WorldWideScience

Sample records for students develop understanding

  1. Chemical Reactions: What Understanding Do Students with Blindness Develop?

    Science.gov (United States)

    Lewis, Amy L. Micklos; Bodner, George M.

    2013-01-01

    This study examined the understanding of chemical equations developed by three students with blindness who were enrolled in the same secondary-school chemistry class. The students were interviewed while interpreting and balancing chemical equations. During the course of these interviews, the students produced diagrams using Braille symbols that…

  2. How student teachers’ understanding of the greenhouse effect develops during a teacher education programme

    Directory of Open Access Journals (Sweden)

    Margareta Ekborg

    2012-10-01

    Full Text Available This paper reports on a longitudinal study on how student teachers’ understanding of the greenhouse effect developed through a teacher education programme in mathematics and science for pupils aged 7-13. All student teachers, who were accepted to the programme one year, were followed trough 2.5 years of the programme. The student teachers took science courses in which they were taught about the greenhouse effect.Data was collected by questionnaires three times. The results show that a majority of the student teachers developed an adequate understanding of the greenhouse effect during the teaching programme. Several of the students developed further in the second science course. However a rather big group of students with poor understanding did not develop any further in the second science course and no one demonstrated full understanding. Different ways of collecting data and categorising responses affected how the students’ understanding was interpreted.

  3. Understanding Female Students' Physics Identity Development

    Science.gov (United States)

    Hazari, Zahra

    2017-01-01

    While the gender gap in physics participation is a known problem, practical strategies that may improve the situation are not well understood. As physics education researchers, we draw on evidence to help inform us of what may or may not be working. To this end, physics identity has proven to be a useful framework for understanding and predicting participation in physics. Drawing on data from national surveys of college students, case studies in physics classes, and surveys of undergraduate women in physics, we identify strategies that are predictive of female students' physics identity development from their high school and undergraduate physics experiences. These findings will be discussed as well as future directions for using this research to increase the recruitment of women to physics-related careers. NSF Grant # 1431846.

  4. Development of a Student-Centered Instrument to Assess Middle School Students' Conceptual Understanding of Sound

    Science.gov (United States)

    Eshach, Haim

    2014-01-01

    This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of sound: sound…

  5. Developing Intercultural Understanding for Study Abroad: Students' and Teachers' Perspectives on Pre-Departure Intercultural Learning

    Science.gov (United States)

    Holmes, P.; Bavieri, L.; Ganassin, S.

    2015-01-01

    This study reports on students' and teachers' perspectives on a programme designed to develop Erasmus students' intercultural understanding prior to going abroad. We aimed to understand how students and their teachers perceived pre-departure materials in promoting their awareness of key concepts related to interculturality (e.g., essentialism,…

  6. Assessing Student Understanding of Physical Hydrology

    Science.gov (United States)

    Castillo, A. J.; Marshall, J.; Cardenas, M. B.

    2012-12-01

    Our objective is to characterize and assess upper division and graduate student thinking by developing and testing an assessment tool for a physical hydrology class. The class' learning goals are: (1) Quantitative process-based understanding of hydrologic processes, (2) Experience with different methods in hydrology, (3) Learning, problem solving, communication skills. These goals were translated into two measurable tasks asked of students in a questionnaire: (1) Describe the significant processes in the hydrological cycle and (2) Describe laws governing these processes. A third question below assessed the students' ability to apply their knowledge: You have been hired as a consultant by __ to (1) assess how urbanization and the current drought have affected a local spring and (2) predict what the effects will be in the future if the drought continues. What information would you need to gather? What measurements would you make? What analyses would you perform? Student and expert responses to the questions were then used to develop a rubric to score responses. Using the rubric, 3 researchers independently blind-coded the full set of pre and post artifacts, resulting in 89% inter-rater agreement on the pre-tests and 83% agreement on the post-tests. We present student scores to illustrate the use of the rubric and to characterize student thinking prior to and following a traditional course. Most students interpreted Q1 in terms of physical processes affecting the water cycle, the primary organizing framework for hydrology, as intended. On the pre-test, one student scored 0, indicating no response, on this question. Twenty students scored 1, indicating rudimentary understanding, 2 students scored a 2, indicating a basic understanding, and no student scored a 3. Student scores on this question improved on the post-test. On the 22 post-tests that were blind scored, 11 students demonstrated some recognition of concepts, 9 students showed a basic understanding, and 2

  7. Understanding College Students' Civic Identity Development: A Grounded Theory

    Science.gov (United States)

    Johnson, Matthew R.

    2017-01-01

    This article presents the results of a study designed to understand the development of college students' civic identity--that is, an identity encompassing their knowledge, attitudes, values, and actions regarding civic engagement. Grounded theory was used to examine the experiences and attitudes of 19 college seniors who manifested strong civic…

  8. Mapping What Young Students Understand and Value Regarding Sustainable Development

    Science.gov (United States)

    Manni, Annika; Sporre, Karin; Ottander, Christina

    2013-01-01

    This paper presents the results of a study carried out to investigate how 10-12 year old Swedish students understand and value the issue of sustainable development. The responses from open-ended questions in a questionnaire have been analyzed through a content analysis based on a phenomenographic approach. The results show that there are…

  9. Understanding by Design (UbD) in EFL Teaching: Teachers' Professional Development and Students' Achievement

    Science.gov (United States)

    Yurtseven, Nihal; Altun, Sertel

    2017-01-01

    Concepts such as teachers' professional development and students' achievement act as the driving force for the development of each in a causal relationship in EFL teaching, as in many other disciplines. The purpose of this study is to investigate the change Understanding by Design (UbD) made on teachers' professional development and students'…

  10. Developing Critical Understanding in HRM Students: Using Innovative Teaching Methods to Encourage Deep Approaches to Study

    Science.gov (United States)

    Butler, Michael J. R.; Reddy, Peter

    2010-01-01

    Purpose: This paper aims to focus on developing critical understanding in human resource management (HRM) students in Aston Business School, UK. The paper reveals that innovative teaching methods encourage deep approaches to study, an indicator of students reaching their own understanding of material and ideas. This improves student employability…

  11. Development of Object-understanding Among Students in the Humanities

    DEFF Research Database (Denmark)

    Lindholm, Morten

    This paper describes a on-going empirical study, inspired by phenomenography, aiming at understanding how students from the humanities learn the concepts of objects and object-orientation during a programming course.  ......This paper describes a on-going empirical study, inspired by phenomenography, aiming at understanding how students from the humanities learn the concepts of objects and object-orientation during a programming course.  ...

  12. Developing Conceptual Understanding of Fractions with Year Five and Six Students

    Science.gov (United States)

    Mills, Judith

    2016-01-01

    This paper presents findings from classroom observations of one teacher (Beth). It focusses on the development of conceptual understanding of fractions with her students, articulated in Kieren's sub-constructs (Kieren, 1980,1988), and Hansen's progressions (Hansen, 2005). The study covers three lessons within a six week unit. Findings from this…

  13. How Well Do Students in Secondary School Understand Temporal Development of Dynamical Systems?

    Science.gov (United States)

    Forjan, Matej; Grubelnik, Vladimir

    2015-01-01

    Despite difficulties understanding the dynamics of complex systems only simple dynamical systems without feedback connections have been taught in secondary school physics. Consequently, students do not have opportunities to develop intuition of temporal development of systems, whose dynamics are conditioned by the influence of feedback processes.…

  14. Characterising the Development of the Understanding of Human Body Systems in High-School Biology Students--A Longitudinal Study

    Science.gov (United States)

    Snapir, Zohar; Eberbach, Catherine; Ben-Zvi-Assaraf, Orit; Hmelo-Silver, Cindy; Tripto, Jaklin

    2017-01-01

    Science education today has become increasingly focused on research into complex natural, social and technological systems. In this study, we examined the development of high-school biology students' systems understanding of the human body, in a three-year longitudinal study. The development of the students' system understanding was evaluated…

  15. Student understanding development in chemistry concepts through constructivist-informed laboratory and science camp process in secondary school

    Science.gov (United States)

    Pathommapas, Nookorn

    2018-01-01

    Science Camp for Chemistry Concepts was the project which designed to provide local students with opportunities to apply chemistry concepts and thereby developing their 21st century skills. The three study purposes were 1) to construct and develop chemistry stations for encouraging students' understandings in chemistry concepts based on constructivist-informed laboratory, 2) to compare students' understandings in chemistry concepts before and after using chemistry learning stations, and 3) to study students' satisfactions of using their 21st century skills in science camp activities. The research samples were 67 students who attended the 1-day science camp. They were levels 10 to 11 students in SumsaoPittayakarn School, UdonThani Province, Thailand. Four constructivist-informed laboratory stations of chemistry concepts were designed for each group. Each station consisted of a chemistry scenario, a question, answers in tier 1 and supporting reasons in tier 2, and 4 sets of experimental instruments. Four to five-member subgroups of four student groups parallel participated in laboratory station for an hour in each station. Student activities in each station concluded of individual pretest, group prediction, experimental design, testing out and collection data, interpreting the results, group conclusion, and individual post-test. Data collection was done by station mentors using two-tier multiple choice questions, students' written work and interviews. Data triangulation was used for interpreting and confirming students' understandings of chemistry concepts which divided into five levels, Sound Understanding (SU), Partial Understanding (PU), Specific Misconception (SM), No Understanding (NU) and No Response (NR), before and after collaborating at each station. The study results found the following: 1) four constructivist-laboratory stations were successfully designed and used to investigate student' understandings in chemistry concepts via collaborative workshop of

  16. Race cars and the hellbox:Understanding the development of proficiency among digital art students

    OpenAIRE

    Paquette, Andrew; Reedy, Gabriel; Hatzipanagos, Stylianos

    2016-01-01

    Educating students in the discipline of digital art to a professional standard has generally proven difficult. In an effort to understand the problem, a first-year undergraduate modelling course cohort was observed. Some students in this course progressed from being novices to acquiring proficiency during the nine-week term of the course. Computer Graphics (CG) modelling professionals evaluated student work to confirm their progress. Traditional models of proficiency development expect that p...

  17. Characterising the development of the understanding of human body systems in high-school biology students - a longitudinal study

    Science.gov (United States)

    Snapir, Zohar; Eberbach, Catherine; Ben-Zvi-Assaraf, Orit; Hmelo-Silver, Cindy; Tripto, Jaklin

    2017-10-01

    Science education today has become increasingly focused on research into complex natural, social and technological systems. In this study, we examined the development of high-school biology students' systems understanding of the human body, in a three-year longitudinal study. The development of the students' system understanding was evaluated using the Components Mechanisms Phenomena (CMP) framework for conceptual representation. We coded and analysed the repertory grid personal constructs of 67 high-school biology students at 4 points throughout the study. Our data analysis builds on the assumption that systems understanding entails a perception of all the system categories, including structures within the system (its Components), specific processes and interactions at the macro and micro levels (Mechanisms), and the Phenomena that present the macro scale of processes and patterns within a system. Our findings suggest that as the learning process progressed, the systems understanding of our students became more advanced, moving forward within each of the major CMP categories. Moreover, there was an increase in the mechanism complexity presented by the students, manifested by more students describing mechanisms at the molecular level. Thus, the 'mechanism' category and the micro level are critical components that enable students to understand system-level phenomena such as homeostasis.

  18. Understanding Durban University of Technology Students ...

    African Journals Online (AJOL)

    African university students' perceptions and understandings of biodiversity. This paper seeks to describe the knowledge, attitudes and perceptions of students at Durban University of ..... Doctoral dissertation, New York State School of Industrial and Labor ... Journal of Counseling and Development, 85(2), 189–195.

  19. Development of psychosocial case studies by students to improve their ability to understand and analyze human behavior

    OpenAIRE

    Saldaña, Omar; Rodríguez Carballeira, Álvaro; Espelt, Esteve; Jiménez, Yirsa; Porrúa, Clara; Escartín Solanelles, Jordi; Castrechini Trotta, Ángela; Codina, Núria (Codina Mata); Pestana, José Vicente; Vidal i Moranta, Tomeu

    2015-01-01

    This study presents an active learning methodology based on the development and analysis of case studies by college students and explores its effects on academic performance and on students' capacity of understanding and analysing human behaviour. A group of 54 students who were taking the course Social Psychology at the University of Barcelona developed written stories where psychosocial concepts were represented. Results showed that participants, after developing their own case studies, imp...

  20. Investigating student understanding of simple harmonic motion

    Science.gov (United States)

    Somroob, S.; Wattanakasiwich, P.

    2017-09-01

    This study aimed to investigate students’ understanding and develop instructional material on a topic of simple harmonic motion. Participants were 60 students taking a course on vibrations and wave and 46 students taking a course on Physics 2 and 28 students taking a course on Fundamental Physics 2 on the 2nd semester of an academic year 2016. A 16-question conceptual test and tutorial activities had been developed from previous research findings and evaluated by three physics experts in teaching mechanics before using in a real classroom. Data collection included both qualitative and quantitative methods. Item analysis and whole-test analysis were determined from student responses in the conceptual test. As results, most students had misconceptions about restoring force and they had problems connecting mathematical solutions to real motions, especially phase angle. Moreover, they had problems with interpreting mechanical energy from graphs and diagrams of the motion. These results were used to develop effective instructional materials to enhance student abilities in understanding simple harmonic motion in term of multiple representations.

  1. What Science Is about--Development of the Scientific Understanding of Secondary School Students

    Science.gov (United States)

    Cincera, Jan; Medek, Michal; Cincera, Pavel; Lupac, Miroslav; Tichá, Irena

    2017-01-01

    Background: Development of scientific understanding of secondary school students is considered to be one of the goals of environmental education. However, it is not quite clear what instructional strategies and what other factors contribute to the effectiveness of environmental education programs promoting this goal. Purpose: The aim was to…

  2. Assessing and Improving Student Understanding of Tree-Thinking

    Science.gov (United States)

    Kummer, Tyler A.

    Evolution is the unifying theory of biology. The importance of understanding evolution by those who study the origins, diversification and diversity life cannot be overstated. Because of its importance, in addition to a scientific study of evolution, many researchers have spent time studying the acceptance and the teaching of evolution. Phylogenetic Systematics is the field of study developed to understand the evolutionary history of organisms, traits, and genes. Tree-thinking is the term by which we identify concepts related to the evolutionary history of organisms. It is vital that those who undertake a study of biology be able to understand and interpret what information these phylogenies are meant to convey. In this project, we evaluated the current impact a traditional study of biology has on the misconceptions students hold by assessing tree-thinking in freshman biology students to those nearing the end of their studies. We found that the impact of studying biology was varied with some misconceptions changing significantly while others persisted. Despite the importance of tree-thinking no appropriately developed concept inventory exists to measure student understanding of these important concepts. We developed a concept inventory capable of filling this important need and provide evidence to support its use among undergraduate students. Finally, we developed and modified activities as well as courses based on best practices to improve teaching and learning of tree-thinking and organismal diversity. We accomplished this by focusing on two key questions. First, how do we best introduce students to tree-thinking and second does tree-thinking as a course theme enhance student understanding of not only tree-thinking but also organismal diversity. We found important evidence suggesting that introducing students to tree-thinking via building evolutionary trees was less successful than introducing the concept via tree interpretation and may have in fact introduced or

  3. Enhancing Dental Students' Understanding of Poverty Through Simulation.

    Science.gov (United States)

    Lampiris, Lewis N; White, Alex; Sams, Lattice D; White, Tiffany; Weintraub, Jane A

    2017-09-01

    Dental students should develop an understanding of the barriers to and frustrations with accessing dental care and maintaining optimal oral health experienced by persons with limited resources rather than blaming the patient or caregiver. Developing this understanding may be aided by helping students learn about the lives of underserved and vulnerable patients they will encounter not only in extramural rotations, but throughout their careers. The aim of this study was to determine if dental students' understanding of daily challenges faced by families with low income changed as a result of a poverty simulation. In 2015 and 2016, an experiential poverty simulation was used to prepare third-year dental students at one U.S. dental school for their upcoming required community-based rotations. In 2015, United Way staff conducted the simulation using the Missouri Community Action Poverty Simulation (CAPS); in 2016, faculty members trained in CAPS conducted the simulation using a modified version of the tool. In the simulation, students were assigned to family units experiencing various types of hardship and were given specific identities for role-playing. A retrospective pretest and a posttest were used to assess change in levels of student understanding after the simulation. Students assessed their level of understanding in five domains: financial pressures, difficult choices, difficulties in improving one's situation, emotional stressors, and impact of community resources for those living in poverty. The survey response rates in 2015 and 2016 were 86% and 74%, respectively. For each of the five domains, students' understanding increased from 58% to 74% per domain. The majority reported that the exercise was very valuable or somewhat valuable (74% in 2015, 88% in 2016). This study found that a poverty simulation was effective in raising dental students' understanding of the challenges faced by low-income families. It also discovered that framing the issues in the

  4. Understanding Mathematics Classroom Instruction Through Students and Teachers

    OpenAIRE

    Schenke, Katerina

    2015-01-01

    High quality instruction is necessary for students of all ages to develop a deep understanding of mathematics. Value-added models, a common approach used to describe teachers and classroom practices, are defined by the student standardized achievement gains teachers elicit. They may, however, fail to account for the complexity of mathematics instruction as it actually occurs in the classroom. To truly understand both a teacher’s impact on his/her students and how best to improve student learn...

  5. Developing Deaf Students Fraction Skills Requires Understanding Magnitude and Whole Number Division

    Science.gov (United States)

    Mousley, Keith; Kelly, Ronald R.

    2018-01-01

    Research has shown that fraction magnitude and whole number division are important precursors to learning and understanding fractions. Deaf and hard-of-hearing (DHH) students are consistently challenged with learning fractions from K-12 through college. Sixty DHH college students were tested for both their understanding of magnitude between two…

  6. The Relationship between Student Leaders' Constructive Development, Their Leadership Identity, and Their Understanding of Leadership

    Science.gov (United States)

    Sessa, Valerie I.; Ploskonka, Jillian; Alvarez, Elphys L.; Dourdis, Steven; Dixon, Christopher; Bragger, Jennifer D.

    2016-01-01

    The purpose of our research was to use Day, Harrison, and Halpin's, (2009) theory of leadership development as a premise to investigate how students' constructive development is related to their leader identity development and understanding of leadership. Baxter Magolda's Model of Epistemological Reflection (MER, 1988, 2001) was used to understand…

  7. Improving Students' Understanding of Quantum Measurement

    International Nuclear Information System (INIS)

    Zhu Guangtian; Singh, Chandralekha

    2010-01-01

    We describe the difficulties advanced undergraduate and graduate students have with quantum measurement. To reduce these difficulties, we have developed research-based learning tools such as the Quantum Interactive Learning Tutorial (QuILT) and peer instruction tools. A preliminary evaluation shows that these learning tools are effective in improving students' understanding of concepts related to quantum measurement.

  8. Toward Understanding Business Student Professional Development Engagement

    Science.gov (United States)

    Blau, Gary; Blessley, Misty; Kunkle, Matthew; Schirmer, Michael; Regan, Laureen

    2017-01-01

    Professional development engagement (PDE) is defined as the level of perceived undergraduate engagement in professional development activities. An 11-item measure of PDE exhibited a good reliability. Using a complete data sample of 467 graduating business undergraduates, four variable sets (student background or precollege variables,…

  9. How Earth Educators Can Help Students Develop a Holistic Understanding of Sustainability

    Science.gov (United States)

    Curren, R. R.; Metzger, E. P.

    2017-12-01

    With their expert understanding of planetary systems, Earth educators play a pivotal role in helping students understand the scientific dimensions of solution-resistant ("wicked") challenges to sustainability that arise from complex interactions between intertwined and co-evolving natural and human systems. However, teaching the science of sustainability in isolation from consideration of human values and social dynamics leaves students with a fragmented understanding and obscures the underlying drivers of unsustainability. Geoscience instructors who wish to address sustainability in their courses may feel ill-equipped to engage students in investigation of the fundamental nature of sustainability and its social and ethical facets. This presentation will blend disciplinary perspectives from Earth system science, philosophy, psychology, and anthropology to: 1) outline a way to conceptualize sustainability that synthesizes scientific, social, and ethical perspectives and 2) provide an overview of resources and teaching strategies designed to help students connect science content to the socio-political dimensions of sustainability through activities and assignments that promote active learning, systems thinking, reflection, and collaborative problem-solving.

  10. Why should I care? Engaging students in conceptual understanding using global context to develop social attitudes.

    Science.gov (United States)

    Forder, S. E.; Welstead, C.; Pritchard, M.

    2014-12-01

    A glance through the Harvard Business Review reveals many suggestions and research pieces reviewing sales and marketing techniques. Most educators will be familiar with the notion that making accurate first impressions and being responsive, whilst maintaining pace is critical to engaging an audience. There are lessons to be learnt from industry that can significantly impact upon our teaching. Eisenkraft, in his address to the NSTA, proposed four essential questions. This presentation explores one of those questions: 'Why should I care?', and discusses why this question is crucial for engaging students by giving a clear purpose for developing their scientific understanding. Additionally, this presentation explores how The ISF Academy has adapted the NGSS, using the 14 Grand Engineering Challenges and the IB MYP, to provide current, authentic global contexts, in order to give credibility to the concepts, understandings and skills being learnt. The provision of global contexts across units and within lessons supports a platform for students to have the freedom to explore their own sense of social responsibility. The Science Department believes that planning lessons with tasks that elaborate on the student's new conceptualisations, has helped to transfer the student's new understanding into social behavior beyond the classroom. Furthermore, extension tasks have been used to transfer conceptual understanding between different global contexts.

  11. How College Students Understand Their Self-Control Development: A Qualitative Analysis

    Science.gov (United States)

    Cliburn Allen, Cara; Glanzer, Perry

    2017-01-01

    Recent research has shown the importance of the positive benefits of high-levels of self-control for both individuals and society. Yet, we know only a limited amount about how college students understand and apply self-control. This qualitative study examined how a national sample of 75 students defined self-control, whether or not they believed…

  12. Upper High School Students' Understanding of Electromagnetism

    Science.gov (United States)

    Saglam, Murat; Millar, Robin

    2006-01-01

    Although electromagnetism is an important component of upper secondary school physics syllabuses in many countries, there has been relatively little research on students' understanding of the topic. A written test consisting of 16 diagnostic questions was developed and used to survey the understanding of electromagnetism of upper secondary school…

  13. Evaluation of Students' Conceptual Understanding of Malaria

    Science.gov (United States)

    Cheong, Irene Poh-Ai; Treagust, David; Kyeleve, Iorhemen J.; Oh, Peck-Yoke

    2010-01-01

    In this study, a two-tier diagnostic test for understanding malaria was developed and administered to 314 Bruneian students in Year 12 and in a nursing diploma course. The validity, reliability, difficulty level, discriminant indices, and reading ability of the test were examined and found to be acceptable in terms of measuring students'…

  14. Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment

    Science.gov (United States)

    Stone, Elisa M.

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations—for example, hypothesizing, data analysis, or use of controls—and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level. PMID:24591508

  15. Guiding students to develop an understanding of scientific inquiry: a science skills approach to instruction and assessment.

    Science.gov (United States)

    Stone, Elisa M

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations-for example, hypothesizing, data analysis, or use of controls-and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level.

  16. Concept Mapping as a Tool to Develop and Measure Students' Understanding in Science

    Science.gov (United States)

    Tan, Sema; Erdimez, Omer; Zimmerman, Robert

    2017-01-01

    Concept maps measured a student's understanding of the complexity of concepts, and interrelationships. Novak and Gowin (1984) claimed that the continuous use of concept maps increased the complexity and interconnectedness of students' understanding of relationships between concepts in a particular science domain. This study has two purposes; the…

  17. Supporting students with disabilities--promoting understanding amongst mentors in practice.

    Science.gov (United States)

    Tee, Stephen; Cowen, Michelle

    2012-01-01

    Good practice demands a clinical practice culture positively disposed to students with disabilities. Equality legislation seeks to protect those with a disability from either direct or indirect discrimination. The balance between providing "reasonable adjustments" for the student, whilst ensuring "Fitness to Practice", and ultimate employability, requires a close partnership between higher education and practice mentors. This paper reports on the development and evaluation of a range of interactive resources, used in the preparation of mentors to help them address the specific learning needs of disabled students. The evaluation revealed the benefit of student 'stories' in helping mentors to understand the support needs of disabled students and ensure reasonable adjustments are implemented in compliance with disability legislation. The interactive resources have been helpful in promoting positive action towards disabled students' learning, empathic understanding of mental health issues and knowledge and skills acquisition in support of dyslexic students. Implementing reasonable adjustments in practice requires a close working partnership between HEI's and mentors who appreciate support in understanding the development and application of coping strategies to overcome disabilities. Effective preparation of mentors is essential to ensure that opportunities for disabled students to succeed are maximised. Copyright © 2011. Published by Elsevier Ltd.

  18. Development and Application of a Two-Tier Multiple-Choice Diagnostic Test for High School Students' Understanding of Cell Division and Reproduction

    Science.gov (United States)

    Sesli, Ertugrul; Kara, Yilmaz

    2012-01-01

    This study involved the development and application of a two-tier diagnostic test for measuring students' understanding of cell division and reproduction. The instrument development procedure had three general steps: defining the content boundaries of the test, collecting information on students' misconceptions, and instrument development.…

  19. Standing in the Hallway Improves Students' Understanding of Conformity

    Science.gov (United States)

    Lawson, Timothy J.; Haubner, Richard R.; Bodle, James H.

    2013-01-01

    To help beginning psychology students understand how they are influenced by social pressures to conform, we developed a demonstration designed to elicit their conformity to a small group of students standing in the hallway before class. Results showed the demonstration increased students' recognition of their own tendency to conform, knowledge of…

  20. Grade six students' understanding of the nature of science

    Science.gov (United States)

    Cochrane, Donald Brian

    The goal of scientific literacy requires that students develop an understanding of the nature of science to assist them in the reasoned acquisition of science concepts and in their future role as citizens in a participatory democracy. The purpose of this study was to investigate and describe the range of positions that grade six students hold with respect to the nature of science and to investigate whether gender or prior science education was related to students' views of the nature of science. Two grade six classes participated in this study. One class was from a school involved in a long-term elementary science curriculum project. The science curriculum at this school involved constructivist epistemology and pedagogy and a realist ontology. The curriculum stressed hands-on, open-ended activities and the development of science process skills. Students were frequently involved in creating and testing explanations for physical phenomena. The second class was from a matched school that had a traditional science program. Results of the study indicated that students hold a wider range of views of the nature of science than previously documented. Student positions ranged from having almost no understanding of the nature of science to those expressing positions regarding the nature of science that were more developed than previous studies had documented. Despite the range of views documented, all subjects held realist views of scientific knowledge. Contrary to the literature, some students were able to evaluate a scientific theory in light of empirical evidence that they had generated. Results also indicated that students from the project school displayed more advanced views of the nature of science than their matched peers. However, not all students benefited equally from their experiences. No gender differences were found with respect to students' understanding of the nature of science.

  1. Students' Understanding of Quadratic Equations

    Science.gov (United States)

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  2. The Co-Creation of Caring Student-Teacher Relationships: Does Teacher Understanding Matter?

    Science.gov (United States)

    Cooper, Kristy S.; Miness, Andrew

    2014-01-01

    This study explores the role of high school students' perceptions of teacher understanding in the development of caring student-teacher relationships. Whereas past research has embedded understanding as a facet of care, this research distinguishes between care and understanding to examine whether and how understanding is necessary for care.…

  3. Science Olympiad students' nature of science understandings

    Science.gov (United States)

    Philpot, Cindy J.

    2007-12-01

    Recent reform efforts in science education focus on scientific literacy for all citizens. In order to be scientifically literate, an individual must have informed understandings of nature of science (NOS), scientific inquiry, and science content matter. This study specifically focused on Science Olympiad students' understanding of NOS as one piece of scientific literacy. Research consistently shows that science students do not have informed understandings of NOS (Abd-El-Khalick, 2002; Bell, Blair, Crawford, and Lederman, 2002; Kilcrease and Lucy, 2002; Schwartz, Lederman, and Thompson, 2001). However, McGhee-Brown, Martin, Monsaas and Stombler (2003) found that Science Olympiad students had in-depth understandings of science concepts, principles, processes, and techniques. Science Olympiad teams compete nationally and are found in rural, urban, and suburban schools. In an effort to learn from students who are generally considered high achieving students and who enjoy science, as opposed to the typical science student, the purpose of this study was to investigate Science Olympiad students' understandings of NOS and the experiences that formed their understandings. An interpretive, qualitative, case study method was used to address the research questions. The participants were purposefully and conveniently selected from the Science Olympiad team at a suburban high school. Data collection consisted of the Views of Nature of Science -- High School Questionnaire (VNOS-HS) (Schwartz, Lederman, & Thompson, 2001), semi-structured individual interviews, and a focus group. The main findings of this study were similar to much of the previous research in that the participants had informed understandings of the tentative nature of science and the role of inferences in science, but they did not have informed understandings of the role of human imagination and creativity, the empirical nature of science, or theories and laws. High level science classes and participation in

  4. The understanding of the students about the nature of light in recursive curriculum

    Directory of Open Access Journals (Sweden)

    Geide Rosa Coelho

    2010-01-01

    Full Text Available We report an inquiry on the development of students' understanding about the nature of light. The study happened in a learning environment with a recursive and spiral Physics syllabus. We investigated the change in students' understanding about the nature of light during their 3rd year in High School, and the level of understanding about this subject achieved by students at the end of this year. To assess the students' understanding, we developed an open questionnaire form and a set of hierarchical categories, consisting of five different models about the nature of light. The questionnaire was used to access the students´ understanding at the beginning and at the end of the third level of the recursive curriculum. The results showed that students have a high level of prior knowledge, and also that the Physics learning they experienced had enhanced their understanding, despite the effects are not verified in all the Physics classes. By the end of the third year, most of the students explain the nature of light using or a corpuscular electromagnetic model or a dual electromagnetic model, but some students use these models with inconsistencies in their explanations.

  5. Students' understandings of electrochemistry

    Science.gov (United States)

    O'Grady-Morris, Kathryn

    Electrochemistry is considered by students to be a difficult topic in chemistry. This research was a mixed methods study guided by the research question: At the end of a unit of study, what are students' understandings of electrochemistry? The framework of analysis used for the qualitative and quantitative data collected in this study was comprised of three categories: types of knowledge used in problem solving, levels of representation of knowledge in chemistry (macroscopic, symbolic, and particulate), and alternative conceptions. Although individually each of the three categories has been reported in previous studies, the contribution of this study is the inter-relationships among them. Semi-structured, task-based interviews were conducted while students were setting up and operating electrochemical cells in the laboratory, and a two-tiered, multiple-choice diagnostic instrument was designed to identify alternative conceptions that students held at the end of the unit. For familiar problems, those involving routine voltaic cells, students used a working-forwards problem-solving strategy, two or three levels of representation of knowledge during explanations, scored higher on both procedural and conceptual knowledge questions in the diagnostic instrument, and held fewer alternative conceptions related to the operation of these cells. For less familiar problems, those involving non-routine voltaic cells and electrolytic cells, students approached problem-solving with procedural knowledge, used only one level of representation of knowledge when explaining the operation of these cells, scored higher on procedural knowledge than conceptual knowledge questions in the diagnostic instrument, and held a greater number of alternative conceptions. Decision routines that involved memorized formulas and procedures were used to solve both quantitative and qualitative problems and the main source of alternative conceptions in this study was the overgeneralization of theory

  6. Veterinary students' understanding of a career in practice.

    Science.gov (United States)

    Tomlin, J L; Brodbelt, D C; May, S A

    2010-06-19

    Lack of a clear perception of the realities of a career in veterinary medicine could adversely affect young graduates' satisfaction with the profession and their long-term commitment to it. Veterinary students' understanding of a career in practice were explored. Traditional-entry first-year and final-year students, as well as entry-level 'Gateway' (widening participation) students, were invited to complete a questionnaire exploring their pre-university experiences and their understandings of a career in general practice. Broadly speaking, the undergraduate students taking part in the survey (the majority of whom were entry-level students) had a realistic view of average weekly working hours, out-of-hours duties and the development of their remuneration packages over the course of their careers. The main attractions of the profession were working with animals and the perception of a rewarding job. The main concerns were making mistakes and balancing work and home life. The vast majority of students wanted to pursue a career in general practice, and other career opportunities did not appear to be well understood, particularly by entry-level students.

  7. Challenges and Changes: Developing Teachers' and Initial Teacher Education Students' Understandings of the Nature of Science

    Science.gov (United States)

    Ward, Gillian; Haigh, Mavis

    2017-12-01

    Teachers need an understanding of the nature of science (NOS) to enable them to incorporate NOS into their teaching of science. The current study examines the usefulness of a strategy for challenging or changing teachers' understandings of NOS. The teachers who participated in this study were 10 initial teacher education chemistry students and six experienced teachers from secondary and primary schools who were introduced to an explicit and reflective activity, a dramatic reading about a historical scientific development. Concept maps were used before and after the activity to assess teachers' knowledge of NOS. The participants also took part in a focus group interview to establish whether they perceived the activity as useful in developing their own understanding of NOS. Initial analysis led us to ask another group, comprising seven initial teacher education chemistry students, to take part in a modified study. These participants not only completed the same tasks as the previous participants but also completed a written reflection commenting on whether the activity and focus group discussion enhanced their understanding of NOS. Both Lederman et al.'s (Journal of Research in Science Teaching, 39(6), 497-521, 2002) concepts of NOS and notions of "naive" and "informed" understandings of NOS and Hay's (Studies in Higher Education, 32(1), 39-57, 2007) notions of "surface" and "deep" learning were used as frameworks to examine the participants' specific understandings of NOS and the depth of their learning. The ways in which participants' understandings of NOS were broadened or changed by taking part in the dramatic reading are presented. The impact of the data-gathering tools on the participants' professional learning is also discussed.

  8. Design and Development Computer-Based E-Learning Teaching Material for Improving Mathematical Understanding Ability and Spatial Sense of Junior High School Students

    Science.gov (United States)

    Nurjanah; Dahlan, J. A.; Wibisono, Y.

    2017-02-01

    This paper aims to make a design and development computer-based e-learning teaching material for improving mathematical understanding ability and spatial sense of junior high school students. Furthermore, the particular aims are (1) getting teaching material design, evaluation model, and intrument to measure mathematical understanding ability and spatial sense of junior high school students; (2) conducting trials computer-based e-learning teaching material model, asessment, and instrument to develop mathematical understanding ability and spatial sense of junior high school students; (3) completing teaching material models of computer-based e-learning, assessment, and develop mathematical understanding ability and spatial sense of junior high school students; (4) resulting research product is teaching materials of computer-based e-learning. Furthermore, the product is an interactive learning disc. The research method is used of this study is developmental research which is conducted by thought experiment and instruction experiment. The result showed that teaching materials could be used very well. This is based on the validation of computer-based e-learning teaching materials, which is validated by 5 multimedia experts. The judgement result of face and content validity of 5 validator shows that the same judgement result to the face and content validity of each item test of mathematical understanding ability and spatial sense. The reliability test of mathematical understanding ability and spatial sense are 0,929 and 0,939. This reliability test is very high. While the validity of both tests have a high and very high criteria.

  9. Intercultural Understanding through Intergroup Dialogue between Japanese and Chinese University Students.

    Science.gov (United States)

    Sakakibara, Tomomi

    2017-09-01

    This study had two purposes: (1) to develop university classes in which students can participate in intercultural dialogue by exchanging letters focusing on a topic about everyday norms implicit in each culture, and (2) to examine how students develop their intercultural understanding through participating in these classes. Twenty-two Japanese and six Chinese university students (each group in their own country) participated in three class sessions. At the beginning of the first class, students were given a dialogue theme that focused on cultural differences. The selected theme was mobile phone use while riding on public transportation, as this practice is prohibited in Tokyo but not in Beijing. Students discussed their opinions in small groups, wrote questions to their counterparts in the other country, and then reflected on and discussed the answers received. Analysis of the Japanese students' written reflections showed that their understanding of different cultural values and beliefs changed from one based only on a Japanese cultural perspective to one that respected the relativity of cultural norms. The results suggested that the arousal of negative emotions when students are exposed to the perspectives of other cultures is closely related to their understanding of cultural relativity.

  10. Assessing Students' Understanding of Macroevolution: Concerns regarding the validity of the MUM

    Science.gov (United States)

    Novick, Laura R.; Catley, Kefyn M.

    2012-11-01

    In a recent article, Nadelson and Southerland (2010. Development and preliminary evaluation of the Measure of Understanding of Macroevolution: Introducing the MUM. The Journal of Experimental Education, 78, 151-190) reported on their development of a multiple-choice concept inventory intended to assess college students' understanding of macroevolutionary concepts, the Measure of Understanding Macroevolution (MUM). Given that the only existing evolution inventories assess understanding of natural selection, a microevolutionary concept, a valid assessment of students' understanding of macroevolution would be a welcome and necessary addition to the field of science education. Although the conceptual framework underlying Nadelson and Southerland's test is promising, we believe the test has serious shortcomings with respect to validity evidence for the construct being tested. We argue and provide evidence that these problems are serious enough that the MUM should not be used in its current form to measure students' understanding of macroevolution.

  11. Characterizing the development of students' understandings regarding the second law of thermodynamics: Using learning progressions to illuminate thinking in high school chemistry

    Science.gov (United States)

    Cunningham, Kevin D.

    As demonstrated by their emphasis in the new, national, science education standards, learning progressions (LPs) have become a valuable means of informing teaching and learning. LPs serve this role by isolating the key components of central skills and understandings, and by describing how those abilities and concepts tend to develop over time among students in a particular context. Some LPs also identify common challenges students experience in learning specific content and suggest methods of instruction and assessment, particularly ways in which difficulties can be identified and addressed. LPs are research-based and created through the integration of content analyses and interpretations of student performances with respect to the skills and understandings in question. The present research produced two LPs portraying the development of understandings associated with the second law of thermodynamics as evidenced by the evolving explanations for the spontaneity and irreversibility of diffusion and the cooling of a hot object constructed periodically by twenty students over two consecutive years in high school chemistry. While the curriculum they experienced did not emphasize the processes of diffusion and cooling or the second law and its applications, these students received prolonged instruction regarding key aspects of the particulate nature of matter. Working in small groups and as individuals, they were also taught and regularly expected to create, test, and revise particulate-based, conceptual models to account for the properties and behavior of a wide variety of common phenomena. Although some students quickly exhibited dramatic improvements in explaining and understanding the phenomena of interest, conceptual development for most was evolutionary rather than revolutionary, and success in explaining one phenomenon did not generally translate into successes in explaining related but different phenomena. Few students reached the uppermost learning goals of

  12. Understanding the Career Development of Underprepared College Students

    Science.gov (United States)

    Hughes, Amber N.; Gibbons, Melinda M.

    2018-01-01

    The purpose of this study was to examine the career development of underprepared college students using relational career theory. Specifically, the constructs of family influence, locus of control, and career decision-making self-efficacy were explored as they relate to perceived success in college. Significant correlations between external locus…

  13. Effect of a Diagram on Primary Students' Understanding About Electric Circuits

    Science.gov (United States)

    Preston, Christine Margaret

    2017-09-01

    This article reports on the effect of using a diagram to develop primary students' conceptual understanding about electric circuits. Diagrammatic representations of electric circuits are used for teaching and assessment despite the absence of research on their pedagogical effectiveness with young learners. Individual interviews were used to closely analyse Years 3 and 5 (8-11-year-old) students' explanations about electric circuits. Data was collected from 20 students in the same school providing pre-, post- and delayed post-test dialogue. Students' thinking about electric circuits and changes in their explanations provide insights into the role of diagrams in understanding science concepts. Findings indicate that diagram interaction positively enhanced understanding, challenged non-scientific views and promoted scientific models of electric circuits. Differences in students' understanding about electric circuits were influenced by prior knowledge, meta-conceptual awareness and diagram conventions including a stylistic feature of the diagram used. A significant finding that students' conceptual models of electric circuits were energy rather than current based has implications for electricity instruction at the primary level.

  14. Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2015-01-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that…

  15. Middle school students' understanding of time: Implications for the National Science Education Standards

    Science.gov (United States)

    Reinemann, Deborah Jean

    2000-10-01

    Measures of time are essential to human life, especially in the Western world. Human understanding of time develops from the preschool stages of using "before" and "after" to an adult understanding and appreciation of time. Previous researchers (for example, Piaget, Friedman) have investigated and described stages of time development. Time, as it was investigated here, can be classified as conventional, logical or experiential. Conventional time is the ordered representation of time; the days of the week, the months of the year, or clock time: seconds and hours. Logical time is the deduction of duration based on regular events; for example, calculating the passage of time based on two separate events. Experiential time involves the duration of events and estimating intervals. With the recent production of the National Science Education Standards (NSES), many schools are aligning their science curriculum with the NSES. Time appears both implicitly and explicitly in the NSES. Do Middle School students possess the understanding of time necessary to meet the recommendations of the NSES? An interview protocol of four sessions was developed to investigate middle school students understanding of time. The four sessions included: building and testing water clocks; an interview about water clocks and time intervals; a laserdisc presentation about relative time spans; and a mind mapping session. Students were also given the GALT test of Logical Thinking. The subjects of the study were interviewed; eleven eighth grade students and thirteen sixth grade students. The data was transcribed and coded, and a rubric was developed to evaluate students based on their responses to the four sessions. The Time Analysis Rubric is a grid of the types of time: conventional, logical and experiential time versus the degree of understanding of time. Student results were assigned to levels of understanding based on the Time Analysis Rubric. There was a relationship (although not significant

  16. Student Leadership Development within Student Government at Snow College

    Science.gov (United States)

    Wilson, Gordon Ned

    2010-01-01

    The purpose of this study was to describe the leadership development process of former student leaders at Snow College. More specifically, the study focused on understanding how, when, and where leadership development took place in their "lived experience" within the student government at Snow College (Van Manen, 1998). Examining the lived…

  17. Markov Processes: Exploring the Use of Dynamic Visualizations to Enhance Student Understanding

    Science.gov (United States)

    Pfannkuch, Maxine; Budgett, Stephanie

    2016-01-01

    Finding ways to enhance introductory students' understanding of probability ideas and theory is a goal of many first-year probability courses. In this article, we explore the potential of a prototype tool for Markov processes using dynamic visualizations to develop in students a deeper understanding of the equilibrium and hitting times…

  18. Investigating and Improving Student Understanding of Key Ideas in Quantum Mechanics throughout Instruction

    Science.gov (United States)

    Emigh, Paul Jeffrey

    This dissertation describes research on student understanding of quantum mechanics across multiple levels of instruction. The primary focus has been to identify patterns in student reasoning related to key concepts in quantum mechanics. The specific topics include quantum measurements, time dependence, vector spaces, and angular momentum. The research has spanned a variety of different quantum courses intended for introductory physics students, upper-division physics majors, and graduate students in physics. The results of this research have been used to develop a set of curriculum, Tutorials in Physics: Quantum Mechanics, for addressing the most persistent student difficulties. We document both the development of this curriculum and how it has impacted and improved student understanding of quantum mechanics.

  19. Creating meaningful learning experiences: Understanding students' perspectives of engineering design

    Science.gov (United States)

    Aleong, Richard James Chung Mun

    There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness

  20. Analysis of senior high school student understanding on gas kinetic theory material

    Science.gov (United States)

    Anri, Y.; Maknun, J.; Chandra, D. T.

    2018-05-01

    The purpose of this research conducted to find out student understanding profile about gas kinetic theory. Particularly, on ideal gas law material, ideal gas equations and kinetic energy of ideal gas. This research was conducted on student of class XII in one of the schools in Bandung. This research is a descriptive research. The data of this research collected by using test instrument which was the essay that has been developed by the researcher based on Bloom’s Taxonomy revised. Based on the analysis result to student answer, this research discovered that whole student has low understanding in the material of gas kinetic theory. This low understanding caused of the misconception of the student, student attitude on physic subjects, and teacher teaching method who are less helpful in obtaining clear pictures in material being taught.

  1. Improving Elementary School Students' Understanding of Historical Time: Effects of Teaching with "Timewise"

    Science.gov (United States)

    de Groot-Reuvekamp, Marjan; Ros, Anje; van Boxtel, Carla

    2018-01-01

    The teaching of historical time is an important aspect in elementary school curricula. This study focuses on the effects of a curriculum intervention with "Timewise," a teaching approach developed to improve students' understanding of historical time using timelines as a basis with which students can develop their understanding of…

  2. A Framework for Understanding Physics Students' Computational Modeling Practices

    Science.gov (United States)

    Lunk, Brandon Robert

    With the growing push to include computational modeling in the physics classroom, we are faced with the need to better understand students' computational modeling practices. While existing research on programming comprehension explores how novices and experts generate programming algorithms, little of this discusses how domain content knowledge, and physics knowledge in particular, can influence students' programming practices. In an effort to better understand this issue, I have developed a framework for modeling these practices based on a resource stance towards student knowledge. A resource framework models knowledge as the activation of vast networks of elements called "resources." Much like neurons in the brain, resources that become active can trigger cascading events of activation throughout the broader network. This model emphasizes the connectivity between knowledge elements and provides a description of students' knowledge base. Together with resources resources, the concepts of "epistemic games" and "frames" provide a means for addressing the interaction between content knowledge and practices. Although this framework has generally been limited to describing conceptual and mathematical understanding, it also provides a means for addressing students' programming practices. In this dissertation, I will demonstrate this facet of a resource framework as well as fill in an important missing piece: a set of epistemic games that can describe students' computational modeling strategies. The development of this theoretical framework emerged from the analysis of video data of students generating computational models during the laboratory component of a Matter & Interactions: Modern Mechanics course. Student participants across two semesters were recorded as they worked in groups to fix pre-written computational models that were initially missing key lines of code. Analysis of this video data showed that the students' programming practices were highly influenced by

  3. A conceptual framework to understand academic student volunteerism

    NARCIS (Netherlands)

    Cunha, Jorge; Mensing, Rainer; Benneworth, Paul Stephen

    2018-01-01

    This paper develops a conceptual framework to understand the value of an increasing number of university study programmes that send students to the global south by learning through volunteering. We ask the research question what determines the benefit that these activities bring to the host

  4. Student perception and conceptual development as represented by student mental models of atomic structure

    Science.gov (United States)

    Park, Eun Jung

    The nature of matter based upon atomic theory is a principal concept in science; hence, how to teach and how to learn about atoms is an important subject for science education. To this end, this study explored student perceptions of atomic structure and how students learn about this concept by analyzing student mental models of atomic structure. Changes in student mental models serve as a valuable resource for comprehending student conceptual development. Data was collected from students who were taking the introductory chemistry course. Responses to course examinations, pre- and post-questionnaires, and pre- and post-interviews were used to analyze student mental models of atomic structure. First, this study reveals that conceptual development can be achieved, either by elevating mental models toward higher levels of understanding or by developing a single mental model. This study reinforces the importance of higher-order thinking skills to enable students to relate concepts in order to construct a target model of atomic structure. Second, Bohr's orbital structure seems to have had a strong influence on student perceptions of atomic structure. With regard to this finding, this study suggests that it is instructionally important to teach the concept of "orbitals" related to "quantum theory." Third, there were relatively few students who had developed understanding at the level of the target model, which required student understanding of the basic ideas of quantum theory. This study suggests that the understanding of atomic structure based on the idea of quantum theory is both important and difficult. Fourth, this study included different student assessments comprised of course examinations, questionnaires, and interviews. Each assessment can be used to gather information to map out student mental models. Fifth, in the comparison of the pre- and post-interview responses, this study showed that high achieving students moved toward more improved models or to advanced

  5. Rhetorical meta-language to promote the development of students' writing skills and subject matter understanding

    Science.gov (United States)

    Pelger, Susanne; Sigrell, Anders

    2016-01-01

    Background: Feedback is one of the most significant factors for students' development of writing skills. For feedback to be successful, however, students and teachers need a common language - a meta-language - for discussing texts. Not least because in science education such a meta-language might contribute to improve writing training and feedback-giving. Purpose: The aim of this study was to explore students' perception of teachers' feedback given on their texts in two genres, and to suggest how writing training and feedback-giving could become more efficient. Sample: In this study were included 44 degree project students in biology and molecular biology, and 21 supervising teachers at a Swedish university. Design and methods: The study concerned students' writing about their degree projects in two genres: scientific writing and popular science writing. The data consisted of documented teacher feedback on the students' popular science texts. It also included students' and teachers' answers to questionnaires about writing and feedback. All data were collected during the spring of 2012. Teachers' feedback, actual and recalled - by students and teachers, respectively - was analysed and compared using the so-called Canons of rhetoric. Results: While the teachers recalled the given feedback as mainly positive, most students recalled only negative feedback. According to the teachers, suggested improvements concerned firstly the content, and secondly the structure of the text. In contrast, the students mentioned language style first, followed by content. Conclusions: The disagreement between students and teachers regarding how and what feedback was given on the students texts confirm the need of improved strategies for writing training and feedback-giving in science education. We suggest that the rhetorical meta-language might play a crucial role in overcoming the difficulties observed in this study. We also discuss how training of writing skills may contribute to

  6. Visualizing Volume to Help Students Understand the Disk Method on Calculus Integral Course

    Science.gov (United States)

    Tasman, F.; Ahmad, D.

