions and the lack of a long-term doctor-patient relationship to be negative factors, while senior medical students were more likely to cite personality fit and perceived prestige of EM as negative factors. Careful selection of EM applicants is important to the future development of EM in Singapore. Our study showed that personality fit might be the most important influencing factor in choosing EM as a career. Therefore, greater effort should be made to help medical students explore their interest in and suitability for a particular specialty. These include giving medical students earlier exposure to EM, encouraging participation in student interest groups and using appropriate personality tests for career guidance. Copyright: © Singapore Medical Association.

  11. International Students' Motivation to Pursue and Complete a Ph.D. in the U.S.

    Science.gov (United States)

    Zhou, Ji

    2015-01-01

    This study explores what motivates 19 international students to pursue a Ph.D. at a public research university in the U.S. and, more importantly, what motivates them to persist despite unsatisfying socialization. Based on value-expectancy achievement motivation theory, four motivations emerged: intrinsic interest in research, intrinsic interest in…

  12. Understanding the factors that influence high science achievers' academic choices and intent to pursue or opt out of the hard sciences

    Science.gov (United States)

    Quihuis, Gisell

    Drawing on Eccles and her colleagues' Expectancy-Value model of academic behavior and choice, this dissertation study set out to serve three purposes: (1) to understand how high achieving high school students who aspire to science college degrees compare, in terms of motivational beliefs and social experiences, with other high achievers who do not aspire to science college degrees; (2) to understand why some high school students who excel in the hard sciences are unsure about pursuing a science degree in college; and (3) to examine whether gender differences in motivational beliefs and social experiences found in previous research on math (see Eccles 1984) exist for science among high achieving high school students. Survey and interview data showed that gender differences previously found in Eccles' research on math exist for science among a select group of high achieving high school students. Yet, these gender differences did not explain students' aspirations for science. Motivation, classroom perceptions, science engagement, as well as other science-related experiences at home and school, including parent and teacher influences, were also important factors associated with students' aspirations for science. Results and implications for this study are encouraging because they suggest that both parents and educators can help more high achievers become interested in science. Parents can expose their children, male and female alike, to science at home early on in their childhood and teachers can help students sustain and further develop an interest in science at school. In this manner, both parents and teachers can work together as a team to encourage more high achievers to aspire to science degrees in their future. Lastly, it is important to note that this study found Eccles' model of motivation and choice helpful in understanding not only gender differences in math and the hard sciences, but also aspiration differences that cut across gender among students

  13. Women in Community College: Factors Related to Intentions to Pursue Computer Science

    Science.gov (United States)

    Denner, Jill; Werner, Linda; O'Connor, Lisa

    2015-01-01

    Community colleges (CC) are obvious places to recruit more women into computer science. Enrollment at CCs has grown in response to a struggling economy, and students are more likely to be from underrepresented groups than students enrolled in 4-year universities (National Center for Education Statistics, 2008). However, we know little about why so…

  14. Living with students: Lessons learned while pursuing tenure, administration, and raising a family.

    Science.gov (United States)

    Humphrey, Michael; Callahan, Janet; Harrison, Geoff

    2015-01-01

    An emerging promising practice in many universities has been the development of faculty-in-residence programs, in which university faculty members and their family moved into university student residences, sharing common living spaces with students. This case study is centered on two faculty-in-residence living in university residence halls. One was an assistant professor pursuing tenure while raising a young child, while the second was a tenured full professor and associate dean raising two teens. This case study offers the post-experience conclusions of these two faculty-in-residence individuals, noting the benefits and challenges each experienced while living -and working closely with these students outside of the university classroom, all while striving for an optimal balance in managing professional and familial obligations.

  15. Increasing High School Student Interest in Science: An Action Research Study

    Science.gov (United States)

    Vartuli, Cindy A.

    2016-01-01

    An action research study was conducted to determine how to increase student interest in learning science and pursuing a STEM career. The study began by exploring 10th-grade student and teacher perceptions of student interest in science in order to design an instructional strategy for stimulating student interest in learning and pursuing science.…

  16. Pursuing Darwin's curious parallel: Prospects for a science of cultural evolution.

    Science.gov (United States)

    Mesoudi, Alex

    2017-07-24

    In the past few decades, scholars from several disciplines have pursued the curious parallel noted by Darwin between the genetic evolution of species and the cultural evolution of beliefs, skills, knowledge, languages, institutions, and other forms of socially transmitted information. Here, I review current progress in the pursuit of an evolutionary science of culture that is grounded in both biological and evolutionary theory, but also treats culture as more than a proximate mechanism that is directly controlled by genes. Both genetic and cultural evolution can be described as systems of inherited variation that change over time in response to processes such as selection, migration, and drift. Appropriate differences between genetic and cultural change are taken seriously, such as the possibility in the latter of nonrandomly guided variation or transformation, blending inheritance, and one-to-many transmission. The foundation of cultural evolution was laid in the late 20th century with population-genetic style models of cultural microevolution, and the use of phylogenetic methods to reconstruct cultural macroevolution. Since then, there have been major efforts to understand the sociocognitive mechanisms underlying cumulative cultural evolution, the consequences of demography on cultural evolution, the empirical validity of assumed social learning biases, the relative role of transformative and selective processes, and the use of quantitative phylogenetic and multilevel selection models to understand past and present dynamics of society-level change. I conclude by highlighting the interdisciplinary challenges of studying cultural evolution, including its relation to the traditional social sciences and humanities.

  17. Pursuing Darwin’s curious parallel: Prospects for a science of cultural evolution

    Science.gov (United States)

    2017-01-01

    In the past few decades, scholars from several disciplines have pursued the curious parallel noted by Darwin between the genetic evolution of species and the cultural evolution of beliefs, skills, knowledge, languages, institutions, and other forms of socially transmitted information. Here, I review current progress in the pursuit of an evolutionary science of culture that is grounded in both biological and evolutionary theory, but also treats culture as more than a proximate mechanism that is directly controlled by genes. Both genetic and cultural evolution can be described as systems of inherited variation that change over time in response to processes such as selection, migration, and drift. Appropriate differences between genetic and cultural change are taken seriously, such as the possibility in the latter of nonrandomly guided variation or transformation, blending inheritance, and one-to-many transmission. The foundation of cultural evolution was laid in the late 20th century with population-genetic style models of cultural microevolution, and the use of phylogenetic methods to reconstruct cultural macroevolution. Since then, there have been major efforts to understand the sociocognitive mechanisms underlying cumulative cultural evolution, the consequences of demography on cultural evolution, the empirical validity of assumed social learning biases, the relative role of transformative and selective processes, and the use of quantitative phylogenetic and multilevel selection models to understand past and present dynamics of society-level change. I conclude by highlighting the interdisciplinary challenges of studying cultural evolution, including its relation to the traditional social sciences and humanities. PMID:28739929

  18. Religion as a Support Factor for Women of Color Pursuing Science Degrees: Implications for Science Teacher Educators

    Science.gov (United States)

    Ceglie, Robert

    2013-02-01

    This study explores the influence of religion as a support factor for a group of Latina and African-American women majoring in science. The current project is a part of a larger study that investigated persistence factors of underrepresented woman who were enrolled as science majors at United States colleges and universities. This paper focuses on one theme that emerged among six participants who disclosed how religion was a significant influence on their persistence in science fields. The strength and support offered by religious values is certainly not specific to science content; however, the support received from their beliefs highlights a potential area for further exploration. Given the importance of increasing participation by students from diverse backgrounds into science fields, it is critical to recognize how some of these differences may be the key factors influencing the way these students look at the world. This study offers evidence that science educators need to consider what role religious beliefs have for students who may be considering science or science education as a future career, particularly for those students from underrepresented groups.

  19. Modelling Job-Related and Personality Predictors of Intention to Pursue Accounting Careers among Undergraduate Students in Ghana

    Science.gov (United States)

    Mbawuni, Joseph; Nimako, Simon Gyasi

    2015-01-01

    This study principally investigates job-related and personality factors that determine Ghanaian accounting students' intentions to pursue careers in accounting. It draws on a rich body of existing literature to develop a research model. Primary data were collected from a cross-sectional survey of 516 final year accounting students in a Ghanaian…

  20. Understanding Why Speech-Language Pathologists Rarely Pursue a PhD in Communication Sciences and Disorders

    Science.gov (United States)

    Myotte, Theodore; Hutchins, Tiffany L.; Cannizzaro, Michael S.; Belin, Gayle

    2011-01-01

    Masters-level speech-language pathologists in communication sciences and disorders (n = 122) completed a survey soliciting their reasons for not pursuing doctoral study. Factor analysis revealed a four-factor solution including one reflecting a lack of interest in doctoral study (Factor 2) and one reflecting practical financial concerns (Factor…

  1. An Event to Encourage High School Students to Pursue College Degrees in Physics and Math

    Science.gov (United States)

    Bukiet, Bruce; Thomas, Gordon

    2003-04-01

    We discuss a Math and Physics Day for high school students and teachers, with hands-on activities and seminars involving mathematics and physics. Participants also learn about careers for those who go on to major in physics and mathematics in college. The New York State Section of the APS has provided generous support for this workshop through its Outreach grant program. Approximately a dozen high schools and 100 students attend each year. The program, which runs from 9:15 AM until 2:15 PM, includes an introduction to undergraduate degree programs in Mathematics, Statistics, Optics, Actuarial Science and Applied Physics, a group physics experiment/contest, brief talks over lunch by speakers from industry who have degrees in Math or Physics, and an afternoon seminar. Teachers earn Professional Development credit.

  2. Factors motivating Latino college students to pursue STEM degrees on CSU campuses in the southern San Joaquin Valley

    Science.gov (United States)

    Ramirez, Gabriel

    The purpose of this study was to determine what factors were motivating Latino/a students in the southern San Joaquin Valley to pursue STEM degrees and whether these factors were specific to the Latino/a culture. A 12-question survey was administered to STEM majors at California State University, Bakersfield and California State University, Fresno and interviews were conducted with those survey respondents who agreed to be part of the process. The results of the survey suggested that factors such as STEM subject matter, STEM career knowledge, the possibility of a high paying salary, high school STEM grades, and family influence were significant in motivating Latino/a students to pursue STEM degrees. The results of the Chi Square Test suggested the Latino/a students' responses about college STEM degree granting statistics, the possibility of a high salary, and the effects of setbacks were significantly different to those of their non-Latino/a counterparts.

  3. From Teachers to Students: What Influences Early Childhood Educators to Pursue College Education

    Science.gov (United States)

    Deutsch, Francine M.; Riffin, Catherine A.

    2013-01-01

    Underpaid and overworked, preschool teachers face multiple barriers in pursuing higher education. In the present study, we explored how logistical and financial barriers hinder early childhood education teachers and teacher's aides from taking college courses, as well as how academic self-concept and social support influence current enrollment.…

  4. Seeding Science Success: Psychometric Properties of Secondary Science Questionnaire on Students' Self-Concept, Motivation, and Aspirations

    Science.gov (United States)

    Chandrasena, Wanasinghe; Craven, Rhonda G.; Tracey, Danielle; Dillon, Anthony

    2014-01-01

    Every sphere of life has been revolutionised by science. Thus, science understanding is an increasingly precious resource throughout the world. Despite the widely recognised need for better science education, the percentage of school students studying science is particularly low, and the numbers of students pursuing science continue to decline…

  5. Does Gender Inequality Influence Interest in Pursuing a Career in Science or Mathematics Teaching?

    Science.gov (United States)

    Morales, Marie Paz E.; Avilla, Ruel A.; Espinosa, Allen A.

    2016-01-01

    The present study explored gender inequality in K to 12 basic education, based on the experiences of first year pre-service science and mathematics teachers. It also determined if pre-service teachers' pursuit of a career in science or mathematics teaching was related to gender influences. A survey instrument was used to gather data for the study.…

  6. Creating opportunities for science PhDs to pursue careers in high school education.

    Science.gov (United States)

    Doyle, Kari M H; Vale, Ronald D

    2013-11-01

    The United States is confronting important challenges at both the early and late stages of science education. At the level of K-12 education, a recent National Research Council report (Successful K-12 STEM Education) proposed a bold restructuring of how science is taught, moving away from memorizing facts and emphasizing hands-on, inquiry-based learning and a deeper understanding of the process of science. At higher levels of training, limited funding for science is leading PhDs to seek training and careers in areas other than research. Might science PhDs play a bigger role in the future of K-12 education, particularly at the high school level? We explore this question by discussing the roles that PhDs can play in high school education and the current and rather extensive barriers to PhDs entering the teaching profession and finally suggest ways to ease the entrance of qualified PhDs into high school education.

  7. An Empirical Investigation on Chinese High School Students' Choice of Pursuing Undergraduate Education Abroad

    Science.gov (United States)

    Chen, Jiankun

    2014-01-01

    Globalization has greatly promoted student mobility around the world. Being a developing economy, China witnessed significant growth of students studying internationally, especially with the number of students study at undergraduate programs. However, empirical research on high school students' choice and the decision-making process of pursuing…

  8. Creating opportunities for science PhDs to pursue careers in high school education

    Science.gov (United States)

    Doyle, Kari M. H.; Vale, Ronald D.

    2013-01-01

    The United States is confronting important challenges at both the early and late stages of science education. At the level of K–12 education, a recent National Research Council report (Successful K–12 STEM Education) proposed a bold restructuring of how science is taught, moving away from memorizing facts and emphasizing hands-on, inquiry-based learning and a deeper understanding of the process of science. At higher levels of training, limited funding for science is leading PhDs to seek training and careers in areas other than research. Might science PhDs play a bigger role in the future of K–12 education, particularly at the high school level? We explore this question by discussing the roles that PhDs can play in high school education and the current and rather extensive barriers to PhDs entering the teaching profession and finally suggest ways to ease the entrance of qualified PhDs into high school education. PMID:24174464

  9. Impact of Undergraduates' Stereotypes of Scientists on Their Intentions to Pursue a Career in Science

    Science.gov (United States)

    Schneider, Jennifer

    2010-01-01

    Women remain disproportionately underrepresented in certain science, technology, engineering, and math (STEM) majors and occupations. Stereotypes of scientists may be contributing factors in this phenomenon. However, this relationship has not yet been empirically examined. This is partly because of the dearth of literature addressing the…

  10. What Motivates Females and Males to Pursue Careers in Mathematics and Science?

    Science.gov (United States)

    Eccles, Jacquelynne S.; Wang, Ming-Te

    2016-01-01

    Drawing on Eccles' expectancy-value model of achievement-related choices, we examined the personal aptitudes and motivational beliefs at 12th grade that move individuals toward or away from science, technology, engineering, and mathematics (STEM) occupations at age 29. In the first set of analyses, occupational and lifestyle values, math ability…

  11. Pursuing Ideology with "Statecraft"

    Science.gov (United States)

    Smith, Hayden; Michelsen, Niall

    2017-01-01

    Utilizing a web-based simulation Statecraft, we explore the relative influence of ideology (realism and idealism) on student behavior and learning. By placing students into ideologically cohesive groups, we are able to demonstrate the effect of their ideology on the goals they pursue and identify the constraints imposed on the system by the…

  12. From Bacon to Banks: the vision and the realities of pursuing science for the common good.

    Science.gov (United States)

    Sargent, Rose-Mary

    2012-03-01

    Francis Bacon's call for philosophers to investigate nature and "join in consultation for the common good" is one example of a powerful vision that helped to shape modern science. His ideal clearly linked the experimental method with the production of beneficial effects that could be used both as "pledges of truth" and for "the comforts of life." When Bacon's program was implemented in the following generation, however, the tensions inherent in his vision became all too real. The history of the Royal Society of London, from its founding in 1660 to the 42-year presidency of Joseph Banks (1778-1820), shows how these tensions led to changes in the way in which both the experimental method and the ideal of the common good were understood. A more nuanced understanding of the problems involved in recent philosophical analyses of science in the public interest can be achieved by appreciating the complexity revealed from this historical perspective.

  13. Barriers for students pursuing a surgical career and where the Surgical Interest Association can intervene.

    Science.gov (United States)

    Dolan-Evans, Elliot; Rogers, Gary D

    2014-06-01

    There are some concerns that medical student interest in surgery is suffering. The aims of this project were to investigate the proportion of medical students interested in surgery from years 1 to 4, explore influential attitudinal and demographic factors, and establish baseline data to study the future effects of the Surgical Interest Association. Students were surveyed through an audience response system in year orientation sessions. For a majority of the analyses, respondents were dichotomized based on expressing an interest in surgery or not. There were no significant differences in the interest students had for a surgical career between medical student year levels in a cross-sectional analysis. However, available longitudinal data demonstrated a significant decrease in surgical interest from first years in 2012 to second years in 2013. Lifestyle, working hours and training length concerns had minimal effects as career influences on students interested in surgery, whereas academic interest and career opportunities were motivating factors in choosing this career. The results suggested no difference between levels of interest from first to final year students in surgery as a career, though only 22% of final year students were interested in surgery. This study also suggested that promoting the academic and scientific side of surgery, along with career opportunities available, may be an important avenue to encourage students into surgery. Future research will investigate the changing interests of students in surgery longitudinally throughout the medical school and to analyse the effects of the Surgical Interest Association. © 2014 Royal Australasian College of Surgeons.

  14. Developing and testing the nurse educator scale: a robust measure of students' intentions to pursue an educator role.

    Science.gov (United States)

    Abou Samra, Haifa; McGrath, Jacqueline M; Estes, Tracy

    2013-06-01

    No instrument exists that measures student perceptions of the faculty role. Such a measure is necessary to evaluate the efficacy of interventions aimed at attracting students to the faculty career path. We developed the Nurse Educator Scale (NES). The initial scale items were generated using the social cognitive career theory (SCCT) constructs and were reviewed by an expert panel to ensure content validity. Exploratory factor analysis was used. The optimized 25-item, 7-point Likert scale has a Cronbach's alpha reliability coefficient of 0.85, with a total variance of 42%. The underlying factor structure supported three defining characteristics congruent with SCCT: outcome expectations (alpha = 0.79), relevant knowledge (alpha = 0.67), and social influence (alpha = 0.80). A stand-alone, item-measuring goal setting was also supported. The NES provides a valid and reliable measure of students' intentions and motivations to pursue a future career as a nurse educator or scientist. Copyright 2013, SLACK Incorporated.

  15. How does Student Interest Influence Their Participation Pursuing Accounting Educational Profession?

    Directory of Open Access Journals (Sweden)

    Ika Dewi Hartutik

    2016-08-01

    Full Text Available This purpose of this study is to determine the effect of career motivation, motivation quality, economic motivation, social motivation, and motivation on the interest of accounting students to enroll in education programs designed to produce professional accountants. Data analysis here involves descriptive statistics, classical assumptions, and hypothesis testing with multiple linear regression analysis. The results of the study clearly show (1 the motivation of career affects the interest of accounting students to follow PPAk; (2 quality motivation does not affect the interest of accounting students to follow PPAk; (3 economic motivation does not affect the interest of accounting students to follow PPAk; (4 social motivation does not affect the interest of accounting students to follow PPAk; (5 the degree motivation does not affect the interest of accounting students to follow PPAk.   Keywords: motivation, interests, education accounting profession, PPAk

  16. Evolving social responsibility understandings, motivations, and career goals of undergraduate students initially pursuing engineering degrees

    Science.gov (United States)

    Rulifson, Gregory A.

    Engineers impact the lives of every person every day, and need to have a strong sense of social responsibility. Understanding what students think about social responsibility in engineering and their futures is very important. Further, by identifying influences that change these ideas and shape their conceptualizations, we can intervene to help prepare students for their responsibilities as part of the profession in the future. This thesis presents the experiences, in their own words, of 34 students who started in engineering. The study is composed of three parts: (i) engineering students' ideas about socially responsible engineering and what influenced these ideas, (ii) how students see themselves as future socially responsible engineers and how this idea changes over their first three years of college, and (iii) what social responsibility-related reasons students who leave engineering have for choosing a new major. Results show that students are complicated and have varied paths through and out of engineering studies. Students came up with their own ideas about socially responsible engineering that converged over the years on legal and safety related aspects of the profession. Relatedly, students identified with the engineering profession through internships and engineering courses, and rarely described socially responsible aspirations that could be accomplished with engineering. More often, those students who desired to help the disadvantaged through their engineering work left engineering. Their choice to leave was a combination of an unsupportive climate, disinterest in their classes, and a desire to combine their personal and professional social responsibility ambitions. If we want engineering students to push the engineering profession forward to be more socially responsible, we can identify the effective influences and develop a curriculum that encourages critical thinking about the social context and impacts of engineering. Additionally, a social

  17. Increasing educational indebtedness influences medical students to pursue specialization: a military recruitment potential?

    Science.gov (United States)

    Bale, Asha G; Coutinho, Karl; Swan, Kenneth G; Heinrich, George F

    2013-02-01

    Cost of medical education and student indebtedness has increased dramatically. This study surveyed medical students on educational debt, educational costs, and whether indebtedness influenced career choice. Responses should impact (1) Department of Defense (DoD) recruitment of physicians and (2) future of primary care. The authors surveyed 188 incoming medical students (University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Class of 2012) concerning educational indebtedness, perceptions about educational costs, and plans regarding loan repayment. Data were analyzed and expressed as mean +/- standard error. Students with loans anticipated their medical educational costs to be $155,993. 62% felt costs were "exorbitant," and 28% "appropriate." 64% planned to specialize, whereas only 9% chose primary care. 28% of students planning specialization said income potential influenced their decision. 70% of students said cost was a factor in choosing New Jersey Medical School over a more expensive school. Students anticipated taking about 10 years to repay loans. As medical educational costs and student indebtedness rise, students are choosing less costly education and career paths with higher potential future earnings. These trends will negatively impact health care availability, accessibility, and cost. DoD programs to provide financial assistance in exchange for military service are not well publicized. These findings should increase DoD recruitment opportunities.

  18. Pursuing Normality

    DEFF Research Database (Denmark)

    Madsen, Louise Sofia; Handberg, Charlotte

    2018-01-01

    implying an influence on whether to participate in cancer survivorship care programs. Because of "pursuing normality," 8 of 9 participants opted out of cancer survivorship care programming due to prospects of "being cured" and perceptions of cancer survivorship care as "a continuation of the disease......BACKGROUND: The present study explored the reflections on cancer survivorship care of lymphoma survivors in active treatment. Lymphoma survivors have survivorship care needs, yet their participation in cancer survivorship care programs is still reported as low. OBJECTIVE: The aim of this study...... was to understand the reflections on cancer survivorship care of lymphoma survivors to aid the future planning of cancer survivorship care and overcome barriers to participation. METHODS: Data were generated in a hematological ward during 4 months of ethnographic fieldwork, including participant observation and 46...

  19. Transformed Science: Overcoming Barriers of Inequality and Mistrust to Pursue the Agenda of Underrepresented Communities

    Science.gov (United States)

    Lyons, Renee

    Educational programs created to provide opportunities for all, in reality often reflect social inequalities. Such is the case for Public Participation in Scientific Research (PPSR) Projects. PPSR projects have been proposed as an effective way to engage more diverse audiences in science, yet the demographics of PPSR participants do not correspond with the demographic makeup of the United States. The field of PPSR as a whole has struggled to recruit low SES and underrepresented populations to participate in project research efforts. This research study explores factors, which may be affecting an underrepresented community's willingness to engage in scientific research and provides advice from PPSR project leaders in the field, who have been able to engage underrepresented communities in scientific research, on how to overcome these barriers. Finally the study investigates the theoretical construct of a Third Space within a PPSR project. The research-based recommendations for PPSR projects desiring to initiate and sustain research partnerships with underrepresented communities well align with the theoretical construct of a Third Space. This study examines a specific scientific research partnership between an underrepresented community and scientific researchers to examine if and to what extent a Third Space was created. Using qualitative methods to understand interactions and processes involved in initiating and sustaining a scientific research partnership, this study provides advice on how PPSR research partnerships can engage underrepresented communities in scientific research. Study results show inequality and mistrust of powerful institutions stood as participation barriers for underrepresented community members. Despite these barriers PPSR project leaders recommend barriers can be confronted by open dialogue with communities about the abuse and alienation they have faced, by signaling respect for the community, and by entering the community through someone the

  20. Love-pursuing Patterns and Personality Traits: A Preliminary Study in Chinese University undergraduate Students

    Directory of Open Access Journals (Sweden)

    Fangfang CAI

    2009-12-01

    Full Text Available The love-pursuing pattern (LPP, or love-initiating behavior, is important in building or maintaining a relationship, but has been less studied. We hypothesize that the LPPs might be modulated by personality traits. Therefore we have administered an adjective-based LPP questionnaire, the Zuckerman-Kuhlman Personality Questionnaire (ZKPQ, the Zuckerman Sensation Seeking Scales (SSS, and the Plutchik – van Praag Depression Inventory (PVP in 164 Chinese undergraduates who were in a current heterosexual-love relationship. We did not find any differences of LPP, ZKPQ, SSS, or PVP scale scores when either referred to gender or initiator/ receiver. In initiators (13 women, 85 men, the SSS Experience Seeking was negatively correlated with LPP Impulsive scale, Disinhibition was positively correlated with Threatening scale, and the PVP was negatively correlated with Persistent scale. In all subjects, the ZKPQ Aggression-Hostility was negatively correlated with the perceived happiness from the relationship, Activity was positively correlated with relationship suitability, and the SSS Experience Seeking was negatively correlated with a future marriage probability. Low SSS Experience Seeking and Disinhibition, ZKPQ Aggression-Hostility, together with high Activity and emotionality would be helpful to initiate a love relationship, and increase chances of the perceived happiness and suitability, and a future marriage.

  1. Factors Affecting Student Career Choice in Science: An Australian Study of Rural and Urban Schools.

    Science.gov (United States)

    Young, Deidra J.; Fraser, Barry J.; Woolnough, Brian E.

    1997-01-01

    Reports on a study done at Oxford University on why young people chose to pursue a career in the physical sciences and engineering. Characteristics of schools that appeared to influence students to pursue a study of science were also investigated. Currently, England, Australia, Canada, China, Japan, and Portugal have contributed information to…

  2. Understanding the Intentions of Accounting Students in China to Pursue Certified Public Accountant Designation

    Science.gov (United States)

    Wen, Lei; Hao, Qian; Bu, Danlu

    2015-01-01

    Based on the theory of planned behavior [Ajzen, I. (1991). "The theory of planned behavior." "Organizational Behavior and Human Decision Processes," 50(2), 179-211], we examine the factors influencing the decisions of accounting students in China concerning the certified public accountant (CPA) designation. Surveying 288…

  3. Motivations of Government-Sponsored Kurdish Students for Pursuing Postgraduate Studies Abroad; An Exploratory Study

    Science.gov (United States)

    Ahmad, Ahmad Bayiz; Hassan, Hemin Ali; Al-Ahmedi, Mustafa Wshyar Abdulla

    2017-01-01

    This study examines the motivations of government-sponsored Kurdish students to study abroad and the reasons for choosing a particular country as their destination choice. Based on data we collected through an online survey and follow-up interviews, we compare demographic differences to explore the diversity among this cohort. The findings of the…

  4. Peer and Faculty Mentoring for Students Pursuing a PhD in Gerontology

    Science.gov (United States)

    Webb, Alicia K.; Wangmo, Tenzin; Ewen, Heidi H.; Teaster, Pamela B.; Hatch, Laurie R.

    2009-01-01

    The Graduate Center for Gerontology at the University of Kentucky incorporates three levels of mentoring in its PhD program. This project assessed satisfaction with peer and faculty mentoring and explored their perceived benefits and purposes. Core and affiliate faculty and current and graduated students were surveyed. Participants seemed…

  5. Career Development Influences of International Students Who Pursue Permanent Immigration to Canada

    Science.gov (United States)

    Arthur, Nancy; Flynn, Sarah

    2011-01-01

    This research focused on the career decision and planning needs of a unique group of migrants: international students who are completing their studies as temporary immigrants and who are embarking on the career journey of employment and permanent immigration. A semi-structured interview employing a Critical Incident Technique was used to assess…

  6. Life Science Students' Attitudes, Interest, and Performance in Introductory Physics for Life Sciences: An Exploratory Study

    Science.gov (United States)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-01-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and…

  7. Religion as a Support Factor for Women of Color Pursuing Science Degrees: Implications for Science Teacher Educators

    Science.gov (United States)

    Ceglie, Robert

    2013-01-01

    This study explores the influence of religion as a support factor for a group of Latina and African-American women majoring in science. The current project is a part of a larger study that investigated persistence factors of underrepresented woman who were enrolled as science majors at United States colleges and universities. This paper focuses on…

  8. Students' Attitudes toward Science as Predictors of Gains on Student Content Knowledge: Benefits of an After-School Program

    Science.gov (United States)

    Newell, Alana D.; Zientek, Linda R.; Tharp, Barbara Z.; Vogt, Gregory L.; Moreno, Nancy P.

    2015-01-01

    High-quality after-school programs devoted to science have the potential to enhance students' science knowledge and attitudes, which may impact their decisions about pursuing science-related careers. Because of the unique nature of these informal learning environments, an understanding of the relationships among aspects of students' content…

  9. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  10. Science Careers and Disabled Students.

    Science.gov (United States)

    Jagoda, Sue; Cremer, Bob

    1981-01-01

    Summarizes proceedings and student experiences at the 1980 Science Career Workshop for Physically Disabled Students at the Lawrence Hall of Science (University of California). Includes a description of the key-note speaker's topics, and other workshop activities. (DS)

  11. Exploration of the Lived Experiences of Undergraduate Science, Technology, Engineering, and Mathematics Minority Students

    Science.gov (United States)

    Snead-McDaniel, Kimberly

    2010-01-01

    An expanding ethnicity gap exists in the number of students pursuing science, technology, engineering, and mathematics (STEM) careers in the United States. The National Action Council for Minorities in Engineering revealed that the number of minorities pursuing STEM degrees and careers has declined over the past few years. The specific origins of…

  12. Science Olympiad students' nature of science understandings

    Science.gov (United States)

    Philpot, Cindy J.

    2007-12-01

    Recent reform efforts in science education focus on scientific literacy for all citizens. In order to be scientifically literate, an individual must have informed understandings of nature of science (NOS), scientific inquiry, and science content matter. This study specifically focused on Science Olympiad students' understanding of NOS as one piece of scientific literacy. Research consistently shows that science students do not have informed understandings of NOS (Abd-El-Khalick, 2002; Bell, Blair, Crawford, and Lederman, 2002; Kilcrease and Lucy, 2002; Schwartz, Lederman, and Thompson, 2001). However, McGhee-Brown, Martin, Monsaas and Stombler (2003) found that Science Olympiad students had in-depth understandings of science concepts, principles, processes, and techniques. Science Olympiad teams compete nationally and are found in rural, urban, and suburban schools. In an effort to learn from students who are generally considered high achieving students and who enjoy science, as opposed to the typical science student, the purpose of this study was to investigate Science Olympiad students' understandings of NOS and the experiences that formed their understandings. An interpretive, qualitative, case study method was used to address the research questions. The participants were purposefully and conveniently selected from the Science Olympiad team at a suburban high school. Data collection consisted of the Views of Nature of Science -- High School Questionnaire (VNOS-HS) (Schwartz, Lederman, & Thompson, 2001), semi-structured individual interviews, and a focus group. The main findings of this study were similar to much of the previous research in that the participants had informed understandings of the tentative nature of science and the role of inferences in science, but they did not have informed understandings of the role of human imagination and creativity, the empirical nature of science, or theories and laws. High level science classes and participation in

  13. Science That Matters: The Importance of a Cultural Connection in Underrepresented Students' Science Pursuit

    Science.gov (United States)

    Jackson, Matthew C.; Galvez, Gino; Landa, Isidro; Buonora, Paul; Thoman, Dustin B.

    2016-01-01

    Recent research suggests that underrepresented minority (URM) college students, and especially first-generation URMs, may lose motivation to persist if they see science careers as unable to fulfill culturally relevant career goals. In the present study, we used a mixed-methods approach to explore patterns of motivation to pursue physical and life…

  14. Laptop Use, Interactive Science Software, and Science Learning Among At-Risk Students

    Science.gov (United States)

    Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope

    2014-08-01

    This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in California. Analysis of students' state standardized science test scores indicated that the program helped close gaps in scientific achievement between at-risk learners (i.e., English learners, Hispanics, and free/reduced-lunch recipients) and their counterparts. Teacher and student interviews and classroom observations suggested that computer-supported visual representations and interactions supported diverse learners' scientific understanding and inquiry and enabled more individualized and differentiated instruction. Finally, interviews revealed that the program had a positive impact on students' motivation in science and on their interest in pursuing science-related careers. This study suggests that technology-facilitated science instruction is beneficial for improving at-risk students' science achievement, scaffolding students' scientific understanding, and strengthening students' motivation to pursue STEM-related careers.

  15. "Discover, Understand, Implement, and Transfer": Effectiveness of an Intervention Programme to Motivate Students for Science

    Science.gov (United States)

    Schütte, Kerstin; Köller, Olaf

    2015-01-01

    Considerable research has focused on how best to satisfy modern societies' needs for skilled labour in the field of science. The present study evaluated an intervention programme designed to increase secondary school students' motivation to pursue a science career. Students from 3 schools of the highest educational track participated for up to 2…

  16. Racial/Ethnic differences in the educational expectations of adolescents: does pursuing higher education mean something different to latino students compared to white and black students?

    Science.gov (United States)

    Turcios-Cotto, Viana Y; Milan, Stephanie

    2013-09-01

    There are striking disparities in the academic achievement of American youth, with Latino students being a particularly vulnerable population. Adolescents' academic expectations have been shown to predict educational outcomes, and thus are an important factor in understanding educational disparities. This article examines racial/ethnic differences in the future expectations of adolescents, with a particular focus on how expectations about higher education may differ in frequency and meaning for Latino youth. Participants included 375 urban ninth-grade students (49 % Latino, 23 % White, 22 % Black, and 6 % other; 51 % female) who gave written descriptions of how they pictured their lives in 5 years. Responses were subsequently coded for content and themes. Results demonstrate that Latino youth were less likely to picture themselves attending college when compared to Black and White youth, and more likely to hold social goals, such as starting their own family. Ethnic/racial differences also were found in the themes present in responses, with Latino and Black students more likely than White students to describe individuation and materialistic goals, and to give more unrealistic responses. For Latino youth only, higher education goals were associated significantly with individuation themes. In addition, for Latino youth, adolescents who wished to pursue higher education reported more depressive symptoms and emotional distress than those who did not picture going to college, whereas the opposite pattern was evident for Black and White youth. These differences may reflect cultural values, such as familismo. Practice implications include the importance of culturally tailoring programs aimed at promoting higher education.

  17. Racial/Ethnic Differences in the Educational Expectations of Adolescents: Does Pursuing Higher Education Mean Something Different to Latino Students Compared to White and Black Students?

    Science.gov (United States)

    Turcios-Cotto, Viana Y.; Milan, Stephanie

    2012-01-01

    There are striking disparities in the academic achievement of American youth, with Latino students being a particularly vulnerable population. Adolescents’ academic expectations have been shown to predict educational outcomes, and thus are an important factor in understanding educational disparities. This article examines racial/ethnic differences in the future expectations of adolescents, with a particular focus on how expectations about higher education may differ in frequency and meaning for Latino youth. Participants included 375 urban ninth-grade students (49% Latino, 23% White, 22% Black, and 6% other; 51% female) who gave written descriptions of how they pictured their lives in five years. Responses were subsequently coded for content and themes. Results demonstrate that Latino youth were less likely to picture themselves attending college when compared to Black and White youth, and more likely to hold social goals, such as starting their own family. Ethnic/racial differences also were found in the themes present in responses, with Latino and Black students more likely than White students to describe individuation and materialistic goals, and to give more unrealistic responses. For Latino youth only, higher education goals were associated significantly with individuation themes. In addition, for Latino youth, adolescents who wished to pursue higher education reported more depressive symptoms and emotional distress than those who did not picture going to college, whereas the opposite pattern was evident for Black and White youth. These differences may reflect cultural values, such as familismo. Practice implications include the importance of culturally tailoring programs aimed at promoting higher education. PMID:23111844

  18. The effect of science-technology-society issue instruction on the attitudes of female middle school students toward science

    Science.gov (United States)

    Mullinnix, Debra Lynn

    An assessment of the science education programs of the last thirty years reveals traditional science courses are producing student who have negative attitudes toward science, do not compete successfully in international science and mathematics competitions, are not scientifically literate, and are not interested in pursuing higher-level science courses. When the number of intellectually-capable females that fall into this group is considered, the picture is very disturbing. Berryman (1983) and Kahle (1985) have suggested the importance of attitude both, in terms of achievement in science and intention to pursue high-level science courses. Studies of attitudes toward science reveal that the decline in attitudes during grades four through eight was much more dramatic for females than for males. There exists a need, therefore, to explore alternative methods of teaching science, particularly in the middle school, that would increase scientific literacy, improve attitudes toward science, and encourage participation in higher-level science courses of female students. Yager (1996) has suggested that science-technology-society (STS) issue instruction does make significant changes in students' attitudes toward science, stimulates growth in science process skills, and increases concept mastery. The purpose of this study was to examine the effect STS issue instruction had on the attitudes of female middle school students toward science in comparison to female middle school students who experience traditional science instruction. Another purpose was to examine the effect science-technology-society issue instruction had on the attitudes of female middle school students in comparison to male middle school students. The pretests and the posttests were analyzed to examine differences in ten domains: enjoyment of science class; usefulness of information learned in science class; usefulness of science skills; feelings about science class in general; attitudes about what took place

  19. Why a Medical Career? "What Makes Sudanese Students to Join a Medical College and Pursue a Medical Career"?

    Science.gov (United States)

    Mutwali, Ismat Mohammed; Omer, Aisha Ibrahim A.; Abdalhalim, Sadigh Mohammed

    2015-01-01

    Introduction: Career selection and decision to pursue a medical career is a multi factorial process. It is influenced by the personal capabilities and the available resources as well as the social, educational, economical and cultural factors. Sudan is one of the African countries with a high number of medical colleges and an increasing number of…

  20. Probing the Natural World, Level III, Student Guide: Investigating Variation. Intermediate Science Curriculum Study.

    Science.gov (United States)

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one unit of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on diversity in human populations, measurement, and data collection. Numerous activities are given and optional excursions encourage students to pursue a topic in greater depth. Data tables within the…

  1. Increasing High School Student Interest in Science: An Action Research Study

    Science.gov (United States)

    Vartuli, Cindy A.

    An action research study was conducted to determine how to increase student interest in learning science and pursuing a STEM career. The study began by exploring 10th-grade student and teacher perceptions of student interest in science in order to design an instructional strategy for stimulating student interest in learning and pursuing science. Data for this study included responses from 270 students to an on-line science survey and interviews with 11 students and eight science teachers. The action research intervention included two iterations of the STEM Career Project. The first iteration introduced four chemistry classes to the intervention. The researcher used student reflections and a post-project survey to determine if the intervention had influence on the students' interest in pursuing science. The second iteration was completed by three science teachers who had implemented the intervention with their chemistry classes, using student reflections and post-project surveys, as a way to make further procedural refinements and improvements to the intervention and measures. Findings from the exploratory phase of the study suggested students generally had interest in learning science but increasing that interest required including personally relevant applications and laboratory experiences. The intervention included a student-directed learning module in which students investigated three STEM careers and presented information on one of their chosen careers. The STEM Career Project enabled students to explore career possibilities in order to increase their awareness of STEM careers. Findings from the first iteration of the intervention suggested a positive influence on student interest in learning and pursuing science. The second iteration included modifications to the intervention resulting in support for the findings of the first iteration. Results of the second iteration provided modifications that would allow the project to be used for different academic levels

  2. Increasing the motivation of high school students to pursue engineering careers through an application-oriented active learning boot-camp

    DEFF Research Database (Denmark)

    Jensen, Kjeld; Dyrmann, Mads; Midtiby, Henrik Skov

    2017-01-01

    The main objective of this work is to increase the motivation of high school students to pursue a career in engineering. This is achieved through a 3-day university boot camp with a high focus on applying theoretical knowledge to real world problems, technology development and working in teams....... The learning outcomes are therefore both related to academic/technical topics and to career decisions....

  3. Life science students' attitudes, interest, and performance in introductory physics for life sciences: An exploratory study

    Science.gov (United States)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-06-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students' skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students' attitudes toward and their interest in physics. Whereas the same students' attitudes declined during the standard first semester course, we found that students' attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students' interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.

  4. Pharmacy students' perceptions of natural science and mathematics subjects.

    Science.gov (United States)

    Prescott, Julie; Wilson, Sarah Ellen; Wan, Kai-Wai

    2014-08-15

    To determine the level of importance pharmacy students placed on science and mathematics subjects for pursuing a career in pharmacy. Two hundred fifty-four students completed a survey instrument developed to investigate students' perceptions of the relevance of science and mathematics subjects to a career in pharmacy. Pharmacy students in all 4 years of a master of pharmacy (MPharm) degree program were invited to complete the survey instrument. Students viewed chemistry-based and biology-based subjects as relevant to a pharmacy career, whereas mathematics subjects such as physics, logarithms, statistics, and algebra were not viewed important to a career in pharmacy. Students' experience in pharmacy and year of study influenced their perceptions of subjects relevant to a pharmacy career. Pharmacy educators need to consider how they can help students recognize the importance of scientific knowledge earlier in the pharmacy curriculum.

  5. Preparing Graduate Students as Science Communicators

    Science.gov (United States)

    Knudson, K.; Gutstein, J.

    2012-12-01

    our courses, opting for master's degrees to pursue science communications-related positions. One received a prestigious fellowship in science communication and media. Yet, while we are successful with students, our programs are not without challenges. Our Translating Research interdisciplinary curriculum that encourages students' exploration of non-academic career options can create problems with faculty advisors in the current environment of graduate education; Carnegie scholars and other researchers argue that the traditional master-apprentice system requires a thorough overhaul to address high attrition rates and low rates of academic employment. Secondly, we situated our communications training within our environmental research institute and outside of any graduate program's degree requirements. While this gives access to motivated graduate students and creates enriching interactions within the course context, it presents problems with campus recognition and institutionalization. We are identifying new pathways and exploring the creation of a certificate program through our University Extension. Graduate student perception can also be an issue. Our courses tend to attract a particular kind of graduate student: female, early in her academic career, in the sciences, and interested in a career outside of academia. Attracting more male graduate students to science communication remains a challenge.

  6. Science Education and ESL Students

    Science.gov (United States)

    Allen, Heather; Park, Soonhye

    2011-01-01

    The number of students who learn English as a second language (ESL) in U.S. schools has grown significantly in the past decade. This segment of the student population increased by 56% between the 1994-95 and 2004-05 school years (NCLR 2007). As the ESL student population increases, many science teachers struggle to tailor instructional materials,…

  7. Predictors of Intent to Pursue a College Health Science Education among High Achieving Minority 10th Graders

    Science.gov (United States)

    Zebrak, Katarzyna A.; Le, Daisy; Boekeloo, Bradley O.; Wang, Min Qi

    2013-01-01

    Minority populations are underrepresented in fields of science, perhaps limiting scientific perspectives. Informed by recent studies using social cognitive career theory, this study examined whether three conceptual constructs: self-efficacy, perceived adult support, and perceived barriers, along with several discrete and immutable variables,…

  8. Student science enrichment training program

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objective was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.

  9. Pursuing Pleasures of Productivity: University Students' Use of Prescription Stimulants for Enhancement and the Moral Uncertainty of Making Work Fun.

    Science.gov (United States)

    Petersen, Margit Anne; Nørgaard, Lotte Stig; Traulsen, Janine M

    2015-12-01

    This article presents ethnographic data on the use of prescription stimulants for enhancement purposes by university students in New York City. The study shows that students find stimulants a helpful tool in preventing procrastination, particularly in relation to feeling disinterested, overloaded, or insecure. Using stimulants, students seek pleasure in the study situation, for example, to get rid of unpleasant states of mind or intensify an already existing excitement. The article illustrates the notion that enhancement strategies do not only concern productivity in the quantitative sense of bettering results, performances, and opportunities. Students also measure their own success in terms of the qualitative experience of working hard. The article further argues that taking an ethnographic approach facilitates the study of norms in the making, as students experience moral uncertainty-not because they improve study skills and results-but because they enhance the study experience, making work fun. The article thereby seeks to nuance simplistic neoliberal ideas of personhood.

  10. Increasing Underrepresented Students in Geophysics and Planetary Science Through the Educational Internship in Physical Sciences (EIPS)

    Science.gov (United States)

    Terrazas, S.; Olgin, J. G.; Enriquez, F.

    2017-12-01

    The number of underrepresented minorities pursuing STEM fields, specifically in the sciences, has declined in recent times. In response, the Educational Internship in Physical Sciences (EIPS), an undergraduate research internship program in collaboration with The University of Texas at El Paso (UTEP) Geological Sciences Department and El Paso Community College (EPCC), was created; providing a mentoring environment so that students can actively engage in science projects with professionals in their field so as to gain the maximum benefits in an academic setting. This past year, interns participated in planetary themed projects which exposed them to the basics of planetary geology, and worked on projects dealing with introductory digital image processing and synthesized data on two planetary bodies; Pluto and Enceladus respectively. Interns harnessed and built on what they have learned through these projects, and directly applied it in an academic environment in solar system astronomy classes at EPCC. Since the majority of interns are transfer students or alums from EPCC, they give a unique perspective and dimension of interaction; giving them an opportunity to personally guide and encourage current students there on available STEM opportunities. The goal was to have interns gain experience in planetary geology investigations and networking with professionals in the field; further promoting their interests and honing their abilities for future endeavors in planetary science. The efficacy of these activities toward getting interns to pursue STEM careers, enhance their education in planetary science, and teaching key concepts in planetary geophysics are demonstrated in this presentation.

  11. Sustaining Student Engagement in Learning Science

    Science.gov (United States)

    Ateh, Comfort M.; Charpentier, Alicia

    2014-01-01

    Many students perceive science to be a difficult subject and are minimally engaged in learning it. This article describes a lesson that embedded an activity to engage students in learning science. It also identifies features of a science lesson that are likely to enhance students' engagement and learning of science and possibly reverse students'…

  12. Direction discovery: A science enrichment program for high school students.

    Science.gov (United States)

    Sikes, Suzanne S; Schwartz-Bloom, Rochelle D

    2009-03-01

    Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to conceptualize fundamental precepts in biology, chemistry, and math. Students complete an intensive three-week course in the fundamentals of pharmacology during the summer followed by a mentored research component during the school year. Following a 5E learning paradigm, the summer course captures student interest by introducing controversial topics in pharmacology and provides a framework that guides them to explore topics in greater detail. The 5E learning cycle is recapitulated as students extend their knowledge to design and to test an original research question in pharmacology. LEAP students demonstrated significant gains in biology and chemistry knowledge and interests in pursuing science. Several students earned honors for the presentation of their research in regional and state science fairs. Success of the LEAP model in its initial 2 years argues that coupling college-level coursework of interest to teens with an authentic research experience enhances high school student success in and enthusiasm for science. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  13. Medical Students Who Pursue a Joint MD/MBA Degree: Who Are They and Where Are They Heading?

    Science.gov (United States)

    Krupat, Edward; Dienstag, Jules L; Kester, W Carl; Finkelstein, Stan N

    2016-01-21

    Increasingly, health care is being delivered in large, complex organizations, and physicians must learn to function effectively in them. As a result, several medical and business schools have developed joint programs to train physician leaders who receive both medical degree (MD) and master of business administration (MBA) degrees. We examined several themes in relation to these programs, revolving around concerns about who is attracted to them and whether exposure to the differing cultures of medicine and business have an impact on the professional identities of their graduates as manifested in their motivations, aspirations, and careers. We addressed these issues by studying students in the joint MD/MBA program at Harvard Medical School (HMS) and Harvard Business School (HBS). Our data came from several internal sources and a survey of all students enrolled in the joint program in spring 2013. We found relatively few differences between joint program students and equivalent cohorts of HMS students in terms of personal characteristics, preadmission performance, and performance at HMS and HBS. Contrary to the concerns that such programs may draw students away from medicine, the vast majority embraced careers involving extensive postgraduate medical training, with long-term plans that leveraged their new perspectives and skills to improve health care delivery. © The Author(s) 2016.

  14. Program to enrich science and mathematics experiences of high school students through interactive museum internships

    Energy Technology Data Exchange (ETDEWEB)

    Reif, R.J. [State Univ. of New York, New Paltz, NY (United States); Lock, C.R. [Univ. of North Carolina, Charlotte, NC (United States)

    1998-11-01

    This project addressed the problem of female and minority representation in science and mathematics education and in related fields. It was designed to recruit high school students from under-represented groups into a program that provided significant, meaningful experiences to encourage those young people to pursue careers in science and science teaching. It provided role models for those students. It provided experiences outside of the normal school environment, experiences that put the participants in the position to serve as role models themselves for disadvantaged young people. It also provided encouragement to pursue careers in science and mathematics teaching and related careers. In these respects, it complemented other successful programs to encourage participation in science. And, it differed in that it provided incentives at a crucial time, when career decisions are being made during the high school years. Further, it encouraged the pursuit of careers in science teaching. The objectives of this project were to: (1) provide enrichment instruction in basic concepts in the life, earth, space, physical sciences and mathematics to selected high school students participating in the program; (2) provide instruction in teaching methods or processes, including verbal communication skills and the use of questioning; (3) provide opportunities for participants, as paid student interns, to transfer knowledge to other peers and adults; (4) encourage minority and female students with high academic potential to pursue careers in science teaching.

  15. Effect of two Howard Hughes Medical Institute research training programs for medical students on the likelihood of pursuing research careers.

    Science.gov (United States)

    Fang, Di; Meyer, Roger E

    2003-12-01

    To assess the effect of Howard Hughes Medical Institute's (HHMI) two one-year research training programs for medical students on the awardees' research careers. Awardees of the HHMI Cloister Program who graduated between 1987 and 1995 and awardees of the HHMI Medical Fellows Program who graduated between 1991 and 1995 were compared with unsuccessful applicants to the programs and MD-PhD students who graduated during the same periods. Logistic regression analyses were conducted to assess research career outcomes while controlling for academic and demographic variables that could affect selection to the programs. Participation in both HHMI programs increased the likelihood of receiving National Institutes of Health postdoctoral support. Participation in the Cloister Program also increased the likelihood of receiving a faculty appointment with research responsibility at a medical school. In addition, awardees of the Medical Fellows Program were not significantly less likely than Medical Scientist Training Program (MSTP) and non-MSTP MD-PhD program participants to receive a National Institutes of Health postdoctoral award, and awardees of the Cloister Program were not significantly less likely than non-MSTP MD-PhD students to receive a faculty appointment with research responsibility. Women and underrepresented minority students were proportionally represented among awardees of the two HHMI programs whereas they were relatively underrepresented in MD-PhD programs. The one-year intensive research training supported by the HHMI training programs appears to provide an effective imprinting experience on medical students' research careers and to be an attractive strategy for training physician-scientists.

  16. Women and girls in science education: Female teachers' and students' perspectives on gender and science

    Science.gov (United States)

    Crotty, Ann

    Science is a part of all students' education, PreK-12. Preparing students for a more scientifically and technologically complex world requires the best possible education including the deliberate inclusion and full contributions of all students, especially an underrepresented group: females in science. In the United States, as elsewhere in the world, the participation of girls and women in science education and professional careers in science is limited, particularly in the physical sciences (National Academy of Sciences [NAS], 2006). The goal of this research study is to gain a better understanding of the perspectives and perceptions of girls and women, both science educators and students, related to gender and participation in science at the time of an important course: high school chemistry. There is a rich body of research literature in science education that addresses gender studies post---high school, but less research that recognizes the affective voices of practicing female science teachers and students at the high school level (Bianchini, Cavazos, & Helms, 2000; Brown & Gilligan, 1992; Gilligan, 1982). Similarly, little is known with regard to how female students and teachers navigate their educational, personal, and professional experiences in science, or how they overcome impediments that pose limits on their participation in science, particularly the physical sciences. This exploratory study focuses on capturing voices (Brown & Gilligan, 1992; Gilligan, 1982) of high school chemistry students and teachers from selected urban and suburban learning communities in public schools in the Capital Region of New York State. Through surveys, interviews, and focus groups, this qualitative study explores the intersection of the students' and teachers' experiences with regard to the following questions: (1) How do female chemistry teachers view the role gender has played in their professional and personal lives as they have pursued education, degree status, and

  17. Science and Community Engagement: Connecting Science Students with the Community

    Science.gov (United States)

    Lancor, Rachael; Schiebel, Amy

    2018-01-01

    In this article we describe a course on science outreach that was developed as part of our college's goal that all students participate in a meaningful community engagement experience. The Science & Community Engagement course provides a way for students with science or science-related majors to learn how to effectively communicate scientific…

  18. Achieving equity through critical science agency: An ethnographic study of African American students in a health science career academy

    Science.gov (United States)

    Haun-Frank, Julie

    The purpose of this study was to examine the potential of a High School Health Science Career Academy to support African American students' science career trajectories. I used three key theoretical tools---critical science agency (Basu, 2007; Calabrese Barton & Tan, 2008), power (Nespor, 1994), and cultural production (Carlone, 2004; Eisenhart & Finkel, 1998) to highlight the intersections between the career trajectory implied by the Academy (its curriculum, classroom activities, and clinical experiences) and the students' pursued career trajectories. Data was collected over five months and included individual student interviews, group interviews, parent and administrator interviews, field notes from a culminating medical course and clinical internship, and Academy recruitment documents. The results of this study suggest that participants pursued a health science career for altruistic purposes and the Academy was a resource they drew upon to do so. However, the meanings of science and science person implied by the Academy hindered the possibility for many participants' to advance their science career trajectories. While the Academy promised to expose students to a variety of high-status health care roles, they were funneled into feminine, entry-level positions. This study adds to previous underrepresentation literature by contextualizing how identity-related factors influence African American students' career attainment.

  19. Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) Beyond the PhD Professional Development Program: A Pilot Project

    Science.gov (United States)

    Johnson, A.; Jearld, A.; Williamson Whitney, V.; Huggans, M.; Ricciardi, L.; Thomas, S. H.; Jansma, P. E.

    2012-12-01

    In 2011 the Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S)® initiative launched its newest activity entitled the MS PHD'S "Beyond the PhD (B-PhD) Professional Development Program." This exciting new program was designed to facilitate the development of a new community of underrepresented minority (URM) doctoral candidates and recent doctorate degree recipients in Earth system science (ESS)-related fields. The MS PHD'S B-PhD provides customized support and advocacy for MS PHD'S B-PhD participants in order to facilitate smoother and informed transitions from graduate school, to postdoctoral and tenure-track positions, as well as other "first" jobs in government, industry, and non-profit organizations. In November 2011 the first cohort of MS PHD'S B-PhD participants engaged in intensive sessions on the following topics: "Toolkits for Success for Academia, Business/Industry, Federal Government and Non-Profits", "Defining Short, Mid and Long Term Career Goals", "Accessing and Refining Skill Sets and Other Door Openers", "International Preparation and Opportunities", "Paying it Forward/Lifting as You Climb", and "Customized Strategies for Next Steps". This pilot event, which was hosted by the University of Texas at Arlington's (UTA) College of Science, also provided opportunities for participants to serve as guest lecturers in the UTA's Colleges of Science and Engineering and included one-on-one discussions with MS PHD'S B-PhD mentors and guest speakers who are well established within their individual ESS fields. Insights regarding opportunities, challenges and obstacles commonly faced by URMs within the ESS fields, as well as strategies for success were shared by MS PHD'S B-PhD mentors and guest speakers. Survey results indicate that MS PHD'S B-PhD participants appreciated not only the material covered during this pilot activity, but also appreciated the opportunity to become part of a community of young URM ESS

  20. The Effects of a Consumer Chemistry Intervention on Urban At-Risk High School Students' Performance, Utility Value, and Intentions to Pursue STEM

    Science.gov (United States)

    Duffin, Lisa C.; Starling, Michael P.; Day, Martha M.; Cribbs, Jennifer D.

    2016-01-01

    The main purpose of this quantitative study was to examine the degree to which a three-week intervention in an urban high-needs high school science classroom would influence students' (n = 51) interest, utility value, content knowledge, and intentions for future study in chemistry. The intervention consisted of an authentic, inquiry-based…

  1. Research Microcultures as Socialization Contexts for Underrepresented Science Students.

    Science.gov (United States)

    Thoman, Dustin B; Muragishi, Gregg A; Smith, Jessi L

    2017-06-01

    How much does scientific research potentially help people? We tested whether prosocial-affordance beliefs (PABs) about science spread among group members and contribute to individual students' motivation for science. We tested this question within the context of research experience for undergraduates working in faculty-led laboratories, focusing on students who belong to underrepresented minority (URM) groups. Longitudinal survey data were collected from 522 research assistants in 41 labs at six institutions. We used multilevel modeling, and results supported a socialization effect for URM students: The aggregate PABs of their lab mates predicted the students' own initial PABs, as well as their subsequent experiences of interest and their motivation to pursue a career in science, even after controlling for individual-level PABs. Results demonstrate that research labs serve as microcultures of information about the science norms and values that influence motivation. URM students are particularly sensitive to this information. Efforts to broaden participation should be informed by an understanding of the group processes that convey such prosocial values.

  2. Student Motivation in Science Subjects in Tanzania, Including Students' Voices

    Science.gov (United States)

    Mkimbili, Selina Thomas; Ødegaard, Marianne

    2017-12-01

    Fostering and maintaining students' interest in science is an important aspect of improving science learning. The focus of this paper is to listen to and reflect on students' voices regarding the sources of motivation for science subjects among students in community secondary schools with contextual challenges in Tanzania. We conducted a group-interview study of 46 Form 3 and Form 4 Tanzanian secondary school students. The study findings reveal that the major contextual challenges to student motivation for science in the studied schools are limited resources and students' insufficient competence in the language of instruction. Our results also reveal ways to enhance student motivation for science in schools with contextual challenges; these techniques include the use of questioning techniques and discourse, students' investigations and practical work using locally available materials, study tours, more integration of classroom science into students' daily lives and the use of real-life examples in science teaching. Also we noted that students' contemporary life, culture and familiar language can be utilised as a useful resource in facilitating meaningful learning in science in the school. Students suggested that, to make science interesting to a majority of students in a Tanzanian context, science education needs to be inclusive of students' experiences, culture and contemporary daily lives. Also, science teaching and learning in the classroom need to involve learners' voices.

  3. Teacher in Residence: Bringing Science to Students

    CERN Multimedia

    Daisy Yuhas

    CERN welcomes its first Teacher in Residence, Terrence Baine of the University of Oslo. Baine, who originally hails from Canada, will be concurrently completing his PhD in Physics Education during his time at CERN. Like CERN’s High School Teacher Programme (HST), of which Baine is an alumnus, the Teacher in Residence position is designed to help educators spread the science of CERN in a form that is accessible to students and can encourage them to pursue physics throughout their education.   Terrence Baine, first 'teacher in residence' at CERN Baine explains, “It’s very important to have a teacher present who can be that middle person between the young peoplecoming here, whom we are trying to enlighten, and the physicists who work at CERN. The Teacher in Residence can act as an on-site educational consultant.” As Teacher in Residence, Baine’s primary project will be to develop teaching modules, or a series of lesson plans, that can help high schoo...

  4. Seeding science success: Relations of secondary students' science self-concepts and motivation with aspirations and achievement

    Science.gov (United States)

    Chandrasena, Wanasinghe Durayalage

    identified barriers to promoting science in schools were: the difficulty of the subject matter, lack of student interest, the large amount of subject content, lack of perceived relevance of the subject matter to day-to-day life, ineffective teacher characteristics, lack of aspirations to pursue science as a career, inadequate teaching methods, lack of adequate teacher training, lack of proper policies to reward science teachers, and inadequate support for science from the media. Overall, the results from this study provide a greater understanding of the relations of secondary students' science self-concepts and motivation with aspirations and achievement in different science domains across gender and age levels. Hence, this research makes a valuable contribution to the literature by providing new insight. The findings will be useful for science educators in planning and developing science curriculum and policies with regard to student self-concepts and motivation. Equally, science teachers may find implications for classroom practices, for the planning and conducting of science lessons, for conveying scientific concepts and principles to students more effectively, and in considering the need to generate enthusiasm about the subject in young science students. Thus, the findings may offer the necessary strategies to assist in reducing the decline of students' enrolments in science through efficacious attention to student self-concepts and motivation. The newly developed instrument provides a new opportunity for future research to confidently interrogate the psychosocial issues central to science education and promotion. (Abstract shortened by ProQuest.).

  5. Who Is Teaching Science in Our High Schools? Exploring Factors Influencing Pre-Service Secondary Science Teachers' Decisions to Pursue Teaching as a Career

    Science.gov (United States)

    McDonald, Christine V.

    2017-01-01

    A central objective of recent government reports focused on the important role of education in preparing a skilled and dynamic science, technology, engineering and mathematics (STEM) workforce, with effective teaching in secondary STEM classrooms reliant on the engagement and retention of high-quality STEM teachers (Office of the Chief Scientist,…

  6. Promoting Elementary Students' Epistemology of Science through Computer-Supported Knowledge-Building Discourse and Epistemic Reflection

    Science.gov (United States)

    Lin, Feng; Chan, Carol K. K.

    2018-01-01

    This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a…

  7. `Hard science': a career option for socially and societally interested students? Grade 12 students' vocational interest gap explored

    Science.gov (United States)

    Struyf, Annemie; Boeve-de Pauw, Jelle; Van Petegem, Peter

    2017-11-01

    A key theme in science education research concerns the decline in young peoples' interest in science and the need for professionals in hard science. Goal Congruity Theory posits that an important aspect of the decision whether to pursue hard science for study or as a career is the perception that hard science careers do not fulfil social (working with people) and societal (serving or helping others) interests. In this qualitative study, we explore grade 12 students' perceptions about the social and societal orientation of hard science careers. Furthermore, we investigate the variation in students' social and societal interests. Six focus groups were conducted with 58 grade 12 students in Flanders. Our results indicate that a number of students hold stereotypical views about hard science careers' social orientation, while others believe cooperation with others is an important aspect of hard science careers nowadays. Furthermore, our results show that students believe hard science careers can be societally oriented in the sense that they often associate them with innovation or societal progress. Finally, our results indicate that students may differentiate direct versus indirect societal orientation. These findings contribute to literature regarding social and societal interests and students' perceptions of hard science careers.

  8. Deciding on Science: An Analysis of Higher Education Science Student Major Choice Criteria

    Science.gov (United States)

    White, Stephen Wilson

    The number of college students choosing to major in science, technology, engineering, and math (STEM) in the United States affects the size and quality of the American workforce (Winters, 2009). The number of graduates in these academic fields has been on the decline in the United States since the 1960s, which, according to Lips and McNeil (2009), has resulted in a diminished ability of the United States to compete in science and engineering on the world stage. The purpose of this research was to learn why students chose a STEM major and determine what decision criteria influenced this decision. According to Ajzen's (1991) theory of planned behavior (TPB), the key components of decision-making can be quantified and used as predictors of behavior. In this study the STEM majors' decision criteria were compared between different institution types (two-year, public four-year, and private four-year), and between demographic groups (age and sex). Career, grade, intrinsic, self-efficacy, and self-determination were reported as motivational factors by a majority of science majors participating in this study. Few students reported being influenced by friends and family when deciding to major in science. Science students overwhelmingly attributed the desire to solve meaningful problems as central to their decision to major in science. A majority of students surveyed credited a teacher for influencing their desire to pursue science as a college major. This new information about the motivational construct of the studied group of science majors can be applied to the previously stated problem of not enough STEM majors in the American higher education system to provide workers required to fill the demand of a globally STEM-competitive United States (National Academy of Sciences, National Academy of Engineering, & Institute of Medicine, 2010).

  9. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  10. Students' Psychosocial Perception of Science Laboratory ...

    African Journals Online (AJOL)

    Data was obtained with the Science Laboratory Environment Questionnaire, administered on 338 third year science students. Four factors were found to influence students' perception of their science laboratory environment. Two distinct material environments emerged, which have not been reported in the literature.

  11. Secondary School Students' Predictors of Science Attitudes

    Science.gov (United States)

    Tosun, Cemal; Genç, Murat

    2016-01-01

    The purpose of this study is to identify the factors that affect the secondary school students' attitudes in science. This study was conducted using survey method. The sample of the study was 503 students from four different secondary schools in Bartin and Düzce. Data were obtained using the Survey of Factors Affecting Students' Science Attitudes…

  12. Factors deterring dentistry, medical, pharmacy, and social science undergraduates from pursuing nursing as a healthcare career: a cross-sectional study in an Asian university.

    Science.gov (United States)

    Wu, Ling Ting; Wang, Wenru; Holroyd, Eleanor; Lopez, Violeta; Liaw, Sok Ying

    2018-01-26

    Globally more registered nurses need to be recruited to meet the needs of aging populations and increased co-morbidity. Nursing recruitment remains challenging when compared to other healthcare programs. Despite healthcare students having similar motivation in joining the healthcare industry, many did not consider nursing as a career choice. This study aims to identify the deterrents to choosing nursing among healthcare undergraduates by examining the differences in the factors influencing healthcare career choices and nursing as a career choice. A cross sectional study was conducted using a 35-parallel items instrument known as Healthcare Career Choice and Nursing Career Choice scale. Six hundred and four (n = 604) first year medical, pharmacy, dentistry and social science students from a university in Singapore completed the survey. Nursing as a career was perceived by healthcare students to be more likely influenced by prior healthcare exposure, the nature of the work, job prospects, and social influences. Lack of autonomous decision making, perceived lower ability to make diagnosis, having to attend to patients' hygiene needs, engendered stigma, and lack of parental support were identified as deterring factors to choosing nursing as a career. An understanding of the deterrents to choosing nursing as career allows policy makers and educational leaders to focus on recruitment strategies. These include providing more exposure to nurses' roles in early school years, helping young people to overcome the fear of providing personal hygiene care, promoting nurses' autonomous nursing practice, addressing gender stigma, and overcoming parental objection.

  13. Discovering Factors that Influence the Decision to Pursue a Chemistry-Related Career: A Comparative Analysis of the Experiences of Non Scientist Adults and Chemistry Teachers in Greece

    Science.gov (United States)

    Salta, Katerina; Gekos, Michael; Petsimeri, Irene; Koulougliotis, Dionysios

    2012-01-01

    This study aims at identifying factors that influence students' choice not to pursue a chemistry-related career by analyzing the experiences of secondary education chemistry teachers in Greece and of Greek adults who have not pursued studies related to science. Data collection was done with the method of individual structured interviews. The…

  14. ethiopian students' achievement challenges in science education

    African Journals Online (AJOL)

    IICBA01

    Oli Negassa. Adama Science and Technology University, Ethiopia ... achievement in science education across selected preparatory schools of Ethiopia. The .... To what extent do students' achievements vary across grade levels, regions,.

  15. The perspectives and experiences of African American students in an informal science program

    Science.gov (United States)

    Bulls, Domonique L.

    Science, technology, engineering, and mathematics (STEM) fields are the fastest growing sectors of the economy, nationally and globally. In order for the United States (U.S.) to maintain its competitiveness, it is important to address STEM experiences at the precollege level. In early years, science education serves as a foundation and pipeline for students to pursue STEM in college and beyond. Alternative approaches to instruction in formal classrooms have been introduced to engage more students in science. One alternative is informal science education. Informal science education is an avenue used to promote science education literacy. Because it is less regulated than science teaching in formal classroom settings, it allows for the incorporation of culture into science instruction. Culturally relevant science teaching is one way to relate science to African American students, a population that continually underperforms in K-12 science education. This study explores the science perspectives and experiences of African American middle school students participating in an informal science program. The research is framed by the tenets of culturally relevant pedagogy and shaped by the following questions: (1) What specific aspects of the Carver Program make it unique to African American students? (2) How is culturally relevant pedagogy incorporated into the informal science program? (3) How does the incorporation of culturally relevant pedagogy into the informal science program influence African American students' perceptions about science? The findings to the previously stated questions add to the limited research on African American students in informal science learning environments and contribute to the growing research on culturally relevant science. This study is unique in that it explores the cultural components of an informal science program.

  16. The Science Standards and Students of Color

    Science.gov (United States)

    Strachan, Samantha L.

    2017-01-01

    In a 2014 report, the National Center for Education Statistics (NCES) projected that by the year 2022, minority students will outnumber non-Hispanic white students enrolled in public schools. As the diversity of the student population in the United States increases, concerns arise about student performance in science classes, especially among…

  17. Student and Faculty Outcomes of Undergraduate Science Research Projects by Geographically Dispersed Students

    Directory of Open Access Journals (Sweden)

    Lawton Shaw

    2013-12-01

    Full Text Available Senior undergraduate research projects are important components of most undergraduate science degrees. The delivery of such projects in a distance education format is challenging. Athabasca University (AU science project courses allow distance education students to complete research project courses by working with research supervisors in their local area, coordinated at a distance by AU faculty. This paper presents demographics and course performance for 155 students over five years. Pass rates were similar to other distance education courses. Research students were surveyed by questionnaire, and external supervisors and AU faculty were interviewed, to examine the outcomes of these project courses for each group. Students reported high levels of satisfaction with the course, local supervisors, and faculty coordinators. Students also reported that the experience increased their interest in research, and the probability that they would pursue graduate or additional certification. Local supervisors and faculty affirmed that the purposes of project courses are to introduce the student to research, provide opportunity for students to use their cumulative knowledge, develop cognitive abilities, and independent thinking. The advantages and challenges associated with this course model are discussed.

  18. Introducing Science to undergraduate students

    Directory of Open Access Journals (Sweden)

    P. Avila Jr

    2006-07-01

    Full Text Available The knowledge of scientific method provides stimulus and development of critical thinking and logical analysis of information besides the training of continuous formulation of hypothesis to be applied in formal scientific issues as well as in everyday facts. The scientific education, useful for all people, is indispensable for the experimental science students. Aiming at the possibility to offer a systematic learning of the scientific principles, we developed a undergraduate course designed to approximate the students to the procedures of scientific production and publication. The course was developed in a 40 hours, containing two modules: I. Introducing Scientific Articles (papers and II. Writing Research Project. The first module deals with: (1 the difference between scientific knowledge and common sense; (2 scientific methodology; (3 scientific publishing categories; (4 logical principles; (5 deduction and induction approach and (6 paper analysis. The second module includes (1 selection of problem to be solved by experimental procedures; (2 bibliography revision; (3 support agencies; (4 project writing and presentation and (5 critical analysis of experimental results. The course used a Collaborative Learning strategy with each topic being developed through activities performed by the students. Qualitative and quantitative (through Likert questionnaires evaluation were carried out in each step of the course, the results showing great appreciation by the students. This is also the opinion of the staff responsible for the planning and development of the course, which is now in its second and improved version.

  19. Pursuing Pleasures of Productivity

    DEFF Research Database (Denmark)

    Petersen, Margit Anne; Nørgaard, Lotte Stig; Traulsen, Janine M

    2015-01-01

    This article presents ethnographic data on the use of prescription stimulants for enhancement purposes by university students in New York City. The study shows that students find stimulants a helpful tool in preventing procrastination, particularly in relation to feeling disinterested, overloaded...

  20. Reaching Nonscience Students through Science Fiction

    Science.gov (United States)

    Smith, Donald A.

    2009-01-01

    In 2006 I had the chance to design a physics course for students not majoring in scientific fields. I chose to shape the course around science fiction, not as a source for quantitative problems but as a means for conveying important physics concepts. I hoped that, by encountering these concepts in narratives, students with little or no science or…

  1. Science Students' Classroom Discourse: Tasha's Umwelt

    Science.gov (United States)

    Arnold, Jenny

    2012-04-01

    Over the past twenty-five years researchers have been concerned with understanding the science student. The need for such research is still grounded in contemporary issues including providing opportunities for all students to develop scientific literacy and the failure of school science to connect with student's lives, interests and personal identities. The research reported here is unusual in its use of discourse analysis in social psychology to contribute to an understanding of the way students make meaning in secondary school science. Data constructed for the study was drawn from videotapes of nine consecutive lessons in a year-seven science classroom in Melbourne, post-lesson video-stimulated interviews with students and the teacher, classroom observation and the students' written work. The classroom videotapes were recorded using four cameras and seven audio tracks by the International Centre for Classroom Research at the University of Melbourne. Student talk within and about their science lessons was analysed from a discursive perspective. Classroom episodes in which students expressed their sense of personal identity and agency, knowledge, attitude or emotion in relation to science were identified for detailed analysis of the function of the discourse used by students, and in particular the way students were positioned by others or positioned themselves. This article presents the discursive Umwelt or life-space of one middle years science student, Tasha. Her case is used here to highlight the complex social process of meaning making in science classrooms and the need to attend to local moral orders of rights and duties in research on student language use, identity and learning in science.

  2. Undergraduate Science Research: A Comparison of Influences and Experiences between Premed and Non–Premed Students

    Science.gov (United States)

    Pacifici, Lara Brongo; Thomson, Norman

    2011-01-01

    Most students participating in science undergraduate research (UR) plan to attend either medical school or graduate school. This study examines possible differences between premed and non–premed students in their influences to do research and expectations of research. Questionnaire responses from 55 premed students and 80 non–premed students were analyzed. No differences existed in the expectations of research between the two groups, but attitudes toward science and intrinsic motivation to learn more about science were significantly higher for non–premed students. Follow-up interviews with 11 of the students, including a case study with one premed student, provided explanation for the observed differences. Premed students, while not motivated to learn more about science, were motivated to help people, which is why most of them are pursuing medicine. They viewed research as a way to help them become doctors and to rule out the possibility of research as a career. Non–premed students participated in research to learn more about a specific science topic and gain experience that may be helpful in graduate school research. The difference in the reasons students want to do UR may be used to tailor UR experiences for students planning to go to graduate school or medical school. PMID:21633068

  3. Undergraduate science research: a comparison of influences and experiences between premed and non-premed students.

    Science.gov (United States)

    Pacifici, Lara Brongo; Thomson, Norman

    2011-01-01

    Most students participating in science undergraduate research (UR) plan to attend either medical school or graduate school. This study examines possible differences between premed and non-premed students in their influences to do research and expectations of research. Questionnaire responses from 55 premed students and 80 non-premed students were analyzed. No differences existed in the expectations of research between the two groups, but attitudes toward science and intrinsic motivation to learn more about science were significantly higher for non-premed students. Follow-up interviews with 11 of the students, including a case study with one premed student, provided explanation for the observed differences. Premed students, while not motivated to learn more about science, were motivated to help people, which is why most of them are pursuing medicine. They viewed research as a way to help them become doctors and to rule out the possibility of research as a career. Non-premed students participated in research to learn more about a specific science topic and gain experience that may be helpful in graduate school research. The difference in the reasons students want to do UR may be used to tailor UR experiences for students planning to go to graduate school or medical school.

  4. Radiologic science students' perceptions of parental involvement.

    Science.gov (United States)

    DuBose, Cheryl; Barymon, Deanna; Vanderford, Virginia; Hensley, Chad; Shaver, Gary

    2014-01-01

    A new generation of students is in the classroom, and they are not always alone. Helicopter parents, those who hover around the student and attempt to ease life's challenges, are accompanying the students to radiologic science programs across the nation. To determine radiologic science students' perception regarding their parents' level of involvement in their lives. A survey focused on student perceptions of parental involvement inside and outside of the academic setting was completed by 121 radiologic science students at 4 institutional settings. The analysis demonstrates statistically significant relationships between student sex, age, marital status, and perceived level of parental involvement. In addition, as financial support increases, students' perception of the level of parental involvement also increases. Radiologic science students want their parents to be involved in their higher education decisions. Research indicates that students with involved parents are more successful, and faculty should be prepared for increased parental involvement in the future. Radiologic science students perceive their parents to be involved in their academic careers. Ninety-five percent of respondents believe that the financial support of their parent or parents contributes to their academic success. Sixty-five percent of participants are content with their parents' current level of involvement, while 11% wish their parents were more involved in their academic careers.

  5. Internet Use Among Science Undergraduate Students: A ...

    African Journals Online (AJOL)

    The objective of this study was to identify and determine the extent of students\\' access to, and use of the Internet using the Science Undergraduate Students of University of Ibadan and University of Lagos as a case study. The study also aimed at comparing the rate of use among this group of students and determine which ...

  6. University Students' Perceptions of Their Science Classrooms

    Science.gov (United States)

    Kaya, Osman Nafiz; Kilic, Ziya; Akdeniz, Ali Riza

    2004-01-01

    The purpose of this study was to investigate the dimensions of the university students' perceptions of their science classes and whether or not the students' perceptions differ significantly as regards to the gender and grade level in six main categories namely; (1) pedagogical strategies, (2) faculty interest in teaching, (3) students interest…

  7. The Student/Library Computer Science Collaborative

    Science.gov (United States)

    Hahn, Jim

    2015-01-01

    With funding from an Institute of Museum and Library Services demonstration grant, librarians of the Undergraduate Library at the University of Illinois at Urbana-Champaign partnered with students in computer science courses to design and build student-centered mobile apps. The grant work called for demonstration of student collaboration…

  8. Moral Perceptions of College Science Students

    Science.gov (United States)

    Nolan, Eric

    This thesis argues that college-level science education is in need of explicit moral focuses centered on society's use of scientific knowledge. Many benefits come with scientific advancements but unfortunately the misuse of scientific knowledge has led to planetary crises that should be a concern for all who inhabit the Earth (e.g., climate change). The teaching of the misuses of science is often left out of college science classrooms and the purpose of this thesis is to see what effect college science students' education has had on their moral perception of these pressing issues. To evaluate how college science students morally perceive these global issues within their educational experiences, two focus group interviews were conducted and analyzed. Students converged on three themes when thinking of society's misuse of science: 1) there is something wrong with the way science is communicated between science and non-science groups; 2) misusing science for private benefit is not right, and 3) it is important for people to comprehend sustainability along different scales of understanding and action. This thesis concludes that although to some extent students were familiar with moral features that stem from society's misuse of science, they did not attribute their learning of those features from any of their required coursework within their programs of study.

  9. Pursuing Mathematics in India

    Indian Academy of Sciences (India)

    Admin

    2012-09-07

    Sep 7, 2012 ... of public–private partnership in research and education in India. The Institute receives major private funding, side by side with substantial .... We are writing this to say that students who fail to do well in Mathematics Olympiad have no reason to get disheartened and to think that they are not good enough to ...

  10. Who am I? ~ Undergraduate Computer Science Student

    OpenAIRE

    Ferris, Jane

    2012-01-01

    As part of a school review process a survey of the students was designed to gain insight into who the students of the school were. The survey was a voluntary anonymous online survey. Students were able to skip questions and select more than one option in some questions. This was to reduce frustration with participation in the survey and ensure that the survey was completed. This conference details the average undergraduate Computer Science student of a large third level institute.

  11. The self-concept of chiropractic students as science students

    Science.gov (United States)

    Shields, Robert F.

    2005-01-01

    Abstract Purpose To determine the self-concepts of chiropractic students as science students and if any personal variable affect their self-concepts. Participants Students in their first trimester and eighth trimester at the Los Angeles College of Chiropractic during the 1993 academic year (n=158). Methods Peterson-Yaakobi Q-Sort, National Assessment of Educational Progress, two-tailed T-test, one way analysis of variance and Spearman-rho correlation. Results The majority of students have positive self- concepts as science students and although there was a difference between the 2 trimesters, it was not significant. As a group they generally had less exposure to science compared to undergraduates from a selected science program. Variables of socio-economic status, undergraduate major, and highest completed level of education did not statistically affect their self-concept. Conclusion Chiropractic students had the self-concept that enables them to subscribe to the philosophical foundations of science and better engage in basic sciences and, later, science-based clinical research. Knowledge of this self- concept can be used in the development of a more rigorous basic science curricula and clinical research programs at chiropractic colleges with the ultimate goal of providing a more firm scientifically based foundation for the profession. PMID:19674649

  12. `Discover, Understand, Implement, and Transfer': Effectiveness of an intervention programme to motivate students for science

    Science.gov (United States)

    Schütte, Kerstin; Köller, Olaf

    2015-09-01

    Considerable research has focused on how best to satisfy modern societies' needs for skilled labour in the field of science. The present study evaluated an intervention programme designed to increase secondary school students' motivation to pursue a science career. Students from 3 schools of the highest educational track participated for up to 2 years in the intervention programme, which was implemented as an elective in the school curriculum. Our longitudinal study design for evaluating the effectiveness of the intervention programme included all students at the grade levels involved in the programme with students who did not participate serving as a control group. Mixed-model analyses of variance showed none of the intended effects of the intervention programme on science motivation; latent growth models corroborated these results. When the programme began, students who enrolled in the science elective (n = 92) were already substantially more motivated than their classmates (n = 228). Offering such an intervention programme as an elective did not further increase the participating students' science motivation. It seems worthwhile to carry out intervention programmes with talented students who show (comparatively) little interest in science at the outset rather than with highly motivated students who self-select into the programme.

  13. Finding science in students' talk

    Science.gov (United States)

    Yeo, Jennifer

    2009-12-01

    What does it mean to understand science? This commentary extends Brown and Kloser's argument on the role of native language for science learning by exploring the meaning of understanding in school science and discusses the extent that science educators could tolerate adulterated forms of scientific knowledge. Taking the perspective of social semiotics, this commentary looks at the extent that school science can be represented with other discourse practices. It also offers an example to illustrate how everyday language can present potential hindrance to school science learning.

  14. Science Alive!: Connecting with Elementary Students through Science Exploration

    Directory of Open Access Journals (Sweden)

    Aarti Raja

    2016-05-01

    Full Text Available A novel program called Science Alive! was developed by undergraduate faculty members, K–12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  15. Science Alive!: Connecting with Elementary Students through Science Exploration.

    Science.gov (United States)

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-05-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  16. Science Students and the Social Sciences: Strange Bedfellows?

    Science.gov (United States)

    Yeong, Foong May

    2014-01-01

    With various internet resources available to students, the main aim of a good university education today should not merely be to provide students with content knowledge, but rather to equip them with essential skills necessary to develop into lifelong learners. Among science educators, repeated calls have been made to promote a more holistic…

  17. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  18. A Study of the Correlation between STEM Career Knowledge, Mathematics Self-Efficacy, Career Interests, and Career Activities on the Likelihood of Pursuing a STEM Career among Middle School Students

    Science.gov (United States)

    Blotnicky, Karen A.; Franz-Odendaal, Tamara; French, Frederick; Joy, Phillip

    2018-01-01

    Background: A sample of 1448 students in grades 7 and 9 was drawn from public schools in Atlantic Canada to explore students' knowledge of science and mathematics requirements for science, technology, engineering, and mathematics (STEM) careers. Also explored were their mathematics self-efficacy (MSE), their future career interests, their…

  19. Ciencias 2 (Science 2). [Student's Workbook].

    Science.gov (United States)

    Raposo, Lucilia

    Ciencias 2 is the second in a series of elementary science textbooks written for Portuguese-speaking students. The text develops the basic skills that students need to study their surroundings and observe natural facts and phenomena by following scientific methods. The book is composed of 10 chapters and includes 57 lessons. Topics included are…

  20. Developing science talent in minority students: Perspectives of past participants in a summer mentorship program

    Science.gov (United States)

    Schimmel, Dale Bishop

    The underrepresentation of women and ethnic minorities in science has been well documented. Research efforts are directed toward understanding the high attrition rate in science course selection as students advance through high school and college. The attrition rate is especially high for females and minority students. Since 1980 the Department of Biological Sciences at the University of Connecticut has conducted a "Minority Research Apprentice Program" to attract students by expanding their knowledge of research and technology. The goal of the program is to encourage students from underrepresented groups to eventually select careers in the field of science. This qualitative study of past participants explored factors that related to students' decisions to pursue or not to pursue careers in science. Descriptive statistics and qualitative data collected from surveys and interviews of twenty former apprentices, along with comparative case studies of four selected individuals, revealed the educational interventions, personal traits and social supports that helped guide students' eventual career choice decisions. Participation in gifted programs, advanced placement courses, and talented high school science teachers all played a critical role in assisting these individuals in developing their potential interest. Qualitative data revealed the role of the Minority Research Apprentice Program played in helping talented individuals gain an appreciation of the nature of scientific research through apprenticeship and involvement with authentic projects. For all those involved, it assisted them in clarifying their eventual career choices. Individuals identified the lack of challenge of the introductory science courses, the commitment science requires, and the nature of laboratory work as reasons for leaving the field. Females who left science switched majors more frequently than males. Qualitative data revealed the dilemma that multipotentiality and lack of career counseling

  1. Students build glovebox at Space Science Center

    Science.gov (United States)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  2. Practical science communication strategies for graduate students.

    Science.gov (United States)

    Kuehne, Lauren M; Twardochleb, Laura A; Fritschie, Keith J; Mims, Meryl C; Lawrence, David J; Gibson, Polly P; Stewart-Koster, Ben; Olden, Julian D

    2014-10-01

    Development of skills in science communication is a well-acknowledged gap in graduate training, but the constraints that accompany research (limited time, resources, and knowledge of opportunities) make it challenging to acquire these proficiencies. Furthermore, advisors and institutions may find it difficult to support graduate students adequately in these efforts. The result is fewer career and societal benefits because students have not learned to communicate research effectively beyond their scientific peers. To help overcome these hurdles, we developed a practical approach to incorporating broad science communication into any graduate-school time line. The approach consists of a portfolio approach that organizes outreach activities along a time line of planned graduate studies. To help design the portfolio, we mapped available science communication tools according to 5 core skills essential to most scientific careers: writing, public speaking, leadership, project management, and teaching. This helps graduate students consider the diversity of communication tools based on their desired skills, time constraints, barriers to entry, target audiences, and personal and societal communication goals. By designing a portfolio with an advisor's input, guidance, and approval, graduate students can gauge how much outreach is appropriate given their other commitments to teaching, research, and classes. The student benefits from the advisors' experience and mentorship, promotes the group's research, and establishes a track record of engagement. When graduate student participation in science communication is discussed, it is often recommended that institutions offer or require more training in communication, project management, and leadership. We suggest that graduate students can also adopt a do-it-yourself approach that includes determining students' own outreach objectives and time constraints and communicating these with their advisor. By doing so we hope students will

  3. What Are the Motivational Factors of First-Generation Minority College Students Who Overcome Their Family Histories to Pursue Higher Education?

    Science.gov (United States)

    Blackwell, Edith; Pinder, Patrice Juliet

    2014-01-01

    The pathway to college is not equal for all students. Students from low socioeconomic backgrounds and minorities often face difficult challenges in trying to obtain a college education. Thus, this study utilized a qualitative grounded theory approach to explore and to understand how first-generation minority college students are motivated to…

  4. Student leadership in small group science inquiry

    Science.gov (United States)

    Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.

    2014-09-01

    Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of oversimplification of group dynamics by examining the social leadership structures that emerge in small student groups during science inquiry. Sample: Two small student groups investigating the burning of a candle under a jar participated in this study. Design and method: We used a mixed-method research approach that combined computational discourse analysis (computational quantification of social aspects of small group discussions) with microethnography (qualitative, in-depth examination of group discussions). Results: While in one group social leadership was decentralized (i.e., students shared control over topics and tasks), the second group was dominated by a male student (centralized social leadership). Further, decentralized social leadership was found to be paralleled by higher levels of student cognitive engagement. Conclusions: It is argued that computational discourse analysis can provide science educators with a powerful means of developing pedagogical models of collaborative science learning that take into account the emergent nature of group structures and highly fluid nature of student collaboration.

  5. Science dual enrollment: An examination of high school students' post-secondary aspirations

    Science.gov (United States)

    Berry, Chelsia

    The purpose of this study was to determine if participation in science dual enrollment courses influenced African American high school students' post-secondary aspirations that will lead to college attendance. The investigation examined the relationship between African American students' learning experiences and how their self-efficacy and outcome expectations impact their goal setting. The goal was to determine the impact of the following variables on African American students' plan to pursue a bachelor's or advanced degree: (a) STEM exposure, (b) Algebra 1 achievement, (c) level of science class, and (d) receiving science college credit for dual enrollment course. The social cognitive career theory framed this body of research to explore how career and academic interests mature, are developed, and are translated into action. Science dual enrollment participation is a strategy for addressing the lack of African American presence in the STEM fields. The causal comparative ex post facto research design was used in this quantitative study. The researcher performed the Kruskal-Wallis non-parametric analysis of variance and Pearson's chi-square tests to analyze secondary data from the High School Longitudinal Study first follow-up student questionnaire. The results indicate that STEM exposure and early success in Algebra 1 have a statistically significant impact on African American students' ambition to pursue a bachelor's or advanced degree. According to the Pearson's chi-square and independent sample Kruskal-Wallis analyses, level of students' science class and receiving college credit for dual enrollment do not significantly influence African American students' postsecondary aspirations.

  6. Grassroots Engagement and the University of Washington: Evaluating Science Communication Training Created by Graduate Students for Graduate Students

    Science.gov (United States)

    Rohde, J. A.; Clarkson, M.; Houghton, J.; Chen, W.

    2016-12-01

    Science graduate students increasingly seek science communication training, yet many do not have easy access to training programs. Students often rely on a "do it yourself" approach to gaining communication skills, and student created science communication programs are increasingly found at universities and institutions across the U.S. In 2010, graduate students at the University of Washington led a grassroots effort to improve their own communication and outreach by creating "The Engage Program." With a focus on storytelling and public speaking, this graduate level course not only trains students in science communication but also gives them real world experience practicing that training at a public speaker series at Town Hall Seattle. The Engage Program was fortunate in that it was able to find institutional champions at University of Washington and secure funding to sustain the program over the long-term. However, many grassroots communication programs find it difficult to gain institutional support if there is a perceived lack of alignment with university priorities or lack of return on investment. In order to justify and incentivize institutional support for instruction in science communication, student leaders within the program initiated, designed and carried out an evaluation of their own program focused on assessing the impact of student communication, evaluating the effectiveness of the program in teaching communication skills, and quantifying the benefits of communication training to both the students and their institution. Project leaders created the opportunity for this evaluation by initiating a crowdfunding campaign, which has helped to further engage public support of science communication and incentivized student participation in the program, and may also inspire future program leaders to pursue similar program optimizations.