    2018-04-01

    Many research shown that students have difficulty in understanding the concepts of integral calculus. Therefore this research is interested in designing a classroom activity integrated with design research method to assist students in understanding the integrals concept especially in calculating the volume of rotary objects using disc method. In order to support student development in understanding integral concepts, this research tries to use realistic mathematical approach by integrating geogebra software. First year university student who takes a calculus course (approximately 30 people) was chosen to implement the classroom activity that has been designed. The results of retrospective analysis show that visualizing volume of rotary objects using geogebra software can assist the student in understanding the disc method as one way of calculating the volume of a rotary object.

  7. Developing Students' Understanding of Industrially Relevant Economic and Life Cycle Assessments

    Science.gov (United States)

    Bode, Claudia J.; Chapman, Clint; Pennybaker, Atherly; Subramaniam, Bala

    2017-01-01

    Training future leaders to understand life cycle assessment data is critical for effective research, business, and sociopolitical decision-making. However, the technical nature of these life cycle reports often makes them challenging for students and other nonexperts to comprehend. Therefore, we outline here the key takeaways from recent economic…

  8. Mechanisms influencing student understanding on an outdoor guided field trip

    Science.gov (United States)

    Caskey, Nourah Al-Rashid

    Field trips are a basic and important, yet often overlooked part of the student experience. They provide the opportunity to integrate real world knowledge with classroom learning and student previous personal experiences. Outdoor guided field trips leave students with an increased understanding, awareness and interest and in science. However, the benefits of this experience are ambiguous at best (Falk and Balling, 1982; Falk and Dierking, 1992; Kisiel, 2006.) Students on an outdoor guided field trip to a local nature park experienced a significant increase in their understanding of the rock cycle. The changes in the pre-field trip test and the post-field trip test as well as their answers in interviews showed a profound change in the students' understanding and in their interest in the subject matter. The use of the "student's voice" (Bamberger and Tal, 2008) was the motivation for data analysis. By using the students' voice, I was able to determine the mechanisms that might influence their understanding of a subject. The central concepts emerging from the data were: the outdoor setting; the students' interest; the social interaction. From these central concepts, a conceptual model was developed. The outdoor setting allows for the freedom to explore, touch, smell and movement. This, in turn, leads to an increased interest in subject matter. As the students are exploring, they are enjoying themselves and become more open to learning. Interest leads to a desire to learn (Dewey, 1975). In addition to allowing the freedom to explore and move, the outdoor setting creates the condition for social interaction. The students talk to each other as they walk; they have in-depth discourse regarding the subject matter---with the teachers, each other and with the guides. The guides have an extremely important role in the students' learning. The more successful guides not only act as experts, but also adjust to the students' needs and act or speak accordingly. The

  9. Student Understanding of Gravity in Introductory College Astronomy

    Science.gov (United States)

    Williamson, Kathryn E.; Willoughby, Shannon

    2012-01-01

    Twenty-four free-response questions were developed to explore introductory college astronomy students' understanding of gravity in a variety of contexts, including in and around Earth, throughout the solar system, and in hypothetical situations. Questions were separated into three questionnaires, each of which was given to a section of…

  10. Improving Students' Conceptual Understanding of the Greenhouse Effect Using Theory-Based Learning Materials that Promote Deep Learning

    Science.gov (United States)

    Reinfried, Sibylle; Aeschbacher, Urs; Rottermann, Benno

    2012-01-01

    Students' everyday ideas of the greenhouse effect are difficult to change. Environmental education faces the challenge of developing instructional settings that foster students' conceptual understanding concept of the greenhouse effect in order to understand global warming. To facilitate students' conceptual development with regard to the…

  11. Measuring the development of conceptual understanding in chemistry

    Science.gov (United States)

    Claesgens, Jennifer Marie

    The purpose of this dissertation research is to investigate and characterize how students learn chemistry from pre-instruction to deeper understanding of the subject matter in their general chemistry coursework. Based on preliminary work, I believe that students have a general pathway of learning across the "big ideas," or concepts, in chemistry that can be characterized over the course of instruction. My hypothesis is that as students learn chemistry they build from experience and logical reasoning then relate chemistry specific ideas in a pair-wise fashion before making more complete multi-relational links for deeper understanding of the subject matter. This proposed progression of student learning, which starts at Notions, moves to Recognition, and then to Formulation, is described in the ChemQuery Perspectives framework. My research continues the development of ChemQuery, an NSF-funded assessment system that uses a framework of the key ideas in the discipline and criterion-referenced analysis using item response theory (IRT) to map student progress. Specifially, this research investigates the potential for using criterion-referenced analysis to describe and measure how students learn chemistry followed by more detailed task analysis of patterns in student responses found in the data. My research question asks: does IRT work to describe and measure how students learn chemistry and if so, what is discovered about how students learn? Although my findings seem to neither entirely support nor entirely refute the pathway of student understanding proposed in the ChemQuery Perspectives framework. My research does provide an indication of trouble spots. For example, it seems like the pathway from Notions to Recognition is holding but there are difficulties around the transition from Recognition to Formulation that cannot be resolved with this data. Nevertheless, this research has produced the following, which has contributed to the development of the Chem

  12. The Impact of Short-Term Science Teacher Professional Development on the Evaluation of Student Understanding and Errors Related to Natural Selection

    Science.gov (United States)

    Buschang, Rebecca Ellen

    2012-01-01

    This study evaluated the effects of a short-term professional development session. Forty volunteer high school biology teachers were randomly assigned to one of two professional development conditions: (a) developing deep content knowledge (i.e., control condition) or (b) evaluating student errors and understanding in writing samples (i.e.,…

  13. The Development of the Redox Concept Inventory as a Measure of Students' Symbolic and Particulate Redox Understandings and Confidence

    Science.gov (United States)

    Brandriet, Alexandra R.; Bretz, Stacey Lowery

    2014-01-01

    This article describes the development of the Redox Concept Inventory (ROXCI) as a measure of students' understandings and confidence of both the symbolic and particulate domains of oxidation-reduction (redox) reactions. The ROXCI was created using a mixed-methods design in which the items were developed based upon themes that emerged from…

  14. The Language of Information Literacy: Do Students Understand?

    Science.gov (United States)

    Schaub, Gayle; Cadena, Cara; Bravender, Patricia; Kierkus, Christopher

    2017-01-01

    To effectively access and use the resources of the academic library and to become information-literate, students must understand the language of information literacy. This study analyzes undergraduate students' understanding of fourteen commonly used information-literacy terms. It was found that some of the terms least understood by students are…

  15. Development and Analysis of an Instrument to Assess Student Understanding of GOB Chemistry Knowledge Relevant to Clinical Nursing Practice

    Science.gov (United States)

    Brown, Corina E.; Hyslop, Richard M.; Barbera, Jack

    2015-01-01

    The General, Organic, and Biological Chemistry Knowledge Assessment (GOB-CKA) is a multiple-choice instrument designed to assess students' understanding of the chemistry topics deemed important to clinical nursing practice. This manuscript describes the development process of the individual items along with a psychometric evaluation of the…

  16. Development of the living thing transportation systems worksheet on learning cycle model to increase student understanding

    Science.gov (United States)

    Rachmawati, E.; Nurohman, S.; Widowati, A.

    2018-01-01

    This study aims to know: 1) the feasibility LKPD review of aspects of the didactic requirements, construction requirements, technical requirements and compliance with the Learning Cycle. 2) Increase understanding of learners with Learning Model Learning Cycle in SMP N 1 Wates in the form LKPD. 3) The response of learners and educators SMP N 1 Wates to quality LKPD Transportation Systems Beings. This study is an R & D with the 4D model (Define, Design, Develop and Disseminate). Data were analyzed using qualitative analysis and quantitative analysis. Qualitative analysis in the form of advice description and assessment scores from all validates that was converted to a scale of 4. While the analysis of quantitative data by calculating the percentage of materializing learning and achievement using the standard gain an increased understanding and calculation of the KKM completeness evaluation value as an indicator of the achievement of students understanding. the results of this study yield LKPD IPA model learning Cycle theme Transportation Systems Beings obtain 108.5 total scores of a maximum score of 128 including the excellent category (A). LKPD IPA developed able to demonstrate an improved understanding of learners and the response of learners was very good to this quality LKPD IPA.

  17. Do clinical and translational science graduate students understand linear regression? Development and early validation of the REGRESS quiz.

    Science.gov (United States)

    Enders, Felicity

    2013-12-01

    Although regression is widely used for reading and publishing in the medical literature, no instruments were previously available to assess students' understanding. The goal of this study was to design and assess such an instrument for graduate students in Clinical and Translational Science and Public Health. A 27-item REsearch on Global Regression Expectations in StatisticS (REGRESS) quiz was developed through an iterative process. Consenting students taking a course on linear regression in a Clinical and Translational Science program completed the quiz pre- and postcourse. Student results were compared to practicing statisticians with a master's or doctoral degree in statistics or a closely related field. Fifty-two students responded precourse, 59 postcourse , and 22 practicing statisticians completed the quiz. The mean (SD) score was 9.3 (4.3) for students precourse and 19.0 (3.5) postcourse (P REGRESS quiz was internally reliable (Cronbach's alpha 0.89). The initial validation is quite promising with statistically significant and meaningful differences across time and study populations. Further work is needed to validate the quiz across multiple institutions. © 2013 Wiley Periodicals, Inc.

  18. Industrial Student Apprenticeship: Understanding Health and Safety

    Science.gov (United States)

    Simanjuntak, M. V.; Abdullah, A. G.; Puspita, R. H.; Mahdan, D.; Kamaludin, M.

    2018-02-01

    The level of accident in industry is very high caused by lack of knowledge and awareness of workers toward the health and safety. Health and Safety are efforts to create a comfortable and productive atmosphere to accomplish a purpose or goal as maximum risk in the workplace. Vocational Education students must conduct training on business and industry, prior to that they should have a clear understanding on occupational health and safety. The purpose of this research is to analyze the understanding, preparation, and implementation of work health and safety of the students. Method used is descriptive method and data are collected using instrument, observation and interview. The result of study is conclusion of understanding occupational health and safety of vocational education students.

  19. Analogy-Integrated e-Learning Module: Facilitating Students' Conceptual Understanding

    Science.gov (United States)

    Florida, Jennifer

    2012-01-01

    The study deals with the development of an analogy-integrated e-learning module on Cellular Respiration, which is intended to facilitate conceptual understanding of students with different brain hemisphere dominance and learning styles. The module includes eight analogies originally conceptualized following the specific steps used to prepare…

  20. Representational Classroom Practices that Contribute to Students' Conceptual and Representational Understanding of Chemical Bonding

    Science.gov (United States)

    Hilton, Annette; Nichols, Kim

    2011-11-01

    Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their content-specific forms and functions, this might be avoided. The development of an understanding of and ability to use multiple representations is crucial to students' understanding of chemical bonding. This paper draws on data from a larger study involving two Year 11 chemistry classes (n = 27, n = 22). It explores the contribution of explicit instruction about multiple representations to students' understanding and representation of chemical bonding. The instructional strategies were documented using audio-recordings and the teacher-researcher's reflection journal. Pre-test-post-test comparisons showed an improvement in conceptual understanding and representational competence. Analysis of the students' texts provided further evidence of the students' ability to use multiple representations to explain macroscopic phenomena on the molecular level. The findings suggest that explicit instruction about representational form and function contributes to the enhancement of representational competence and conceptual understanding of bonding in chemistry. However, the scaffolding strategies employed by the teacher play an important role in the learning process. This research has implications for professional development enhancing teachers' approaches to these aspects of instruction around chemical bonding.

  1. Improving students' understanding by using on-going education research to refine active learning activities in a first-year electronics course

    Science.gov (United States)

    Peter Mazzolini, Alexander; Arthur Daniel, Scott

    2016-05-01

    Interactive Lecture Demonstrations (ILDs) have been used across introductory university physics as a successful active learning (AL) strategy to improve students' conceptual understanding. We have developed ILDs for more complex topics in our first-year electronics course. In 2006 we began developing ILDs to improve students' conceptual understanding of Operational Amplifiers (OAs) and negative feedback in amplification circuits. The ILDs were used after traditional lecture instruction to help students consolidate their understanding. We developed a diagnostic test, to be administered to students both before and after the ILDs, as a measure of how effective the ILDs were in improving students' understanding.

  2. Student learning and understanding of sequence stratigraphic principles

    Science.gov (United States)

    Herrera, Juan Sebastian

    schemas as a source of concept representation. A hermeneutical approach enabled us to access student meaning-making from students' verbal reports and gestures, to explore the mental imagery that lies in student explanations of basic principles in sequence stratigraphy. From the analysis of video-recorded interviews four main mental models were interpreted in gestures and verbal reports. The cognitive model known as container schema appeared to represent both spatially and temporally extended concepts differentiated into three separate sub-types. The source-path-goal schema was also common in student reasoning about sedimentary processes; specially dealing with deposition of sediment, the up-and-down schema, and the link schema were associated with responses about sea level fluctuations and unconformities. Results suggested that students tended to make more iconic and metaphoric gestures when dealing with abstract concepts such as relative sea level, base level, and unconformities. Based on the analysis of gestures that recreated certain patterns as time, strata, and sea-level fluctuations, we reasoned that proper representational gestures may indicate completeness in conceptual understanding. We concluded that students rely on image schemas to develop ideas about complex sedimentary processes. This research also supported the hypothesis that gestures provide an independent and non-linguistic indicator of image-schemas as mental models that shape conceptual development. Finally, we assessed the impact of using computer simulation to probe deeper understanding of specialized concepts in stratigraphy. Results suggested that when students are unfamiliar with concepts; students tend to convey meaning via gestures. Cognitive models were also identified in student interaction with the computer simulation and these mental models were interpreted from pointing gestures. We concluded that the impact of computers strive on fostering a sense of dynamism to their static and abstract

  3. Improving Students' Understanding of Electricity and Magnetism

    Science.gov (United States)

    Li, Jing

    2012-01-01

    Electricity and magnetism are important topics in physics. Research shows that students have many common difficulties in understanding concepts related to electricity and magnetism. However, research to improve students' understanding of electricity and magnetism is limited compared to introductory mechanics. This thesis explores issues…

  4. Western Australian High School Students' Understandings about the Socioscientific Issue of Climate Change

    Science.gov (United States)

    Dawson, Vaille

    2015-05-01

    Climate change is one of the most significant science issues facing humanity; yet, teaching students about climate change is challenging: not only is it multidisciplinary, but also it is contentious and debated in political, social and media forums. Students need to be equipped with an understanding of climate change science to be able to participate in this discourse. The purpose of this study was to examine Western Australian high school students' understanding of climate change and the greenhouse effect, in order to identify their alternative conceptions about climate change science and provide a baseline for more effective teaching. A questionnaire designed to elicit students' understanding and alternative conceptions was completed by 438 Year 10 students (14-15 years old). A further 20 students were interviewed. Results showed that students know different features of both climate change and the greenhouse effect, however not necessarily all of them and the relationships between. Five categories of alternative conceptions were identified. The categories were (1) the greenhouse effect and the ozone layer; (2) types of greenhouse gases; (3) types of radiation; (4) weather and climate and (5) air pollution. These findings provide science educators a basis upon which to develop strategies and curriculum resources to improve their students' understanding and decision-making skills about the socioscientific issue, climate change.

  5. Can Dynamic Visualizations Improve Middle School Students' Understanding of Energy in Photosynthesis?

    Science.gov (United States)

    Ryoo, Kihyun; Linn, Marcia C.

    2012-01-01

    Dynamic visualizations have the potential to make abstract scientific phenomena more accessible and visible to students, but they can also be confusing and difficult to comprehend. This research investigates how dynamic visualizations, compared to static illustrations, can support middle school students in developing an integrated understanding of…

  6. Diagnosing Students' Understanding of the Nature of Models

    Science.gov (United States)

    Gogolin, Sarah; Krüger, Dirk

    2017-10-01

    Students' understanding of models in science has been subject to a number of investigations. The instruments the researchers used are suitable for educational research but, due to their complexity, cannot be employed directly by teachers. This article presents forced choice (FC) tasks, which, assembled as a diagnostic instrument, are supposed to measure students' understanding of the nature of models efficiently, while being sensitive enough to detect differences between individuals. In order to evaluate if the diagnostic instrument is suitable for its intended use, we propose an approach that complies with the demand to integrate students' responses to the tasks into the validation process. Evidence for validity was gathered based on relations to other variables and on students' response processes. Students' understanding of the nature of models was assessed using three methods: FC tasks, open-ended tasks and interviews ( N = 448). Furthermore, concurrent think-aloud protocols ( N = 30) were performed. The results suggest that the method and the age of the students have an effect on their understanding of the nature of models. A good understanding of the FC tasks as well as a convergence in the findings across the three methods was documented for grades eleven and twelve. This indicates that teachers can use the diagnostic instrument for an efficient and, at the same time, valid diagnosis for this group. Finally, the findings of this article may provide a possible explanation for alternative findings from previous studies as a result of specific methods that were used.

  7. Using Patient Case Video Vignettes to Improve Students' Understanding of Cross-cultural Communication.

    Science.gov (United States)

    Arif, Sally; Cryder, Brian; Mazan, Jennifer; Quiñones-Boex, Ana; Cyganska, Angelika

    2017-04-01

    Objective. To develop, implement, and assess whether simulated patient case videos improve students' understanding of and attitudes toward cross-cultural communication in health care. Design. Third-year pharmacy students (N=159) in a health care communications course participated in a one-hour lecture and two-hour workshop on the topic of cross-cultural communication. Three simulated pharmacist-patient case vignettes highlighting cross-cultural communication barriers, the role of active listening, appropriate use of medical interpreters, and useful models to overcome communication barriers were viewed and discussed in groups of 20 students during the workshop. Assessment. A pre-lecture and post-workshop assessed the effect on students' understanding of and attitudes toward cross-cultural communication. Understanding of cross-cultural communication concepts increased significantly, as did comfort level with providing cross-cultural care. Conclusion. Use of simulated patient case videos in conjunction with an interactive workshop improved pharmacy students' understanding of and comfort level with cross-cultural communication skills and can be useful tools for cultural competency training in the curriculum.

  8. Students' Understanding of Conservation of Matter, Stoichiometry and Balancing Equations in Indonesia

    Science.gov (United States)

    Agung, Salamah; Schwartz, Marc S.

    2007-01-01

    This study examines Indonesian students' understanding of conservation of matter, balancing of equations and stoichiometry. Eight hundred and sixty-seven Grade 12 students from 22 schools across four different cities in two developed provinces in Indonesia participated in the study. Nineteen teachers also participated in order to validate the…

  9. Peeling the Onion: Student Teacher's Conceptions of Literary Understanding.

    Science.gov (United States)

    Carlsson, Maj Asplund; Fulop, Marta; Marton, Ference

    2001-01-01

    Studied the theories student teachers held about literary understanding through interviews with 25 Hungarian and 8 Swedish student teachers. Categories of theories captured a substantial portion of the variation in how literary understanding can be seen. Three central aspects of human understanding, variation, discernment, and simultaneity, could…

  10. Nursing students' understanding and enactment of resilience: a grounded theory study.

    Science.gov (United States)

    Reyes, Andrew Thomas; Andrusyszyn, Mary-Anne; Iwasiw, Carroll; Forchuk, Cheryl; Babenko-Mould, Yolanda

    2015-11-01

    The aim of this study was to explore nursing students' understanding and enactment of resilience. Stress is considered to be a major factor affecting the health, well-being and academic performance of nursing students. Resilience has been extensively researched as a process that allows individuals to successfully adapt to adversity and develop positive outcomes as a result. However, relatively little is known about the resilience of nursing students. A constructivist, grounded theory qualitative design was used for this study. In-depth individual interviews were conducted with 38 nursing students enrolled in a four-year, integrated baccalaureate nursing degree programme at a university in Ontario, Canada. Face-to-face interviews were conducted from January to April 2012 using a semi-structured interview guide. The basic social process of 'pushing through' emerged as nursing students' understanding and enactment of resilience. Participants employed this process to withstand challenges in their academic lives. This process was comprised of three main phases: 'stepping into', 'staying the course' and 'acknowledging'. 'Pushing through' also included a transient 'disengaging' process where students were temporarily unable to push through their adversities. The process of 'pushing through' was based on a progressive trajectory, which implied that nursing students enacted the process to make progress in their academic lives and to attain goals. Study findings provide important evidence for understanding the phenomenon of resilience as a dynamic, contextual process that can be learnt and developed, rather than a static trait or personality characteristic. © 2015 John Wiley & Sons Ltd.

  11. Understanding the Greenhouse Effect by Embodiment - Analysing and Using Students' and Scientists' Conceptual Resources

    Science.gov (United States)

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the-mostly unconscious-deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.

  12. Assessing student understanding of measurement and uncertainty

    Science.gov (United States)

    Jirungnimitsakul, S.; Wattanakasiwich, P.

    2017-09-01

    The objectives of this study were to develop and assess student understanding of measurement and uncertainty. A test has been adapted and translated from the Laboratory Data Analysis Instrument (LDAI) test, consists of 25 questions focused on three topics including measures of central tendency, experimental errors and uncertainties, and fitting regression lines. The test was evaluated its content validity by three physics experts in teaching physics laboratory. In the pilot study, Thai LDAI was administered to 93 freshmen enrolled in a fundamental physics laboratory course. The final draft of the test was administered to three groups—45 freshmen taking fundamental physics laboratory, 16 sophomores taking intermediated physics laboratory and 21 juniors taking advanced physics laboratory at Chiang Mai University. As results, we found that the freshmen had difficulties in experimental errors and uncertainties. Most students had problems with fitting regression lines. These results will be used to improve teaching and learning physics laboratory for physics students in the department.

  13. Development of biology student worksheets to facilitate science process skills of student

    Science.gov (United States)

    Rahayu, Y. S.; Pratiwi, R.; Indana, S.

    2018-01-01

    This research aims to describe development of Biology student worksheets to facilitate science process skills of student, at the same time to facilitate thinking skills of students in senior high school are equipped with Assesment Sheets. The worksheets development refers to cycle which includes phase analysis (analysis), planning (planning), design (design), development (development), implementation (implementation), evaluation and revision (evaluation and revision). Phase evaluation and revision is an ongoing activity conducted in each phase of the development cycle. That is, after the evaluation of the results of these activities and make revisions at any phase, then continue to the next phase. Based on the test results for grade X, XI, and XII in St. Agnes Surabaya high school, obtained some important findings. The findings are as follows. (1) Developed biology student worksheets could be used to facilitate thinking ability of students in particular skills integrated process that includes components to formulate the problem, formulate hypotheses, determine the study variables, formulate an operational definition of variables, determine the steps in the research, planning data tables, organizing Data in the form of tables/charts, drawing conclusions, (2) Developed biology student worksheets could also facilitate the development of social interaction of students such as working together, listening/respect the opinions of others, assembling equipment and materials, discuss and share information and facilitate the upgrading of skills hands-on student activity. (3) Developed biology worksheets basically could be implemented with the guidance of the teacher step by step, especially for students who have never used a similar worksheet. Guidance at the beginning of this need, especially for worksheets that require special skills or understanding of specific concepts as a prerequisite, such as using a microscope, determine the heart rate, understand the mechanism of

  14. Students' Perceived Understanding: An Alternative Measure and Its Associations with Perceived Teacher Confirmation, Verbal Aggressiveness, and Credibility

    Science.gov (United States)

    Schrodt, Paul; Finn, Amber N.

    2011-01-01

    Given recent questions regarding the construct validity of Cahn and Shulman's Feelings of Understanding/Misunderstanding scale, two studies were conducted to develop a low-inference, behavioral measure of students' perceived understanding in the college classroom. In Study One (N = 265), a pilot inventory was developed to measure students'…

  15. Student Teachers' Levels of Understanding and Model of Understanding about Newton's Laws of Motion

    Science.gov (United States)

    Saglam-Arslan, Aysegul; Devecioglu, Yasemin

    2010-01-01

    This study was conducted to determine the level of student teachers' understandings of Newton's laws of motion and relating these levels to identify student teachers' models of understanding. An achievement test composed of two parts comprising 12 open ended questions was constructed and given to 45 pre-service classroom teachers. The first part…

  16. Developing Entrepreneurial Skills in Pharmacy Students.

    Science.gov (United States)

    Laverty, Garry; Hanna, Lezley-Anne; Haughey, Sharon; Hughes, Carmel

    2015-09-25

    Objective. To create, implement, and evaluate a workshop that teaches undergraduate pharmacy students about entrepreneurship. Design. Workshops with 3 hours of contact time and 2 hours of self-study time were developed for final-year students. Faculty members and students evaluated peer assessment, peer development, communication, critical evaluation, creative thinking, problem solving, and numeracy skills, as well as topic understanding. Student evaluation of the workshops was done primarily via a self-administered, 9-item questionnaire. Assessment. One hundred thirty-four students completed the workshops. The mean score was 50.9 out of 65. Scores ranged from 45.9 to 54.1. The questionnaire had a 100% response rate. Many students agreed that workshops about entrepreneurship were a useful teaching method and that key skills were fostered. Conclusion. Workshops effectively delivered course content about entrepreneurship and helped develop relevant skills. This work suggests students value instruction on entrepreneurship.

  17. Students' understanding of teamwork and professional roles after interprofessional simulation-a qualitative analysis.

    Science.gov (United States)

    Oxelmark, Lena; Nordahl Amorøe, Torben; Carlzon, Liisa; Rystedt, Hans

    2017-01-01

    This study explores how interprofessional simulation-based education (IPSE) can contribute to a change in students' understanding of teamwork and professional roles. A series of 1-day training sessions was arranged involving undergraduate nursing and medical students. Scenarios were designed for practicing teamwork principles and interprofessional communication skills by endorsing active participation by all team members. Four focus groups occurred 2-4 weeks after the training. Thematic analysis of the transcribed focus groups was applied, guided by questions on what changes in students' understanding of teamwork and professional roles were identified and how such changes had been achieved. The first question, aiming to identify changes in students' understanding of teamwork, resulted in three categories: realizing and embracing teamwork fundamentals, reconsidering professional roles, and achieving increased confidence. The second question, regarding how participation in IPSE could support the transformation of students' understanding of teamwork and of professional roles, embraced another three categories: feeling confident in the learning environment, embodying experiences, and obtaining an outside perspective. This study showed the potential of IPSE to transform students' understanding of others' professional roles and responsibilities. Students displayed extensive knowledge on fundamental teamwork principles and what these meant in the midst of participating in the scenarios. A critical prerequisite for the development of these new insights was to feel confident in the learning environment. The significance of how the environment was set up calls for further research on the design of IPSE in influencing role understanding and communicative skills in significant ways.

  18. Characteristics of reading and understanding of hearing impaired students in classes VI-VIII

    Directory of Open Access Journals (Sweden)

    Mustaf Morina

    2015-03-01

    Full Text Available Good reading has a very important role in the development of children with hearing impaired; also reading in explicit way is one of the crucial factors which affect the oral language development of children with hearing impaired. The best form and possibility of improvement, development of oral language, development of communicating, receipt of information, knowledge, and ideas over the world, is reading. When the auditory perception is damaged reading is poor. Hearing impairment causes a lot of problems in the development of personality of children with hearing impairment in these fields: poor development of vocabulary, poor quality of lexica, poor quality of sentences, and disorder in articulation. The purpose of this research is to verify the following: 1-Speed of reading of hearing impaired children, 2-The number of errors, 3-The kind of errors, 4-To understand the text in the context of the degree of hearing impairment, age (class, success in school and gender. This theoretical-experimental study was made with students from two schools; special school “Mother Teresa” in Prizren and Primary School “Elena Gjika” in Prishtina (class attached. The research included a total of 32 students (respondent 27 students (respondent from special schools “Mother Teresa” in Prizren and 5 elementary school students “Elena Gjika” Prishtina, all these students are with hearing impairment. From 32 students involved in the research, 23 were male and 9 female. The research was done by applying a text fables “The fox and the raven” watched and analyzed in terms of three dimensions. The research results have shown that students with hearing impairments have considerable problems in many aspects; in terms of speed of reading, students with hearing impairment have stagnated compared with their peers in the ratio 8/1. In terms of reading errors have stagnated considered being incomparable. In terms of understanding the text students with hearing

  19. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-04-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.

  20. An Exploration of High School (12 17 Year Old) Students' Understandings of, and Attitudes Towards Biotechnology Processes

    Science.gov (United States)

    Dawson, Vaille

    2007-03-01

    The products of modern biotechnology processes such as genetic engineering, DNA testing and cloning will increasingly impact on society. It is essential that young people have a well-developed scientific understanding of biotechnology and associated processes so that they are able to contribute to public debate and make informed personal decisions. The aim of this study was to examine the development of understandings and attitudes about biotechnology processes as students progress through high school. In a cross-sectional case study, data was obtained from student interviews and written surveys of students aged 12 to 17 years. The results indicate that students' ability to provide a generally accepted definition and examples of biotechnology, cloning and genetically modified foods was relatively poor amongst 12 13 year old students but improved in older students. Most students approved of the use of biotechnology processes involving micro-organisms, plants and humans and disapproved of the use of animals. Overall, 12 13 year old students' attitudes were less favourable than older students regardless of the context. An awareness of the development and range of students' understandings and attitudes may lead to a more appropriate use of biotechnology curriculum materials and thus improved biotechnology education in schools.

  1. Building Students' Understanding of Quadratic Equation Concept Using Naïve Geometry

    Science.gov (United States)

    Fachrudin, Achmad Dhany; Putri, Ratu Ilma Indra; Darmawijoyo

    2014-01-01

    The purpose of this research is to know how Naïve Geometry method can support students' understanding about the concept of solving quadratic equations. In this article we will discuss one activities of the four activities we developed. This activity focused on how students linking the Naïve Geometry method with the solving of the quadratic…

  2. Investigating and improving student understanding of the expectation values of observables in quantum mechanics

    International Nuclear Information System (INIS)

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    The expectation value of an observable is an important concept in quantum mechanics since measurement outcomes are, in general, probabilistic and we only have information about the probability distribution of measurement outcomes in a given quantum state of a system. However, we find that upper-level undergraduate and PhD students in physics have both conceptual and procedural difficulties when determining the expectation value of a physical observable in a given quantum state in terms of the eigenstates and eigenvalues of the corresponding operator, especially when using Dirac notation. Here we first describe the difficulties that these students have with determining the expectation value of an observable in Dirac notation. We then discuss how the difficulties found via student responses to written surveys and individual interviews were used as a guide in the development of a quantum interactive learning tutorial (QuILT) to help students develop a good grasp of the expectation value. The QuILT strives to help students integrate conceptual understanding and procedural skills to develop a coherent understanding of the expectation value. We discuss the effectiveness of the QuILT in helping students learn this concept from in-class evaluations. (paper)

  3. Student Use of Scaffolding Software: Relationships with Motivation and Conceptual Understanding

    Science.gov (United States)

    Butler, Kyle A.; Lumpe, Andrew

    2008-10-01

    This study was designed to theoretically articulate and empirically assess the role of computer scaffolds. In this project, several examples of educational software were developed to scaffold the learning of students performing high level cognitive activities. The software used in this study, Artemis, focused on scaffolding the learning of students as they performed information seeking activities. As 5th grade students traveled through a project-based science unit on photosynthesis, researchers used a pre-post design to test for both student motivation and student conceptual understanding of photosynthesis. To measure both variables, a motivation survey and three methods of concept map analysis were used. The student use of the scaffolding features was determined using a database that tracked students' movement between scaffolding tools. The gain scores of each dependent variable was then correlated to the students' feature use (time and hits) embedded in the Artemis Interface. This provided the researchers with significant relationships between the scaffolding features represented in the software and student motivation and conceptual understanding of photosynthesis. There were a total of three significant correlations in comparing the scaffolding use by hits (clicked on) with the dependent variables and only one significant correlation when comparing the scaffold use in time. The first significant correlation ( r = .499, p students' task value. This correlation supports the assumption that there is a positive relationship between the student use of the saving/viewing features and the students' perception of how interesting, how important, and how useful the task is. The second significant correlation ( r = 0.553, p students' self-efficacy for learning and performance. This correlation supports the assumption that there is a positive relationship between the student use of the searching features and the students' perception of their ability to accomplish a task as

  4. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-10-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  5. Students' Understanding of Stern Gerlach Experiment

    International Nuclear Information System (INIS)

    Zhu Guangtian; Singh, Chandralekha

    2009-01-01

    The Stern Gerlach experiment has played a central role in the discovery of spin angular momentum and it has also played a pivotal role in elucidating foundational issues in quantum mechanics. Here, we discuss investigation of students' difficulties related to the Stern Gerlach experiment by giving written tests and interviewing advanced undergraduate and graduate students in quantum mechanics. We also discuss preliminary data that suggest that the Quantum Interactive Learning Tutorial (QuILT) related to the Stern Gerlach experiment is helpful in improving students' understanding of these concepts.

  6. Good Morning from Barrow, Alaska! Helping K-12 students understand the importance of research

    Science.gov (United States)

    Shelton, M.

    2010-12-01

    This presentation focuses on how an educator experiences scientific research and how those experiences can help foster K-12 students’ understanding of research being conducted in Barrow, Alaska. According to Zhang and Fulford (1994), real-time electronic field trips help to provide a sense of closeness and relevance. In combination with experts in the field, the electronic experience can help students to better understand the phenomenon being studied, thus strengthening the student’s conceptual knowledge (Zhang & Fulford, 1994). During a seven day research trip to study the arctic sea ice, five rural Virginia teachers and their students participated in Skype sessions with the participating educator and other members of the Radford University research team. The students were able to view the current conditions in Barrow, listen to members of the research team describe what their contributions were to the research, and ask questions about the research and Alaska in general. Collaborations between students and scientist can have long lasting benefits for both educators and students in promoting an understanding of the research process and understanding why our world is changing. By using multimedia venues such as Skype students are able to interact with researchers both visually and verbally, forming the basis for students’ interest in science. A learner’s level of engagement is affected by the use of multimedia, especially the level of cognitive processing. Visual images alone do no promote the development of good problem solving skills. However, the students are able to develop better problem solving skills when both visual images and verbal interactions are used together. As students form higher confidence levels by improving their ability to problem solve, their interest in science also increases. It is possible that this interest could turn into a passion for science, which could result in more students wanting to become scientists or science teachers.

  7. An Exponential Growth Learning Trajectory: Students' Emerging Understanding of Exponential Growth through Covariation

    Science.gov (United States)

    Ellis, Amy B.; Ozgur, Zekiye; Kulow, Torrey; Dogan, Muhammed F.; Amidon, Joel

    2016-01-01

    This article presents an Exponential Growth Learning Trajectory (EGLT), a trajectory identifying and characterizing middle grade students' initial and developing understanding of exponential growth as a result of an instructional emphasis on covariation. The EGLT explicates students' thinking and learning over time in relation to a set of tasks…

  8. The GLOBE Program's Student Climate Research Campaign: Empowering Students to Measure, Investigate, and Understand Climate

    Science.gov (United States)

    Mackaro, J.; Andersen, T.; Malmberg, J.; Randolph, J. G.; Wegner, K.; Tessendorf, S. A.

    2012-12-01

    The GLOBE Program's Student Climate Research Campaign (SCRC) is a two-year campaign focused on empowering students to measure, investigate, and understand the climate system in their local community and around the world. Schools can participate in the campaign via three mechanisms: climate foundations, intensive observing periods (IOPs), and research investigations. Participation in the first year of the SCRC focused on increasing student understanding and awareness of climate. Students in 49 countries participated by joining a quarterly webinar, completing the online climate learning activity, collecting and entering data during IOPs, or completing an online join survey. The year also included a video competition with the theme of Earth Day 2012, as well as a virtual student conference in conjunction with The GLOBE Program's From Learning to Research Project. As the SCRC continues into its second year, the goal is for students to increase their understanding of and ability to conduct scientific research focused on climate. Furthermore, year two of the SCRC seeks to improve students' global awareness by encouraging collaborations among students, teachers and scientists focused on understanding the Earth as a system. In addition to the continuation of activities from year one, year two will have even more webinars offered, two competitions, the introduction of two new IOPs, and a culminating virtual student conference. It is anticipated that this virtual conference will showcase research by students who are enthusiastic and dedicated to understanding climate and mitigating impacts of climate change in their communities. This presentation will highlight examples of how the SCRC is engaging students all over the world in hands-on and locally relevant climate research.

  9. The Impact of Short-Term Science Teacher Professional Development on the Evaluation of Student Understanding and Errors Related to Natural Selection. CRESST Report 822

    Science.gov (United States)

    Buschang, Rebecca E.

    2012-01-01

    This study evaluated the effects of a short-term professional development session. Forty volunteer high school biology teachers were randomly assigned to one of two professional development conditions: (a) developing deep content knowledge (i.e., control condition) or (b) evaluating student errors and understanding in writing samples (i.e.,…

  10. Students' Understanding of Theory in Undergraduate Education

    Science.gov (United States)

    Liff, Roy; Rovio-Johansson, Airi

    2014-01-01

    This paper investigates undergraduate students' application of theory in their analysis of problems presented in authentic leadership cases. Taking a phenomenographic research approach, the paper identifies two levels at which students understand "theory": Level 1-Theory as knowledge acquired from books; Level 2-Theory as support for…

  11. Undergraduate Mathematics Students' Understanding of the Concept of Function

    Science.gov (United States)

    Bardini, Caroline; Pierce, Robyn; Vincent, Jill; King, Deborah

    2014-01-01

    Concern has been expressed that many commencing undergraduate mathematics students have mastered skills without conceptual understanding. A pilot study carried out at a leading Australian university indicates that a significant number of students, with high tertiary entrance ranks, have very limited understanding of the concept of function,…

  12. Students' Understanding of Exponential and Logarithmic Functions.

    Science.gov (United States)

    Weber, Keith

    Exponential, and logarithmic functions are pivotal mathematical concepts that play central roles in advanced mathematics. Unfortunately, these are also concepts that give students serious difficulty. This report describe a theory of how students acquire an understanding of these functions by prescribing a set of mental constructions that a student…

  13. High School 9th Grade Students' Understanding Level and Misconceptions about Temperature and Factors Affecting It

    Science.gov (United States)

    Akbas, Yavuz

    2012-01-01

    The purpose of this study is to explore students' understanding levels and misconceptions about temperature and factors affecting it. The concept of the study was chosen from Geography National Curriculum. In this study, a questionnaire was developed after a pilot study with an aim to ascertain the students' understanding levels of temperature and…

  14. Developing clinical teaching capacities of midwifery students.

    Science.gov (United States)

    Rance, Sharon; Sweet, Linda

    2016-06-01

    Competency Standards in Australia articulate that the midwife must be able to contribute to the professional development of themselves and others. Few undergraduate health professional curricula currently incorporate content for the development of specific knowledge and skills required for clinical teaching. This project aimed to understand and enhance midwifery students' preparedness to assume their future clinical teaching responsibilities. Design-based research was used to implement an educational intervention aimed at developing clinical teaching skills through a peer education session between 1st and 3rd year students. The perspectives of 30 undergraduate midwifery students about their preparedness for their teaching role and the intervention were obtained through 3 focus groups. A thematic analysis of the data was undertaken. Three themes were identified encompassing the research aims and objectives; 'Co-creating a culture for learning', 'reciprocal teaching and learning' and 'developing clinical teaching capacities'. The findings indicate that the midwifery students had a holistic understanding of their responsibilities in clinical teaching in the workplace. They were able to identify ways in which their teaching capacities were being developed through their clinical experiences and the curriculum, both intended and hidden. Despite limited educational activities for clinical teaching, the midwifery students made explicit connections of the relational interdependence of workplace-based experiences and their learning. Students were clearly able to identify ways in which their own learning experiences and the culture in which this learning is embedded, assists them to develop clinical teaching skills, ready to support the next generation of midwifery students. Copyright © 2015 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  15. First-Year University Science and Engineering Students' Understanding of Plagiarism

    Science.gov (United States)

    Yeo, Shelley

    2007-01-01

    This paper is a case study of first-year science and engineering students' understandings of plagiarism. Students were surveyed for their views on scenarios illustrating instances of plagiarism in the context of the academic work and assessment of science and engineering students. The aim was to explore their understandings of plagiarism and their…

  16. Secondary School Students' Understanding of Science and Their Socioscientific Reasoning

    Science.gov (United States)

    Karahan, Engin; Roehrig, Gillian

    2017-08-01

    Research in socioscientific issue (SSI)-based interventions is relatively new (Sadler in Journal of Research in Science Teaching 41:513-536, 2004; Zeidler et al. in Journal of Research in Science Teaching 46:74-101, 2009), and there is a need for understanding more about the effects of SSI-based learning environments (Sadler in Journal of Research in Science Teaching 41:513-536, 2004). Lee and Witz (International Journal of Science Education 31:931-960, 2009) highlighted the need for detailed case studies that would focus on how students respond to teachers' practices of teaching SSI. This study presents case studies that investigated the development of secondary school students' science understanding and their socioscientific reasoning within SSI-based learning environments. A multiple case study with embedded units of analysis was implemented for this research because of the contextual differences for each case. The findings of the study revealed that students' understanding of science, including scientific method, social and cultural influences on science, and scientific bias, was strongly influenced by their experiences in SSI-based learning environments. Furthermore, multidimensional SSI-based science classes resulted in students having multiple reasoning modes, such as ethical and economic reasoning, compared to data-driven SSI-based science classes. In addition to portraying how participants presented complexity, perspectives, inquiry, and skepticism as aspects of socioscientific reasoning (Sadler et al. in Research in Science Education 37:371-391, 2007), this study proposes the inclusion of three additional aspects for the socioscientific reasoning theoretical construct: (1) identification of social domains affecting the SSI, (2) using cost and benefit analysis for evaluation of claims, and (3) understanding that SSIs and scientific studies around them are context-bound.

  17. Students' Energy Understanding Across Biology, Chemistry, and Physics Contexts

    Science.gov (United States)

    Opitz, S. T.; Neumann, K.; Bernholt, S.; Harms, U.

    2017-07-01

    Energy is considered both as a disciplinary core idea and as a concept cutting across science disciplines. Most previous approaches studied progressing energy understanding in specific disciplinary contexts, while disregarding the relation of understanding across them. Hence, this study provides a systematic analysis of cross-disciplinary energy learning. On the basis of a cross-sectional study with n = 742 students from grades 6, 8, and 10, we analyze students' progression in understanding energy across biology, chemistry, and physics contexts. The study is guided by three hypothetical scenarios that describe how the connection between energy understanding in the three disciplinary contexts changes across grade levels. These scenarios are compared using confirmatory factor analysis (CFA). The results suggest that, from grade 6 to grade 10, energy understanding in the three disciplinary contexts is highly interrelated, thus indicating a parallel progression of energy understanding in the three disciplinary contexts. In our study, students from grade 6 onwards appeared to have few problems to apply one energy understanding across the three disciplinary contexts. These findings were unexpected, as previous research concluded that students likely face difficulties in connecting energy learning across disciplinary boundaries. Potential reasons for these results and the characteristics of the observed cross-disciplinary energy understanding are discussed in the light of earlier findings and implications for future research, and the teaching of energy as a core idea and a crosscutting concept are addressed.

  18. Ninth Grade Students' Understanding of The Nature of Scientific Knowledge

    Science.gov (United States)

    Kilic, Kerem; Sungur, Semra; Cakiroglu, Jale; Tekkaya, Ceren

    2005-01-01

    The purpose of this study was to investigate the 9th-grade students' understandings of the nature of scientific knowledge. The study also aimed to investigate the differences in students' understanding of the nature of scientific knowledge by gender, and school types. A total of 575 ninth grade students from four different school types (General…

  19. Framework for understanding the patterns of student difficulties in quantum mechanics

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the effects of diversity in upper-level students' prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel) as well as the "paradigm shift" from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics.

  20. Understanding the Atheist College Student: A Qualitative Examination

    Science.gov (United States)

    Mueller, John A.

    2012-01-01

    The purpose of this study was to examine and understand atheist college students' views on faith and how they experience the college campus as a result. I conducted interviews with 16 undergraduate and graduate self-identified atheist college students. Students discussed losing faith and transitioning to atheism; making meaning of life, death, and…

  1. Students' Understandings and Misconceptions of Algebraic Inequalities

    Science.gov (United States)

    Rowntree, Rebecca V.