  7. How do we interest students in science?

    Science.gov (United States)

    Murray, L.

    2016-02-01

    In today's world science literacy is now, more than ever, critical to society. However, today's technically savvy student tends to be bored by "cook-book" laboratory exercises and dated lecture style, which typifies the way that most science courses are taught. To enhance student interest in and understanding of the sciences, we developed two unique programs, in which teachers were provided with the tools and hands-on experience that enabled them to implement research- and inquiry-based projects with their students. The approach was based a framework that is student driven and enables active participation and innovation in the study of the environment. The framework involved selection of a theme and an activity that captured the interest of the participants, participant development of research or investigative questions based on the theme, experimentation to address the research questions, formulation of conclusions, and communication of these results. The projects consisted of two parts: a professional development institute for teachers and the classroom implementation of student research projects, both of which incorporated the framework process. The institutes focused on modeling the framework process, with teachers actively developing questions, researching the question, formulating results and conclusions. This method empowered teachers to be confident in the implementation of the process with their students. With support from project staff, teachers followed up by incorporating the method of teaching with their students. Evaluation results from the programs concluded that projects such as these can increase student interest in and understanding of the scientific process.

  8. An evaluation of community college student perceptions of the science laboratory and attitudes towards science in an introductory biology course

    Science.gov (United States)

    Robinson, Nakia Rae

    The science laboratory is an integral component of science education. However, the academic value of student participation in the laboratory is not clearly understood. One way to discern student perceptions of the science laboratory is by exploring their views of the classroom environment. The classroom environment is one determinant that can directly influence student learning and affective outcomes. Therefore, this study sought to examine community college students' perceptions of the laboratory classroom environment and their attitudes toward science. Quantitative methods using two survey instruments, the Science Laboratory Environment Instrument (SLEI) and the Test of Science Related Attitudes (TORSA) were administered to measure laboratory perceptions and attitudes, respectively. A determination of differences among males and females as well as three academic streams were examined. Findings indicated that overall community college students had positive views of the laboratory environment regardless of gender of academic major. However, the results indicated that the opportunity to pursue open-ended activities in the laboratory was not prevalent. Additionally, females viewed the laboratory material environment more favorably than their male classmates did. Students' attitudes toward science ranged from favorable to undecided and no significant gender differences were present. However, there were significantly statistical differences between the attitudes of nonscience majors compared to both allied health and STEM majors. Nonscience majors had less positive attitudes toward scientific inquiry, adoption of scientific attitudes, and enjoyment of science lessons. Results also indicated that collectively, students' experiences in the laboratory were positive predicators of their attitudes toward science. However, no laboratory environment scale was a significant independent predictor of student attitudes. .A students' academic streams was the only significant

  9. Attitudes and achievement of Bruneian science students

    Science.gov (United States)

    Dhindsa, Harkirat S.; Chung, Gilbert

    2003-08-01

    The aim of this study was to evaluate attitudes towards and achievement in science of Form 3 students studying in single-sex and coeducational schools in Brunei. The results demonstrated significant differences in attitudes towards and achievement in science of male and female students in single-sex schools and students in coeducational schools. These differences were at moderate level. In single-sex schools, the girls achieved moderately better in science than the boys despite their attitudes were only marginally better than the boys. However, there were no gender differences in attitudes towards and achievement in science of students in coeducational schools. The attitudes towards and achievement in science of girls in single-sex schools were moderately better than those of girls in coeducational schools. Whereas the attitudes towards and achievement in science of boys in single-sex schools were only marginally better than the boys in coeducational schools. However, further research to investigate (a) if these differences are repeated at other levels as well as in other subjects, and (b) the extent to which school type contributed towards these differences is recommended.

  10. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    Science.gov (United States)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  11. Exploration of the lived experiences of undergraduate science, technology, engineering, and mathematics minority students

    Science.gov (United States)

    Snead-McDaniel, Kimberly

    An expanding ethnicity gap exists in the number of students pursuing science, technology, engineering, and mathematics (STEM) careers in the United States. The National Action Council for Minorities in Engineering revealed that the number of minorities pursuing STEM degrees and careers has declined over the past few years. The specific origins of this trend are not quite evident; one variable to consider is that undergraduate minority students are failing in STEM disciplines at various levels of education from elementary to postsecondary. The failure of female and minority students to enter STEM disciplines in higher education have led various initiatives to establish programs to promote STEM disciplines among these groups. Additional funding for minority STEM programs have led to a increase in undergraduate minority students entering STEM disciplines, but the minority students' graduation rate in STEM disciplines is approximately 7% lower than the graduation of nonminority students in STEM disciplines. This phenomenological qualitative research study explores the lived experiences of underrepresented minority undergraduate college students participating in an undergraduate minority-mentoring program. The following nine themes emerged from the study: (a) competitiveness, (b) public perception, (c) dedication, (d) self-perception, (e) program activities, (f) time management, (g) exposure to career and graduate opportunities, (h) rigor in the curriculum, and (i) peer mentoring. The themes provided answers and outcomes to better support a stronger minority representation in STEM disciplines.

  12. Asian students excel in science testing

    Science.gov (United States)

    Showstack, Randy

    Asian countries claimed four of the five top spots in science achievement for eighth grade students, according to a December 5 report on the Third International Mathematics and Science Study - Repeat (TIMSS-R). The top five are: Chinese Taipei, Singapore, Hungary, Japan, and the Republic of Korea.In mathematics, Asian countries scored a clean sweep. The top five are: Singapore, the Republic of Korea, Chinese Taipei, Hong Kong SAR,and Japan.

  13. Elementary student teachers' science content representations

    Science.gov (United States)

    Zembal-Saul, Carla; Krajcik, Joseph; Blumenfeld, Phyllis

    2002-08-01

    This purpose of this study was to examine the ways in which three prospective teachers who had early opportunities to teach science would approach representing science content within the context of their student teaching experiences. The study is framed in the literature on pedagogical content knowledge and learning to teach. A situated perspective on cognition is applied to better understand the influence of context and the role of the cooperating teacher. The three participants were enrolled in an experimental teacher preparation program designed to enhance the teaching of science at the elementary level. Qualitative case study design guided the collection, organization, and analysis of data. Multiple forms of data associated with student teachers' content representations were collected, including audiotaped planning and reflection interviews, written lesson plans and reflections, and videotaped teaching experiences. Broad analysis categories were developed and refined around the subconstructs of content representation (i.e., knowledge of instructional strategies that promote learning and knowledge of students and their requirements for meaningful science learning). Findings suggest that when prospective teachers are provided with opportunities to apply and reflect substantively on their developing considerations for supporting children's science learning, they are able to maintain a subject matter emphasis. However, in the absence of such opportunities, student teachers abandon their subject matter emphasis, even when they have had extensive background and experiences addressing subject-specific considerations for teaching and learning.

  14. Science Teaching Methods Preferred by Grade 9 Students in Finland

    Science.gov (United States)

    Juuti, Kalle; Lavonen, Jari; Uitto, Anna; Byman, Reijo; Meisalo, Veijo

    2010-01-01

    Students find science relevant to society, but they do not find school science interesting. This survey study analyzes Finnish grade 9 students' actual experiences with science teaching methods and their preferences for how they would like to study science. The survey data were collected from 3,626 grade 9 students (1,772 girls and 1,832 boys)…

  15. Uncovering student ideas in physical science

    CERN Document Server

    Keeley, Page

    2014-01-01

    If you and your students can't get enough of a good thing, Volume 2 of Uncovering Student Ideas in Physical Science is just what you need. The book offers 39 new formative assessment probes, this time with a focus on electric charge, electric current, and magnets and electromagnetism. It can help you do everything from demystify electromagnetic fields to explain the real reason balloons stick to the wall after you rub them on your hair.

  16. Individual Difference Predictors of Creativity in Art and Science Students

    Science.gov (United States)

    Furnham, Adrian; Batey, Mark; Booth, Tom W.; Patel, Vikita; Lozinskaya, Dariya

    2011-01-01

    Two studies are reported that used multiple measures of creativity to investigate creativity differences and correlates in arts and science students. The first study examined Divergent Thinking fluency, Self-Rated Creativity and Creative Achievement in matched groups of Art and Science students. Arts students scored higher than Science students on…

  17. Pharmacy Educator Motives to Pursue Pedagogical Knowledge.

    Science.gov (United States)

    Baia, Patricia; Strang, Aimee F

    2016-10-25

    Objective. To investigate motives of pharmacy educators who pursue pedagogical knowledge through professional development programs and to develop a model of motivation to inform future development. Methods. A mixed-methods approach was used to study both qualitative and quantitative data. Written narratives, postmodule quizzes, and survey data were collected during a 5-year period (2010-2014) from pharmacy educators who participated in an online professional development program titled Helping Educators Learn Pedagogy (HELP). Grounded theory was used to create a model of motivation for why pharmacy educators might pursue pedagogical knowledge. Results. Participants reported being driven intrinsically by a passion for their own learning (self-centered motivation) and by the need to improve student learning (student-centered motivation) and extrinsically by program design, funding, and administrator encouragement. Conclusion. A new model of pharmacy educator motivation to pursue pedagogy knowledge, Pedagogical Knowledge Acquisition Theory (PKAT), emerged as a blended intrinsic and extrinsic model, which may have value in developing future professional development programs.

  18. Ciencias 1. (Science 1). [Student's Workbook].

    Science.gov (United States)

    Raposo, Lucilia

    Ciencias 1 is the first in a series of science books designed for elementary Portuguese-speaking students. The book contains five sections divided into 43 lessons. The five sections are (1) Matter, (2) The Human Body, (3) Weather, (4) Solids, Liquids, and Gases, and (5) Living Things. Pictorial presentations and picture exercises are included for…

  19. Teaching science students to identify entrepreneurial opportunities

    NARCIS (Netherlands)

    Nab, J.

    2015-01-01

    This dissertation describes a research project on teaching science students to identify entrepreneurial opportunities, which is a core competence for entrepreneurs that should be emphasized in education. This research consists of four studies. The first case study aims at finding design strategies

  20. Student Leadership in Small Group Science Inquiry

    Science.gov (United States)

    Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.

    2014-01-01

    Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of…

  1. Infuriating Tensions: Science and the Medical Student.

    Science.gov (United States)

    Bishop, J. Michael

    1984-01-01

    Contemporary medical students, it is suggested, view science in particular and the intellect in general as difficult allies at best. What emerges are physicians without inquiring minds, physicians who bring to the bedside not curiosity and a desire to understand but a set of reflexes. (MLW)

  2. Science Education for Students with Special Needs

    Science.gov (United States)

    Villanueva, Mary Grace; Taylor, Jonte; Therrien, William; Hand, Brian

    2012-01-01

    Students with special needs tend to show significantly lower achievement in science than their peers. Reasons for this include severe difficulties with academic skills (i.e. reading, math and writing), behaviour problems and limited prior understanding of core concepts background knowledge. Despite this bleak picture, much is known on how to…

  3. How Can Science Education Foster Students' Rooting?

    Science.gov (United States)

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  4. Work Values of Mortuary Science Students

    Science.gov (United States)

    Shaw, Thomas; Duys, David K.

    2005-01-01

    This article describes a descriptive study in an area significantly lacking validation. The focus of the study was the work values held by mortuary science students from 3 educational programs in the Midwest. The Values Scale (D. Nevill & D. Super, 1989) was used to measure the career-related values of a sample group of 116. According to…

  5. Meteorology and Climate Inspire Secondary Science Students

    Science.gov (United States)

    Charlton-Perez, Andrew; Dacre, Helen; Maskell, Kathy; Reynolds, Ross; South, Rachel; Wood, Curtis

    2010-01-01

    As part of its National Science and Engineering Week activities in 2009 and 2010, the University of Reading organised two open days for 60 local key stage 4 pupils. The theme of both open days was "How do we predict weather and climate?" Making use of the students' familiarity with weather and climate, several concepts of relevance to secondary…

  6. [The motivation to become a medical doctor - doctoral students in a formal academic study program compared with those pursuing their doctorate independently].

    Science.gov (United States)

    Pfeiffer, M; Dimitriadis, K; Holzer, M; Reincke, M; Fischer, M R

    2011-04-01

    Weight and quality of medical doctoral theses have been discussed in Germany for years. Doctoral study programs in various graduate schools offer opportunities to improve quality of medical doctoral theses. The purpose of this study was to demonstrate distinctions and differences concerning motivation, choice of subject and the dissertation process between doctoral candidates completing the doctoral seminar for doctoral students in the Ludwig-Maximilians-University (LMU) Munich and doctoral candidates doing their doctorate individually. All 4000 medical students of the LMU obtained an online-questionnaire which was completed by 767 students (19 % response rate). The theoretical framework of this study was based upon the Self-Determination-Theory by Deci and Ryan. Doctoral candidates completing the doctoral study program were more intrinsically motivated than doctoral candidates doing their doctorate individually; no difference was found in their extrinsic motivation. In regard to choice of subject and dissertation process the doctoral students in the seminar were distinguished from the individual group by having chosen a more challenging project. They anticipated a demanding dissertation process including conference participation, publishing of papers, etc. Intrinsic motivation correlates positively with choosing a challenging project and a demanding dissertation process. High intrinsic motivation seems to be very important for autonomous scholarly practice. Our results suggest that doctoral study programs have a positive impact on intrinsic motivation and interest in research. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Students of Tehran Universities of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Ghezelbash Sima

    2015-07-01

    Full Text Available Introduction: Social anxiety is an important factor in peoples’ mental health. Good mental health while studying in university makes students able to deal effectively with numerous stressors that they experience. The purpose of this study was to determine and compare the social anxiety of nursing students in grades one to four of medical universities in Tehran. Methods: In this analytic cross-sectional study, 400 students from universities of medical sciences in Tehran were recruited by stratified sampling with proportional allocation. Data were collected during the first semester in 2010. Students completed a two-part questionnaire including the Liebowitz social anxiety questionnaire and a demographic information form. Data were analyzed using descriptive statistics methods and an analytical test by SPSS statistical software. Results: There was no statistically significant difference in the total scores of social anxiety of first- to fourth-year students. The mean score of the avoidance of social interaction dimension in fourth-year students was significantly lower than in first year students (p<0.05. Conclusion: In regard to the relationship between social anxiety and interpersonal communication as an associated part of nursing care, decrease of social anxiety of students could play an important role in their mental health. According to the results of this study, it seems that the placement of students in the nursing education system does not produce any changes in their social anxiety.

  8. Students' and Teachers' Perceptions of Using Video Games to Enhance Science Instruction

    Science.gov (United States)

    Marino, Matthew T.; Israel, Maya; Beecher, Constance C.; Basham, James D.

    2013-10-01

    Science education video game research points toward promising, but inconclusive results in both student learning outcomes and attitudes. However, student-level variables other than gender have been largely absent from this research. This study examined how students' reading ability level and disability status are related to their video game-playing behaviors outside of school and their perceptions about the use of science video games during school. Thirty-four teachers and 876 sixth- through ninth-grade students from 14 states participated in the study. All student groups reported that they would prefer to learn science from a video game rather than from traditional text, laboratory-based, or Internet environments. Chi-square analyses indicated a significant association between reading ability level, disability status, and key areas of interest including students' use of video games outside of school, their perceptions of their scientific abilities, and whether they would pursue a career in the sciences. Implications of these findings and areas for future research are identified.

  9. Student and Teacher Perceptions of Teacher Immediacy Behaviors and the Influence of Teacher Immediacy Behaviors on Student Motivation to Learn Science

    Science.gov (United States)

    Littlejohn, Vania

    The National Assessment on Educational Progress signals that American students are not being adequately prepared to compete globally in an ever changing scientific society. As a result, legislation mandated that all students be assessed and show proficiency in scientific literacy beginning in Grade 4 with the reauthorization of the Elementary and Secondary Education Act of 2002 also known as No Child Left Behind. Research indicates a disturbing decline in the number of U.S. students pursuing more rigorous science courses in high school, majoring in scientific areas in college, and choosing future careers in science. With a need to improve science instruction and enhance science literacy for all students, this study focuses on immediate communication behaviors of the classroom teacher as a deciding factor in the opinions of high school students towards science. The purpose of this study was to reveal high school science student perceptions of teacher communication patterns, both verbal and nonverbal, and how they influence their motivation to learn science. The researcher utilized a nonexperimental, quantitative research design to guide this study. Teacher and student data were collected using the Teacher Communication Behavior Questionnaire (TCBQ). The Student Motivation to Learn Instrument (SMLI) across gender, ethnicity, and socioeconomic status survey was used to evaluate student motivation in science. Participants were encouraged to be honest in reporting and sharing information concerning teacher communication behaviors. The data revealed that teacher immediacy behaviors, both verbal and nonverbal, were perceived differently in terms of student gender, ethnicity, and socioeconomic class. The results showed that teachers who display positive communication behaviors and use challenging questioning followed with positive responses create pathways to potentially powerful relationships. These relationships between teachers and students can lead to increased student

  10. Students Inspiring Students: An Online Tool for Science Fair Participants

    Science.gov (United States)

    Seeman, Jeffrey I.; Lawrence, Tom

    2011-01-01

    One goal of 21st-century education is to develop mature citizens who can identify issues, solve problems, and communicate solutions. What better way for students to learn these skills than by participating in a science and engineering fair? Fair participants face the same challenges as professional scientists and engineers, even Nobel laureates.…

  11. Improving Student Achievement in Math and Science

    Science.gov (United States)

    Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.

    1998-01-01

    As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order

  12. Forensic Science Curriculum for High School Students

    Science.gov (United States)

    Burgess, Christiana J.

    Over the last several decades, forensic science---the application of science to civil and criminal legal matters---has become of increasing popularity with the public. The range of disciplines within the field is immense, offering individuals the potential for a unique career, regardless of their specific interests or expertise. In response to this growth, many organizations, both public and private, have recognized the need to create forensic science programs that strive to maintain and enhance the quality of forensic science education. Unfortunately, most of the emphasis placed on developing these materials relates to post-secondary education, and creates a significant lack of forensic science educational materials available in the U.S., especially in Oklahoma. The purpose of this project was to create a high school curriculum that provides the foundation for building a broad, yet comprehensive, overview of the field of forensic science and its associated disciplines. The overall goal was to create and provide course materials to high school teachers in order to increase their knowledge of forensic science such that they are able to teach its disciplines effectively and with accuracy. The Forensic Science Curriculum for High School Students includes sample lesson plans, PowerPoint presentations, and lab activities with step-by-step instructions.

  13. Student memories: Insights for science reform

    Science.gov (United States)

    Chaillie, Jane Hall

    The purpose of this study was to examine the recollections pre-service teachers majoring in elementary education have of their science experiences during their elementary years and to explore the recollections in the context of science education reform efforts. At the beginning of science methods course work, pre-service elementary teachers reflected on their memories of their own elementary education experiences. Themes from 102 reflective essays collected in two settings and time periods were identified and compared. The themes remained consistent over both settings and time frames studied and fall into three general categories: curriculum and instruction, teacher traits, and student traits. The pre-service teachers expressed difficulty in recalling elementary science experiences and attributed their limited memories to what they perceived as a low priority of science content in the elementary curriculum. Teaching strategies played a prominent role in the memories reported. Hands-on and active learning strategies produced positive memories, while lectures, reading textbooks, and completing worksheets resulted in more negative memories. Furthermore, pre-service teacher essays often failed to connect the learning activities with concept development or understanding. Pre-service teachers were split nearly equally between those who liked and those who disliked elementary science. The attributes of elementary teachers received the least attention in the categories and focused primarily on passion for teaching science. Implications for science reform leaders, teacher education preparation programs, and school administrators and curriculum directors are identified.

  14. Motivating Students with Authentic Science Experiences: Changes in Motivation for School Science

    Science.gov (United States)

    Hellgren, Jenny M.; Lindberg, Stina

    2017-01-01

    Background: Students' motivation for science declines over the early teenage years, and students often find school science difficult and irrelevant to their everyday lives. This paper asks whether creating opportunities to connect school science to authentic science can have positive effects on student motivation. Purpose: To understand how…

  15. Elementary Students' Retention of Environmental Science Knowledge: Connected Science Instruction versus Direct Instruction

    Science.gov (United States)

    Upadhyay, Bhaskar; DeFranco, Cristina

    2008-01-01

    This study compares 3rd-grade elementary students' gain and retention of science vocabulary over time in two different classes--"connected science instruction" versus "direct instruction." Data analysis yielded that students who received connected science instruction showed less gain in science knowledge in the short term compared to students who…

  16. "Hard Science": A Career Option for Socially and Societally Interested Students? Grade 12 Students' Vocational Interest Gap Explored

    Science.gov (United States)

    Struyf, Annemie; Boeve-de Pauw, Jelle; Van Petegem, Peter

    2017-01-01

    A key theme in science education research concerns the decline in young peoples' interest in science and the need for professionals in hard science. Goal Congruity Theory posits that an important aspect of the decision whether to pursue hard science for study or as a career is the perception that hard science careers do not fulfil social (working…

  17. Common Core Science Standards: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Scruggs, Thomas E.; Brigham, Frederick J.; Mastropieri, Margo A.

    2013-01-01

    The Common Core Science Standards represent a new effort to increase science learning for all students. These standards include a focus on English and language arts aspects of science learning, and three dimensions of science standards, including practices of science, crosscutting concepts of science, and disciplinary core ideas in the various…

  18. Health Information Needs and Reliability of Sources Among Nondegree Health Sciences Students: A Prerequisite for Designing eHealth Literacy.

    Science.gov (United States)

    Haruna, Hussein; Tshuma, Ndumiso; Hu, Xiao

    Understanding health information needs and health-seeking behavior is a prerequisite for developing an electronic health information literacy (EHIL) or eHealth literacy program for nondegree health sciences students. At present, interest in researching health information needs and reliable sources paradigms has gained momentum in many countries. However, most studies focus on health professionals and students in higher education institutions. The present study was aimed at providing new insight and filling the existing gap by examining health information needs and reliability of sources among nondegree health sciences students in Tanzania. A cross-sectional study was conducted in 15 conveniently selected health training institutions, where 403 health sciences students were participated. Thirty health sciences students were both purposely and conveniently chosen from each health-training institution. The selected students were pursuing nursing and midwifery, clinical medicine, dentistry, environmental health sciences, pharmacy, and medical laboratory sciences courses. Involved students were either in their first year, second year, or third year of study. Health sciences students' health information needs focus on their educational requirements, clinical practice, and personal information. They use print, human, and electronic health information. They lack eHealth research skills in navigating health information resources and have insufficient facilities for accessing eHealth information, a lack of specialists in health information, high costs for subscription electronic information, and unawareness of the availability of free Internet and other online health-related databases. This study found that nondegree health sciences students have limited skills in EHIL. Thus, designing and incorporating EHIL skills programs into the curriculum of nondegree health sciences students is vital. EHIL is a requirement common to all health settings, learning environments, and

  19. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…

  20. Science Student Teachers and Educational Technology: Experience, Intentions, and Value

    Science.gov (United States)

    Efe, Rifat

    2011-01-01

    The primary purpose of this study is to examine science student teachers' experience with educational technology, their intentions for their own use, their intentions for their students' use, and their beliefs in the value of educational technology in science instruction. Four hundred-forty-eight science student teachers of different disciplines…

  1. Supporting Students with Disabilities Entering the Science, Technology, Engineering, and Mathematics Field Disciplines

    Science.gov (United States)

    Dishauzi, Karen M.

    Extensive research exists on female, African American, and Hispanic students pursuing Science, Technology, Engineering and Mathematics (STEM) field disciplines. However, little research evaluates students with disabilities and career decision-making relating to STEM field disciplines. This study explored the career decision-making experiences and self-efficacy for students with disabilities. The purpose of this research study was to document experiences and perceptions of students with disabilities who pursue, and may consider pursuing, careers in the STEM field disciplines by exploring the career decision-making self-efficacy of students with disabilities. This study documented the level of influence that the students with disabilities had or may not have had encountered from parents, friends, advisors, counselors, and instructors as they managed their decision-making choice relating to their academic major/career in the STEM or non-STEM field disciplines. A total of 85 respondents of approximately 340 students with disabilities at one Midwestern public university completed a quantitatively designed survey instrument. The Career Decision-Making Self-Efficacy Scale-Short Form by Betz and Hackett was the instrument used, and additional questions were included in the survey. Data analysis included descriptive statistics and analysis of variance. Based upon the results, college students with disabilities are not currently being influenced by individuals and groups of individuals to pursue the STEM field disciplines. This is a cohort of individuals who can be marketed to increase enrollment in STEM programs at academic institutions. This research further found that gender differences at the institution under study did not affect the career decision-making self-efficacy scores. The men did not score any higher in confidence in career decision-making than the women. Disability type did not significantly affect the relationship between the Career Decision-Making Self

  2. Science student teacher's perceptions of good teaching | Setlalentoa ...

    African Journals Online (AJOL)

    Science student teacher's perceptions of good teaching. ... of 50 senior students enrolled in the Bachelor of Education (Further Education and Training ... and teaching strategies employed are perceived to influence what students perceived as ...

  3. Diploma students’ perspective: Pursue or not to pursue a degree in accountancy?

    Directory of Open Access Journals (Sweden)

    Awab Nor’aini

    2017-01-01

    Full Text Available This is an exploratory study which investigates the reasons influencing Diploma in Accountancy (DIA students’ intention to pursue or not pursue a Bachelor of Accountancy (BAcc degree programme. The Theory of Reasoned Action (TRA is used as a basis for the study. The research involves collecting primary data through survey questionnaires. 250 questionnaires were distributed to the final year DIA students in MARA Professional College. Based on the findings, the reasons that influence students’ intention to pursue are: the hope to earn a good salary, higher future earnings potential and greater employability in the future. In contrast, the reasons for non-pursuance of a BAcc programme are because students think that they can develop their potential for personal growth and career development with other degree programmes or they want to get jobs and start working after obtaining the DIA. These findings would be useful to the Ministry of Education, the universities as well as the professional bodies to ensure that the students continue their studies in the accounting discipline to achieve their full potential.

  4. Nursing and health sciences workforce diversity research using PhotoVoice: a college and high school student participatory project.

    Science.gov (United States)

    Benavides-Vaello, Sandra; Katz, Janet R; Peterson, Jeffery Chaichana; Allen, Carol B; Paul, Robbie; Charette-Bluff, Andrea Lelana; Morris, Phyllis

    2014-04-01

    This participatory study used PhotoVoice and qualitative description to (a) mentor baccalaureate nursing and college students in workforce diversity research; (b) explore barriers and facilitators encountered by rural American Indian, Hispanic, and other high school students when attending college and pursuing careers in nursing or the health sciences; and (c) model a process of social action to help existing and future students. Baccalaureate nursing and graduate students participated in all stages of research, including dissemination. Five themes emerged from analysis of PhotoVoice data: (a) being afraid; (b) believing; (c) taking small steps; (d) facing fears; and (e) using support systems. Findings underscore the importance of helping students participate in efforts to increase work-force diversity through research. Increasing nursing and health sciences workforce diversity may require strategies developed within and tailored to specific cultures and communities. Copyright 2014, SLACK Incorporated.

  5. Thinking about television science: How students understand the nature of science from different program genres

    Science.gov (United States)

    Dhingra, Koshi

    2003-02-01

    Student views on the nature of science are shaped by a variety of out-of-school forces and television-mediated science is a significant force. To attempt to achieve a science for all, we need to recognize and understand the diverse messages about science that students access and think about on a regular basis. In this work I examine how high school students think about science that is mediated by four different program genres on television: documentary, magazine-format programming, network news, and dramatic or fictional programming. The following categories of findings are discussed: the ethics and validity of science, final form science, science as portrayed by its practitioners, and school science and television science. Student perceptions of the nature of science depicted on the program sample used in this study ranged from seeing science as comprising tentative knowledge claims to seeing science as a fixed body of facts.

  6. Needs of students seeking careers in communication sciences and disorders and barriers to their success.

    Science.gov (United States)

    Fuse, Akiko

    The purpose of this study was to identify the needs for and barriers to success of underrepresented students in the Communication Sciences and Disorders field and to determine factors linked to student persistence and academic achievement. An online survey was completed by 126 undergraduates pursuing graduate studies in Communication Sciences and Disorders. Data were subjected to Mann-Whitney U and Kruskal-Wallis H tests. Survey responses indicated that financial matters exerted the most influence on students' preparation for and number of choices for graduate-school applications. However, socioeconomic status was associated with needed financial support for paying tuition and completing the admission process. In addition, students at lower socioeconomic status reported spending fewer hours studying for tests and earned lower grade-point averages than peers who self-identified with a relatively high socioeconomic status. The findings also show a relationship between students' grade-point averages and family members' levels of education. The majority reported that mothers had earned the highest degree in their household, followed by siblings, themselves, and fathers. The findings suggest that students of low socioeconomic status were less academically prepared than those self-reporting a higher status. Moreover, the presence of a role model, such as a college-educated family member, may affect academic performance. Therefore, interventions for students at risk of not gaining admissions to graduate school include financial assistance and mentoring and advising programs. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Students' Awareness of Science Teachers' Leadership, Attitudes toward Science, and Positive Thinking

    Science.gov (United States)

    Lu, Ying-Yan; Chen, Hsiang-Ting; Hong, Zuway-R.; Yore, Larry D.

    2016-01-01

    There appears to be a complex network of cognitive and affective factors that influence students' decisions to study science and motivate their choices to engage in science-oriented careers. This study explored 330 Taiwanese senior high school students' awareness of their science teacher's learning leadership and how it relates to the students'…

  8. The Impact of Science Fiction Films on Student Interest in Science

    Science.gov (United States)

    Laprise, Shari; Winrich, Chuck

    2010-01-01

    Science fiction films were used in required and elective nonmajor science courses as a pedagogical tool to motivate student interest in science and to reinforce critical thinking about scientific concepts. Students watched various films and critiqued them for scientific accuracy in written assignments. Students' perception of this activity was…

  9. Teaching Graduate Students The Art of Science

    Science.gov (United States)

    Snieder, Roel; Larner, Ken; Boyd, Tom

    2012-08-01

    Graduate students traditionally learn the trade of research by working under the supervision of an advisor, much as in the medieval practice of apprenticeship. In practice, however, this model generally falls short in teaching students the broad professional skills needed to be a well-rounded researcher. While a large majority of graduate students considers professional training to be of great relevance, most graduate programs focus exclusively on disciplinary training as opposed to skills such as written and oral communication, conflict resolution, leadership, performing literature searches, teamwork, ethics, and client-interaction. Over the past decade, we have developed and taught the graduate course "The Art of Science", which addresses such topics; we summarize the topics covered in the course here. In order to coordinate development of professional training, the Center for Professional Education has been founded at the Colorado School of Mines. After giving an overview of the Center's program, we sketch the challenges and opportunities in offering professional education to graduate students. Offering professional education helps create better-prepared graduates. We owe it to our students to provide them with such preparation.

  10. Middle School Students' Attitudes toward Science, Scientists, Science Teachers and Classes

    Science.gov (United States)

    Kapici, Hasan Özgür; Akçay, Hakan

    2016-01-01

    It is an indispensable fact that having a positive attitude towards science is one of the important factors that promotes students for studying in science. The study is a kind of national study that aims to investigate middle school students', from different regions of Turkey, attitudes toward science, scientists and science classes. The study was…

  11. Popular Science Writing Bringing New Perspectives into Science Students' Theses

    Science.gov (United States)

    Pelger, Susanne

    2018-01-01

    This study analyses which perspectives occur in science students' texts at different points in time during the process of writing a popular science article. The intention is, thus, to explore how popular science writing can help students discover and discuss different perspectives on science matter. For this purpose, texts written by 12 bachelor…

  12. Transfer adjustment experiences of underrepresented students of color in the sciences

    Science.gov (United States)

    Chang, June C.

    Two-year colleges have long served as the starting point for many students in higher education and particularly those of underrepresented backgrounds. In recent years, these institutions have been called upon to help address the high attrition rates facing the science and mathematics disciplines by promoting interest development and transfer of underrepresented students in these fields. This study examined the adjustment experiences of underrepresented students of color after transferring from community colleges to a four-year university in the sciences. By employing qualitative interviews with students of African, Latino, Pacific Island, and Southeast Asian descent, students' perceptions of the sciences at the two- and four-year campus, adjustment process, and benefits and detriments of taking the transfer route were the focus of this research. The findings show that transfer students experience a very different science culture at each institutional type in terms of pedagogy and curriculum and interactions with classmates and faculty. While students witnessed a collaborative science culture at the community college, they faced a highly competitive and individualistic environment at the university. The greater the difference encountered, the more difficult were students' adjustment. Adjustment was aided in two primary ways: socialization experiences before transferring and the development of common identity groups with other students who shared similar backgrounds, goals, and struggles. These groups formed organically at the two-year college but were more difficult to forge at the university. When present, however, they served as niches, sites of validation, and counter spaces within the larger university setting. It appears that starting at the community college benefited most participants by providing a nurturing environment that fostered their commitment to science. Some students felt that they would have been dissuaded from pursuing their majors had they only

  13. Studying Students' Science Literacy: Non-Scientific Beliefs and Science Literacy Measures

    Science.gov (United States)

    Impey, C.; Buxner, S.

    2015-11-01

    We have been conducting a study of university students' science literacy for the past 24 years. Based on the work of the National Science Board's ongoing national survey of the US public, we have administered the same survey to undergraduate science students at the University of Arizona almost every year since 1989. Results have shown relatively little change in students' overall science literacy, descriptions of science, and knowledge of basic science topics for almost a quarter of a century despite an increase in education interventions, the rise of the internet, and increased access to knowledge. Several trends do exist in students' science literacy and descriptions of science. Students who exhibit beliefs in non-scientific phenomenon (e.g., lucky numbers, creationism) consistently have lower science literacy scores and less correct descriptions of scientific phenomenon. Although not surprising, our results support ongoing efforts to help students generate evidence based thinking.

  14. Aspects of science engagement, student background, and school characteristics: Impacts on science achievement of U.S. students

    Science.gov (United States)

    Grabau, Larry J.

    Science achievement of U.S. students has lagged significantly behind other nations; educational reformers have suggested science engagement may enhance this critical measure. The 2006 Program for International Student Assessment (PISA) was science-focused and measured science achievement along with nine aspects of science engagement: science self-efficacy, science self-concept, enjoyment of science, general interest in learning science, instrumental motivation for science, future-oriented science motivation, general value of science, personal value of science, and science-related activities. I used multilevel modeling techniques to address both aspects of science engagement and science achievement as outcome variables in the context of student background and school characteristics. Treating aspects of science engagement as outcome variables provided tests for approaches for their enhancement; meanwhile, treating science achievement as the outcome variable provided tests for the influence of the aspects of science engagement on science achievement under appropriate controls. When aspects of science engagement were treated as outcome variables, gender and father's SES had frequent (significant) influences, as did science teaching strategies which focused on applications or models and hands-on activities over-and-above influences of student background and other school characteristics. When science achievement was treated as the outcome variable, each aspect of science engagement was significant, and eight had medium or large effect sizes (future-oriented science motivation was the exception). The science teaching strategy which involved hands-on activities frequently enhanced science achievement over-and-above influences of student background and other school characteristics. Policy recommendations for U.S. science educators included enhancing eight aspects of science engagement and implementing two specific science teaching strategies (focus on applications or models

  15. Factors that affect the physical science career interest of female students: Testing five common hypotheses

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sonnert, Gerhard; Sadler, Philip M.

    2013-12-01

    There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using multivariate matching methods on national data drawn from the Persistence Research in Science and Engineering (PRiSE) project (n=7505), we test the following five commonly held beliefs regarding what factors might impact females’ physical science career interest: (i) having a single-sex physics class, (ii) having a female physics teacher, (iii) having female scientist guest speakers in physics class, (iv) discussing the work of female scientists in physics class, and (v) discussing the underrepresentation of women in physics class. The effect of these experiences on physical science career interest is compared for female students who are matched on several factors, including prior science interests, prior mathematics interests, grades in science, grades in mathematics, and years of enrollment in high school physics. No significant effects are found for single-sex classes, female teachers, female scientist guest speakers, and discussing the work of female scientists. However, discussions about women’s underrepresentation have a significant positive effect.

  16. Digital Geological Mapping for Earth Science Students

    Science.gov (United States)

    England, Richard; Smith, Sally; Tate, Nick; Jordan, Colm

    2010-05-01

    This SPLINT (SPatial Literacy IN Teaching) supported project is developing pedagogies for the introduction of teaching of digital geological mapping to Earth Science students. Traditionally students are taught to make geological maps on a paper basemap with a notebook to record their observations. Learning to use a tablet pc with GIS based software for mapping and data recording requires emphasis on training staff and students in specific GIS and IT skills and beneficial adjustments to the way in which geological data is recorded in the field. A set of learning and teaching materials are under development to support this learning process. Following the release of the British Geological Survey's Sigma software we have been developing generic methodologies for the introduction of digital geological mapping to students that already have experience of mapping by traditional means. The teaching materials introduce the software to the students through a series of structured exercises. The students learn the operation of the software in the laboratory by entering existing observations, preferably data that they have collected. Through this the students benefit from being able to reflect on their previous work, consider how it might be improved and plan new work. Following this they begin fieldwork in small groups using both methods simultaneously. They are able to practise what they have learnt in the classroom and review the differences, advantages and disadvantages of the two methods, while adding to the work that has already been completed. Once the field exercises are completed students use the data that they have collected in the production of high quality map products and are introduced to the use of integrated digital databases which they learn to search and extract information from. The relatively recent development of the technologies which underpin digital mapping also means that many academic staff also require training before they are able to deliver the

  17. Females and STEM: Determining the K-12 Experiences that Influenced Women to Pursue STEM Fields

    Science.gov (United States)

    Petersen, Anne Marie

    In the United States, careers in the fields of Science, Technology, Engineering, and Mathematics (STEM) are increasing yet there are not enough trained personnel to meet this demand. In addition, of those that seek to pursue STEM fields in the United States, only 26% are female. In order to increase the number of women seeking STEM based bachelor's degrees, K-12 education must provide a foundation that prepares students for entry into these fields. The purpose of this phenomenological study was to determine the perceived K-12 experiences that influenced females to pursue a STEM field. Twelve college juniors or seniors seeking a degree in Biology, Mathematics, or Physics were interviewed concerning their K-12 experiences. These interviews were analyzed and six themes emerged. Teacher passion and classroom characteristics such as incorporating challenging activities played a significant role in the females' decisions to enter STEM fields. Extra-curricular activities such as volunteer and mentor opportunities and the females' need to benefit others also influenced females in their career choice. Both the formal (within the school) and informal (outside of the traditional classroom) pipeline opportunities that these students encountered helped develop a sense of self-efficacy in science and mathematics; this self-efficacy enabled them to persist in pursuing these career fields. Several participants cited barriers that they encountered in K-12 education, but these barriers were primarily internal as they struggled with overcoming self-imposed obstacles in learning and being competitive in the mathematics and science classrooms. The experiences from these female students can be used by K-12 educators to prepare and encourage current female students to enter STEM occupations.

  18. Next Generation Science Standards: All Standards, All Students

    Science.gov (United States)

    Lee, Okhee; Miller, Emily C.; Januszyk, Rita

    2014-01-01

    The Next Generation Science Standards (NGSS) offer a vision of science teaching and learning that presents both learning opportunities and demands for all students, particularly student groups that have traditionally been underserved in science classrooms. The NGSS have addressed issues of diversity and equity from their inception, and the NGSS…

  19. Science Learning Motivation as Correlate of Students' Academic Performances

    Science.gov (United States)

    Libao, Nhorvien Jay P.; Sagun, Jessie John B.; Tamangan, Elvira A.; Pattalitan, Agaton P., Jr.; Dupa, Maria Elena D.; Bautista, Romiro G.

    2016-01-01

    This study was designed to analyze the relationship of students' learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of…

  20. Students' Regulation of Their Emotions in a Science Classroom

    Science.gov (United States)

    Tomas, Louisa; Rigano, Donna; Ritchie, Stephen M.

    2016-01-01

    Research aimed at understanding the role of the affective domain in student learning in classrooms has undergone a recent resurgence due to the need to understand students' affective response to science instruction. In a case study of a year 8 science class in North Queensland, students worked in small groups to write, film, edit, and produce…

  1. Comparison of Sports Sciences and Education Faculty Students' Aggression Scores

    Science.gov (United States)

    Atan, Tülin

    2016-01-01

    The aim of this study was to compare the aggression scores of Sports Sciences Faculty and Education Faculty students and also to examine the effects of some demographic variables on aggression. Two hundred Sports Sciences Faculty students (who engage in sporting activities four days a week for two hours) and 200 Education Faculty students (who do…

  2. High School Students' Implicit Theories of What Facilitates Science Learning

    Science.gov (United States)

    Parsons, Eileen Carlton; Miles, Rhea; Petersen, Michael

    2011-01-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high…

  3. Midwest Science Festival: Exploring Students' and Parents' Participation in and Attitudes Toward Science.

    Science.gov (United States)

    Dippel, Elizabeth A; Mechels, Keegan B; Griese, Emily R; Laufmann, Rachel N; Weimer, Jill M

    2016-08-01

    Compared to national numbers, South Dakota has a higher proportion of students interested in science, technology, engineering, and mathematics (STEM) fields. Interest in science can be influenced by exposure to science through formal and informal learning. Informal science activities (including exposures and participation) have been found to elicit higher levels of interest in science, likely impacting one's attitude towards science overall. The current study goal is to better understand the levels and relationships of attitude, exposure, and participation in science that were present among students and parents attending a free science festival. The project collected survey data from 65 students and 79 parents attending a science festival ranging from age 6 to 65. Informal science participation is significantly related to science attitudes in students and informal science exposure is not. No relationship was found for parents between science attitudes and participation. Students who indicated high levels of informal science participation (i.e., reading science-themed books) were positively related to their attitudes regarding science. However, informal science exposures, such as attending the zoo or independently visiting a science lab, was not significantly associated with positive attitudes towards science.

  4. Evaluation of the NOAA CAREERS Weather Camp's Effectiveness in Promoting Atmospheric Science amongst High School Students

    Science.gov (United States)

    Olgin, J. G.; Fitzgerald, R. M.; Morris, V. R.

    2013-12-01

    The NOAA Center for Atmospheric Science (NCAS) sponsors the Channeling Atmospheric Research into Educational Experiences Reaching Students program (CAREERS); a program that manages a network of weather camps for students in secondary education with particular focus on increasing access for students from traditionally underrepresented backgrounds. Hosted by a college or university, the primary mission goals of the program are to engage students in discussions, lectures and interactive projects to better learn and comprehend a suite of atmospheric science disciplines (i.e. weather forecasting, environmental modeling, atmospheric data acquisition), and guide talented students towards higher education to pursue careers in atmospheric science primarily, or toward other STEM field professions. The need to evaluate and analyze the program's efficacy is crucial for continued growth and sustainability. Therefore a means to identify and measure the success of the program's initiatives will be addressed. Two Hispanic serving institutions, the University of Texas at El Paso (UTEP) and the University of Puerto Rico in Mayaguez (UPRM), both hosted the CAREER weather camps during the summers of 2012 and 2013, and provide the basis of this initial analysis. Participants performed entrance surveys of their knowledge of atmospheric science prior to the course. They were then re-evaluated through exit surveys over the topics covered during the weather camp. These data will be analyzed to correlate which program activities worked best in increasing participant awareness (i.e. geology tours of the local area, discussion on local climate variations, geophysical and geochemical demonstrations), and comprehension of atmospheric science. A comparison between the two universities on their uniqueness in program design and execution will also highlight those activities that best progressed CAREERS' program goals. Results from this analysis, along with possible new strategies for improved

  5. Nursing students' attitudes toward science in the nursing curricula

    Science.gov (United States)

    Maroo, Jill Deanne

    The nursing profession combines the art of caregiving with scientific concepts. Nursing students need to learn science in order to start in a nursing program. However, previous research showed that students left the nursing program, stating it included too much science (Andrew et al., 2008). Research has shown a correlation between students' attitudes and their performance in a subject (Osborne, Simon, & Collins, 2003). However, little research exists on the overall attitude of nursing students toward science. At the time of my study there existed no large scale quantitative study on my topic. The purpose of my study was to identify potential obstacles nursing students face, specifically, attitude and motivation toward learning science. According to research the nation will soon face a nursing shortage and students cite the science content as a reason for not completing the nursing program. My study explored nursing students' attitudes toward science and reasons these students are motivated to learn science. I ran a nationwide mixed methods approach with 1,402 participants for the quantitative portion and 4 participants for the qualitative portion. I validated a questionnaire in order to explore nursing students' attitudes toward science, discovered five different attitude scales in that questionnaire and determined what demographic factors provided a statistically significant prediction of a student's score. In addition, I discovered no statistical difference in attitude exists between students who have the option of taking nursing specific courses and those who do not have that option. I discovered in the qualitative interviews that students feel science is necessary in nursing but do not feel nurses are scientists. My study gives a baseline of the current attitude of nursing students toward science and why these students feel the need to learn the science.