    2009-01-01

    The National Council of Teachers of Mathematics [NCTM] requires students in grades nine through 12 to be able to explain inequalities using mathematical relational symbols and be able to understand the meaning of inequalities and their solutions (NCTM, 2000). Studies have shown that not only middle and high school students have difficulties with…

  2. Evolution in students' understanding of thermal physics with increasing complexity

    Science.gov (United States)

    Langbeheim, Elon; Safran, Samuel A.; Livne, Shelly; Yerushalmi, Edit

    2013-12-01

    We analyze the development in students’ understanding of fundamental principles in the context of learning a current interdisciplinary research topic—soft matter—that was adapted to the level of high school students. The topic was introduced in a program for interested 11th grade high school students majoring in chemistry and/or physics, in an off-school setting. Soft matter was presented in a gradual increase in the degree of complexity of the phenomena as well as in the level of the quantitative analysis. We describe the evolution in students’ use of fundamental thermodynamics principles to reason about phase separation—a phenomenon that is ubiquitous in soft matter. In particular, we examine the impact of the use of free energy analysis, a common approach in soft matter, on the understanding of the fundamental principles of thermodynamics. The study used diagnostic questions and classroom observations to gauge the student’s learning. In order to gain insight on the aspects that shape the understanding of the basic principles, we focus on the responses and explanations of two case-study students who represent two trends of evolution in conceptual understanding in the group. We analyze changes in the two case studies’ management of conceptual resources used in their analysis of phase separation, and suggest how their prior knowledge and epistemological framing (a combination of their personal tendencies and their prior exposure to different learning styles) affect their conceptual evolution. Finally, we propose strategies to improve the instruction of these concepts.

  3. Explaining Newton's Laws of Motion: Using Student Reasoning through Representations to Develop Conceptual Understanding

    Science.gov (United States)

    Waldrip, Bruce; Prain, Vaughan; Sellings, Peter

    2013-01-01

    The development of students' reasoning and argumentation skills in school science is currently attracting strong research interest. In this paper we report on a study where we aimed to investigate student learning on the topic of motion when students, guided by their teacher, responded to a sequence of representational challenges in which their…

  4. The Identification of Variation in Students' Understandings of Disciplinary Concepts: The Application of the SOLO Taxonomy within Introductory Accounting

    Science.gov (United States)

    Lucas, Ursula; Mladenovic, Rosina

    2009-01-01

    Insights into students' understandings of disciplinary concepts are fundamental to effective curriculum development. This paper argues that a rounded picture of students' understandings is required to support such development. It is argued that one element of this picture may be provided through the use of the Structure of Observed Learning…

  5. Diagnostic Appraisal of Grade 12 Students' Understanding of Reaction Kinetics

    Science.gov (United States)

    Yan, Yaw Kai; Subramaniam, R.

    2016-01-01

    The study explored grade 12 students' understanding of reaction kinetics, a topic which has not been extensively explored in the chemistry education literature at this level. A 3-tier diagnostic instrument with 11 questions was developed--this format is of very recent origin and has been the subject of only a handful of studies. The findings…

  6. Understanding Student Cognition about Complex Earth System Processes Related to Climate Change

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.

    2011-12-01

    The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.

  7. Understanding veterinary students' use of and attitudes toward the social networking site, Facebook, to assist in developing curricula to address online professionalism.

    Science.gov (United States)

    Coe, Jason B; Weijs, Cynthia A; Muise, Amy; Christofides, Emily; Desmarais, Serge

    2012-01-01

    Social media is an increasingly common form of communication, with Facebook being the preferred social-networking site among post-secondary students. Numerous studies suggest post-secondary students practice high self-disclosure on Facebook. Research evaluating veterinary students' use of social media found a notable proportion of student-posted content deemed inappropriate. Lack of discretion in posting content can have significant repercussions for aspiring veterinary professionals, their college of study, and the veterinary profession they represent. Veterinarians-in-training at three veterinary colleges across Canada were surveyed to explore their use of and attitude toward the social networking site, Facebook. Students were invited to complete an online survey with questions relating to their knowledge of privacy in relation to using Facebook, their views on the acceptability of posting certain types of information, and their level of professional accountability online. Linear regression modeling was used to further examine factors related to veterinary students' disclosure of personal information on Facebook. Need for popularity (pFacebook. Understanding veterinary students' use of and attitudes toward social media, such as Facebook, reveals a need, and provides a basis, for developing educational programs to address online professionalism. Educators and administrators at veterinary schools may use this information to assist in developing veterinary curricula that addresses the escalating issue of online professionalism.

  8. Determining Students' Conceptual Understanding Level of Thermodynamics

    Science.gov (United States)

    Saricayir, Hakan; Ay, Selahattin; Comek, Arif; Cansiz, Gokhan; Uce, Musa

    2016-01-01

    Science students find heat, temperature, enthalpy and energy in chemical reactions to be some of the most difficult subjects. It is crucial to define their conceptual understanding level in these subjects so that educators can build upon this knowledge and introduce new thermodynamics concepts. This paper reports conceptual understanding levels of…

  9. Impact of a student leadership development program.

    Science.gov (United States)

    Chesnut, Renae; Tran-Johnson, Jennifer

    2013-12-16

    To assess the effectiveness of the Student Leadership Development Series (SLDS), an academic-year--long, co-curricular approach to developing leadership skills in pharmacy students. Participants met once per month for activities and a college-wide guest speaker session. Students also completed monthly forms regarding what they had learned, participated in poster presentations, and created a personal leadership platform. One hundred twenty-three students participated in the program between 2008 and 2013. On monthly evaluation forms and a summative evaluation, students indicated that the program helped them feel prepared for leadership opportunities and increased their desire to pursue leadership. They valued interacting with pharmacy leaders from the community and learning how they could distinguish themselves as leaders. The SLDS provided pharmacy students with an opportunity to explore personal leadership styles and develop broader understanding of leadership, and increased their desire to pursue leadership positions in the future.

  10. Framework for understanding the patterns of student difficulties in quantum mechanics

    Directory of Open Access Journals (Sweden)

    Emily Marshman

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the effects of diversity in upper-level students’ prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel as well as the “paradigm shift” from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics.

  11. A Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    Science.gov (United States)

    Singh, Chandralekha

    2015-04-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. We describe a theoretical framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates the effects of diversity in students' prior preparation, goals and motivation for taking upper-level physics courses in general as well as the ``paradigm shift'' from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics will be discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a theoretical framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics. Support from the National Science Foundation is gratefully acknowledged.

  12. Understanding the Impact of an Apprenticeship-Based Scientific Research Program on High School Students' Understanding of Scientific Inquiry

    Science.gov (United States)

    Aydeniz, Mehmet; Baksa, Kristen; Skinner, Jane

    2011-01-01

    The purpose of this study was to understand the impact of an apprenticeship program on high school students' understanding of the nature of scientific inquiry. Data related to seventeen students' understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic…

  13. Development and validation of a method for measuring depth of understanding in constructivist learning

    Science.gov (United States)

    Guarino, Lucia Falsetti

    A method for measuring depth of understanding of students in the middle-level science classroom was developed and validated. A common theme in the literature on constructivism in science education is that constructivist pedagogy, as opposed to objectivist pedagogy, results in a greater depth of understanding. Since few instruments measuring this construct exist at the present time, the development of such a tool to measure this construct was a significant contribution to the current body of assessment technologies in science education. The author's Depth of Understanding Assessment (DUA) evolved from a writing measure originally designed as a history assessment. The study involved 230 eighth grade science students studying a chemical change unit. The main research questions were: (1) What is the relationship between the DUA and each of the following independent variables: recall, application, and questioning modalities as measured by the Cognitive Preference Test; deep, surface, achieving, and deep-achieving approaches as measured by the Learning Process Questionnaire; achievement as measured by the Chemical Change Quiz, and teacher perception of student ability to conceptualize science content? (2) Is there a difference in depth of understanding, as measured by the DUA, between students who are taught by objectivist pedagogy and students who are taught by constructivist pedagogy favoring the constructivist group? (3) Is there a gender difference in depth of understanding as measured by the DUA? (4) Do students who are taught by constructivist pedagogy perceive their learning environment as more constructivist than students who are taught by objectivist pedagogy? Six out of nine hypothesis tests supported the validity of the DUA. The results of the qualitative component of this study which consisted of student interviews substantiated the quantitative results by providing additional information and insights. There was a significant difference in depth of

  14. Independent learning modules enhance student performance and understanding of anatomy.

    Science.gov (United States)

    Serrat, Maria A; Dom, Aaron M; Buchanan, James T; Williams, Alison R; Efaw, Morgan L; Richardson, Laura L

    2014-01-01

    Didactic lessons are only one part of the multimodal teaching strategies used in gross anatomy courses today. Increased emphasis is placed on providing more opportunities for students to develop lifelong learning and critical thinking skills during medical training. In a pilot program designed to promote more engaged and independent learning in anatomy, self-study modules were introduced to supplement human gross anatomy instruction at Joan C. Edwards School of Medicine at Marshall University. Modules use three-dimensional constructs to help students understand complex anatomical regions. Resources are self-contained in portable bins and are accessible at any time. Students use modules individually or in groups in a structured self-study format that augments material presented in lecture and laboratory. Pilot outcome data, measured by feedback surveys and examination performance statistics, suggest that the activity may be improving learning in gross anatomy. Positive feedback on both pre- and post-examination surveys showed that students felt the activity helped to increase their understanding of the topic. In concordance with student perception, average examination scores on module-related laboratory and lecture questions were higher in the two years of the pilot program compared with the year before its initiation. Modules can be fabricated on a modest budget using minimal resources, making implementation practical for smaller institutions. Upper level medical students assist in module design and upkeep, enabling continuous opportunities for vertical integration across the curriculum. This resource offers a feasible mechanism for enhancing independent and lifelong learning competencies, which could be a valuable complement to any gross anatomy curriculum. © 2014 American Association of Anatomists.

  15. Probing Student Understanding of Scientific Thinking in the Context of Introductory Astrophysics

    Science.gov (United States)

    Steinberg, Richard N.; Cormier, Sebastien; Fernandez, Adiel

    2009-01-01

    Common forms of testing of student understanding of science content can be misleading about their understanding of the nature of scientific thinking. Observational astronomy integrated with related ideas of force and motion is a rich context to explore the correlation between student content knowledge and student understanding of the scientific…

  16. Information-seeking strategies and science content understandings of sixth-grade students using on-line learning environments

    Science.gov (United States)

    Hoffman, Joseph Loris

    1999-11-01

    This study examined the information-seeking strategies and science content understandings learners developed as a result of using on-line resources in the University of Michigan Digital Library and on the World Wide Web. Eight pairs of sixth grade students from two teachers' classrooms were observed during inquiries for astronomy, ecology, geology, and weather, and a final transfer task assessed learners' capabilities at the end of the school year. Data included video recordings of students' screen activity and conversations, journals and completed activity sheets, final artifacts, and semi-structured interviews. Learners' information-seeking strategies included activities related to asking, planning, tool usage, searching, assessing, synthesizing, writing, and creating. Analysis of data found a majority of learners posed meaningful, openended questions, used technological tools appropriately, developed pertinent search topics, were thoughtful in queries to the digital library, browsed sites purposefully to locate information, and constructed artifacts with novel formats. Students faced challenges when planning activities, assessing resources, and synthesizing information. Possible explanations were posed linking pedagogical practices with learners' growth and use of inquiry strategies. Data from classroom-lab video and teacher interviews showed varying degrees of student scaffolding: development and critique of initial questions, utilization of search tools, use of journals for reflection on activities, and requirements for final artifacts. Science content understandings included recalling information, offering explanations, articulating relationships, and extending explanations. A majority of learners constructed partial understandings limited to information recall and simple explanations, and these occasionally contained inaccurate conceptualizations. Web site design features had some influence on the construction of learners' content understandings. Analysis of

  17. Middle School Students' Understandings About Anthropogenic Climate Change

    Science.gov (United States)

    Golden, B. W.

    2013-12-01

    Given the complexity of the science involving climate change (IPCC, 2007), its lack of curricular focus within US K-12 schooling (Golden, 2009; Golden & Francis, 2013), and the difficulty in effecting conceptual change in science (Vosniadou, 2007), we sought to research middle school students' conceptions about climate change, in addition to how those conceptions changed during and as a result of a deliberately designed global climate change (GCC) unit. In a sixth grade classroom, a unit was designed which incorporated Argumentation-Driven Inquiry (Sampson & Grooms, 2010). That is, students were assigned to groups and asked to make sense of standard GCC data such as paleoclimate data from ice cores, direct temperature measurement, and Keeling curves, in addition to learning about the greenhouse effect in a modeling lesson (Hocking, et al, 1993). The students were then challenged, in groups, to create, on whiteboards, explanations and defend these explanations to and with their peers. They did two iterations of this argumentation. The first iteration focused on the simple identification of climate change patterns. The second focused on developing causal explanations for those patterns. After two rounds of such argumentation, the students were then asked to write (individually) a "final" argument which accounted for the given data. Interview and written data were analyzed prior to the given unit, during it, and after it, in order to capture complicated nuance that might escape detection by simpler research means such as surveys. Several findings emerged which promised to be of interest to climate change educators. The first is that many students tended to "know" many "facts" about climate change, but were unable to connect these disparate facts in any meaningful ways. A second finding is that while no students changed their entire belief systems, even after a robust unit which would seemingly challenge such, each student engaged did indeed modify the manner in which

  18. Effects of student choice on engagement and understanding in a junior high science class

    Science.gov (United States)

    Foreback, Laura Elizabeth

    The purpose of this study was to determine the effects of increasing individual student choice in assignments on student engagement and understanding of content. It was predicted that if students are empowered to choose learning activities based on individual readiness, learning style, and interests, they would be more engaged in the curriculum and consequently would develop deeper understanding of the material. During the 2009--2010 school year, I implemented differentiated instructional strategies that allowed for an increased degree of student choice in five sections of eighth grade science at DeWitt Junior High School. These strategies, including tiered lessons and student-led, project-based learning, were incorporated into the "Earth History and Geologic Time Scale" unit of instruction. The results of this study show that while offering students choices can be used as an effective motivational strategy, their academic performance was not increased compared to their performance during an instructional unit that did not offer choice.

  19. Understanding Learning Style Variations among Undergraduate Students

    Directory of Open Access Journals (Sweden)

    N. Jayakumar

    2017-09-01

    Full Text Available A study was conducted in Vellore district of Tamil Nadu state to understand the learning styles of students. The term learning style refers to the way or method or approach by which a student learns. The study explored the possible learning style variations among agricultural, horticultural, engineering and arts & science students and their association with academic achievement. One hundred and twelve students were randomly selected from the four streams and their learning styles were analyzed. In the agricultural and horticultural streams, a majority of the students were auditory learners. They were also found to be predominantly unimodal learners. Overall, it was found that majority of the students were visual learners followed by auditory and kinesthetic style. The highest percentage of kinesthetic learners was found among engineering students. Trimodal learners scored the highest mean percentage of marks. The influence of learning styles on the academic achievements of the students did not show a significant relationship.

  20. Developing Thinking and Understanding in Young Children: An Introduction for Students. Second Edition

    Science.gov (United States)

    Robson, Sue

    2012-01-01

    Developing "Thinking and Understanding in Young Children" presents a comprehensive and accessible overview of contemporary theory and research about young children's developing thinking and understanding. Throughout this second edition, the ideas and theories presented are enlivened by transcripts of children's activities and conversations taken…

  1. A Discussion of Professional Identity Development in Nursing Students

    Directory of Open Access Journals (Sweden)

    Cathy Maginnis

    2018-04-01

    Full Text Available Becoming a nurse requires development of professional capabilities, specifically socialisation into the profession and developing a professional identity (PI. A search of the literature highlights a lack of empirical research in PI development during pre-registration nursing education. A range of factors will be explored that relate to PI, including identity, professional socialisation, a sense of belonging to the profession and clinical placement. Exploring the development of a PI in nursing students can assist with identifying drivers and inhibitors. The aim of this paper is to describe PI development in pre-registration nursing students’ education and the relationship between development of a PI and the tertiary provided education. There are a multitude of factors that impact on developing a PI such as identity, professional socialisation, belonging, clinical placements and educators. Nursing students predominantly develop a nursing PI in the pre-registration program with professional socialisation through exposure to academia, clinical practice and role models. The onus of responsibility for developing a PI in nursing students is attributed to educational institutions. An expected outcome of the pre-registration program is that nursing students will have formed a PI. A greater depth of understanding PI is important in supporting the education of the nurses of the future. There may not be one simple explanation for what PI is, or how it is developed, but a greater depth of understanding of PI by both the tertiary sector and the nursing profession is important in supporting the education of the nurses of the future. Further research will enable a dialogue describing the development of a PI in nursing students and an understanding of the attributes and conceptions attributed to a nursing PI.

  2. Development of two tier test to assess conceptual understanding in heat and temperature

    Science.gov (United States)

    Winarti; Cari; Suparmi; Sunarno, Widha; Istiyono, Edi

    2017-01-01

    Heat and temperature is a concept that has been learnt from primary school to undergraduate levels. One problem about heat and temperature is that they are presented abstractly, theoretical concept. A student conceptual frameworks develop from their daily experiences. The purpose of this research was to develop a two-tier test of heat and temperature concept and measure conceptual understanding of heat and temperature of the student. This study consist of two method is qualitative and quantitative method. The two-tier test was developed using procedures defined by Borg and Gall. The two-tier test consisted of 20 question and was tested for 137 students for collecting data. The result of the study showed that the two-tier test was effective in determining the students’ conceptual understanding and also it might be used as an alternative for assessment and evaluation of students’ achievement

  3. The effect of restructuring student writing in the general chemistry laboratory on student understanding of chemistry and on students' approach to the laboratory course

    Science.gov (United States)

    Rudd, James Andrew, II

    Many students encounter difficulties engaging with laboratory-based instruction, and reviews of research have indicated that the value of such instruction is not clearly evident. Traditional forms of writing associated with laboratory activities are commonly in a style used by professional scientists to communicate developed explanations. Students probably lack the interpretative skills of a professional, and writing in this style may not support students in learning how to develop scientific explanations. The Science Writing Heuristic (SWH) is an inquiry-based approach to laboratory instruction designed in part to promote student ability in developing such explanations. However, there is not a convincing body of evidence for the superiority of inquiry-based laboratory instruction in chemistry. In a series of studies, the performance of students using the SWH student template in place of the standard laboratory report format was compared to the performance of students using the standard format. The standard reports had Title, Purpose, Procedure, Data & Observations, Calculations & Graphs, and Discussion sections. The SWH reports had Beginning Questions & Ideas, Tests & Procedures, Observations, Claims, Evidence, and Reflection sections. The pilot study produced evidence that using the SWH improved the quality of laboratory reports, improved student performance on a laboratory exam, and improved student approach to laboratory work. A main study found that SWH students statistically exhibited a better understanding of physical equilibrium when written explanations and equations were analyzed on a lecture exam and performed descriptively better on a physical equilibrium practical exam task. In another main study, the activities covering the general equilibrium concept were restructured as an additional change, and it was found that SWH students exhibited a better understanding of chemical equilibrium as shown by statistically greater success in overcoming the common

  4. Does Conceptual Understanding of Limit Partially Lead Students to Misconceptions?

    Science.gov (United States)

    Mulyono, B.; Hapizah

    2017-09-01

    This article talks about the result of preliminary research of my dissertation, which will investigate student’s retention of conceptual understanding. In my preliminary research, I surveyed 73 students of mathematics education program by giving some questions to test their retention of conceptual understanding of limits. Based on the results of analyzing of students’ answers I conclude that most of the students have problems with their retention of conceptual understanding and they also have misconception of limits. The first misconception I identified is that students always used the substitution method to determine a limit of a function at a point, but they did not check whether the function is continue or not at the point. It means that they only use the substitution theorem partially, because they do not consider that the substitution theorem \\mathop{{lim}}\\limits\\text{x\\to \\text{c}}f(x)=f(c) works only if f(x) is defined at χ = c. The other misconception identified is that some students always think there must be available of variables χ in a function to determine the limit of the function. I conjecture that conceptual understanding of limit partially leads students to misconceptions.

  5. High School Students' Representations and Understandings of Electric Fields

    Science.gov (United States)

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  6. The Unique Context of Identity-Based Student Organizations in Developing Leadership.

    Science.gov (United States)

    Kodama, Corinne M; Laylo, Rhonda

    2017-09-01

    This chapter addresses the important role of identity-based student organizations in developing leadership, particularly for students who may feel marginalized because of their racial/ethnic, religious, or gender identities. Understanding the influence of these groups can help leadership educators develop a more inclusive and diverse perspective on student leadership development. © 2017 Wiley Periodicals, Inc., A Wiley Company.

  7. Developing Self-Efficacy: Exploring Preservice Coursework, Student Teaching, and Professional Development Experiences

    Science.gov (United States)

    McKim, Aaron J.; Velez, Jonathan J.

    2017-01-01

    To extend current understanding of school-based agriculture teacher development, this study explored the relationship between teacher development experiences and the self-efficacy of early career agriculture teachers. Three teacher development experiences were of interest: (a) preservice coursework, (b) student teaching, and (c) professional…

  8. Understanding Sleep Disorders in a College Student Population.

    Science.gov (United States)

    Jensen, Dallas R.

    2003-01-01

    College students' sleep habits are changing dramatically, and related sleep problems are increasing. Reviews the current literature on sleep problems, focusing on the college student population. The unique challenges of college settings are discussed as they apply to understanding sleep problems, and suggestions are made for professionals who work…

  9. Student understanding of the application of Newton's second law to rotating rigid bodies

    Science.gov (United States)

    Close, Hunter G.; Gomez, Luanna S.; Heron, Paula R. L.

    2013-06-01

    We report on an investigation of student understanding of rigid body dynamics in which we asked students in introductory calculus-based physics to compare the translational motions of identical rigid bodies subject to forces that differed only in the point of contact at which they were applied. There was a widespread tendency to claim that forces that cause rotational motion have a diminished effect on translational motion. A series of related problems was developed to examine whether similar errors would be made in other contexts, and interviews were conducted to probe student thinking in greater depth. In this paper, we describe the results of our investigation and also describe a series of different interventions that culminated in the development of a tutorial that improves student ability to apply Newton's second law to rotating rigid bodies.

  10. Geoscience Academic Provenance: A Theoretical Framework for Understanding Geoscience Students' Pathways

    Science.gov (United States)

    Houlton, H.; Keane, C.

    2012-04-01

    The demand and employment opportunities for geoscientists in the United States are projected to increase 23% from 2008 to 2018 (Gonzales, 2011). Despite this trend, there is a disconnect between undergraduate geoscience students and their desire to pursue geoscience careers. A theoretical framework was developed to understand the reasons why students decide to major in the geosciences and map those decisions to their career aspirations (Houlton, 2010). A modified critical incident study was conducted to develop the pathway model from 17, one-hour long semi-structured interviews of undergraduate geoscience majors from two Midwest Research Institutions (Houlton, 2010). Geoscience Academic Provenance maps geoscience students' initial interests, entry points into the major, critical incidents and future career goals as a pathway, which elucidates the relationships between each of these components. Analyses identified three geoscience student population groups that followed distinct pathways: Natives, Immigrants and Refugees. A follow up study was conducted in 2011 to ascertain whether these students continued on their predicted pathways, and if not, reasons for attrition. Geoscientists can use this framework as a guide to inform future recruitment and retention initiatives and target these geoscience population groups for specific employment sectors.

  11. Student teachers' understanding and acceptance of evolution and ...

    African Journals Online (AJOL)

    The focus of this study was student teachers at a South African university enrolled in a Bachelor of Education (B.Ed.) programme and a Postgraduate Certificate in Education (PGCE), respectively. The purpose of this study was to explore students' understanding and acceptance of evolution and beliefs about the nature of ...

  12. Life on the Number Line: Routes to Understanding Fraction Magnitude for Students With Difficulties Learning Mathematics.

    Science.gov (United States)

    Gersten, Russell; Schumacher, Robin F; Jordan, Nancy C

    Magnitude understanding is critical for students to develop a deep understanding of fractions and more advanced mathematics curriculum. The research reports in this special issue underscore magnitude understanding for fractions and emphasize number lines as both an assessment and an instructional tool. In this commentary, we discuss how number lines broaden the concept of fractions for students who are tied to the more general part-whole representations of area models. We also discuss how number lines, compared to other representations, are a superior and more mathematically correct way to explain fraction concepts.

  13. Investigation of the relationship between students' problem solving and conceptual understanding of electricity

    Science.gov (United States)

    Cobanoglu Aktan, Derya

    The purpose of this study was to investigate the relationship between students' qualitative problem solving and conceptual understanding of electricity. For the analysis data were collected from observations of group problem solving, from their homework artifacts, and from semi-structured interviews. The data for six undergraduate students were analyzed by qualitative research methods. The students in the study were found to use tools (such as computer simulations and formulas) differently from one another, and they made different levels of interpretations for the electricity representations. Consequently each student had different problem solving strategies. The students exhibited a wide range of levels of understanding of the electricity concepts. It was found that students' conceptual understandings and their problem solving strategies were closely linked with one another. The students who tended to use multiple tools to make high level interpretations for representations to arrive at a single solution exhibited a higher level of understanding than the students who tended to use tools to make low level interpretations to reach a solution. This study demonstrates a relationship between conceptual understanding and problem solving strategies. Similar to the results of the existing research on students' quantitative problem solving, it was found that students were able to give correct answers to some problems without fully understanding the concepts behind the problem. However, some problems required a conceptual understanding in order for a student to arrive at a correct answer. An implication of this study is that careful selection of qualitative questions is necessary for capturing high levels of conceptual understanding. Additionally, conceptual understanding among some types of problem solvers can be improved by activities or tasks that can help them reflect on their problem solving strategies and the tools they use.

  14. Implementing Mathematics Teaching That Promotes Students' Understanding through Theory-Driven Lesson Study

    Science.gov (United States)

    Huang, Rongjin; Gong, Zikun; Han, Xue

    2016-01-01

    Lesson study (LS) has been practiced in China as an effective way to advance teachers' professional development for decades. This study explores how LS improves teaching that promotes students' understanding. A LS group including didacticians (practice-based teaching research specialist and University-based mathematics educators) and mathematics…

  15. Pedagogy as influencing nursing students' essentialized understanding of culture.

    Science.gov (United States)

    Gregory, David; Harrowing, Jean; Lee, Bonnie; Doolittle, Lisa; O'Sullivan, Patrick S

    2010-01-01

    In this qualitative study, we explored how students understood "culture." Participants defined culture and wrote narratives regarding specific cultural encounters. The sample comprised both nursing (n=14) and non-nursing (n=8) students to allow for comparison groups. Content analysis of the narratives revealed two broad paradigms of cultural understanding: essentialist and constructivist. Essentialist narratives comprised four themes: determinism (culture defied individual resistance); relativism (the possibility of making value judgments disappeared); Othering (culture was equated to exotica, and emphasized difference); and, reductionism (personhood was eclipsed by culture). In contrast, the constructivist narratives were characterized by influence (non-determinism), dynamism (culture was dynamic and evolutionary); and, relationship-building. The unintended negative consequences of essentialist notions of culture were revealed in the nursing students' narratives. Pedagogy is implicated in nursing students' essentialized understanding of culture.

  16. Native American Students' Understanding of Geologic Time Scale: 4th-8th Grade Ojibwe Students' Understanding of Earth's Geologic History

    Science.gov (United States)

    Nam, Younkyeong; Karahan, Engin; Roehrig, Gillian

    2016-01-01

    Geologic time scale is a very important concept for understanding long-term earth system events such as climate change. This study examines forty-three 4th-8th grade Native American--particularly Ojibwe tribe--students' understanding of relative ordering and absolute time of Earth's significant geological and biological events. This study also…

  17. Student Understanding of Time Dependence in Quantum Mechanics

    Science.gov (United States)

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-01-01

    The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…

  18. The Effect of Guided Note Taking during Lectures on Thai University Students' Understanding of Electromagnetism

    Science.gov (United States)

    Narjaikaew, Pattawan; Emarat, Narumon; Cowie, Bronwen

    2009-01-01

    This paper reports on the implementation of a guided note taking strategy to promote Thai students' understanding of electromagnetism during a lecture course. The aim of the study was to enhance student learning of electromagnetism concepts. The developed guided notes contain quotations, diagrams, pictures, problems, and blank spaces to encourage…

  19. University Students' Understanding of Chemistry Processes and the Quality of Evidence in Their Written Arguments

    Science.gov (United States)

    Seung, Eulsun; Choi, Aeran; Pestel, Beverly

    2016-01-01

    We have developed a process-oriented chemistry laboratory curriculum for non-science majors. The purpose of this study is both to explore university students' understanding of chemistry processes and to evaluate the quality of evidence students use to support their claims regarding chemistry processes in a process-oriented chemistry laboratory…

  20. Case based learning: a method for better understanding of biochemistry in medical students.

    Science.gov (United States)

    Nair, Sandhya Pillai; Shah, Trushna; Seth, Shruti; Pandit, Niraj; Shah, G V

    2013-08-01

    Health professionals need to develop analytic and diagnostic thinking skills and not just a mere accumulation of large amount of facts. Hence, Case Based Learning (CBL) has been used in the medical curriculum for this reason, so that the students are exposed to the real medical problems, which helps them in develop analysing abilities. This also helps them in interpreting and solving the problems and in the course of doing this, they develop interest. In addition to didactic lectures, CBL was used as a learning method. This study was conducted in the Department of Biochemistry, S.B.K.S.M.I and R.C, Sumandeep Vidyapeeth ,Piparia, Gujarat, India. A group of 100 students were selected and they were divided into two groups as the control group and the study group. A total of 50 students were introduced to case based learning, which formed the study group and 50 students who attended didactic lectures formed the control group. A very significant improvement (pmedical curriculum for a better understanding of Biochemistry among the medical students.

  1. Developing a magnetism conceptual survey and assessing gender differences in student understanding of magnetism

    Science.gov (United States)

    Li, Jing; Singh, Chandralekha

    2012-02-01

    We discuss the development of a research-based conceptual multiple-choice survey of magnetism. We also discuss the use of the survey to investigate gender differences in students' difficulties with concepts related to magnetism. We find that while there was no gender difference on the pre-test. However, female students performed significantly worse than male students when the survey was given as a post-test in traditionally taught calculus-based introductory physics courses with similar results in both the regular and honors versions of the course. In the algebra-based courses, the performance of female and male students has no statistical difference on the pre-test or the post-test.

  2. Developing Intercultural Competence in Future Student Affairs Professionals through a Graduate Student Global Study Course to Doha, Qatar

    Science.gov (United States)

    Haber, Paige; Getz, Cheryl

    2011-01-01

    This paper describes a 2-week global study course to Doha, Qatar for graduate students in the higher education leadership and student affairs program at the University of San Diego. The course sought to develop intercultural competence with a specific focus on understanding Qatari and Middle Eastern perspectives and culture, understanding the…

  3. Students' Understanding of Conditional Probability on Entering University

    Science.gov (United States)

    Reaburn, Robyn

    2013-01-01

    An understanding of conditional probability is essential for students of inferential statistics as it is used in Null Hypothesis Tests. Conditional probability is also used in Bayes' theorem, in the interpretation of medical screening tests and in quality control procedures. This study examines the understanding of conditional probability of…

  4. Using a Virtual Tablet Machine to Improve Student Understanding of the Complex Processes Involved in Tablet Manufacturing.

    Science.gov (United States)

    Mattsson, Sofia; Sjöström, Hans-Erik; Englund, Claire

    2016-06-25

    Objective. To develop and implement a virtual tablet machine simulation to aid distance students' understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students' perceptions, the use of the tablet simulation contributed to their understanding of the compaction process.

  5. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Science.gov (United States)

    Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha

    2017-06-01

    Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a "wave" in part of the experiment and as a "particle" in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT) which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  6. Introductory Psychology: How Student Experiences Relate to Their Understanding of Psychological Science

    Science.gov (United States)

    Toomey, Thomas; Richardson, Deborah; Hammock, Georgina

    2017-01-01

    Many students who declare a psychology major are unaware that they are studying a scientific discipline, precipitating a need for exercises and experiences that help students understand the scientific nature of the discipline. The present study explores aspects of an introductory psychology class that may contribute to students' understanding of…

  7. University Students' Understanding of Chemical Thermodynamics

    Science.gov (United States)

    Sreenivasulu, Bellam; Subramaniam, R.

    2013-01-01

    This study explored undergraduate students' understanding of the chemistry topic of thermodynamics using a 4-tier diagnostic instrument, comprising 30 questions, and follow-up interviews. An additional objective of the study was to assess the utility of the 4-tier instrument for use in studies on alternative conceptions (ACs) as there has been no…

  8. Improving students' understanding by using on-going education research to refine active learning activities in a first-year electronics course

    International Nuclear Information System (INIS)

    Mazzolini, Alexander Peter; Daniel, Scott Arthur

    2015-01-01

    Interactive Lecture Demonstrations (ILDs) have been used across introductory university physics as a successful active learning (AL) strategy to improve students’ conceptual understanding. We have developed ILDs for more complex topics in our first-year electronics course. In 2006 we began developing ILDs to improve students’ conceptual understanding of Operational Amplifiers (OAs) and negative feedback in amplification circuits. The ILDs were used after traditional lecture instruction to help students consolidate their understanding. We developed a diagnostic test, to be administered to students both before and after the ILDs, as a measure of how effective the ILDs were in improving students’ understanding.

  9. An Investigation into Post-Secondary Students' Understanding of Combinatorial Questions

    Science.gov (United States)

    Bulone, Vincent William

    2017-01-01

    The purpose of this dissertation was to study aspects of how post-secondary students understand combinatorial problems. Within this dissertation, I considered understanding through two different lenses: i) student connections to previous problems; and ii) common combinatorial distinctions such as ordered versus unordered and repetitive versus…

  10. The Interplay between Students' Understandings of Proportional and Functional Relationships

    Science.gov (United States)

    Stephens, Ana; Strachota, Susanne; Knuth, Eric; Blanton, Maria; Isler, Isil; Gardiner, Angela

    2017-01-01

    This research explores the interplay between students' understandings of proportional and functional relationships. Approximately 90 students participated in an early algebra intervention in Grades 3- 5. Before the intervention and after each year of the intervention, we evaluated their understandings of proportional and functional relationships.…

  11. Improving Marking Reliability of Scientific Writing with the Developing Understanding of Assessment for Learning Programme

    Science.gov (United States)

    Bird, Fiona L.; Yucel, Robyn

    2013-01-01

    The Developing Understanding of Assessment for Learning (DUAL) programme was developed with the dual aims of improving both the quality and consistency of feedback students receive and the students' ability to use that feedback to improve. DUAL comprises a range of processes (including marking rubrics, sample reports, moderation discussions and…

  12. Assessing middle school students` understanding of science relationships and processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schau, C.; Mattern, N.; Weber, R. [Univ. of New Nexico, Albuquerque, NM (United States); Minnick, K. [Minnick & Associates, Inc., Albuquerque, NM (United States)

    1994-09-01

    Our overall goal for this multi-year project is to develop and validate an alternative assessment format that effectively measures middle school students understanding of the relationships among selected science concepts and processes. In this project, we collaborate with the staff of the Los Alamos National Laboratory`s TOPS Program and the Programs participating teachers and their students. We also work with selected middle school science teachers from the TOPS program at Sandia National Laboratories. Our goal for this past year was to develop and field test informally a variety of potential measurement formats. This work has allowed us to identify formats to test during the validation phase of the project which will occur during the second year.

  13. Improving Student Understanding of Magmatic Differentiation Using an M&M Magma Chamber

    Science.gov (United States)

    Wirth, K. R.

    2003-12-01

    Many students, especially those in introductory geology courses, have difficulty developing a deep understanding of the processes of magmatic differentiation. In particular, students often struggle to understand Bowen's reaction series and fractional crystallization. The process of fractional crystallization by gravity settling can be illustrated using a model magma chamber consisting of M&M's. In this model, each major cation (e.g., Si, Ti, Al, Fe, Mg, Ca, Na, K) is represented by a different color M&M; other kinds of differently colored or shaped pieces could also be used. Appropriate numbers of each color M&M are combined to approximate the cation proportions of a basaltic magma. Students then fractionate the magma by moving M&M's to the bottom of the magma chamber forming a series of cumulus layers; the M&M's are removed in the stoichiometric proportions of cations in the crystallizing minerals (e.g., olivine, pyroxene, feldspars, quartz, magnetite, ilmenite). Students observe the changing cation composition (proportions of colors of M&M's) in the cumulus layers and in the magma chamber and graph the results using spreadsheet software. More advanced students (e.g., petrology course) can classify the cumulates and resulting liquid after each crystallization step, and they can compare the model system with natural magmatic systems (e.g., absence of important fractionating phases, volatiles). Students who have completed this exercise generally indicate a positive experience and demonstrate increased understanding of Bowen's reaction series and fractionation processes. They also exhibit greater familiarity with mineral stoichiometry, classification, solid-solution in minerals, element behavior (e.g., incompatibility), and chemical variation diagrams. Other models (e.g., paths of equilibrium and fractional crystallization on phase diagrams) can also be used to illustrate differentiation processes in upper level courses (e.g., mineralogy and petrology).

  14. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Directory of Open Access Journals (Sweden)

    Ryan Sayer

    2017-05-01

    Full Text Available Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students’ prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a “wave” in part of the experiment and as a “particle” in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  15. Playing "Sherlock Holmes": Enhancing Students' Understanding of Prejudice and Stereotyping.

    Science.gov (United States)

    Junn, Ellen N.; Grier, Leslie K.; Behrens, Debra P.

    2001-01-01

    Describes an experiential classroom exercise that was designed to help students understand stereotyping and prejudice. The instructor read behavioral and psychological descriptions, asked students to imagine they were Sherlock Holmes, and identify classmates to whom the descriptions might apply. States that students of color reported more benefits…

  16. Measuring and Comparing Academic Language Development and Conceptual Understanding via Science Notebooks

    Science.gov (United States)

    Huerta, Margarita; Tong, Fuhui; Irby, Beverly J.; Lara-Alecio, Rafael

    2016-01-01

    The authors of this quantitative study measured and compared the academic language development and conceptual understanding of fifth-grade economically disadvantaged English language learners (ELL), former ELLs, and native English-speaking (ES) students as reflected in their science notebook scores. Using an instrument they developed, the authors…

  17. The Impact of Science Fiction Film on Student Understanding of Science

    Science.gov (United States)

    Barnett, Michael; Wagner, Heather; Gatling, Anne; Anderson, Janice; Houle, Meredith; Kafka, Alan

    2006-04-01

    Researchers who have investigated the public understanding of science have argued that fictional cinema and television has proven to be particularly effective at blurring the distinction between fact and fiction. The rationale for this study lies in the notion that to teach science effectively, educators need to understand how popular culture influences their students' perception and understanding of science. Using naturalistic research methods in a diverse middle school we found that students who watched a popular science fiction film, The Core, had a number of misunderstandings of earth science concepts when compared to students who did not watch the movie. We found that a single viewing of a science fiction film can negatively impact student ideas regarding scientific phenomena. Specifically, we found that the film leveraged the scientific authority of the main character, coupled with scientifically correct explanations of some basic earth science, to create a series of plausible, albeit unscientific, ideas that made sense to students.

  18. Understanding Neurophobia: Reasons behind Impaired Understanding and Learning of Neuroanatomy in Cross-Disciplinary Healthcare Students

    Science.gov (United States)

    Javaid, Muhammad Asim; Chakraborty, Shelly; Cryan, John F.; Schellekens, Harriët; Toulouse, André

    2018-01-01

    Recent studies have highlighted a fear or difficulty with the study and understanding of neuroanatomy among medical and healthcare students. This has been linked with a diminished confidence of clinical practitioners and students to manage patients with neurological conditions. The underlying reasons for this difficulty have been queried among a…

  19. A Sun-Earth-Moon Activity to Develop Student Understanding of Lunar Phases and Frames of Reference

    Science.gov (United States)

    Ashmann, Scott

    2012-01-01

    The Moon is an ever-present subject of observation, and it is a recurring topic in the science curriculum from kindergarten's basic observations through graduate courses' mathematical analyses of its orbit. How do students come to comprehend Earth's nearest neighbor? What is needed for them to understand the lunar phases and other phenomena and…

  20. Any Small Change?: Teacher Education, Compassion, Understandings and Perspectives on Global Development Education

    Science.gov (United States)

    Varadharajan, Meera; Buchanan, John

    2017-01-01

    Increased migration of people(s), goods, ideas and ideologies necessitate global understanding, empathies and responses on the part of teachers and their students. This paper investigates the effects on 100 primary pre-service teachers' understandings of and attitudes toward a semester-long course exploring, inter alia, global development. The…

  1. Invisible Misconceptions: Student Understanding of Ultraviolet and Infrared Radiation

    Science.gov (United States)

    Libarkin, Julie C.; Asghar, Anila; Crockett, C.; Sadler, Philip

    2011-01-01

    The importance of nonvisible wavelengths for the study of astronomy suggests that student understanding of nonvisible light is an important consideration in astronomy classrooms. Questionnaires, interviews, and panel discussions were used to investigate 6-12 student and teacher conceptions of ultraviolet (UV) and infrared (IR). Alternative…

  2. Chinese Grade Eight Students' Understanding about the Concept of Global Warming

    Science.gov (United States)

    Lin, Jing

    2017-01-01

    China is one of the world's biggest greenhouse gas emitters. Chinese students' awareness and understanding about global warming have a significant impact on the future of mankind. This study, as an initial research of this kind in Mainland China, uses clinical interviews to survey 37 grade eight students on their understanding about global…

  3. Understanding Australian Aboriginal Tertiary Student Needs

    Science.gov (United States)

    Oliver, Rhonda; Rochecouste, Judith; Bennell, Debra; Anderson, Roz; Cooper, Inala; Forrest, Simon; Exell, Mike

    2013-01-01

    Drawing from a study of the experiences of Australian Aboriginal and Torres Strait Islander university students, this paper presents an overview of the specific needs of these students as they enter and progress through their tertiary education. Extracts from a set of case studies developed from both staff and student interviews and an online…

  4. History as narrative: the nature and quality of historical understanding for students with LD.

    Science.gov (United States)

    Espin, Christine A; Cevasco, Jazmin; van den Broek, Paul; Baker, Scott; Gersten, Russell

    2007-01-01

    In this study, we examine the nature and quality of students' comprehension of history. Specifically, we explore whether cognitive-psychological theories developed to capture the comprehension of narrative text can be used to capture the comprehension of history. Participants were 36 students with learning disabilities who had taken part in an earlier study designed to investigate the effects of an interactive instructional intervention in history. The results of the original study supported the effectiveness of the intervention in terms of amount recalled. The results of the present study reveal that historical understanding can be characterized as the construction of meaning through the creation of a causal network of events. The study of history within a causal network framework has implications for understanding the nature and quality of students' learning of history, and for potentially identifying sources of failure in learning.

  5. Students' Understanding and Perceptions of Assigned Team Roles in a Classroom Laboratory Environment

    Science.gov (United States)

    Ott, Laura E.; Kephart, Kerrie; Stolle-McAllister, Kathleen; LaCourse, William R.

    2018-01-01

    Using a cooperative learning framework in a quantitative reasoning laboratory course, students were assigned to static teams of four in which they adopted roles that rotated regularly. The roles included: team leader, protocol manager, data recorder, and researcher. Using a mixed-methods approach, we investigated students' perceptions of the team roles and specifically addressed students' understanding of the roles, students' beliefs in their ability to enact the roles, and whether working with assigned team roles supported the teams to work effectively and cohesively. Although students expressed confidence in their understanding of the team roles, their understanding differed from the initial descriptions. This suggests that students' understanding of team roles may be influenced by a variety of factors, including their experiences within their teams. Students also reported that some roles appeared to lack a purpose, implying that for roles to be successful, they must have a clear purpose. Finally, the fact that many students reported ignoring the team roles suggests that students do not perceive roles as a requirement for team productivity and cohesion. On the basis of these findings, we provide recommendations for instructors wishing to establish a classroom group laboratory environment. PMID:29681667

  6. Understanding Public Policy Making through the Work of Committees: Utilizing a Student-Led Congressional Hearing Simulation

    Science.gov (United States)

    Rinfret, Sara R.; Pautz, Michelle C.

    2015-01-01

    In an effort to help students better understand the complexity of making environmental policy and the role of policy actors in this process, we developed a mock congressional hearing simulation. In this congressional hearing, students in two environmental policy courses take on the roles of members of Congress and various interest groups to…

  7. Do medical students really understand plagiarism? - Case study.

    Science.gov (United States)

    Badea, Oana

    2017-01-01

    In the last decade, more and more medicine students are involved in research, either in the form of a research project within specialized courses or as a scientific article to be presented at student international conferences or published in prestigious medical journals. The present study included 250 2nd year medical students, currently studying within the University of Medicine and Pharmacy of Craiova, Romania. There were collected 239 responses, with a response rate of 95.6%. In our study, the results showed that foreign students within the University of Medicine and Pharmacy of Craiova did have some issues understanding plagiarism with fewer foreign students (34%) than Romanian students (66%) recognizing that simply changing words does not avoid plagiarism. In our opinion, there should be put more emphasis upon plagiarism implications and its aspects, as well, with a permanent order to try to prevent future attempts of plagiarizing among medical students as future researchers within the medical science field.

  8. The effect of technology-enabled active learning on undergraduate students understanding of electromagnetism

    International Nuclear Information System (INIS)

    Dori, Y.J.

    2005-01-01

    Full Text:The Technology-Enabled Active Learning Project at the Massachusetts Institute of Technology (MIT) involves media-rich software for simulation and visualization in freshman physics carried out in a specially redesigned classroom to facilitate group interaction. These technology-based learning materials are especially useful in electromagnetism to help students conceptualize phenomena and processes. This study analyzes the effects of the unique learning environment of the Technology-Enabled Active Learning Project project on students cognitive and affective outcomes. The assessment of the project included examining students conceptual understanding before and after studying electromagnetism in a media-rich environment. We also investigated the effect of this environment on students preferences regarding the various teaching methods. As part of the project, we developed pre- and post-tests consisting of conceptual questions from standardized tests, as well as questions designed to assess the effect of visualizations and experiments. The research population consisted of 811 undergraduate students. It consisted of a small- and a large-scale experimental groups and a control group. Technology-Enabled Active Learning Project students improved their conceptual understanding concepts of the subject matter to a significantly higher extent than their control group peers. A majority of the students in the small-scale experiment noted that they would recommend the Technology-Enabled Active Learning Project course to fellow students, indicating the benefits of inter activity, visualization, and hands-on experiments, which the technology helped enable. In the large-scale implementation students expressed both positive and negative attitudes in the course survey

  9. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    Science.gov (United States)

    Li, Jing; Singh, Chandralekha

    2017-03-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper-pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  10. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    International Nuclear Information System (INIS)

    Li, Jing; Singh, Chandralekha

    2017-01-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper–pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  11. "Bigger Number Means You Plus!"--Teachers Learning to Use Clinical Interviews to Understand Students' Mathematical Thinking

    Science.gov (United States)

    Heng, Mary Anne; Sudarshan, Akhila

    2013-01-01

    This paper examines the perceptions and understandings of ten grades 1 and 2 Singapore mathematics teachers as they learned to use clinical interviews (Ginsburg, "Human Development" 52:109-128, 2009) to understand students' mathematical thinking. This study challenged teachers' pedagogical assumptions about what it means to teach for…

  12. Probing student understanding of scientific thinking in the context of introductory astrophysics

    Directory of Open Access Journals (Sweden)

    Richard N. Steinberg

    2009-09-01

    Full Text Available Common forms of testing of student understanding of science content can be misleading about their understanding of the nature of scientific thinking. Observational astronomy integrated with related ideas of force and motion is a rich context to explore the correlation between student content knowledge and student understanding of the scientific thinking about that content. In this paper, we describe this correlation in detail with a focus on a question about the relative motion of the Sun and the Earth. We find that high achieving high school students throughout New York City struggle with what constitutes scientific justification and thought processes, but can improve these skills tremendously in an inquiry-oriented summer astronomy-physics program.

  13. How Students with Autism Spectrum Conditions Understand Traditional Bullying and Cyberbullying

    Science.gov (United States)

    Hwang, Yoon-Suk; Dillon-Wallace, Julie; Campbell, Marilyn; Ashburner, Jill; Saggers, Beth; Carrington, Suzanne; Hand, Kirstine

    2018-01-01

    Students with ASC are at heightened risk for bullying and their understanding of bullying is known to protect them from involvement in it (Humphrey and Hebron 2015). However, only a handful of studies have examined how students with ASC understand traditional bullying and none of them focused on cyberbullying. To fill this gap, we investigated how…

  14. Towards a Theoretical Framework for Understanding PGCE Student Teacher Learning in the Wild Coast Rural Schools' Partnership Project

    Science.gov (United States)

    Pennefather, Jane

    2016-01-01

    This article focuses on a theoretical model that I am developing in order to understand student teacher learning in a rural context and the enabling conditions that can support this learning. The question of whether a supervised teaching practice in a rural context can contribute to the development of student teacher professional learning and…

  15. From the Field to the Classroom: Developing Scientifically Literate Citizens Using the Understanding Global Change Framework in Education and Citizen Science

    Science.gov (United States)

    Toupin, C.; Bean, J. R.; Gavenus, K.; Johnson, H.; Toupin, S.

    2017-12-01

    With the copious amount of science and pseudoscience reported on by non-experts in the media, it is critical for educators to help students develop into scientifically literate citizens. One of the most direct ways to help students develop deep scientific understanding and the skills to critically question the information they encounter is to bring science into their daily experiences and to contextualize scientific inquiry within the classroom. Our work aims to use a systems-based models approach to engage students in science, in both formal and informal contexts. Using the Understanding Global Change (UGC) and the Understanding Science models developed at the Museum of Paleontology at UC Berkeley, high school students from Arizona were tasked with developing a viable citizen science program for use at the Center for Alaskan Coastal Studies in Homer, Alaska. Experts used the UGC model to help students define why they were doing the work, and give context to the importance of citizen science. Empowered with an understanding of the scientific process, excited by the purpose of their work and how it could contribute to the scientific community, students whole-heartedly worked together to develop intertidal monitoring protocols for two locations while staying at Peterson Bay Field Station, Homer. Students, instructors, and scientists used system models to communicate and discuss their understanding of the biological, physical, and chemical processes in Kachemak Bay. This systems-based models approach is also being used in an integrative high school physics, chemistry, and biology curriculum in a truly unprecedented manner. Using the Understanding Global Change framework to organize curriculum scope and sequence, the course addresses how the earth systems work, how interdisciplinary science knowledge is necessary to understand those systems, and how scientists and students can measure changes within those systems.

  16. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; Tarun, Thomas George; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-01-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design…

  17. Student Understanding of Liquid-Vapor Phase Equilibrium

    Science.gov (United States)

    Boudreaux, Andrew; Campbell, Craig

    2012-01-01

    Student understanding of the equilibrium coexistence of a liquid and its vapor was the subject of an extended investigation. Written assessment questions were administered to undergraduates enrolled in introductory physics and chemistry courses. Responses have been analyzed to document conceptual and reasoning difficulties in sufficient detail to…

  18. Radiography – How do students understand the concept of radiography?

    International Nuclear Information System (INIS)

    Lundgren, S.M.; Lundén, M.; Andersson, B.T.

    2015-01-01

    Background: Radiography as a concept has mainly been associated with the functional role of the radiographer. The concept has been studied from a theoretical point of view. However, there is a lack of a theoretical foundation and research on the actual substance of the term radiography used in education. It is therefore important to undertake an investigation in order to determine how students after three years education understand the subject of radiography. Aim: The aim of this study was to analyse how students in the Swedish radiographers' degree program understand the concept of radiography. Method: A concept analysis was made according to the hybrid model, which combines theoretical, fieldwork and analytical phases. A summative content analysis was used to identify the number and content of statements. The empirical data were collected from questionnaires answered by radiography students at four universities in Sweden. Findings: All radiography students' exemplified radiography with statements related to the practical level although some of them also identified radiography at an abstract level, as a subject within a discipline. The attribute ‘An interdisciplinary area of knowledge’ emerged, which is an attribute on the abstract level. The practical level was described by four attributes: Mastering Medical Imaging’, ‘To accomplish images for diagnosis and interventions’, ‘Creating a caring environment’ and ‘Enabling fruitful encounters’. Conclusion: The hybrid model used was a versatile model of concept development. The results of this study have increased the understanding of what characterizes the concept of radiography in a Swedish context. - Highlights: • This concept analysis of radiography was undertaken according to a hybrid model. • In radiography humanistic aspects are emphasized, a shift from the technological perspective. • The attributes demonstrate the essence and interdisciplinary nature of radiography. • This

  19. Assessing student understanding of sound waves and trigonometric reasoning in a technology-rich, project-enhanced environment

    Science.gov (United States)

    Wilhelm, Jennifer Anne

    This case study examined what student content understanding could occur in an inner city Industrial Electronics classroom located at Tree High School where project-based instruction, enhanced with technology, was implemented for the first time. Students participated in a project implementation unit involving sound waves and trigonometric reasoning. The unit was designed to foster common content learning (via benchmark lessons) by all students in the class, and to help students gain a deeper conceptual understanding of a sub-set of the larger content unit (via group project research). The objective goal of the implementation design unit was to have students gain conceptual understanding of sound waves, such as what actually waves in a wave, how waves interfere with one another, and what affects the speed of a wave. This design unit also intended for students to develop trigonometric reasoning associated with sinusoidal curves and superposition of sinusoidal waves. Project criteria within this design included implementation features, such as the need for the student to have a driving research question and focus, the need for benchmark lessons to help foster and scaffold content knowledge and understanding, and the need for project milestones to complete throughout the implementation unit to allow students the time for feedback and revision. The Industrial Electronics class at Tree High School consisted of nine students who met daily during double class periods giving 100 minutes of class time per day. The class teacher had been teaching for 18 years (mathematics, physics, and computer science). He had a background in engineering and experience teaching at the college level. Benchmark activities during implementation were used to scaffold fundamental ideas and terminology needed to investigate characteristics of sound and waves. Students participating in benchmark activities analyzed motion and musical waveforms using probeware, and explored wave phenomena using waves

  20. Explaining Doctoral Students' Relational Maintenance with Their Advisor: A Psychosocial Development Perspective

    Science.gov (United States)

    Goldman, Zachary W.; Goodboy, Alan K.

    2017-01-01

    This study explored how psychosocial development affects doctoral students' relationship and communication with their advisor. Chickering and Reisser's vectors of psychosocial development were examined in the doctoral context to understand how students preserve communicatively satisfying relationships with their advisor through the use of…

  1. Thai student existing understanding about the solar system model and the motion of the stars

    Science.gov (United States)

    Anantasook, Sakanan; Yuenyong, Chokchai

    2018-01-01

    The paper examined Thai student existing understanding about the solar system model and the motion of the stars. The participants included 141 Grade 9 students in four different schools of the Surin province, Thailand. Methodology regarded interpretive paradigm. The tool of interpretation included the Student Celestial Motion Conception Questionnaire (SCMCQ) and informal interview. Given understandings in the SCMCQ were read through and categorized according to students' understandings. Then, students were further probed as informal interview. Students' understandings in each category were counted and percentages computed. Finally, students' understandings across four different schools were compared and contrasted using the percentage of student responses in each category. The findings revealed that most students understand about Sun-Moon-Earth (SME) system and solar system model as well, they can use scientific explanations to explain the celestial objects in solar system and how they orbiting. Unfortunately, most of students (more than 70%) never know about the Polaris, the North Star, and 90.1% of them never know about the ecliptic, and probably also the 12 zodiac constellations. These existing understanding suggested some ideas of teaching and learning about solar system model and the motion of the stars. The paper, then, discussed some learning activities to enhance students to further construct meaning about solar system model and the motion of the stars.

  2. University students' understanding level about words related to nuclear power

    International Nuclear Information System (INIS)

    Oiso, Shinichi; Watabe, Motoki

    2012-01-01

    The authors conducted a survey of university students' understanding level about words related to nuclear power before and after Fukushima Daiichi Power Plant accident, and analyzed the difference between before and after the accident. The results show that university students' understanding level improved after the accident, especially in the case of reported words by mass media. Understanding level of some nuclear power security words which were not reported so much by mass media also improved. That may be caused by rising of people's concern about nuclear power generation after the accident, and there is a possibility that the accident motivated people to access such words via internet, journals, etc. (author)

  3. Students developing resources for students.

    Science.gov (United States)

    Pearce, Michael; Evans, Darrell

    2012-06-01

    The development of new technologies has provided medical education with the ability to enhance the student learning experience and meet the needs of changing curricula. Students quickly adapt to using multimedia learning resources, but these need to be well designed, learner-centred and interactive for students to become significantly engaged. One way to ensure that students become committed users and that resources become distinct elements of the learning cycle is to involve students in resource design and production. Such an approach enables resources to accommodate student needs and preferences, but also provides opportunities for them to develop their own teaching and training skills. The aim of the medical student research project was to design and produce an electronic resource that was focused on a particular anatomical region. The views of other medical students were used to decide what features were suitable for inclusion and the resulting package contained basic principles and clinical relevance, and used a variety of approaches such as images of cadaveric material, living anatomy movies and quizzes. The completed package was assessed using a survey matrix and found to compare well with commercially available products. Given the ever-diversifying arena of multimedia instruction and the ability of students to be fully conversant with technology, this project demonstrates that students are ideal participants and creators of multimedia resources. It is hoped that such an approach will help to further develop the skill base of students, but will also provide an avenue of developing packages that are student user friendly, and that are focused towards particular curricula requirements. © Blackwell Publishing Ltd 2012.

  4. Implications of the Integration of Computing Methodologies into Conventional Marketing Research upon the Quality of Students' Understanding of the Concept

    Science.gov (United States)

    Ayman, Umut; Serim, Mehmet Cenk

    2004-01-01

    It has been an ongoing concern among academicians teaching social sciences to develop a better methodology to ease understanding of students. Since verbal emphasis is at the core of the concepts within such disciplines it has been observed that the adequate or desired level of conceptual understanding of the students to transforms the theories…

  5. Scaffolding software: How does it influence student conceptual understanding and motivation?

    Science.gov (United States)

    Butler, Kyle A.

    The purpose of this study was to determine the influence of scaffolding software on student conceptual understanding and motivation. This study also provides insight on how students use the scaffolding features found in Artemis and the extent to which features show a relationship to student conceptual understanding and motivation. A Randomized Solomon Four Group Design was used in this study. As students worked through a project based unit over photosynthesis, the students performed information seeking activities that were based on their own inquiry. For this purpose, the students in the experimental group used an example of scaffolding software called Artemis, while the students in the control group used a search engine of their choice. To measure conceptual understanding, the researcher analyzed student generated concept maps on photosynthesis using three different methods (quantitative, qualitative, hierarchical). To measure motivation, the researcher used a survey that measured motivation on five different indicators: intrinsic goal orientation, extrinsic goal orientation, task value, control of learning beliefs, self-efficacy for learning and performance. Finally, the researcher looked at the relationship and influence of the scaffolding features on two student performance scores at the end of the unit. This created a total of ten dependent variables in relationship to the treatment. Overall, the students used the collaborative features 25% of the time, the maintenance features 0.84% of the time, the organizational features 16% of the time, the saving/viewing features 7% of the time and the searching features 51% of the time. There were significant correlations between the saving/viewing features hits and the students' task value (r = .499, p motivation.

  6. Using a Two-Tier Test to Assess Students' Understanding and Alternative Conceptions of Cyber Copyright Laws

    Science.gov (United States)

    Chou, Chien; Chan, Pei-Shan; Wu, Huan-Chueh

    2007-01-01

    The purpose of this study is to explore students' understanding of cyber copyright laws. This study developed a two-tier test with 10 two-level multiple-choice questions. The first tier presented a real-case scenario and asked whether the conduct was acceptable whereas the second-tier provided reasons to justify the conduct. Students in Taiwan…

  7. Understanding ’Price’ and the Environment: Exploring Upper Secondary Students’ Conceptual Development

    Directory of Open Access Journals (Sweden)

    Caroline Ignell

    2017-03-01

    Full Text Available Purpose: To explore changes in upper secondary students´ conceptions of environmental issues in how prices are determined and how they should be determined. Design: The study uses an ’alternative frameworks’ conceptual change approach to examine change in the conceptions of fifteen business and economic students. Students were asked about the prices of familiar products and asked to explain prices for eco-friendly and eco-unfriendly products. A first interview was conducted in the second year of education and the second interview a year later when students were 18 years old and in the final year of schooling. Interviews were carried out out by a researcher independent from the schools and carried out in schools. Findings: Identifies the fragmentary nature of students´ every-day thinking in relation to productivity, consumer preference and negative externalities. Results show characteristics of partial conceptions, which are considered as students´ conceptions in a process of change towards a more scientific understanding of relationships between price and environmental impacts. Practical implications: The study clarifies conceptions, which students bring to the classroom and the directions that development in understanding may take. The study should help teachers to design effective strategies to support students’ learning.

  8. The First Year of College: Understanding Student Persistence in Engineering

    OpenAIRE

    Hayden, Marina Calvet

    2017-01-01

    This research study aimed to expand our understanding of the factors that influence student persistence in engineering. The unique experiences of engineering students were examined as they transitioned into and navigated their first year of college at a public research university in California. Most students provided similar responses with respect to the way they experienced the transition to college and social life. There was, however, wide student response variation regarding their experien...

  9. Evaluating role of interactive visualization tool in improving students' conceptual understanding of chemical equilibrium

    Science.gov (United States)

    Sampath Kumar, Bharath

    The purpose of this study is to examine the role of partnering visualization tool such as simulation towards development of student's concrete conceptual understanding of chemical equilibrium. Students find chemistry concepts abstract, especially at the microscopic level. Chemical equilibrium is one such topic. While research studies have explored effectiveness of low tech instructional strategies such as analogies, jigsaw, cooperative learning, and using modeling blocks, fewer studies have explored the use of visualization tool such as simulations in the context of dynamic chemical equilibrium. Research studies have identified key reasons behind misconceptions such as lack of systematic understanding of foundational chemistry concepts, failure to recognize the system is dynamic, solving numerical problems on chemical equilibrium in an algorithmic fashion, erroneous application Le Chatelier's principle (LCP) etc. Kress et al. (2001) suggested that external representation in the form of visualization is more than a tool for learning, because it enables learners to make meanings or express their ideas which cannot be readily done so through a verbal representation alone. Mixed method study design was used towards data collection. The qualitative portion of the study is aimed towards understanding the change in student's mental model before and after the intervention. A quantitative instrument was developed based on common areas of misconceptions identified by research studies. A pilot study was conducted prior to the actual study to obtain feedback from students on the quantitative instrument and the simulation. Participants for the pilot study were sampled from a single general chemistry class. Following the pilot study, the research study was conducted with a total of 27 students (N=15 in experimental group and N=12 in control group). Prior to participating in the study, students have completed their midterm test on the topic of chemical equilibrium. Qualitative

  10. Developing critical thinking, creativity and innovation skills of undergraduate students

    Science.gov (United States)

    Shoop, Barry L.

    2014-07-01

    A desirable goal of engineering education is to teach students how to be creative and innovative. However, the speed of technological innovation and the continual expansion of disciplinary knowledge leave little time in the curriculum for students to formally study innovation. At West Point we have developed a novel upper-division undergraduate course that develops the critical thinking, creativity and innovation of undergraduate science and engineering students. This course is structured as a deliberate interactive engagement between students and faculty that employs the Socratic method to develop an understanding of disruptive and innovative technologies and a historical context of how social, cultural, and religious factors impact the acceptance or rejection of technological innovation. The course begins by developing the background understanding of what disruptive technology is and a historical context about successes and failures of social, cultural, and religious acceptance of technological innovation. To develop this framework, students read The Innovator's Dilemma by Clayton M. Christensen, The Structure of Scientific Revolutions by Thomas S. Kuhn, The Discoverers by Daniel J. Boorstin, and The Two Cultures by C.P. Snow. For each class meeting, students survey current scientific and technical literature and come prepared to discuss current events related to technological innovation. Each student researches potential disruptive technologies and prepares a compelling argument of why the specific technologies are disruptive so they can defend their choice and rationale. During course meetings students discuss the readings and specific technologies found during their independent research. As part of this research, each student has the opportunity to interview forward thinking technology leaders in their respective fields of interest. In this paper we will describe the course and highlight the results from teaching this course over the past five years.

  11. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification

    Science.gov (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to surpass these challenges after the teaching intervention. This study shows that POGIL is an effective technique at eliciting students' misconceptions, and addressing these misconceptions, leading to an increase in student understanding of biological classification.

  12. The Effect of Recycling Education on High School Students' Conceptual Understanding about Ecology: A Study on Matter Cycle

    Science.gov (United States)

    Ugulu, Ilker; Yorek, Nurettin; Baslar, Suleyman

    2015-01-01

    The objective of this study is to analyze and determine whether a developed recycling education program would lead to a positive change in the conceptual understanding of ecological concepts associated with matter cycles by high school students. The research was conducted on 68 high school 10th grade students (47 female and 21 male students). The…

  13. Understanding Students' Use and Value of Technology for Learning

    Science.gov (United States)

    Beckman, Karley; Bennett, Sue; Lockyer, Lori

    2014-01-01

    Despite significant research in the field of educational technology, there is still much we do not fully understand about students' experiences with technology. This article proposes that research in the field of educational technology would benefit from a sociological framing that pays attention to the understandings and lives of learners. Within…

  14. Student Off-Task Electronic Multitasking Predictors: Scale Development and Validation

    Science.gov (United States)

    Qian, Yuxia; Li, Li

    2017-01-01

    In an attempt to better understand factors contributing to students' off-task electronic multitasking behavior in class, the research included two studies that developed a scale of students' off-task electronic multitasking predictors (the SOTEMP scale), and explored relationships between the scale and various classroom communication processes and…

  15. Students' Meaningful Learning Orientation and Their Meaningful Understandings of Meiosis and Genetics.

    Science.gov (United States)

    Cavallo, Ann Liberatore

    This 1-week study explored the extent to which high school students (n=140) acquired meaningful understanding of selected biological topics (meiosis and the Punnett square method) and the relationship between these topics. This study: (1) examined "mental modeling" as a technique for measuring students' meaningful understanding of the…

  16. Results from a Pilot Study of a Curriculum Unit Designed to Help Middle School Students Understand Chemical Reactions in Living Systems

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Flanagan, Jean C.; Roseman, Jo Ellen

    2012-01-01

    Students often have trouble understanding key biology ideas because they lack an understanding of foundational chemistry ideas. AAAS Project 2061 is collaborating with BSCS in the development a curriculum unit that connects core chemistry and biochemistry ideas in order to help eighth grade students build the conceptual foundation needed for high…

  17. How Do Students Acquire an Understanding of Logarithmic Concepts?

    Science.gov (United States)

    Mulqueeny, Ellen

    2012-01-01

    The use of logarithms, an important tool for calculus and beyond, has been reduced to symbol manipulation without understanding in most entry-level college algebra courses. The primary aim of this research, therefore, was to investigate college students' understanding of logarithmic concepts through the use of a series of instructional tasks…

  18. Learning difficulties of senior high school students based on probability understanding levels

    Science.gov (United States)

    Anggara, B.; Priatna, N.; Juandi, D.

    2018-05-01

    Identifying students' difficulties in learning concept of probability is important for teachers to prepare the appropriate learning processes and can overcome obstacles that may arise in the next learning processes. This study revealed the level of students' understanding of the concept of probability and identified their difficulties as a part of the epistemological obstacles identification of the concept of probability. This study employed a qualitative approach that tends to be the character of descriptive research involving 55 students of class XII. In this case, the writer used the diagnostic test of probability concept learning difficulty, observation, and interview as the techniques to collect the data needed. The data was used to determine levels of understanding and the learning difficulties experienced by the students. From the result of students' test result and learning observation, it was found that the mean cognitive level was at level 2. The findings indicated that students had appropriate quantitative information of probability concept but it might be incomplete or incorrectly used. The difficulties found are the ones in arranging sample space, events, and mathematical models related to probability problems. Besides, students had difficulties in understanding the principles of events and prerequisite concept.

  19. How does undergraduate college biology students' level of understanding, in regard to the role of the seed plant root system, relate to their level of understanding of photosynthesis?

    Science.gov (United States)

    Njeng'ere, James Gicheha

    This research study investigated how undergraduate college biology students' level of understanding of the role of the seed plant root system relates to their level of understanding of photosynthesis. This research was conducted with 65 undergraduate non-majors biology who had completed 1 year of biology at Louisiana State University in Baton Rouge and Southeastern Louisiana University in Hammond. A root probe instrument was developed from some scientifically acceptable propositional statements about the root system, the process of photosynthesis, as well as the holistic nature of the tree. These were derived from research reviews of the science education and the arboriculture literature. This was administered to 65 students selected randomly from class lists of the two institutions. Most of the root probe's items were based on the Live Oak tree. An in-depth, clinical interview-based analysis was conducted with 12 of those tested students. A team of root experts participated by designing, validating and answering the same questions that the students were asked. A "systems" lens as defined by a team of college instructors, root experts (Shigo, 1991), and this researcher was used to interpret the results. A correlational coefficient determining students' level of understanding of the root system and their level of understanding of the process of photosynthesis was established by means of Pearson's r correlation (r = 0.328) using the SAS statistical analysis (SAS, 1987). From this a coefficient of determination (r2 = 0.104) was determined. Students' level of understanding of the Live Oak root system (mean score 5.94) was not statistically different from their level of understanding of the process of photosynthesis (mean score 5.54) as assessed by the root probe, t (129) = 0.137, p > 0.05 one tailed-test. This suggests that, to some degree, level of the root system limits level of understanding of photosynthesis and vice versa. Analysis of quantitative and qualitative

  20. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study

    Science.gov (United States)

    Ratinen, Ilkka Johannes

    2013-04-01

    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  1. Exploring Students' Understanding of Ordinary Differential Equations Using Computer Algebraic System (CAS)

    Science.gov (United States)

    Maat, Siti Mistima; Zakaria, Effandi

    2011-01-01

    Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…

  2. Understanding Student Travel Behaviour in Semarang City

    Science.gov (United States)

    Manullang, O. R.; Tyas, W. P.; Anas, N.; Aji, F. N.

    2018-02-01

    The highest movement in Semarang City is dominated by motorcycles, which reached 79% of the number of vehicles. Highest percentage movement use motorcycle caused the highest percentage accident by motorcycle users, which reached 66% and 9% involving high school students. This happens because of the dependence of motorcycles usage in fulfilling the needs of movement in the city of Semarang. Understanding student travel behavior based on their activities is used to know travel needs and the cause of dependence on motorcycle usage. Analysis method in this study use network analysis to compare the potential accessibility and actual accessibility to known why motorcycle chosen by students as the main mode. In addition, phenomenology analysis is used to explain the intent and reasons the data produced by network analysis. The analysis result indicates that the high use of motorcycles by high school students in the Semarang city due to the absence of other effective and efficient modes in fulfilling the movement needs. Even, the student which can potentially use public transport preferred to use a motorcycle. This mode is more effective and efficient because of its flexibility and lower costs.

  3. Students' Understanding of the Nature of Matter and Chemical Reactions--A Longitudinal Study of Conceptual Restructuring

    Science.gov (United States)

    Øyehaug, Anne Bergliot; Holt, Anne

    2013-01-01

    This longitudinal study aims to provide greater insight into how students' understanding of matter and chemical reactions develops over time and how their knowledge structures are restructured. Four case-study students in a Norwegian primary school were followed for two years from age 10-11 to age 12-13. Researchers were responsible for…

  4. Applied information system-based in enhancing students' understanding towards higher order thinking (HOTS)

    Science.gov (United States)

    Hua, Ang Kean; Ping, Owi Wei

    2017-05-01

    The application of information and communications technology (ICT) had become more important in our daily life, especially in educational field. Teachers are encouraged to use information system-based in teaching Mathematical courses. Higher Order Thinking Skills (HOTS) approach is unable to explain using chalk and talk methods. It needs students to analyze, evaluate, and create by their own natural abilities. The aim of this research study was to evaluate the effectiveness of the application information system-based in enhance the students understanding about HOTS question. Mixed-methods or quantitative and qualitative approach was applied in collecting data, which involve only the standard five students and the teachers in Sabak Bernam, Selangor. Pra-postests was held before and after using information system-based in teaching to evaluate the students' understanding. The result from post-test indicates significant improvement which proves that the use of information system based able to enhance students' understanding about HOTS question and solve it. There were several factor influenced the students such as students' attitude, teachers attraction, school facilities, and computer approach. Teachers play an important role in attracting students to learn. Therefore, the school should provide a conducive learning environment and good facilities for students to learn so that they are able to access more information and always exposed to new knowledge. As conclusion, information system-based are able to enhance students understanding the need of HOTS questions and solve it.

  5. Understanding students' concepts through guided inquiry learning and free modified inquiry on static fluid material

    OpenAIRE

    Sularso Sularso; Widha Sunarno; Sarwanto Sarwanto

    2017-01-01

    This study provides information on understanding students' concepts in guided inquiry learning groups and in free modified inquiry learning groups. Understanding of student concept is reviewed on the concept of static fluid case. The number of samples tested were 67 students. The sample is divided into 2 groups of students: the group is given guided inquiry learning and the group given the modified free inquiry learning. Understanding the concept of students is measured through 23 tests of it...

  6. Secondary Students' Understanding of Basic Ideas of Special Relativity

    Science.gov (United States)

    Dimitriadi, Kyriaki; Halkia, Krystallia

    2012-01-01

    A major topic that has marked "modern physics" is the theory of special relativity (TSR). The present work focuses on the possibility of teaching the basic ideas of the TSR to students at the upper secondary level in such a way that they are able to understand and learn the ideas. Its aim is to investigate students' learning processes towards the…

  7. Using Pre-Assessment and In-Class Questions to Change Student Understanding of Molecular Movements

    Directory of Open Access Journals (Sweden)

    Jia Shi

    2017-05-01

    Full Text Available Understanding how different types of molecules move through cell membranes is a fundamental part of cell biology. To identify and address student misconceptions surrounding molecular movement through cell membranes, we surveyed student understanding on this topic using pre-class questions, in-class clicker questions, and subsequent exam questions in a large introductory biology course. Common misconceptions identified in student responses to the pre-class assessment questions were used to generate distractors for clicker questions. Two-tier diagnostic clicker questions were used to probe incoming common student misconceptions (first tier and their reasoning (second tier. Two subsequent lectures with assessment clicker questions were used to help students construct a new framework to understand molecular movement through cell membranes. Comparison of pre-assessment and post-assessment (exam performance showed dramatic improvement in students’ understanding of molecular movement: student answers to exam questions were 74.6% correct with correct reasoning while only 1.3% of the student answers were correct with correct reasoning on the pre-class assessment. Our results show that students’ conceptual understanding of molecular movement through cell membranes progressively increases through discussions of a series of clicker questions and suggest that this clicker-based teaching strategy was highly effective in correcting common student misconceptions on this topic.

  8. How student teachers understand African philosophy

    Directory of Open Access Journals (Sweden)

    Matsephe M. Letseka

    2012-10-01

    Full Text Available The question ‘What constitutes African philosophy?’ was first raised with the publication of Placide Tempels’s seminal work Bantu philosophy in 1959. Tempels’s book inevitably elicited considerable critical response from African philosophers, which culminated in a wide range of publications such as Wiredu’s (1980 Philosophy and an African culture, Hountondji’s (1983 African philosophy: Myth and reality, Oruka’s (1990 Sage philosophy: Indigenous thinkers and modern debate on African philosophy, Shutte’s (1993 Philosophy for Africa, Masolo’s (1994 African philosophy in search of identity and Gyekye’s (1995 An essay of African philosophical thought: The Akan conceptual scheme. It has been over 60 years since the publication of Temples’s book and there continues to be serious debate about African philosophy. This article sought to contribute to the debate on the various conceptions of African philosophy, but with a focus on the challenges of teaching African philosophy to Philosophy of Education students at an open distance learning institution in South Africa. This article discussed the tendency amongst undergraduate Philosophy of Education students to conflate and reduce African philosophy to African cultures and traditions, and to the notion of ubuntu, and sought to understand the reasons for students’ inclination to treat African philosophy in this way. It examined students’ background knowledge of African philosophy, their critical thinking skills and whether their official study materials are selected and packaged in a manner that, in fact, adds to the challenges they face. Finally, the article explored the ways in which Philosophy of Education lecturers can adapt their pedagogy to provide students with a better understanding of African philosophy.

  9. A Qualitative Study of Agricultural Literacy in Urban Youth: What Do Elementary Students Understand about the Agri-Food System?

    Science.gov (United States)

    Hess, Alexander J.; Trexler, Cary J.

    2011-01-01

    Agricultural literacy of K-12 students is a national priority for both scientific and agricultural education professional organizations. Development of curricula to address this priority has not been informed by research on what K-12 students understand about the agri-food system. While students' knowledge of food and fiber system facts have been…

  10. Student Understanding of Time in Special Relativity: Simultaneity and Reference Frames.

    Science.gov (United States)

    Scherr, Rachel E.; Shaffer, Peter S.; Vokos, Stamatis

    2001-01-01

    Reports on an investigation of students' understanding of the concept of time in special relativity. Discusses a series of research tasks to illustrate how student reasoning of fundamental concepts of relativity was probed. Indicates that after standard instruction, students have serious difficulties with the relativity of simultaneity and the…

  11. Starting a learning progression for agricultural literacy: A qualitative study of urban elementary student understandings of agricultural and science education benchmarks

    Science.gov (United States)

    Hess, Alexander Jay

    Science and agriculture professional organizations have argued for agricultural literacy as a goal for K-12 public education. Due to the complexity of our modern agri-food system, with social, economic, and environmental concerns embedded, an agriculturally literate society is needed for informed decision making, democratic participation, and system reform. While grade-span specific benchmarks for gauging agri-food system literacy have been developed, little attention has been paid to existing ideas individuals hold about the agri-food system, how these existing ideas relate to benchmarks, how experience shapes such ideas, or how ideas change overtime. Developing a body of knowledge on students' agri-food system understandings as they develop across K-12 grades can ground efforts seeking to promote a learning progression toward agricultural literacy. This study compares existing perceptions held by 18 upper elementary students from a large urban center in California to agri-food system literacy benchmarks and examines the perceptions against student background and experiences. Data were collected via semi-structured interviews and analyzed using the constant comparative method. Constructivist theoretical perspectives framed the study. No student had ever grown their own food, raised a plant, or cared for an animal. Participation in school fieldtrips to farms or visits to a relative's garden were agricultural experiences most frequently mentioned. Students were able to identify common food items, but could not elaborate on their origins, especially those that were highly processed. Students' understanding of post-production activities (i.e. food processing, manufacturing, or food marketing) was not apparent. Students' understanding of farms reflected a 1900's subsistence farming operation commonly found in a literature written for the primary grades. Students were unaware that plants and animals were selected for production based on desired genetic traits. Obtaining

  12. Using Content-Aligned Assessments to Identify Weaknesses in Students' Understanding of Fundamental Weather and Climate Ideas

    Science.gov (United States)

    Wertheim, J.; Willard, S.

    2011-12-01

    There is growing interest in ensuring that citizens understand weather and climate sufficiently to make informed decisions, and these topics are gaining increased attention in K-12 education. The National Research Council recently released A Framework for K-12 Science Education with the expectation that U.S. 12th graders must have a sophisticated knowledge of climate change, including the role of deep time, variability, and computer modeling in the prediction of climate impacts on the planet and human activity. This requirement demands that students extend their understanding of climate change to the past and future, but it is important to recognize that many students know little about prerequisite ideas, such as daily and annual weather and climate processes, and this problem must be addressed prior to introducing the complexities of the climate system. In order to diagnose weaknesses in students' foundational understanding of the complex climate system, we primarily assessed a middle school (MS)-level understanding of the core elements of the system, in addition to a high school (HS)-level understanding of seasons. We described grade appropriate, coherent, functioning conceptual models for each targeted idea, and decomposed them into explicit learning goals. We then applied Project 2061's rigorous item development procedure to produce 235 high-quality, misconception-based multiple choice test items. These items were tested with a national sample of approximately 20,000 students, grades 6-12, in two phases (Spring 2010 & 2011). Here we report results from the second phase, including items targeting knowledge about convection, daily and annual air temperature patterns, factors that influence air temperature, and seasons. Overall, HS students outperformed MS students on these items by an average of only 3% (MS:31% correct; HS:34% correct). These data show a few strong misconceptions (e.g., 47% of students think that the North Pole is always angled toward the Sun

  13. Using Student Scholarship To Develop Student Research and Writing Skills.

    Science.gov (United States)

    Ware, Mark E.; Badura, Amy S.; Davis, Stephen F.

    2002-01-01

    Focuses on the use of student publications in journals as a teaching tool. Explores the use of this technique in three contexts: (1) enabling students to understand experimental methodology; (2) teaching students about statistics; and (3) helping students learn more about the American Psychological Association (APA) writing style. (CMK)

  14. AN APPRAISAL OF INSTRUCTIONAL UNITS TO ENHANCE STUDENT UNDERSTANDING OF PROFIT-MAXIMIZING PRINCIPLES. RESEARCH SERIES IN AGRICULTURAL EDUCATION.

    Science.gov (United States)

    BARKER, RICHARD L.; BENDER, RALPH E.

    TWENTY-TWO SELECTED OHIO VOCATIONAL AGRICULTURE TEACHERS AND 262 JUNIOR AND SENIOR VOCATIONAL AGRICULTURE STUDENTS PARTICIPATED IN A STUDY TO MEASURE THE RELATIVE EFFECTIVENESS OF NEWLY DEVELOPED INSTRUCTIONAL UNITS DESIGNED TO ENHANCE STUDENT UNDERSTANDING OF PROFIT-MAXIMIZING PRINCIPLES IN FARM MANAGEMENT. FARM MANAGEMENT WAS TAUGHT IN THE…

  15. High School Students' Understanding of Chromosome/Gene Behavior during Meiosis.

    Science.gov (United States)

    Stewart, Jim; Dale, Michael

    1989-01-01

    Investigates high school students' understanding of the physical relationship of chromosomes and genes as expressed in their conceptual models and in their ability to manipulate the models to explain solutions to dihybrid cross problems. Describes three typical models and three students' reasoning processes. Discusses four implications. (YP)

  16. Understanding of Words and Symbols by Chemistry University Students in Croatia

    Science.gov (United States)

    Vladušic, Roko; Bucat, Robert; Ožic, Mia

    2016-01-01

    This article reports on a study conducted in Croatia on students' understanding of scientific words and representations, as well as everyday words used in chemistry teaching. A total of 82 undergraduate chemistry students and 36 pre-service chemistry teachers from the Faculty of Science, University of Split, were involved. Students' understanding…

  17. What Do Final Year Engineering Students Know about Sustainable Development?

    Science.gov (United States)

    Nicolaou, I.; Conlon, E.

    2012-01-01

    This paper presents data from a project that aims to determine the level of knowledge and understanding of engineering students about sustainable development (SD). The data derive from a survey completed by final year engineering students in three Irish Higher Education Institutions. This paper is part of a larger study that examines the…

  18. The Translation of Teachers' Understanding of Gifted Students Into Instructional Strategies for Teaching Science

    Science.gov (United States)

    Park, Soonhye; Steve Oliver, J.

    2009-08-01

    This study examined how instructional challenges presented by gifted students shaped teachers’ instructional strategies. This study is a qualitative research grounded in a social constructivist framework. The participants were three high school science teachers who were teaching identified gifted students in both heterogeneously- and homogeneously-grouped classrooms. Major data sources are classroom observations and interviews. Data analysis indicated that these science teachers developed content-specific teaching strategies based on their understanding of gifted students, including: (a) instructional differentiation, e.g., thematic units, (b) variety in instructional mode and/or students’ products, (c) student grouping strategies and peer tutoring, (d) individualized support, (e) strategies to manage challenging questions, (f) strategies to deal with the perfectionism, and (g) psychologically safe classroom environments.

  19. Understanding and Working with Attention Deficit Disorder Students

    Science.gov (United States)

    Buttery, Thomas J.

    2009-01-01

    From a holistic perspective the term attention refers to a student's capacity to focus, direct and sustain their attention on a particular stimulus within their environment for a significant period of time. The development of students' attention spans develops progressively from the time they enter school. From the beginning some students have…

  20. A mixed-methods study exploring student nurses’ understanding of futile CPR

    OpenAIRE

    Batty, Emma

    2014-01-01

    Abstract Background: Futile CPR has the potential to inflict significant, avoidable harms on dying patients. Futile CPR is widely debated in the literature, but there is little research into futile CPR in the context of nursing. There are no published studies exploring student nurses’ understanding of futile CPR. Aim: To explore student nurses’ understanding of futile CPR Methods: A mixed methods study, using questionnaires to establish background data and identify prominent issues. ...

  1. Understanding the importance of teachers in facilitating student success: Contemporary science, practice, and policy.

    Science.gov (United States)

    Jimerson, Shane R; Haddock, Aaron D

    2015-12-01

    Teacher quality has a vital influence on student success or failure. Thus, further research regarding teacher effectiveness, teacher evaluation, teacher well-being, and teacher contributions is essential to inform school psychologists and allied educational professionals who collaborate and consult with teachers to facilitate student success. In this special topic section of School Psychology Quarterly, a series of 6 articles further elucidate teachers' powerful contributions to student outcomes along with concrete, research-based ways for school psychologists to support and collaborate with teachers. The studies included in the special section describe how teacher support facilitates students' positive academic and social-emotional outcomes and how students' attitudes toward learning moderate the association between the classroom environment and students' academic achievement. Studies also report on the development and validation of self-report measures focused on both teacher subjective well-being and teachers' use of evidence-based practices. Finally, the articles included in the special topic section offer insights and ideas for refining teacher evaluation practices, understanding the factors contributing to program implementation fidelity, and improving prevention, early identification, and intervention efforts aimed at fostering school completion and positive youth development. (c) 2015 APA, all rights reserved).

  2. Promoting Conceptual Change in First Year Students' Understanding of Evaporation

    Science.gov (United States)

    Costu, Bayram; Ayas, Alipasa; Niaz, Mansoor

    2010-01-01

    We constructed the PDEODE (Predict-Discuss-Explain-Observe-Discuss-Explain) teaching strategy, a variant of the classical POE (Predict-Observe-Explain) activity, to promote conceptual change, and investigated its effectiveness on student understanding of the evaporation concept. The sample consisted of 52 first year students in a primary science…

  3. The Role of Computer Modeling in Enhancing Students' Conceptual Understanding of Physics

    Directory of Open Access Journals (Sweden)

    F. Ornek

    2012-04-01

    Full Text Available The purpose of this study was to investigate how the use of the computer simulations program VPython facilitated students’ conceptual understanding of fundamental physical principles and in constructing new knowledge of physics. We focused on students in a calculus-based introductory physics course, based on the Matter and Interactions curriculum of Chabay & Sherwood (2002 at a large state engineering and science university in the USA. A major emphasis of this course was on computer modeling by using VPython to write pro¬grams simulating physical systems. We conducted multiple student interviews, as well as an open-ended exit survey, to find out student views on how creating their own simulations to enhanced-conceptual understanding of physics and in constructing new knowledge of phys¬ics. The results varied in relation to the phases when the interviews were conducted. At the beginning of the course, students viewed the simulation program as a burden. However, dur¬ing the course, students stated that it promoted their knowledge and better conceptual understanding of physical phenomena. We deduce that VPython computer simulations can improve students’ conceptual understanding of fundamental physical concepts and promote construction of new knowledge in physics, once they overcome the initial learning curve associated with the VPython software package.

  4. Students concept understanding of fluid static based on the types of teaching

    Science.gov (United States)

    Rahmawati, I. D.; Suparmi; Sunarno, W.

    2018-03-01

    This research aims to know the concept understanding of student are taught by guided inquiry based learning and conventional based learning. Subjects in this study are high school students as much as 2 classes and each class consists of 32 students, both classes are homogen. The data was collected by conceptual test in the multiple choice form with the students argumentation of the answer. The data analysis used is qualitative descriptive method. The results of the study showed that the average of class that was using guided inquiry based learning is 78.44 while the class with use conventional based learning is 65.16. Based on these data, the guided inquiry model is an effective learning model used to improve students concept understanding.

  5. Medical Students' Understanding of Directed Questioning by Their Clinical Preceptors.

    Science.gov (United States)

    Lo, Lawrence; Regehr, Glenn

    2017-01-01

    Phenomenon: Throughout clerkship, preceptors ask medical students questions for both assessment and teaching purposes. However, the cognitive and strategic aspects of students' approaches to managing this situation have not been explored. Without an understanding of how students approach the question and answer activity, medical educators are unable to appreciate how effectively this activity fulfills their purposes of assessment or determine the activity's associated educational effects. A convenience sample of nine 4th-year medical students participated in semistructured one-on-one interviews exploring their approaches to managing situations in which they have been challenged with questions from preceptors to which they do not know the answer. Through an iterative and recursive analytic reading of the interview transcripts, data were coded and organized to identify themes relevant to the students' considerations in answering such questions. Students articulated deliberate strategies for managing the directed questioning activity, which at times focused on the optimization of their learning but always included considerations of image management. Managing image involved projecting not only being knowledgeable but also being teachable. The students indicated that their considerations in selecting an appropriate strategy in a given situation involved their perceptions of their preceptors' intentions and preferences as well as several contextual factors. Insights: The medical students we interviewed were quite sophisticated in their understanding of the social nuances of the directed questioning process and described a variety of contextually invoked strategies to manage the situation and maintain a positive image.

  6. Understanding Personal Learning Environment Perspectives of Thai International Tourism and Hospitality Higher Education Students

    Science.gov (United States)

    Tanyong, Siriwan; Sharafuddin, Mohamed Ali

    2016-01-01

    This paper is part of a periodic research conducted in developing a personal learning environment for Thailand's higher education students with English as medium of instruction. The objective of the first phase in this research was to understand the personal learning environment perspectives of Thai International tourism and hospitality higher…

  7. Career Development and Counselling Needs of LGBTQ High School Students

    Science.gov (United States)

    Chen, Charles P.; Keats, Amanda

    2016-01-01

    There is a dearth of research concerning the career development and counselling issues that are relevant for high school students who identify as lesbian, gay, bisexual, transgender and queer (LGBTQ). As such, little is known to understand LGBTQ students when it comes to their career-related struggles and needs. This article attempts to examine…

  8. The Development of Mature Capabilities for Understanding and Valuing Technology through School Project Work.

    Science.gov (United States)

    Schallies, Michael; Wellensiek, Anneliese; Lembens, Anja

    This paper describes a German project that developed students' capabilities for understanding and valuing biotechnology and genetic engineering, focusing on practical fieldwork with schools by an interdisciplinary team. The paper identifies the characteristics of individual and structural preconditions and their development during active project…

  9. Students' Performance in Investigative Activity and Their Understanding of Activity Aims

    Science.gov (United States)

    Gomes, Alessandro Damasio Trani; Borges, A. Tarciso; Justi, Rosaria

    2008-01-01

    This study investigates the relationship between the students' understanding of the aims of an investigative activity and their performance when conducting it. One hundred and eighty-one year nine students from a public middle school in Brazil took part in the study. Students working in pairs were asked to investigate two problems using a…

  10. Self-determination theory and understanding of student motivation in physical education instruction

    Directory of Open Access Journals (Sweden)

    Đorđić Višnja

    2010-01-01

    Full Text Available Physical education is considered to be a favorable context for accomplishment of important educational outcomes and promotion of physical activity in children and youth. The real scope of physical education instruction largely depends on student motivation. Self-determination theory, as a specific macrotheory of motivation, offers a rewarding framework for understanding student motivation in physical education instruction. The paper presents the basic tenets of self-determination theory, the most important studies in the domain of physical education and didactic and methodical implications. Two mini-theories within the self-determination theory are analyzed in more detail, the cognitive evaluation theory and the organismic integration theory. Empirical verification of the theoretical tenets indicates the existence of typical motivational profiles of students in physical education instruction, the basic psychological needs as mediators of influence of social and interpersonal factors on student motivation, followed by the importance of motivational climate, students' goal orientations and teaching style for self-determination of students' behavior in physical education instruction. Didactic and methodical implications refer to the need for developing a more flexible curriculum of physical education, encouraging a motivational climate, task-focused goal orientations, and, especially, encouraging the perceived moving competence of the student.

  11. Evaluating College Students' Conceptual Knowledge of Modern Physics: Test of Understanding on Concepts of Modern Physics (TUCO-MP)

    Science.gov (United States)

    Akarsu, Bayram

    2011-01-01

    In present paper, we propose a new diagnostic test to measure students' conceptual knowledge of principles of modern physics topics. Over few decades since born of physics education research (PER), many diagnostic instruments that measure students' conceptual understanding of various topics in physics, the earliest tests developed in PER are Force…

  12. Understanding Student Learning in Context: Relationships between University Students' Social Identity, Approaches to Learning, and Academic Performance

    Science.gov (United States)

    Bliuc, Ana-Maria; Ellis, Robert A.; Goodyear, Peter; Hendres, Daniela Muntele

    2011-01-01

    This research focuses on understanding how socio-psychological dimensions such as student social identity and student perceptions of their learning community affect learning at university. To do this, it integrates ideas from phenomenographic research into student learning with ideas from research on social identity. In two studies (N = 110, and N…

  13. Does a summative portfolio foster the development of capabilities such as reflective practice and understanding ethics? An evaluation from two medical schools.