  6. Taiwanese Students' Science Learning Self-Efficacy and Teacher and Student Science Hardiness: A Multilevel Model Approach

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung

    2016-01-01

    This study aimed to investigate the factors accounting for science learning self-efficacy (the specific beliefs that people have in their ability to complete tasks in science learning) from both the teacher and the student levels. We thus propose a multilevel model to delineate its relationships with teacher and student science hardiness (i.e.,…

  7. A qualitative study of motivation in Alaska Native Science and Engineering Program (ANSEP) precollege students

    Science.gov (United States)

    Yatchmeneff, Michele

    The dramatic underrepresentation of Alaska Natives in science, technology, engineering and mathematics (STEM) degrees and professions calls for rigorous research in how students access these fields. Research has shown that students who complete advanced mathematics and science courses while in high school are more academically prepared to pursue and succeed in STEM degree programs and professions. There is limited research on what motivates precollege students to become more academically prepared before they graduate from high school. In Alaska, Alaska Native precollege students regularly underperform on required State of Alaska mathematics and science exams when compared to non-Alaska Native students. Research also suggests that different things may motivate Alaska Native students than racial majority students. Therefore there is a need to better understand what motivates Alaska Native students to take and successfully complete advanced mathematics and science courses while in high school so that they are academically prepared to pursue and succeed in STEM degrees and professions. The Alaska Native Science & Engineering Program (ANSEP) is a longitudinal STEM educational enrichment program that works with Alaska Native students starting in middle school through doctoral degrees and further professional endeavors. Research suggests that Alaska Native students participating in ANSEP are completing STEM degrees at higher rates than before the program was available. ANSEP appears to be unique due to its longitudinal approach and the large numbers of Alaska Native precollege, university, and graduate students it supports. ANSEP provides precollege students with opportunities to take advanced high school and college-level mathematics and science courses and complete STEM related projects. Students work and live together on campus during the program components. Student outcome data suggests that ANSEP has been successful at motivating precollege participants to

  8. The Perceptions of Elementary School Teachers Regarding Their Efforts to Help Students Utilize Student-to-Student Discourse in Science

    Science.gov (United States)

    Craddock, Jennifer Lovejoy

    The purpose of this phenomenological study was to examine the perceptions of elementary teachers who teach science as opposed to science teacher specialists regarding their efforts to help students use student-to-student discourse for improving science learning. A growing body of research confirms the importance of a) student-to-student discourse for making meaning of science ideas and b) moving students' conceptual development towards a more scientific understanding of the natural world. Based on those foundations, the three research questions that guided this study examined the value elementary teachers place on student-to-student discourse, the various approaches teachers employ to promote the use of student-to-student discourse for learning science, and the factors and conditions that promote and inhibit the use of student-to-student discourse as an effective pedagogical strategy in elementary science. Data were gathered from 23 elementary teachers in a single district using an on-line survey and follow-up interviews with 8 teachers. All data were analyzed and evolving themes led to the following findings: (1) elementary teachers value student-to-student discourse in science, (2) teachers desire to increase time using student-to-student discourse, (3) teachers use a limited number of student-to-student discourse strategies to increase student learning in science, (4) teachers use student-to-student discourse as formative assessment to determine student learning in science, (5) professional development focusing on approaches to student-to-student discourse develops teachers' capacity for effective implementation, (6) teachers perceive school administrators' knowledge of and support for student-to-student discourse as beneficial, (7) time and scheduling constraints limit the use of student-to-student discourse in science. Implications of this study included the necessity of school districts to focus on student-to-student discourse in science, provide teacher and

  9. Student Attitudes, Student Anxieties, and How to Address Them; A handbook for science teachers

    Science.gov (United States)

    Kastrup, Helge

    2016-02-01

    This book is based on a commitment to teaching science to everybody. What may work for training professional scientists does not work for general science education. Students bring to the classrooms preconceived attitudes, as well as the emotional baggage called 'science anxiety'. Students may regard science as cold, unfriendly, and even inherently hostile and biased against women. This book has been designed to deal with each of these issues and results from research in both Denmark and the USA. The first chapter discusses student attitudes towards science and the second discusses science anxiety. The connection between the two is discussed before the introduction of constructivism as a pedagogy that can aid science learning if it also addresses attitudes and anxieties. Much of the book elucidates what the authors have learned as science teachers and science education researchers. They studied various groups including university students majoring in the sciences, mathematics, humanities, social sciences, business, nursing, and education; high-school students; teachers' seminary students; science teachers at all levels from middle school through college; and science administrators. The insights of these groups constitute the most important feature of the book, and by sharing them, the authors hope to help their fellow science teachers to understand student attitudes about science, to recognize the connections between these and science anxiety, and to see how a pedagogy that takes these into account can improve science learning.

  10. Development and Large-Scale Validation of an Instrument to Assess Arabic-Speaking Students' Attitudes Toward Science

    Science.gov (United States)

    Abd-El-Khalick, Fouad; Summers, Ryan; Said, Ziad; Wang, Shuai; Culbertson, Michael

    2015-11-01

    This study is part of a large-scale project focused on 'Qatari students' Interest in, and Attitudes toward, Science' (QIAS). QIAS aimed to gauge Qatari student attitudes toward science in grades 3-12, examine factors that impact these attitudes, and assess the relationship between student attitudes and prevailing modes of science teaching in Qatari schools. This report details the development and validation of the 'Arabic-Speaking Students' Attitudes toward Science Survey' (ASSASS), which was specifically developed for the purposes of the QIAS project. The theories of reasoned action and planned behavior (TRAPB) [Ajzen, I., & Fishbein, M. (2005). The influence of attitudes on behavior. In D. Albarracín, B. T. Johnson, & M. P. Zanna (Eds.), The handbook of attitudes (pp. 173-221). Mahwah, NJ: Erlbaum] guided the instrument development. Development and validation of the ASSASS proceeded in 3 phases. First, a 10-member expert panel examined an initial pool of 74 items, which were revised and consolidated into a 60-item version of the instrument. This version was piloted with 369 Qatari students from the target schools and grade levels. Analyses of pilot data resulted in a refined version of the ASSASS, which was administered to a national probability sample of 3027 participants representing all students enrolled in grades 3-12 in the various types of schools in Qatar. Of the latter, 1978 students completed the Arabic version of the instrument. Analyses supported a robust, 5-factor model for the instrument, which is consistent with the TRAPB framework. The factors were: Attitudes toward science and school science, unfavorable outlook on science, control beliefs about ability in science, behavioral beliefs about the consequences of engaging with science, and intentions to pursue science.

  11. Eliciting physics students mental models via science fiction stories

    International Nuclear Information System (INIS)

    Acar, H.

    2005-01-01

    This paper presents the results of an experiment which investigated the effects of the using science fiction stories in physics lessons. A questionnaire form containing 2 open-ended questions related to Jules Vernes story From the Earth to the Moon was used with 353, 9th and 10th grade students to determine their pre-conceptions about gravity and weightlessness. Mental models explaining students scientific and alternative views were constructed, according to students replies. After these studies, 6 students were interviewed. In this interview, researches were done about whether science fiction stories had an effect on bringing students pre-conceptions related to physics subjects out, on students inquiring their own concepts and on increasing students interest and motivation towards physics subjects. Studies in this research show that science fiction stories have an effect on arousing students interest and curiosity, have a role encouraging students to inquire their own concepts and are effective in making students alternative views come out

  12. Grade six students' understanding of the nature of science

    Science.gov (United States)

    Cochrane, Donald Brian

    The goal of scientific literacy requires that students develop an understanding of the nature of science to assist them in the reasoned acquisition of science concepts and in their future role as citizens in a participatory democracy. The purpose of this study was to investigate and describe the range of positions that grade six students hold with respect to the nature of science and to investigate whether gender or prior science education was related to students' views of the nature of science. Two grade six classes participated in this study. One class was from a school involved in a long-term elementary science curriculum project. The science curriculum at this school involved constructivist epistemology and pedagogy and a realist ontology. The curriculum stressed hands-on, open-ended activities and the development of science process skills. Students were frequently involved in creating and testing explanations for physical phenomena. The second class was from a matched school that had a traditional science program. Results of the study indicated that students hold a wider range of views of the nature of science than previously documented. Student positions ranged from having almost no understanding of the nature of science to those expressing positions regarding the nature of science that were more developed than previous studies had documented. Despite the range of views documented, all subjects held realist views of scientific knowledge. Contrary to the literature, some students were able to evaluate a scientific theory in light of empirical evidence that they had generated. Results also indicated that students from the project school displayed more advanced views of the nature of science than their matched peers. However, not all students benefited equally from their experiences. No gender differences were found with respect to students' understanding of the nature of science.

  13. Suicidal Ideation, Depression, Anxiety, Stress, And Life Satisfaction Of Medical, Engineering, And Social Sciences Students.

    Science.gov (United States)

    Naseem, Sabahat; Munaf, Seema

    2017-01-01

    Pursuing higher education is not an easy task as it requires hard work, dedication, and motivation. Although there are many rewards involved in growing up academically, nevertheless, it contains a few hazards too. For instance, suicidal ideation is associated with presence of depression, anxiety, and stress with low level of satisfaction with life in students finding difficulty in handling educational demands of higher education. Therefore, the present study focused on the query that whether there is any difference or not among medical, engineering, and social sciences students of city of Karachi, Pakistan in the level of suicidal ideation, depression, anxiety, stress, and life satisfaction. Using comparative group design, total 300 students (150 males and 150 females) with age range of 19-26 were selected from faculties of medical, engineering, and social sciences of different universities of Karachi, Pakistan, through purposive sampling. Respondent Profile Form, The Suicide Behaviours Questionnaire-Revised, Depression Anxiety Stress Scale-21, and Satisfaction with Life Scale were administered to assess suicidal ideation; depression, anxiety, stress; and life satisfaction, respectively, of the students. Scores were analysed through ANOVA and Post Hoc (Tukey's HSD) test using SPSS. Social sciences and engineering students were significantly higher on depression, anxiety, and stress than medical students [F (2, 297) =8.701, p=.000] whereas insignificant differences in the level of suicidal ideation [F (2, 297) =1.914, p=.149] and life satisfaction [F (2, 297) = .726, p = .485] among these students were found. With the help of these findings, it would be easier to counsel students of different disciplines in time on the lines of suggested preventive measures.

  14. Making Learning Interesting and Its Application to the Science Classroom

    Science.gov (United States)

    Jack, Brady Michael; Lin, Huann-shyang

    2017-01-01

    Generations of students are graduating from secondary school disinterested in post-secondary study of science or pursuing careers in science-related fields beyond formal education. We propose that destabilising such disinterest among future students requires science educators to begin listening to secondary school students regarding their views of…

  15. Hookah pipe smoking among health sciences students | van der ...

    African Journals Online (AJOL)

    , especially among South African youth. The extent of this practice among health sciences students, and their knowledge regarding the health risks, are unknown. This is important, as these students will become future health professionals ...

  16. Pursuing the Depths of Knowledge

    Science.gov (United States)

    Boyles, Nancy

    2016-01-01

    Today's state literacy standards and assessments demand deeper levels of knowledge from students. But many teachers ask, "What does depth of knowledge look like on these new, more rigorous assessments? How do we prepare students for this kind of thinking?" In this article, Nancy Boyles uses a sampling of questions from the PARCC and SBAC…

  17. Nuclear science summer school for high scholl students

    International Nuclear Information System (INIS)

    Foster, D.E.; Stone, C.A.

    1997-01-01

    We have developed a two-week summer lecture and laboratory course that introduces hihg school students to concepts in nuclear science. The program has operated at the San Jose State University Nuclear Science Facility for two years. Experienced high school science teachers run the summer scholl, assisted by other science teachers. Students consider the program to be effective. Its popularity is shown by numerous requests for reservations and the necessity to offer multiple sections in 1997. (author)

  18. Negotiating Discourses: Sixth-Grade Students' Use of Multiple Science Discourses during a Science Fair Presentation

    Science.gov (United States)

    Gomez, Kimberley

    2007-01-01

    This study offers important insights into the coexistence of multiple discourses and the link between these discourses and science understanding. It offers concrete examples of students' movement between multiple discourses in sixth-grade science fair presentations, and shows how those multiple discourses in science practices illuminate students'…

  19. Using History of Science to Teach Nature of Science to Elementary Students

    Science.gov (United States)

    Fouad, Khadija E.; Masters, Heidi; Akerson, Valarie L.

    2015-01-01

    Science lessons using inquiry only or history of science with inquiry were used for explicit reflective nature of science (NOS) instruction for second-, third-, and fourth-grade students randomly assigned to receive one of the treatments. Students in both groups improved in their understanding of creative NOS, tentative NOS, empirical NOS, and…

  20. Investigating University Students' Preferences to Science Communication Skills: A Case of Prospective Science Teacher in Indonesia

    Science.gov (United States)

    Suprapto, Nadi; Ku, Chih-Hsiung

    2016-01-01

    The purpose of this study was to investigate Indonesian university students' preferences to science communication skills. Data collected from 251 students who were majoring in science education program. The Learning Preferences to Science Communication (LPSC) questionnaire was developed with Indonesian language and validated through an exploratory…

  1. Training teachers to promote Talent Development in Science Students In Science Education

    NARCIS (Netherlands)

    van der Valk, Ton

    2014-01-01

    In recent years, the interest of governments and schools in challenging gifted and talented (G+T) science students has grown (Taber, 2007). In the Netherlands, the government promotes developing science programmes for talented secondary science students. This causes a need for training teachers, but

  2. An Investigation of Students' Personality Traits and Attitudes toward Science

    Science.gov (United States)

    Hong, Zuway-R.; Lin, Huann-shyang

    2011-05-01

    The purposes of this study were to validate an instrument of attitudes toward science and to investigate grade level, type of school, and gender differences in Taiwan's students' personality traits and attitudes toward science as well as predictors of attitudes toward science. Nine hundred and twenty-two elementary students and 1,954 secondary students completed the School Student Questionnaire in 2008. Factor analyses, correlation analyses, ANOVAs, and regressions were used to compare the similarities and differences among male and female students in different grade levels. The findings were as follows: female students had higher interest in science and made more contributions in teams than their male counterparts across all grade levels. As students advanced through school, student scores on the personality trait scales of Conscientiousness and Openness sharply declined; students' scores on Neuroticism dramatically increased. Elementary school and academic high school students had significantly higher total scores on interest in science than those of vocational high and junior high school students. Scores on the scales measuring the traits of Agreeableness, Extraversion, and Conscientiousness were the most significant predictors of students' attitudes toward science. Implications of these findings for classroom instruction are discussed.

  3. Effectiveness of Science-Technology-Society (STS) Instruction on Student Understanding of the Nature of Science and Attitudes toward Science

    Science.gov (United States)

    Akcay, Behiye; Akcay, Hakan

    2015-01-01

    The study reports on an investigation about the impact of science-technology-society (STS) instruction on middle school student understanding of the nature of science (NOS) and attitudes toward science compared to students taught by the same teacher using traditional textbook-oriented instruction. Eight lead teachers used STS instruction an…

  4. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  5. High School Physics Students' Personal Epistemologies and School Science Practice

    Science.gov (United States)

    Alpaslan, Muhammet Mustafa; Yalvac, Bugrahan; Loving, Cathleen

    2017-11-01

    This case study explores students' physics-related personal epistemologies in school science practices. The school science practices of nine eleventh grade students in a physics class were audio-taped over 6 weeks. The students were also interviewed to find out their ideas on the nature of scientific knowledge after each activity. Analysis of transcripts yielded several epistemological resources that students activated in their school science practice. The findings show that there is inconsistency between students' definitions of scientific theories and their epistemological judgments. Analysis revealed that students used several epistemological resources to decide on the accuracy of their data including accuracy via following the right procedure and accuracy via what the others find. Traditional, formulation-based, physics instruction might have led students to activate naive epistemological resources that prevent them to participate in the practice of science in ways that are more meaningful. Implications for future studies are presented.

  6. The Impact of Science Fiction Film on Student Understanding of Science

    Science.gov (United States)

    Barnett, Michael; Wagner, Heather; Gatling, Anne; Anderson, Janice; Houle, Meredith; Kafka, Alan

    2006-04-01

    Researchers who have investigated the public understanding of science have argued that fictional cinema and television has proven to be particularly effective at blurring the distinction between fact and fiction. The rationale for this study lies in the notion that to teach science effectively, educators need to understand how popular culture influences their students' perception and understanding of science. Using naturalistic research methods in a diverse middle school we found that students who watched a popular science fiction film, The Core, had a number of misunderstandings of earth science concepts when compared to students who did not watch the movie. We found that a single viewing of a science fiction film can negatively impact student ideas regarding scientific phenomena. Specifically, we found that the film leveraged the scientific authority of the main character, coupled with scientifically correct explanations of some basic earth science, to create a series of plausible, albeit unscientific, ideas that made sense to students.

  7. Promoting elementary students' epistemology of science through computer-supported knowledge-building discourse and epistemic reflection

    Science.gov (United States)

    Lin, Feng; Chan, Carol K. K.

    2018-04-01

    This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a unit on electricity; they also reflected on the epistemic nature of their discourse. A comparison class of 22 students, taught by the same teacher, studied the same unit using the school's established scientific investigation method. We hypothesised that engaging students in idea-driven and theory-building discourse, as well as scaffolding them to reflect on the epistemic nature of their discourse, would help them understand their own scientific collaborative discourse as a theory-building process, and therefore understand scientific inquiry as an idea-driven and theory-building process. As hypothesised, we found that students engaged in knowledge-building discourse and reflection outperformed comparison students in scientific epistemology and science learning, and that students' understanding of collaborative discourse predicted their post-test scientific epistemology and science learning. To further understand the epistemic change process among knowledge-building students, we analysed their KF discourse to understand whether and how their epistemic practice had changed after epistemic reflection. The implications on ways of promoting epistemic change are discussed.

  8. Navigating the science, technology, engineering, and mathematics pipeline: How social capital impacts the educational attainment of college-bound female students

    Science.gov (United States)

    Lee, Rebecca Elizabeth

    Despite the proliferation of women in higher education and the workforce, they have yet to achieve parity with men in many of the science, technology, engineering, and math (STEM) majors and careers. The gap is even greater in the representation of women from lower socioeconomic backgrounds. This study examined pre-college intervention strategies provided by the University of Southern California's Math, Engineering, Science Achievement (MESA) program, as well as the relationships and experiences that contributed to the success of underrepresented female high school students in the STEM pipeline. A social capital framework provided the backdrop to the study. This qualitative study takes an ethnographic approach, incorporating 11 interviews, 42 hours of observation, and document analysis to address the research questions: How does involvement in the MESA program impact female students' decisions to pursue a mathematics or science major in college? What is the role of significant others in supporting and encouraging student success? The findings revealed a continuous cycle of support for these students. The cycle started in the home environment, where parents were integral in the early influence on the students' decisions to pursue higher education. Relationships with teachers, counselors, and peers provided critical networks of support in helping these students to achieve their academic goals. Participation in the MESA program empowered the students and provided additional connections to knowledge-based resources. This study highlights the interplay among family, school, and the MESA program in the overall support of underrepresented female students in the STEM pipeline.

  9. Factors influencing students' physical science enrolment decision at ...

    African Journals Online (AJOL)

    The study used a modified 'multiple worlds' model to investigate how the various worlds of the students influenced their science subject choice. ... Students also reported building enough self-confidence to enrol in physical science by the encouragement they received through informal contact with physics lecturers.

  10. The Need for Visually Impaired Students Participation in Science ...

    African Journals Online (AJOL)

    This paper examines the counselling implication of the need for the visually impaired students' participation in science education. Descriptive research design was adopted for the study while a validated structured questionnaire tagged visually impaired students perception of science education (VISPSE) was administered ...

  11. Female distance education students overtaking males in science ...

    African Journals Online (AJOL)

    This study was initiated to compare the performance of male and female distance education students of the University of Education, Winneba in Integrated Science. This was done by randomly selecting the cumulated grades of male and female students of 2002, 2003 and 2004-year groups in Integrated Science for analysis ...

  12. Assessment of Student Memo Assignments in Management Science

    Science.gov (United States)

    Williams, Julie Ann Stuart; Stanny, Claudia J.; Reid, Randall C.; Hill, Christopher J.; Rosa, Katie Martin

    2015-01-01

    Frequently in Management Science courses, instructors focus primarily on teaching students the mathematics of linear programming models. However, the ability to discuss mathematical expressions in business terms is an important professional skill. The authors present an analysis of student abilities to discuss management science concepts through…

  13. Study Skills of Arts and Science College Students

    Science.gov (United States)

    Sekar, J. Master Arul; Rajendran, K. K.

    2015-01-01

    The main objective of this study is to find out the level of study skills of arts and science college students. Study Skills Check List developed and standardized by Virginia University, Australia (2006) is used to collect the relevant data. The sample consists of 216 Government arts and science college students of Tiruchirappalli district, Tamil…

  14. Students Designing Video Games about Immunology: Insights for Science Learning

    Science.gov (United States)

    Khalili, Neda; Sheridan, Kimberly; Williams, Asia; Clark, Kevin; Stegman, Melanie

    2011-01-01

    Exposing American K-12 students to science, technology, engineering, and math (STEM) content is a national initiative. Game Design Through Mentoring and Collaboration targets students from underserved communities and uses their interest in video games as a way to introduce science, technology, engineering, and math topics. This article describes a…

  15. Student Science Teachers' Ideas of the Digestive System

    Science.gov (United States)

    Cardak, Osman

    2015-01-01

    The aim of this research is to reveal the levels of understanding of student science teachers regarding the digestive system. In this research, 116 student science teachers were tested by applying the drawing method. Upon the analysis of the drawings they made, it was found that some of them had misconceptions such as "the organs of the…

  16. Evaluation of Students' Energy Conception in Environmental Science

    Science.gov (United States)

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  17. Persistence of deaf students in science, technology, engineering, and mathematics undergraduate programs

    Science.gov (United States)

    Marchut, Amber E.

    Diversifying the student population and workforce under science, technology, engineering, and mathematics (STEM) is a necessity if innovations and creativity are to expand. There has not been a lot of literature regarding Deaf students in STEM especially regarding understanding how they persist in STEM undergraduate programs to successfully become STEM Bachelor of Science degree recipients. This study addresses the literature gap by investigating six students' experiences as they navigate their STEM undergraduate programs. The investigation uses narrative inquiry methodology and grounded theory method through the lens of Critical Race Theory and Critical Deaf Theory. Using videotaped interviews and observations, their experiences are highlighted using narratives portraying them as individuals surviving in a society that tends to perceive being deaf as a deficit that needs to be treated or cured. The data analysis also resulted in a conceptual model providing a description of how they persist. The crucial aspect of the conceptual model is the participants learned how to manage being deaf in a hearing-dominated society so they can reach their aspirations. The essential blocks for the persistence and managing their identities as deaf undergraduate STEMs include working harder, relying on familial support, and affirming themselves. Through the narratives and conceptual model of the six Deaf STEM undergraduates, the goal is to contribute to literature to promote a better understanding of the persistence of Deaf students, members of a marginalized group, as they pursue their dreams.

  18. Best practices for measuring students' attitudes toward learning science.

    Science.gov (United States)

    Lovelace, Matthew; Brickman, Peggy

    2013-01-01

    Science educators often characterize the degree to which tests measure different facets of college students' learning, such as knowing, applying, and problem solving. A casual survey of scholarship of teaching and learning research studies reveals that many educators also measure how students' attitudes influence their learning. Students' science attitudes refer to their positive or negative feelings and predispositions to learn science. Science educators use attitude measures, in conjunction with learning measures, to inform the conclusions they draw about the efficacy of their instructional interventions. The measurement of students' attitudes poses similar but distinct challenges as compared with measurement of learning, such as determining validity and reliability of instruments and selecting appropriate methods for conducting statistical analyses. In this review, we will describe techniques commonly used to quantify students' attitudes toward science. We will also discuss best practices for the analysis and interpretation of attitude data.

  19. High school students' implicit theories of what facilitates science learning

    Science.gov (United States)

    Carlton Parsons, Eileen; Miles, Rhea; Petersen, Michael

    2011-11-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high school students' implicit theories of what facilitates their learning of science?; (2) With respect to students' self-classifications as African American or European American and female or male, do differences exist in the students' implicit theories? Sample, design and methods: Students in an urban high school located in south-eastern United States were surveyed in 2006 about their thoughts on what helps them learn science. To confirm or disconfirm any differences, data from two different samples were analyzed. Responses of 112 African American and 118 European American students and responses from 297 European American students comprised the data for sample one and two, respectively. Results: Seven categories emerged from the deductive and inductive analyses of data: personal responsibility, learning arrangements, interest and knowledge, communication, student mastery, environmental responsiveness, and instructional strategies. Instructional strategies captured 82% and 80% of the data from sample one and two, respectively; consequently, this category was further subjected to Mann-Whitney statistical analysis at p ethnic differences. Significant differences did not exist for ethnicity but differences between females and males in sample one and sample two emerged. Conclusions: African American and European American students' implicit theories about instructional strategies that facilitated their science learning did not significantly differ but female and male students' implicit theories about instructional strategies that helped them learn science significantly differed. Because students attend and respond to what they think

  20. The Sensitive, Imaginative, Articulate Art Student and Conservative, Cool, Numerate Science Student: Individual Differences in Art and Science Students

    Science.gov (United States)

    Furnham, Adrian; Crump, John

    2013-01-01

    In all 794 young people aged around 30 yrs completed three intelligence (Raven's Progressive matrices: GMA Numerical and GMA Verbal) and one personality inventory (16PF). They were all graduates and 173 were identified clearly as Arts graduates and 518 as Science students. There were various sex differences on all measures. All seven hypotheses…

  1. The 6th International Earth Science Olympiad: A Student Perspective

    Science.gov (United States)

    Barlett, Luke; Cathro, Darcy; Mellow, Maddi; Tate, Clara

    2014-01-01

    In October 2012, two students from the Australian Science and Mathematics School and two from Yankalilla Area School were selected to travel to Olavarria, Argentina in order to compete in the 6th International Earth Science Olympiad (IESO). It was an opportunity for individuals with a passion for Earth science to come together from 17 countries to…

  2. A Financial Technology Entrepreneurship Program for Computer Science Students

    Science.gov (United States)

    Lawler, James P.; Joseph, Anthony

    2011-01-01

    Education in entrepreneurship is becoming a critical area of curricula for computer science students. Few schools of computer science have a concentration in entrepreneurship in the computing curricula. The paper presents Technology Entrepreneurship in the curricula at a leading school of computer science and information systems, in which students…

  3. Science Motivation of University Students: Achievement Goals as a Predictor

    Science.gov (United States)

    Arslan, Serhat; Akcaalan, Mehmet; Yurdakul, Cengiz

    2017-01-01

    The objective of this investigation is to make a study of the relationship between achievement goals and science motivation. Research data were collected from 295 university students. Achievement goals and science motivation scales were utilized as measure tools. The link between achievement goals orientation and science motivation was…

  4. Teachers' and Students' Conceptions of Good Science Teaching

    Science.gov (United States)

    Yung, Benny Hin Wai; Zhu, Yan; Wong, Siu Ling; Cheng, Man Wai; Lo, Fei Yin

    2013-01-01

    Capitalizing on the comments made by teachers on videos of exemplary science teaching, a video-based survey instrument on the topic of "Density" was developed and used to investigate the conceptions of good science teaching held by 110 teachers and 4,024 year 7 students in Hong Kong. Six dimensions of good science teaching are identified…

  5. Research Experiences for Science Teachers: The Impact On Their Students

    Science.gov (United States)

    Dubner, J.

    2005-12-01

    Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods

  6. Asian International Graduate Students’ Extrinsic Motivation to Pursue Degrees

    OpenAIRE

    Naomi Takashiro

    2017-01-01

    The author examined the types of extrinsic motivation for Asian international graduate students pursuing graduate degrees. The theoretical framework used was extrinsic motivation within Self-Determination Theory. Even though the presence of Asian international graduate students is steadily increasing worldwide, research into their extrinsic motivation is scarce. It is important for educators to explore and understand Asian international graduate students’ extrinsic motivation since such stude...

  7. Predictors of student success in entry-level science courses

    Science.gov (United States)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses

  8. Transforming student's discourse as a method of teaching science inquiry

    Science.gov (United States)

    Livingston, David

    2005-07-01

    A qualitative case study on the instructional practice of one secondary science teacher addresses the persistent reluctance of many science teachers to integrate the cultural resources and social practices of professional science communities into the science content they teach. The literature has shown that teachers' hesitation to implement a social and locally situated learning strategy curtails students' ability to draw upon the language of science necessary to co-construct and shape authentic science inquiry and in particular appropriate argument schemes. The study hypothesized that a teacher's dialogic facilitation of a particular social context and instructional practices enhances a students' ability to express verbally the claims and warrants that rise from evidence taken from their inquiries of natural phenomena. The study also tracks students' use of the Key Words and Ideas of this science curriculum for the purpose of assessing the degree of students' assimilation of these terms into their speech and written expressions of inquiry. The theoretical framework is Vygotskian (1978) and the analysis of the qualitative data is founded on Toulmin (1958), Walton (1996), Jimenez-Alexandre et al. (2000) and Shavelson (1996). The dialogic structure of this teacher's facilitation of student's science knowledge is shown to utilize students' presumptive statements to hone their construction of inductive or deductive arguments. This instructional practice may represent teacher-student activity within the zone of proximal development and supports Vygotsky's notion that a knowledgeable other is instrumental in transforming student's spontaneous talk into scientific speech. The tracking of the curriculum's Key Words and Ideas into students' speech and writing indicated that this teachers' ability to facilitate students' presumptuous reasoning into logic statements did not necessarily guarantee that they could post strong written expressions of this verbal know-how in

  9. Basic training in mathematics a fitness program for science students

    CERN Document Server

    Shankar, R

    1995-01-01

    Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences

  10. Measuring student engagement in science classrooms: An investigation of the contextual factors and longitudinal outcomes

    Science.gov (United States)

    Spicer, Justina Judy

    using the results for chapters two and three to identify aspects of engagement and learning in science. These findings motivate a set of variables and analytic approach that is undertaken in chapter four. Specifically, the questions how engagement influences experiences in ninth grade science and students' interest in pursuing a career in STEM using the HSLS:09 data. This multifaceted study contributes to the conceptualization of student engagement, and will help bring clarity to the relationship among engagement, context, and long-term outcomes in science. Engagement is more than being on-task or paying attention, but is a condition influenced by many factors including student background, the learning context of the classroom, teacher characteristics, and the features of instruction. Understanding this relationship between engagement and contextual factors is helpful in uncovering teacher actions and instructional activities that may elicit higher engagement in science classes. These findings highlight the importance of science instruction using more cognitively-demanding activities, such as problem-based learning.

  11. Structure of Black Male Students Academic Achievement in Science

    Science.gov (United States)

    Rascoe, Barbara

    Educational policies and practices have been largely unsuccessful in closing the achievement gap between Black and White students "Schwartz, 2001". This achievement gap is especially problematic for Black students in science "Maton, Hrabrowski, - Schmitt, 2000. Given the fact that the Black-White achievement gap is still an enigma, the purpose of this article is to address the Black female-Black male academic achievement gap in science majors. Addressing barriers that Black male students may experience as college science and engineering majors, this article presents marketing strategies relative to politics, emotional intelligence, and issues with respect to how science teaching, and Black male students' responses to it, are different. Many Black male students may need to experience a paradigm shift, which structures and enhances their science achievement. Paradigm shifts are necessary because exceptional academic ability and motivation are not enough to get Black males from their first year in a science, technology, education, and mathematics "STEM" major to a bachelor's degree in science and engineering. The conclusions focus on the balance of truth-slippery slopes concerning the confluence of science teachers' further ado and Black male students' theories, methods, and values that position their academic achievement in science and engineering majors.

  12. Original Science-Based Music and Student Learning

    Science.gov (United States)

    Smolinski, Keith

    2010-01-01

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework…

  13. Students' Preconceptions and Perceptions of Science-Oriented Studies

    NARCIS (Netherlands)

    Korpershoek, Hanke; Kuyper, Hans; Bosker, Roel; van der Werf, Greetje

    2013-01-01

    Do non-science, technology, engineering, and mathematics (STEM) students' views about STEM studies correspond with how STEM students actually perceive these studies? This paper deals with this issue by comparing higher education students' attitudes towards STEM studies between those who actually did

  14. Knowledge of Webloging among Library Science Students: The ...

    African Journals Online (AJOL)

    The study focused on investigating the knowledge of weblogging among library science students in Federal Polytechnic, Nekede. The study used descriptive survey research design. A purposive sampling technique was used to select 115 students among the final year students. A structured questionnaire was developed ...

  15. Attitudes toward Information Competency of University Students in Social Sciences

    Science.gov (United States)

    Pinto, María; Fernández-Pascual, Rosaura; Gómez-Hernández, José A.; Cuevas, Aurora; Granell, Ximo; Puertas, Susana; Guerrero, David; Gómez, Carmen; Palomares, Rocío

    2016-01-01

    This paper examines students' self-assessment of their information literacy, presenting a study involving 1,575 social science students at five Spanish universities. Data were collected and analyzed through a validated instrument that measures the variables of (1) the students' belief in the importance of information literacy skills; (2)…

  16. Mathematics education giving meaning to Social Science students

    DEFF Research Database (Denmark)

    Andersson, Annica; Valero, Paola

    Compulsory mathematics for social science students is problematic. We discuss the case of a group of students in Sweden who met a mathematics course inspired on the ideas of critical mathematics education and ethnomathematics. The evidence collected about students' experiences on this course...

  17. Effects of Different Student Response Modes on Science Learning

    Science.gov (United States)

    Kho, Lee Sze; Chen, Chwen Jen

    2017-01-01

    Student response systems (SRSs) are wireless answering devices that enable students to provide simple real-time feedback to instructors. This study aims to evaluate the effects of different SRS interaction modes on elementary school students' science learning. Three interaction modes which include SRS Individual, SRS Collaborative, and Classroom…

  18. Students' Self-Concept and Their Achievement in Basic Science ...

    African Journals Online (AJOL)

    The study investigated the relationship between students self-concept andtheir academic performance in Basic Science. It further examines genderdifference in students performance. The study adopted ex-post factorresearch design and made use of 300 students all from Public Schools. Theadapted Version of ...

  19. Citizen science projects for non-science astronomy students

    OpenAIRE

    Barmby, Pauline; Gallagher, S. C.; Cami, J.

    2014-01-01

    A poster from the 2011 Western Conference on Science Education, describing the use of citizen science project Galaxy Zoo in a non-majors astronomy course. Lots more on this topic at https://www.zooniverse.org/education  

  20. Students' awareness of science teachers' leadership, attitudes toward science, and positive thinking

    Science.gov (United States)

    Lu, Ying-Yan; Chen, Hsiang-Ting; Hong, Zuway-R.; Yore, Larry D.

    2016-09-01

    There appears to be a complex network of cognitive and affective factors that influence students' decisions to study science and motivate their choices to engage in science-oriented careers. This study explored 330 Taiwanese senior high school students' awareness of their science teacher's learning leadership and how it relates to the students' attitudes toward science and positive thinking. Initial results revealed that the optimism of positive thinking is highly and positively correlated with the future participation in science and learning science in school attitudes toward science and self-concept in science. Moreover, structural equation modelling (SEM) results indicated that the subscale of teachers' leadership with idealised influence was the most predictive of students' attitudes toward science (β = .37), and the leadership with laissez-faire was predictive of students' positive thinking (β = .21). In addition, the interview results were consistent with the quantitative findings. The correlation and SEM results indicate some of the associations and potential relationships amongst the motivational and affective factors studied and students' attitudes toward and intentions to study science, which will increase their likelihood of future involvement in science careers.

  1. Global Patterns in Students' Views of Science and Interest in Science

    Science.gov (United States)

    van Griethuijsen, Ralf A. L. F.; van Eijck, Michiel W.; Haste, Helen; den Brok, Perry J.; Skinner, Nigel C.; Mansour, Nasser; Savran Gencer, Ayse; BouJaoude, Saouma

    2015-08-01

    International studies have shown that interest in science and technology among primary and secondary school students in Western European countries is low and seems to be decreasing. In many countries outside Europe, and especially in developing countries, interest in science and technology remains strong. As part of the large-scale European Union funded `Science Education for Diversity' project, a questionnaire probing potential reasons for this difference was completed by students in the UK, Netherlands, Turkey, Lebanon, India and Malaysia. This questionnaire sought information about favourite courses, extracurricular activities and views on the nature of science. Over 9,000 students aged mainly between 10 and 14 years completed the questionnaire. Results revealed that students in countries outside Western Europe showed a greater interest in school science, in careers related to science and in extracurricular activities related to science than did Western European students. Non-European students were also more likely to hold an empiricist view of the nature of science and to believe that science can solve many problems faced by the world. Multilevel analysis revealed a strong correlation between interest in science and having such a view of the Nature of Science.

  2. Ninth Grade Student Responses to Authentic Science Instruction

    Science.gov (United States)

    Ellison, Michael Steven

    This mixed methods case study documents an effort to implement authentic science and engineering instruction in one teacher's ninth grade science classrooms in a science-focused public school. The research framework and methodology is a derivative of work developed and reported by Newmann and others (Newmann & Associates, 1996). Based on a working definition of authenticity, data were collected for eight months on the authenticity in the experienced teacher's pedagogy and in student performance. Authenticity was defined as the degree to which a classroom lesson, an assessment task, or an example of student performance demonstrates construction of knowledge through use of the meaning-making processes of science and engineering, and has some value to students beyond demonstrating success in school (Wehlage et al., 1996). Instruments adapted for this study produced a rich description of the authenticity of the teacher's instruction and student performance. The pedagogical practices of the classroom teacher were measured as moderately authentic on average. However, the authenticity model revealed the teacher's strategy of interspersing relatively low authenticity instructional units focused on building science knowledge with much higher authenticity tasks requiring students to apply these concepts and skills. The authenticity of the construction of knowledge and science meaning-making processes components of authentic pedagogy were found to be greater, than the authenticity of affordances for students to find value in classroom activities beyond demonstrating success in school. Instruction frequently included one aspect of value beyond school, connections to the world outside the classroom, but students were infrequently afforded the opportunity to present their classwork to audiences beyond the teacher. When the science instruction in the case was measured to afford a greater level of authentic intellectual work, a higher level of authentic student performance on

  3. Self-perceived intrinsic and extrinsic differences between Information Systems and Computer Science university students

    Directory of Open Access Journals (Sweden)

    Patricia M Alexander

    2014-06-01

    Full Text Available Strong arguments exist that the sub-disciplines of Information Systems (IS and Computer Science (CS can be meaningfully distinguished, and the literature indicates that teams in which there are variety of personalities and divergent career interests are more likely to successfully complete computing projects. This paper set out to identify differences in terms of personality and career objectives between those entering universities with the intention of pursuing a career in CS and those intending to study IS. First-year students from South African tertiary institutions in 2010 and 2012 were studied in terms of self-reported personality factors (using the Five Factor Model as frame of analysis as well as perceived environmental factors associated with career choice. Surprisingly, the only persistent significant difference found was that IS students consider well-paid employment as soon as possible after graduating to be more important than CS students do. In terms of the other factors studied no significant differences were found to occur in both years for which data was analysed. Hence, the result show that combining data collected from the students studying different sub-disciplines of computing is justified for research that specifically studies personality or factors such as interest, self-efficacy, career outcomes and how the career choice impacts on quality of life. At a practical level, the findings inform efforts in attracting, retaining and teaching students in these sub-disciplines.

  4. Science and students: Yucca Mountain project's education outreach program

    International Nuclear Information System (INIS)

    Gil, A.V.; Larkin, E.L.; Reilly, B.; Austin, P.

    1992-01-01

    The U.S. Department of Energy (DOE) is very concerned about the lack of understanding of basic science. Increasingly, critical decisions regarding the use of energy, technology, and the environment are being made. A well-educated and science-literate public is vital to the success of these decisions. Science education and school instruction are integral parts of the DOE's public outreach program on the Yucca Mountain Site Characterization Project (YMP). Project staff and scientists speak to elementary, junior high, high school, and university students, accepting all speaking invitations. The objectives of this outreach program include the following: (1) educating Nevada students about the concept of a high-level nuclear waste repository; (2) increasing awareness of energy and environmental issues; (3) helping students understand basic concepts of earth science and geology in relation to siting a potential repository; and (4) giving students information about careers in science and engineering

  5. Attitudes and Views of Medical Students toward Science and Pseudoscience.

    Science.gov (United States)

    Peña, Adolfo; Paco, Ofelia

    2004-12-01

    To know opinions, attitudes and interest of medical students toward science and pseudoscience. A questionnaire was administered to 124 medical students of the San Marcos University in Lima, Peru. 173 students were surveyed. The response rate was 72%. Eighty-three percent (100/121) of respondents said that science is the best source of knowledge, 67% (82/123) said they were interested in science and technology news, 76% said they had not read any science magazine or book (other than medical texts and journals) in the last five years. Thirteen percent (16/124) of respondents said that astrology is "very scientific" and 40% (50/124) stated that it is "sort of scientific." 50% of respondents shared the opinion that some people possess psychic powers. Medical students' attitudes toward science are generally not favorable.

  6. Student teachers' views: what is an interesting life sciences curriculum?

    OpenAIRE

    Rian de Villiers

    2011-01-01

    In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET) phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university...

  7. Science Literacy and Prior Knowledge of Astronomy MOOC Students

    Science.gov (United States)

    Impey, Chris David; Buxner, Sanlyn; Wenger, Matthew; Formanek, Martin

    2018-01-01

    Many of science classes offered on Coursera fall into fall into the category of general education or general interest classes for lifelong learners, including our own, Astronomy: Exploring Time and Space. Very little is known about the backgrounds and prior knowledge of these students. In this talk we present the results of a survey of our Astronomy MOOC students. We also compare these results to our previous work on undergraduate students in introductory astronomy courses. Survey questions examined student demographics and motivations as well as their science and information literacy (including basic science knowledge, interest, attitudes and beliefs, and where they get their information about science). We found that our MOOC students are different than the undergraduate students in more ways than demographics. Many MOOC students demonstrated high levels of science and information literacy. With a more comprehensive understanding of our students’ motivations and prior knowledge about science and how they get their information about science, we will be able to develop more tailored learning experiences for these lifelong learners.

  8. Bringing Science to Life for Students, Teachers and the Community

    Science.gov (United States)

    Pratt, K.

    2012-04-01

    Bringing Science to Life for Students, Teachers and the Community Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of year 5, our teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 121% and another site by 152%.

  9. Understanding the Views of the Nature of Science of Undergraduate Science, Technology, Engineering, and Mathematics Students

    Science.gov (United States)

    Hypolite, Karen L.

    2012-01-01

    Much of the nature of science research has been focused on high school students. High school students are primarily the target of such research to aid and to guide them in making informed decisions about possible career choices in the sciences (Bell, Blair, Crawford, & Lederman, 2002). Moreover, during review of the literature, little to no…

  10. The Effect of Environmental Science Projects on Students' Environmental Knowledge and Science Attitudes

    Science.gov (United States)

    Al-Balushi, Sulaiman M.; Al-Aamri, Shamsa S.

    2014-01-01

    The current study explores the effectiveness of involving students in environmental science projects for their environmental knowledge and attitudes towards science. The study design is a quasi-experimental pre-post control group design. The sample was 62 11th-grade female students studying at a public school in Oman. The sample was divided into…

  11. An Analysis of Science Student Teachers' Epistemological Beliefs and Metacognitive Perceptions about the Nature of Science

    Science.gov (United States)

    Yenice, Nilgün

    2015-01-01

    This study has been carried out to identify the relationship between the epistemological beliefs of student teachers and their metacognitive perceptions about the nature of science. The participants of the study totaled 336 student teachers enrolled in the elementary science education division of the department of elementary education at the…

  12. Understanding the Language Demands on Science Students from an Integrated Science and Language Perspective

    Science.gov (United States)

    Seah, Lay Hoon; Clarke, David John; Hart, Christina Eugene

    2014-01-01

    This case study of a science lesson, on the topic thermal expansion, examines the language demands on students from an integrated science and language perspective. The data were generated during a sequence of 9 lessons on the topic of "States of Matter" in a Grade 7 classroom (12-13 years old students). We identify the language demands…

  13. High school students presenting science: An interactional sociolinguistic analysis

    Science.gov (United States)

    Bleicher, Robert

    Presenting science is an authentic activity of practicing scientists. Thus, effective communication of science is an important skill to nurture in high school students who are learning science. This study examines strategies employed by high school students as they make science presentations; it assesses students' conceptual understandings of particular science topics through their presentations and investigates gender differences. Data are derived from science presentation given by eight high school students, three females and five males who attended a summer science program. Data sources included videotaped presentations, ethnographic fieldnotes, interviews with presenters and members of the audience, and presenter notes and overheads. Presentations were transcribed and submitted to discourse analysis from an interactional sociolinguistic perspective. This article focuses on the methodology employed and how it helps inform the above research questions. The author argues that use of this methodology leads to findings that inform important social-communicative issues in the learning of science. Practical advice for teaching students to present science, implications for use of presentations to assess conceptual learning, and indications of some possible gender differences are discussed.Received: 14 April 1993; Revised: 15 February 1994;

  14. Enhancing students' science literacy using solar cell learning multimedia containing science and nano technology

    Science.gov (United States)

    Eliyawati, Sunarya, Yayan; Mudzakir, Ahmad

    2017-05-01

    This research attempts to enhance students' science literacy in the aspects of students' science content, application context, process, and students' attitude using solar cell learning multimedia containing science and nano technology. The quasi-experimental method with pre-post test design was used to achieve these objectives. Seventy-two students of class XII at a high school were employed as research's subject. Thirty-six students were in control class and another thirty-six were in experiment class. Variance test (t-test) was performed on the average level of 95% to identify the differences of students' science literacy in both classes. As the result, there were significant different of learning outcomes between experiment class and control class. Almost half of students (41.67%) in experiment class are categorized as high. Therefore, the learning using solar cell learning multimedia can improve students' science literacy, especially in the students' science content, application context, and process aspects with n-gain(%) 59.19 (medium), 63.04 (medium), and 52.98 (medium). This study can be used to develop learning multimedia in other science context.