    Science.gov (United States)

    O'Sullivan, Anthony J; Howe, Amanda C; Miles, Susan; Harris, Peter; Hughes, Chris S; Jones, Philip; Scicluna, Helen; Leinster, Sam J

    2012-01-01

    Portfolios need to be evaluated to determine whether they encourage students to develop in capabilities such as reflective practice and ethical judgment. The aims of this study were (i) to determine whether preparing a portfolio helps promote students' development in a range of capabilities including understanding ethical and legal principles, reflective practice and effective communication, and (ii) to determine to what extent the format of the portfolio affected the outcome by comparing the experiences of students at two different medical schools. A questionnaire was designed to evaluate undergraduate medical students' experiences of completing a portfolio at two medical schools. A total of 526 (45% response rate) students answered the on-line questionnaire. Students from both medical schools gave the highest ranking for the portfolio as a trigger for reflective practice. 63% of students agreed their portfolio helped them develop reflective practice skills (p portfolios helped them understand ethical and legal principles whereas 29% disagreed (p portfolio helped them to develop effective communication. Students perceive portfolio preparation as an effective learning tool for the development of capabilities such as understanding ethical and legal principles and reflective practice, whereas other capabilities such as effective communication require complementary techniques and other modes of assessment.

  14. Implementation of Scientific Community Laboratories and Their Effect on Student Conceptual Learning, Attitudes, and Understanding of Uncertainty

    Science.gov (United States)

    Lark, Adam

    Scientific Community Laboratories, developed by The University of Maryland, have shown initial promise as laboratories meant to emulate the practice of doing physics. These laboratories have been re-created by incorporating their design elements with the University of Toledo course structure and resources. The laboratories have been titled the Scientific Learning Community (SLC) Laboratories. A comparative study between these SLC laboratories and the University of Toledo physics department's traditional laboratories was executed during the fall 2012 semester on first semester calculus-based physics students. Three tests were executed as pre-test and post-tests to capture the change in students' concept knowledge, attitudes, and understanding of uncertainty. The Force Concept Inventory (FCI) was used to evaluate students' conceptual changes through the semester and average normalized gains were compared between both traditional and SLC laboratories. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) was conducted to elucidate students' change in attitudes through the course of each laboratory. Finally, interviews regarding data analysis and uncertainty were transcribed and coded to track changes in the way students understand uncertainty and data analysis in experimental physics after their participation in both laboratory type. Students in the SLC laboratories showed a notable an increase conceptual knowledge and attitudes when compared to traditional laboratories. SLC students' understanding of uncertainty showed most improvement, diverging completely from students in the traditional laboratories, who declined throughout the semester.

  15. Coaches' Perspectives on Their Roles in Facilitating the Personal Development of Student-Athletes

    Science.gov (United States)

    Banwell, Jenessa; Kerr, Gretchen

    2016-01-01

    The purpose of this study was to investigate coaches' perspectives on the personal development student-athletes experience through interuniversity sport. Additionally, it explored the ways in which coaches understand, enable, and facilitate the personal development of student-athletes. Eight in-depth, semi-structured interviews were conducted with…

  16. The Impact of Project-Based Learning on Fourth-Grade Students' Understanding in Reading

    Science.gov (United States)

    Williams, Dana L.

    2017-01-01

    The purpose of this quantitative, non-experimental, descriptive study was to determine if participation in project-based learning developed the understanding students need to transfer their knowledge and skills to achieve higher composite and reading scores, as well as demonstrate the ability to read increasingly complex texts on the ACT Aspire as…

  17. Review: typically-developing students' views and experiences of inclusive education.

    Science.gov (United States)

    Bates, Helen; McCafferty, Aileen; Quayle, Ethel; McKenzie, Karen

    2015-01-01

    The present review aimed to summarize and critique existing qualitative studies that have examined typically-developing students' views of inclusive education (i.e. the policy of teaching students with special educational needs in mainstream settings). Guidelines from the Centre for Reviews and Dissemination were followed, outlining the criteria by which journal articles were identified and critically appraised. Narrative Synthesis was used to summarize findings across studies. Fourteen studies met the review's inclusion criteria and were subjected to quality assessment. Analysis revealed that studies were of variable quality: three were of "good" methodological quality, seven of "medium" quality, and four of "poor" quality. With respect to findings, three overarching themes emerged: students expressed mostly negative attitudes towards peers with disabilities; were confused by the principles and practices of inclusive education; and made a number of recommendations for improving its future provision. A vital determinant of the success of inclusive education is the extent to which it is embraced by typically-developing students. Of concern, this review highlights that students tend not to understand inclusive education, and that this can breed hostility towards it. More qualitative research of high methodological quality is needed in this area. Implications for Rehabilitation Typically-developing students are key to the successful implementation of inclusive education. This review shows that most tend not to understand it, and can react by engaging in avoidance and/or targeted bullying of peers who receive additional support. Schools urgently need to provide teaching about inclusive education, and increase opportunities for contact between students who do and do not receive support (e.g. cooperative learning).

  18. Describing Pre-Service Teachers' Developing Understanding of Elementary Number Theory Topics

    Science.gov (United States)

    Feldman, Ziv

    2012-01-01

    Although elementary number theory topics are closely linked to foundational topics in number and operations and are prevalent in elementary and middle grades mathematics curricula, little is currently known about how students and teachers make sense of them. This study investigated pre-service elementary teachers' developing understanding of…

  19. Can an egg-dropping race enhance students' conceptual understanding of air resistance?

    Science.gov (United States)

    Lee, Yeung Chung; Kwok, Ping Wai

    2009-03-01

    Children are familiar with situations in which air resistance plays an important role, such as parachuting. However, it is not known whether they have any understanding about the concept of air resistance, how air resistance affects falling objects, and the differential effect it has on different objects. The literature reveals that there are misconceptions even among undergraduate physics students about how air resistance is affected by the mass and size of falling objects. A study was carried out in Hong Kong to explore Grade 6 students' (aged 11-12) conceptions of air resistance with respect to falling objects of different size and mass, and whether the subjects showed any change in their conceptual understanding after participating in an egg-dropping race. The findings show that students had a wide range of conceptions, which could be characterized into different levels. Their conceptions seem rather robust, and more structured interventions are required to bring about changes in students' conceptual understanding of air resistance.

  20. Understanding How Domestic Violence Affects Behavior in High School Students

    Science.gov (United States)

    Frank, Malika

    2011-01-01

    This paper will provide the reader with an understanding of how domestic violence affects the behavior of high school students. The presentation is designed to provide the reader with a working definition of domestic violence, the rate of occurrence and its effects on high school students. Additionally the paper will summarize the negative effects…

  1. Understanding the information and resource needs of UK health and social care placement students.

    Science.gov (United States)

    Callaghan, Lynne; Doherty, Alan; Lea, Susan J; Webster, Daniel

    2008-12-01

    Students on health and social care degree programmes spend 50% of their time on practice placements. Because of the diversity of settings and the need to evidence their work, it is vital to understand the information and resource needs of placement students. The aim of this investigation was to understand the needs of placement students in terms of accessing resources whilst they are in the field in order to inform a guide to meet these needs. Focus groups were conducted with students on midwifery, social work and post-registration health professions degree programmes on three different sites across the region. Data were analysed using Thematic Content Analysis. Three themes emerged from the data: inequality, user education needs and students' solutions and strategies. It is essential to speak to placement students in order to understand their needs in terms of accessing and using library resources. The timing and content of information skills training is key to meeting student needs while on placement.

  2. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    Science.gov (United States)

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  3. How Do Students Understand the Discipline of History as an Outcome of Teachers' Professional Development?

    Science.gov (United States)

    Medina, Kathleen; Pollard, Jeffrey; Schneider, Debra; Leonhardt, Camille

    This paper documents how 390 history students in the fifth through twelfth grades understood history in ways related to their teachers' involvement in university-situated professional development. During the 3-year study, the research team traced the principal elements and goals of the professional development programs (via pretests and posttests)…

  4. Manipulating 3D-Printed and Paper Models Enhances Student Understanding of Viral Replication

    Science.gov (United States)

    Couper, Lisa; Johannes, Kristen; Powers, Jackie; Silberglitt, Matt; Davenport, Jodi

    2016-01-01

    Understanding key concepts in molecular biology requires reasoning about molecular processes that are not directly observable and, as such, presents a challenge to students and teachers. We ask whether novel interactive physical models and activities can help students understand key processes in viral replication. Our 3D tangible models are…

  5. Using a socioecological framework to understand the career choices of single- and double-degree nursing students and double-degree graduates.

    Science.gov (United States)

    Hickey, Noelene; Harrison, Linda; Sumsion, Jennifer

    2012-01-01

    Untested changes in nursing education in Australia, such as the introduction of double degrees in nursing, necessitate a new research approach to study nursing career pathways. A review of the literature on past and present career choice theories demonstrates these are inadequate to gain an understanding of contemporary nursing students' career choices. With the present worldwide shortage of nurses, an understanding of career choice becomes a critical component of recruitment and retention strategies. The purpose of this paper is to demonstrate how an ecological system approach based on Bronfenbrenner's theory of human development can be used to understand and examine the influences affecting nursing students' and graduates' career development and career choices. Bronfenbrenner's socioecological model was adapted to propose a new Nursing Career Development Framework as a way of conceptualizing the career development of nursing students undertaking traditional bachelor of nursing and nontraditional double-degree nursing programs. This Framework is then applied to a study of undergraduate nurses' career decision making, using a sequential explanatory mixed method study. The paper demonstrates the relevance of this approach for addressing challenges associated with nursing recruitment, education, and career choice.

  6. Student understanding of time dependence in quantum mechanics

    Directory of Open Access Journals (Sweden)

    Paul J. Emigh

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.

  7. Professional development and exposure to geriatrics: medical student perspectives from narrative journals.

    Science.gov (United States)

    Shield, Renée R; Farrell, Timothy W; Campbell, Susan E; Nanda, Aman; Wetle, Terrie

    2015-01-01

    Teaching professionalism is an important goal in American medical education. With the aging of the U.S. population, it is critical to understand how medical students develop professional behaviors when caring for older adults. Exposure to geriatrics and older patients can enhance students' professional development with patients of all ages and across different specialties. Medical students learn explicit and implicit messages during their education. In addition to helping to evaluate curricula, reflective journaling encourages individual development and helps in revealing how medical students become professionals. In this study, medical student volunteers described their responses to new geriatrics content in their curriculum, encounters with older patients in clinical settings, and their evolving physician identities. Multidisciplinary team analysis elicited 10 themes regarding: evaluation of geriatrics within the curriculum, recognition of geriatrics principles, and attitudes regarding aging and professional development over time. This article focuses on the impact of geriatrics exposure on students' professional development, revealing ways that students think about professionalism and older patients. Medical educators should consider journaling to help foster and gauge students' professional development.

  8. Improving Students' Understanding of Waves by Plotting a Displacement-Time Graph in Class

    Science.gov (United States)

    Wei, Yajun

    2012-04-01

    The topic of waves is one that many high school physics students find difficult to understand. This is especially true when using some A-level textbooks1,2used in the U.K., where the concept of waves is introduced prior to the concept of simple harmonic oscillations. One of the challenges my students encounter is understanding the difference between displacement-time graphs and displacement-position graphs. Many students wonder why these two graphs have the same sinusoidal shape. Having the students use multimedia simulations allows them to see, in a hands-on fashion, the relationship between the two graphs.

  9. Through the eyes of professional developers: Understanding the design of learning experiences for science teachers

    Science.gov (United States)

    Higgins, Tara Eileen

    Professional development is important for improving teacher practice and student learning, particularly in inquiry-oriented and technology-enhanced science instruction. This study examines professional developers' practices and their impact on teachers' classroom instruction and student achievement. It analyzes professional developers designing and implementing a five-year professional development program designed to support middle school science teachers. The professional developers are four university-based researchers who worked with sixteen science teachers over three years, setting program goals, facilitating workshops, providing in-classroom support for teachers, and continually refining the program. The analysis is guided by the knowledge integration perspective, a sociocognitive framework for understanding how teachers and professional developers integrate their ideas about teaching and learning. The study investigates the professional developers' goals and teachers' interpretations of those goals. It documents how professional developers plan teacher learning experiences and explores the connection between professional development activities and teachers' classroom practice. Results are based on two rounds of interviews with professional developers, audio recordings of professional developers' planning meetings and videotaped professional development activities. Data include classroom observations, teacher interviews, teacher reflections during professional development activities, and results from student assessments. The study shows the benefit of a professional development approach that relies on an integrated cycle of setting goals, understanding teachers' interpretations, and refining implementation. The professional developers based their design on making inquiry and technology accessible, situating professional development in teachers' work, supporting collaboration, and sustaining learning. The findings reflect alignment of the design goals with the

  10. Understanding, Developing, and Writing Effective IEPs: A Step-by-Step Guide for Educators

    Science.gov (United States)

    Pierangelo, Roger; Giuliani, George A.

    2007-01-01

    Creating and evaluating Individualized Education Programs (IEPs) for students with disabilities is a major responsibility for teachers and school leaders, yet the process involves legal components not always understood by educators. In "Understanding, Developing, and Writing Effective IEPs," legal and special education experts Roger…

  11. Do They "Really" Get It? Evaluating Evidence of Student Understanding of Power Series

    Science.gov (United States)

    Kung, David; Speer, Natasha

    2013-01-01

    Most teachers agree that if a student understands a particular mathematical topic well, he/she will probably be able to do problems correctly. The converse, however, frequently fails: students who do problems correctly sometimes do not actually have robust understandings of the topic in question. In this paper we explore this phenomenon in the…

  12. The understanding of art students toward characteristic of Negeri Sembilan Minangkabau Traditional House

    Directory of Open Access Journals (Sweden)

    Taharuddin Nurul Shima

    2016-01-01

    Full Text Available In Negeri Sembilan, they are still practicing Minangkabau culture and custom. Element of uniqueness in Negeri. Sembilan has been shown on its architectural where the houses have dramatic curved roof structures with multitier. The art and architecture features a unique regional style. This house fills with cultural values, customs and reflects the people’s understanding about designing art and architecture that is in harmony with nature. The house serves as a residence, a hall for family meetings, and for ceremonial activities. This research, studies the understanding of art students towards the characteristic that are found in the Negeri Sembilan Minangkabau Traditional House (NSMTH in Negeri Sembilan, Malaysia. The objectives are to identify the element of characteristic that shows the identity of Negeri Sembilan Minangkabau Traditional House and to determine the level of understanding on characteristic of a Minangkabau house by art students. Scope of this research is on understanding of Faculty Art & Design student that has syllabus on Malay art. The research methodology that been use in this research is quantitative where surveys are made among the art students

  13. The Contribution of Conceptual Change Texts Accompanied by Concept Mapping to Eleventh-Grade Students Understanding of Cellular Respiration Concepts

    Science.gov (United States)

    Al khawaldeh, Salem A.; Al Olaimat, Ali M.

    2010-01-01

    The present study conducted to investigate the contribution of conceptual change texts, accompanied by concept mapping instruction to eleventh-grade students' understanding of cellular respiration concepts, and their retention of this understanding. Cellular respiration concepts test was developed as a result of examination of related literature…

  14. Understanding Difference through Dialogue: A First-Year Experience for College Students

    Science.gov (United States)

    Thakral, Charu; Vasquez, Philip L.; Bottoms, Bette L.; Matthews, Alicia K.; Hudson, Kimberly M.; Whitley, Steven K.

    2016-01-01

    Research (Gurin, Nagda, & Zúñiga, 2009) on intergroup dialogue (IGD) has primarily focused on student outcomes in traditional semester-long, 3-credit courses, documenting the positive impact IGD has on college students' (a) intergroup understanding, (b) intergroup relationships, (c) intergroup collaboration and action, and (d) perceived…

  15. Perceptual Influence of Ugandan Biology Students' Understanding of HIV/AIDS

    Science.gov (United States)

    Mutonyi, Harriet; Nashon, Samson; Nielsen, Wendy S.

    2010-08-01

    In Uganda, curbing the spread of HIV/AIDS has largely depended on public and private media messages about the disease. Media campaigns based on Uganda’s cultural norms of communication are metaphorical, analogical and simile-like. The topic of HIV/AIDS has been introduced into the Senior Three (Grade 11) biology curriculum in Uganda. To what extent do students’ pre-conceptions of the disease, based on these media messages influence students’ development of conceptual understanding of the disease, its transmission and prevention? Of significant importance is the impact the conceptions students have developed from the indirect media messages on classroom instruction on HIV/AIDS. The study is based in a theoretical framework of conceptual change in science learning. An interpretive case study to determine the impact of Ugandan students’ conceptions or perceptions on classroom instruction about HIV/AIDS, involving 160 students aged 15-17, was conducted in four different Ugandan high schools: girls boarding, boys boarding, mixed boarding, and mixed day. Using questionnaires, focus group discussions, recorded biology lessons and informal interviews, students’ preconceptions of HIV/AIDS and how these impact lessons on HIV/AIDS were discerned. These preconceptions fall into four main categories: religious, political, conspiracy and traditional African worldviews. Results of data analysis suggest that students’ prior knowledge is persistent even after biology instructions. This has implications for current teaching approaches, which are mostly teacher-centred in Ugandan schools. A rethinking of the curriculum with the intent of offering science education programs that promote understanding of the science of HIV/AIDS as opposed to what is happening now—insensitivity to misconceptions about the disease—is needed.

  16. Rotation placements help students' understanding of intensive care.

    Science.gov (United States)

    Abbott, Lisa

    2011-07-01

    It is vital that children's nursing students are fit for practice when they qualify and are able to meet various essential skills as defined by the Nursing and Midwifery Council (NMC). To gain the knowledge and skills required, students need placements in areas where high dependency and potentially intensive care are delivered. Efforts to maximise the number of students experiencing intensive care as a placement have led to the development of the paediatric intensive care unit (PICU) rotation, increasing placements on the PICU from 5 to 40 per cent of the student cohort per year. The lecturer practitioner organises the rotation, providing credible links between university and practice areas, while supporting students and staff in offering a high-quality placement experience. Students say the rotation offers a positive insight into PICU nursing, helping them develop knowledge and skills in a technical area and creating an interest in this specialty.

  17. High field superconductor development and understanding project, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Larbalestier, David C.; Lee, Peter J.

    2009-07-15

    Over 25 years the Applied Superconductivity Center at the University of Wisconsin-Madison provided a vital technical resource to the High Energy Physics community covering development in superconducting strand for HEP accelerator magnet development. In particular the work of the group has been to develop the next generation of high field superconductors for high field application. Grad students Mike Naus, Chad Fischer, Arno Godeke and Matt Jewell improved our understanding of the microstructure and microchemistry of Nb3Sn and their impact on the physical and mechanical properties. The success of this work has led to the continued funding of this work at the ASC after it moved to the NHMFL and also to direct funding from BNL for some aspects of Nb3Sn cable evaluation.

  18. Making the Connection: The Use of Student Development Theory in First-Year and Transition Programs

    Science.gov (United States)

    Torres, Vasti; LePeau, Lucy A.

    2013-01-01

    This article focuses on past and present research studies that examined the creation of developmental theories to help understand how students develop while in college. The implications of this manuscript include understanding how the diversity of today's student body influences practice, considering the appropriate knowledge base needed to…

  19. Faith Development While Abroad amongst African American Students

    Science.gov (United States)

    Dinani, Thandiwe

    2018-01-01

    Spiritual development is an epistemological journey of seeking to make meaning of life's activities, order, and relationship between events (Love, 2002). This process occurs when students experience a degree of dissonance that pushes them to question what they know, how they know it, and expand their understanding based on new experiences and…

  20. Examining the Conceptual Understandings of Geoscience Concepts of Students with Visual Impairments: Implications of 3-D Printing

    Science.gov (United States)

    Koehler, Karen E.

    The purpose of this qualitative study was to explore the use of 3-D printed models as an instructional tool in a middle school science classroom for students with visual impairments and compare their use to traditional tactile graphics for aiding conceptual understanding of geoscience concepts. Specifically, this study examined if the students' conceptual understanding of plate tectonics was different when 3-D printed objects were used versus traditional tactile graphics and explored the misconceptions held by students with visual impairments related to plate tectonics and associated geoscience concepts. Interview data was collected one week prior to instruction and one week after instruction and throughout the 3-week instructional period and additional ata sources included student journals, other student documents and audio taped instructional sessions. All students in the middle school classroom received instruction on plate tectonics using the same inquiry-based curriculum but during different time periods of the day. One group of students, the 3D group, had access to 3-D printed models illustrating specific geoscience concepts and the group of students, the TG group, had access to tactile graphics illustrating the same geoscience concepts. The videotaped pre and post interviews were transcribed, analyzed and coded for conceptual understanding using constant comparative analysis and to uncover student misconceptions. All student responses to the interview questions were categorized in terms of conceptual understanding. Analysis of student journals and classroom talk served to uncover student mental models and misconceptions about plate tectonics and associated geoscience concepts to measure conceptual understanding. A slight majority of the conceptual understanding before instruction was categorized as no understanding or alternative understanding and after instruction the larger majority of conceptual understanding was categorized as scientific or scientific

  1. Developing the critical thinking skills of astrobiology students through creative and scientific inquiry.

    Science.gov (United States)

    Foster, Jamie S; Lemus, Judith D

    2015-01-01

    Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology.

  2. Students' Understanding of Boiling Points and Intermolecular Forces

    Science.gov (United States)

    Schmidt, Hans-Jurgen; Kaufmann, Birgit; Treagust, David F.

    2009-01-01

    In introductory chemistry courses students are presented with the model that matter is composed of particles, and that weak forces of attraction exist between them. This model is used to interpret phenomena such as solubility and melting points, and aids in understanding the changes in states of matter as opposed to chemical reactions. We…

  3. Understanding Science Teaching Effectiveness: Examining How Science-Specific and Generic Instructional Practices Relate to Student Achievement in Secondary Science Classrooms

    Science.gov (United States)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-01-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student…

  4. Understanding Patterns of Library Use Among Undergraduate Students from Different Disciplines

    Directory of Open Access Journals (Sweden)

    Ellen Collins

    2014-09-01

    Full Text Available Objective – To test whether routinely-generated library usage data could be linked with information about students to understand patterns of library use among students from different disciplines at the University of Huddersfield. This information is important for librarians seeking to demonstrate the value of the library, and to ensure that they are providing services which meet user needs. The study seeks to join two strands of library user research which until now have been kept rather separate – an interest in disciplinary differences in usage, and a methodology which involves large-scale routinely-generated data. Methods – The study uses anonymized data about individual students derived from two sources: routinely-generated data on various dimensions of physical and electronic library resource usage, and information from the student registry on the course studied by each student. Courses were aggregated at a subject and then disciplinary level. Kruskal-Wallis and Mann Whitney tests were used to identify statistically significant differences between the high-level disciplinary groups, and within each disciplinary group at the subject level. Results – The study identifies a number of statistically significant differences on various dimensions of usage between both high-level disciplinary groupings and lower subject-level groupings. In some cases, differences are not the same as those observed in earlier studies, reflecting distinctive usage patterns and differences in the way that disciplines or subjects are defined and organised. While music students at Huddersfield are heavy library users within the arts subject-level grouping arts students use library resources less than those in social science disciplines, contradicting findings from studies at other institutions, Computing and engineering students were relatively similar, although computing students were more likely to download PDFs, and engineering students were more likely to

  5. Involving Students in Developing Math Tests

    Science.gov (United States)

    Rapke, Tina

    2017-01-01

    Many studies have claimed that traditional testing actually promotes students' use of superficial approaches to learning. When preparing to take tests, students typically memorize and cram rather than understanding the material and gaining new perspectives. This article describes how the author recast traditional tests by having students take a…

  6. Relation of Student Social Position to Consumer Attitudes and Understanding

    Science.gov (United States)

    Litro, Robert Frank

    1970-01-01

    A study of Connecticut high school students from different social positions found differences in consumer attitudes and understandings of money management, credit, insurance, and savings and investments. (CH)

  7. Developing Essential Understanding of Functions for Teaching Mathematics in Grades 9-12

    Science.gov (United States)

    Lloyd, Gwendolyn; Beckmann, Sybilla; Zbiek, Rose Mary; Cooney, Thomas

    2010-01-01

    Are sequences functions? What can't the popular "vertical line test" be applied in some cases to determine if a relation is a function? How does the idea of rate of change connect with simpler ideas about proportionality as well as more advanced topics in calculus? Helping high school students develop a robust understanding of functions requires…

  8. Effect of Conceptual Change Approach on Students' Understanding of Reaction Rate Concepts

    Science.gov (United States)

    Kingir, Sevgi; Geban, Omer

    2012-01-01

    The purpose of the present study was to investigate the effect of conceptual change text oriented instruction compared to traditional instruction on 10th grade students' understanding of reaction rate concepts. 45 students from two classes of the same teacher in a public high school participated in this study. Students in the experimental group…

  9. Profile of Metacognition of Mathematics and Mathematics Education Students in Understanding the Concept of Integral Calculus

    Science.gov (United States)

    Misu, La; Ketut Budayasa, I.; Lukito, Agung

    2018-03-01

    This study describes the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. The metacognition profile is a natural and intact description of a person’s cognition that involves his own thinking in terms of using his knowledge, planning and monitoring his thinking process, and evaluating his thinking results when understanding a concept. The purpose of this study was to produce the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. This research method is explorative method with the qualitative approach. The subjects of this study are mathematics and mathematics education students who have studied integral calculus. The results of this study are as follows: (1) the summarizing category, the mathematics and mathematics education students can use metacognition knowledge and metacognition skills in understanding the concept of indefinite integrals. While the definite integrals, only mathematics education students use metacognition skills; and (2) the explaining category, mathematics students can use knowledge and metacognition skills in understanding the concept of indefinite integrals, while the definite integrals only use metacognition skills. In addition, mathematics education students can use knowledge and metacognition skills in understanding the concept of both indefinite and definite integrals.

  10. Understanding decisions Latino students make regarding persistence in the science and math pipeline

    Science.gov (United States)

    Munro, Janet Lynn

    This qualitative study focused on the knowledge and perceptions of Latino high school students, as well those of their parents and school personnel, at a southwestern, suburban high school regarding persistence in the math/science pipeline. In the context of the unique school and community setting these students experience, the decision-making process was examined with particular focus on characterizing the relationships that influence the process. While the theoretical framework that informs this study was that of social capital, its primary purpose was to inform the school's processes and policy in support of increased Latino participation in the math and science pipeline. Since course selection may be the most powerful factor affecting school achievement and college-preparedness, and since course selection is influenced by school policy, school personnel, students, parents, and teachers alike, it is important to understand the beliefs and perceptions that characterize the relationships among them. The qualitative research design involved a phenomenological study of nine Latino students, their parents, their teachers and counselors, and certain support personnel from the high school. The school's and community's environment in support of academic intensity served as context for the portrait that developed. Given rapidly changing demographics that bring more and more Latino students to suburban high schools, the persistent achievement gap experienced by Latino students, and the growing dependence of the world economy on a citizenry versed in the math- and science-related fields, a deeper understanding of the decision-making processes Latino 12 students experience can inform school policy as educators struggle to influence those decisions. This study revealed a striking lack of knowledge concerning the college-entrance ramifications of continued course work in math and science beyond that required for graduation, relationships among peers, parents, and school

  11. Effectiveness of Using GeoGebra on Students' Understanding in Learning Circles

    Science.gov (United States)

    Shadaan, Praveen; Leong, Kwan Eu

    2013-01-01

    The use of technology in the pedagogical process is growing at a phenomenal rate due to the vast availability of gadgets. As a result, educationists see the urgent need for integrating technology in students' mathematical activities. Therefore, the purpose of this quasi experimental study was to investigate students' understanding in learning…

  12. An examination of the identity development of African American undergraduate engineering students attending an HBCU

    Science.gov (United States)

    Taylor, Kenneth J.

    This study examined the identity development for a sample of 90 African American undergraduate engineering male and female students attending an HBCU. Using the Student Development Task and Lifestyle Assessment (SDTLA), which is based on Chickering and Reisser's identity development theory, differences in identity development were examined with respect to gender, academic classification, and grade point average. Previous research has shown the need to look beyond academic factors to understand and influence the persistence of African American engineering students. Non-cognitive factors, including identity development have proven to be influential in predicting persistence, especially for African American engineering students. Results from the analysis revealed significant means for academic classification and five of the dependent variables to include career planning peer relations, emotional autonomy, educational involvement, and establishing and clarifying purpose. Post hoc analysis confirmed significant differences for four of those dependent variables. However, the analysis failed to confirm statistical significant differences in peer relations due to academic classification. The significant decline in the mean scores for development in these four areas, as students progressed from sophomore to senior year revealed strong implications for the need to provide programming and guidance for those students. Institutions of higher education should provide more attention to the non-cognitive areas of development as a means of understanding identity development and working toward creating support systems for students.

  13. Seafloor Eruptions Offer a Teachable Moment to Help SEAS Students Understand Important Geological and Ecological Processes

    Science.gov (United States)

    Goehring, L.; Williams, C. S.

    2006-12-01

    ' anticipated response as a motivator to deepen their understanding of the environment. SEAS depends on the contributions of many scientists within the Ridge 2000 community, and serves as an outreach channel for the whole community. Scientists can help field student questions during the Ask-a- Scientist email forum, serve as Report Reviewers, be featured in Scientist Spotlights, and help develop new Classroom to Sea labs and curricular materials. In the next four years, SEAS will integrate with the international GLOBE education program (www.globe.gov), and help our community reach even more students and teachers, worldwide.

  14. Research and Teaching: Factors Related to College Students' Understanding of the Nature of Science--Comparison of Science Majors and Nonscience Majors

    Science.gov (United States)

    Partin, Matthew L.; Underwood, Eileen M.; Worch, Eric A.

    2013-01-01

    To develop a more scientifically literate society, students need to understand the nature of science, which may be affected by controversial topics such as evolution. There are conflicting views among researchers concerning the relationships between understanding evolution, acceptance of evolution, and understanding of the nature of science. Four…

  15. Scientific Models Help Students Understand the Water Cycle

    Science.gov (United States)

    Forbes, Cory; Vo, Tina; Zangori, Laura; Schwarz, Christina

    2015-01-01

    The water cycle is a large, complex system that encompasses ideas across the K-12 science curriculum. By the time students leave fifth grade, they should understand "that a system is a group of related parts that make up a whole and can carry out functions its individual parts cannot" and be able to describe both components and processes…

  16. The Development of an Assessment Tool: Student Knowledge of the Concept of Place Value

    Science.gov (United States)

    Major, Karen

    2012-01-01

    The importance of student understanding of the concept of place value cannot be underestimated. Place value is a "gate keeper" in developing mathematical understanding. The purpose of this study was to examine and develop a teacher-made test of place value knowledge. The questions were developed using the progressions from the Number…

  17. Nursing students' understanding of factors influencing ethical sensitivity: A qualitative study.

    Science.gov (United States)

    Borhani, Fariba; Abbaszadeh, Abbas; Mohsenpour, Mohaddeseh

    2013-07-01

    Ethical sensitivity is considered as a component of professional competency of nurses. Its effects on improvement of nurses' ethical performance and the therapeutic relationship between nurses and patients have been reported. However, very limited studies have evaluated ethical sensitivity. Since no previous Iranian research has been conducted in this regard, the present study aimed to review nursing students' understanding of effective factors on ethical sensitivity. This qualitative study was performed in Kerman, Iran, during 2009. It used semi-structured individual interviews with eight MSc nursing students to assess their viewpoints. It also included two focus groups. Purposive sampling was continued until data saturation. Data were analyzed using manifest content analysis. The students' understanding of factors influencing ethical sensitivity were summarized in five main themes including individual and spiritual characteristics, education, mutual understanding, internal and external controls, and experience of an immoral act. The findings of this study create a unique framework for sensitization of nurses in professional performance. The application of these factors in human resource management is reinforcement of positive aspects and decrease in negative aspects, in education can use for educational objectives setting, and in research can designing studies based on this framework and making related tools. It is noteworthy that presented classification was influenced by students themselves and mentioned to a kind of learning activity by them.

  18. Does attainment of Piaget's formal operational level of cognitive development predict student understanding of scientific models?

    Science.gov (United States)

    Lahti, Richard Dennis, II

    Knowledge of scientific models and their uses is a concept that has become a key benchmark in many of the science standards of the past 30 years, including the proposed Next Generation Science Standards. Knowledge of models is linked to other important nature of science concepts such as theory change which are also rising in prominence in newer standards. Effective methods of instruction will need to be developed to enable students to achieve these standards. The literature reveals an inconsistent history of success with modeling education. These same studies point to a possible cognitive development component which might explain why some students succeeded and others failed. An environmental science course, rich in modeling experiences, was used to test both the extent to which knowledge of models and modeling could be improved over the course of one semester, and more importantly, to identify if cognitive ability was related to this improvement. In addition, nature of science knowledge, particularly related to theories and theory change, was also examined. Pretest and posttest results on modeling (SUMS) and nature of science (SUSSI), as well as data from the modeling activities themselves, was collected. Cognitive ability was measured (CTSR) as a covariate. Students' gain in six of seven categories of modeling knowledge was at least medium (Cohen's d >.5) and moderately correlated to CTSR for two of seven categories. Nature of science gains were smaller, although more strongly correlated with CTSR. Student success at creating a model was related to CTSR, significantly in three of five sub-categories. These results suggest that explicit, reflective experience with models can increase student knowledge of models and modeling (although higher cognitive ability students may have more success), but successfully creating models may depend more heavily on cognitive ability. This finding in particular has implications in the grade placement of modeling standards and

  19. Investigating High School Students' Understanding of Chemical Equilibrium Concepts

    Science.gov (United States)

    Karpudewan, Mageswary; Treagust, David F.; Mocerino, Mauro; Won, Mihye; Chandrasegaran, A. L.

    2015-01-01

    This study investigated the year 12 students' (N = 56) understanding of chemical equilibrium concepts after instruction using two conceptual tests, the "Chemical Equilibrium Conceptual Test 1" ("CECT-1") consisting of nine two-tier multiple-choice items and the "Chemical Equilibrium Conceptual Test 2"…

  20. Impact of Math Snacks Games on Students' Conceptual Understanding

    Science.gov (United States)

    Winburg, Karin; Chamberlain, Barbara; Valdez, Alfred; Trujillo, Karen; Stanford, Theodore B.

    2016-01-01

    This "Math Snacks" intervention measured 741 fifth grade students' gains in conceptual understanding of core math concepts after game-based learning activities. Teachers integrated four "Math Snacks" games and related activities into instruction on ratios, coordinate plane, number systems, fractions and decimals. Using a…

  1. Promoting Pre-Service Elementary Students' Understanding of Chemical Equilibrium through Discussions in Small Groups

    Science.gov (United States)

    Bilgin, Ibrahim

    2006-01-01

    The purpose of this study was to investigate the effectiveness of small group discussion on students' conceptual understanding of chemical equilibrium. Students' understanding of chemical equilibrium concepts was measured using the Misconception Identification Test. The test consisted of 30 items and administered as pre-posttests to a total of 81…

  2. Reflective writing as a tool for assessing teamwork in bioscience: insights into student performance and understanding of teamwork.

    Science.gov (United States)

    Mayne, Lynne

    2012-07-01

    To ensure a modern bioscience curriculum that responds to the current needs of stakeholders, there is a need to embed a range of generic capabilities that enables graduates to succeed in and contribute to a rapidly changing world, as well as building strong bioscience skills and knowledge. The curriculum must also prepare students for a rapidly evolving competitive work place and align with the needs of industry. This creates a challenge, how do we develop generic capabilities without losing discipline content. This report analyses teamwork projects embedded in an undergraduate Biotechnology degree designed to promote teamwork skills along with a deeper understanding of the underpinning biochemistry. Student reflective writing was used to capture students' understanding and experience of teamwork as well as provide insight into their metacognition. The analysis demonstrates that 73% of Year 3 and 93% of Year 4 students were capable of learning about teamwork through reflective writing. While the importance of frequent high quality communication was a common theme, evidence suggests that many students were unsophisticated in their use of communication software. The analysis also highlighted the depth of metacognition that underpins successful team function and the significant weaknesses in self-insight some students possess. These findings challenge assumptions regarding student capacity for leadership and the ability of some students to contribute to successful team outcomes. It is essential for the design of teamwork experiences to fully understand the competencies that underlie teamwork, the metacognitive processes required, and ensure that assessments are fair and measure individual academic performance. Copyright © 2012 Wiley Periodicals, Inc.

  3. Bridging the Gap: Fraction Understanding Is Central to Mathematics Achievement in Students from Three Different Continents

    Science.gov (United States)

    Torbeyns, Joke; Schneider, Michael; Xin, Ziqiang; Siegler, Robert S.

    2015-01-01

    Numerical understanding and arithmetic skills are easier to acquire for whole numbers than fractions. The "integrated theory of numerical development" posits that, in addition to these differences, whole numbers and fractions also have important commonalities. In both, students need to learn how to interpret number symbols in terms of…

  4. Leveraging Conceptual Frameworks to Improve Students' Mental Organization of Astronomy Understanding

    Science.gov (United States)

    Slater, Timothy F.; Lee, K. M.

    2006-06-01

    Many different types of schematic diagrams are useful in helping students organize and internalize their developing understanding in introductory astronomy courses. These include Venn Diagrams, Flowcharts, Concept Maps, among others, which illustrate the relationships between astronomical objects and dynamic concepts. These conceptual framework diagrams have been incorporated into the NSF-funded ClassAction project. ClassAction is a collection of electronic materials designed to enhance the metacognitive skills of college and university introductory astronomy survey students by promoting interactive engagement and providing rapid feedback in a highly visual setting. The main effort is targeted at creating dynamic think-pair-share questions supported by simulations, animations, and visualizations to be projected in the lecture classroom. The infrastructure allows instructors to recast these questions into alternative forms based on their own pedagogical preferences and feedback from the class. The recourses can be easily selected from a FLASH computer database and are accompanied by outlines, graphics, and numerous simulations which the instructor can use to provide student feedback and, when necessary, remediation. ClassAction materials are publicly available online at URL: http://astro.unl.edu and is funded by NSF Grant #0404988.

  5. Middle school students' understanding of the natural history of the Earth and life on Earth as a function of deep time

    Science.gov (United States)

    Pulling, Azalie Cecile

    as Piaget's system of time (e.g., chronological ordering of events, before and after relationships, duration or evolutionary time) was a necessary conceptual framework for students to develop a scientific understanding of deep time. An examination of students, worldviews and the interface of science and religion indicated that students often successfully applied a demarcation between science and religion in their public thinking (e.g., the formal classroom setting), but in their private thinking, the demarcation was often blurred.

  6. Undergraduate Nursing Students' Understandings of Mental Health: A Review of the Literature.

    Science.gov (United States)

    Barry, Sinead; Ward, Louise

    2017-02-01

    The purpose of this literature review was to identify research and current literature surrounding nursing students' understandings of mental health. The aim is to share findings from an extensive international and national literature review exploring undergraduate nurse education specific to mental health content. Data were collected utilising a comprehensive search of electronic databases including CINAHL (EBSCO), MEDLINE, and PsycINFO 1987-(Ovid) from 2008 to 2016. The initial search terms were altered to include undergraduate, mental health, nursing, education, experience, and knowledge. Three content themes emerged which included: 1. Undergraduate nursing students' knowledge has been considered compromised due to concerns relating to the variation and inconsistencies within the comprehensive nursing curriculums representation of mental health, 2. Undergraduate nursing students knowledge of mental health is thought to be compromised due to the quality of mental health theoretical and experiential learning opportunities, and 3. Research indicates that nursing students' knowledge of mental health was influenced by their experience of undertaking mental health content. Based on these findings greater consideration of students' understandings of mental health is required.

  7. Student Task Analysis for the Development of E-Learning Lectural System in Basic Chemistry Courses in FKIP UMMY Solok

    Science.gov (United States)

    Afrahamiryano, A.; Ariani, D.

    2018-04-01

    The student task analysis is one part of the define stage in development research using the 4-D development model. Analysis of this task is useful to determine the level of understanding of students on lecture materials that have been given. The results of this task analysis serve as a measuring tool to determine the level of success of learning and as a basis in the development of lecture system. Analysis of this task is done by the method of observation and documentation study of the tasks undertaken by students. The results of this analysis are then described and after that triangulation are done to draw conclusions. The results of the analysis indicate that the students' level of understanding is high for theoretical and low material for counting material. Based on the results of this task analysis, it can be concluded that e-learning lecture system developed should be able to increase students' understanding on basic chemicals that are calculated.

  8. Assessing Students' Understandings of Biological Models and Their Use in Science to Evaluate a Theoretical Framework

    Science.gov (United States)

    Grünkorn, Juliane; Upmeier zu Belzen, Annette; Krüger, Dirk

    2014-01-01

    Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical evaluation).…

  9. Prelicensure Baccalaureate Nursing Students' Perceptions of Their Development of Clinical Reasoning.

    Science.gov (United States)

    Herron, Elizabeth K; Sudia, Tanya; Kimble, Laura P; Davis, Alison H

    2016-06-01

    Establishing a strong foundation for the development of clinical reasoning in nursing students is essential to ensure safe and effective patient care. This study explored prelicensure baccalaureate nursing students' perceptions of their development of clinical reasoning, as well as their perceptions of how it is taught. In this phenomenological study, individual semistructured interviews were conducted to gather data related to participants' perceptions of their development of clinical reasoning. Data were analyzed using procedural steps delineated by Giorgi. Data analysis revealed three main themes: Instructor Characteristics, Importance of Clinical Reasoning, and Best Place to Learn Clinical Reasoning. Students recognized how clinical reasoning enhances safe and effective clinical practice and indicated the clinical arena was the most beneficial environment in which to learn clinical reasoning. Understanding students' perceptions of learning benefits nurse educators in planning nursing program curricula to enhance and facilitate the development of clinical reasoning. [J Nurs Educ. 2016;55(6):329-335.]. Copyright 2016, SLACK Incorporated.

  10. Using Oral Examination as a Technique to Assess Student Understanding and Teaching Effectiveness

    Science.gov (United States)

    Roecker, Lee

    2007-01-01

    This paper discusses the use of oral examinations to assess student understanding in a general chemistry course and in an advanced inorganic chemistry course. Examination design, administration, and grading are explored, as well as the benefits to both instructors and students. Students react positively to the oral examination format and generally…

  11. The Effect of Modeling and Visualization Resources on Student Understanding of Physical Hydrology

    Science.gov (United States)

    Marshall, Jilll A.; Castillo, Adam J.; Cardenas, M. Bayani

    2015-01-01

    We investigated the effect of modeling and visualization resources on upper-division, undergraduate and graduate students' performance on an open-ended assessment of their understanding of physical hydrology. The students were enrolled in one of five sections of a physical hydrology course. In two of the sections, students completed homework…

  12. What do medical students understand by research and research skills? Identifying research opportunities within undergraduate projects.

    Science.gov (United States)

    Murdoch-Eaton, Deborah; Drewery, Sarah; Elton, Sarah; Emmerson, Catherine; Marshall, Michelle; Smith, John A; Stark, Patsy; Whittle, Sue

    2010-01-01

    Undergraduate research exposure leads to increased recruitment into academic medicine, enhanced employability and improved postgraduate research productivity. Uptake of undergraduate research opportunities is reported to be disappointing, and little is known about how students perceive research. To investigate opportunities for undergraduate participation in research, recognition of such opportunities, and associated skills development. A mixed method approach, incorporating student focus and study groups, and documentary analysis at five UK medical schools. Undergraduates recognised the benefits of acquiring research skills, but identified practical difficulties and disadvantages of participating. Analysis of 905 projects in four main research skill areas - (1) research methods; (2) information gathering; (3) critical analysis and review; (4) data processing - indicated 52% of projects provided opportunities for students to develop one or more skills, only 13% offered development in all areas. In 17%, project descriptions provided insufficient information to determine opportunities. Supplied with information from a representative sample of projects (n = 80), there was little consensus in identifying skills among students or between students and researchers. Consensus improved dramatically following guidance on how to identify skills. Undergraduates recognise the benefits of research experience but need a realistic understanding of the research process. Opportunities for research skill development may not be obvious. Undergraduates require training to recognise the skills required for research and enhanced transparency in potential project outcomes.

  13. Towards a probabilistic definition of entropy: An investigation of the effects of a new curriculum on students' understanding of thermodynamics

    Science.gov (United States)

    Colon-Garcia, Evy B.

    Thermodynamics is a vital tool in understanding why reactions happen; nevertheless, it is often considered a difficult topic. Prior studies have shown that students struggle with fundamental thermodynamic concepts such as entropy, enthalpy and Gibbs energy even in upper level physical chemistry courses. Thermodynamics, as a general chemistry topic, can be more math-intensive than other topics such as bonding or intermolecular forces. As a result, it is possible for students to get lost in the algorithms and overlook the important underlying theoretical concepts. Students' difficulties in understanding thermodynamics may be contributing to their inability to explain phenomena such as phase changes and manipulations of equilibrium systems. Current chemistry curricula split the thermodynamic chapters over a span of two semesters as well as splitting it over different units. This division fails to make explicit the connection between Enthalpy, Entropy and Gibbs Energy and how they affect how and why every reaction or process happens. The reason for this division of topics is not based on any educational research rather than opinions as to what will not overwhelm the students. Additionally, students who take only one semester of General Chemistry will leave without being instructed in what is considered to be one of the most fundamental concepts in Chemistry, Thermodynamics. Chemistry, Life, the Universe and Everything (CLUE) is a general chemistry course developed with the explicit goal of addressing the major obstacles that inhibit students from acquiring an appreciation and mastery of the chemical principles upon which other sciences depend. Using a control and treatment group, the effectiveness of this new curriculum was evaluated for two main aspects: 1. What is students' understanding of entropy?, 2. Can an alternative instructional approach to teaching Thermodynamics (Chemistry, Life, the Universe and Everything - CLUE) improve students' understanding of Entropy

  14. Developing Explanations and Developing Understanding: Students Explain the Phases of the Moon Using Visual Representations

    Science.gov (United States)

    Parnafes, Orit

    2012-01-01

    This article presents a theoretical model of the process by which students construct and elaborate explanations of scientific phenomena using visual representations. The model describes progress in the underlying conceptual processes in students' explanations as a reorganization of fine-grained knowledge elements based on the Knowledge in Pieces…

  15. Bridging the Gap: Engaging in Scholarship with Accountancy Employers to Enhance Understanding of Skills Development and Employability

    Science.gov (United States)

    Jones, Rob

    2014-01-01

    This paper reports on the author's experiences of working with accountancy employers to develop a deeper understanding of skills development and employability in the accountancy profession. It notes that while there is a well-developed literature that examines skills development amongst university accounting students, there is also evidence of a…

  16. STUDENT-CENTERED LEARNING AND CROSS CULTURAL UNDERSTANDING IN LEARNING INTODUCTION TO LITERATURE TO IMPROVE THE STUDENTS MORALITY AND MULTICULTURAL VALUES

    Directory of Open Access Journals (Sweden)

    Siminto Siminto

    2017-04-01

    Full Text Available Previously the paradigm change was done from the teacher centered to the student centered in teaching learning process. It was expected to be able to encourage the students to be involved in building their knowledge, attitude, and character. Besides that, English learners did not understand about the native culture and morality values to the language that they are learning. Cross cultural understanding knowledge is very useful to improve the students‘ ability in recognizing the dissimilarity culture and live together in the middle of the dissimilarity culture. This research was based on the qualitative research principle. The research type used was qualitative study by using action research design. Subject of this research was the fourth semester students who have programmed Introduction to Literature in English Study Program at Palangkaraya State Islamic Institute in academic year 2014/2015, consisted of two learning group. Based on the research findings, by implementing of student-centered learning and cross cultural understanding, it showed that they can increase: (1 the students‘ readiness, being active, seriousness in analyzing English literature text; (2 the students‘ performance in doing of tasks given to each students to be able to share their understanding about English literature text to the other students; (3 the students‘ learning quality, academic achievement, interest, response in learning of Introduction to Literature related to literature text analysis concept mastering; (4 the students‘ morality and multicultural values. It could be seen from the students‘ study result, literature text analysis result, and the students‘ character.

  17. Epistemological development and collaborative learning: a hermeneutic analysis of music therapy students' experience.

    Science.gov (United States)

    Luce, David W

    2008-01-01

    Undergraduate education must address student's developmental needs, as well as their learning needs. Yet, there has been little discussion regarding music therapy students' epistemological development, how that influences their education and clinical training, and how that understanding can inform educators and clinical supervisors. As part of an introductory music therapy course that was taught using collaborative learning consensus groups, students provided written and verbal comments about their experience and some students agreed to a series of interviews (Luce, 2002). This hermeneutic analysis of that data was based upon Perry's Scheme and Women's Ways of Knowing suggested that (a) the students' comments reflected the various perspectives or positions within the models, (b) the collaborative learning consensus groups facilitated transitions and movement within the models, and (c) there was a need for more research to understand music therapy students' developmental needs, to enhance teaching methods and pedagogy, and to address students' developmental needs as they prepare to enter the profession.

  18. Student Services and their Influence to Student Development

    Directory of Open Access Journals (Sweden)

    Charlito P. Cadag

    2017-05-01

    Full Text Available he study assessed the effectiveness of student services and their influen ce on student development in the four campuses of Central Bicol State University of Agriculture (CBSUA, SY 2013 - 2014. Descriptive, evaluative, comparative and correlational methods of research were employed. Respondents were administrators, faculty membe rs and student leaders. Data were gathered through questionnaire, interview, documentary analysis and ocular inspection and were treated statistically using weighted mean, ranking, one - way ANOVA, Pearson R correlation analysis and DMRT. Findings revealed t hat the four campuses of CBSUA were ”very effective” in managing the different student services. The social, cultural, political and intellectual aspects of students in the four campuses of CBSUA were “highly developed” through the various student services provided. Student services such as sports development, library, student organizations, arts and culture development, guidance and counseling, scholarship and financial assistance, campus ministry and health services did not vary among campuses.

  19. Development of the Flame Test Concept Inventory: Measuring Student Thinking about Atomic Emission

    Science.gov (United States)

    Bretz, Stacey Lowery; Murata Mayo, Ana Vasquez

    2018-01-01

    This study reports the development of a 19-item Flame Test Concept Inventory, an assessment tool to measure students' understanding of atomic emission. Fifty-two students enrolled in secondary and postsecondary chemistry courses were interviewed about atomic emission and explicitly asked to explain flame test demonstrations and energy level…

  20. Understanding, perceptions and self-use of complementary and alternative medicine (CAM) among Malaysian pharmacy students

    OpenAIRE

    Baig Mirza R; Hameed Abdul; Naing Cho M; Babar Muneer G; Yong Chew S; Hasan Syed S; Iqbal Shahid M; Kairuz Therese

    2011-01-01

    Abstract Background In recent times the basic understanding, perceptions and CAM use among undergraduate health sciences students have become a topic of interest. This study was aimed to investigate the understanding, perceptions and self-use of CAM among pharmacy students in Malaysia. Methods This cross-sectional study was conducted on 500 systematically sampled pharmacy students from two private and one public university. A validated, self-administered questionnaire comprised of seven secti...

  1. A study of the development of scientific literacy in students of conservative Christian schools

    Science.gov (United States)

    Johns, Christopher D.

    A collision of concepts often occurs within the science classrooms of Christian schools. Students are faced with the task of accommodating biblical teachings with science theories that are not only incompatible but often directly conflicting. Teachers in the Christian school must choose to what extent and how this conflicting information will be addressed. Students must manage the tension caused by this conflict and then determine their own belief systems. High-stakes achievement testing also plays a role in the curriculum and instruction of science in the Christian school as well as public schools. Science literacy, a lifelong pursuit of understanding of the physical world, can be a victim of instructional strategies aimed at promoting student success on a specific test covering a specific set of facts instead of a comprehensive plan developed for individual-specific growth. This study was designed to gain an understanding of science literacy development of the middle school student in the Christian school. This was accomplished by comparing the individual component scores of the science Indiana Statewide Testing for Educational Progress-Plus achievement test for a 3-year period of 5 Christian schools in Indiana to the overall state averages. Armed with this information, the study, in its second phase, included interviews of the 7th-grade science teachers of the included schools. The goal of the interviews was to provide meaning and substance to the score comparisons. The purpose of the study was to understand how the students in Christian schools compared to the overall population of students in areas of science that may conflict with their Biblical beliefs. Additionally, this study was developed to understand how the science teachers in Christian schools managed the conflict that develops between the Bible and theories of science. Findings from this study showed that students in Christian schools continue to score higher than the overall population of students

  2. Cross-Grade Comparison of Students' Conceptual Understanding with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, G.

    2015-01-01

    Students commonly find the field of physics difficult. Therefore, they generally have learning problems. One of the subjects with which they have difficulties is optics within a physics discipline. This study aims to determine students' conceptual understanding levels at different education levels relating to lenses in geometric optics. A…

  3. Teachers' Understanding of Algebraic Generalization

    Science.gov (United States)

    Hawthorne, Casey Wayne

    conceptualizations of the symbols. Finally, by comparing two teachers' understandings of student thinking in the classroom, I developed an instructional trajectory to describe steps along students' generalization processes. This emergent framework serves as an instructional tool for teachers' use in identifying significant connections in supporting students to develop understanding of algebraic symbols as representations that communicate the quantities perceived in the figure.

  4. Understanding Medical Students' Experience with Stress and Its Related Constructs: A Focus Group Study from Singapore.

    Science.gov (United States)

    Farquhar, Julia; Lie, Desiree; Chan, Angelique; Ow, Mandy; Vidyarthi, Arpana

    2018-02-01

    In order to protect medical students from burnout and its untoward psychiatric effects, it is imperative to understand their stress, burnout, coping, and resilience experiences. This study aimed to derive collective definitions from the medical student perspective, to identify common themes of students' experiences, and to distinguish pre-clinical and clinical year students' experiences relating to these four constructs. The authors conducted focus groups of medical students in Singapore across 4 years using a semi-structured question guide. Participants shared their understanding, experiences, and the relationships between stress, burnout, coping, and resilience. Coders independently evaluated construct definitions and derived common themes through an iterative process, and compared transcripts of pre-clinical and clinical year students to determine differences in experience over time. Nine focus groups (54 students, 28 females, mean age 24.3) were conducted. Students identified common definitions for each construct. Nine themes emerged within three domains: (1) relating constructs to personal experience, (2) interrelating stress, burnout, coping, and resilience, and (3) understanding the necessity of stress. Compared to clinical students, pre-clinical students reported theory-based rather than reality-based experiences and exam-induced stress, defined constructs using present rather than future situations, and described constructs as independent rather than interrelated. This sample of medical students in Singapore shares a common understanding of stress, burnout, coping, and resilience, but experiences these uniquely. They perceive a positive role for stress. These findings build upon prior literature, suggesting an interrelationship between stress and its related constructs and adding the novel perspective of students from an Asian country.

  5. What's in a Domain: Understanding How Students Approach Questioning in History and Science

    Science.gov (United States)

    Portnoy, Lindsay Blau; Rabinowitz, Mitchell

    2014-01-01

    How students ask questions as they learn has implications for understanding, retention, and problem solving. The current research investigates the influence of domain, age, and previous experience with content on the ways students approach questioning across history and science texts. In 3 experiments, 3rd-, 8th-, and 10th-grade students in large…

  6. The First Year of College: Understanding Student Persistence in Engineering

    Science.gov (United States)

    Hayden, Marina Calvet

    This research study aimed to expand our understanding of the factors that influence student persistence in engineering. The unique experiences of engineering students were examined as they transitioned into and navigated their first year of college at a public research university in California. Most students provided similar responses with respect to the way they experienced the transition to college and social life. There was, however, wide student response variation regarding their experience of academic life and academic policies, as well as in their level of pre-college academic preparation and financial circumstances. One key finding was that students' experiences during the first year of college varied widely based on the extent to which they had acquired organizational and learning skills prior to college. The study used a mixed methods approach. Quantitative and qualitative data were collected through an online survey and one-on-one interviews conducted with freshman students near the end of their first year of college. The theoretical foundations of this study included Astin's Theory of Student Involvement and Tinto's Theory of Student Departure. The design of the study was guided by these theories which emphasize the critical importance of student involvement with the academic and social aspects of college during the first year of college.

  7. Development of Interactive Media for ICT Learning at Elementary School Based on Student Self Learning

    Directory of Open Access Journals (Sweden)

    Sri Huning Anwariningsih

    2013-05-01

    Full Text Available The implementation of information and comunication technology (ICT curriculum at elementary school is the educational sector development. ICT subject is a practical subject which require a direct practice to make easier in the student understanding. Therefore, a teacher is demanded to make a learning media which helps the student to understand the material of study. This research is aimed at describing the model of ICT study in elementary school and using of learning media. Moreover, the description can be bocome one of the basic from the development of interactive study model base on student self learning. Besides, the arraging of this study model is hoped to make habitual and self learning.

  8. Understanding the Graphical Challenges Faced by Vision-Impaired Students in Australian Universities

    Science.gov (United States)

    Butler, Matthew; Holloway, Leona; Marriott, Kim; Goncu, Cagatay

    2017-01-01

    Information graphics such as plots, maps, plans, charts, tables and diagrams form an integral part of the student learning experience in many disciplines. However, for a vision impaired student accessing such graphical materials can be problematic. This research seeks to understand the current state of accessible graphics provision in Australian…

  9. A Cross-Age Study of Student Understanding of the Concept of Homeostasis.

    Science.gov (United States)

    Westbrook, Susan L.; Marek, Edmund A.

    1992-01-01

    The conceptual views of homeostasis held by students (n=300) in seventh grade life science, tenth grade biology, and college zoology were examined. A biographical questionnaire, the results from two Piagetian-like developmental tasks, and a concept evaluation statement of homeostasis were collected from each student. Understanding of the concept…

  10. Digital Journeys: A Perspective on Understanding the Digital Experiences of International Students

    Science.gov (United States)

    Chang, Shanton; Gomes, Catherine

    2017-01-01

    The authors in this conceptual paper draw on the literature on information seeking behavior, social media use, and international student experiences to propose Digital Journeys as a framework which helps us understand the online behavior of international students. Here we theorize that the Digital Journey is the transition that individuals make…

  11. Reflective Journals as a Research Tool: The Case of Student Teachers' Development of Teamwork

    Science.gov (United States)

    Bashan, Bilha; Holsblat, Rachel

    2017-01-01

    The study explores the development of teamwork among a group of Israeli student teachers enrolled in a practicum, in order to help teacher educators to understand better the processes student teachers experience in becoming a collaborative team. The student teachers' reflective journals provide qualitative evidence of the stages in the development…

  12. Understanding Student Attitudes toward Bible Reading: A Philippine Experience

    Science.gov (United States)

    Baring, Rito V.

    2008-01-01

    Reflecting from the Philippine experience, this article explores an emerging picture that characterizes contemporary Bible reading attitudes of college students. Six new attitude factor definitions are developed following the development of the Bible Reading (BR) attitude scale for college students constructed by this author in a separate study.…

  13. Developing design-based STEM education learning activities to enhance students' creative thinking

    Science.gov (United States)

    Pinasa, Siwa; Siripun, Kulpatsorn; Yuenyong, Chokchai

    2018-01-01

    Creative thinking on applying science and mathematics knowledge is required by the future STEM career. The STEM education should be provided for the required skills of future STEM career. This paper aimed to clarify the developing STEM education learning activities to enhance students' creative thinking. The learning activities were developed for Grade 10 students who will study in the subject of independent study (IS) of Khon Kaen Wittayayon School, Khon Kaen, Thailand. The developing STEM education learning activities for enhancing students' creative thinking was developed regarding on 6 steps including (1) providing of understanding of fundamental STEM education concept, (2) generating creative thinking from prototype, (4) revised ideas, (5) engineering ability, and (6) presentation and discussion. The paper will clarify the 18 weeks activities that will be provided based these 6 steps of developing learning activities. Then, these STEM learning activities will be discussed to provide the chance of enhancing students' creative thinking. The paper may have implication for STEM education in school setting.

  14. Understanding science teaching effectiveness: examining how science-specific and generic instructional practices relate to student achievement in secondary science classrooms

    Science.gov (United States)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-12-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student achievement can provide teachers with beneficial information about how to best engage their students in meaningful science learning. To address this need, this study examined the instructional practices that 99 secondary biology teachers used in their classrooms and employed regression to determine which instructional practices are predictive of students' science achievement. Results revealed that the secondary science teachers who had well-managed classroom environments and who provided opportunities for their students to engage in student-directed investigation-related experiences were more likely to have increased student outcomes, as determined by teachers' value-added measures. These findings suggest that attending to both generic and subject-specific aspects of science teachers' instructional practice is important for understanding the underlying mechanisms that result in more effective science instruction in secondary classrooms. Implications about the use of these observational measures within teacher evaluation systems are discussed.

  15. Using Anthropomorphism and Fictional Story Development to Enhance Student Learning

    Directory of Open Access Journals (Sweden)

    Kari A. Brossard Stoos

    2017-05-01

    Full Text Available Understanding mechanisms of human disease can be very challenging for students with a basic background in anatomy and biology, and it can be nearly impossible for students without any prior exposure to these basic sciences.  We have designed an approach for understanding human disease for learners of various science backgrounds.  By using fictional character associations with disease processes, we have anthropomorphized disease components to make the mechanisms accessible to students with little to no science background, while still appealing and exciting to students with significant science backgrounds.  By assisting students in the creation of fictional characters to represent disease processes, we have increased student understanding, engagement, enjoyment, and retention of course content.

  16. Mathematical Understanding and Proving Abilities: Experiment With Undergraduate Student By Using Modified Moore Learning Approach

    Directory of Open Access Journals (Sweden)

    Rippi Maya

    2011-07-01

    Full Text Available This paper reports findings of  a  post test experimental control group design conducted to investigate the role of modified Moore learning approach  on improving students’ mathematical understanding and proving abilities. Subject of study were 56 undergradute students of one state university in Bandung, who took advanced abstract algebra course. Instrument of study were a set test of mathematical understanding ability, a set test of mathematical proving ability, and a set of students’ opinion scale on modified Moore learning approach. Data were analyzed by using two path ANOVA. The study found that proof construction process was more difficult than mathematical understanding  task  for all students, and students still posed some difficulties on constructing mathematical proof task.  The study also found there were not differences  between students’  abilities on mathematical understanding and on proving abilities of  the both classes, and both abilities were classified as mediocre. However, in modified Moore learning approach class there were more students who got above average grades on mathematical understanding than those of conventional class. Moreover, students performed positive  opinion toward  modified Moore learning approach. They  were  active in questioning and solving problems, and in explaining their works in front of class as well, while students of conventional teaching prefered to listen to lecturer’s explanation. The study also found that there was no interaction between learning approach and students’ prior mathematics ability on mathematical understanding and proving abilities,  but  there were  quite strong  association between students’ mathematical understanding and proving abilities.Keywords:  modified Moore learning approach, mathematical understanding ability, mathematical proving ability. DOI: http://dx.doi.org/10.22342/jme.2.2.751.231-250

  17. The Effects of Case-Based Instruction on Undergraduate Biology Students' Understanding of the Nature of Science

    Science.gov (United States)

    Burniston, Amy Lucinda

    Undergraduate science education is currently seeing a dramatic pedagogical push towards teaching the philosophies underpinning science as well as an increase in strategies that employ active learning. Many active learning strategies stem from constructivist ideals and have been shown to affect a student's understanding of how science operates and its impact on society- commonly referred to as the nature of science (NOS). One particular constructivist teaching strategy, case-based instruction (CBI), has been recommended by researchers and science education reformists as an effective instructional strategy for teaching NOS. Furthermore, when coupled with explicit-reflective instruction, CBI has been found to significantly increasing understanding of NOS in elementary and secondary students. However, few studies aimed their research on CBI and NOS towards higher education. Thus, this study uses a quasi-experimental, nonequivalent group design to study the effects of CBI on undergraduate science students understandings of NOS. Undergraduate biology student's understanding of NOS were assessed using the Views of Science Education (VOSE) instrument pre and post CBI intervention in Cellular and Molecular Biology and Human Anatomy and Physiology II. Data analysis indicated statistically significant differences between students NOS scores in experimental versus control sections for both courses, with experimental groups obtaining higher posttest scores. The results of this study indicate that undergraduate male and female students have similarly poor understandings of NOS and the use of historical case based instruction can be used as a means to increase undergraduate understanding of NOS.

  18. Difference in Understanding of the Need for Using Radiation in Various Fields between Students Majoring in Radiation and Non-Radiation Related Studies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok [Dept. of Radiological Tecknology, Daegu Health College, Daegu (Korea, Republic of)

    2011-12-15

    As a way of improving social receptivity of using radiation, this study looked into the difference of understanding the need of using radiation in various fields between students majoring in radiation and non-radiation related studies, who will influence public opinion in the long term. This study also provides data needed for developing efficient strategies for projects promoting the public's awareness of using radiation. Of the students in the 79 schools sampled, 24%(177) were in 4 year colleges and 146 were junior colleges in educational statistics service (http://cesi.kedi.re.kr) In November 2010 1,945 students were selected as a sample, and they were given surveys on the need of using radiation in different fields. As a result, both between students majoring in radiation and non-radiation related studies showed a high level of understanding the need for radiation in the medical field and showed a low level of understanding of the need for radiation in the agricultural field. In all 6 fields of radiation use, students majoring in radiation related studies showed higher levels of understanding for the need to use radiation than students majoring in radiation and non-radiation related studies. In each field, male students and those who have experience medical radiation and relevant education had higher level of understanding. This shows we need to improve the understanding of the cases of female students and those who have not had experiences with medical radiation and to provide relevant education through various kinds of information. The characteristics of the groups that are shown in the results of this study are considered to be helpful for efficiently for project promoting the public's awareness of using radiation.

  19. Difference in Understanding of the Need for Using Radiation in Various Fields between Students Majoring in Radiation and Non-Radiation Related Studies

    International Nuclear Information System (INIS)

    Han, Eun Ok

    2011-01-01

    As a way of improving social receptivity of using radiation, this study looked into the difference of understanding the need of using radiation in various fields between students majoring in radiation and non-radiation related studies, who will influence public opinion in the long term. This study also provides data needed for developing efficient strategies for projects promoting the public's awareness of using radiation. Of the students in the 79 schools sampled, 24%(177) were in 4 year colleges and 146 were junior colleges in educational statistics service (http://cesi.kedi.re.kr) In November 2010 1,945 students were selected as a sample, and they were given surveys on the need of using radiation in different fields. As a result, both between students majoring in radiation and non-radiation related studies showed a high level of understanding the need for radiation in the medical field and showed a low level of understanding of the need for radiation in the agricultural field. In all 6 fields of radiation use, students majoring in radiation related studies showed higher levels of understanding for the need to use radiation than students majoring in radiation and non-radiation related studies. In each field, male students and those who have experience medical radiation and relevant education had higher level of understanding. This shows we need to improve the understanding of the cases of female students and those who have not had experiences with medical radiation and to provide relevant education through various kinds of information. The characteristics of the groups that are shown in the results of this study are considered to be helpful for efficiently for project promoting the public's awareness of using radiation.

  20. Use of the Attribute Hierarchy Method for Development of Student Cognitive Models and Diagnostic Assessments in Geoscience Education

    Science.gov (United States)

    Corrigan, S.; Brodsky, L. M.; Loper, S.; Brown, N.; Curley, J.; Baker, J.; Goss, M.; Castek, J.; Barber, J.

    2010-12-01

    There is a recognized need to better understand student learning in the geosciences (Stofflet, 1994; Zalles, Quallmalz, Gobert and Pallant, 2007). Educators, cognitive psychologists and practicing scientists have also called for instructional approaches that support deep conceptual development (Manduca, Mogk and Stillings, 2004, Libarkin and Kurdziel, 2006). In both cases there is an important role for educational measures that can generate descriptions of how student understanding develops over time and inform instruction. The presenters will suggest one way of responding to these needs by describing the Attribute Hierarchy Method (AHM) of assessment (Leighton, Gierl and Hunka, 2004; Gierl, Cui, Wang and Zhou, 2008) as enacted in a large-scale earth science curriculum development project funded by the Bill and Melinda Gates Foundation. The AHM is one approach to criterion referenced, diagnostic assessment that ties measure design to cognitive models of student learning in order to support justified inferences about students’ understanding and the knowledge required for continued development. The Attribute Hierarchy Method bears potential for researchers and practitioners interested in learning progressions and solves many problems associated with making meaningful, justified inferences about students’ understanding based on their assessment performances. The process followed to design and develop the project’s cognitive models as well as a description of how they are used in subsequent assessment task design will be emphasized in order to demonstrate how the AHM may be applied in the context of geoscience education. Results from over twenty student cognitive interviews, and two hypothesized cognitive models -- one describing a student pathway for understanding rock formation and a second describing a student pathway for increasingly sophisticated use of maps and models in the geosciences - are also described. Sample assessment items will be provided as

  1. Promoting students' conceptual understanding using STEM-based e-book

    Science.gov (United States)

    Komarudin, U.; Rustaman, N. Y.; Hasanah, L.

    2017-05-01

    This study aims to examine the effect of Science, Technology, Engineering, and Mathematics (STEM) based e-book in promoting students'conceptual understanding on lever system in human body. The E-book used was the e-book published by National Ministry of Science Education. The research was conducted by a quasi experimental with pretest and posttest design. The subjects consist of two classes of 8th grade junior high school in Pangkalpinang, Indonesia, which were devided into experimental group (n=34) and control group (n=32). The students in experimental group was taught by STEM-based e-book, while the control group learned by non STEM-based e-book. The data was collected by an instrument pretest and postest. Pretest and posttest scored, thenanalyzed using descriptive statistics and independent t-test. The result of independent sample t-test shows that no significant differenceson students' pretest score between control and experimental group. However, there were significant differences on students posttest score and N-gain score between control and experimental group with sig = 0.000(pscience.

  2. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    Science.gov (United States)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  3. "Everything Is in Parables": An Exploration of Students' Difficulties in Understanding Christian Beliefs Concerning Jesus

    Science.gov (United States)

    Freathy, Rob; Aylward, Karen

    2010-01-01

    This article reports the findings of interviews conducted with students (aged 11-13) in four English secondary schools, examining reasons why young people find it difficult to understand Christian beliefs regarding Jesus' miracles, resurrection, and status as the Son of God. For the students in this sample, understanding and belief are closely…

  4. Student Understanding of Taylor Series Expansions in Statistical Mechanics

    Science.gov (United States)

    Smith, Trevor I.; Thompson, John R.; Mountcastle, Donald B.

    2013-01-01

    One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann…

  5. The effect of directive tutor guidance on students' conceptual understanding of statistics in problem-based learning.

    Science.gov (United States)

    Budé, Luc; van de Wiel, Margaretha W J; Imbos, Tjaart; Berger, Martijn P F

    2011-06-01

    Education is aimed at students reaching conceptual understanding of the subject matter, because this leads to better performance and application of knowledge. Conceptual understanding depends on coherent and error-free knowledge structures. The construction of such knowledge structures can only be accomplished through active learning and when new knowledge can be integrated into prior knowledge. The intervention in this study was directed at both the activation of students as well as the integration of knowledge. Undergraduate university students from an introductory statistics course, in an authentic problem-based learning (PBL) environment, were randomly assigned to conditions and measurement time points. In the PBL tutorial meetings, half of the tutors guided the discussions of the students in a traditional way. The other half guided the discussions more actively by asking directive and activating questions. To gauge conceptual understanding, the students answered open-ended questions asking them to explain and relate important statistical concepts. Results of the quantitative analysis show that providing directive tutor guidance improved understanding. Qualitative data of students' misconceptions seem to support this finding. Long-term retention of the subject matter seemed to be inadequate. ©2010 The British Psychological Society.

  6. Assessing Student Understanding of the "New Biology": Development and Evaluation of a Criterion-Referenced Genomics and Bioinformatics Assessment

    Science.gov (United States)

    Campbell, Chad Edward

    Over the past decade, hundreds of studies have introduced genomics and bioinformatics (GB) curricula and laboratory activities at the undergraduate level. While these publications have facilitated the teaching and learning of cutting-edge content, there has yet to be an evaluation of these assessment tools to determine if they are meeting the quality control benchmarks set forth by the educational research community. An analysis of these assessment tools indicated that valid and reliable inferences about student learning. To remedy this situation the development of a robust GB assessment aligned with the quality control benchmarks was undertaken in order to ensure evidence-based evaluation of student learning outcomes. Content validity is a central piece of construct validity, and it must be used to guide instrument and item development. This study reports on: (1) the correspondence of content validity evidence gathered from independent sources; (2) the process of item development using this evidence; (3) the results from a pilot administration of the assessment; (4) the subsequent modification of the assessment based on the pilot administration results and; (5) the results from the second administration of the assessment. Twenty-nine different subtopics within GB (Appendix B: Genomics and Bioinformatics Expert Survey) were developed based on preliminary GB textbook analyses. These subtopics were analyzed using two methods designed to gather content validity evidence: (1) a survey of GB experts (n=61) and (2) a detailed content analyses of GB textbooks (n=6). By including only the subtopics that were shown to have robust support across these sources, 22 GB subtopics were established for inclusion in the assessment. An expert panel subsequently developed, evaluated, and revised two multiple-choice items to align with each of the 22 subtopics, producing a final item pool of 44 items. These items were piloted with student samples of varying content exposure levels

  7. Developing Culturally Competent Teachers: An International Student Teaching Field Experience

    Science.gov (United States)

    Salmona, Michelle; Partlo, Margaret; Kaczynski, Dan; Leonard, Simon N.

    2015-01-01

    This study offers a theoretical construct for better understanding how experiential learning enables student teachers to acquire social and cultural variation skills, develop cultural empathy in the K-12 classroom, and the transference of these skills to new educational situations. An Australian and United States research team used a…

  8. "I Got Your Back": Friends' Understandings regarding College Student Spring Break Behavior

    Science.gov (United States)

    Patrick, Megan E.; Morgan, Nicole; Maggs, Jennifer L.; Lefkowitz, Eva S.

    2011-01-01

    Behaviors that pose threats to safety and health, including binge drinking and unprotected sex, increase during a week-long break from university. Understandings with peers regarding these behaviors may be important for predicting behavior and related harms. College students (N = 651; 48% men) reported having understandings with their friends…

  9. Race to improve student understanding of uncertainty: Using LEGO race cars in the physics lab

    Science.gov (United States)

    Parappilly, Maria; Hassam, Christopher; Woodman, Richard J.

    2018-01-01

    Laboratories using LEGO race cars were developed for students in an introductory physics topic with a high early drop-out rate. In a 2014 pilot study, the labs were offered to improve students' confidence with experiments and laboratory skills, especially uncertainty propagation. This intervention was extended into the intro level physics topic the next year, for comparison and evaluation. Considering the pilot study, we subsequently adapted the delivery of the LEGO labs for a large Engineering Mechanics cohort. A qualitative survey of the students was taken to gain insight into their perception of the incorporation of LEGO race cars into physics labs. For Engineering, the findings show that LEGO physics was instrumental in teaching students the measurement and uncertainty, improving their lab reporting skills, and was a key factor in reducing the early attrition rate. This paper briefly recalls the results of the pilot study, and how variations in the delivery yielded better learning outcomes. A novel method is proposed for how LEGO race cars in a physics lab can help students increase their understanding of uncertainty and motivate them towards physics practicals.

  10. Students' Development and Use of Models to Explain Electrostatic Interactions

    Science.gov (United States)

    Mayer, Kristin Elizabeth

    their understanding through applying their ideas to new context. During this transition, students struggled, and in particular, had a hard time using evidence from experiments to justify the changes they made to their models of atomic structure. While the changes students made looked unproductive at times, by the end of the semester, students had developed models of atomic structure that incorporated relationships among charged components that they could apply to explain complex phenomena. Asking students to explore and evaluate their own ideas supported their development of models that they could apply to explain new context they experience in their future.

  11. An Emerging Theoretical Model of Music Therapy Student Development.

    Science.gov (United States)

    Dvorak, Abbey L; Hernandez-Ruiz, Eugenia; Jang, Sekyung; Kim, Borin; Joseph, Megan; Wells, Kori E

    2017-07-01

    Music therapy students negotiate a complex relationship with music and its use in clinical work throughout their education and training. This distinct, pervasive, and evolving relationship suggests a developmental process unique to music therapy. The purpose of this grounded theory study was to create a theoretical model of music therapy students' developmental process, beginning with a study within one large Midwestern university. Participants (N = 15) were music therapy students who completed one 60-minute intensive interview, followed by a 20-minute member check meeting. Recorded interviews were transcribed, analyzed, and coded using open and axial coding. The theoretical model that emerged was a six-step sequential developmental progression that included the following themes: (a) Personal Connection, (b) Turning Point, (c) Adjusting Relationship with Music, (d) Growth and Development, (e) Evolution, and (f) Empowerment. The first three steps are linear; development continues in a cyclical process among the last three steps. As the cycle continues, music therapy students continue to grow and develop their skills, leading to increased empowerment, and more specifically, increased self-efficacy and competence. Further exploration of the model is needed to inform educators' and other key stakeholders' understanding of student needs and concerns as they progress through music therapy degree programs. © the American Music Therapy Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  12. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    Science.gov (United States)

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  13. Understanding Undergraduate Student Perceptions of Mental Health, Mental Well-Being and Help-Seeking Behaviour

    Science.gov (United States)

    Laidlaw, Anita; McLellan, Julie; Ozakinci, Gozde

    2016-01-01

    Despite relatively high levels of psychological distress, many students in higher education do not seek help for difficulties. This study explored undergraduate student understanding of the concepts of mental health and mental well-being and where undergraduate students would seek help for mental well-being difficulties. Semi-structured interviews…

  14. Assessing middle school students` understanding of science relationships and processes: Year 2 - instrument validation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schau, C.; Mattern, N.; Weber, R.; Minnick, K.

    1997-01-01

    Our overall purpose for this multi-year project was to develop an alternative assessment format measuring rural middle school students understanding of science concepts and processes and the interrelationships among them. This kind of understanding is called structural knowledge. We had 3 major interrelated goals: (1) Synthesize the existing literature and critically evaluate the actual and potential use of measures of structural knowledge in science education. (2) Develop a structural knowledge alternative assessment format. (3) Examine the validity of our structural knowledge format. We accomplished the first two goals during year 1. The structural knowledge assessment we identified and developed further was a select-and-fill-in concept map format. The goal for our year 2 work was to begin to validate this assessment approach. This final report summarizes our year 2 work.

  15. Effect of 5E Teaching Model on Student Teachers' Understanding of Weightlessness

    Science.gov (United States)

    Tural, Guner; Akdeniz, Ali Riza; Alev, Nedim

    2010-01-01

    Weight is one of the basic concepts of physics. Its gravitational definition accommodates difficulties for students to understand the state of weightlessness. The aim of this study is to investigate the effect of materials based on 5E teaching model and related to weightlessness on science student teachers' learning. The sample of the study was 9…

  16. Conceptualising Plagiarism: Using Lego to Construct Students' Understanding of Authorship and Citation

    Science.gov (United States)

    Buckley, Carina

    2015-01-01

    The transition from further to higher education is marked by a series of challenges for the new student, not least the requirement to learn the discourse of academic practice, and referencing as a part of that. By perceiving what it means to reference, students should also come to understand what it means to write, including the problematic areas…

  17. How online learning modules can improve the representational fluency and conceptual understanding of university physics students

    Science.gov (United States)

    Hill, M.; Sharma, M. D.; Johnston, H.

    2015-07-01

    The use of online learning resources as core components of university science courses is increasing. Learning resources range from summaries, videos, and simulations, to question banks. Our study set out to develop, implement, and evaluate research-based online learning resources in the form of pre-lecture online learning modules (OLMs). The aim of this paper is to share our experiences with those using, or considering implementing, online learning resources. Our first task was to identify student learning issues in physics to base the learning resources on. One issue with substantial research is conceptual understanding, the other with comparatively less research is scientific representations (graphs, words, equations, and diagrams). We developed learning resources on both these issues and measured their impact. We created weekly OLMs which were delivered to first year physics students at The University of Sydney prior to their first lecture of the week. Students were randomly allocated to either a concepts stream or a representations stream of online modules. The programme was first implemented in 2013 to trial module content, gain experience and process logistical matters and repeated in 2014 with approximately 400 students. Two validated surveys, the Force and Motion Concept Evaluation (FMCE) and the Representational Fluency Survey (RFS) were used as pre-tests and post-tests to measure learning gains while surveys and interviews provided further insights. While both streams of OLMs produced similar positive learning gains on the FMCE, the representations-focussed OLMs produced higher gains on the RFS. Conclusions were triangulated with student responses which indicated that they have recognized the benefit of the OLMs for their learning of physics. Our study shows that carefully designed online resources used as pre-instruction can make a difference in students’ conceptual understanding and representational fluency in physics, as well as make them more aware

  18. Relationship of beliefs, epistemology, and alternate conceptions to college student understanding of evolution and common descent

    Science.gov (United States)

    Miller, Joyce Catherine

    Quantitative and qualitative methodologies were combined to explore the relationships between an understanding of evolution and 4 epistemology factors: (a) control of learning, (b) speed of learning , (c) stability of knowledge, and (d) belief in evolution/creationism. A 17-item instrument was developed that reliably measured a belief in creationism and subtle differences between this belief and an acceptance of evolution. The subjects were 45 students enrolled in a biology course at a 2-year community college. Evolution was taught in a traditional format, and common descent was taught in an inquiry-based laboratory session consisting of: (a) a comparison of hemoglobin DNA sequences of the human, chimpanzee, and gorilla; and (b) a comparison of 8 primate skull casts, including the modern human, chimpanzee, gorilla, and five prehistoric fossils. Prior to instruction the students completed an epistemology questionnaire and a knowledge test about evolution. Five weeks after instruction, the students completed a posttest. A t-test revealed no differences between the pretest and the posttest. However, the group of students that scored higher on the posttest than on the pretest was found to have a stronger belief in the uncertainty of knowledge. Pearson r was computed to check for relationships between the 4 epistemological factors and the understanding of evolution. There was a significant relationship between a belief in creationism and a lessor understanding of evolution as measured on both the pretest and the posttest (ps humans evolved from the chimpanzee. Additionally, students grouped the 8 primate skulls into just 2 categories: human and animals. Other misconceptions included a nonevolutionary use of the term, related, and the use of naive organizers leading to incorrect conclusions about the relatedness of certain organisms, such as a connection between fish and whales. These organizers included: (a) similarity of traits, (b) environment, (c) relative size, (d

  19. Helping medical students to acquire a deeper understanding of truth-telling.

    Science.gov (United States)

    Hurst, Samia A; Baroffio, Anne; Ummel, Marinette; Burn, Carine Layat

    2015-01-01

    Truth-telling is an important component of respect for patients' self-determination, but in the context of breaking bad news, it is also a distressing and difficult task. We investigated the long-term influence of a simulated patient-based teaching intervention, integrating learning objectives in communication skills and ethics into students' attitudes and concerns regarding truth-telling. We followed two cohorts of medical students from the preclinical third year to their clinical rotations (fifth year). Open-ended responses were analysed to explore medical students' reported difficulties in breaking bad news. This intervention was implemented during the last preclinical year of a problem-based medical curriculum, in collaboration between the doctor-patient communication and ethics programs. Over time, concerns such as empathy and truthfulness shifted from a personal to a relational focus. Whereas 'truthfulness' was a concern for the content of the message, 'truth-telling' included concerns on how information was communicated and how realistically it was received. Truth-telling required empathy, adaptation to the patient, and appropriate management of emotions, both for the patient's welfare and for a realistic understanding of the situation. Our study confirms that an intervention confronting students with a realistic situation succeeds in making them more aware of the real issues of truth-telling. Medical students deepened their reflection over time, acquiring a deeper understanding of the relational dimension of values such as truth-telling, and honing their view of empathy.

  20. Evaluation of an animation tool developed to supplement dental student study of the cranial nerves.

    Science.gov (United States)

    Lone, M; McKenna, J P; Cryan, J F; Vagg, T; Toulouse, A; Downer, E J

    2017-12-30

    The structure/function of the cranial nerves is a core topic for dental students. However, due to the perceived complexity of the subject, it is often difficult for students to develop a comprehensive understanding of key concepts using textbooks and models. It is accepted that the acquisition of anatomical knowledge can be facilitated by visualisation of structures. This study aimed to develop and assess a novel cranial nerve animation as a supplemental learning aid for dental students. A multidisciplinary team of anatomists, neuroscientists and a computer scientist developed a novel animation depicting the cranial nerves. The animation was viewed by newly enrolled first-year dental students, graduate entry dental students (year 1) and dental hygiene students (year 1). A simple life scenario employing the use of the cranial nerves was developed using a cartoon-type animation with a viewing time of 3.58 minutes. The animation was developed with emphasis on a life scenario. The animation was placed online for 2 weeks with open access or viewed once in a controlled laboratory setting. Questionnaires were designed to assess the participants' attitude towards the animation and their knowledge of the cranial nerves before and after visualisation. This study was performed before the delivery of core lectures on the cranial nerves. Our findings indicate that the use of the animation can act as a supplemental tool to improve student knowledge of the cranial nerves. Indeed, data indicate that a single viewing of the animation, in addition to 2-week access to the animation, can act as a supplemental learning tool to assist student understanding of the structure and function of cranial nerves. The animation significantly enhanced the student's opinion that their cranial nerve knowledge had improved. From a qualitative point of view, the students described the animation as an enjoyable and useful supplement to reading material/lectures and indicated that the animation was a

  1. Understanding Problem-Solving Errors by Students with Learning Disabilities in Standards-Based and Traditional Curricula

    Science.gov (United States)

    Bouck, Emily C.; Bouck, Mary K.; Joshi, Gauri S.; Johnson, Linley

    2016-01-01

    Students with learning disabilities struggle with word problems in mathematics classes. Understanding the type of errors students make when working through such mathematical problems can further describe student performance and highlight student difficulties. Through the use of error codes, researchers analyzed the type of errors made by 14 sixth…

  2. Developing and Validating a Science Notebook Rubric for Fifth-Grade Non-Mainstream Students

    Science.gov (United States)

    Huerta, Margarita; Lara-Alecio, Rafael; Tong, Fuhui; Irby, Beverly J.

    2014-07-01

    We present the development and validation of a science notebook rubric intended to measure the academic language and conceptual understanding of non-mainstream students, specifically fifth-grade male and female economically disadvantaged Hispanic English language learner (ELL) and African-American or Hispanic native English-speaking students. The science notebook rubric is based on two main constructs: academic language and conceptual understanding. The constructs are grounded in second-language acquisition theory and theories of writing and conceptual understanding. We established content validity and calculated reliability measures using G theory and percent agreement (for comparison) with a sample of approximately 144 unique science notebook entries and 432 data points. Results reveal sufficient reliability estimates, indicating that the instrument is promising for use in future research studies including science notebooks in classrooms with populations of economically disadvantaged Hispanic ELL and African-American or Hispanic native English-speaking students.

  3. Student project of optical system analysis API-library development

    Science.gov (United States)

    Ivanova, Tatiana; Zhukova, Tatiana; Dantcaranov, Ruslan; Romanova, Maria; Zhadin, Alexander; Ivanov, Vyacheslav; Kalinkina, Olga

    2017-08-01

    In the paper API-library software developed by students of Applied and Computer Optics Department (ITMO University) for optical system design is presented. The library performs paraxial and real ray tracing, calculates 3d order (Seidel) aberration and real ray aberration of axis and non-axis beams (wave, lateral, longitudinal, coma, distortion etc.) and finally, approximate wave aberration by Zernike polynomials. Real aperture can be calculated by considering of real rays tracing failure on each surface. So far we assume optical system is centered, with spherical or 2d order aspherical surfaces. Optical glasses can be set directly by refraction index or by dispersion coefficients. The library can be used for education or research purposes in optical system design area. It provides ready to use software functions for optical system simulation and analysis that developer can simply plug into their software development for different purposes, for example for some specific synthesis tasks or investigation of new optimization modes. In the paper we present an example of using the library for development of cemented doublet synthesis software based on Slusarev's methodology. The library is used in optical system optimization recipes course for deep studying of optimization model and its application for optical system design. Development of such software is an excellent experience for students and help to understanding optical image modeling and quality analysis. This development is organized as student group joint project. We try to organize it as a group in real research and development project, so each student has his own role in the project and then use whole library functionality in his own master or bachelor thesis. Working in such group gives students useful experience and opportunity to work as research and development engineer of scientific software in the future.

  4. Developing an understanding between people: the key to global health.

    Science.gov (United States)

    Serafin, Alina

    2010-05-01

    Global health and international health are prominent concepts within development issues today. Health is at the heart of many of the Millennium Development Goals, and the idea of a human right to health and health care has taken more hold in the forefronts of our minds. In acknowledgement of the globalised and interdependent society in which we live, this reflective piece uses personal experiences of anthropology and travel throughout the author's medical education to illustrate the pressing need for a better understanding between health workers and local populations. Experiences in Ecuador, Peru, India and Nepal, highlight the plurality of medicine. They show how medical education in the UK forms only one part of medical knowledge, and in particular how clinical practice requires the appreciation of a wider context. Within a multi-cultural society, it is essential that medical students learn new skills for the future. Teaching Anthropology and Sociology within the curriculum in the UK can educate students about how knowledge is created within a culture and to appreciate the diversity between cultures. Consideration of patients' backgrounds and beliefs allows health workers to develop relationships with the local population, which can be of invaluable use in making global health equality a reality. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Enhancing Preservice Teachers' Understanding of Students' Misconceptions in Learning Chemistry

    Science.gov (United States)

    Naah, Basil Mugaga

    2015-01-01

    Preservice teachers enrolled in a modified introductory chemistry course used an instructional rubric to improve and evaluate their understanding of students' misconceptions in learning various chemistry concepts. A sample of 79 preservice teachers first explored the state science standards to identify chemistry misconceptions associated with the…

  6. UNDERSTANDING UNDERGRADUATE STUDENTS PRACTICUM ...

    African Journals Online (AJOL)

    User

    student misbehavior as the most stressful experience of student teacher practicum experience. ... adequate support, rethinking assessment mechanism, provision of adequate fund, strengthening ..... provide regular formative feedback, have.

  7. Developing Students' Emotional Competency Using the Classroom-as-Organization Approach

    Science.gov (United States)

    Sheehan, Beth J.; McDonald, Mark A.; Spence, Kirsty K.

    2009-01-01

    In management education, the classroom-as-organization (CAO) approach to teaching has been a topic of much discussion and debate. Given the authors' experiences in teaching sport event management, it is known that the CAO approach helps students develop greater self-confidence, greater self- and social awareness, and a greater understanding of…

  8. Understanding student early departure from a Master of Public ...

    African Journals Online (AJOL)

    MPH) student registrations in 2013 and 2014. ... include development activities such as time management, stress management and effective study skills to assist mature students to cope with the demands of part-time postgraduate studies.

  9. Development of Early Conceptions in Systems Thinking in an Environmental Context: An Exploratory Study of Preschool Students' Understanding of Stocks & Flows, Behavior Over Time and Feedback

    Science.gov (United States)

    Gillmeister, Kristina M.

    Systems thinking allows learners to look at the world as a series of interconnected parts of a whole. A debate exists in early childhood research literature about whether or not children have the capacity to hold systems thinking conceptions due to the complex thought processing needed for systems thinking. Additionally, many researchers question whether children have enough life experience or cognitive schema to participate fully in systems thinking. However, this study's findings indicate that young children do show signs of more complex understanding in systems thinking than what previous literature suggests a young child has the ability to do. This three part research study was conducted in a universal pre-kindergarten (UPK) classroom in a first-ring suburb of a rust-belt city in the Northeastern United States. The study was grounded in a desire to uncover young children's understanding of systems thinking through everyday classroom activities. Twenty students participated in this qualitative study which utilized read-aloud, water play and the interpretation and creation of graphs through associated structured and semi-structured interviews. Data from student's observations and interviews was transcribed, segmented, coded and analyzed. This student-centered process approach (Gotwals & Alonzo, 2012) allowed for children's ideas to emerge naturally during the research tasks. Data was analyzed according to a three step analysis process using a real-world lens, a systems thinking skills lens, and the development of lower anchors for future learning progressions lens. Across a group of 20 preschool children there was an overarching theme that the ability to think in systems and utilize simple systems thinking tools, such as stock-flow maps, feedback loops and behavior over time graphs, was present. Since children are ready to reason using rudimentary systems thinking, then systems thinking opportunities should be incorporated into their informal and formal learning

  10. A Novel Technology to Investigate Students' Understandings of Enzyme Representations

    Science.gov (United States)

    Linenberger, Kimberly J.; Bretz, Stacey Lowery

    2012-01-01

    Digital pen-and-paper technology, although marketed commercially as a bridge between old and new note-taking capabilities, synchronizes the collection of both written and audio data. This manuscript describes how this technology was used to improve data collection in research regarding students' learning, specifically their understanding of…

  11. Evaluation of Students' Understanding of Thermal Concepts in Everyday Contexts

    Science.gov (United States)

    Chu, Hye-Eun; Treagust, David F.; Yeo, Shelley; Zadnik, Marjan

    2012-01-01

    The aims of this study were to determine the underlying conceptual structure of the thermal concept evaluation (TCE) questionnaire, a pencil-and-paper instrument about everyday contexts of heat, temperature, and heat transfer, to investigate students' conceptual understanding of thermal concepts in everyday contexts across several school years and…

  12. Using Guided Reinvention to Develop Teachers' Understanding of Hypothesis Testing Concepts

    Science.gov (United States)

    Dolor, Jason; Noll, Jennifer

    2015-01-01

    Statistics education reform efforts emphasize the importance of informal inference in the learning of statistics. Research suggests statistics teachers experience similar difficulties understanding statistical inference concepts as students and how teacher knowledge can impact student learning. This study investigates how teachers reinvented an…

  13. Learning about a Level Physics Students' Understandings of Particle Physics Using Concept Mapping

    Science.gov (United States)

    Gourlay, H.