  15. The science experience: The relationship between an inquiry-based science program and student outcomes

    Science.gov (United States)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  16. Graduate students teaching elementary earth science through interactive classroom lessons

    Science.gov (United States)

    Caswell, T. E.; Goudge, T. A.; Jawin, E. R.; Robinson, F.

    2014-12-01

    Since 2005, graduate students in the Brown University Department of Earth, Environmental, and Planetary Studies have volunteered to teach science to second-grade students at Vartan Gregorian Elementary School in Providence, RI. Initially developed to bring science into classrooms where it was not explicitly included in the curriculum, the graduate student-run program today incorporates the Providence Public Schools Grade 2 science curriculum into weekly, interactive sessions that engage the students in hypothesis-driven science. We will describe the program structure, its integration into the Providence Public Schools curriculum, and 3 example lessons relevant to geology. Lessons are structured to develop the students' ability to share and incorporate others' ideas through written and oral communication. The volunteers explain the basics of the topic and engage the students with introductory questions. The students use this knowledge to develop a hypothesis about the upcoming experiment, recording it in their "Science Notebooks." The students record their observations during the demonstration and discuss the results as a group. The process culminates in the students using their own words to summarize what they learned. Activities of particular interest to educators in geoscience are called "Volcanoes!", "The "Liquid Race," and "Phases of the Moon." The "Volcanoes!" lesson explores explosive vs. effusive volcanism using two simulated volcanoes: one explosive, using Mentos and Diet Coke, and one effusive, using vinegar and baking soda (in model volcanoes that the students construct in teams). In "Liquid Race," which explores viscosity and can be integrated into the "Volcanoes!" lesson, the students connect viscosity to flow speed by racing liquids down a ramp. "Phases of the Moon" teaches the students why the Moon has phases, using ball and stick models, and the terminology of the lunar phases using cream-filled cookies (e.g., Oreos). These lessons, among many others

  17. Student science publishing: an exploratory study of undergraduate science research journals and popular science magazines in the US and Europe

    Directory of Open Access Journals (Sweden)

    Mico Tatalovic

    2008-09-01

    Full Text Available Science magazines have an important role in disseminating scientific knowledge into the public sphere and in discussing the broader scope affected by scientific research such as technology, ethics and politics. Student-run science magazines afford opportunities for future scientists, communicators, politicians and others to practice communicating science. The ability to translate ‘scientese’ into a jargon-free discussion is rarely easy: it requires practice, and student magazines may provide good practice ground for undergraduate and graduate science students wishing to improve their communication skills.

  18. Students-exhibits interaction at a science center

    Science.gov (United States)

    Botelho, Agostinho; Morais, Ana M.

    2006-12-01

    In this study we investigate students' learning during their interaction with two exhibits at a science center. Specifically, we analyze both students' procedures when interacting with exhibits and their understanding of the scientific concepts presented therein. Bernstein's theory of pedagogic discourse (1990, 2000) provided the sociological foundation to assess the exhibit-student interaction and allowed analysis of the influence of the characteristics of students, exhibits, and interactions on students' learning. Eight students (ages 12ndash;13 years of age) with distinct sociological characteristics participated in the study. Several findings emerged from the results. First, the characteristics of the students, exhibits, and interactions appeared to influence student learning. Second, to most students, what they did interactively (procedures) seems not to have had any direct consequence on what they learned (concept understanding). Third, the data analysis suggest an important role for designers and teachers in overcoming the limitations of exhibit-student interaction.

  19. History of Science as an Instructional Context: Student Learning in Genetics and Nature of Science

    Science.gov (United States)

    Kim, Sun Young; Irving, Karen E.

    2010-01-01

    This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in…

  20. The Gender and Science Digital Library: Affecting Student Achievement in Science.

    Science.gov (United States)

    Nair, Sarita

    2003-01-01

    Describes the Gender and Science Digital Library (GSDL), an online collection of high-quality, interactive science resources that are gender-fair, inclusive, and engaging to students. Considers use by teachers and school library media specialists to encourage girls to enter careers in science, technology, engineering, and math (STEM). (LRW)

  1. The effects of hands-on-science instruction on the science achievement of middle school students

    Science.gov (United States)

    Wiggins, Felita

    Student achievement in the Twenty First Century demands a new rigor in student science knowledge, since advances in science and technology require students to think and act like scientists. As a result, students must acquire proficient levels of knowledge and skills to support a knowledge base that is expanding exponentially with new scientific advances. This study examined the effects of hands-on-science instruction on the science achievement of middle school students. More specifically, this study was concerned with the influence of hands-on science instruction versus traditional science instruction on the science test scores of middle school students. The subjects in this study were one hundred and twenty sixth-grade students in six classes. Instruction involved lecture/discussion and hands-on activities carried out for a three week period. Specifically, the study ascertained the influence of the variables gender, ethnicity, and socioeconomic status on the science test scores of middle school students. Additionally, this study assessed the effect of the variables gender, ethnicity, and socioeconomic status on the attitudes of sixth grade students toward science. The two instruments used to collect data for this study were the Prentice Hall unit ecosystem test and the Scientific Work Experience Programs for Teachers Study (SWEPT) student's attitude survey. Moreover, the data for the study was treated using the One-Way Analysis of Covariance and the One-Way Analysis of Variance. The following findings were made based on the results: (1) A statistically significant difference existed in the science performance of middle school students exposed to hands-on science instruction. These students had significantly higher scores than the science performance of middle school students exposed to traditional instruction. (2) A statistically significant difference did not exist between the science scores of male and female middle school students. (3) A statistically

  2. The Impact of Teachers and Their Science Teaching on Students' "Science Interest": A Four-Year Study

    Science.gov (United States)

    Logan, Marianne R.; Skamp, Keith R.

    2013-01-01

    There is a crisis in school science in Australia and this may be related to insufficient students developing an interest in science. This extended study looked at changes in 14 students' interest in science as they moved through junior secondary school into Year 10. Although the majority of these students still had an interest in science in Year…

  3. Canisius College Summer Science Camp: Combining Science and Education Experts to Increase Middle School Students' Interest in Science

    Science.gov (United States)

    Sheridan, Phillip M.; Szczepankiewicz, Steven H.; Mekelburg, Christopher R.; Schwabel, Kara M.

    2011-01-01

    The Canisius College Summer Science Camp is a successful and effective annual outreach program that specifically targets middle school students in an effort to increase their interest in science. Five broadly defined science topics are explored in a camp-like atmosphere filled with hands-on activities. A 2010 module focused on chemistry topics of…

  4. Teachers' tendencies to promote student-led science projects: Associations with their views about science

    Science.gov (United States)

    Bencze, J. Lawrence; Bowen, G. Michael; Alsop, Steve

    2006-05-01

    School science students can benefit greatly from participation in student-directed, open-ended scientific inquiry projects. For various possible reasons, however, students tend not to be engaged in such inquiries. Among factors that may limit their opportunities to engage in open-ended inquiries of their design are teachers' conceptions about science. To explore possible relationships between teachers' conceptions about science and the types of inquiry activities in which they engage students, instrumental case studies of five secondary science teachers were developed, using field notes, repertory grids, samples of lesson plans and student activities, and semistructured interviews. Based on constructivist grounded theory analysis, participating teachers' tendencies to promote student-directed, open-ended scientific inquiry projects seemed to correspond with positions about the nature of science to which they indicated adherence. A tendency to encourage and enable students to carry out student-directed, open-ended scientific inquiry projects appeared to be associated with adherence to social constructivist views about science. Teachers who opposed social constructivist views tended to prefer tight control of student knowledge building procedures and conclusions. We suggest that these results can be explained with reference to human psychological factors, including those associated with teachers' self-esteem and their relationships with knowledge-building processes in the discipline of their teaching.

  5. Student explanations of their science teachers' assessments, grading practices and how they learn science

    Science.gov (United States)

    del Carmen Gomez, María

    2018-03-01

    The current paper draws on data generated through group interviews with students who were involved in a larger ethnographic research project performed in three science classrooms. The purpose of the study from which this data was generated, was to understand science teachers' assessment practices in an upper-secondary school in Sweden. During group interviews students were asked about their conceptions of what were the assessment priority of teachers, why the students were silent during lecturing and their experiences regarding peer- and self-assessments. The research design and analysis of the findings derives from what students told us about their assessments and learning sciences experiences. Students related that besides the results of the written test, they do not know what else teachers assessed and used to determine their grades. It was also found that students did not participate in the discussion on science because of peer-pressure and a fear of disappointing their peers. Student silence is also linked with student conceptions of science learning and student experiences with methodologies of teaching and learning sciences.

  6. Students Explaining Science--Assessment of Science Communication Competence

    Science.gov (United States)

    Kulgemeyer, Christoph; Schecker, Horst

    2013-01-01

    Science communication competence (SCC) is an important educational goal in the school science curricula of several countries. However, there is a lack of research about the structure and the assessment of SCC. This paper specifies the theoretical framework of SCC by a competence model. We developed a qualitative assessment method for SCC that is…

  7. The CSI Academy: Encouraging Diverse Students to Consider Science Careers and Science Teaching

    Science.gov (United States)

    Kaye, Karen; Turner, John F.; Emigh, James

    2011-01-01

    The CSI academies employed a multi-layered, collaborative approach to encourage diverse students to consider STEM careers, including science teaching. The academies recruited a diverse group of high school students. This was due, in large part, to the creation of a unique selection process that identified students with unrealized potential. The…

  8. Original science-based music and student learning

    Science.gov (United States)

    Smolinski, Keith

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework of brain-based learning, the purpose of this study was to examine the impact of original, science-based music on student content learning and student perceptions of the music and its impact on learning. Students in the treatment group at a public middle school learned songs with lyrics related to the content of a 4-week cells unit in science; whereas an equally sized control group was taught the same material using existing methods. The content retention and learning experiences of the students in this study were examined using a concurrent triangulation, mixed-methods study. Independent sample t test and ANOVA analyses were employed to determine that the science posttest scores of students in the treatment group (N = 93) were significantly higher than the posttest scores of students in the control group (N = 93), and that the relative gains of the boys in the treatment group exceeded those of the girls. The qualitative analysis of 10 individual interviews and 3 focus group interviews followed Patton's method of a priori coding, cross checking, and thematic analysis to examine the perceptions of the treatment group. These results confirmed that the majority of the students thought the music served as an effective learning tool and enhanced recall. This study promoted social change because students and teachers gained insight into how music can be used in science classrooms to aid in the learning of science content. Researchers could also utilize the findings for continued investigation of the interdisciplinary use of music in educational settings.

  9. Information visualization courses for students with a computer science background.

    Science.gov (United States)

    Kerren, Andreas

    2013-01-01

    Linnaeus University offers two master's courses in information visualization for computer science students with programming experience. This article briefly describes the syllabi, exercises, and practices developed for these courses.

  10. Relationships Between the Way Students Are Assessed in Science Classrooms and Science Achievement Across Canada

    Science.gov (United States)

    Chu, Man-Wai; Fung, Karen

    2018-04-01

    Canadian students experience many different assessments throughout their schooling (O'Connor 2011). There are many benefits to using a variety of assessment types, item formats, and science-based performance tasks in the classroom to measure the many dimensions of science education. Although using a variety of assessments is beneficial, it is unclear exactly what types, format, and tasks are used in Canadian science classrooms. Additionally, since assessments are often administered to help improve student learning, this study identified assessments that may improve student learning as measured using achievement scores on a standardized test. Secondary analyses of the students' and teachers' responses to the questionnaire items asked in the Pan-Canadian Assessment Program were performed. The results of the hierarchical linear modeling analyses indicated that both students and teachers identified teacher-developed classroom tests or quizzes as the most common types of assessments used. Although this ranking was similar across the country, statistically significant differences in terms of the assessments that are used in science classrooms among the provinces were also identified. The investigation of which assessment best predicted student achievement scores indicated that minds-on science performance-based tasks significantly explained 4.21% of the variance in student scores. However, mixed results were observed between the student and teacher responses towards tasks that required students to choose their own investigation and design their own experience or investigation. Additionally, teachers that indicated that they conducted more demonstrations of an experiment or investigation resulted in students with lower scores.

  11. Incorporating Indonesian Students' "Funds of Knowledge" into Teaching Science to Sustain Their Interest in Science

    Directory of Open Access Journals (Sweden)

    A.N. Md Zain

    2011-12-01

    Full Text Available The purpose of this study was to examine the effect of incorporating students’ funds of knowledge in the teaching of science in sustaining Indonesian students’ interest in science. The researchers employed mixed method approach in this study. This study took place within two suburban secondary schools in Indonesia. Two teachers and a total of 173 students (94 males and 79 females participated in this study. The findings revealed that initially, most students expected that the teaching process would mainly include science experiments or other hands-on activities. Their preferences revealed a critical problem related to science learning: a lack of meaningful science-related activities in the classroom. The findings showed that incorporating students’ funds of knowledge into science learning processes -and thus establishing students’ culture as an important and valued aspect of science learning was effective in not only sustaining but also improving students’ attitudes and increasing their interest in science.

  12. Project BioEYES: Accessible Student-Driven Science for K-12 Students and Teachers.

    Science.gov (United States)

    Shuda, Jamie R; Butler, Valerie G; Vary, Robert; Farber, Steven A

    2016-11-01

    BioEYES, a nonprofit outreach program using zebrafish to excite and educate K-12 students about science and how to think and act like scientists, has been integrated into hundreds of under-resourced schools since 2002. During the week-long experiments, students raise zebrafish embryos to learn principles of development and genetics. We have analyzed 19,463 participating students' pre- and post-tests within the program to examine their learning growth and attitude changes towards science. We found that at all grade levels, BioEYES effectively increased students' content knowledge and produced favorable shifts in students' attitudes about science. These outcomes were especially pronounced in younger students. Having served over 100,000 students, we find that our method for providing student-centered experiences and developing long-term partnerships with teachers is essential for the growth and sustainability of outreach and school collaborations.

  13. Achievement of Serbian eighth grade students in science

    Directory of Open Access Journals (Sweden)

    Antonijević Radovan

    2006-01-01

    Full Text Available The paper considers the main results and some educational implications of the TIMSS 2003 assessment conducted in Serbia in the fields of the science achievement of Serbian eighth grade students and the science curriculum context of their achievement. There were 4264 students in the sample. It was confirmed that Serbian eighth graders had made average scale score of 468 points in the science, and with this achievement they are placed in the zone of the top of low international benchmarking level, very close to the point of intermediate benchmark. The average science achievement of the Serbian eighth graders is somewhat below the general international science achievement. The best results were achieved in the science content domain of "chemistry", and the lower results in the content domain of "environmental science". Across the defined science cognitive domains, it was confirmed that the Serbian students had achieved the best results in cognitive domain of "factual knowledge" and weaker results in "reasoning and analysis". The achieved results raise many questions about contents of the science curriculum in Serbia, its overall quality and basic characteristics of its implementation. These results can be eligibly used to improve the science curricula and teaching in Serbian primary school. .

  14. Scientific Literacy and Student Attitudes: Perspectives from PISA 2006 science

    Science.gov (United States)

    Bybee, Rodger; McCrae, Barry

    2011-01-01

    International assessments provide important knowledge about science education and help inform decisions about policies, programmes, and practices in participating countries. In 2006, science was the primary domain for the Programme for International Student Assessment (PISA), supported by the Organisation for Economic Cooperation and Development (OECD) and conducted by the Australian Council for Educational Research (ACER). Compared to the school curriculum orientation of Trends in International Math and Science Study (TIMSS), PISA provides a perspective that emphasises the application of knowledge to science and technology-related life situations. The orientation of PISA includes both knowledge and attitudes as these contribute to students' competencies that are central to scientific literacy. In addition to students' knowledge and competencies, the 2006 PISA survey gathered data on students' interest in science, support for scientific enquiry, and responsibility towards resources and environments. The survey used both a non-contextualised student questionnaire and contextualised questions. The latter is an innovative approach which embedded attitudinal questions at the conclusion of about two-thirds of the test units. The results presented in this article make connections between students' attitudes and interests in science and scientific literacy.

  15. Learning style preferences of Australian health science students.

    Science.gov (United States)

    Zoghi, Maryam; Brown, Ted; Williams, Brett; Roller, Louis; Jaberzadeh, Shapour; Palermo, Claire; McKenna, Lisa; Wright, Caroline; Baird, Marilyn; Schneider-Kolsky, Michal; Hewitt, Lesley; Sim, Jenny; Holt, Tangerine-Ann

    2010-01-01

    It has been identified that health science student groups may have distinctive learning needs. By university educators' and professional fieldwork supervisors' being aware of the unique learning style preferences of health science students, they have the capacity to adjust their teaching approaches to best fit with their students' learning preferences. The purpose of this study was to investigate the learning style preferences of a group of Australian health science students enrolled in 10 different disciplines. The Kolb Learning Style Inventory was distributed to 2,885 students enrolled in dietetics and nutrition, midwifery, nursing, occupational therapy, paramedics, pharmacy, physiotherapy, radiation therapy, radiography, and social work at one Australian university. A total of 752 usable survey forms were returned (response rate 26%). The results indicated the converger learning style to be most frequently preferred by health science students and that the diverger and accommodator learning styles were the least preferred. It is recommended that educators take learning style preferences of health science students into consideration when planning, implementing, and evaluating teaching activities, such as including more problem-solving activities that fit within the converger learning style.

  16. Sources of student engagement in Introductory Physics for Life Sciences

    Science.gov (United States)

    Geller, Benjamin D.; Turpen, Chandra; Crouch, Catherine H.

    2018-06-01

    We explore the sources of student engagement with curricular content in an Introductory Physics for Life Science (IPLS) course at Swarthmore College. Do IPLS students find some life-science contexts more interesting than others, and, if so, what are the sources of these differences? We draw on three sources of student data to answer this question: (1) quantitative survey data illustrating how interested students were in particular contexts from the curriculum, (2) qualitative survey data in which students describe the source of their interest in these particular contexts, and (3) interview data in which students reflect on the contexts that were and were not of interest to them. We find that examples that make interdisciplinary connections with students' other coursework in biology and chemistry, and examples that make connections to what students perceive to be the "real world," are particularly effective at fostering interest. More generally, students describe being deeply engaged with contexts that foster a sense of coherence or have personal meaning to them. We identify various "engagement pathways" by which different life-science students engage with IPLS content, and suggest that a curriculum needs to be flexible enough to facilitate these different pathways.

  17. An Integrative Cultural Model to better situate marginalized science students in postsecondary science education

    Science.gov (United States)

    Labouta, Hagar Ibrahim; Adams, Jennifer Dawn; Cramb, David Thomas

    2018-03-01

    In this paper we reflect on the article "I am smart enough to study postsecondary science: a critical discourse analysis of latecomers' identity construction in an online forum", by Phoebe Jackson and Gale Seiler (Cult Stud Sci Educ. https://doi.org/10.1007/s11422-017-9818-0). In their article, the authors did a significant amount of qualitative analysis of a discussion on an online forum by four latecomer students with past negative experiences in science education. The students used this online forum as an out-of-class resource to develop a cultural model based on their ability to ask questions together with solidarity as a new optimistic way to position themselves in science. In this forum, we continue by discussing the identity of marginalized science students in relation to resources available in postsecondary science classes. Recent findings on a successful case of a persistent marginalized science student in spite of prior struggles and failures are introduced. Building on their model and our results, we proposed a new cultural model, emphasizing interaction between inside and outside classroom resources which can further our understanding of the identity of marginalized science students. Exploring this cultural model could better explain drop-outs or engagement of marginalized science students to their study. We, then, used this model to reflect on both current traditional and effective teaching and learning practices truncating or re-enforcing relationships of marginalized students with the learning environment. In this way, we aim to further the discussion initiated by Jackson and Seiler and offer possible frameworks for future research on the interactions between marginalized students with past low achievements and other high and mid achieving students, as well as other interactions between resources inside and outside science postsecondary classrooms.

  18. Russian Bilingual Science Learning: Perspectives from Secondary Students.

    Science.gov (United States)

    Lemberger, Nancy; Vinogradova, Olga

    2002-01-01

    Describes one secondary Russian/English bilingual science teacher's practice and her literate students' experiences as they learn science and adapt to a new school. Discusses the notion of whether literacy skills in the native language are transferable to a second language. (Author/VWL)

  19. What Do Students "Construct" According to Constructivism in Science Education?

    Science.gov (United States)

    Bächtold, Manuel

    2013-01-01

    This paper aims at shedding light on what students can "construct" when they learn science and how this construction process may be supported. Constructivism is a pluralist theory of science education. As a consequence, I support, there are several points of view concerning this construction process. Firstly, I stress that constructivism…

  20. Distance learning approach to train health sciences students at the ...

    African Journals Online (AJOL)

    Background: The University of Nairobi (UoN) College of Health Sciences (CHS) established Partnership for Innovative Medical Education in Kenya (PRIME-K) programmeme to enhance health outcomes in Kenya through extending the reach of medical training outside Nairobi to help health sciences students enhance their ...

  1. How Constructivist-Based Teaching Influences Students Learning Science

    Science.gov (United States)

    Seimears, C. Matt; Graves, Emily; Schroyer, M. Gail; Staver, John

    2012-01-01

    The purpose of this article is to provide details about the beneficial processes the constructivist pedagogy has in the area of teaching science. No Child Left Behind could possibly cause detrimental effects to the science classroom and the constructivist teacher, so this essay tells how constructivist-based teaching influences students and their…

  2. Student Interns Share the Spirit of Science | Poster

    Science.gov (United States)

    They came for a science lesson. They left with more. The new Werner H. Kirsten student interns filed into the auditorium in Building 549 to expand their knowledge of fundamental laboratory practices, as part of the Science Skills Boot Camp. A panel of presenters instructed the attendees on skills such as reading scientific papers effectively, practicing proper research ethics,

  3. Improving Students' Attitudes toward Science Using Instructional Congruence

    Science.gov (United States)

    Zain, Ahmad Nurulazam Md; Samsudin, Mohd Ali; Rohandi, Robertus; Jusoh, Azman

    2010-01-01

    The objective of this study was to improve students' attitudes toward science using instructional congruence. The study was conducted in Malaysia, in three low-performing secondary schools in the state of Penang. Data collected with an Attitudes in Science instrument were analysed using Rasch modeling. Qualitative data based on the reflections of…

  4. Entrepreneurial Health Informatics for Computer Science and Information Systems Students

    Science.gov (United States)

    Lawler, James; Joseph, Anthony; Narula, Stuti

    2014-01-01

    Corporate entrepreneurship is a critical area of curricula for computer science and information systems students. Few institutions of computer science and information systems have entrepreneurship in the curricula however. This paper presents entrepreneurial health informatics as a course in a concentration of Technology Entrepreneurship at a…

  5. Promising Teacher Practices: Students' Views about Their Science Learning

    Science.gov (United States)

    Moeed, Azra; Easterbrook, Matthew

    2016-01-01

    Internationally, conceptual and procedural understanding, understanding the Nature of Science, and scientific literacy are considered worthy goals of school science education in modern times. The empirical study presented here reports on promising teacher practices that in the students' views afford learning opportunities and support their science…

  6. Factors Affecting Students' Choice of Science and Engineering in Portugal.

    Science.gov (United States)

    de Almeida, Maria Jose B. M.; Leite, Maria Salete S. C. P.; Woolnough, Brian E.

    This paper presents the results of a study undertaken in Portugal to determine the influence of different factors on students' (n=499) decisions to study or refuse to study in one of the physical sciences or engineering. Some influencing factors are related to what goes on in school and during science lessons, and other factors are related to the…

  7. The importance of teacher-student interpersonal relationships for Turkish students' attitudes towards science

    Science.gov (United States)

    Telli, Sibel; den Brok, Perry; Cakiroglu, Jale

    2010-11-01

    The purpose of this study was to examine associations between Turkish high school students' perceptions of their science teachers' interpersonal behaviour and their attitudes towards science. Students' perceptions of the teacher-student interpersonal relationship were mapped with the Questionnaire on Teacher Interaction (QTI), which uses two relational dimensions: influence and proximity. Data on Students' subject-related attitudes were collected with the Test of Science Related Attitudes (TOSRA). A total of 7484 students (Grades 9 to 11) from 278 science classes (55 public schools) in 13 major Turkish cities participated in the study. Multilevel analyses of variance indicated that influence was related with student enjoyment, while proximity was associated with attitudes towards inquiry and with enjoyment.

  8. Integrating local environmental research into K-12 science classrooms and the value of graduate student-educator partnerships

    Science.gov (United States)

    Ward, N. D.; Petrik-Finley, R.

    2015-12-01

    Collaboration between researchers and K-12 educators enables an invaluable exchange of teaching philosophies and educational tools. Programs that partner graduate students with K-12 educators serve the dual purpose of training future educators and providing K-12 students with unique opportunities and perspectives. The benefits of this type of partnership include providing students with enhanced educational experiences and positive student-mentor relationships, training STEM graduate students in effective teaching strategies, and providing teachers with a firsthand resource for scientific information and novel educational materials. Many high school students have had little exposure to science beyond the classroom. Frequent interactions with "real-life" scientists can help make science more approachable and is an effective strategy for promoting science as a career. Here I describe my experiences and several lessons designed as a NSK GK-12 fellow. For example, a month-long unit on biogeochemical principles was framed as a crime scene investigation of a fish kill event in Hood Canal, Washington, in which students were given additional pieces of evidence to solve the mystery as they satisfied checkpoints in their understanding of key concepts. The evidence pieces included scientific plots, maps, datasets, and laboratory exercises. A clear benefit of this investigation-style unit is that students were able to learn the material at their individual pace. This structure allowed for a streamlined integration of differentiated materials such as simplified background readings or visual learning aids for struggling students or more detailed news articles and primary literature for more advanced students. Although the NSF GK-12 program has been archived, educators and researchers should pursue new partnerships, leveraging local and state-level STEM outreach programs with the goal of increasing national exposure of the societal benefits of such synergistic activities.

  9. A Survey of Current Computer Information Science (CIS) Students.

    Science.gov (United States)

    Los Rios Community Coll. District, Sacramento, CA. Office of Institutional Research.

    This document is a survey designed to be completed by current students of Computer Information Science (CIS) in the Los Rios Community College District (LRCCD), which consists of three community colleges: American River College, Cosumnes River College, and Sacramento City College. The students are asked about their educational goals and how…

  10. Chemistry Students' Challenges in Using MBL's in Science Laboratories.

    Science.gov (United States)

    Atar, Hakan Yavuz

    Understanding students' challenges about using microcomputer based laboratories (MBLs) would provide important data in understanding the appropriateness of using MBLs in high school chemistry laboratories. Identifying students' concerns about this technology will in part help educators identify the obstacles to science learning when using this…

  11. The Video Toaster Meets Science + English + At-Risk Students.

    Science.gov (United States)

    Perryess, Charlie

    1992-01-01

    Describes an experimental Science-English class for at-risk students which was team taught and used technology--particularly a Video Toaster (a videotape editing machine)--as a motivator. Discusses procedures for turning videotape taken on field trips into three- to five-minute student productions on California's water crisis. (SR)

  12. University Students' Opinions Concerning Science-Technology-Society Issues

    Science.gov (United States)

    Dolu, Gamze

    2016-01-01

    Determining what students think about science, technology, and society (STS) is of great importance. This also provides the basis for scientific literacy. As such, this study was conducted with a total of 102 senior students attending a university located in western Turkey. This study utilized the survey model as a research model and the…

  13. Students' Risk Perceptions of Nanotechnology Applications: Implications for Science Education

    Science.gov (United States)

    Gardner, Grant; Jones, Gail; Taylor, Amy; Forrester, Jennifer; Robertson, Laura

    2010-01-01

    Scientific literacy as a goal of a science education reform remains an important discourse in the research literature and is a key component of students' understanding and acceptance of emergent technologies like nanotechnology. This manuscript focuses on undergraduate engineering students' perceptions of the risks and benefits posed by…

  14. Outreach to Science Faculty and Students through Research Exhibitions

    Science.gov (United States)

    Chan, Tina; Hebblethwaite, Chris

    2014-01-01

    Penfield Library at the State University of New York at Oswego (SUNY Oswego) has a gallery exhibit space near the front entrance that is used to showcase student-faculty research and art class projects. This article features the library's outreach efforts to science faculty and students through research exhibitions. The library held an exhibition…

  15. Attending to Student Epistemological Framing in a Science Classroom

    Science.gov (United States)

    Hutchison, Paul; Hammer, David

    2010-01-01

    Studies of learning in school settings indicate that many students frame activities in science classes as the production of answers for the teacher or test, rather than as making new sense of the natural world. A case study of an episode from a class taught by the first author demonstrates what productive and unproductive student framing can look…

  16. Newspapers in Science Education: A Study Involving Sixth Grade Students

    Science.gov (United States)

    Lai, Ching-San; Wang, Yun-Fei

    2016-01-01

    The purpose of this study was to explore the learning performance of sixth grade elementary school students using newspapers in science teaching. A quasi-experimental design with a single group was used in this study. Thirty-three sixth grade elementary school students participated in this study. The research instruments consisted of three…

  17. Exploring student teachers' views of science process skills in their ...

    African Journals Online (AJOL)

    2016-08-18

    Aug 18, 2016 ... The purpose of this study was to explore the views of student teachers with regard to the importance they attach to these skills ... and purpose of practical work in science. .... students learn how to use some piece(s) of scientific.

  18. How College Science Students Engage in Note-Taking Strategies

    Science.gov (United States)

    Bonner, Janice M.; Holliday, William G.

    2006-01-01

    A composite theory of college science student note-taking strategies was derived from a periodic series of five interviews with 23 students and with other variables, including original and final versions of notes analyzed during a semester-long genetics course. This evolving composite theory was later compared with Van Meter, Yokoi, and Pressley's…

  19. Designing English for Specific Purposes Course for Computer Science Students

    Science.gov (United States)

    Irshad, Isra; Anwar, Behzad

    2018-01-01

    The aim of this study was to design English for Academic Purposes (EAP) course for University students enrolled in the Computer Science Department. For this purpose, academic English language needs of the students were analyzed by using a 5 point Likert scale questionnaire. Additionally, interviews were also conducted with four faculty members of…

  20. Social Networking among Library and Information Science Undergraduate Students

    Science.gov (United States)

    Alakpodia, Onome Norah

    2015-01-01

    The purpose of this study was to examine social networking use among Library and Information Science students of the Delta State University, Abraka. In this study, students completed a questionnaire which assessed their familiarity with social networking sites, the purpose for which they use social networking site and their most preferred sites to…

  1. Mentornet - E-Mentoring for Women Students in Engineering and Science

    Science.gov (United States)

    Single, Peg Boyle; Muller, Carol B.; Cunningham, Christine M.; Single, Richard M.; Carlsen, William S.

    MentorNet www.MentorNet.net;, the E-Mentoring Network for Diversity in Engineering and Science, addresses the underrepresentation of women in science, technology, engineering, and mathematics "STEM". MentorNet offers a multiinstitutional, structured, electronic mentoring "e-mentoring" program that pairs undergraduate and graduate students, primarily women, with professionals and supports them through e-mentoring relationships of specified lengths. The program evaluations established that over 90% of the participants would recommend MentorNet to a friend or colleague. The e-mentoring program allowed participants to establish satisfactory and beneficial e-mentoring relationships based on investments of approximately 20 minutes per week - in between more serious exchanges, email exchanges that included light-hearted social interactions and jokes were an important aspect of sustaining e-mentoring relationships. Participation in MentorNet increased the students' self-confidence in their f elds - desire to obtain work in industry, national laboratories, or national agencies; and intent to pursue careers in their fields. Three years of evaluation results support the need for and efficacy of the program.

  2. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  3. Teaching Graduate Students How To Do Informal Science Education

    Science.gov (United States)

    Ackerman, S. A.; Crone, W.; Dunwoody, S. L.; Zenner, G.

    2011-12-01

    One of the most important skills a student needs to develop during their graduate days is the skill of communicating their scientific work with a wide array of audiences. That facility will serve them across audiences, from scientific peers to students to neighbors and the general public. Increasingly, graduate students express a need for training in skills needed to manage diverse communicative environments. In response to that need we have created a course for graduate students in STEM-related fields which provides a structured framework and experiential learning about informal science education. This course seeks to familiarize students with concepts and processes important to communicating science successfully to a variety of audiences. A semester-long course, "Informal Science Education for Scientists: A Practicum," has been co-taught by a scientist/engineer and a social scientist/humanist over several years through the Delta Program in Research, Teaching, & Learning at the University of Wisconsin-Madison. The course is project based and understanding audience is stressed throughout the class. Through development and exhibition of the group project, students experience front end, formative and summative evaluation methods. The disciplines of the participating students is broad, but includes students in the geosciences each year. After a brief description of the course and its evolution, we will present assessment and evaluation results from seven different iterations of the course showing significant gains in how informed students felt about evaluation as a tool to determine the effectiveness of their science outreach activities. Significant gains were found in the graduate students' perceptions that they were better qualified to explain a research topic to a lay audience, and in the students' confidence in using and understanding evaluation techniques to determine the effectiveness of communication strategies. There were also increases in the students

  4. The Evaluation of Burnout Levels of Sports Sciences Faculty Students

    Science.gov (United States)

    Kocaeksi, Serdar

    2016-01-01

    The aim of this research is to evaluate the burnout levels of sports sciences faculty students in terms of some other variables. 46 Female (Age, M: 20.88 ± 1.86) and 107 male (Age, M: 22.15 ± 2.15) in total 153 students participated in this research. Maslach Burnout Inventory-Student Form (MBI-SF) was used for data collection. Descriptive…

  5. Project Lifescape | Initiatives | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Project Lifescape. This project is part of the Academy initiative to enhance the quality of science education. It is pursued in collaboration with the Centre for Ecological Sciences at the Indian Institute of Science to spread biodiversity literacy, expecially within the high school and college student community, and to involve them ...

  6. Current Students | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  7. Student Organizations | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  8. Transfer Students | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  9. Myths and Motives behind STEM (Science, Technology, Engineering, and Mathematics) Education and the STEM-Worker Shortage Narrartive

    Science.gov (United States)

    Stevenson, Heidi J.

    2014-01-01

    The Business Roundtable (2013) website presents a common narrative in regard to STEM (Science, Technology, Engineering and Mathematics) education, "American students are falling behind in math and science. Fewer and fewer students are pursuing careers in science, technology, engineering and mathematics, and American students are performing at…

  10. Teacher and student reflections on ICT-rich science inquiry

    DEFF Research Database (Denmark)

    Williams, John; Otrel-Cass, Kathrin

    2017-01-01

    and different ways for students to engage with, explore and communicate science ideas within inquiry. Sample: This project developed case studies with 6 science teachers of year 9 and 10 students, with an average age of 13 and 14 years in three New Zealand high schools. Teacher participants in the project had...... varying levels of understanding and experience with inquiry learning in science. Teacher knowledge and experience with ICT were equally diverse. Design and Methods: Teachers and researchers developed initially in a joint workshop a shared understanding of inquiry, and how this could be enacted. During......Background: Inquiry learning in science provides authentic and relevant contexts in which students can create knowledge to solve problems, make decisions and find solutions to issues in today’s world. The use of electronic networks can facilitate this interaction, dialogue and sharing, and adds...

  11. Impacting university physics students through participation in informal science

    Science.gov (United States)

    Hinko, Kathleen; Finkelstein, Noah D.

    2013-01-01

    Informal education programs organized by university physics departments are a popular means of reaching out to communities and satisfying grant requirements. The outcomes of these programs are often described in terms of broader impacts on the community. Comparatively little attention, however, has been paid to the influence of such programs on those students facilitating the informal science programs. Through Partnerships for Informal Science Education in the Community (PISEC) at the University of Colorado Boulder, undergraduate and graduate physics students coach elementary and middle school children during an inquiry-based science afterschool program. As part of their participation in PISEC, university students complete preparation in pedagogy, communication and diversity, engage with children on a weekly basis and provide regular feedback about the program. We present findings that indicate these experiences improve the ability of university students to communicate in everyday language and positively influence their perspectives on teaching and learning.

  12. Indiana secondary students' evolution learning experiences and demarcations of science from non-science

    Science.gov (United States)

    Donnelly, Lisa A.

    2007-12-01

    Previous research has documented students' conceptual difficulties learning evolution and how student learning may be related to students' views of evolution and science. This mixed methods study addressed how 74 high school biology students from six Indiana high schools viewed their evolution learning experiences, the demarcations of science from non-science, and evolution understanding and acceptance. Data collection entailed qualitative and quantitative methods including interviews, classroom observations, surveys, and assessments to address students' views of science and non-science, evolution learning experiences, and understanding and acceptance of evolution. Qualitative coding generated several demarcation and evolution learning experience codes that were subsequently used in quantitative comparisons of evolution understanding and acceptance. The majority of students viewed science as empirical, tentative but ultimately leading to certain truth, compatible with religion, the product of experimental work, and the product of human creativity. None of the students offered the consensus NOS view that scientific theories are substantiated explanations of phenomena while scientific laws state relationships or patterns between phenomena. About half the students indicated that scientific knowledge was subjectively and socio-culturally influenced. The majority of students also indicated that they had positive evolution learning experiences and thought evolution should be taught in secondary school. The quantitative comparisons revealed how students who viewed scientific knowledge as subjectively and socio-culturally influenced had higher understanding than their peers. Furthermore, students who maintained that science and religion were compatible did not differ with respect to understanding but had higher acceptance than their peers who viewed science and religion as conflicting. Furthermore, students who maintained that science must be consistent with their

  13. Interteach and Student Engagement in Political Science

    Science.gov (United States)

    Slagter, Tracy H.; Scribner, Druscilla L.

    2014-01-01

    "Interteach" is a method of guided discussion and feedback developed by Thomas Boyce and Philip Hineline in 2002. This method, primarily used in the psychology classroom, encourages greater student engagement and responsibility for learning by requiring extensive student preparation, peer-to-peer instruction, and peer evaluation. How can…

  14. Interest in mathematics and science among students having high mathematics aptitude

    Science.gov (United States)

    Ely, Jane Alice

    The study investigates why men and women differ in their interest in mathematics and science and in the pursuit of careers in mathematics and science. The most persistent gender differential in educational standard testing is the scores in mathematics achievement. The mean Scholastic Aptitude Test (Mathematics) scores for women are consistently below that of men by about 40 points. One result of this gender differential in mathematics is that few women entertain a career requiring a robust knowledge of higher mathematics (i.e. engineering, computing, or the physical sciences). A large body of literature has been written attempting to explain why this is happening. Biological, cultural, structural and psychological explanations have been suggested and empirically examined. Controlling for mathematical ability is one method of sorting out these explanations. Eliminating mathematical ability as a factor, this dissertation reports the results of a study of men and women college students who all had high mathematics ability. Thus, any differences we found among them would have to be a result of other variables. Using a Mathematics Placement Exam and the SAT-M, forty-two students (12 males and 30 females) with high scores in both were interviewed. Student were asked about their experiences in high school and college mathematics, their career choices, and their attitudes toward mathematics. The findings, that there were no gender differences in the course selection, attitudes towards mathematics, and career choice, differed from my initial expectations. This negative finding suggests that women with high ability in mathematics are just as likely as men to pursue interests in mathematics and related courses in college and in selecting careers.

  15. Life after National Science Foundation fellowships: The implications for a graduate student's professional endeavors

    Science.gov (United States)

    Obarski, Kelly Josephine

    Each year, hundreds of graduate and undergraduate students, participate as Fellows in National Science Foundation GK-12 Grants throughout the U.S. These Fellowships create opportunities for university students to improve their communication skills, teaching proficiencies, and team-building skills, in addition to expanding their interest in educational endeavors in their respective communities while pursuing their college degrees. STEP (Science and Technology Enhancement Project) is one such project. University faculty, public school teachers, and community leaders collaborated together in order to bring scientists into middle and secondary classrooms to focus on increasing student interest and proficiency in science, technology, engineering, and mathematics (STEM) skills. Seventeen Fellows, in the previous four years, designed, developed, and implemented innovative, hands-on lessons in seven local schools. The evaluation team collected a tremendous amount of research evidence focused on the effect of the program on the Fellows while they were participants in the study, but there has been very little data collected about the Fellows after leaving the program. This research study, consisting of two-hour interviews, qualitatively explores how the skills learned while participating in the STEP program affected the Fellows' career and educational choices once leaving the project. This data was analyzed along with historical attitude surveys and yearly tracking documents to determine the effect that participation in the program had on their choices post-STEP. An extensive literature review has been conducted focusing on other GK-12 programs throughout the country, K-16 collaboration, Preparing Future Faculty Programs, as well as on teaching and learning literature. These bodies of literature provide the theoretical basis in which the research is framed in order to assess the impact on Fellow educational and professional choices since leaving the STEP program. This

  16. Improving middle and high school students' comprehension of science texts

    Directory of Open Access Journals (Sweden)

    Brandi E. JOHNSON

    2011-11-01

    Full Text Available Throughout the United States, many middle and high school students struggle to comprehend science texts for a variety of reasons. Science texts are frequently boring, focused on isolated facts, present too many new concepts at once, and lack the clarity and organization known to improve comprehension. Compounding the problem is that many adolescent readers do not possess effective comprehension strategies, particularly for difficult expository science texts. Some researchers have suggested changing the characteristics of science texts to better assist adolescent readers with understanding, while others have focused on changing the strategies of adolescent readers. In the current paper, we review the literature on selected strategy instruction programs used to improve science text comprehension in middle and high school students and suggest avenues for future research.

  17. Improving middle and high school students' comprehension of science texts

    Directory of Open Access Journals (Sweden)

    Brandi E. Johnson

    2011-10-01

    Full Text Available Throughout the United States, many middle and high school students struggle to comprehend science texts for a variety of reasons. Science texts are frequently boring, focused on isolated facts, present too many new concepts at once, and lack the clarity and organization known to improve comprehension. Compounding the problem is that many adolescent readers do not possess effective comprehension strategies, particularly for difficult expository science texts. Some researchers have suggested changing the characteristics of science texts to better assist adolescent readers with understanding, while others have focused on changing the strategies of adolescent readers. In the current paper, we review the literature on selected strategy instruction programs used to improve science text comprehension in middle and high school students and suggest avenues for future research.

  18. Quality Science Teacher Professional Development and Student Achievement

    Science.gov (United States)

    Dubner, J.

    2007-12-01

    Studies show that socio-economic background and parental education accounts for 50-60 percent of a child's achievement in school. School, and other influences, account for the remaining 40-50 percent. In contrast to most other professions, schools require no real apprenticeship training of science teachers. Overall, only 38 percent of United States teachers have had any on-the-job training in their first teaching position, and in some cases this consisted of a few meetings over the course of a year between the beginning teacher and the assigned mentor or master teacher. Since individual teachers determine the bulk of a student's school experiences, interventions focused on teachers have the greatest likelihood of affecting students. To address this deficiency, partnerships between scientists and K-12 teachers are increasingly recognized as an excellent method for improving teacher preparedness and the quality of science education. Columbia University's Summer Research Program for Science Teachers' (founded in 1990) basic premise is simple: teachers cannot effectively teach science if they have no firsthand experience doing science, hence the Program's motto, "Practice what you teach." Columbia University's Summer Research Program for Science Teachers provides strong evidence that a teacher research program is a very effective form of professional development for secondary school science teachers and has a direct correlation to increased student achievement in science. The author will present the methodology of the program's evaluation citing statistically significant data. The author will also show the economic benefits of teacher participation in this form of professional development.

  19. Engaging Students In The Science Of Climate Change

    Science.gov (United States)

    Rhew, R. C.; Halversen, C.; Weiss, E.; Pedemonte, S.; Weirman, T.