    2017-01-01

    This paper describes a small-scale piece of research using concept mapping to elicit A level students' understandings of particle physics. Fifty-nine year 12 (16- and 17 year-old) students from two London schools participated. The exercise took place during school physics lessons. Students were instructed how to make a concept map and were…

  14. The Development and Evaluation of a Professional Development Model to Build Meaningful and Effective IEPs for Transition-Aged Students

    Science.gov (United States)

    Doren, Bonnie; Flannery, K. Brigid; Lombardi, Allison

    2012-01-01

    The purpose of the study was to examine the potential efficacy of a professional development training model targeting IEP case managers of transition-age students. A training model was developed and a pilot study conducted to understand the promise of the model to improve the development of critical components within the IEP document that support…

  15. Students' Understanding of Genetics Concepts: The Effect of Reasoning Ability and Learning Approaches

    Science.gov (United States)

    Kiliç, Didem; Saglam, Necdet

    2014-01-01

    Students tend to learn genetics by rote and may not realise the interrelationships in daily life. Because reasoning abilities are necessary to construct relationships between concepts and rote learning impedes the students' sound understanding, it was predicted that having high level of formal reasoning and adopting meaningful learning orientation…

  16. Using Open Educational Resources to Help Students Understand the Sub-Prime Lending Crisis

    Science.gov (United States)

    McDowell, Evelyn A.

    2010-01-01

    In this paper, I describe an assignment designed to give students an intermediate level of understanding of the causes of the crisis using online educational resources widely available on the internet. I implemented the assignment in an undergraduate intermediate accounting course. Feedback from students indicate the assignment enhanced their…

  17. Understanding and Predicting Student Self-Regulated Learning Strategies in Game-Based Learning Environments

    Science.gov (United States)

    Sabourin, Jennifer L.; Shores, Lucy R.; Mott, Bradford W.; Lester, James C.

    2013-01-01

    Self-regulated learning behaviors such as goal setting and monitoring have been found to be crucial to students' success in computer-based learning environments. Consequently, understanding students' self-regulated learning behavior has been the subject of increasing attention. Unfortunately, monitoring these behaviors in real-time has…

  18. Using art and story to explore how primary school students in rural Tanzania understand planetary health: a qualitative analysis

    Directory of Open Access Journals (Sweden)

    Elizabeth VanWormer, PhD

    2018-05-01

    Full Text Available Background: The global planetary health community increasingly recognises the need to prepare students to investigate and address connections between environmental change and human health. As we strive to support education on planetary health themes for students of all ages, understanding students' concepts of linkages between the health of people and animals, and their shared environments might advance educational approaches. Children living in villages bordering Ruaha National Park in Iringa Region, Tanzania, have direct experience of these connections as they share a water-stressed but biodiverse environment with domestic animals and wildlife. Livelihoods in these villages depend predominantly on crop and livestock production, including extensive pastoralist livestock keeping. Through qualitative research, we aim to explore and describe Tanzanian primary school students' understanding of connections between human health and the environment. Methods: Working with 26 village primary schools in Iringa Rural District, Tanzania, we adapted an art and story outreach activity to explore student perceptions of planetary health concepts. Following a standardised training session, a lead teacher at each primary school helped students aged 12–15 years form small teams to independently develop and illustrate a story centred on themes of how human health depends on water sources, wildlife, livestock, climate, and forest or grassland resources. Students were encouraged to discuss these themes with their teachers, peers, and families while developing their stories to gain broader as well as historical perspectives. The students generated stories that incorporated solutions to challenges within these themes. Written materials and illustrations were collected from each school along with data on sex and tribe of the group members. We translated all stories from Swahili to English for analysis. The primary outcomes of interest in analysing the students

  19. Understanding undergraduate student perceptions of mental health, mental well-being and help-seeking behaviour

    OpenAIRE

    Laidlaw, Anita Helen; McLellan, Julie; Ozakinci, Gozde

    2016-01-01

    Funding: Medical School, University of St Andrews Despite relatively high levels of psychological distress, many students in higher education do not seek help for difficulties. This study explored undergraduate student understanding of the concepts of mental health and mental well-being and where undergraduate students would seek help for mental well-being difficulties. Semi-structured interviews were carried out with 20 undergraduate students from 5 different subject areas. Interviews wer...

  20. Students' Perceived Understanding Mediates the Effects of Teacher Clarity and Nonverbal Immediacy on Learner Empowerment

    Science.gov (United States)

    Finn, Amber N.; Schrodt, Paul

    2012-01-01

    This study examined students' perceived understanding as a mediator of the relationship between student perceptions of teacher clarity, nonverbal immediacy cues, and learner empowerment (i.e., meaningfulness, competence, and impact). Participants included 261 undergraduate students who completed survey instruments. Results of structural equation…

  1. Development of Interactive Media for ICT Learning at Elementary School Based on Student Self Learning

    OpenAIRE

    Sri Huning Anwariningsih; Sri Ernawati

    2013-01-01

    The implementation of information and comunication technology (ICT) curriculum at elementary school is the educational sector development. ICT subject is a practical subject which require a direct practice to make easier in the student understanding. Therefore, a teacher is demanded to make a learning media which helps the student to understand the material of study. This research is aimed at describing the model of ICT study in elementary school and using of learning media. Moreover, the des...

  2. E-learning support for student's understanding of electronics

    DEFF Research Database (Denmark)

    May, Michael; Sendrup, Linda; Sparsø, Jens

    2008-01-01

    To enhance active learning and understanding of analogue and digital electronics the use of e-learning techniques will be investigated. In a redesigned course combining introductory analogue and digital electronics, students will be motivated to prepare for lectures and exercises by providing...... access to interactive simulations. Some exercises will furthermore be carried out first as simulations of electrical circuits and then with physical components, i.e. as design-build exercises. A number of didactic problems in learning electricity and electronics are discussed....

  3. With hiccups and bumps: the development of a Rasch-based instrument to measure elementary students' understanding of the nature of science.

    Science.gov (United States)

    Peoples, Shelagh M; O'Dwyer, Laura M; Shields, Katherine A; Wang, Yang

    2013-01-01

    This research describes the development process, psychometric analyses and part validation study of a theoretically-grounded Rasch-based instrument, the Nature of Science Instrument-Elementary (NOSI-E). The NOSI-E was designed to measure elementary students' understanding of the Nature of Science (NOS). Evidence is provided for three of the six validity aspects (content, substantive and generalizability) needed to support the construct validity of the NOSI-E. A future article will examine the structural and external validity aspects. Rasch modeling proved especially productive in scale improvement efforts. The instrument, designed for large-scale assessment use, is conceptualized using five construct domains. Data from 741 elementary students were used to pilot the Rasch scale, with continuous improvements made over three successive administrations. The psychometric properties of the NOSI-E instrument are consistent with the basic assumptions of Rasch measurement, namely that the items are well-fitting and invariant. Items from each of the five domains (Empirical, Theory-Laden, Certainty, Inventive, and Socially and Culturally Embedded) are spread along the scale's continuum and appear to overlap well. Most importantly, the scale seems appropriately calibrated and responsive for elementary school-aged children, the target age group. As a result, the NOSI-E should prove beneficial for science education research. As the United States' science education reform efforts move toward students' learning science through engaging in authentic scientific practices (NRC, 2011), it will be important to assess whether this new approach to teaching science is effective. The NOSI-E can be used as one measure of whether this reform effort has an impact.

  4. Using digital technologies to enhance chemistry students' understanding and representational skills

    DEFF Research Database (Denmark)

    Hilton, Annette

    Abstract Chemistry students need to understand chemistry on molecular, symbolic and macroscopic levels. Students find it difficult to use representations on these three levels to interpret and explain data. One approach is to encourage students to use writing-to-learn strategies in inquiry settings...... to present and interpret their laboratory results. This paper describes findings from a study on the effects on students’ learning outcomes of creating multimodal texts to report on laboratory inquiries. The study involved two senior secondary school chemistry classes (n = 22, n = 27). Both classes completed...... representations to make explanations on the molecular level. Student interviews and classroom video-recordings suggested that using digital resources to create multimodal texts promoted knowledge transformation and hence deeper reflection on the meaning of data and representations. The study has implications...

  5. ACTIVE LEARNING STRATEGIES IN TEACHING CROSS CULTURAL UNDERSTANDING FOR ENGLISH EDUCATION STUDENTS

    Directory of Open Access Journals (Sweden)

    Ikke Dewi Pratama

    2017-02-01

    Full Text Available Cross Cultural Understanding (CCU is one of required courses in English Language Teaching which aims at connecting language and culture so that language learners can use foreign language appropriately, i.e. appropriate forms of language for appropriate context of situation. However, some obstacles usually occur during the course, for examples: students’ lack of understanding that lead to opinions stating that this is a boring and useless course, and large number of students within a class where lecturer must teach more than 40 students in one class. Considering the importance of CCU course as well as the needs to overcome the problems during this course, this paper proposes some particular teaching strategies to help students in apprehending CCU materials through students’ active participations. Active learning strategies are preferred by means of raising students’ participation and critical thinking so that the class would run more effectively. Other consideration in composing the strategies is to prepare English Education students to be future English language teachers by training their ability in teaching performance as well as connecting language and culture in English Language Teaching (ELT.   Keywords: language, culture, strategies, media, ELT

  6. Longitudinal mathematics development of students with learning disabilities and students without disabilities: a comparison of linear, quadratic, and piecewise linear mixed effects models.

    Science.gov (United States)

    Kohli, Nidhi; Sullivan, Amanda L; Sadeh, Shanna; Zopluoglu, Cengiz

    2015-04-01

    Effective instructional planning and intervening rely heavily on accurate understanding of students' growth, but relatively few researchers have examined mathematics achievement trajectories, particularly for students with special needs. We applied linear, quadratic, and piecewise linear mixed-effects models to identify the best-fitting model for mathematics development over elementary and middle school and to ascertain differences in growth trajectories of children with learning disabilities relative to their typically developing peers. The analytic sample of 2150 students was drawn from the Early Childhood Longitudinal Study - Kindergarten Cohort, a nationally representative sample of United States children who entered kindergarten in 1998. We first modeled students' mathematics growth via multiple mixed-effects models to determine the best fitting model of 9-year growth and then compared the trajectories of students with and without learning disabilities. Results indicate that the piecewise linear mixed-effects model captured best the functional form of students' mathematics trajectories. In addition, there were substantial achievement gaps between students with learning disabilities and students with no disabilities, and their trajectories differed such that students without disabilities progressed at a higher rate than their peers who had learning disabilities. The results underscore the need for further research to understand how to appropriately model students' mathematics trajectories and the need for attention to mathematics achievement gaps in policy. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  7. The Effect of Constructivist Learning Using Scientific Approach on Mathematical Power and Conceptual Understanding of Students Grade IV

    Science.gov (United States)

    Kusmaryono, Imam; Suyitno, Hardi

    2016-02-01

    This study used a model of Concurrent Embedded with the aim of: (1) determine the difference between the conceptual understanding and mathematical power of students grade fourth who take the constructivist learning using scientific approach and direct learning, (2) determine the interaction between learning approaches and initial competence on the mathematical power and conceptual of understanding, and (3) describe the mathematical power of students grade fourth. This research was conducted in the fourth grade elementary school early 2015. Data initial competence and mathematical power obtained through tests, and analyzed using statistical tests multivariate and univariate. Statistical analysis of the results showed that: (1) There are differences in the concept of understanding and mathematical power among the students who follow the scientifically-based constructivist learning than students who take the Direct Learning in terms of students initial competency (F = 5.550; p = 0.007 problem solving and contributes tremendous increase students' math skills. Researcher suggested that the learning of mathematics in schools using scientifically- based constructivist approach to improve the mathematical power of students and conceptual understanding.

  8. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. © 2016 K. Southard et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Context dependence of students' views about the role of equations in understanding biology.

    Science.gov (United States)

    Watkins, Jessica; Elby, Andrew

    2013-06-01

    Students' epistemological views about biology--their ideas about what "counts" as learning and understanding biology--play a role in how they approach their courses and respond to reforms. As introductory biology courses incorporate more physics and quantitative reasoning, student attitudes about the role of equations in biology become especially relevant. However, as documented in research in physics education, students' epistemologies are not always stable and fixed entities; they can be dynamic and context-dependent. In this paper, we examine an interview with an introductory student in which she discusses the use of equations in her reformed biology course. In one part of the interview, she expresses what sounds like an entrenched negative stance toward the role equations can play in understanding biology. However, later in the interview, when discussing a different biology topic, she takes a more positive stance toward the value of equations. These results highlight how a given student can have diverse ways of thinking about the value of bringing physics and math into biology. By highlighting how attitudes can shift in response to different tasks, instructional environments, and contextual cues, we emphasize the need to attend to these factors, rather than treating students' beliefs as fixed and stable.

  10. Climate Change Professional Development Approaches: Design Considerations, Teacher Enactment, and Student Learning

    Science.gov (United States)

    Drewes, A.; Henderson, J.; Mouza, C.

    2017-12-01

    Climate change is one of the most pressing challenges facing society, and climate change educational models are emerging in response. This study investigates the implementation and enactment of a climate change professional development model for science educators and its impact on student learning. Using an intrinsic case study methodology, we focused analytic attention on how one teacher made specific curricular, pedagogical, and content decisions, and the implications of those decisions for student's conceptual learning.The research presented here reports on the instructional design, pedagogical enactment, and subsequent effects on student learning of a climate change professional development (PD) model in the United States. Using anthropological theories of conceptual travel, we traced salient ideas from the PD through instructional delivery and into the evidence of student reasoning. We sought to address the following research questions: 1) How did a middle school teacher integrate climate change concepts into her science curriculum following PD participation? and 2) How did climate change instruction influence student understanding of key climate change constructs?From observation of the classroom instruction, we determined that the teacher effectively integrated new climate change information into her pre-existing schema. Additionally, through retrospective analysis of the PD, we found the design of the PD foregrounded the causes, mechanisms and likely effects of anthropogenic climate change at the expense of mitigation and adaptation strategies, and this differentially shaped how climate change was taught in the teacher's classroom. Analysis of student reasoning evidence showed that students gained an increased understanding of the enhanced greenhouse effect and the implications of human activity on this enhanced effect at statistically significant levels and with moderate effect sizes. However, students demonstrated a limited, though non-significant gain on

  11. A New Conceptual Model for Understanding International Students' College Needs

    Science.gov (United States)

    Alfattal, Eyad

    2016-01-01

    This study concerns the theory and practice of international marketing in higher education with the purpose of exploring a conceptual model for understanding international students' needs in the context of a four-year college in the United States. A transcendental phenomenological design was employed to investigate the essence of international…

  12. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    Science.gov (United States)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  13. Evaluation of the understanding of antibiotic resistance among Malaysian pharmacy students at public universities: An exploratory study

    Directory of Open Access Journals (Sweden)

    Kingston Rajiah

    2015-05-01

    Full Text Available Summary: Background: Infectious diseases are a great threat to humankind, and antibiotics are a viable proposition to numerous pathologies. However, antibiotic resistance is a global concern. Therefore, the aims of this survey were to explore the understanding and attitudes of pharmacy students regarding antibiotic use and resistance. Methods: This is a cross-sectional study conducted on final-year undergraduate pharmacy students from 5 public universities. A validated, self-administered questionnaire written in English was used to collect data. It was made up of six domains and forty-five questions. Raosoft software was used to determine the minimum required sample size. Descriptive and inferential data analyses were carried out using SPSS version 20 software. Results: Out of 346 students, only 59.5% showed a strong understanding of antibiotic usage, while 84.4% of students demonstrated a good level of understanding regarding the issue of antibiotic resistance. However, only 34.1% of students demonstrated a positive attitude toward this issue. Conclusion: This survey reveals that final-year pharmacy students at Malaysian public universities have a relatively good understanding of antibiotic resistance. However, their attitudes did not strongly correlate to their knowledge. Keywords: Antibiotic resistance, Pharmacy students, Malaysian public universities

  14. Learning algebra on screen and on paper: The effect of using a digital tool on students' understanding

    Science.gov (United States)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2016-02-01

    The use of digital tools in algebra education is expected to not only contribute to master skill, but also to acquire conceptual understanding. The question is how digital tools affect students" thinking and understanding. This paper presents an analysis of data of one group of three grade seventh students (12-13 year-old) on the use of a digital tool for algebra, the Cover-up applet for solving equations in particular. This case study was part of a larger teaching experiment on initial algebra enriched with digital technology which aimed to improve students" conceptual understanding and skills in solving equations in one variable. The qualitative analysis of a video observation, digital and written work showed that the use of the applet affects student thinking in terms of strategies used by students while dealing with the equations. We conclude that the effects of the use of the digital tool can be traced from student problem solving strategies on paper-and-pencil environment which are similar to strategies while working with the digital tool. In future research, we recommend to use specific theoretical lenses, such as the theory of instrumental genesis and the onto-semiotic approach, to reveal more explicit relationships between students" conceptual understanding and the use of a digital tool.

  15. Helping Students Understand Intersectionality: Reflections from a Dialogue Project in Residential Life

    Science.gov (United States)

    Claros, Sharon Chia; Garcia, Gina A.; Johnston-Guerrero, Marc P.; Mata, Christine

    2017-01-01

    In this chapter, the authors share insights from a dialogue project focused on intersectionality within a residential life setting and discuss additional strategies for helping students understand intersectionality.

  16. The Effect of Computer Models as Formative Assessment on Student Understanding of the Nature of Models

    Science.gov (United States)

    Park, Mihwa; Liu, Xiufeng; Smith, Erica; Waight, Noemi

    2017-01-01

    This study reports the effect of computer models as formative assessment on high school students' understanding of the nature of models. Nine high school teachers integrated computer models and associated formative assessments into their yearlong high school chemistry course. A pre-test and post-test of students' understanding of the nature of…

  17. Using Two-Tier Test to Identify Primary Students' Conceptual Understanding and Alternative Conceptions in Acid Base

    Science.gov (United States)

    Bayrak, Beyza Karadeniz

    2013-01-01

    The purpose of this study was to identify primary students' conceptual understanding and alternative conceptions in acid-base. For this reason, a 15 items two-tier multiple choice test administered 56 eighth grade students in spring semester 2009-2010. Data for this study were collected using a conceptual understanding scale prepared to include…

  18. A Mixed Methods Analysis of Students' Understanding of Slope and Derivative Concepts and Students' Mathematical Dispositions

    Science.gov (United States)

    Patel, Rita Manubhai

    2013-01-01

    This dissertation examined understanding of slope and derivative concepts and mathematical dispositions of first-semester college calculus students, who are recent high school graduates, transitioning to university mathematics. The present investigation extends existing research in the following ways. First, based on this investigation, the…

  19. Teaching structure: student use of software tools for understanding macromolecular structure in an undergraduate biochemistry course.

    Science.gov (United States)

    Jaswal, Sheila S; O'Hara, Patricia B; Williamson, Patrick L; Springer, Amy L

    2013-01-01

    Because understanding the structure of biological macromolecules is critical to understanding their function, students of biochemistry should become familiar not only with viewing, but also with generating and manipulating structural representations. We report a strategy from a one-semester undergraduate biochemistry course to integrate use of structural representation tools into both laboratory and homework activities. First, early in the course we introduce the use of readily available open-source software for visualizing protein structure, coincident with modules on amino acid and peptide bond properties. Second, we use these same software tools in lectures and incorporate images and other structure representations in homework tasks. Third, we require a capstone project in which teams of students examine a protein-nucleic acid complex and then use the software tools to illustrate for their classmates the salient features of the structure, relating how the structure helps explain biological function. To ensure engagement with a range of software and database features, we generated a detailed template file that can be used to explore any structure, and that guides students through specific applications of many of the software tools. In presentations, students demonstrate that they are successfully interpreting structural information, and using representations to illustrate particular points relevant to function. Thus, over the semester students integrate information about structural features of biological macromolecules into the larger discussion of the chemical basis of function. Together these assignments provide an accessible introduction to structural representation tools, allowing students to add these methods to their biochemical toolboxes early in their scientific development. © 2013 by The International Union of Biochemistry and Molecular Biology.

  20. Multiple intelligences and alternative teaching strategies: The effects on student academic achievement, conceptual understanding, and attitude

    Science.gov (United States)

    Baragona, Michelle

    The purpose of this study was to investigate the interactions between multiple intelligence strengths and alternative teaching methods on student academic achievement, conceptual understanding and attitudes. The design was a quasi-experimental study, in which students enrolled in Principles of Anatomy and Physiology, a developmental biology course, received lecture only, problem-based learning with lecture, or peer teaching with lecture. These students completed the Multiple Intelligence Inventory to determine their intelligence strengths, the Students' Motivation Toward Science Learning questionnaire to determine student attitudes towards learning in science, multiple choice tests to determine academic achievement, and open-ended questions to determine conceptual understanding. Effects of intelligence types and teaching methods on academic achievement and conceptual understanding were determined statistically by repeated measures ANOVAs. No significance occurred in academic achievement scores due to lab group or due to teaching method used; however, significant interactions between group and teaching method did occur in students with strengths in logical-mathematical, interpersonal, kinesthetic, and intrapersonal intelligences. Post-hoc analysis using Tukey HSD tests revealed students with strengths in logical-mathematical intelligence and enrolled in Group Three scored significantly higher when taught by problem-based learning (PBL) as compared to peer teaching (PT). No significance occurred in conceptual understanding scores due to lab group or due to teaching method used; however, significant interactions between group and teaching method did occur in students with strengths in musical, kinesthetic, intrapersonal, and spatial intelligences. Post-hoc analysis using Tukey HSD tests revealed students with strengths in logical-mathematical intelligence and enrolled in Group Three scored significantly higher when taught by lecture as compared to PBL. Students with

  1. Toward High School Biology: Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better foundation, we used research-based design principles and collaborated in the development of a curricular intervention that applies chemistry ideas to living and nonliving contexts. Six eighth grade teachers and their students participated in a test of the unit during the Spring of 2013. Two of the teachers had used an earlier version of the unit the previous spring. The other four teachers were randomly assigned either to implement the unit or to continue teaching the same content using existing materials. Pre- and posttests were administered, and the data were analyzed using Rasch modeling and hierarchical linear modeling. The results showed that, when controlling for pretest score, gender, language, and ethnicity, students who used the curricular intervention performed better on the posttest than the students using existing materials. Additionally, students who participated in the intervention held fewer misconceptions. These results demonstrate the unit’s promise in improving students’ understanding of the targeted ideas. PMID:27909024

  2. Modification of a School Programme in the Deutsches Museum to Enhance Students' Attitudes and Understanding

    Science.gov (United States)

    Stavrova, Olga; Urhahne, Detlef

    2010-11-01

    The study examines the nature, conditions, and outcomes of student learning from an organised guided tour in the Deutsches Museum in Munich. The instructional methods that best support students' cognitive and affective learning as well as how students' motivational and emotional states influence their achievement were investigated. A sample of 96 secondary school students took part in two different versions of a guided tour on an energy topic. The tours varied in the degree of support of students' active involvement, group work, and the variety of general activities offered during the tour. The data collected indicate that both tour versions led to an increase in student understanding of the visit topic to nearly the same extent. However, the version stimulating students' active participation, group work, and including a larger variety of activities aroused more positive attitudes. Students of the modified school programme showed higher interest and intrinsic motivation, felt more competent, and were less bored after the guided tour. In addition, the results suggest that students' visit-related emotional states predict the degree of their post-visit topic understanding, even when demographics and prior knowledge are taken into consideration.

  3. Reconsidering Asian American Student Development

    Science.gov (United States)

    Kodama, Corinne M.; Maramba, Dina C.

    2017-01-01

    This chapter addresses the applicability of student development theories in light of empirical research on Asian American college students through a twofold approach: (a) revisiting the relevance of Kodama, McEwen, Liang, and Lee's (2001, 2002) theoretical work on Asian American student development; and (b) using Jones' and Stewart's (2016)…

  4. Development of Trivia Game for speech understanding in background noise.

    Science.gov (United States)

    Schwartz, Kathryn; Ringleb, Stacie I; Sandberg, Hilary; Raymer, Anastasia; Watson, Ginger S

    2015-01-01

    Listening in noise is an everyday activity and poses a challenge for many people. To improve the ability to understand speech in noise, a computerized auditory rehabilitation game was developed. In Trivia Game players are challenged to answer trivia questions spoken aloud. As players progress through the game, the level of background noise increases. A study using Trivia Game was conducted as a proof-of-concept investigation in healthy participants. College students with normal hearing were randomly assigned to a control (n = 13) or a treatment (n = 14) group. Treatment participants played Trivia Game 12 times over a 4-week period. All participants completed objective (auditory-only and audiovisual formats) and subjective listening in noise measures at baseline and 4 weeks later. There were no statistical differences between the groups at baseline. At post-test, the treatment group significantly improved their overall speech understanding in noise in the audiovisual condition and reported significant benefits in their functional listening abilities. Playing Trivia Game improved speech understanding in noise in healthy listeners. Significant findings for the audiovisual condition suggest that participants improved face-reading abilities. Trivia Game may be a platform for investigating changes in speech understanding in individuals with sensory, linguistic and cognitive impairments.

  5. Understanding Why Students Participate in Multiple Surveys: Who are the Hard-Core Responders?

    Science.gov (United States)

    Porter, Stephen R.; Whitcomb, Michael E.

    2004-01-01

    What causes a student to participate in a survey? This paper looks at survey response across multiple surveys to understand who the hard-core survey responders and non-responders are. Students at a selective liberal arts college were administered four different surveys throughout the 2002-2003 academic year, and we use the number of surveys…

  6. Western Australian High School Students' Understandings about the Socioscientific Issue of Climate Change

    Science.gov (United States)

    Dawson, Vaille

    2015-01-01

    Climate change is one of the most significant science issues facing humanity; yet, teaching students about climate change is challenging: not only is it multidisciplinary, but also it is contentious and debated in political, social and media forums. Students need to be equipped with an understanding of climate change science to be able to…

  7. What's in a Domain: Understanding How Students Approach Questioning in History and Science

    Science.gov (United States)

    Portnoy, Lindsay Blau

    2013-01-01

    During their education, students are presented with information across a variety of academic domains. How students ask questions as they learn has implications for understanding, retention, and problem solving. The current research investigates the influence of age and prior knowledge on the ways students approach questioning across history and…

  8. Motivation Cards to Support Students’ Understanding on Fraction Division

    Directory of Open Access Journals (Sweden)

    Kamirsyah Wahyu

    2017-02-01

    Full Text Available This design research aims to develop a learning activity which supports the fifth-grade students to understand measurement fraction division problems (A whole number divided by a fraction that result in a whole number answer conceptually. Furthermore, how students solve the fraction division problem using models is also analyzed.  Data for the retrospective analysis is collected through two teaching experiments in the form of students’ work, field notes, and some part of classroom discussions. The important findings in this research are: 1 the developed learning activity namely Motivation Cards support students understand that  3 divided by one-half means how many one-half are in 3 through models. However, when the divisor is not a unit fraction they could not directly relate the unshaded part in area model for example. 2 area model is proper model to be firstly introduced when the students work on fraction division. 3 understanding this kind of fraction division help students understand other measurement fraction division where both divisor and dividend are fractions. 4 the learning activity supports the development of character values for students.    

  9. The relationship between nature of science understandings and science self-efficacy beliefs of sixth grade students

    Science.gov (United States)

    Parker, Elisabeth Allyn

    Bandura (1986) posited that self-efficacy beliefs help determine what individuals do with the knowledge and skills they have and are critical determinants of how well skill and knowledge are acquired. Research has correlated self-efficacy beliefs with academic success and subject interest (Pajares, Britner, & Valiante, 2000). Similar studies report a decreasing interest by students in school science beginning in middle school claiming that they don't enjoy science because the classes are boring and irrelevant to their lives (Basu & Barton, 2007). The hypothesis put forth by researchers is that students need to observe models of how science is done, the nature of science (NOS), so that they connect with the human enterprise of science and thereby raise their self-efficacy (Britner, 2008). This study examined NOS understandings and science self-efficacy of students enrolled in a sixth grade earth science class taught with explicit NOS instruction. The research questions that guided this study were (a) how do students' self-efficacy beliefs change as compared with changes in their nature of science understandings?; and (b) how do changes in students' science self-efficacy beliefs vary with gender and ethnicity segregation? A mixed method design was employed following an embedded experimental model (Creswell & Plano Clark, 2007). As the treatment, five NOS aspects were first taught by the teachers using nonintegrated activities followed by integrated instructional approach (Khishfe, 2008). Students' views of NOS using the Views on Nature of Science (VNOS) (Lederman, Abd-El-Khalick, & Schwartz, 2002) along with their self-efficacy beliefs using three Likert-type science self-efficacy scales (Britner, 2002) were gathered. Changes in NOS understandings were determined by categorizing student responses and then comparing pre- and post-instructional understandings. To determine changes in participants' self-efficacy beliefs as measured by the three subscales, a multivariate

  10. An Experiment of Student Understanding of Accruals versus Cash Flows

    Science.gov (United States)

    Miranda-Lopez, Jose Eduardo; Nichols, Linda M.

    2007-01-01

    The concepts of both accrual accounting and cash basis accounting need to be thoroughly understood by accounting graduates as they enter the workplace. In making decisions, both managers and investors often may need to make adjustments from one basis to the other. But do students really understand these concepts? This study uses an experimental…

  11. The influence of teachers' conceptions on their students' learning: children's understanding of sheet music.

    Science.gov (United States)

    López-Íñiguez, Guadalupe; Pozo, Juan Ignacio

    2014-06-01

    Despite increasing interest in teachers' and students' conceptions of learning and teaching, and how they influence their practice, there are few studies testing the influence of teachers' conceptions on their students' learning. This study tests how teaching conception (TC; with a distinction between direct and constructive) influences students' representations regarding sheet music. Sixty students (8-12 years old) from music conservatories: 30 of them took lessons with teachers with a constructive TC and another 30 with teachers shown to have a direct TC. Children were given a musical comprehension task in which they were asked to select and rank the contents they needed to learn. These contents had different levels of processing and complexity: symbolic, analytical, and referential. Three factorial ANOVAs, two-one-way ANOVAs, and four 2 × 3 repeated-measures ANOVAs were used to analyse the effects of and the interaction between the independent variables TC and class, both for/on total cards selected, their ranking, and each sub-category (the three processing levels). ANOVAs on the selection and ranking of these contents showed that teachers' conceptions seem to mediate significantly in the way the students understand the music. Students from constructive teachers have more complex and deep understanding of music. They select more elements for learning scores than those from traditional teachers. Teaching conception also influences the way in which children rank those elements. No difference exists between the way 8- and 12-year-olds learn scores. Children's understanding of the scores is more complex than assumed in other studies. © 2013 The British Psychological Society.

  12. Multiple Problem-Solving Strategies Provide Insight into Students' Understanding of Open-Ended Linear Programming Problems

    Science.gov (United States)

    Sole, Marla A.

    2016-01-01

    Open-ended questions that can be solved using different strategies help students learn and integrate content, and provide teachers with greater insights into students' unique capabilities and levels of understanding. This article provides a problem that was modified to allow for multiple approaches. Students tended to employ high-powered, complex,…

  13. General Chemistry Students' Conceptual Understanding and Language Fluency: Acid-Base Neutralization and Conductometry

    Science.gov (United States)

    Nyachwaya, James M.

    2016-01-01

    The objective of this study was to examine college general chemistry students' conceptual understanding and language fluency in the context of the topic of acids and bases. 115 students worked in groups of 2-4 to complete an activity on conductometry, where they were given a scenario in which a titration of sodium hydroxide solution and dilute…

  14. The implementation of case study with module-assisted to improve students' understanding on phytochemistry course

    Science.gov (United States)

    Julianto, Tatang Shabur; Fitriastuti, Dhina; Diniaty, Artina; Fauzi'ah, Lina; Arlianty, Widinda Normalia; Febriana, Beta Wulan; Muhaimin

    2017-12-01

    Phytochemistry is one of the course in Chemistry Department's curriculum which discusses about biosynthetic path of secondary metabolite compound in a plant, classification of secondary metabolite compound, isolation technique, and identification analysis. This course is expected to be able to bridge the generations of a nation that has expertise in managing the natural resources of Indonesian plants. In this research, it was evaluated the implementation of case study learning method towards students' understanding on phytochemistry course. The learning processes were conducted in 2 cycles i.e. before and after midterm. The first seven themes of materials before midterm were learned with case study method and the next seven themes of materials were studied with the same method with the module-assisted. The results showed that there was enhancement of students' understanding in class D that were obtained from comparison of midterm and final test. Contrarily, the students of class C have no significant enhancement. In addition, it was predicted that understanding enhancement was strongly influenced by the life skills and the motivation of students especially the academic skills aspect.

  15. Understanding student use of differentials in physics integration problems

    Directory of Open Access Journals (Sweden)

    Dehui Hu

    2013-07-01

    Full Text Available This study focuses on students’ use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., dr, dq. In this paper we aim to explore students’ reasoning about the differential concept in physics problems. We conducted group teaching or learning interviews with 13 engineering students enrolled in a second-semester calculus-based physics course. We amalgamated two frameworks—the resources framework and the conceptual metaphor framework—to analyze students’ reasoning about differential concept. Categorizing the mathematical resources involved in students’ mathematical thinking in physics provides us deeper insights into how students use mathematics in physics. Identifying the conceptual metaphors in students’ discourse illustrates the role of concrete experiential notions in students’ construction of mathematical reasoning. These two frameworks serve different purposes, and we illustrate how they can be pieced together to provide a better understanding of students’ mathematical thinking in physics.

  16. Improving tobacco-free advocacy on college campuses: a novel strategy to aid in the understanding of student perceptions about policy proposals.

    Science.gov (United States)

    Niemeier, Brandi S; Chapp, Christopher B; Henley, Whitney B

    2014-01-01

    Tobacco-control policy proposals are usually met with opposition on college campuses. Research to understand students' viewpoints about health-related policy proposals and messaging strategies, however, does not exist. This study investigated students' perceptions about a smoke-free policy proposal to help understand their positions of support and opposition and to inform the development of effective messaging strategies. In January 2012, 1,266 undergraduate students from a midwestern university completed an online questionnaire about smoke-free campus policies. Responses were coded and analyzed using Linguistic Inquiry and Word Count software and chi-square, independent-samples t tests, and binary logistic models. Most students who supported a smoke-free policy considered environmental or aesthetic conditions, whereas most opponents used personal freedom frames of thought. Supporters viewed smoking policies in personal terms, and opponents suggested means-ends policy reasoning. Taken together, points of reference and emotions about proposed policies provided insight about participants' perspectives to help inform effective policy advocacy efforts.

  17. The effects of academic literacy instruction on engagement and conceptual understanding of biology of ninth-grade students

    Science.gov (United States)

    Larson, Susan C.

    Academic language, discourse, vocabulary, motivation, and comprehension of complex texts and concepts are keys to learning subject-area content. The need for a disciplinary literacy approach in high school classrooms accelerates as students become increasing disengaged in school and as content complexity increases. In the present quasi-experimental mixed-method study, a ninth-grade biology unit was designed with an emphasis on promoting academic literacy skills, discourse, meaningful constructivist learning, interest development, and positive learning experiences in order to learn science content. Quantitative and qualitative analyses on a variety of measures completed by 222 students in two high schools revealed that those who received academic literacy instruction in science class performed at significantly higher levels of conceptual understanding of biology content, academic language and vocabulary use, reasoned thought, engagement, and quality of learning experience than control-group students receiving traditionally-organized instruction. Academic literacy was embedded into biology instruction to engage students in meaning-making discourses of science to promote learning. Academic literacy activities were organized according the phases of interest development to trigger and sustain interest and goal-oriented engagement throughout the unit. Specific methods included the Generative Vocabulary Matrix (GVM), scenario-based writing, and involvement in a variety of strategically-placed discourse activities to sustain or "boost" engagement for learning. Traditional instruction for the control group included teacher lecture, whole-group discussion, a conceptual organizer, and textbook reading. Theoretical foundations include flow theory, sociocultural learning theory, and interest theory. Qualitative data were obtained from field notes and participants' journals. Quantitative survey data were collected and analyzed using the Experience Sampling Method (ESM) to

  18. Effect of Collaborative Learning in Interactive Lecture Demonstrations (ILD on Student Conceptual Understanding of Motion Graphs

    Directory of Open Access Journals (Sweden)

    Erees Queen B. Macabebe

    2017-04-01

    Full Text Available To assess effectively the influence of peer discussion in understandingconcepts, and to evaluate if the conceptual understanding through Interactive Lecture Demonstrations (ILD and collaborative learning can be translated to actual situations, ten (10 questions on human and carts in motion were presented to 151 university students comprising mostly of science majors but of different year levels. Individual and group predictions were conducted to assess the students’ pre-conceptual understanding of motion graphs. During the ILD, real-time motion graphs were obtained and analysed after each demonstration and an assessment that integrates the ten situations into two scenarios was given to evaluate the conceptual understanding of the students. Collaborative learning produced a positive effect on the prediction scores of the students and the ILD with real-time measurement allowed the students to validate their prediction. However, when the given situations were incorporated to create a scenario, it posted a challenge to the students. The results of this activity identified the area where additional instruction and emphasis is necessary.

  19. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    interests of non-mainstream students and urban students whose representation in this study was limited; (b) investigation of topics where students expressed low interests topics; and (c) development and design of authentic communities of practice in the science classroom.

  20. Development of a systematic career coaching program for medical students

    Science.gov (United States)

    2018-01-01

    Purpose This study aimed to develop a systematic career-coaching program (SCCP) that can be used by medical teaching schools to address a growing need for career-coaching. The program objectives were to help students (1) develop a comprehensive self-understanding of their aptitudes, interests, and personality traits; (2) explore possible career choices and decide on a career path; and (3) develop the competencies needed to prepare for their future careers. Methods The SCCP was based on the ADDIE (analysis, design, development, implementation, and evaluation) model and decision-making questioning model. Medical professionals, medical education and career counseling experts, and students participated in designing the program. Results The SCCP describes coaching content, tools, operational methods, and appropriate timing, and identifies the professionals and specialists who can offer their expertise in the different coaching phases. It is designed to allow medical schools to offer the program in segments or in its entirety, depending on the curriculum and environment. Conclusion The SCCP represents a viable career-coaching program for medical students that can be applied in part or in its entirety, depending on a medical school’s curriculum and educational environment. PMID:29510607

  1. Development of a systematic career coaching program for medical students

    Directory of Open Access Journals (Sweden)

    Yera Hur

    2018-03-01

    Full Text Available Purpose This study aimed to develop a systematic career-coaching program (SCCP that can be used by medical teaching schools to address a growing need for career-coaching. The program objectives were to help students (1 develop a comprehensive self-understanding of their aptitudes, interests, and personality traits; (2 explore possible career choices and decide on a career path; and (3 develop the competencies needed to prepare for their future careers. Methods The SCCP was based on the ADDIE (analysis, design, development, implementation, and evaluation model and decision-making questioning model. Medical professionals, medical education and career counseling experts, and students participated in designing the program. Results The SCCP describes coaching content, tools, operational methods, and appropriate timing, and identifies the professionals and specialists who can offer their expertise in the different coaching phases. It is designed to allow medical schools to offer the program in segments or in its entirety, depending on the curriculum and environment. Conclusion The SCCP represents a viable career-coaching program for medical students that can be applied in part or in its entirety, depending on a medical school’s curriculum and educational environment.

  2. Development of a systematic career coaching program for medical students.

    Science.gov (United States)

    Hur, Yera; Cho, A Ra; Kwon, Mihye

    2018-03-01

    This study aimed to develop a systematic career-coaching program (SCCP) that can be used by medical teaching schools to address a growing need for career-coaching. The program objectives were to help students (1) develop a comprehensive self-understanding of their aptitudes, interests, and personality traits; (2) explore possible career choices and decide on a career path; and (3) develop the competencies needed to prepare for their future careers. The SCCP was based on the ADDIE (analysis, design, development, implementation, and evaluation) model and decision-making questioning model. Medical professionals, medical education and career counseling experts, and students participated in designing the program. The SCCP describes coaching content, tools, operational methods, and appropriate timing, and identifies the professionals and specialists who can offer their expertise in the different coaching phases. It is designed to allow medical schools to offer the program in segments or in its entirety, depending on the curriculum and environment. The SCCP represents a viable career-coaching program for medical students that can be applied in part or in its entirety, depending on a medical school's curriculum and educational environment.

  3. Forming and actualization of cognitive motives as means for development of students' analytical thinking.

    Directory of Open Access Journals (Sweden)

    Shevchenko Svetlana Nikolaevna

    2011-10-01

    Full Text Available Considered different approaches to understanding the concepts of motivation and motive. Species analyzed motives of educational activity. Established that cognitive motives are most effective for the development of analytical thinking of students. The study used data from test 1-4 grade students. An interconnection between the level of academic achievement and student motivation level of its training. Isolated areas of forming and maintaining cognitive motives of students in the learning process. It is established that the formation and activation of the cognitive motivation of students affected: the content of educational material, organizing training activities, style of teaching. Each component provides the motivational aspect of students to study.

  4. "Touching Triton": Building Student Understanding of Complex Disease Risk.

    Science.gov (United States)

    Loftin, Madelene; East, Kelly; Hott, Adam; Lamb, Neil

    2016-01-01

    Life science classrooms often emphasize the exception to the rule when it comes to teaching genetics, focusing heavily on rare single-gene and Mendelian traits. By contrast, the vast majority of human traits and diseases are caused by more complicated interactions between genetic and environmental factors. Research indicates that students have a deterministic view of genetics, generalize Mendelian inheritance patterns to all traits, and have unrealistic expectations of genetic technologies. The challenge lies in how to help students analyze complex disease risk with a lack of curriculum materials. Providing open access to both content resources and an engaging storyline can be achieved using a "serious game" model. "Touching Triton" was developed as a serious game in which students are asked to analyze data from a medical record, family history, and genomic report in order to develop an overall lifetime risk estimate of six common, complex diseases. Evaluation of student performance shows significant learning gains in key content areas along with a high level of engagement.

  5. Scaffolded Instruction Improves Student Understanding of the Scientific Method & Experimental Design

    Science.gov (United States)

    D'Costa, Allison R.; Schlueter, Mark A.

    2013-01-01

    Implementation of a guided-inquiry lab in introductory biology classes, along with scaffolded instruction, improved students' understanding of the scientific method, their ability to design an experiment, and their identification of experimental variables. Pre- and postassessments from experimental versus control sections over three semesters…

  6. Assessing Students' Disciplinary and Interdisciplinary Understanding of Global Carbon Cycling

    Science.gov (United States)

    You, Hye Sun; Marshall, Jill A.; Delgado, Cesar

    2018-01-01

    Global carbon cycling describes the movement of carbon through atmosphere, biosphere, geosphere, and hydrosphere; it lies at the heart of climate change and sustainability. To understand the global carbon cycle, students will require "interdisciplinary knowledge." While standards documents in science education have long promoted…

  7. Using a motivation-based instructional model for teacher development and students' learning of science

    Science.gov (United States)

    Bae, Min-Jung

    2009-10-01

    Science teachers often have difficulty helping students participate in scientific practices and understand scientific ideas. In addition, they do not frequently help students value their science learning. As one way to address these problems, I designed and examined the effects of professional development using a motivation-based instructional model with teachers and students. This motivation-based inquiry and application instructional model (MIAIM) consists of four steps of activities and identifies instructional and motivational functions that teachers can use to engage their students in scientific inquiry and application and to help them value their science learning. In order to conduct this study, I worked with three teachers (4 th, 8th, and 8th) in both suburban and urban environments. This study consisted of three parts-an initial observation of teachers' classrooms, professional development with MIAIM, and an observation of teachers' classrooms after the professional development. Data analysis of class observations, interviews, and class artifacts shows that there was a moderate change in teachers' teaching approach after the intervention. The three teachers designed and enacted some inquiry and application lessons that fit the intent of MIAIM. They also used some instructional and motivational practices more frequently after the intervention than they did before the intervention. In particular, they more frequently established central questions for investigations, helped students find patterns in data by themselves, provided opportunities for application, related science to students' everyday lives, and created students' interests in scientific investigation by using interesting stories. However, there was no substantial change in teachers' use of some practices such as providing explanations, supporting students' autonomy, and using knowledge about students in designing and enacting science lessons. In addition, data analysis of students' surveys, class

  8. Chinese college students' understanding of Internet ethical issues: A survey of awareness and attitude

    Institute of Scientific and Technical Information of China (English)

    Yuelin LI; Ying LI; Ang LI

    2014-01-01

    Purpose:This study examines Chinese college students' awareness of ethical issues surrounding the use of information resources and the Internet and their attitude to these issues.Design/methodology/approach:A survey was conducted.Two hundred questionnaires were distributed to students of 9 universities at different levels in Tianjin,China;171 were returned.Descriptive statistics were performed to analyze the data.Findings:The results indicate that Chinese college students usually ignored the negative influence of fake or pornographic or other indecent information,invasion of privacy and theft of confidential information,and violation of intellectual property rights.Although they could distinguish to some extent between ethical and unethical behavior,they were not concerned about others' unethical behavior on the Web.The study also indicates that gender,age,academic major and expertise in using computers were related to the students' awareness of ethical issues relating to the use of the Internet and their attitude to these issues.Research limitations:The sample is limited to the universities in Tianjin.A larger sample,which includes colleges and universities in the western or other developing areas in China,is needed to further validate our findings.Practical implications:The study helps educators and academic librarians better understand Chinese college students' awareness of and attitude to ethical issues surrounding the use of the Internet.It thus could assist them in the improvement of information ethics education for college students.Originality/value:This study was one of the first empirical studies to investigate the factors influencing Chinese college students' awareness of and attitude to Internet ethical issues.