    2013-12-01

    Climate change is arguably the defining environmental issue of our generation. It is thus increasingly necessary for every member of the global community to understand the basic underlying science of Earth's climate system and how it is changing in order to make informed, evidence-based decisions about how we will respond individually and as a society. Through exploration of the inextricable interconnection between Earth's ocean, atmosphere and climate, we believe students will be better prepared to tackle the complex issues surrounding the causes and effects of climate change and evaluate possible solutions. If students are also given opportunities to gather evidence from real data and use scientific argumentation to make evidence-based explanations about climate change, not only will they gain an increased understanding of the science concepts and science practices, the students will better comprehend the nature of climate change science. Engaging in argument from evidence is a scientific practice not only emphasized in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS), but also emphasized in the Common Core State Standards for English Language Arts & Literacy in History/Social Studies and Science (CCSS). This significant overlap between NGSS and CCSS has implications for science and language arts classrooms, and should influence how we support and build students' expertise with this practice of sciences. The featured exemplary curricula supports middle school educators as they address climate change in their classrooms. The exemplar we will use is the NOAA-funded Ocean Sciences Sequence (OSS) for Grades 6-8: The ocean-atmosphere connection and climate change, which are curriculum units that deliver rich science content correlated to the Next Generation Science Standards (NGSS) Disciplinary Core Ideas and an emphasis on the Practices of Science, as called for in NGSS and the Framework. Designed in accordance with the latest

  20. Making science education meaningful for American Indian students: The effect of science fair participation

    Science.gov (United States)

    Welsh, Cynthia Ann

    Creating opportunities for all learners has not been common practice in the United States, especially when the history of Native American educational practice is examined (Bull, 2006; Chenoweth, 1999; Starnes, 2006a). The American Indian Science and Engineering Society (AISES) is an organization working to increase educational opportunity for American Indian students in science, engineering, and technology related fields (AISES, 2005). AISES provides pre-college support in science by promoting student science fair participation. The purpose of this qualitative research is to describe how American Indian student participation in science fairs and the relationship formed with their teacher affects academic achievement and the likelihood of continued education beyond high school. Two former American Indian students mentored by the principal investigator participated in this study. Four ethnographic research methods were incorporated: participant observation, ethnographic interviewing, search for artifacts, and auto-ethnographic researcher introspection (Eisenhart, 1988). After the interview transcripts, photos documenting past science fair participation, and researcher field notes were analyzed, patterns and themes emerged from the interviews that were supported in literature. American Indian academic success and life long learning are impacted by: (a) the effects of racism and oppression result in creating incredible obstacles to successful learning, (b) positive identity formation and the importance of family and community are essential in student learning, (c) the use of best practice in science education, including the use of curricular cultural integration for American Indian learners, supports student success, (d) the motivational need for student-directed educational opportunities (science fair/inquiry based research) is evident, (e) supportive teacher-student relationships in high school positively influences successful transitions into higher education. An

  1. Future Students | College of Engineering & Applied Science

    Science.gov (United States)

    race car with the Society of Automotive Engineers. Members of the American Society of Mechanical . icons_100x100_Engage Over 20 engineering and computer science organizations await! Race a Baja car or concrete canoe

  2. Indigenous Elementary Students' Science Instruction in Taiwan: Indigenous Knowledge and Western Science

    Science.gov (United States)

    Lee, Huei; Yen, Chiung-Fen; Aikenhead, Glen S.

    2012-12-01

    This preliminary ethnographic investigation focused on how Indigenous traditional wisdom can be incorporated into school science and what students learned as a result. Participants included community elders and knowledge keepers, as well as 4th grade (10-year-old) students, all of Amis ancestry, an Indigenous tribe in Taiwan. The students' non-Indigenous teacher played a central role in developing a science module `Measuring Time' that combined Amis knowledge and Western science knowledge. The study identified two cultural worldview perspectives on time; for example, the place-based cyclical time held by the Amis, and the universal rectilinear time presupposed by scientists. Students' pre-instructional fragmented concepts from both knowledge systems became more informed and refined through their engagement in `Measuring Time'. Students' increased interest and pride in their Amis culture were noted.

  3. Secondary School Students' Understanding of Science and Their Socioscientific Reasoning

    Science.gov (United States)

    Karahan, Engin; Roehrig, Gillian

    2017-08-01

    Research in socioscientific issue (SSI)-based interventions is relatively new (Sadler in Journal of Research in Science Teaching 41:513-536, 2004; Zeidler et al. in Journal of Research in Science Teaching 46:74-101, 2009), and there is a need for understanding more about the effects of SSI-based learning environments (Sadler in Journal of Research in Science Teaching 41:513-536, 2004). Lee and Witz (International Journal of Science Education 31:931-960, 2009) highlighted the need for detailed case studies that would focus on how students respond to teachers' practices of teaching SSI. This study presents case studies that investigated the development of secondary school students' science understanding and their socioscientific reasoning within SSI-based learning environments. A multiple case study with embedded units of analysis was implemented for this research because of the contextual differences for each case. The findings of the study revealed that students' understanding of science, including scientific method, social and cultural influences on science, and scientific bias, was strongly influenced by their experiences in SSI-based learning environments. Furthermore, multidimensional SSI-based science classes resulted in students having multiple reasoning modes, such as ethical and economic reasoning, compared to data-driven SSI-based science classes. In addition to portraying how participants presented complexity, perspectives, inquiry, and skepticism as aspects of socioscientific reasoning (Sadler et al. in Research in Science Education 37:371-391, 2007), this study proposes the inclusion of three additional aspects for the socioscientific reasoning theoretical construct: (1) identification of social domains affecting the SSI, (2) using cost and benefit analysis for evaluation of claims, and (3) understanding that SSIs and scientific studies around them are context-bound.

  4. Asian International Graduate Students’ Extrinsic Motivation to Pursue Degrees

    Directory of Open Access Journals (Sweden)

    Naomi Takashiro

    2017-04-01

    Full Text Available The author examined the types of extrinsic motivation for Asian international graduate students pursuing graduate degrees. The theoretical framework used was extrinsic motivation within Self-Determination Theory. Even though the presence of Asian international graduate students is steadily increasing worldwide, research into their extrinsic motivation is scarce. It is important for educators to explore and understand Asian international graduate students’ extrinsic motivation since such students would provide unique, distinctive cultural aspects in the classroom in their host countries. The research design employed was qualitative. Semi-structured interviews were conducted with 10 graduate students from four Asian countries. The identified themes were a faculty influence, b personal recognition, and c utility for careers. Asian international graduate students expressed that their ultimate extrinsic motivation was to get professional jobs in academia. The author discussed the implications of these findings for instructors.

  5. Engaging College Students by Singing the Science

    Directory of Open Access Journals (Sweden)

    Richard H. Heineman

    2017-05-01

    Full Text Available Setting scientific ideas to music can increase student engagement and help with memorization. However, some instructors may be intimidated by the thought of performing educational music for their STEM students, or concerned that it is frivolous. To address this issue, I spell out step by step protocols for either writing one’s own parody songs to teach specific concepts, or finding songs online (which can be used directly or modified. I also discuss presentation techniques that help students, such as showing lyrics and adding annotations that clarify or emphasize ideas. A survey suggests that this approach is appreciated and effective.

  6. Science Majors and Degrees among Asian-American Students: Influences of Race and Sex in "model Minority" Experiences

    Science.gov (United States)

    Meng, Yu; Hanson, Sandra L.

    Both race and sex continue to be factors that stratify entry into science education and occupations in the United States. Asian-Americans (men and women) have experienced considerable success in the sciences and have earned the label of "model minority." The complexities and patterns involved in this success remain elusive. We use several concepts coming out of the status attainment framework and a multicultural gender perspective to explore the way in which race and sex come together to influence choices of science major and degree. Our sample consists of Asian-American and white students in the National Educational Longitudinal Study. Findings suggest that being male and being Asian-American are both associated with higher chances of pursuing majors and degrees in science. The male advantage is greater than the Asian-American advantage. Findings also suggest that race and sex interact in the science decision. For example, race differences (with an Asian-American advantage) in choice of science major are significant for women but not men. Sex differences (with a male advantage) in choice of science major are significant in the white, but not the Asian-American sample. A different set of race and sex patterns is revealed in the science degree models. Processes associated with family socioeconomic status and student characteristics help to explain race and sex patterns. Findings suggest that when Asian-American youths have closer ties to the Asian culture, they are more likely to choose science majors and degrees. Implications for policy, practice, and research in science education are discussed.

  7. Moon 101: Introducing Students to Lunar Science and Exploration

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2011-12-01

    Moon 101 is designed with the purpose of familiarizing students with lunar geology and exploration. Armed with guiding questions, students read articles covering various lunar science topics and browse images from past and current lunar missions to familiarize themselves with available lunar data sets. Moon 101 was originally created for high school students preparing to conduct open-inquiry, lunar research. Most high school students' knowledge of lunar science is limited to lunar phases and tides, and their knowledge of lunar exploration is close to non-existent. Moon 101 provides a summary of the state of knowledge of the Moon's formation and evolution, and the exploration that has helped inform the lunar science community. Though designed for high school students, Moon 101 is highly appropriate for the undergraduate classroom, especially at the introductory level where resources for teaching lunar science are scarce. Moon 101 is comprised of two sections covering lunar science (formation and geologic evolution of the Moon) and one section covering lunar exploration. Students read information on the formation and geologic evolution of the Moon from sources such as the Planetary Science Research Discoveries (PSRD) website and the USGS professional paper A Geologic History of the Moon by Wilhelms. While these resources are not peer-reviewed journals, the information is presented at a level more advanced than articles from newspapers and popular science magazines. This ensures that the language is accessible to students who do not have a strong lunar/planetary science background, or a strong science background in general. Formation readings include information on older and current formation hypotheses, including the Giant Impact Hypothesis, the Magma Ocean hypothesis, and the age of the lunar crust. Lunar evolution articles describe ideas such as the Late Heavy Bombardment and geologic processes such as volcanism and impact cratering. After reading the articles

  8. Students' science attitudes, beliefs, and context: associations with science and chemistry aspirations

    Science.gov (United States)

    Mujtaba, Tamjid; Sheldrake, Richard; Reiss, Michael J.; Simon, Shirley

    2018-04-01

    There is a widespread concern that relatively few students, especially those from disadvantaged backgrounds, continue to study chemistry and other science subjects after compulsory education. Yet it remains unclear how different aspects of students' background and home context, their own attitudes and beliefs, and their experiences of particular teaching approaches in school might limit or facilitate their studying aspirations; concurrently, less research has specifically focused on and surveyed disadvantaged students. In order to gain more insight, 4780 students were surveyed, covering those in Year 7 (age 11-12 years) and in Year 8 (age 12-13) from schools in England with high proportions of those from disadvantaged backgrounds. Predictive modelling highlighted that the students' aspirations to study non-compulsory science in the future, and to study the particular subject of chemistry, were strongly associated with their extrinsic motivation towards science (their perceived utility of science, considered as a means to gain particular careers or skills), their intrinsic interest in science, and their engagement in extra-curricular activities. Additionally, their self-concept beliefs (their confidence in their own abilities in science), some teaching approaches, and encouragement from teachers and family alongside family science capital had smaller but still relevant associations.

  9. Physics for students of science and engineering

    CERN Document Server

    Resnick, Robert

    1960-01-01

    A classic that is still in publication, this textbook stress principles rather than scientific procedures, conditioning students to the atmosphere of scientific change they are likely to encounter during their careers.

  10. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students

    Science.gov (United States)

    Dubetz, Terry A.; Wilson, Jo Ann

    2013-01-01

    Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…

  11. The Effects of Motivation on Student Performance on Science Assessments

    Science.gov (United States)

    Glenn, Tina Heard

    Academic achievement of public school students in the United States has significantly fallen behind other countries. Students' lack of knowledge of, or interest in, basic science and math has led to fewer graduates of science, technology, engineering, and math-related fields (STEM), a factor that may affect their career success and will certainly affect the numbers in the workforce who are prepared for some STEM jobs. Drawing from self-determination theory and achievement theory, the purpose of this correlational study was to determine whether there were significant relationships between high school academic performance in science classes, motivations (self-efficacy, self-regulation, and intrinsic and extrinsic goal orientation), and academic performance in an introductory online college biology class. Data were obtained at 2 points in time from a convenience multiethnic sample of adult male ( n =16) and female (n = 49) community college students in the southeast United States. Correlational analyses indicated no statistically significant relationships for intrinsic or extrinsic goal orientation, self-efficacy, or self-regulation with high school science mean-GPA nor college biology final course grade. However, high school academic performance in science classes significantly predicted college performance in an entry-level online biology class. The implications of positive social change include knowledge useful for educational institutions to explore additional factors that may motivate students to enroll in science courses, potentially leading to an increase in scientific knowledge and STEM careers.

  12. Student Empowerment in an Environmental Science Classroom: Toward a Framework for Social Justice Science Education

    Science.gov (United States)

    Dimick, Alexandra Schindel

    2012-01-01

    Social justice education is undertheorized in science education. Given the wide range of goals and purposes proposed within both social justice education and social justice science education scholarship, these fields require reconciliation. In this paper, I suggest a student empowerment framework for conceptualizing teaching and learning social…

  13. Offering a Forensic Science Camp to Introduce and Engage High School Students in Interdisciplinary Science Topics

    Science.gov (United States)

    Ahrenkiel, Linda; Worm-Leonhard, Martin

    2014-01-01

    In this article, we present details of a one-week interdisciplinary science camp for high school students in Denmark, "Criminal Camp". We describe the use of forensic science and simulated crimes as a common foundation for teaching the theory and practice of concepts in chemistry, physics, and medicine or biology. The main goal of the…

  14. How choosing science depends on students' individual fit to 'science culture'

    NARCIS (Netherlands)

    Taconis, R.; Kessels, U.

    2009-01-01

    In this paper we propose that the unpopularity of science in many industrialised countries is largely due to the gap between the subculture of science, on the one hand, and students' self-image, on the other. We conducted a study based on the self-to-prototype matching theory, testing whether the

  15. How Choosing Science Depends on Students' Individual Fit to "Science Culture"

    Science.gov (United States)

    Taconis, Ruurd; Kessels, Ursula

    2009-01-01

    In this paper we propose that the unpopularity of science in many industrialised countries is largely due to the gap between the subculture of science, on the one hand, and students' self-image, on the other. We conducted a study based on the self-to-prototype matching theory, testing whether the perceived mismatch between the typical…

  16. Student Explanations of Their Science Teachers' Assessments, Grading Practices and How They Learn Science

    Science.gov (United States)

    del Carmen Gomez, María

    2018-01-01

    The current paper draws on data generated through group interviews with students who were involved in a larger ethnographic research project performed in three science classrooms. The purpose of the study from which this data was generated, was to understand science teachers' assessment practices in an upper-secondary school in Sweden. During…

  17. Global patterns in students' views of science and interest in science

    NARCIS (Netherlands)

    van Griethuijsen, R.A.L.F.; van Eijck, M.W.; Haste, H.; den Brok, P.J.; Skinner, N.C.; Mansour, N.; Gencer, A.S.; BouJaoude, S.B.

    2015-01-01

    International studies have shown that interest in science and technology among primary and secondary school students in Western European countries is low and seems to be decreasing. In many countries outside Europe, and especially in developing countries, interest in science and technology remains

  18. Offering a Forensic Science Camp To Introduce and Engage High School Students in Interdisciplinary Science Topics

    DEFF Research Database (Denmark)

    Ahrenkiel, Linda; Worm-Leonhard, Martin

    2014-01-01

    In this article, we present details of a one-week interdisciplinary science camp for high school students in Denmark, “Criminal Camp”. We describe the use of forensic science and simulated crimes as a common foundation for teaching the theory and practice of concepts in chemistry, physics...... of the subjects taught and scientific literacy in general....

  19. Connecting Students and Policymakers through Science and Service-Learning

    Science.gov (United States)

    Szymanski, D. W.

    2017-12-01

    Successful collaborations in community science require the participation of non-scientists as advocates for the use of science in addressing complex problems. This is especially true, but particularly difficult, with respect to the wicked problems of sustainability. The complicated, unsolvable, and inherently political nature of challenges like climate change can provoke cynicism and apathy about the use of science. While science education is a critical part of preparing all students to address wicked problems, it is not sufficient. Non-scientists must also learn how to advocate for the role of science in policy solutions. Fortunately, the transdisciplinary nature of sustainability provides a venue for engaging all undergraduates in community science, regardless of major. I describe a model for involving non-science majors in a form of service-learning, where the pursuit of community science becomes a powerful pedagogical tool for civic engagement. Bentley University is one of the few stand-alone business schools in the United States and provides an ideal venue to test this model, given that 95% of Bentley's 4000 undergraduates major in a business discipline. The technology-focused business program is combined with an integrated arts & sciences curriculum and experiential learning opportunities though the nationally recognized Bentley Service-Learning and Civic Engagement Center. In addition to a required general education core that includes the natural sciences, students may opt to complete a second major in liberal studies with thematic concentrations like Earth, Environment, and Global Sustainability. In the course Science in Environmental Policy, students may apply to complete a service-learning project for an additional course credit. The smaller group of students then act as consultants, conducting research for a non-profit organization in the Washington, D.C. area involved in geoscience policy. At the end of the semester, students travel to D.C. and present

  20. An analysis of high-performing science students' preparation for collegiate science courses

    Science.gov (United States)

    Walter, Karen

    This mixed-method study surveyed first year high-performing science students who participated in high-level courses such as International Baccalaureate (IB), Advanced Placement (AP), and honors science courses in high school to determine their perception of preparation for academic success at the collegiate level. The study used 52 students from an honors college campus and surveyed the students and their professors. The students reported that they felt better prepared for academic success at the collegiate level by taking these courses in high school (pstudent GPA with honors science courses (n=55 and Pearson's r=-0.336), while AP courses (n=47 and Pearson's r=0.0016) and IB courses (n=17 and Pearson's r=-0.2716) demonstrated no correlation between perception of preparation and GPA. Students reported various themes that helped or hindered their perception of academic success once at the collegiate level. Those themes that reportedly helped students were preparedness, different types of learning, and teacher qualities. Students reported in a post-hoc experience that more lab time, rigorous coursework, better teachers, and better study techniques helped prepare them for academic success at the collegiate level. Students further reported on qualities of teachers and teaching that helped foster their academic abilities at the collegiate level, including teacher knowledge, caring, teaching style, and expectations. Some reasons for taking high-level science courses in high school include boosting GPA, college credit, challenge, and getting into better colleges.

  1. Astro 101 Students' Perceptions of Science: Results from the "Thinking about Science Survey Instrument"

    Science.gov (United States)

    Wallace, Colin S.; Prather, Edward E.; Mendelsohn, Benjamin M.

    2013-01-01

    What are the underlying worldviews and beliefs about the role of science in society held by students enrolled in a college-level, general education, introductory astronomy course (Astro 101)--and are those beliefs affected by active engagement instruction shown to significantly increase students' conceptual knowledge and reasoning abilities…

  2. Science Teachers' and Senior Secondary Schools Students' Perceptions of Earth and Environmental Science Topics

    Science.gov (United States)

    Dawson, Vaille; Carson, Katherine

    2013-01-01

    This article presents an evaluation of a new upper secondary Earth and Environmental Science (EES) course in Western Australia. Twenty-seven EES teachers were interviewed and 243 students were surveyed about the degree of difficulty, relevance and interest of EES topics in the course. The impact of the course on students' views about EES topics…

  3. Correlation of Students' Brain Types to Their Conceptions of Learning Science and Approaches to Learning Science

    Science.gov (United States)

    Park, Jiyeon; Jeon, Dongryul

    2015-01-01

    The systemizing and empathizing brain type represent two contrasted students' characteristics. The present study investigated differences in the conceptions and approaches to learning science between the systemizing and empathizing brain type students. The instruments are questionnaires on the systematizing and empathizing, questionnaires on the…

  4. Students' Science Attitudes, Beliefs, and Context: Associations with Science and Chemistry Aspirations

    Science.gov (United States)

    Mujtaba, Tamjid; Sheldrake, Richard; Reiss, Michael J.; Simon, Shirley

    2018-01-01

    There is a widespread concern that relatively few students, especially those from disadvantaged backgrounds, continue to study chemistry and other science subjects after compulsory education. Yet it remains unclear how different aspects of students' background and home context, their own attitudes and beliefs, and their experiences of particular…

  5. Student questions in urban middle school science communities of practice

    Science.gov (United States)

    Groome, Meghan

    This dissertation examines student questions within three Communities of Practice (CoP), all urban middle school science environments. The study analyzed student questions from a sociocultural perspective and used ethnographic research techniques to detail how the CoP's shaped questions in the classroom. In the first study, two case study girls attempted to navigate questioning events that required them to negotiation participation. Their access to participation was blocked by participation frameworks that elevated some students as "gatekeepers" while suppressing the participation of others. The next two studies detail the introduction of written questioning opportunities, one into a public middle school classroom and the other into an informal classroom. In both studies, students responded to the interventions differently, most notable the adoption of the opportunity by female students who do not participate orally. Dissertation-wide findings indicate all students were able to ask questions, but varied in level of cognitive complexity, and the diagnostic interventions were able to identify students who were not known to be "target students", students who asked a high number of questions and were considered "interested in science". Some students' roles were as "gatekeepers" to participation of their peers. Two out of three teachers in the studies reported major shifts in their teaching practice due to the focus on questions and the methods used here have been found to be effective in producing educational research as well as supporting high-need classrooms in prior research. In conclusion, these studies indicate that social factors, including participation frameworks, gender dynamics, and the availability of alternative participation methods, play an important role in how students ask science-related questions. It is recommended that researchers continue to examine social factors that reduce student questions and modify their teaching strategies to facilitate

  6. Impact of Texas high school science teacher credentials on student performance in high school science

    Science.gov (United States)

    George, Anna Ray Bayless

    A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.

  7. Air Toxics Under the Big Sky: examining the effectiveness of authentic scientific research on high school students' science skills and interest

    Science.gov (United States)

    Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-04-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1) how the program affects student understanding of scientific inquiry and research and (2) how the open-inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.

  8. Air Toxics Under the Big Sky: Examining the Effectiveness of Authentic Scientific Research on High School Students' Science Skills and Interest.

    Science.gov (United States)

    Ward, Tony J; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path . Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.

  9. Psychological Morbidity in Students of Medical College and Science and Art College Students - A Comparative Study

    Directory of Open Access Journals (Sweden)

    Priyanka Mahawar

    2011-07-01

    Full Text Available Considering the importance of quality of life in medical students we have conducted a cross sectional & descriptive study on screening of mental illness of 60 medical students of prefinal year and comparing it with 60 students of third year of Science and Art College. Students were selected via random sampling. GHQ-12 was used as a screening tool and after obtaining scores students were graded in 3 categories - individuals screened positive for psychological morbidity were of Grades 2 and 3 and individuals screened negative for psychological morbidity were of Grade 1 and they were compared according to college, gender & residence. Students screened positive for psychological morbidity as per GHQ-12 were found higher in medical college (87% as compared to Science and Art College (45% and a statistically significant association was found between psychological morbidity and medical students. Psychological morbidity was not significantly associated with residence and gender.

  10. Ciencias 3. (Science 3). Student Book.

    Science.gov (United States)

    Raposo, Lucilia

    This grade 3 textbook, the third in a series of elementary science textbooks written in Portuguese, consists of readings, activities, and review exercises on biological, physical, geological, and nutrition/health concepts. The book is organized into nine sections. Among the topic areas included in these sections are: (1) solar energy, electricity,…

  11. Undergraduate Biotechnology Students' Views of Science Communication

    Science.gov (United States)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  12. Facilitating Creativity in Science Students' through Teacher ...

    African Journals Online (AJOL)

    The study ascertained how teachers facilitate the creativity skills of the Pupils as an outcome of professional development. 450 primary school pupils and 50 Basic science teachers in the primary schools were sampled. The study adopted the Solomon four group design. The Torrance Test for Creative thinking (TTCT) and ...

  13. Social Media and Student Engagement in a Microgravity Planetary Science Experiment

    Science.gov (United States)

    Lane, S. S.; Lai, K.; Hoover, B.; Whitaker, A.; Tiller, C.; Benjamin, S.; Dove, A.; Colwell, J. E.

    2014-12-01

    The Collisional Accretion Experiment (CATE) is a planetary science experiment funded by NASA's Undergraduate Instrumentation Program (USIP). CATE is a microgravity experiment to study low-velocity collisions between cm-sized particles and 0.1-1.0 mm-sized particles in vacuum to better understand the conditions for accretion in the protoplanetary disk as well as collisions in planetary ring systems. CATE flew on three parabolic airplane flights in July, 2014, using NASA's "Weightless Wonder VI" aircraft. A significant part of the project was documenting the experience of designing, building, testing, and flying spaceflight hardware from the perspective of the undergraduates working on the experiment. The outreach effort was aimed at providing high schools students interested in STEM careers with a first-person view of hands-on student research at the university level. We also targeted undergraduates at the University of Central Florida to make them aware of space research on campus. The CATE team pursued multiple outlets, from social media to presentations at local schools, to connect with the public and with younger students. We created a website which hosted a blog, links to media publications that ran our story, videos, and galleries of images from work in the lab throughout the year. In addition the project had Facebook, Twitter, and Instagram accounts. These social media outlets had much more traffic than the website except during the flight week when photos posted on the blog generated significant traffic. The most effective means of communicating the project to the target audience, however, was through face-to-face presentations in classrooms. We saw a large increase in followers on Twitter and Instagram as the flight campaign got closer and while we were there. The main source of followers came after we presented to local high school students. These presentations were made by the undergraduate student team and the faculty mentors (Colwell and Dove).

  14. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    Science.gov (United States)

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (pbasic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  15. Exploring Relationships: Teacher Characteristics and Student Learning in Physical Science

    Science.gov (United States)

    Close, Eleanor; Vokos, S.; Seeley, L.

    2006-12-01

    The Department of Physics and the School of Education at Seattle Pacific University, together with FACET Innovations, LLC, are beginning the second year of a five-year NSF TPC grant, Improving the Effectiveness of Teacher Diagnostic Skills and Tools. We are working in partnership with school districts in Washington State to identify and characterize widespread productive and unproductive modes of reasoning employed by both pre-college students and teachers on foundational topics in physical science. In the first year of the grant, base-line preand post-test data were collected from a large number (N 2300) of middle and high school students. We will discuss relationships between preand post-test results, student learning gains, and student and teacher characteristics. * Supported in part by NSF grant #ESI-0455796, The Boeing Corporation, and the SPU Science Initiative.

  16. Engaging students in learning science through promoting creative reasoning

    Science.gov (United States)

    Waldrip, Bruce; Prain, Vaughan

    2017-10-01

    Student engagement in learning science is both a desirable goal and a long-standing teacher challenge. Moving beyond engagement understood as transient topic interest, we argue that cognitive engagement entails sustained interaction in the processes of how knowledge claims are generated, judged, and shared in this subject. In this paper, we particularly focus on the initial claim-building aspect of this reasoning as a crucial phase in student engagement. In reviewing the literature on student reasoning and argumentation, we note that the well-established frameworks for claim-judging are not matched by accounts of creative reasoning in claim-building. We develop an exploratory framework to characterise and enact this reasoning to enhance engagement. We then apply this framework to interpret two lessons by two science teachers where they aimed to develop students' reasoning capabilities to support learning.

  17. Examining Teacher Framing, Student Reasoning, and Student Agency in School-Based Citizen Science

    Science.gov (United States)

    Harris, Emily Mae

    This dissertation presents three interrelated studies examining opportunities for student learning through contributory citizen science (CS), where students collect and contribute data to help generate new scientific knowledge. I draw on sociocultural perspectives of learning to analyze three cases where teachers integrated CS into school science, one third grade, one fourth grade, and one high school Marine Biology classroom. Chapter 2 is a conceptual investigation of the opportunities for students to engage in scientific reasoning practices during CS data collection activities. Drawing on science education literature and vignettes from case studies, I argue that the teacher plays an important role in mediating opportunities for students to engage in investigative, explanatory, and argumentative practices of science through CS. Chapter 3 focuses on teacher framing of CS, how teachers perceive what is going on (Goffman, 1974) and how they communicate that to students as they launch CS tasks. Through analysis of videos and interviews of two upper elementary school teachers, I found that teachers frame CS for different purposes. These framings were influenced by teachers' goals, orientations towards science and CS, planning for instruction, and prior knowledge and experience. Chapter 4 examines how students demonstrate agency with environmental science as they explore their personal interests across their third grade classroom, school garden, and science lab contexts, through the lens of social practice theory (Holland, Lachicotte, Skinner, & Cain, 1998). Through analysis of classroom observations, student interviews, teacher interviews and important moments for three focal students, I found that student agency was enabled and constrained by the different cultures of the classroom, garden, and science lab. Despite affordances of the garden and science lab, the teachers' epistemic authority in the classroom permeated all three contexts, constraining student agency. In

  18. Science student teacher's perceptions of good teaching ...

    African Journals Online (AJOL)

    kofi.mereku

    process that makes the establishment of knowledge possible (Baysal, Arkan & Yildrim, 2010;. Nieman, 2004 .... Relate theory to the students everyday life experiences. 3.538 1.147. 5 .... must accept a dual responsibility for promoting a creative constructivist learning environment ... Educational psychology: a cognitive view.

  19. Veterinary Science Students, Center Changing a Reservation

    Science.gov (United States)

    Blackwater, Jasmine

    2011-01-01

    Kayenta is a rural community located in northeastern Arizona on a Navajo reservation. On the reservation, many families rely on their livestock for income, and as a result, many reservation high school students show a great interest in agricultural education. Having livestock on the reservation is not just a source of income, but also part of a…

  20. Student projects in medicine: a lesson in science and ethics.

    Science.gov (United States)

    Edwards, Sarah J L

    2009-11-01

    Regulation of biomedical research is the subject of considerable debate in the bioethics and health policy worlds. The ethics and governance of medical student projects is becoming an increasingly important topic in its own right, especially in the U.K., where there are periodic calls to change it. My main claim is that there seems to be no good reason for treating student projects differently from projects led by qualified and more experienced scientists and hence no good grounds for changing the current system of ethics review. I first suggest that the educational objectives cannot be met without laying down standards of good science, whatever they may be. Weak science is unnecessary for educational purposes, and it is, in any case, unlikely to produce good researchers in the future. Furthermore, it is curious to want to change the system of ethics review specifically for students when it is the science that is at stake, and when the science now falls largely outside the ethics remit. I further show that ethics review is nevertheless important since students carry a new potential conflict of interests that warrants independent oversight which supervisory support does not offer. This potential conflict may become more morally troublesome the greater the risks to the subjects of the research, and students may impose greater risks on their subjects (relative to professional researchers) by virtue of being inexperienced, whatever the nature of the project. Pragmatic concerns may finally be allayed by organizing the current system more efficiently at critical times of the university calendar.

  1. Computer Science in High School Graduation Requirements. ECS Education Trends (Updated)

    Science.gov (United States)

    Zinth, Jennifer

    2016-01-01

    Allowing high school students to fulfill a math or science high school graduation requirement via a computer science credit may encourage more student to pursue computer science coursework. This Education Trends report is an update to the original report released in April 2015 and explores state policies that allow or require districts to apply…

  2. Student-generated illustrations and written narratives of biological science concepts: The effect on community college life science students' achievement in and attitudes toward science

    Science.gov (United States)

    Harvey, Robert Christopher

    The purpose of this study was to determine the effects of two conceptually based instructional strategies on science achievement and attitudes of community college biological science students. The sample consisted of 277 students enrolled in General Biology 1, Microbiology, and Human Anatomy and Physiology 1. Control students were comprised of intact classes from the 2005 Spring semester; treatment students from the 2005 Fall semester were randomly assigned to one of two groups within each course: written narrative (WN) and illustration (IL). WN students prepared in-class written narratives related to cell theory and metabolism, which were taught in all three courses. IL students prepared in-class illustrations of the same concepts. Control students received traditional lecture/lab during the entire class period and neither wrote in-class descriptions nor prepared in-class illustrations of the targeted concepts. All groups were equivalent on age, gender, ethnicity, GPA, and number of college credits earned and were blinded to the study. All interventions occurred in class and no group received more attention or time to complete assignments. A multivariate analysis of covariance (MANCOVA) via multiple regression was the primary statistical strategy used to test the study's hypotheses. The model was valid and statistically significant. Independent follow-up univariate analyses relative to each dependent measure found that no research factor had a significant effect on attitude, but that course-teacher, group membership, and student academic characteristics had a significant effect (p < .05) on achievement: (1) Biology students scored significantly lower in achievement than A&P students; (2) Microbiology students scored significantly higher in achievement than Biology students; (3) Written Narrative students scored significantly higher in achievement than Control students; and (4) GPA had a significant effect on achievement. In addition, given p < .08: (1

  3. To Grab and To Hold: Cultivating communal goals to overcome cultural and structural barriers in first generation college students' science interest.

    Science.gov (United States)

    Allen, Jill M; Muragishi, Gregg A; Smith, Jessi L; Thoman, Dustin B; Brown, Elizabeth R

    2015-12-01

    Homogeneity within science limits creativity and discovery, and can feed into a perpetuating cycle of underrepresentation. From enhancing social justice to alleviating health and economic disadvantages, broadening participation in science is imperative. We focus here on first-generation students (FGS) and identify factors which grab and hold science interest among this underrepresented group. Might the culture and norms within science unintentionally limit FGS' participation? We argue that two distinct aspects of communal goals contribute to FGS' underrepresentation at different stages of the STEM pipeline: cultural perceptions of science as uncommunal (little emphasis on prosocial behavior and collaboration) and the uncommunal structure of STEM graduate education and training. Across 2 studies we investigated factors that catch (Study 1) and hold (Study 2) FGS' science interest. In Study 1, we find only when FGS believe that working in science will allow them to fulfill prosocial communal purpose goals are they more intrinsically interested in science. Yet, later in the pipeline science education devalues prosocial communal goals creating a structural mobility barrier among FGS. Study 2 found that FGS generally want to stay close to home instead of relocating to pursue a graduate education. For FGS (versus continuing-generation students), higher prosocial communal goal orientation significantly predicted lower residential mobility. We discuss implications for interventions to counteract the uncommunal science education and training culture to help improve access to FGS and other similarly situated underrepresented populations.

  4. The National Ocean Sciences Bowl: An Effective Model for Engaging High School Students in Ocean Science

    Science.gov (United States)

    Holloway, A. E.

    2016-02-01

    The National Ocean Sciences Bowl (NOSB) is an informal high school education program that engages students in ocean and environmental science and exposes them to the breadth of ocean-related careers. The NOSB strives to train the next generation of interdisciplinary capable scientists and build a STEM-literate society that harnesses the power of ocean and climate science to address environmental, economic, and societal issues. Through the NOSB, students not only learn scientific principles, but also apply them to compelling real-world problems. The NOSB provides a richer STEM education and exposes students to ocean science topics they may not otherwise study through classroom curriculum. A longitudinal study that began in 2007 has shown that NOSB participants have an enhanced interest in ocean-related hobbies and environmental stewardship and an increasing number of these students have remained in the STEM pipeline and workforce.While the NOSB is primarily an academic competition, it has evolved since its creation in 1998 to include a variety of practical and professional development components. One of the program enhancements, the Scientific Expert Briefing (SEB), gives students the opportunity to apply what they have studied and think critically about current and ongoing ocean science challenges. The SEB helps students connect their knowledge of ocean science with current and proposed policy initiatives. Students gain significant research, writing, and presentation skills, while enhancing their ability for collaboration and consensus building, all vital workforce skills. Ultimately, the SEB teaches students how to communicate complex scientific research into digestible information for decision-makers and the general public.This poster will examine the impact of the NOSB and its role in strengthening the workforce pipeline through a combination of independent learning, competition, and opportunities for communication skills development.

  5. Lifestyle of health sciences students at Majmaah University, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Fahad Alfhaid

    2017-02-01

    Full Text Available Background We all want to live a long, happy and healthy life with an abundance of energy and vitality to perform well both mentally and physically. A healthy lifestyle is a valuable resource for reducing the incidence and impact of health problems, enabling you better to cope with life stressors, as well as improving your quality of life. Aims The study was aimed to assess the lifestyle (eating habits and physical activity of health sciences students studying at Majmaah University. Methods This cross-sectional institutional based study was conducted from 25th November 2014-3rd May 2015. A total of 450 students (370 males and 80 females aged between 18–28 years were randomly chosen. Self-reported questionnaire was used for data collection from the College of Medicine, College of Applied Medical Sciences and College of Dentistry. Results Majority of the students, 62.4 per cent, were physically inactive. Students from the College of Medicine, 40.4 per cent, were the most physically active. The most common reason that restrained the students from being active was time limitation. In addition to that, many of the participants, 29.6 per cent, have never had breakfast at home. Also, most of the participants, 42.7 per cent, were not satisfied with their eating habits. Almost one quarter of students were consuming soft drinks more than four times a day. Conclusion There is a high prevalence of sedentary lifestyle, physical inactivity and unhealthy dietary habits among health sciences students studying at Majmaah University. There is an urgent need for arranging health education programs for promoting healthy and active living among health sciences students of Majmaah University in Saudi Arabia.

  6. Student teachers' views: what is an interesting life sciences curriculum?

    Directory of Open Access Journals (Sweden)

    Rian de Villiers

    2011-01-01

    Full Text Available In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology curriculum which focuses on outcomes-based education (OBE. This paper presents an exploration of what students (as learners considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university responded to a questionnaire in regard to their experiences with the newly implemented FET Life Sciences curricula. The responses to the questions were analysed qualitatively and/or quantitatively. Friedman tests were used to compare the mean rankings of the four different content knowledge areas within each curriculum, and to make cross-curricular comparisons of the mean rankings of the same content knowledge area for all three curricula. All four content areas of Grade 12 were considered as being more interesting than the other two grades. In terms of difficulty, the students found the Grade 10 curriculum themes the most difficult, followed by the Grade 12 and the Grade 11 curricula. Most of the students found the themes under the content area Diversity, change and continuity (Grades 10-12 more difficult to learn than the other three content areas. It is recommended that more emphasis needs to be placed on what learners are interested in, and on having this incorporated into Life Sciences curricula.

  7. How to change students' images of science and technology

    Science.gov (United States)

    Scherz, Zahava; Oren, Miri

    2006-11-01

    This paper examines the images middle school students have of science and technology, the workplaces, and the relevant professions. It also describes the effect on these images caused by an instructional initiative, Investigation into Science and Technology (IST), designed to introduce students to science and technology in the real life. Students' images were delineated via questionnaires, drawing tasks, and interviews before and after their participation in the IST program. The sample consisted of 100 students from six classes (eighth or ninth grade) of three schools. We found that before the IST intervention students' images about the scientific or technological environments were superficial, unreal, and even incorrect. Their impressions of the characteristics of scientists and technologists were superficial, misleading, and sometimes reflected ignorance. The findings demonstrate that the IST program stimulated a positive effect on students' images. Their preconceptions were altered in several dimensions: in the cognitive dimension, from superficial and vague to precise and correct images; in the perceptive dimension, from stereotypic to rational and open-minded images; and in the affective dimension, from negative to positive attitudes.

  8. Teacher Tweets Improve Achievement for Eighth Grade Science Students

    Directory of Open Access Journals (Sweden)

    Carol Van Vooren

    2013-02-01

    Full Text Available In the Digital Age teachers have fallen far behind the technical skills of their "digital native" students. The implementation of technology as a tool for classroom communication is foreign for most teachers, but highly preferred by students. While teenagers are using Facebook, Twitter, and other social networks to communicate, teachers continue to respond through face-to-face conversations, telephone calls, and email messaging. Twitter, a platform for short message service text, is an online social network site that allows users to send and receive messages using 140 characters or less called Tweets. To analyze the relationship of the teacher's use of Twitter with student academic achievement, a correlation study conducted by Bess collected data from two matched samples of eighth grade science students: one utilizing Twitter and one not utilizing Twitter to reinforce classroom instruction. Two tests matching the science standards were given to both samples of students. The results of the tests were used as primary data. The findings suggested a positive correlation between the use of Twitter and student performance on the standardized tests. Implications for this study indicate that young teenagers may prefer Twitter as a mode of communication with their teacher, resulting in higher academic achievement in a middle school science class.

  9. Factors that Influence Community College Students' Interest in Science Coursework

    Science.gov (United States)

    Sasway, Hope

    There is a need for science education research that explores community college student, instructor, and course characteristics that influence student interest and motivation to study science. Increasing student enrollment and persistence in STEM is a national concern. Nearly half of all college graduates have passed through a community college at some point in their higher education. This study at a large, ethnically diverse, suburban community college showed that student interest tends to change over the course of a semester, and these changes are related to student, instructor, and course variables. The theoretical framework for this study was based upon Adult Learning Theory and research in motivation to learn science. Adult Learning Theory relies heavily on self-directed learning and concepts of andragogy, or the art and science of teaching adults. This explanatory sequential mixed-methods case study of student course interest utilized quantitative data from 639 pre-and post-surveys and a background and personal experience questionnaire. The four factors of the survey instrument (attention, relevance, confidence, and satisfaction) were related to motivation and interest by interviewing 12 students selected through maximum variation sampling in order to reach saturation. Qualitative data were collected and categorized by these factors with extrinsic and intrinsic themes emerging from personal and educational experiences. Analysis of covariance showed student characteristics that were significant included age and whether the student already held a post-secondary degree. Significant instructor characteristics included whether the instructor taught full- or part-time, taught high school, held a doctoral degree, and had pedagogical training. Significant course characteristics included whether the biology course was a major, elective, or service course; whether the course had a library assignment; and high attrition rate. The binary logistic regression model showed

  10. An Ongoing Investigation of Science Literacy: Results of a 22-Year Study Probing Students' Knowledge and Attitude Towards Science

    Science.gov (United States)

    Impey, C.; Buxner, S.; Antonellis, J.; CATS

    2013-04-01

    This talk presents findings related to our ongoing work investigating students' knowledge and attitudes towards science and technology. We present an overview of research studies and findings including a comparison of the science literacy measures of University of Arizona students compared to national studies, conceptions related to astrology, views of radiation, and students' pseudoscience and religious beliefs. We discuss implications for instructors and researchers interested in improving students' science literacy scores and diagnosing alternative beliefs.

  11. Student and Faculty Outcomes of Undergraduate Science Research Projects by Geographically Dispersed Students

    Science.gov (United States)

    Shaw, Lawton; Kennepohl, Dietmar

    2013-01-01

    Senior undergraduate research projects are important components of most undergraduate science degrees. The delivery of such projects in a distance education format is challenging. Athabasca University (AU) science project courses allow distance education students to complete research project courses by working with research supervisors in their…

  12. Health status, physical activity, and orthorexia nervosa: A comparison between exercise science students and business students.

    Science.gov (United States)

    Malmborg, Julia; Bremander, Ann; Olsson, M Charlotte; Bergman, Stefan

    2017-02-01

    Orthorexia nervosa is described as an exaggerated fixation on healthy food. It is unclear whether students in health-oriented academic programs, highly focused on physical exercise, are more prone to develop orthorexia nervosa than students in other educational areas. The aim was to compare health status, physical activity, and frequency of orthorexia nervosa between university students enrolled in an exercise science program (n = 118) or a business program (n = 89). The students completed the Short Form-36 Health Survey (SF-36), the International Physical Activity Questionnaire (IPAQ), and ORTO-15, which defines orthorexia nervosa as a sensitive and obsessive behavior towards healthy nutrition. The SF-36 showed that exercise science students scored worse than business students regarding bodily pain (72.8 vs. 82.5; p = 0.001), but better regarding general health (83.1 vs. 77.1; p = 0.006). Of 188 students, 144 (76.6%) had an ORTO-15 score indicating orthorexia nervosa, with a higher proportion in exercise science students than in business students (84.5% vs. 65.4%; p = 0.002). Orthorexia nervosa in combination with a high level of physical activity was most often seen in men in exercise science studies and less often in women in business studies (45.1% vs. 8.3%; p orthorexia nervosa in exercise science students may cause problems in the future, since they are expected to coach others in healthy living. Our findings may be valuable in the development of health-oriented academic programs and within student healthcare services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Beyond the first "click:" Women graduate students in computer science

    Science.gov (United States)

    Sader, Jennifer L.

    This dissertation explored the ways that constructions of gender shaped the choices and expectations of women doctoral students in computer science. Women who do graduate work in computer science still operate in an environment where they are in the minority. How much of women's underrepresentation in computer science fields results from a problem of imagining women as computer scientists? As long as women in these fields are seen as exceptions, they are exceptions that prove the "rule" that computing is a man's domain. The following questions were the focus of this inquiry: What are the career aspirations of women doctoral students in computer science? How do they feel about their chances to succeed in their chosen career and field? How do women doctoral students in computer science construct womanhood? What are their constructions of what it means to be a computer scientist? In what ways, if any, do they believe their gender has affected their experience in their graduate programs? The goal was to examine how constructions of computer science and of gender---including participants' own understanding of what it meant to be a woman, as well as the messages they received from their environment---contributed to their success as graduate students in a field where women are still greatly outnumbered by men. Ten women from four different institutions of higher education were recruited to participate in this study. These women varied in demographic characteristics like age, race, and ethnicity. Still, there were many common threads in their experiences. For example, their construction of womanhood did not limit their career prospects to traditionally female jobs. They had grown up with the expectation that they would be able to succeed in whatever field they chose. Most also had very positive constructions of programming as something that was "fun," rewarding, and intellectually stimulating. Their biggest obstacles were feelings of isolation and a resulting loss of

  14. Using Space Science to Excite Hispanic Students in STEM

    Science.gov (United States)

    Reiff, P. H.; Galindo, C.; Garcia, J.; Morris, P. A.; Allen, J. S.

    2013-05-01

    Over the past ten years, NASA and its cosponsors have held an annual "NASA Space Science Day" at the University of Texas at Brownsville. The event is held over two days, with the Friday evening program featuring a space scientist or astronaut, this year Joe Acaba, giving a public lecture (plus a free planetarium show). The Saturday event starts with a keynote speech from the same speaker. Then the students circulate among six or seven hands-on workshops, plus a scheduled trip to the "Demo room" where NASA missions show their materials, and a planetarium show in the Discovery Dome. The students, 4th through 8th graders, are drawn from schools all across south Texas, and have included students coming as far as Zapata, with a four-hour bus ride each way. Over the ten years of the program, more than 5000 students have been reached. Most of the hands-on activities are led by undergraduate student mentors. The university students (42 in 2013) received science and engineering content and mentor training on the activities at Johnson Space Center before the January event. In addition, an additional 40 local high school students helped with activities and with escorting each group of students from one activity station to the next. The program has been so successful that students have "graduated" from participant, to volunteer, and now to University student mentor. Most of the mentors go on to complete a degree in a STEM discipline, and many have gone on to graduate school. Thus the mentors not only help with the program, they are beneficiaries as well. The program is being expanded to reach other underserved communities around the US, with its first "expansion" event held in Utah in 2011.; Puerto Rican Astronaut Joe Acaba and the Discovery Dome were two of the highlights for the students.

  15. Reading, Writing & Rings: Science Literacy for K-4 Students

    Science.gov (United States)

    McConnell, S.; Spilker, L.; Zimmerman-Brachman, R.

    2007-12-01

    Scientific discovery is the impetus for the K-4 Education program, "Reading, Writing & Rings." This program is unique because its focus is to engage elementary students in reading and writing to strengthen these basic academic skills through scientific content. As science has been increasingly overtaken by the language arts in elementary classrooms, the Cassini Education Program has taken advantage of a new cross-disciplinary approach to use language arts as a vehicle for increasing scientific content in the classroom. By utilizing the planet Saturn and the Cassini-Huygens mission as a model in both primary reading and writing students in these grade levels, young students can explore science material while at the same time learning these basic academic skills. Content includes reading, thinking, and hands-on activities. Developed in partnership with the Cassini-Huygens Education and Public Outreach Program, the Bay Area Writing Project/California Writing Project, Foundations in Reading Through Science & Technology (FIRST), and the Caltech Pre-College Science Initiative (CAPSI), and classroom educators, "Reading, Writing & Rings" blends the excitement of space exploration with reading and writing. All materials are teacher developed, aligned with national science and language education standards, and are available from the Cassini-Huygens website: http://saturn.jpl.nasa.gov/education/edu-k4.cfm Materials are divided into two grade level units. One unit is designed for students in grades 1 and 2 while the other unit focuses on students in grades 3 and 4. Each includes a series of lessons that take students on a path of exploration of Saturn using reading and writing prompts.

  16. The effect of technology on student science achievement

    Science.gov (United States)

    Hilton, June Kraft

    2003-10-01

    Prior research indicates that technology has had little effect on raising student achievement. Little empirical research exists, however, studying the effects of technology as a tool to improve student achievement through development of higher order thinking skills. Also, prior studies have not focused on the manner in which technology is being used in the classroom and at home to enhance teaching and learning. Empirical data from a secondary school representative of those in California were analyzed to determine the effects of technology on student science achievement. The quantitative analysis methods for the school data study included a multiple linear path analysis, using final course grade as the ultimate exogenous variable. In addition, empirical data from a nationwide survey on how Americans use the Internet were disaggregated by age and analyzed to determine the relationships between computer and Internet experience and (a) Internet use at home for school assignments and (b) more general computer use at home for school assignments for school age children. Analysis of data collected from the a "A Nation Online" Survey conducted by the United States Census Bureau assessed these relationships via correlations and cross-tabulations. Finally, results from these data analyses were assessed in conjunction with systemic reform efforts from 12 states designed to address improvements in science and mathematics education in light of the Third International Mathematics and Science Survey (TIMSS). Examination of the technology efforts in those states provided a more nuanced understanding of the impact technology has on student achievement. Key findings included evidence that technology training for teachers increased their use of the computer for instruction but students' final science course grade did not improve; school age children across the country did not use the computer at home for such higher-order cognitive activities as graphics and design or spreadsheets

  17. Young Engineers and Sciences (YES) - Mentoring High School Students

    Science.gov (United States)

    Boice, Daniel C.; Asbell, E.; Reiff, P. H.

    2008-09-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  18. Students' Conceptions of the Nature of Science: Perspectives from Canadian and Korean Middle School Students

    Science.gov (United States)

    Park, Hyeran; Nielsen, Wendy; Woodruff, Earl

    2014-01-01

    This study examined and compared students' understanding of nature of science (NOS) with 521 Grade 8 Canadian and Korean students using a mixed methods approach. The concepts of NOS were measured using a survey that had both quantitative and qualitative elements. Descriptive statistics and one-way multivariate analysis of variances examined the…

  19. Marine Science Summer Enrichment Camp's Impact Ocean Literacy for Middle School Students

    Science.gov (United States)

    Young, Victoria Jewel

    2017-01-01

    Although careers in science, technology, engineering, and mathematics have expanded in the United States, science literacy skills for K-12 students have declined from 2001 to 2011. Limited research has been conducted on the impact of science enrichment programs on the science literacy skills of K-12 students, particularly in marine science. The…

  20. Student perceptions of the clinical laboratory science profession.

    Science.gov (United States)

    McClure, Karen

    2009-01-01

    The purpose of this paper is to describe the attitudes and perceptions among college biology and CLS/CLT students. These students were on selected college campuses at Texas universities in Houston, Dallas and the Austin/San Antonio areas for the Spring 2007 semester. Specifically, students were questioned on factors that influence their choice of field of study, career expectations, legislative measures which might be used to attract individuals to the career, and factors that will be required to keep them in the field of practice. This study was part of a larger qualitative study which included exploratory discovery and inductive logic regarding the attitudes of four focus groups in Texas. Focus groups took place on college campuses or in hotel conference rooms. (1) junior/senior-level college biology students and (2) junior/senior-level students currently enrolled in CLS/CLT programs. Focus group discussions using a standard set of questions; group sessions lasted about 45 minutes. This study was a qualitative study which included exploratory discovery and inductive logic regarding the attitudes of two groups in Texas. College biology and CLS/CLT students find the clinical laboratory science profession to be interesting and exciting as a career prospect, however, many do not see themselves remaining in the profession and perceive it does not have good prospects for career advancement. The majority of students must work to support themselves through their college education and would welcome additional grants, scholarships and loan forgiveness programs as incentives to study the clinical laboratory sciences. Students believe that additional recruitment on high school and college campuses is needed to increase the visibility of the field as career choice. The majority of students who are entering the clinical laboratory science profession do not see the profession as their final career choice, but rather a stepping stone to another career field in healthcare or a

  1. The effect of classroom instruction, attitudes towards science and motivation on students' views of uncertainty in science

    Science.gov (United States)

    Schroeder, Meadow

    This study examined developmental and gender differences in Grade 5 and 9 students' views of uncertainty in science and the effect of classroom instruction on attitudes towards science, and motivation. Study 1 examined views of uncertainty in science when students were taught science using constructivist pedagogy. A total of 33 Grade 5 (n = 17, 12 boys, 5 girls) and Grade 9 (n = 16, 8 boys, 8 girls) students were interviewed about the ideas they had about uncertainty in their own experiments (i.e., practical science) and in professional science activities (i.e., formal science). Analysis found an interaction between grade and gender in the number of categories of uncertainty identified for both practical and formal science. Additionally, in formal science, there was a developmental shift from dualism (i.e., science is a collection of basic facts that are the result of straightforward procedures) to multiplism (i.e., there is more than one answer or perspective on scientific knowledge) from Grade 5 to Grade 9. Finally, there was a positive correlation between the understanding uncertainty in practical and formal science. Study 2 compared the attitudes and motivation towards science and motivation of students in constructivist and traditional classrooms. Scores on the measures were also compared to students' views of uncertainty for constructivist-taught students. A total of 28 students in Grade 5 (n = 13, 11 boys, 2 girls) and Grade 9 (n = 15, 6 boys, 9 girls), from traditional science classrooms and the 33 constructivist students from Study 1 participated. Regardless of classroom instruction, fifth graders reported more positive attitudes towards science than ninth graders. Students from the constructivist classrooms reported more intrinsic motivation than students from the traditional classrooms. Constructivist students' views of uncertainty in formal and practical science did not correlate with their attitudes towards science and motivation.

  2. Changes in Student Science Interest from Elementary to Middle School

    Science.gov (United States)

    Coutts, Trudi E.

    This study is a transcendental phenomenological study that described the experience of students’ interest in science from elementary school through middle school grades and the identification of the factors that increase or decrease interest in science. Numerous researchers have found that interest in science changes among children and the change in interest seems to modulate student motivation, which ultimately leads to fewer children choosing not only science classes in the future but science careers. Research studies have identified numerous factors that affect student interest in science; however, this study incorporated the lived experience of the child and looked at this interest in science through the lens of the child. The study design was a collective cross-case study that was multi-site based. This study utilized a sample of children in fifth grade classes of three different elementary schools, two distinct seventh grade classes of different middle schools, and ninth grade children from one high school in the State of Illinois. The phenomenon was investigated through student interviews. The use of one-on-one semi-structured interviews limited to 45 minutes in length provided the researcher with data of each child’s description of science interest. All interviews were audio- recorded and transcribed verbatim. The data was collected and analyzed in order to identify themes, and finally checked for validity. The most significant findings of this study, and possible factors contributing to science interest in children as they progress from elementary to high school, were those findings relating to hands-on activities, the degree to which a student was challenged, the offering of new versus previously studied topics in the curriculum, the perceived relevance of the curricular materials to personal life, and the empowerment children felt when they were allowed to make choices related to their learning experiences. This study’s possible implications for

  3. Preparing clinical laboratory science students with teaching skills.

    Science.gov (United States)

    Isabel, Jeanne M

    2010-01-01

    Training clinical laboratory science (CLS) students in techniques of preparation and delivery of an instructional unit is an important component of all CLS education programs and required by the national accrediting agency. Participants of this study included students admitted to the CLS program at Northern Illinois University and enrolled in the teaching course offered once a year between the years of 1997 and 2009. Courses on the topic of "teaching" may be regarded by CLS students as unnecessary. However, entry level practitioners are being recruited to serve as clinical instructors soon after entering the workforce. Evaluation of the data collected indicates that students are better prepared to complete tasks related to instruction of a topic after having an opportunity to study and practice skills of teaching. Mentoring CLS students toward the career role of clinical instructor or professor is important to maintaining the workforce.

  4. A Bioethics Course for Biology and Science Education Students.

    Science.gov (United States)

    Bryant, John; la Velle, Linda Baggott

    2003-01-01

    Points out the importance of awareness among biologists and biology teachers of the ethical and social implications of their work. Describes the bioethics module established at the University of Exeter mainly targeting students majoring in biology and science education. (Contains 18 references.) (Author/YDS)

  5. Learning Styles of Mexican Food Science and Engineering Students

    Science.gov (United States)

    Palou, Enrique

    2006-01-01

    People have different learning styles that are reflected in different academic strengths, weaknesses, skills, and interests. Given the almost unlimited variety of job descriptions within food science and engineering, it is safe to say that students with every possible learning style have the potential to succeed as food scientists and engineers.…

  6. Student Intern Lands Top Prize in National Science Competition | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer Student intern Sam Pritt’s interest in improving geolocation led him to develop a project that won a top regional prize at the Siemens Competition in Math, Science, and Technology in November. Pritt was awarded a $3,000 college scholarship, and he competed in the national competition in early December.

  7. Beyond Polls: Using Science and Student Data to Stimulate Learning

    Science.gov (United States)

    Loepp, Eric D.

    2018-01-01

    In an effort to promote learning in classrooms, political science instructors are increasingly turning to interactive teaching strategies--experiments, simulations, etc.--that supplement traditional lecture formats. In this article, I advocate the use of student-generated data as a powerful teaching tool that can be used in a variety of ways to…

  8. Engaging Students in Learning Science through Promoting Creative Reasoning

    Science.gov (United States)

    Waldrip, Bruce; Prain, Vaughan

    2017-01-01

    Student engagement in learning science is both a desirable goal and a long-standing teacher challenge. Moving beyond engagement understood as transient topic interest, we argue that cognitive engagement entails sustained interaction in the processes of how knowledge claims are generated, judged, and shared in this subject. In this paper, we…

  9. Student Teachers' Views: What Is an Interesting Life Sciences Curriculum?

    Science.gov (United States)

    de Villiers, Rian

    2011-01-01

    In South Africa, the Grade 12 "classes of 2008 and 2009" were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences…

  10. Vocabulary Learning Strategies of Japanese Life Science Students

    Science.gov (United States)

    Little, Andrea; Kobayashi, Kaoru

    2015-01-01

    This study investigates vocabulary learning strategy (VLS) preferences of lower and higher proficiency Japanese university science students studying English as a foreign language. The study was conducted over a 9-week period as the participants received supplemental explicit VLS instruction on six strategies. The 38 participants (14 males and 24…

  11. Science 2.0: When Students Become Digital Citizens

    Science.gov (United States)

    Smith, Ben; Mader, Jared

    2016-01-01

    Modern science learning requires the use of digital tools and a shift in teaching philosophy and pedagogy. The backbone to this shift rests in a yet unaddressed skill: digital citizenship. The authors discuss the Digital Citizen standard where "students (will) recognize the rights, responsibilities, and opportunities of living, learning, and…

  12. Curriculum challenges faced by rural-origin health science students ...

    African Journals Online (AJOL)

    This article is one of a series of investigations into various aspects of university life and career choices of health science students. Data were collected at three South African universities by the Collaboration for Health Equity through Education and Research (CHEER) collaborators. Ethical permission was sought from each ...

  13. Effect of project work on secondary school students science process ...

    African Journals Online (AJOL)

    The study investigated the effect of students' project work on secondary school science process skills acquisition in Biology. The study was carried out in Owerri North Local Government Area of Imo State. Three research questions guided the study and three null hypotheses were postulated and tested at 0.05 level of ...

  14. Knowledge and Regulation of Cognition in College Science Students

    Science.gov (United States)

    Roshanaei, Mehrnaz

    2014-01-01

    The research focused on three issues in college science students: whether there was empirical support for the two factor (knowledge of cognition and regulation of cognition) view of metacognition, whether the two factors were related to each other, and whether either of the factors was related to empirical measures of cognitive and metacognitive…

  15. University Student Conceptions of Learning Science through Writing

    Science.gov (United States)

    Ellis, Robert A.; Taylor, Charlotte E.; Drury, Helen

    2006-01-01

    First-year undergraduate science students experienced a writing program as an important part of their assessment in a biology subject. The writing program was designed to help them develop both their scientific understanding as well as their written scientific expression. Open-ended questionnaires investigating the quality of the experience of…

  16. Personal and Contextual Factors Associated with Students' Cheating in Science

    Science.gov (United States)

    Tas, Yasemin; Tekkaya, Ceren

    2010-01-01

    The authors conducted a correlational study to investigate the relations among seventh-grade Turkish students' cheating behavior, academic self-efficacy beliefs, usage of self-handicapping strategies, personal goal orientations, and classroom goal structures specific to the science domain. The Patterns of Adaptive Learning Scales was administered…

  17. Predictors of Obesity Bias among Exercise Science Students

    Science.gov (United States)

    Langdon, Jody; Rukavina, Paul; Greenleaf, Christy

    2016-01-01

    The purpose of the present study was to investigate particular psychosocial predictors of obesity bias in prehealth professionals, which include the internalization of athletic and general body ideals, perceived media pressure and information, and achievement goal orientations. Exercise science undergraduate students (n = 242) filled out a survey…

  18. Student teachers' views: what is an interesting Life Sciences ...

    African Journals Online (AJOL)

    In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10–12 ...

  19. Computer Graphics for Student Engagement in Science Learning.

    Science.gov (United States)

    Cifuentes, Lauren; Hsieh, Yi-Chuan Jane

    2001-01-01

    Discusses student use of computer graphics software and presents documentation from a visualization workshop designed to help learners use computer graphics to construct meaning while they studied science concepts. Describes problems and benefits when delivering visualization workshops in the natural setting of a middle school. (Author/LRW)

  20. Parent Involvement Practices of High-Achieving Elementary Science Students

    Science.gov (United States)

    Waller, Samara Susan

    This study addressed a prevalence of low achievement in science courses in an urban school district in Georgia. National leaders and educators have identified the improvement of science proficiency as critical to the future of American industry. The purpose of this study was to examine parent involvement in this school district and its contribution to the academic achievement of successful science students. Social capital theory guided this study by suggesting that students achieve best when investments are made into their academic and social development. A collective case study qualitative research design was used to interview 9 parent participants at 2 elementary schools whose children scored in the exceeds category on the Science CRCT. The research questions focused on what these parents did at home to support their children's academic achievement. Data were collected using a semi-structured interview protocol and analyzed through the categorical aggregation of transcribed interviews. Key findings revealed that the parents invested time and resources in 3 practices: communicating high expectations, supporting and developing key skills, and communicating with teachers. These findings contribute to social change at both the local and community level by creating a starting point for teachers, principals, and district leaders to reexamine the value of parent input in the educational process, and by providing data to support the revision of current parent involvement policies. Possibilities for further study building upon the findings of this study may focus on student perceptions of their parents' parenting as it relates to their science achievement.

  1. Science achievement of students in the Republic of Yemen and implications for improvement of science instruction

    Science.gov (United States)

    Ismail, Nageeb Kassem

    The purpose of this study was to establish a research base from which strategies could be developed for improving science education in Yemen. The study measured the achievement in general science of Yemeni students attending primary, preparatory, and secondary schools, and their counterparts attending three- or five-year education programs in primary teacher training institutions. A sample of 1,984 students from six major cities in Yemen was given the Second International Science Study test in May 1988. Achievement scores of these selected groups were compared. The mean achievement in general science was 11.93 for science track students, 9.21 for three-year teacher training institution students, and 8.49 for five-year teacher training institution students. These mean scores were based on a total of 35 items. This low level of achievement was further verified by making comparisons of the achievement of selected groups from Yemeni high schools in six cities with each other. The following factors were measured in this study: location, grade level, gender and type of science program studied. Selected groups from Yemeni high schools were also compared to their peers in other nations. The researcher compared students of the science track and teacher training institutions to their counterparts in 13 nations and students of the literature track to their counterparts in eight nations. Fifth and ninth grade students' scores were compared with the scores of their counterparts in 15 and 17 nations respectively. In every comparison, every Yemeni group ranked at the bottom of the achievement list. (Jacobson W., & Doran, R. 1988) The outcomes of this research indicate the profound need for improving science programs in all grade levels in Yemen. The research recommendations for improvement in science education in Yemen fall into four areas: a change in attitudes toward education, a change in teacher education, a change in classroom conditions, and a change in educational

  2. Examining student-generated questions in an elementary science classroom

    Science.gov (United States)

    Diaz, Juan Francisco, Jr.

    This study was conducted to better understand how teachers use an argument-based inquiry technique known as the Science Writing Heuristic (SWH) approach to address issues on teaching, learning, negotiation, argumentation, and elaboration in an elementary science classroom. Within the SWH framework, this study traced the progress of promoting argumentation and negotiation (which led to student-generated questions) during a discussion in an elementary science classroom. Speech patterns during various classroom scenarios were analyzed to understand how teacher--student interactions influence learning. This study uses a mixture of qualitative and quantitative methods. The qualitative aspect of the study is an analysis of teacher--student interactions in the classroom using video recordings. The quantitative aspect uses descriptive statistics, tables, and plots to analyze the data. The subjects in this study were fifth grade students and teachers from an elementary school in the Midwest, during the academic years 2007/2008 and 2008/2009. The three teachers selected for this study teach at the same Midwestern elementary school. These teachers were purposely selected because they were using the SWH approach during the two years of the study. The results of this study suggest that all three teachers moved from using teacher-generated questions to student-generated questions as they became more familiar with the SWH approach. In addition, all three promoted the use of the components of arguments in their dialogs and discussions and encouraged students to elaborate, challenge, and rebut each other's ideas in a non-threatening environment. This research suggests that even young students, when actively participating in class discussions, are capable of connecting their claims and evidence and generating questions of a higher-order cognitive level. These findings demand the implementation of more professional development programs and the improvement in teacher education to help

  3. Student Agency in Negotiating the Relationship Between Science and Religion

    Science.gov (United States)

    Tang, Kok-Sing; Yang, Xiangyu

    2017-08-01

    Research examining the relationship between science and religion has often painted a narrative of conflict for students with various religious beliefs. The purpose of this paper is to present a counter-narrative based on a study carried out in Singapore, which provides a unique multi-ethnic and multi-religious environment and geopolitical context to study the phenomenon. Informed by the theories of collateral learning, situated cognition and agency, the study examined how a group of high school biology students viewed and negotiated the relationship between biological evolution and their beliefs in Christianity. Case study methodology and semi-structured interviews were used to generate thick descriptions of their views. Findings from the study illustrate how the students exhibited agency in deliberately creating multiple resolution mechanisms as they recognised and negotiated the conceptual and social tensions between the worldviews of evolution and creationism. The findings suggest that the students exhibited more agency in resolving the perceived conflict between science and religion than we tend to ascribe based on previous interpretative accounts that emphasised confrontation, alienation and marginalisation. The implication is that students' agency in negotiating the differing worldviews between science and religion should be seen as a resource for the learning of evolution, rather than a hindrance.

  4. The Deep River Science Academy: a unique and innovative program for engaging students in science

    International Nuclear Information System (INIS)

    Turner, C.W.; Didsbury, R.; Ingram, M.

    2014-01-01

    For 28 years, the Deep River Science Academy (DRSA) has been offering high school students the opportunity to engage in the excitement and challenge of professional scientific research to help nurture their passion for science and to provide them with the experience and the knowledge to make informed decisions regarding possible future careers in the fields of science, technology, engineering, and mathematics (STEM). The venue for the DRSA program has been a six-week summer science camp where students, working in pairs under the guidance of a university undergraduate tutor, contribute directly to an on-going research program under the supervision of a professional scientist or engineer. This concept has been expanded in recent years to reach students in classrooms year round by engaging students via the internet over a 12-week term in a series of interactive teaching sessions based on an on-going research project. Although the research projects for the summer program are offered primarily from the laboratories of Atomic Energy of Canada Limited at its Chalk River Laboratories site, projects for the year-round program can be based, in principle, in laboratories at universities and other research institutes located anywhere in Canada. This paper will describe the program in more detail using examples illustrating how the students become engaged in the research and the sorts of contributions they have been able to make over the years. The impact of the program on the students and the degree to which the DRSA has been able to meet its objective of encouraging students to choose careers in the fields of STEM and equipping them with the skills and experience to be successful will be assessed based on feedback from the students themselves. Finally, we will examine the program in the context of how well it helps to address the challenges faced by educators today in meeting the demands of students in a world where the internet provides instant access to information. (author)

  5. The Deep River Science Academy: a unique and innovative program for engaging students in science

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W., E-mail: carlrhonda.turner@sympatico.ca [Deep River Science Academy, Deep River, Ontario (Canada); Didsbury, R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Ingram, M. [Deep River Science Academy, Deep River, Ontario (Canada)

    2014-06-15

    For 28 years, the Deep River Science Academy (DRSA) has been offering high school students the opportunity to engage in the excitement and challenge of professional scientific research to help nurture their passion for science and to provide them with the experience and the knowledge to make informed decisions regarding possible future careers in the fields of science, technology, engineering, and mathematics (STEM). The venue for the DRSA program has been a six-week summer science camp where students, working in pairs under the guidance of a university undergraduate tutor, contribute directly to an on-going research program under the supervision of a professional scientist or engineer. This concept has been expanded in recent years to reach students in classrooms year round by engaging students via the internet over a 12-week term in a series of interactive teaching sessions based on an on-going research project. Although the research projects for the summer program are offered primarily from the laboratories of Atomic Energy of Canada Limited at its Chalk River Laboratories site, projects for the year-round program can be based, in principle, in laboratories at universities and other research institutes located anywhere in Canada. This paper will describe the program in more detail using examples illustrating how the students become engaged in the research and the sorts of contributions they have been able to make over the years. The impact of the program on the students and the degree to which the DRSA has been able to meet its objective of encouraging students to choose careers in the fields of STEM and equipping them with the skills and experience to be successful will be assessed based on feedback from the students themselves. Finally, we will examine the program in the context of how well it helps to address the challenges faced by educators today in meeting the demands of students in a world where the internet provides instant access to information. (author)

  6. Exploring the consequences of combining medical students with and without a background in biomedical sciences.

    Science.gov (United States)

    Ellaway, Rachel H; Bates, Amanda; Girard, Suzanne; Buitenhuis, Deanna; Lee, Kyle; Warton, Aidan; Russell, Steve; Caines, Jill; Traficante, Eric; Graves, Lisa

    2014-07-01

    Medical schools have tended to admit students with strong backgrounds in the biomedical sciences. Previous studies have shown that those with backgrounds in the social sciences can be as successful in medical school as those with science backgrounds. However, the experience of being a 'non-science' student over time has not been well described. A mixed-methods study was developed and run with the aim of elucidating the personal experiences of science and non-science students at our institution. Data were generated from a student survey that focused on participants' self-identification as science or non-science students, and on their sense of preparedness and stress, and from a series of student focus groups exploring participants' experiences of science and non-science issues in all aspects of their training. Descriptive statistics were generated for structured survey data. Focus group data and unstructured survey data were analysed to identify common themes. End-of-module and end-of-year examination data for the four class cohorts in the programme were also analysed to compare science and non-science student performance over time. There were clear differences between the experiences and performance of science and non-science students. We found dichotomies in students' self-reported sense of preparedness and stress levels, and marked differences in their examination performance, which diminished over time to converge around the third year of their studies. Combining science and non-science students in the same class affected the students to different extents and in different ways. The potential disruption of mixing science and non-science students diminished as their levels of performance converged. The psychosocial stress experienced by non-science students and the challenges it posed, in both their academic and their personal lives, have implications for how such students should be supported, and how curricula can be configured to afford quality learning for all

  7. Apeiron: engaging students if ocean science

    Science.gov (United States)

    Manzella, Alessandro; Manzella, Giuseppe M. R.

    2017-04-01

    Anaxagoras believed that all things existed in a boundless form. Ápeiron begun to rotate under the control of Nous (Mind) and the rotation caused the universe to break up into fragments, each containing parts of all other things. However, since all individual things had originated from the same ápeiron, all things must contain parts of all other things. In some sense, the title contain the main concept on the interdependence of humans and the natural environment that make necessary to have a general understanding on how anthropogenic activities have changed the earth system and how they are impacting the climate cycles. Ápeiron is the interdependence of humans and natural environment. A general understanding on human influences on earth system is necessary. The ability to solve a problem, to write a coherent paragraph, to utter a cogent statement are soft skills supporting sustainable development. Soft skills must be tempered with the ability to integrate knowledge from various sources into a coherent whole. Students, professors and researchers interaction improve personal comprehension. Students must be encouraged to debate ideas and the way to present them. They are asked to look for and develop bases for shared understanding. In this way they participated to the definition of a knowledge building process as a social epistemology: from personal beliefs to social shared vision.

  8. Increasing student learning through space life sciences education

    Science.gov (United States)

    Moreno, Nancy P.; Kyle Roberts, J.; Tharp, Barbara Z.; Denk, James P.; Cutler, Paula H.; Thomson, William A.

    2005-05-01

    Scientists and educators at Baylor College of Medicine are using space life sciences research areas as themes for middle school science and health instructional materials. This paper discusses study findings of the most recent unit, Food and Fitness, which teaches concepts related to energy and nutrition through guided inquiry. Results of a field test involving more than 750 students are reported. Use of the teaching materials resulted in significant knowledge gains by students as measured on a pre/post assessment administered by teachers. In addition, an analysis of the time spent by each teacher on each activity suggested that it is preferable to conduct all of the activities in the unit with students rather than allocating the same total amount of time on just a subset of the activities.

  9. Popular Science: Introductory Physics Textbooks for Home Economics Students

    Science.gov (United States)

    Behrman, Joanna

    2014-03-01

    For many decades now there has been an ongoing debate about the way and extent to which physics ought to be popularized by appealing to a student's every day experience. Part of this debate has focused on how textbooks, a major factor shaping students' education, ought to be written and presented. I examine the background, passages, and problems of two examples drawn from the special genre of ``Household Physics'' textbooks which were published largely between 1910 and 1940. The pedagogy of applying or relating physics to the everyday experience engenders values defining how and by whom science is to be applied. These books are particularly evocative, as well, of the extent to which gender can be tied to differing everyday experiences and the consequences therefore of using experiential examples. Using popular science textbooks can alienate students by drawing an implicit division between the reader and the practicing scientist.

  10. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    Science.gov (United States)

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  11. The Conceptions of Learning Science by Laboratory among University Science-Major Students: Qualitative and Quantitative Analyses

    Science.gov (United States)

    Chiu, Yu-Li; Lin, Tzung-Jin; Tsai, Chin-Chung

    2016-01-01

    Background: The sophistication of students' conceptions of science learning has been found to be positively related to their approaches to and outcomes for science learning. Little research has been conducted to particularly investigate students' conceptions of science learning by laboratory. Purpose: The purpose of this research, consisting of…

  12. High-School Students' Epistemic Knowledge of Science and Its Relation to Learner Factors in Science Learning

    Science.gov (United States)

    Yang, Fang-Ying; Liu, Shiang-Yao; Hsu, Chung-Yuan; Chiou, Guo-Li; Wu, Hsin-Kai; Wu, Ying-Tien; Chen, Sufen; Liang, Jyh-Chong; Tsai, Meng-Jung; Lee, Silvia W.-Y.; Lee, Min-Hsien; Lin, Che-Li; Chu, Regina Juchun; Tsai, Chin-Chung

    2018-01-01

    The purpose of this study was to develop and validate an online contextualized test for assessing students' understanding of epistemic knowledge of science. In addition, how students' understanding of epistemic knowledge of science interacts with learner factors, including time spent on science learning, interest, self-efficacy, and gender, was…

  13. An analysis of science conceptual knowledge in journals of students with disabilities and normally achieving students

    Science.gov (United States)

    Grigg, Gail S.

    Science education reforms of the last two decades have focused on raising the bar for ALL students which includes students with mild to moderate disabilities. Formative assessment can be used to assess the progress of these students to inquire, understand scientific concepts, reason scientifically, make decisions, and communicate effectively in science. The purpose of this study is to examine the use of science journals as a formative assessment in a guided inquiry unit of study for students with learning disabilities. Two normally achieving students (NA) and five students with learning disabilities (SLD) participated in a study of mammals that utilized journals to record the development of student knowledge through the course of study. Students were interviewed after the lessons were complete using the same prompts required in the journals. Themes were developed from the student writings and their verbal discourse using Grounded Theory. Journals and verbal discourse were rated following the themes of Knowledge Telling (KT) and Knowledge Transformation (KTR). Concept maps were developed for the Pre and Post test lessons (written and verbal discourses) by the raters in an attempt to further explain the knowledge that the students conveyed. The results of this study suggest that SLD are able to demonstrate knowledge about mammals better through verbal discourse than written discourse. While the NA students wrote more and used more technical discourse than did their SLD peers, the conceptual understanding of the topic by the SLD was no less inclusive than their NA peers when accessed verbally. The journals demonstrated limited conceptual growth for the SLD. Further, while lexical density is important to the development of knowledge in science, this study suggests the "conceptual density" may be another important indicator to examine.

  14. The Relationship between Science Achievement and Self-Concept among Gifted Students from the Third International Earth Science Olympiad

    Science.gov (United States)

    Chang, Chun-Yen; Lin, Pei-Ling

    2017-01-01

    This study investigated the relationship between gifted students' academic self-concept (ASC) and academic achievement (AC) in earth science with internationally representative high-school students from the third International Earth Science Olympiad (IESO) held in Taiwan in 2009. The results of regression analysis indicated that IESO students' ASC…

  15. Science as Interests but Not for Career: Understanding High School Students' Engagement in Science in Abu Dhabi

    Science.gov (United States)

    Yang, Guang; Badri, Masood; Al-Mazroui, Karima; Al-Rashedi, Asma; Nai, Peng

    2017-01-01

    Understanding high school students' engagement in science is important for the Emirate of Abu Dhabi. Drawing on data from the ROSE Survey conducted in Abu Dhabi schools in 2013, this paper used a multi-dimensional framework to explore associations between high school students' engagement in science and a range of student psychosocial and…

  16. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    Science.gov (United States)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  17. Historical short stories as nature of science instruction in secondary science classrooms: Science teachers' implementation and students' reactions

    Science.gov (United States)

    Reid-Smith, Jennifer Ann

    This study explores the use of historical short stories as nature of science (NOS) instruction in thirteen secondary science classes. The stories focus on the development of science ideas and include statements and questions to draw students' and teachers' attention to key NOS ideas and misconceptions. This study used mixed methods to examine how teachers implement the stories, factors influencing teachers' implementation, the impact on students' NOS understanding, students' interest in the stories and factors correlated with their interest. Teachers' implementation decisions were influenced by their NOS understanding, curricula, time constraints, perceptions of student ability and resistance, and student goals. Teachers implementing stories at a high-level of effectiveness were more likely to make instructional decisions to mitigate constraints from the school environment and students. High-level implementers frequently referred to their learning goals for students as a rationale for implementing the stories even when facing constraints. Teachers implementing at a low-level of effectiveness were more likely to express that constraints inhibited effective implementation. Teachers at all levels of implementation expressed concern regarding the length of the stories and time required to fully implement the stories. Additionally, teachers at all levels of implementation expressed a desire for additional resources regarding effective story implementation and reading strategies. Evidence exists that the stories can be used to improve students' NOS understanding. However, under what conditions the stories are effective is still unclear. Students reported finding the stories more interesting than textbook readings and many students enjoyed learning about scientists and the development of science idea. Students' interest in the stories is correlated with their attitudes towards reading, views of effective science learning, attributions of academic success, and interest in

  18. Do Interactive Globes and Games Help Students Learn Planetary Science?

    Science.gov (United States)

    Coba, Filis; Burgin, Stephen; De Paor, Declan; Georgen, Jennifer

    2016-01-01

    The popularity of animations and interactive visualizations in undergraduate science education might lead one to assume that these teaching aids enhance student learning. We tested this assumption for the case of the Google Earth virtual globe with a comparison of control and treatment student groups in a general education class of over 370 students at a large public university. Earth and Planetary Science course content was developed in two formats: using Keyhole Markup Language (KML) to create interactive tours in Google Earth (the treatment group) and Portable Document Format (PDF) for on-screen reading (the control group). The PDF documents contained identical text and images to the placemark balloons or "tour stops" in the Google Earth version. Some significant differences were noted between the two groups based on the immediate post-questionnaire with the KML students out-performing the PDF students, but not on the delayed measure. In a separate but related project, we undertake preliminary investigations into methods of teaching basic concepts in planetary mantle convection using numerical simulations. The goal of this project is to develop an interface with a two-dimensional finite element model that will allow students to vary parameters such as the temperatures assigned to the boundaries of the model domain, to help them actively explore important variables that control convection.

  19. 191 Students' Self-Concept and Their Achievement in Basic Science ...

    African Journals Online (AJOL)

    User

    2011-07-21

    Jul 21, 2011 ... Achievement Test in Basic showed Science (SATBS) were employed as .... Higher Studies; Teacher-Students opinion and found out that students .... Factors and Pupils Leaning Outcome in Bended Primary Science Project,.

  20. WHK Student Interns Named Top Scholars in Regeneron Science Talent Search | Poster

    Science.gov (United States)

    Two Werner H. Kirsten Student Interns were recently named Top Scholars in the 2017 Regeneron Science Talent Search, the nation’s most prestigious science and math competition for high school students.

  1. Functional Automata - Formal Languages for Computer Science Students

    Directory of Open Access Journals (Sweden)

    Marco T. Morazán

    2014-12-01

    Full Text Available An introductory formal languages course exposes advanced undergraduate and early graduate students to automata theory, grammars, constructive proofs, computability, and decidability. Programming students find these topics to be challenging or, in many cases, overwhelming and on the fringe of Computer Science. The existence of this perception is not completely absurd since students are asked to design and prove correct machines and grammars without being able to experiment nor get immediate feedback, which is essential in a learning context. This article puts forth the thesis that the theory of computation ought to be taught using tools for actually building computations. It describes the implementation and the classroom use of a library, FSM, designed to provide students with the opportunity to experiment and test their designs using state machines, grammars, and regular expressions. Students are able to perform random testing before proceeding with a formal proof of correctness. That is, students can test their designs much like they do in a programming course. In addition, the library easily allows students to implement the algorithms they develop as part of the constructive proofs they write. Providing students with this ability ought to be a new trend in the formal languages classroom.

  2. Internship training in computer science: Exploring student satisfaction levels.

    Science.gov (United States)

    Jaradat, Ghaith M

    2017-08-01

    The requirement of employability in the job market prompted universities to conduct internship training as part of their study plans. There is a need to train students on important academic and professional skills related to the workplace with an IT component. This article describes a statistical study that measures satisfaction levels among students in the faculty of Information Technology and Computer Science in Jordan. The objective of this study is to explore factors that influence student satisfaction with regards to enrolling in an internship training program. The study was conducted to gather student perceptions, opinions, preferences and satisfaction levels related to the program. Data were collected via a mixed method survey (surveys and interviews) from student-respondents. The survey collects demographic and background information from students, including their perception of faculty performance in the training poised to prepare them for the job market. Findings from this study show that students expect internship training to improve their professional and personal skills as well as to increase their workplace-related satisfaction. It is concluded that improving the internship training is crucial among the students as it is expected to enrich their experiences, knowledge and skills in the personal and professional life. It is also expected to increase their level of confidence when it comes to exploring their future job opportunities in the Jordanian market. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Interactive Auroral Science for Hearing-Impaired Students

    Science.gov (United States)

    Samara, M.; Michell, R. G.; Jahn, J.; Pfeifer, M.; Ibarra, S.; Hampton, D. L.; Powell, D.

    2012-12-01

    Under a NASA E/PO grant, we have partnered with San Antonio's Sunshine Cottage School for Deaf Children to develop a science class experience where students directly interact with scientists and participate in a research-grade space science measurement campaign. The unique aspect of partnering with Sunshine Cottage lies in Sunshine's approach of auditory-verbal communication. Aided by technology (hearing aids, cochlear implants), a diverse student body with students of all levels of hearing loss (moderate through profound) is taught in an entirely auditory-verbal environment at Sunshine Cottage. Bringing these students into early contact with research work can lay the foundation for future careers in the STEM field that normally they might not consider as indicated by the first year of this collaboration where the student response was distinctly positive. Here we report on the first year of those activities, as they related to a ground based imaging approach to exploring the northern lights and from the point of view of the scientists that participated. The major components of that activity included a site visit to SwRI by the students and their teachers, a semester long lab at school utilizing current research tools and a real-time campaign night. The students used a number of diagnostics to first predict and then verify auroral activity. One of the tools used was the MOOSE observatory which is a community resource state of the art observatory comprised of 5 EMCCD imagers in Alaska, established through an NSF MRI grant. We will discuss the approach and lessons learned during the first year of the project and the directions that we will likely take in the second year. Lessons learned from teaching these students space science related topic can be flowed right back into mainstream classroom settings. One other significant and unexpected aspect of this first year was that we were able to connect two groups of students through skype (in the 4th to 5th grades) that

  4. Professional preferences of students in physical education and sport sciences

    Directory of Open Access Journals (Sweden)

    Jerónimo García Fernández

    2013-01-01

    Full Text Available The actual context has enhanced job opportunities in the field of sport in order to respond to the current market demand. Thus, Physical Education and Sport Science graduates who begin to do differents jobs to the traditional ones but relate to their study field. The aim of this study was to guess which are the job preferences of the students of Physical Education and Sport Science of Seville University by gender and age doing the second cycle of their college degree and determine if there are significant differences. A descriptive analysis was carried out, using a questionnaire based on several researches, it was related to professional opportunities in sport sciences. The sample was of 118 students which represented 40.7% of the overall registered students. Results shown that sport management is the most preferable professional opportunity for women and men of the total sample, following in second place by teaching in secondary school for people older than 25 years of both sexes and teaching in primary school for the younger than 25 years. These findings announce changes in occupational trends in sports, to be taken into account in the framework of the European higher education (Degree of Science in Sport and Physical Activity, own US Masters and Official, lifelong learning programs....

  5. What Do Students "Construct" According to Constructivism in Science Education?

    Science.gov (United States)

    Bächtold, Manuel

    2013-12-01

    This paper aims at shedding light on what students can "construct" when they learn science and how this construction process may be supported. Constructivism is a pluralist theory of science education. As a consequence, I support, there are several points of view concerning this construction process. Firstly, I stress that constructivism is rooted in two fields, psychology of cognitive development and epistemology, which leads to two ways of describing the construction process: either as a process of enrichment and/or reorganization of the cognitive structures at the mental level, or as a process of building or development of models or theories at the symbolic level. Secondly, I argue that the usual distinction between "personal constructivism" (PC) and "social constructivism" (SC) originates in a difference of model of reference: the one of PC is Piaget's description of "spontaneous" concepts, assumed to be constructed by students on their own when interacting with their material environment, the one of SC is Vygotsky's description of scientific concepts, assumed to be introduced by the teacher by means of verbal communication. Thirdly, I support the idea that, within SC, there are in fact two trends: one, in line with Piaget's work, demonstrates how cooperation among students affects the development of each individual's cognitive structures; the other, in line with Vygotsky's work, claims that students can understand and master new models only if they are introduced to the scientific culture by their teacher. Fourthly, I draw attention to the process of "problem construction" identified by some French authors. Finally, I advocate for an integrated approach in science education, taking into account all the facets of science learning and teaching mentioned above and emphasizing their differences as well as their interrelations. Some suggestions intended to improve the efficiency of science teaching are made.

  6. Examining classroom interactions related to difference in students' science achievement

    Science.gov (United States)

    Zady, Madelon F.; Portes, Pedro R.; Ochs, V. Dan

    2003-01-01

    The current study examines the cognitive supports that underlie achievement in science by using a cultural historical framework (L. S. Vygotsky (1934/1986), Thought and Language, MIT Press, Cambridge, MA.) and the activity setting (AS) construct (R. G. Tharp & R. Gallimore (1988), Rousing minds to life: Teaching, learning and schooling in social context, Cambridge University Press, Cambridge, MA.) with its five features: personnel, motivations, scripts, task demands, and beliefs. Observations were made of the classrooms of seventh-grade science students, 32 of whom had participated in a prior achievement-related parent-child interaction or home study (P. R. Portes, M. F. Zady, & R. M. Dunham (1998), Journal of Genetic Psychology, 159, 163-178). The results of a quantitative analysis of classroom interaction showed two features of the AS: personnel and scripts. The qualitative field analysis generated four emergent phenomena related to the features of the AS that appeared to influence student opportunity for conceptual development. The emergent phenomenon were science activities, the building of learning, meaning in lessons, and the conflict over control. Lastly, the results of the two-part classroom study were compared to those of the home science AS of high and low achievers. Mismatches in the AS features in the science classroom may constrain the opportunity to learn. Educational implications are discussed.

  7. A Theoretical Understanding of the Literature on Student Voice in the Science Classroom

    Science.gov (United States)

    Laux, Katie

    2018-01-01

    Background: Incorporating student voice into the science classroom has the potential to positively impact science teaching and learning. However, students are rarely consulted on school and classroom matters. This literature review examines the effects of including student voice in the science classroom. Purpose: The purpose of this literature…

  8. UNH Project SMART 2017: Space Science for High School Students

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Goelzer, S.; Levergood, R.; Lugaz, N.; Moebius, E.

    2017-12-01

    Every summer for the past 26 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. This year the student research projects used data from the Messenger, STEREO, and Triana missions. In addition, the students build and fly a high-altitude balloon payload with instruments of their own construction. Students learn circuit design and construction, microcontroller programming, and core atmospheric and space science along with fundamental concepts in space physics and engineering. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute. Our flight hardware includes an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This year we developed, built and flew a successful line cutter based on GPS location information that prevents our payload from falling into the ocean while also separating the payload from the balloon remains for a cleaner descent. We will describe that new line cutter design and implementation along with the shielded Geiger counters that we flew as part of our cosmic ray air shower experiment. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  9. Student reflections on choosing to study science post-16

    Science.gov (United States)

    Pike, Angela G.; Dunne, Máiréad

    2011-06-01

    The research recounted in this paper was designed primarily to attempt to understand the reasons for the low uptake of the natural sciences beyond compulsory education in England. This has caused widespread concern within governmental quarters, university science departments and the scientific community as a whole. This research explored the problem from the position of the students who recently made their choices. The student voices were heard through a series of interviews which highlighted the complexities of the process of post-16 choice. Social theories of pedagogy and identity, such as those of Basil Bernstein, were used in an analysis of the interview texts. Dominant themes used by the students in rationalising their post-16 subject choice related to their past pedagogical experiences, school discourses of differentiation and the students' notions of their future educational and occupational pathways. This study provides no simple solutions but highlights the importance of student voice to our understandings of what influences subject choice at this critical post-16 stage.

  10. Students with Blindness Explore Chemistry at "Camp Can Do"

    Science.gov (United States)

    Supalo, Cary A.; Wohlers, H. David; Humphrey, Jennifer R.

    2011-01-01

    Students with blindness or low vision are often discouraged from full participation in laboratory science classes due to the inadequacy of current methodological approaches and the lack of sophisticated adaptive technologies. Consequently, these students rarely go on to pursue advanced studies and employment in the sciences. In response to his own…

  11. Student Engagement in a Computer Rich Science Classroom

    Science.gov (United States)

    Hunter, Jeffrey C.

    The purpose of this study was to examine the student lived experience when using computers in a rural science classroom. The overarching question the project sought to examine was: How do rural students relate to computers as a learning tool in comparison to a traditional science classroom? Participant data were collected using a pre-study survey, Experience Sampling during class and post-study interviews. Students want to use computers in their classrooms. Students shared that they overwhelmingly (75%) preferred a computer rich classroom to a traditional classroom (25%). Students reported a higher level of engagement in classes that use technology/computers (83%) versus those that do not use computers (17%). A computer rich classroom increased student control and motivation as reflected by a participant who shared; "by using computers I was more motivated to get the work done" (Maggie, April 25, 2014, survey). The researcher explored a rural school environment. Rural populations represent a large number of students and appear to be underrepresented in current research. The participants, tenth grade Biology students, were sampled in a traditional teacher led class without computers for one week followed by a week using computers daily. Data supported that there is a new gap that separates students, a device divide. This divide separates those who have access to devices that are robust enough to do high level class work from those who do not. Although cellular phones have reduced the number of students who cannot access the Internet, they may have created a false feeling that access to a computer is no longer necessary at home. As this study shows, although most students have Internet access, fewer have access to a device that enables them to complete rigorous class work at home. Participants received little or no training at school in proper, safe use of a computer and the Internet. It is clear that the majorities of students are self-taught or receive guidance

  12. Student perception of writing in the science classroom

    Science.gov (United States)

    Deakin, Kathleen J.

    This study examines factors that shape four student's perceptions of writing tasks in their science classroom. This qualitative retrospective interview study focuses on four students concurrently enrolled in honors English and honors biology. This research employs a phenomenological perspective on writing, examining whether the writing strategies students acquire in the Language Arts classroom manifest in the content areas. I also adopt Bandura's theoretical perspective on self-efficacy as well as Hillock's notion of writing as inquiry and meaning making. This study concludes that students need ample opportunity to generate content and language that will help reveal a purpose and genre for writing tasks in the content areas. Although all four students approached the writing tasks differently in this study, the tasks set before them were opportunities for replication rather than inquiry Through the case studies of four students as well as current research on content writing, this project works to inform all content area teachers about student perceptions of writing in the content areas.

  13. Science Student Role: Evidence of Social Structural Norms Specific to School Science

    Science.gov (United States)

    Shanahan, Marie-Claire; Nieswandt, Martina

    2011-01-01

    Sociocultural studies of science education have consistently recognized the dialectic nature of students' agency to create and author positions for themselves and the structural constraints that may influence them. This mixed-methods study explores one particular aspect of these potential constraints: the possibility of a social structure specific…

  14. Science Adjustment, Parental and Teacher Autonomy Support and the Cognitive Orientation of Science Students

    Science.gov (United States)

    Jungert, Tomas; Koestner, Richard

    2015-01-01

    Research has shown that autonomy support has positive effects on academic development, but no study has examined how systemising cognitive orientation is related to important outcomes for science students, and how it may interact with autonomy support. This prospective investigation considered how systemising and support from teachers and parents…

  15. Authentic Science Research Opportunities: How Do Undergraduate Students Begin Integration into a Science Community of Practice?

    Science.gov (United States)

    Gardner, Grant E.; Forrester, Jennifer H.; Jeffrey, Penny Shumaker; Ferzli, Miriam; Shea, Damian

    2015-01-01

    The goal of the study described was to understand the process and degree to which an undergraduate science research program for rising college freshmen achieved its stated objectives to integrate participants into a community of practice and to develop students' research identities.

  16. The book of science mysteries classroom science activities to support student enquiry-based learning

    CERN Document Server

    McOwan, Peter; Olivotto, Cristina

    2015-01-01

    In this booklet, you will be introduced to an exciting new way to teach science in your classroom. The TEMI project (Teaching Enquiry with Mysteries Incorporated) is an EU-funded project that brings together experts in teacher training from across Europe to help you introduce enquiry-based learning successfully in the classroom and improve student engagement and skills.

  17. Acknowledging the Religious Beliefs Students Bring into the Science Classroom: Using the Bounded Nature of Science

    Science.gov (United States)

    Southerland, Sherry A.; Scharmann, Lawrence C.

    2013-01-01

    Scientific knowledge often appears to contradict many students' religious beliefs. Indeed, the assumptions of science appear contradictory to the metaphysical claims of many religions. This conflict is most evident in discussions of biological evolution. Teachers, in attempts to limit the controversy, often avoid this topic or teach it…

  18. Students' Motivational Beliefs in Science Learning, School Motivational Contexts, and Science Achievement in Taiwan

    Science.gov (United States)

    Wang, Cheng-Lung; Liou, Pey-Yan

    2017-01-01

    Taiwanese students are featured as having high academic achievement but low motivational beliefs according to the serial results of the Trends in Mathematics and Science Study (TIMSS). Moreover, given that the role of context has become more important in the development of academic motivation theory, this study aimed to examine the relationship…

  19. An Exploratory Case Study of Olympiad Students' Attitudes towards and Passion for Science

    Science.gov (United States)

    Oliver, Mary; Venville, Grady

    2011-01-01

    Much is known about high school students' attitudes towards science but there is almost no research on what passion for science might look like and how it might be manifested. This exploratory case study took advantage of a unique group of highly gifted science students participating in the Australian Science Olympiad (N = 69) to explore their…

  20. Inquiry and Groups: Student Interactions in Cooperative Inquiry-Based Science

    Science.gov (United States)

    Woods-McConney, Amanda; Wosnitza, Marold; Sturrock, Keryn L.

    2016-01-01

    Science education research has recommended cooperative inquiry based science in the primary science context for more than two decades but after more than 20 years, student achievement in science has not substantially improved. This study, through direct observation and analysis, investigated content-related student interactions in an authentic…

  1. An Examination of Views of Science Held by English-Trained Chinese Students

    Science.gov (United States)

    Stonier, Francis W.; Dickerson, Daniel L.; Lucking, Robert

    2012-01-01

    The purpose of the study was to examine what science views were accepted or rejected by the Chinese university students. We administered the Thinking about Science Survey Instrument (TSSI) to 75 Chinese students in the Sichuan province who were enrolled in Science and Technology English classes. The TSSI focuses on nine key areas of science and…

  2. Teaching Translational Research to Medical Students: The New York University School of Medicine's Master's of Science in Clinical Investigation Dual‐Degree Program

    Science.gov (United States)

    Pillinger, Michael; Plottel, Claudia S.; Galeano, Claudia; Maddalo, Scott; Hochman, Judith S.; Cronstein, Bruce N.; Gold‐von Simson, Gabrielle

    2015-01-01

    Abstract To develop the next generation of translational investigators, New York University School of Medicine (NYUSOM) and the NYU‐NYC Health and Hospitals Corporation Clinical and Translational Science Institute (NYU‐HHC CTSI) developed the Master's of Science in Clinical Investigation dual‐degree (MD/MSCI) program. This 5‐year program dedicates 1 year to coursework and biomedical research, followed by a medical school/research overlap year, to prepare students for academic research careers. This paper details the MD/MSCI program's curriculum and approach to mentorship, describes the research/professional interests of students, and reports student productivity. In the first 4 years of the program (2010–2014) 20 students were matriculated; 7 (35%) were women, and 12 (60%) research projects were in surgical specialties. To date, 14 students have applied to residency, and half pursued surgical residency programs. Our students have produced 68 accepted abstracts, 15 abstracts in submission, 38 accepted papers, and 24 papers in submission. Despite the time‐limited nature of this program, additional training in research design and implementation has promoted a high level of productivity. We conclude that dual‐degree training in medicine and translational research is feasible for medical students and allows for meaningful participation in valuable projects. Follow‐up is warranted to evaluate the academic trajectory of these students. PMID:26365704

  3. Teaching Translational Research to Medical Students: The New York University School of Medicine's Master's of Science in Clinical Investigation Dual-Degree Program.

    Science.gov (United States)

    Gillman, Jennifer; Pillinger, Michael; Plottel, Claudia S; Galeano, Claudia; Maddalo, Scott; Hochman, Judith S; Cronstein, Bruce N; Gold-von Simson, Gabrielle

    2015-12-01

    To develop the next generation of translational investigators, New York University School of Medicine (NYUSOM) and the NYU-NYC Health and Hospitals Corporation Clinical and Translational Science Institute (NYU-HHC CTSI) developed the Master's of Science in Clinical Investigation dual-degree (MD/MSCI) program. This 5-year program dedicates 1 year to coursework and biomedical research, followed by a medical school/research overlap year, to prepare students for academic research careers. This paper details the MD/MSCI program's curriculum and approach to mentorship, describes the research/professional interests of students, and reports student productivity. In the first 4 years of the program (2010-2014) 20 students were matriculated; 7 (35%) were women, and 12 (60%) research projects were in surgical specialties. To date, 14 students have applied to residency, and half pursued surgical residency programs. Our students have produced 68 accepted abstracts, 15 abstracts in submission, 38 accepted papers, and 24 papers in submission. Despite the time-limited nature of this program, additional training in research design and implementation has promoted a high level of productivity. We conclude that dual-degree training in medicine and translational research is feasible for medical students and allows for meaningful participation in valuable projects. Follow-up is warranted to evaluate the academic trajectory of these students. © 2015 Wiley Periodicals, Inc.

  4. Influence of science and technology magnet middle schools on students' motivation and achievement in science

    Science.gov (United States)

    Allen, David

    Some informal discussions among educators regarding motivation of students and academic performance have included the topic of magnet schools. The premise is that a focused theme, such as an aspect of science, positively affects student motivation and academic achievement. However, there is limited research involving magnet schools and their influence on student motivation and academic performance. This study provides empirical data for the discussion about magnet schools influence on motivation and academic ability. This study utilized path analysis in a structural equation modeling framework to simultaneously investigate the relationships between demographic exogenous independent variables, the independent variable of attending a science or technology magnet middle school, and the dependent variables of motivation to learn science and academic achievement in science. Due to the categorical nature of the variables, Bayesian statistical analysis was used to calculate the path coefficients and the standardized effects for each relationship in the model. The coefficients of determination were calculated to determine the amount of variance each path explained. Only five of 21 paths had statistical significance. Only one of the five statistically significant paths (Attended Magnet School to Motivation to Learn Science) explained a noteworthy amount (45.8%) of the variance.

  5. Understanding Science Teaching Effectiveness: Examining How Science-Specific and Generic Instructional Practices Relate to Student Achievement in Secondary Science Classrooms

    Science.gov (United States)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-01-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student…

  6. Using graphic organizers to enhance students' science vocabulary and comprehension of nonfiction science text

    Science.gov (United States)

    Buchanan, Edna

    The purpose of this research was to investigate the effectiveness of Frayer Model and the Hierarchical Organizer as a literacy strategy to improve ninth grade students' science vocabulary and comprehension of non-fictions text in Environmental Science course. The study implemented a sequential explanatory methodology design that included quantitative and qualitative instruments. The research sample consisted of one hundred and two (102) high school environmental science students entering the ninth grade for the first time. The two treatment groups each consisted of thirty-five (35) students, and the control group consisted of 32 students. Treatment group one used the Frayer Model; treatment group two used Hierarchical Organizer and the control group used the traditional teaching methods without the use of a graph organizer. The investigator taught both treatment groups and the control group to ensure reliability. The two treatment groups were taught using graphic organizers as the main lesson plan tool and the control group was taught using guided notes lecture with PowerPoint. A pretest and post-test were administered to each student. Student test scores were evaluated to determine whether knowledge gains differed between the treatment groups and the control group. It was found that the use of graphic organizer instruction was significantly better for student achievement when compared to the use of PowerPoint instruction and that there was much more interaction between student and teacher during the graphic organizer lessons. The delivery of the lesson by the use of graphic organizers seemed to promote more success than the use of the PowerPoint and lecture.

  7. Characteristics of High School Students' and Science Teachers' Cognitive Frame about Effective Teaching Method for High School Science Subject

    Science.gov (United States)

    Chung, Duk Ho; Park, Kyeong-Jin; Cho, Kyu Seong

    2016-04-01

    We investigated the cognitive frame of high school students and inservice high school science teachers about effective teaching method, and we also explored how they understood about the teaching methods suggested by the 2009 revised Science Curriculum. Data were collected from 275 high school science teachers and 275 high school students. We analyzed data in terms of the words and the cognitive frame using the Semantic Network Analysis. The results were as follows. First, the teachers perceived that an activity oriented class was the effective science class that helped improve students'' problem-solving abilities and their inquiry skills. The students had the cognitive frame that their teacher had to present relevant and enough teaching materials to students, and that they should also receive assistance from teachers in science class to better prepare for college entrance exam. Second, both students and teachers retained the cognitive frame about the efficient science class that was not reflected 2009 revised Science Curriculum exactly. Especially, neither groups connected the elements of ''convergence'' as well as ''integration'' embedded across science subject areas to their cognitive frame nor cognized the fact that many science learning contents were closed related to one another. Therefore, various professional development opportunities should be offered so that teachers succinctly comprehend the essential features and the intents of the 2009 revised Science Curriculum and thereby implement it in their science lessons effectively. Keywords : semantic network analysis, cognitive frame, teaching method, science lesson

  8. Student Science Training Program in Mathematics, Physics and Computer Science. Final Report to the National Science Foundation. Artificial Intelligence Memo No. 393.

    Science.gov (United States)

    Abelson, Harold; diSessa, Andy

    During the summer of 1976, the MIT Artificial Intelligence Laboratory sponsored a Student Science Training Program in Mathematics, Physics, and Computer Science for high ability secondary school students. This report describes, in some detail, the style of the program, the curriculum and the projects the students under-took. It is hoped that this…

  9. Measuring University Students' Perceived Self-Efficacy in Science Communication in Middle and High Schools

    Science.gov (United States)

    Chi, Shaohui; Liu, Xiufeng; Gardella, Joseph A.

    2016-01-01

    Service learning typically involves university students in teaching and learning activities for middle and high school students, however, measurement of university students' self-efficacy in science communication is still lacking. In this study, an instrument to measure university students' perceived self-efficacy in communicating science to…

  10. Attitudes and intellectual development of further education science students

    Science.gov (United States)

    El-Farargy, Nancy Ibrahim

    The world of teaching and learning in the sciences in the Further Education (FE) sector is relatively under-researched. This study, across Scottish FE colleges, has sought to define some of the key landmarks in the area of the sciences, looking specifically at the students and their college experiences by means of surveys, interviews and curriculum intervention. The study started from the issue, observed personally, of students finding the learning of chemistry for a nursing course as being problematic. The main aim was to explore the key issues of science in FE, focussing on problems and successes. The attitudes, intellectual development and self perceptions of students have all been considered. The study explores the attitudes and self perceptions of over 800 learners studying the sciences at ten Scottish colleges. Demographic data, prior learning experiences and current learning attitudes to science and learning were obtained by means of questionnaires and interviews. Intellectual development data was obtained using an adaptation of the Perry Scheme of Intellectual Development. Further interview data were obtained with participating students at various stages of their learning experiences. The results show that, in general, students have varied backgrounds, aspirations and reasons for learning in FE. The learning experiences obtained at college were, in general, viewed to be very positive. In addition, the participating lecturers in Further Education college classes were viewed in a very positive light. In most cases, attitudes towards students learning experiences at college were viewed more positively than at school level, this being a greater emphasis for biology than chemistry. In addition, the role of the teacher at school level could be seen clearly in developing positive attitudes to science. In relating this back to school experience, it was found that those who had positive attitudes to science at school level, correlated more with intentions of

  11. ITEAMS: Increasing the Self-Identification for Girls and Underserved Youth in Pursuing STEM Careers

    Directory of Open Access Journals (Sweden)

    R. Bruce Ward

    2012-02-01

    Full Text Available We report early findings on the efficacy of a technology-based project in increasing self-identification for girls and underserved youth to self-select STEM (science, technology, engineering, and mathematics careers. ITEAMS (Innovative Technology- Enabled Astronomy for Middle Schools – an out-of-schooltime program with online, robotic telescopes as its central focus – targets girls and minority students underrepresented in STEMrelated vocations. The participating students attend urban schools in Eastern Massachusetts. ITEAMS’ twofold goal is to: a provide inspiration for the participants to pursue STEM careers, and b increase the students’ mastery of foundational subject matter so they are prepared for the rigor of further STEM study. We use an online system for surveys and assessments, the former to capture attitudinal changes about career choices, and the latter to assess the students’ subject matter knowledge. Participating students take pre-, intermediate, and post subject-matter tests and career-interest surveys. While we find statistically significant gains in subject matter knowledge free of gender, race, or school bias, we also find girls profess less interest than boys in STEM careers as early as grades five and six, although other attitudinal indicators suggest ways to reverse that trend.

  12. How the nature of science is presented to elementary students in science read-alouds

    Science.gov (United States)

    Rivera, Seema

    Students as early as elementary school age are capable of learning the aspects of the nature of science (NOS), and the National Benchmarks incorporate the NOS as part of the learning objectives for K--2 students. Learning more about elementary science instruction can aid in understanding how the NOS can be taught or potentially integrated into current teaching methods. Although many teaching methods exist, this study will focus on read-alouds because they are recommended for and are very common in elementary schools. The read-aloud practice is particularly helpful to young students because most of these students have a higher listening comprehension than reading comprehension. One of the main components of the read-aloud practice is the discourse that takes place about the trade book. Both explicit and implicit messages are communicated to students by teachers' language and discussion that takes place in the classroom. Therefore, six multisite naturalistic case studies were conducted to understand elementary teachers' understanding of the NOS, students' understandings of the NOS, trade book representations of the NOS, and read-aloud practices and understandings in upstate New York. The findings of the study revealed that teachers and students held mostly naive and mixed understandings of the NOS. The trade books that had explicit connections to the NOS helped teachers discuss NOS related issues, even when the teachers did not hold strong NOS views. Teachers who held more informed NOS views were able to ask students NOS related questions. All teachers showed they need guidance on how to translate their NOS views into discussion and see the significance of the NOS in their classroom. Explicit NOS instruction can improve student understanding of the NOS, however the focus should be not only on teachers and their NOS understanding but also on the books used. These results show that quality trade books with explicit connections to the NOS are a useful instructional tool

  13. More on enrolling female students in science and engineering.

    Science.gov (United States)

    Townley, Cynthia

    2010-06-01

    This paper investigates reasons for practices and policies that are designed to promote higher levels of enrollment by women in scientific disciplines. It challenges the assumptions and problematic arguments of a recent article questioning their legitimacy. Considering the motivations for and merits of such programs suggests a practical response to the question of whether there should be programs to attract female science and engineering students.

  14. Pilot study of a budget-tailored culinary nutrition education program for undergraduate food science students

    Science.gov (United States)

    Kerrison, Dorothy Adair

    The primary objective of this pilot study is to provide evidence that a budget-tailored culinary nutrition program is both appropriate and applicable to undergraduate food science students both in everyday life as well as their future health careers. Two validated programs were combined into one program in order to evaluate their combined effects: Cooking With a Chef and Cooking Matters at the Store. The secondary objective of this pilot study is to evaluate the components and reliability of a questionnaire created specifically for this pilot study. A review of past literature was written, which included culinary nutrition as a source of primary prevention, the importance of incorporating cost with culinary nutrition, and the importance of incorporating cost with culinary nutrition. Based on the literature review, it was determined that a budget-tailored culinary nutrition program was appropriate and applicable to undergraduate food science students interested in pursuing health-related careers. The pilot study design was a semi-crossover study: all four groups received the program, however, two groups were first treated as the control groups. All fifty-four participants received 5 sessions of culinary nutrition information from Cooking With a Chef, collaboratively delivered by a nutrition educator and a chef, and one session of information about shopping healthy on a budget from Cooking Matters at the Store in the form of a grocery store tour led by the nutrition educator. Three questionnaires were administered to the participants that evaluated culinary nutrition and price knowledge, cooking attitudes, and opinions of the programs' relevance to participants' everyday lives and careers. Two of the questionnaires, including a questionnaire developed specifically for the pilot study, were delivered as a pre- and post-test while the third questionnaire was delivered as a post-test. Eight random participants also partook in a focus group session led by the nutrition

  15. Meaningful, Authentic and Place-Based Informal Science Education for 6-12 Students

    Science.gov (United States)

    Ito, E.; Dalbotten, D. M.

    2014-12-01

    American Indians are underrepresented in STEM and especially in Earth sciences. They have the lowest high school graduation rate and highest unemployment. On the other hand, tribes are in search of qualified young people to work in geo- and hydro-technical fields to manage reservations' natural resources. Dalbotten and her collaborators at the Fond du Lac Band of Lake Superior Chippewa and local 6-12 teachers ran a place-based but non-themed informal monthly science camps (gidakiimanaaniwigamig) for 7 years starting 2003. Camps were held on reservation and some activities focused on observing seasonal changes. The students enjoyed coming to the camps but the camp activities went largely unnoticed by the reservation itself. For the last 5 years, we and the same cast of characters from the gidakiimanaaniwigamig camps ran a very place-based, research-based camp program, manoomin. The research was focused on manoomin (wild rice) which is a culturally important plant and food that grows in local lakes and wetlands. Manmade changes in hydrology, toxic metals from mining, and changing weather patterns due to climate change threaten this precious resource. Our plan was for 6-12 students to investigate the past, the present and the future conditions of manoomin on and around the reservation. It became clear by 3rd year that the research project, as conceived, was overly ambitious and could not be completed at the level we hoped in a camp setting (6 weekend camps = 6 full days per year). However, students felt that they were involved in research that was beneficial to their reservation, reported gaining self-confidence to pursue a career in science, and stated a desired to obtain a college degree. They also became aware of STEM employment opportunities on reservation that they could aim for. The camps also fostered a trusting relationship between researchers at Fond du Lac resource managers and the U. of MN. Based on these experiences, we proposed a new format for these

  16. Why MBA Education...? An Examination of the Reasons for Pursuing a Management Course

    Science.gov (United States)

    Dhar, Rajib Lochan

    2011-01-01

    This study tries to examine the causes which have led to the rise in the number of students pursuing an MBA in India. Qualitative methods have been used to collect the data. Data were collected via six focused group discussions with 60 postgraduate students associated with different management institutes in western India. In addition, data were…

  17. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  18. Understanding student participation and choice in science and technology education

    CERN Document Server

    Dillon, Justin; Ryder, Jim

    2015-01-01

    Drawing on data generated by the EU’s Interests and Recruitment in Science (IRIS) project, this volume examines the issue of young people’s participation in science, technology, engineering and mathematics education. With an especial focus on female participation, the chapters offer analysis deploying varied theoretical frameworks, including sociology, social psychology and gender studies. The material also includes reviews of relevant research in science education and summaries of empirical data concerning student choices in STEM disciplines in five European countries. Featuring both quantitative and qualitative analyses, the book makes a substantial contribution to the developing theoretical agenda in STEM education. It augments available empirical data and identifies strategies in policy-making that could lead to improved participation—and gender balance—in STEM disciplines. The majority of the chapter authors are IRIS project members, with additional chapters written by specially invited contribu...

  19. Science Educational Outreach Programs That Benefit Students and Scientists

    Science.gov (United States)

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  20. Using Art to Teach Students Science Outdoors: How Creative Science Instruction Influences Observation, Question Formation, and Involvement

    Science.gov (United States)

    Cone, Christina Schull

    Elementary education has become increasingly divided into subjects and focused on the demand for high math and reading scores. Consequently, teachers spend less time devoted to science and art instruction. However, teaching art and science is crucial to developing creative and rational thinking, especially for observation and questioning skills. In this study, third grade students attending an urban school in Portland, Oregon received instruction of an art strategy using observational and quantifying drawing techniques. This study examines, "Will an art strategy observing the local environment help students make observations and ask questions?" and "In what ways are student learning and perspectives of science affected by the art strategy?" The independent variable is the art strategy developed for this study. There are three dependent variables: quality of student observations, quality of questions, and themes on student learning and perspectives of science. I predicted students would develop strong observation and questioning skills and that students would find the strategy useful or have an increased interest in science. The art scores were high for relevance and detail, but not for text. There were significant correlations between art scores and questions. Interviews revealed three themes: observations create questions, drawing is helpful and challenging, and students connected to science. By examining science through art, students were engaged and created strong observations and questions. Teachers need to balance unstructured drawing time with scaffolding for optimal results. This study provides an integrated science and art strategy that teachers can use outdoors or adapt for the classroom.

  1. Latin American Network of students in Atmospheric Sciences and Meteorology

    Science.gov (United States)

    Cuellar-Ramirez, P.

    2017-12-01

    The Latin American Network of Students in Atmospheric Sciences and Meteorology (RedLAtM) is a civil nonprofit organization, organized by students from Mexico and some Latin- American countries. As a growing organization, providing human resources in the field of meteorology at regional level, the RedLAtM seeks to be a Latin American organization who helps the development of education and research in Atmospheric Sciences and Meteorology in order to engage and promote the integration of young people towards a common and imminent future: Facing the still unstudied various weather and climate events occurring in Latin America. The RedLAtM emerges from the analysis and observation/realization of a limited connection between Latin American countries around research in Atmospheric Sciences and Meteorology. The importance of its creation is based in cooperation, linking, research and development in Latin America and Mexico, in other words, to join efforts and stablish a regional scientific integration who leads to technological progress in the area of Atmospheric Sciences and Meteorology. As ultimate goal the RedLAtM pursuit to develop climatic and meteorological services for those countries unable to have their own programs, as well as projects linked with the governments of Latin American countries and private companies for the improvement of prevention strategies, research and decision making. All this conducing to enhance the quality of life of its inhabitants facing problems such as poverty and inequality.

  2. An Investigation of the Effects of Authentic Science Experiences Among Urban High School Students

    Science.gov (United States)

    Chapman, Angela

    Providing equitable learning opportunities for all students has been a persistent issue for some time. This is evident by the science achievement gap that still exists between male and female students as well as between White and many non-White student populations (NCES, 2007, 2009, 2009b) and an underrepresentation of female, African-American, Hispanic, and Native Americans in many science, technology, engineering, and mathematics (STEM) related careers (NCES, 2009b). In addition to gender and ethnicity, socioeconomic status and linguistic differences are also factors that can marginalize students in the science classroom. One factor attributed to the achievement gap and low participation in STEM career is equitable access to resources including textbooks, laboratory equipment, qualified science teachers, and type of instruction. Extensive literature supports authentic science as one way of improving science learning. However, the majority of students do not have access to this type of resource. Additionally, extensive literature posits that culturally relevant pedagogy is one way of improving education. This study examines students' participation in an authentic science experience and argues that this is one way of providing culturally relevant pedagogy in science classrooms. The purpose of this study was to better understand how marginalized students were affected by their participation in an authentic science experience, within the context of an algae biofuel project. Accordingly, an interpretivist approach was taken. Data were collected from pre/post surveys and tests, semi-structured interviews, student journals, and classroom observations. Data analysis used a mixed methods approach. The data from this study were analyzed to better understand whether students perceived the experience to be one of authentic science, as well as how students science identities, perceptions about who can do science, attitudes toward science, and learning of science practices

  3. Analyzing students' attitudes towards science during inquiry-based lessons

    Science.gov (United States)

    Kostenbader, Tracy C.

    Due to the logistics of guided-inquiry lesson, students learn to problem solve and develop critical thinking skills. This mixed-methods study analyzed the students' attitudes towards science during inquiry lessons. My quantitative results from a repeated measures survey showed no significant difference between student attitudes when taught with either structured-inquiry or guided-inquiry lessons. The qualitative results analyzed through a constant-comparative method did show that students generate positive interest, critical thinking and low level stress during guided-inquiry lessons. The qualitative research also gave insight into a teacher's transition to guided-inquiry. This study showed that with my students, their attitudes did not change during this transition according to the qualitative data however, the qualitative data did how high levels of excitement. The results imply that students like guided-inquiry laboratories, even though they require more work, just as much as they like traditional laboratories with less work and less opportunity for creativity.

  4. Depression in Nursing Students of Shiraz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    F Rafati

    2004-02-01

    Full Text Available Background: University students are important parts of all educational systems. They are susceptible to different psychiatric disturbances, which in turn may cause considerable problems with their course programs. Depression is among the most important indices for investigation on human mental health status. This research was planed to study the prevalence and characteristics of depression and its consequences (suicidality, hopelessness, etc. in nursing students at Shiraz University of Medical Sciences. Methods: All undergraduate nursing students at Fatemeh College of Nursing and Midwifery were tested with Beck Depression Inventory (BDI. Results: This research revealed that 60% of students were depressed, 34% of them had mild depression, 18.4% moderate, 6% relatively severe and 1.6% severe depression. Mean score of BDI was not significantly different between female and male subjects (13.8 ± 9 in females vs. 15.2 ± 10 in males; total 14.1 ± 11 Conclusions: This research shows that there is still a high proportion of University students having depression, which necessitates considerable attention to their problems. Keywords: Nursing Students, Beck Depression Inventory, Depression.

  5. Frames for Learning Science: Analyzing Learner Positioning in a Technology-Enhanced Science Project

    Science.gov (United States)

    Silseth, K.; Arnseth, H. C.

    2016-01-01

    In this article, we examine the relationship between how students are positioned in social encounters and how this influences learning in a technology-supported science project. We pursue this topic by focusing on the participation trajectory of one particular learner. The analysis shows that the student cannot be interpreted as one type of…

  6. Inquiry Learning in the Singaporean Context: Factors affecting student interest in school science

    Science.gov (United States)

    Jocz, Jennifer Ann; Zhai, Junqing; Tan, Aik Ling

    2014-10-01

    Recent research reveals that students' interest in school science begins to decline at an early age. As this lack of interest could result in fewer individuals qualified for scientific careers and a population unprepared to engage with scientific societal issues, it is imperative to investigate ways in which interest in school science can be increased. Studies have suggested that inquiry learning is one way to increase interest in science. Inquiry learning forms the core of the primary syllabus in Singapore; as such, we examine how inquiry practices may shape students' perceptions of science and school science. This study investigates how classroom inquiry activities relate to students' interest in school science. Data were collected from 425 grade 4 students who responded to a questionnaire and 27 students who participated in follow-up focus group interviews conducted in 14 classrooms in Singapore. Results indicate that students have a high interest in science class. Additionally, self-efficacy and leisure-time science activities, but not gender, were significantly associated with an increased interest in school science. Interestingly, while hands-on activities are viewed as fun and interesting, connecting learning to real-life and discussing ideas with their peers had a greater relation to student interest in school science. These findings suggest that inquiry learning can increase Singaporean students' interest in school science; however, simply engaging students in hands-on activities is insufficient. Instead, student interest may be increased by ensuring that classroom activities emphasize the everyday applications of science and allow for peer discussion.

  7. Cosmic Times: Engaging Students in Science through History and Journalism

    Science.gov (United States)

    Lochner, J. C.; Mattson, B. J.

    2009-12-01

    Cosmic Times tells the story of how our understanding of the nature of the universe has changed over the past 100 years. Designed to fulfill the need for quality science literature in the classroom, Cosmic Times takes the form of six posters, each mimicking the front page of a newspaper at a key point in this history, with articles describing the discoveries. These milestones include the confirmation of Einstein’s theory of gravity, Hubble’s evidence for an expanding universe, the detection of the microwave background, and finally the discovery of dark energy. Telling this story also involves tracing astronomer’s efforts to determine the size of the universe, understand the nature of supernovae, and comprehend the expansion of the universe. Through the scope of this history, students experience the process of science and how new technology and data change our ideas. The posters are accompanied by 28 lessons, designed for grades 7-12 by scientists and teachers and field-tested by third-party teachers in rural communities. The lessons teach the science concepts behind the discoveries, the process of science, and skills for science literacy. To facilitate these lessons and meet student’s individual science literacy needs, the articles are also available in two newsletter versions: one with the same articles as on the posters, the second at a slightly lower reading level. In addition, lessons include cross-curricular activities which explore the times and social circumstances of the discoveries. In a capstone lesson, students write and design the 2019 edition of Cosmic Times, not only predicting what we will know in the future, but also applying expository writing skills. In addition, an on-line Teacher Guide provides background material for all the articles. All these materials are available on the Cosmic Times website, http://cosmictimes.gsfc.nasa.gov/. In this presentation, we shall describe how Cosmic Times uses a journalistic storytelling approach to

  8. Career Coaches as a Source of Vicarious Learning for Racial and Ethnic Minority PhD Students in the Biomedical Sciences: A Qualitative Study.

    Science.gov (United States)

    Williams, Simon N; Thakore, Bhoomi K; McGee, Richard

    2016-01-01

    Many recent mentoring initiatives have sought to help improve the proportion of underrepresented racial and ethnic minorities (URMs) in academic positions across the biomedical sciences. However, the intractable nature of the problem of underrepresentation suggests that many young scientists may require supplemental career development beyond what many mentors are able to offer. As an adjunct to traditional scientific mentoring, we created a novel academic career "coaching" intervention for PhD students in the biomedical sciences. To determine whether and how academic career coaches can provide effective career-development-related learning experiences for URM PhD students in the biomedical sciences. We focus specifically on vicarious learning experiences, where individuals learn indirectly through the experiences of others. The intervention is being tested as part of a longitudinal randomized control trial (RCT). Here, we describe a nested qualitative study, using a framework approach to analyze data from a total of 48 semi-structured interviews from 24 URM PhD students (2 interviews per participant, 1 at baseline, 1 at 12-month follow-up) (16 female, 8 male; 11 Black, 12 Hispanic, 1 Native-American). We explored the role of the coach as a source of vicarious learning, in relation to the students' goal of being future biomedical science faculty. Coaches were resources through which most students in the study were able to learn vicariously about how to pursue, and succeed within, an academic career. Coaches were particularly useful in instances where students' research mentors are unable to provide such vicarious learning opportunities, for example because the mentor is too busy to have career-related discussions with a student, or because they have, or value, a different type of academic career to the type the student hopes to achieve. Coaching can be an important way to address the lack of structured career development that students receive in their home training

  9. Solar Science Digital Comic Series that promotes Science Literacy with Upper Elementary and Middle School Students

    Science.gov (United States)

    Kellagher, E.; Scherrer, D. K.; Buhr Sullivan, S. M.

    2013-12-01

    The SDO instruments (EVE, AIA and HMI) teams have created a digital comic book series for upper elementary and middle school students featuring solar science aficionados Camilla and Colours, 2 cool mascot characters. These comics may be printed or read on mobile devices and are available as a free download. Many teachers are looking for resources to use with their students via the IPad so our collaboration helps supply teachers with a great resource that teaches about solar concepts and helps dispel solar misconceptions. It doesn't come as a surprise to a lot of us, but a recent study confirms what's been theorized for years: Comics are a stronger learning tool than text books. Image-based storytelling is a powerful educational tool. Comics are probably more able to combine story and information simultaneously, more effectively and seamlessly, than almost any other medium. There's also a great potential to incorporate interactive elements into digital versions, so that more information can be presented on certain items on a page. For example, videos, animations and even historic footage and audio can be embedded into digital comics. Really, the possibilities are limited only by the creators' imaginations as to how to find new ways to create a rich experience that is interesting to explore for students. We are excited to unveil this new series of solar science comics that promotes science literacy with upper elementary and middle school students.

  10. COSEE-AK Ocean Science Fairs: A Science Fair Model That Grounds Student Projects in Both Western Science and Traditional Native Knowledge

    Science.gov (United States)

    Dublin, Robin; Sigman, Marilyn; Anderson, Andrea; Barnhardt, Ray; Topkok, Sean Asiqluq

    2014-01-01

    We have developed the traditional science fair format into an ocean science fair model that promoted the integration of Western science and Alaska Native traditional knowledge in student projects focused on the ocean, aquatic environments, and climate change. The typical science fair judging criteria for the validity and presentation of the…

  11. Students' self-regulation and teachers' influences in science: interplay between ethnicity and gender

    Science.gov (United States)

    Elstad, Eyvind; Turmo, Are

    2010-11-01

    The purpose of this study is to explore students' self-regulation and teachers' influence in science and to examine interplay between ethnicity and gender. Analysis of data from seven Oslo schools (1112 sampled students in the first year of high school) shows that the ethnic minority students reported using learning strategies in science more intensively than ethnic majority students and they had a stronger motivation to learn science. Ethnic majority students are defined here as students who were born in Norway and have at least one parent born in Norway. The study also shows that minority students generally evaluate their science teacher's influence on their learning more positively than the majority. The strongest interplay effects between gender and ethnicity are found in students' perceptions of the relevance of science, as well as their degree of negative responses to the pressure to learn science.

  12. How do students navigate and learn from nonlinear science texts: Can metanavigation support promote science learning?

    Science.gov (United States)

    Stylianou, Agni

    2003-06-01

    Digital texts which are based on hypertext and hypermedia technologies are now being used to support science learning. Hypertext offers certain opportunities for learning as well as difficulties that challenge readers to become metacognitively aware of their navigation decisions in order to trade both meaning and structure while reading. The goal of this study was to investigate whether supporting sixth grade students to monitor and regulate their navigation behavior while reading from hypertext would lead to better navigation and learning. Metanavigation support in the form of prompts was provided to groups of students who used a hypertext system called CoMPASS to complete a design challenge. The metanavigation prompts aimed at encouraging students to understand the affordances of the navigational aids in CoMPASS and use them to guide their navigation. The study was conducted in a real classroom setting during the implementation of CoMPASS in sixth grade science classes. Multiple sources of group and individual data were collected and analyzed. Measures included student's individual performance in a pre-science knowledge test, the Metacognitive Awareness of Reading Strategies Inventory (MARSI), a reading comprehension test and a concept map test. Process measures included log file information that captured group navigation paths during the use of CoMPASS. The results suggested that providing metanavigation support enabled the groups to make coherent transitions among the text units. Findings also revealed that reading comprehension, presence of metanavigation support and prior domain knowledge significantly predicted students' individual understanding of science. Implications for hypertext design and literacy research fields are discussed.

  13. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    Science.gov (United States)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  14. Student-Life Stress Level and its Related Factors among Medical Students of Hamadan University of Medical Sciences in 2015

    OpenAIRE

    Roya Nikanjam; Majid Barati; Saeed Bashirian*; Mohammad Babamiri; Ali Fattahi; Alireza Soltanian

    2016-01-01

    Background and Objectives: Student-life stress can lead to various negative consequences such as physical illness, mental disorders or exhaustion. The present study was conducted to evaluate the level of student life stress and its related factors among medical students of Hamadan University of Medical Sciences. Materials and Methods: This cross-sectional study applied multistage random sampling to select 500university students at Hamadan University of Medical Sciences during 2015. The dat...

  15. Effect of a Problem Based Simulation on the Conceptual Understanding of Undergraduate Science Education Students

    Science.gov (United States)

    Kumar, David Devraj; Sherwood, Robert D.

    2007-01-01

    A study of the effect of science teaching with a multimedia simulation on water quality, the "River of Life," on the science conceptual understanding of students (N = 83) in an undergraduate science education (K-9) course is reported. Teaching reality-based meaningful science is strongly recommended by the National Science Education Standards…

  16. Teacher students' dilemmas when teaching science through inquiry

    Science.gov (United States)

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-09-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE is rarely adopted in schools. Often barriers for teachers account for this lack, with the result that even good teachers struggle to teach science as inquiry. More importantly, studies indicate that several barriers and constraints could be ascribed to problems teacher students have at the university stage. Purpose: The purpose of this explorative investigation is to examine the problems teacher students have when teaching science through inquiry. In order to draw a holistic picture of these problems, we identified problems from three different points of view leading to the research question: What problems regarding IBSE do teacher students have from an objective, a subjective, and a self-reflective perspective? Design & method: Using video analysis and observation tools as well as qualitative content analysis and open questionnaires we identified problems from each perspective. Results: The objectively stated problems comprise the lack of essential features of IBSE especially concerning 'Supporting pupils' own investigations' and 'Guiding analysis and conclusions.' The subjectively perceived problems comprise concerns about 'Teachers' abilities' and 'Pupils' abilities,' 'Differentiated instruction' and institutional frame 'Conditions' while the self-reflectively noticed problems mainly comprise concerns about 'Allowing inquiry,' 'Instructional Aspects,' and 'Pupils' behavior.' Conclusions: Each of the three different perspectives provides plenty of problems, partially overlapping, partially complementing one another, and partially revealing completely new problems. Consequently, teacher educators have to consider these

  17. Comparison of Science-Technology-Society Approach and Textbook Oriented Instruction on Students' Abilities to Apply Science Concepts

    Science.gov (United States)

    Kapici, Hasan Ozgur; Akcay, Hakan; Yager, Robert E.

    2017-01-01

    It is important for students to learn concepts and using them for solving problems and further learning. Within this respect, the purpose of this study is to investigate students' abilities to apply science concepts that they have learned from Science-Technology-Society based approach or textbook oriented instruction. Current study is based on…

  18. Developing Greek Primary School Students' Critical Thinking through an Approach of Teaching Science which Incorporates Aspects of History of Science

    Science.gov (United States)

    Malamitsa, Katerina; Kasoutas, Michael; Kokkotas, Panagiotis

    2009-01-01

    In this paper, the development of sixth grade students' critical thinking skills in science courses is discussed relatively to the contribution of the integration of aspects of History of Science into instruction. Towards this direction a project on electromagnetism was designed and implemented aiming to engage primary school students in a…

  19. Uncovering Black/African American and Latina/o students' motivation to learn science: Affordances to science identity development

    Science.gov (United States)

    Mahfood, Denise Marcia

    The following dissertation reports on a qualitative exploration that serves two main goals: (1) to qualitatively define and highlight science motivation development of Black/African American and Latina/o students as they learn science in middle school, high school, and in college and (2) to reveal through personal narratives how successful entry and persistence in science by this particular group is linked to the development of their science identities. The targeted population for this study is undergraduate students of color in science fields at a college or university. The theoretical frameworks for this study are constructivist theory, motivation theory, critical theory, and identity theories. The methodological approach is narrative which includes students' science learning experiences throughout the course of their academic lives. I use The Science Motivation Questionnaire II to obtain baseline data to quantitatively assess for motivation to learn science. Data from semi-structured interviews from selected participants were collected, coded, and configured into a story, and emergent themes reveal the important role of science learning in both informal and formal settings, but especially in informal settings that contribute to better understandings of science and the development of science identities for these undergraduate students of color. The findings have implications for science teaching in schools and teacher professional development in science learning.

  20. Social Networking Addiction among Health Sciences Students in Oman

    Directory of Open Access Journals (Sweden)

    Ken Masters

    2015-08-01

    Full Text Available Objectives: Addiction to social networking sites (SNSs is an international issue with numerous methods of measurement. The impact of such addictions among health science students is of particular concern. This study aimed to measure SNS addiction rates among health sciences students at Sultan Qaboos University (SQU in Muscat, Oman. Methods: In April 2014, an anonymous English-language six-item electronic self-reporting survey based on the Bergen Facebook Addiction Scale was administered to a non-random cohort of 141 medical and laboratory science students at SQU. The survey was used to measure usage of three SNSs: Facebook (Facebook Inc., Menlo Park, California, USA, YouTube (YouTube, San Bruno, California, USA and Twitter (Twitter Inc., San Francisco, California, USA. Two sets of criteria were used to calculate addiction rates (a score of 3 on at least four survey items or a score of 3 on all six items. Work-related SNS usage was also measured. Results: A total of 81 students completed the survey (response rate: 57.4%. Of the three SNSs, YouTube was most commonly used (100%, followed by Facebook (91.4% and Twitter (70.4%. Usage and addiction rates varied significantly across the three SNSs. Addiction rates to Facebook, YouTube and Twitter, respectively, varied according to the criteria used (14.2%, 47.2% and 33.3% versus 6.3%, 13.8% and 12.8%. However, addiction rates decreased when workrelated activity was taken into account. Conclusion: Rates of SNS addiction among this cohort indicate a need for intervention. Additionally, the results suggest that addiction to individual SNSs should be measured and that workrelated activities should be taken into account during measurement.