  9. Revealing Conceptual Understanding of International Business

    Science.gov (United States)

    Ashley, Sue; Schaap, Harmen; de Bruijn, Elly

    2017-01-01

    This study aims to identify an adequate approach for revealing conceptual understanding in higher professional education. Revealing students' conceptual understanding is an important step towards developing effective curricula, assessment and aligned teaching strategies to enhance conceptual understanding in higher education. Essays and concept…

  10. Understanding the Impact of Using Oral Histories in the Classroom

    Science.gov (United States)

    Dutt-Doner, Karen M.; Allen, Susan; Campanaro, Kathryn

    2016-01-01

    Oral histories are a powerful pedagogical tool in developing historical understanding and important learning skills simultaneously. Teachers use firsthand accounts of historical time periods and/or events to help develop students' sense of history. In addition to gaining historical understanding, students are able to bring history alive by…

  11. Understanding student early departure from a Master of Public Health programme in South Africa

    Directory of Open Access Journals (Sweden)

    T Dlungwane

    2017-10-01

    Full Text Available Background. Student departure from university without completing a qualification is a major concern in higher education. Higher Education South Africa reported that in undergraduate studies, 35% of students depart after the first year and only 15% of students who enrol complete their degree within the minimum permissible time. At postgraduate level, the departure from Masters programmes in South Africa (SA ranged from 30% to 67% in 2010. Early departure refers to students who leave an academic programme within the first semester of commencing their studies. At one SA university, there were a total of 109 first-time Master of Public Health (MPH student registrations in 2013 and 2014. By the end of the first semester in the respective years, a total of 27 students actively deregistered from the programme and 11 students did not sit the first-semester examinations, representing an aggregate 35% rate of early departure. The factors associated with early departure at the University of KwaZulu-Natal are not well understood. Objective. To understand factors associated with early departure in the MPH programme at the University of KwaZulu-Natal. Method. A mixed-methods design was implemented. Students who departed within the first semester of commencing the MPH programme in 2013/2014 were followed up. Data were collected using self-administered questionnaires and in-depth interviews. Results. Failure to balance work and academic obligations with poor time management, stress and academic demands related to the programme, and insufficient academic progress were found to be associated with student early departure from the MPH programme. Conclusion. Student early departure from the MPH programme was influenced by multifaceted factors. Senior students can mentor new students as early as possible in their programme. The orientation block should include development activities such as time management, stress management and effective study skills to assist

  12. Computer model for the cardiovascular system: development of an e-learning tool for teaching of medical students.

    Science.gov (United States)

    Warriner, David Roy; Bayley, Martin; Shi, Yubing; Lawford, Patricia Victoria; Narracott, Andrew; Fenner, John

    2017-11-21

    This study combined themes in cardiovascular modelling, clinical cardiology and e-learning to create an on-line environment that would assist undergraduate medical students in understanding key physiological and pathophysiological processes in the cardiovascular system. An interactive on-line environment was developed incorporating a lumped-parameter mathematical model of the human cardiovascular system. The model outputs were used to characterise the progression of key disease processes and allowed students to classify disease severity with the aim of improving their understanding of abnormal physiology in a clinical context. Access to the on-line environment was offered to students at all stages of undergraduate training as an adjunct to routine lectures and tutorials in cardiac pathophysiology. Student feedback was collected on this novel on-line material in the course of routine audits of teaching delivery. Medical students, irrespective of their stage of undergraduate training, reported that they found the models and the environment interesting and a positive experience. After exposure to the environment, there was a statistically significant improvement in student performance on a series of 6 questions based on cardiovascular medicine, with a 33% and 22% increase in the number of questions answered correctly, p < 0.0001 and p < 0.001 respectively. Considerable improvement was found in students' knowledge and understanding during assessment after exposure to the e-learning environment. Opportunities exist for development of similar environments in other fields of medicine, refinement of the existing environment and further engagement with student cohorts. This work combines some exciting and developing fields in medical education, but routine adoption of these types of tool will be possible only with the engagement of all stake-holders, from educationalists, clinicians, modellers to, most importantly, medical students.

  13. The Effects of Swedish Knife Model on Students' Understanding of the Digestive System

    Science.gov (United States)

    Cerrah Ozsevgec, Lale; Artun, Huseyin; Unal, Melike

    2012-01-01

    This study was designed to examine the effect of Swedish Knife Model on students' understanding of digestive system. A simple experimental design (pretest-treatment-posttest) was used in the study and internal comparison of the results of the one group was made. The sample consisted of 40 7th grade Turkish students whose ages range from 13 to 15.…

  14. Genograms and Family Sculpting: An Aid to Cross-Cultural Understanding in the Training of Psychology Students in South Africa.

    Science.gov (United States)

    Marchetti-Mercer, Maria C.; Cleaver, Glenda

    2000-01-01

    Describes a specific training method developed in a family therapy course at the University of Pretoria in South Africa, where genograms and family sculpting were used to improve cross-cultural understanding among psychology masters students. Discusses the theoretical implications of the group training process for the training of psychologists in…

  15. The Effectiveness of the Brain Based Teaching Approach in Enhancing Scientific Understanding of Newtonian Physics among Form Four Students

    Science.gov (United States)

    Saleh, Salmiza

    2012-01-01

    The aim of this study was to assess the effectiveness of Brain Based Teaching Approach in enhancing students' scientific understanding of Newtonian Physics in the context of Form Four Physics instruction. The technique was implemented based on the Brain Based Learning Principles developed by Caine & Caine (1991, 2003). This brain compatible…

  16. Scaffolding Student Learning in the Discipline-Specific Knowledge through Contemporary Science Practices: Developing High-School Students' Epidemiologic Reasoning through Data Analysis

    Science.gov (United States)

    Oura, Hiroki

    Science is a disciplined practice about knowing puzzling observations and unknown phenomena. Scientific knowledge of the product is applied to develop technological artifacts and solve complex problems in society. Scientific practices are undeniably relevant to our economy, civic activity, and personal lives, and thus public education should help children acquire scientific knowledge and recognize the values in relation to their own lives and civil society. Likewise, developing scientific thinking skills is valuable not only for becoming a scientist, but also for becoming a citizen who is able to critically evaluate everyday information, select and apply only the trustworthy, and make wise judgments in their personal and cultural goals as well as for obtaining jobs that require complex problem solving and creative working in the current knowledge-based economy and rapid-changing world. To develop students' scientific thinking, science instruction should focus not only on scientific knowledge and inquiry processes, but also on its epistemological aspects including the forms of causal explanations and methodological choices along with epistemic aims and values under the social circumstances in focal practices. In this perspective, disciplinary knowledge involves heterogeneous elements including material, cognitive, social, and cultural ones and the formation differs across practices. Without developing such discipline-specific knowledge, students cannot enough deeply engage in scientific "practices" and understand the true values of scientific enterprises. In this interest, this dissertation explores instructional approaches to make student engagement in scientific investigations more authentic or disciplinary. The present dissertation work is comprised of three research questions as stand-alone studies written for separate publication. All of the studies discuss different theoretical aspects related to disciplinary engagement in epidemiologic inquiry and student

  17. Piaget for Chemists: Explaining What "Good" Students Cannot Understand

    Science.gov (United States)

    Herron, J. Dudley

    1975-01-01

    Attributes learning difficulties in introductory chemistry to the thesis that many students have not reached the formal operations level of intellectual development. Cites instances to support this thesis, outlines an instructional procedure to overcome the difficulty, and presents a list of competencies that can be expected of these students. (GS)

  18. Engagement and skill development in biology students through analysis of art.

    Science.gov (United States)

    Milkova, Liliana; Crossman, Colette; Wiles, Stephanie; Allen, Taylor

    2013-01-01

    An activity involving analysis of art in biology courses was designed with the goals of piquing undergraduates' curiosity, broadening the ways in which college students meaningfully engage with course content and concepts, and developing aspects of students' higher-level thinking skills, such as analysis, synthesis, and evaluation. To meet these learning outcomes, the activity had three key components: preparatory readings, first-hand visual analysis of art during a visit to an art museum, and communication of the analysis. Following a presentation on the methodology of visual analysis, students worked in small groups to examine through the disciplinary lens of biology a selection of approximately 12 original artworks related in some manner to love. The groups then developed and presented for class members a mini-exhibition of several pieces addressing one of two questions: 1) whether portrayals of love in art align with the growing understanding of the biology of love or 2) whether the bodily experience of love is universal or, alternatively, is culturally influenced, as is the experience of depression. Evaluation of quantitative and qualitative assessment data revealed that the assignment engaged students, supported development of higher-level thinking skills, and prompted meaningful engagement with course material.

  19. A Cost-Effective Physical Modeling Exercise to Develop Students' Understanding of Covalent Bonding

    Science.gov (United States)

    Turner, Kristy L.

    2016-01-01

    Chemical bonding is one of the basic concepts in chemistry, and the topic of covalent bonding forms an important core of knowledge for the high school chemistry student. For many teachers it is a challenging concept to teach, not least because it relies mainly on traditional instruction and written work. Similarly, many students find the topic…

  20. The Flipped Classroom and College Physics Students' Motivation and Understanding of Kinematics Graphs

    Science.gov (United States)

    Cagande, Jeffrey Lloyd L.; Jugar, Richard R.

    2018-01-01

    Reversing the traditional classroom activities, in the flipped classroom model students view lectures at home and perform activities during class period inside the classroom. This study investigated the effect of a flipped classroom implementation on college physics students' motivation and understanding of kinematics graphs. A Solomon four-group…

  1. India: A Land of Contrasts. How to Develop Pro-Active Action Student Awareness and Understanding about the Third World in South Asia.

    Science.gov (United States)

    Peters, Richard O.

    This document presents a critical thinking/decision-making model to help students in grades K-12 understand East Indian culture. It is divided into three sections. Section 1 provides background information about India from the 15th century BC to the present. It briefly discusses religion, independence, political organization, social institutions,…

  2. Analysis of the effect of specific vocabulary instruction on high school chemistry students' knowledge and understanding

    Science.gov (United States)

    Labrosse, Peggy

    The purpose of this study was to analyze the effects of specific vocabulary instruction on high school chemistry students' knowledge and understanding. Students might be able to formally recite a definition for a term without actually having understood the meaning of the term and its connection to other terms or to related concepts. Researchers (Cassels & Johnstone, 1983; Gabel, 1999; Johnstone, 1991) have been studying the difficulty students have in learning science, particularly chemistry. Gabel (1999) suggests that, "while research into misconceptions (also known as alternative conceptions) and problem-solving has dominated the field for the past 25 years, we are no closer to a solution that would improve the teaching and learning of chemistry" (P. 549). Gabel (1999) relates the difficulty in learning chemistry to use of language. She refers to student difficulty both with words that have more than one meaning in English and with words that are used to mean one idea in chemistry and another idea in every day language. The Frayer Model, a research-based teaching strategy, is a graphic organizer which students use to create meaningful definitions for terms in context (Frayer, Frederick, & Klausmeier, 1969). It was used as the treatment---the specific vocabulary instruction---in this research study. The researcher collected and analyzed data to answer three research questions that focused on the effect of using the Frayer model (a graphic organizer) on high school students' knowledge and understanding of academic language used in chemistry. The research took place in a New England high school. Four intact chemistry classes provided the student participants; two classes were assigned to the treatment group (TG) and two classes were assigned to the control group (CG). The TG received vocabulary instruction on 14 chosen terms using the Frayer Model. The CG received traditional vocabulary instruction with no special attention to the 14 terms selected for this study

  3. Student understanding of Taylor series expansions in statistical mechanics

    Directory of Open Access Journals (Sweden)

    Trevor I. Smith

    2013-08-01

    Full Text Available One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann factor using a Taylor series expansion of entropy. Using results from written surveys, classroom observations, and both individual think-aloud and teaching interviews, we present evidence that many students can recognize and interpret series expansions, but they often lack fluency in creating and using a Taylor series appropriately, despite previous exposures in both calculus and physics courses.

  4. Student understanding of Taylor series expansions in statistical mechanics

    Science.gov (United States)

    Smith, Trevor I.; Thompson, John R.; Mountcastle, Donald B.

    2013-12-01

    One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann factor using a Taylor series expansion of entropy. Using results from written surveys, classroom observations, and both individual think-aloud and teaching interviews, we present evidence that many students can recognize and interpret series expansions, but they often lack fluency in creating and using a Taylor series appropriately, despite previous exposures in both calculus and physics courses.

  5. [Understanding the meaning of leadership to the undergraduate nursing student: a phenomenological approach].

    Science.gov (United States)

    Guerra, Karina Juliana; Spiri, Wilza Carla

    2013-01-01

    This study aimed at understanding the meaning of leadership to undergraduate nursing students and the expectation related to their professional practice. Phenomenology was used as theoretical framework. Fifteen undergraduate nursing students were recruited as subjects and answered the following question: "What do you understand by leadership, and how can it be applied in your professional practice?" The topics which were revealed and analyzed, Leadership Styles and Leadership Exercise, enabled us to understand that the meaning attributed to leadership is unveiled as a dynamic process, and the style adopted is the form to lead a team; therefore, an ideal leadership style does not exist. In teaching, the leadership style began to be discussed when the participant forms of personnel management were approached. In leadership practice, the dissociation between leadership theory and practice is emphasized, pointing out that integration with practice is relevant for leadership learning.

  6. Principles of economics crucial to pharmacy students' understanding of the prescription drug market.

    Science.gov (United States)

    Rattinger, Gail B; Jain, Rahul; Ju, Jing; Mullins, C Daniel

    2008-06-15

    Many pharmacy schools have increased the amount of economics coursework to which pharmacy students are exposed in their prepharmacy and pharmacy curriculums. Students obtain competencies aimed at understanding the basic concepts of microeconomic theory, such as supply and demand. However, pharmacy students often have trouble applying these principles to real world pharmaceuticals or healthcare markets. Our objective is to make economics more relevant for pharmacy students. Specifically, we detail and provide pharmacy-relevant examples of the effects of monopoly power, barriers to marketplace entry, regulatory environment, third party insurance, information asymmetry and unanticipated changes in the marketplace on the supply and demand for pharmaceuticals and healthcare services.

  7. Principles of Economics Crucial to Pharmacy Students' Understanding of the Prescription Drug Market

    Science.gov (United States)

    Jain, Rahul; Ju, Jing; Mullins, C. Daniel

    2008-01-01

    Many pharmacy schools have increased the amount of economics coursework to which pharmacy students are exposed in their prepharmacy and pharmacy curriculums. Students obtain competencies aimed at understanding the basic concepts of microeconomic theory, such as supply and demand. However, pharmacy students often have trouble applying these principles to real world pharmaceuticals or healthcare markets. Our objective is to make economics more relevant for pharmacy students. Specifically, we detail and provide pharmacy-relevant examples of the effects of monopoly power, barriers to marketplace entry, regulatory environment, third party insurance, information asymmetry and unanticipated changes in the marketplace on the supply and demand for pharmaceuticals and healthcare services. PMID:18698403

  8. Measuring University students' understanding of the greenhouse effect - a comparison of multiple-choice, short answer and concept sketch assessment tools with respect to students' mental models

    Science.gov (United States)

    Gold, A. U.; Harris, S. E.

    2013-12-01

    The greenhouse effect comes up in most discussions about climate and is a key concept related to climate change. Existing studies have shown that students and adults alike lack a detailed understanding of this important concept or might hold misconceptions. We studied the effectiveness of different interventions on University-level students' understanding of the greenhouse effect. Introductory level science students were tested for their pre-knowledge of the greenhouse effect using validated multiple-choice questions, short answers and concept sketches. All students participated in a common lesson about the greenhouse effect and were then randomly assigned to one of two lab groups. One group explored an existing simulation about the greenhouse effect (PhET-lesson) and the other group worked with absorption spectra of different greenhouse gases (Data-lesson) to deepen the understanding of the greenhouse effect. All students completed the same assessment including multiple choice, short answers and concept sketches after participation in their lab lesson. 164 students completed all the assessments, 76 completed the PhET lesson and 77 completed the data lesson. 11 students missed the contrasting lesson. In this presentation we show the comparison between the multiple-choice questions, short answer questions and the concept sketches of students. We explore how well each of these assessment types represents student's knowledge. We also identify items that are indicators of the level of understanding of the greenhouse effect as measured in correspondence of student answers to an expert mental model and expert responses. Preliminary data analysis shows that student who produce concept sketch drawings that come close to expert drawings also choose correct multiple-choice answers. However, correct multiple-choice answers are not necessarily an indicator that a student produces an expert-like correlating concept sketch items. Multiple-choice questions that require detailed

  9. Active Learning Session Based on Didactical Engineering Framework for Conceptual Change in Students' Equilibrium and Stability Understanding

    Science.gov (United States)

    Canu, Michael; Duque, Mauricio; de Hosson, Cécile

    2017-01-01

    Engineering students on control courses lack a deep understanding of equilibrium and stability that are crucial concepts in this discipline. Several studies have shown that students find it difficult to understand simple familiar or academic static equilibrium cases as well as dynamic ones from mechanics even if they know the discipline's criteria…

  10. An international comparison of grade 6 students' understanding of the equal sign.

    Science.gov (United States)

    Capraro, Robert M; Capraro, Mary Margaret; Yetkiner, Z Ebrar; Ozel, Serkan; Kim, Hae Gyu; Küçük, Ali Riza

    2010-02-01

    This study extends the scope of international comparisons examining students' conceptions of the equal sign. Specifically, Korean (n = 193) and Turkish (n = 334) Grade 6 students were examined to assess whether their conceptions and responses were similar to prior findings published for Chinese and U.S. students and to hypothesize relationships about problem types and conceptual understanding of the equal sign. About 59.6% of the Korean participants correctly answered all items providing conceptually accurate solutions, as compared to 28.4% of the Turkish sample. Comparison with previous studies in China and the USA indicated that the Chinese sample outperformed those from other nations, followed by Korea, Turkey, and the USA. In large-scale international studies such as Trends in International Mathematics and Science (TIMSS) and the Programme for International Student Assessment (PISA), students from China and Korea have been among the high achievers.

  11. Piloting a Geoscience Literacy Exam for Assessing Students' Understanding of Earth, Climate, Atmospheric and Ocean Science Concepts

    Science.gov (United States)

    Steer, D. N.; Iverson, E. A.; Manduca, C. A.

    2013-12-01

    This research seeks to develop valid and reliable questions that faculty can use to assess geoscience literacy across the curriculum. We are particularly interested on effects of curricula developed to teach Earth, Climate, Atmospheric, and Ocean Science concepts in the context of societal issues across the disciplines. This effort is part of the InTeGrate project designed to create a population of college graduates who are poised to use geoscience knowledge in developing solutions to current and future environmental and resource challenges. Details concerning the project are found at http://serc.carleton.edu/integrate/index.html. The Geoscience Literacy Exam (GLE) under development presently includes 90 questions. Each big idea from each literacy document can be probed using one or more of three independent questions: 1) a single answer, multiple choice question aimed at basic understanding or application of key concepts, 2) a multiple correct answer, multiple choice question targeting the analyzing to analysis levels and 3) a short essay question that tests analysis or evaluation cognitive levels. We anticipate multiple-choice scores and the detail and sophistication of essay responses will increase as students engage with the curriculum. As part of the field testing of InTeGrate curricula, faculty collected student responses from classes that involved over 700 students. These responses included eight pre- and post-test multiple-choice questions that covered various concepts across the four literacies. Discrimination indices calculated from the data suggest that the eight tested questions provide a valid measure of literacy within the scope of the concepts covered. Student normalized gains across an academic term with limited InTeGrate exposure (typically two or fewer weeks of InTeGrate curriculum out of 14 weeks) were found to average 16% gain. A small set of control data (250 students in classes from one institution where no InTeGrate curricula were used) was

  12. How the First Year of College Influences Moral Reasoning Development for Students in Moral Consolidation and Moral Transition

    Science.gov (United States)

    Mayhew, Matthew J.; Seifert, Tricia A.; Pascarella, Ernest T.

    2012-01-01

    Understanding the developmental issues first-time college students face is critical for scholars and educators interested in learning and development. This purpose of this study was to investigate the differential impact of first-year college experiences on the moral reasoning development of 1,469 students in moral transition versus those in moral…

  13. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    Science.gov (United States)

    Varma, Keisha; Linn, Marcia C.

    2012-01-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  14. Integrated learning through student goal development.

    Science.gov (United States)

    Price, Deborah; Tschannen, Dana; Caylor, Shandra

    2013-09-01

    New strategies are emerging to promote structure and increase learning in the clinical setting. Nursing faculty designed a mechanism by which integrative learning and situated coaching could occur more readily in the clinical setting. The Clinical Goals Initiative was implemented for sophomore-, junior-, and senior-level students in their clinical practicums. Students developed weekly goals reflecting three domains of professional nursing practice. Goals were shared with faculty and staff nurse mentors at the beginning of the clinical day to help guide students and mentors with planning for learning experiences. After 6 weeks, faculty and students were surveyed to evaluate project effectiveness. Faculty indicated that goal development facilitated clinical learning by providing more student engagement, direction, and focus. Students reported that goal development allowed them to optimize clinical learning opportunities and track their growth and progress. Faculty and students indicated the goals promoted student self-learning, autonomy, and student communication with nurse mentors and faculty. Copyright 2013, SLACK Incorporated.

  15. Speech-language pathology students' self-reports on voice training: easier to understand or to do?

    Science.gov (United States)

    Lindhe, Christina; Hartelius, Lena

    2009-01-01

    The aim of the study was to describe the subjective ratings of the course 'Training of the student's own voice and speech', from a student-centred perspective. A questionnaire was completed after each of the six individual sessions. Six speech and language pathology (SLP) students rated how they perceived the practical exercises in terms of doing and understanding. The results showed that five of the six participants rated the exercises as significantly easier to understand than to do. The exercises were also rated as easier to do over time. Results are interpreted within in a theoretical framework of approaches to learning. The findings support the importance of both the physical and reflective aspects of the voice training process.

  16. Attempts for a Better Understanding of Entropy by the Students in CMU

    Directory of Open Access Journals (Sweden)

    Feiza Memet

    2015-07-01

    Full Text Available Regarding thermodynamics, the perception of students is that unlike the first law, the second law has not simple statements. Despite of this, the first two laws are related to each other and their combination shows the influence of entropy on energy. The understanding of the second law is the path to student knowledge related to the increase in entropy and the decrease of the capacity of energy to do useful work or energy. This paper describes an experiment carried out in Constanta Maritime University (CMU, with students enrolled in Electromechanics Faculty, in the second year of study, which reveals the need to enrich the traditional course of Thermodynamics, in order to increase the ability of students to deal with the second law and the concept of entropy.

  17. How Do Surgery Students Use Written Language to Say What They See? A Framework to Understand Medical Students' Written Evaluations of Their Teachers.

    Science.gov (United States)

    Lim, David W; White, Jonathan S

    2015-11-01

    There remains debate regarding the value of the written comments that medical students are traditionally asked to provide to evaluate the teaching they receive. The purpose of this study was to examine written teaching evaluations to understand how medical students conceptualize teachers' behaviors and performance. All written comments collected from medical students about teachers in the two surgery clerkships at the University of Alberta in 2009-2010 and 2010-2011 were collated and anonymized. A grounded theory approach was used for analysis, with iterative reading and open coding to identify recurring themes. A framework capturing variations observed in the data was generated until data saturation was achieved. Domains and subdomains were named using an in situ coding approach. The conceptual framework contained three main domains: "Physician as Teacher," "Physician as Person," and "Physician as Physician." Under "Physician as Teacher," students commented on specific acts of teaching and subjective perceptions of an educator's teaching values. Under the "Physician as Physician" domain, students commented on elements of their educator's physicianship, including communication and collaborative skills, medical expertise, professionalism, and role modeling. Under "Physician as Person," students commented on how both positive and negative personality traits impacted their learning. This framework describes how medical students perceive their teachers and how they use written language to attach meaning to the behaviors they observe. Such a framework can be used to help students provide more constructive feedback to teachers and to assist in faculty development efforts aimed at improving teaching performance.

  18. Understanding the Complex Processes in Developing Student Teachers' Knowledge about Grammar

    Science.gov (United States)

    Svalberg, Agneta M.-L.

    2015-01-01

    This article takes the view that grammar is driven by user choices and is therefore complex and dynamic. This has implications for the teaching of grammar in language teacher education and how teachers' cognitions about grammar, and hence their own grammar teaching, might change. In this small, interpretative study, the participants--students on…

  19. Approaching a Conceptual Understanding of Enzyme Kinetics and Inhibition: Development of an Active Learning Inquiry Activity for Prehealth and Nonscience Majors

    Science.gov (United States)

    House, Chloe; Meades, Glen; Linenberger, Kimberly J.

    2016-01-01

    Presented is a guided inquiry activity designed to be conducted with prenursing students using an analogous system to help develop a conceptual understanding of factors impacting enzyme kinetics and the various types of enzyme inhibition. Pre- and postconceptual understanding evaluations and effectiveness of implementation surveys were given to…

  20. Conceptions of Student Talent in the Context of Talent Development

    DEFF Research Database (Denmark)

    Rasmussen, Annette; Rasmussen, Palle

    2015-01-01

    discussion of school talent, the paper proposes a typology of talented students, encompassing the distinguished, the quiet, the versatile and the industrious students. For each type of talent, a student narrative illustrates the link between social backgrounds and student approaches and understandings...

  1. Students as Simulation Designers and Developers--Using Computer Simulations for Teaching Boundary Layer Processes.

    Science.gov (United States)

    Johnson, Tristan E.; Clayson, Carol Anne

    As technology developments seek to improve learning, researchers, developers, and educators seek to understand how technological properties impact performance. This paper delineates how a traditional science course is enhanced through the use of simulation projects directed by the students themselves as a means to increase their level of knowledge…

  2. Computer model for the cardiovascular system: development of an e-learning tool for teaching of medical students

    Directory of Open Access Journals (Sweden)

    David Roy Warriner

    2017-11-01

    Full Text Available Abstract Background This study combined themes in cardiovascular modelling, clinical cardiology and e-learning to create an on-line environment that would assist undergraduate medical students in understanding key physiological and pathophysiological processes in the cardiovascular system. Methods An interactive on-line environment was developed incorporating a lumped-parameter mathematical model of the human cardiovascular system. The model outputs were used to characterise the progression of key disease processes and allowed students to classify disease severity with the aim of improving their understanding of abnormal physiology in a clinical context. Access to the on-line environment was offered to students at all stages of undergraduate training as an adjunct to routine lectures and tutorials in cardiac pathophysiology. Student feedback was collected on this novel on-line material in the course of routine audits of teaching delivery. Results Medical students, irrespective of their stage of undergraduate training, reported that they found the models and the environment interesting and a positive experience. After exposure to the environment, there was a statistically significant improvement in student performance on a series of 6 questions based on cardiovascular medicine, with a 33% and 22% increase in the number of questions answered correctly, p < 0.0001 and p < 0.001 respectively. Conclusions Considerable improvement was found in students’ knowledge and understanding during assessment after exposure to the e-learning environment. Opportunities exist for development of similar environments in other fields of medicine, refinement of the existing environment and further engagement with student cohorts. This work combines some exciting and developing fields in medical education, but routine adoption of these types of tool will be possible only with the engagement of all stake-holders, from educationalists, clinicians, modellers to

  3. The Effect of a Conceptual Change Approach on Understanding of Students' Chemical Equilibrium Concepts

    Science.gov (United States)

    Atasoy, Basri; Akkus, Huseyin; Kadayifci, Hakki

    2009-01-01

    The purpose of this study was to compare the effects of a conceptual change approach over traditional instruction on tenth-grade students' conceptual achievement in understanding chemical equilibrium. The study was conducted in two classes of the same teacher with participation of a total of 44 tenth-grade students. In this study, a…

  4. The Effect of Various Media Scaffolding on Increasing Understanding of Students' Geometry Concepts

    Science.gov (United States)

    Sutiarso, Sugeng; Coesamin, M.; Nurhanurawati

    2018-01-01

    This study is a quasi-experimental research with pretest-posttest control group design, which aims to determine (1) the tendency of students in using various media scaffolding based on gender, and (2) effect of media scaffolding on increasing understanding of students' geometry concepts. Media scaffolding used this study is chart, props, and…

  5. An Interactive Modeling Lesson Increases Students' Understanding of Ploidy during Meiosis

    Science.gov (United States)

    Wright, L. Kate; Newman, Dina L.

    2011-01-01

    Chromosome structure is confusing to students at all levels, and chromosome behavior during meiosis is a notoriously difficult topic. Undergraduate biology majors are exposed to the process of meiosis numerous times during their presecondary and postsecondary education, yet understanding of key concepts, such as the point at which haploidy is…

  6. Do Students Really Understand Topology in the Lesson? A Case Study

    Science.gov (United States)

    Narli, Serkan

    2010-01-01

    This study aims to specify to what extent students understand topology during the lesson and to determine possible misconceptions. 14 teacher trainees registered at Secondary School Mathematics education department were observed in the topology lessons throughout a semester and data collected at the first topology lesson is presented here.…

  7. Students' Understanding of Equilibrium and Stability: The Case of Dynamic Systems

    Science.gov (United States)

    Canu, Michaël; de Hosson, Cécile; Duque, Mauricio

    2016-01-01

    Engineering students in control courses have been observed to lack an understanding of equilibrium and stability, both of which are crucial concepts in this discipline. The introduction of these concepts is generally based on the study of classical examples from Newtonian mechanics supplemented with a control system. Equilibrium and stability are…

  8. The Development and Impact of a Social Media and Professionalism Course for Medical Students.

    Science.gov (United States)

    Gomes, Alexandra W; Butera, Gisela; Chretien, Katherine C; Kind, Terry

    2017-01-01

    Inappropriate social media behavior can have detrimental effects on students' future opportunities, but medical students are given little opportunity to reflect upon ways of integrating their social media identities with their newly forming professional identities. In 2012, a required educational session was developed for 1st-year medical students on social media and professional identity. Objectives include identifying professionalism issues and recognizing positive social media use. The 2-hour large-group session uses student-generated social media examples to stimulate discussion and concludes with an expert panel. Students complete a postsession reflection assignment. The required social media session occurs early in the 1st year and is part of the Professionalism curriculum in The George Washington University School of Medicine. Reflection papers are graded for completion. The study began in 2012 and ran through 2014; a total of 313/505 participants (62%) volunteered for the study. Assessment occurred through qualitative analysis of students' reflection assignments. Most students (65%, 203/313) reported considering changes in their social media presence due to the session. The analysis revealed themes relating to a broader understanding of online identity and opportunities to enhance careers. In a 6-month follow-up survey of 76 students in the 2014 cohort who completed the entire survey, 73 (94%) reported some increase in awareness, and 48 (64%) made changes to their social media behavior due to the session (response rate = 76/165; 46%), reflecting the longer term impact. Opportunities for discussion and reflection are essential for transformational learning to occur, enabling understanding of other perspectives. Incorporating student-submitted social media examples heightened student interest and engagement. The social media environment is continually changing, so curricular approaches should remain adaptable to ensure timeliness and relevance. Including

  9. Assessing Freshman Engineering Students' Understanding of Ethical Behavior.

    Science.gov (United States)

    Henslee, Amber M; Murray, Susan L; Olbricht, Gayla R; Ludlow, Douglas K; Hays, Malcolm E; Nelson, Hannah M

    2017-02-01

    Academic dishonesty, including cheating and plagiarism, is on the rise in colleges, particularly among engineering students. While students decide to engage in these behaviors for many different reasons, academic integrity training can help improve their understanding of ethical decision making. The two studies outlined in this paper assess the effectiveness of an online module in increasing academic integrity among first semester engineering students. Study 1 tested the effectiveness of an academic honesty tutorial by using a between groups design with a Time 1- and Time 2-test. An academic honesty quiz assessed participants' knowledge at both time points. Study 2, which incorporated an improved version of the module and quiz, utilized a between groups design with three assessment time points. The additional Time 3-test allowed researchers to test for retention of information. Results were analyzed using ANCOVA and t tests. In Study 1, the experimental group exhibited significant improvement on the plagiarism items, but not the total score. However, at Time 2 there was no significant difference between groups after controlling for Time 1 scores. In Study 2, between- and within-group analyses suggest there was a significant improvement in total scores, but not plagiarism scores, after exposure to the tutorial. Overall, the academic integrity module impacted participants as evidenced by changes in total score and on specific plagiarism items. Although future implementation of the tutorial and quiz would benefit from modifications to reduce ceiling effects and improve assessment of knowledge, the results suggest such tutorial may be one valuable element in a systems approach to improving the academic integrity of engineering students.

  10. Using Student Work to Develop Teachers' Knowledge of Algebra

    Science.gov (United States)

    Herbel-Eisenmann, Beth A.; Phillips, Elizabeth Difanis

    2005-01-01

    This article describes a set of learning activities that use algebraic problems and written student work to help preservice and in-service teachers understand students' algebraic thinking. (Contains 4 figures.)

  11. The understanding of core pharmacological concepts among health care students in their final semester.

    Science.gov (United States)

    Aronsson, Patrik; Booth, Shirley; Hägg, Staffan; Kjellgren, Karin; Zetterqvist, Ann; Tobin, Gunnar; Reis, Margareta

    2015-12-29

    The overall aim of the study was to explore health care students´ understanding of core concepts in pharmacology. An interview study was conducted among twelve students in their final semester of the medical program (n = 4), the nursing program (n = 4), and the specialist nursing program in primary health care (n = 4) from two Swedish universities. The participants were individually presented with two pharmacological clinically relevant written patient cases, which they were to analyze and propose a solution to. Participants were allowed to use the Swedish national drug formulary. Immediately thereafter the students were interviewed about their assessments. The interviews were audio-recorded and transcribed verbatim. A thematic analysis was used to identify units of meaning in each interview. The units were organized into three clusters: pharmacodynamics, pharmacokinetics, and drug interactions. Subsequent procedure consisted of scoring the quality of students´ understanding of core concepts. Non-parametric statistics were employed. The study participants were in general able to define pharmacological concepts, but showed less ability to discuss the meaning of the concepts in depth and to implement these in a clinical context. The participants found it easier to grasp concepts related to pharmacodynamics than pharmacokinetics and drug interactions. These results indicate that education aiming to prepare future health care professionals for understanding of more complex pharmacological reasoning and decision-making needs to be more focused and effective.

  12. Programs and Practices: Students' Historical Understandings in International Baccalaureate, Advanced Placement and Regular World History Courses

    Science.gov (United States)

    Ryter, Di

    2015-01-01

    World history has become increasingly important and has often been a required course for high school students in the United States. This multi-case study provides examples and descriptions of students' demonstration of historical understandings. It also includes multiple perspectives and experiences of world history students and teachers, and…

  13. Developing Curriculum to Help Students Explore the Geosciences' Cultural Relevance

    Science.gov (United States)

    Miller, G.; Schoof, J. T.; Therrell, M. D.

    2011-12-01

    groups, a content test, an epistemology survey (with think-aloud interviews that also served for cognitive testing purposes), classroom observations, student work, and tracking of student navigation through the digital reader. Overall, the impact this curriculum had on students' affective and academic learning varied; however, the instructional supports we developed to temper challenge with instructional support appear to have had a positive impact on student learning. Analysis of data illustrates how these supports improved their comprehension of multiple, and sometimes conflicting sources. Student feedback from focus groups and interviews also indicate that using a social science lens to learn about concepts such as urban heat island was engaging. In terms of students' understanding of the nature of knowledge in the sciences, the epistemology survey and interview seem to indicate that students lack a complex understanding of continuity and change in scientific knowledge. Further, participants appeared to have many misconceptions about scientific inquiry. As a result, we are currently developing a similar curriculum for a lab-based geography course, GEOG104: Weather, Climate, and Society.

  14. A Nudge Is Best: Helping Students through the Perry Scheme of Intellectual Development.

    Science.gov (United States)

    Kloss, Robert J.

    1994-01-01

    This article discusses William G. Perry's model of intellectual development, which posits that college students move through four phases of understanding their relationship to knowledge: dualism (knowledge as received truth), multiplicity (knowledge as opinion), relativism (knowledge as relativistic), and commitment in relativism. Specific…

  15. Student Development and Developmental Studies.

    Science.gov (United States)

    Champaigne, John

    1982-01-01

    Reviews the nine-stage Perry Scheme of Intellectual and Ethical Development, detailing three major student orientations--dualism, multiplicity, and commitments in relativism. Suggests techniques developmental educators can use to communicate with, support, and challenge students to promote intellectual development. Underscores the importance of…

  16. Artificial Intelligence-Based Student Learning Evaluation: A Concept Map-Based Approach for Analyzing a Student's Understanding of a Topic

    Science.gov (United States)

    Jain, G. Panka; Gurupur, Varadraj P.; Schroeder, Jennifer L.; Faulkenberry, Eileen D.

    2014-01-01

    In this paper, we describe a tool coined as artificial intelligence-based student learning evaluation tool (AISLE). The main purpose of this tool is to improve the use of artificial intelligence techniques in evaluating a student's understanding of a particular topic of study using concept maps. Here, we calculate the probability distribution of…

  17. Improving Student Understanding of Qualitative and Quantitative Analysis via GC/MS Using a Rapid SPME-Based Method for Determination of Trihalomethanes in Drinking Water

    Science.gov (United States)

    Huang, Shu Rong; Palmer, Peter T.

    2017-01-01

    This paper describes a method for determination of trihalomethanes (THMs) in drinking water via solid-phase microextraction (SPME) GC/MS as a means to develop and improve student understanding of the use of GC/MS for qualitative and quantitative analysis. In the classroom, students are introduced to SPME, GC/MS instrumentation, and the use of MS…

  18. Problematizing a general physics class: Understanding student engagement

    Science.gov (United States)

    Spaid, Mark Randall

    This research paper describes the problems in democratizing a high school physics course and the disparate engagement students during class activities that promote scientific inquiry. Results from the Learning Orientation Questionnaire (Martinez, 2000) guide the participant observations and semi-formal interviews. Approximately 60% of the participants self-report a "resistant" or "conforming" approach to learning science; they expect to receive science knowledge from the teacher, and their engagement is influenced by affective and conative factors. These surface learners exhibit second order thinking (Kegan, 1994), do not understand abstract science concepts, and learn best from structured inquiry. To sustain engagement, conforming learners require motivational and instructional discourse from their teacher and peers. Resisting learners do not value learning and do not engage in most science class activities. The "performing" learners are able to deal with abstractions and can see relationships between lessons and activities, but they do not usually self-reflect or think critically (they are between Kegan's second order and third order thinking). They may select a deeper learning strategy if they value the knowledge for a future goal; however, they are oriented toward assessment and rely on the science teacher as an authority. They are influenced by affective and conative factors during structured and guided inquiry-based teaching, and benefit from motivational discourse and sustain engagement if they are interested in the topic. The transforming learners are more independent, self-assessing and self-directed. These students are third order thinkers (Kegan, 1994) who hold a sophisticated epistemology that includes critical thinking and reflection. These students select deep learning strategies without regard to affective and conative factors. They value instructional discourse from the teacher, but prefer less structured inquiry activities. Although specific

  19. The InVEST Volcanic Concept Survey: Exploring Student Understanding about Volcanoes

    Science.gov (United States)

    Parham, Thomas L., Jr.; Cervato, Cinzia; Gallus, William A., Jr.; Larsen, Michael; Hobbs, Jon; Stelling, Pete; Greenbowe, Thomas; Gupta, Tanya; Knox, John A.; Gill, Thomas E.

    2010-01-01

    Results from the Volcanic Concept Survey (VCS) indicated that many undergraduates do not fully understand volcanic systems and plate tectonics. During the 2006 academic year, a ten-item conceptual survey was distributed to undergraduate students enrolled in Earth science courses at five U.S. colleges and universities. A trained team of graders…

  20. The Impact of Friendship on the Leadership Identity Development of Lesbian, Gay, Bisexual, and Queer Students

    Science.gov (United States)

    Olive, James L.

    2015-01-01

    This qualitative study explores the past experiences of six post-secondary students who self-identified as Lesbian, Gay, Bisexual, and/or Queer (LGBQ) and held leadership roles in student organizations at one large public institution. The purpose of this exploration was to better understand the impact of friendship on the development of a…

  1. Dynamics of personal development on healthy students

    Directory of Open Access Journals (Sweden)

    I.E. Kramida

    2013-04-01

    Full Text Available The aim is to study the effectiveness of different physical training for the relatively healthy students. The study involved 1004 students. The directions of development of the students' positive personal qualities. Found that the positive development of personality of students observed mostly on the first and third year than in the second. Could not find significant differences between the growth estimates of development of personality traits of students in classes in the sample program and the program specializations. Found that the rate of development of students' personality traits minor: the average growth estimates for core positive personal qualities for 3 years does not exceed 10% of the maximum possible level. Recommended in the classroom more emphasis on developing positive personality traits. It is shown that special attention should be paid to the development of emotional stability of students and their tolerance towards other people.

  2. Contexts That Matter to the Leadership Development of Latino Male College Students: A Mixed Methods Perspective

    Science.gov (United States)

    Garcia, Gina A.; Huerta, Adrian H.; Ramirez, Jenesis J.; Patrón, Oscar E.

    2017-01-01

    As the number of Latino males entering college increases, there is a need to understand their unique leadership experiences. This study used a convergent parallel mixed methods design to understand what contexts contribute to Latino male undergraduate students' leadership development, capacity, and experiences. Quantitative data were gathered by…

  3. A "Light Bulb Moment" in Understanding Public Health for Undergraduate Students: Evaluation of the Experiential "This Is Public Health" Photo Essay Task.

    Science.gov (United States)

    Dundas, Kate Joanne; Hansen, Vibeke; Outram, Suzanne; James, Erica L

    2017-01-01

    A lack of understanding of the importance of public health both within the community and in the tertiary education setting is a significant impediment to improvement in population health. The international campaign "This is Public Health" (TIPH) has been promoted widely as a strategy to increase community awareness and attract and inspire the next generation of public health professionals. This paper describes and evaluates student perceptions of a TIPH photo essay and reflective task in order to explore the pedagogical and learning outcomes related to undergraduate students' public health knowledge. The aim of the analysis was to understand (1) if the task led to increased awareness of public health, and if so, the process of how an understanding of public health develops, and (2) how the interactive nature of the experiential TIPH task leads to depth of understanding. This study was undertaken at the University of Newcastle (UON), NSW, Australia. A qualitative study design using a descriptive case study methodology was employed. One-hundred and thirty-nine undergraduate students taking part in a semester-long, introductory public health course provided informed consent and completed a TIPH photo essay and reflective task as a compulsory assessment. Analysis of the student reflections was performed using a general inductive approach to qualitative thematic analysis. Analysis of the reflections indicated that completion of the photo essay and reflective task revealed two strong thematic clusters each with a number of subthemes. The most important findings were the six strong data clusters around students' new and deeper understanding of Public Health. Additionally, four separate data clusters around the pedagogy of the task were revealed. The task also impacted beyond knowledge improvement and academic performance. Students alluded to an increased appreciation of their own health, a new recognition of the importance of preventative health measures, and an improved

  4. Developing student awareness:

    DEFF Research Database (Denmark)

    Bagger, Bettan; Taylor Kelly, Hélène; Hørdam, Britta

    Danish academic regulations emphasize a dynamic theory- practice relation in the nursing education. The nursing program is based upon the close collaboration and development of the scholastic and clinical spheres. Attempts to improve patient safety emphasize the critical role that the systematic...... reporting of clinical errors can play. This is not only a national but also an international priority as millions of patients worldwide suffer injury or death due to unsafe care. A project in co-operation with clinical practice and University College Sealand’s research and development department attempts...... to optimize the theory-practice connection while developing students’ competencies with respect to the reporting of clinical errors. Quantitative data from the involved students and clinical advisors is collected in order to measure the effect of the intervention. Student knowledge, awareness and experiences...

  5. Backward Design: Targeting Depth of Understanding for All Learners

    Science.gov (United States)

    Childre, Amy; Sands, Jennifer R.; Pope, Saundra Tanner

    2009-01-01

    Curriculum design is at the center of developing student ability to construct understanding. Without appropriately designed curriculum, instruction can be ineffective at scaffolding understanding. Often students with disabilities need more explicit instruction or guidance in applying their schema to new information. Thus, instruction must not only…

  6. Developing process approach-based reading textbook for grade IV students

    Directory of Open Access Journals (Sweden)

    Dedy Irawan

    2017-07-01

    Full Text Available The objective of this research and development study is generating approach-based reading textbook which will be appropriate and feasible for implementation in order to improve the reading skills of Grade IV students. This research and development study referred to the steps of research and development proposed by Borg & Gall. The subjects in this study were the Grade IV students from the State Elementary Schools under the Regional Unit of Technical Implementation in Kutasari District, the Regency of Purbalingga which consist of SD Negeri 1 Cendana, of SD Negeri 1 Karangjengkol, SD Negeri 1 Sumingkir, and SD Negeri 2 Munjul. In gathering the data, the researcher made use of interview, document analysis, rating scale, test, and questionnaire. The results of this research and development study are a process approach-based reading textbook for Theme 9 “My Food is Healthy and Nutritious” which has been designed in five reading activities namely: (1 setting up; (2 reading; (3 responding; (4 understanding; and (5 expanding the understanding. This textbook has been considered feasible for implementation according to the material expert and the media expert with “Good” category and according to the book design expert with “Very Good” category. There are differences in the final results between the experimental group and the control group after the approach based-reading textbook has been applied with the significance < 0.05. These differences show the significant reading skills improvement with sig. value (2-tailed = 0.024.

  7. Improving student understanding in web programming material through multimedia adventure games

    Science.gov (United States)

    Fitriasari, N. S.; Ashiddiqi, M. F.; Nurdin, E. A.

    2018-05-01

    This study aims to make multimedia adventure games and find out the improvement of learners’ understanding after being given treatment of using multimedia adventure game in learning Web Programming. Participants of this study are students of class X (ten) in one of the Vocational Schools (SMK) in Indonesia. The material of web programming is a material that difficult enough to be understood by the participant therefore needed tools to facilitate the participants to understand the material. Solutions offered in this study is by using multimedia adventures game. Multimedia has been created using Construct2 and measured understood with method Non-equivalent Control Group Design. Pre-test and post-test has given to learners who received treatment using the multimedia adventure showed increase in understanding web programming material.

  8. Enabling Students to Construct Theories of Collaborative Inquiry and Reflective Learning: Computer Support for Metacognitive Development

    OpenAIRE

    White, Barbara Y.; Shimoda, Todd A.; Frederiksen, John R.

    1999-01-01

    Part II of the Special Issue on Authoring Systems for Intelligent Tutoring Systems (editors: Tom Murray and Stephen Blessing); To develop lifelong learning skills, we argue that students need to learn how to learn via inquiry and understand the sociocognitive and metacognitive processes that are involved. We illustrate how software could play a central role in enabling students to develop such expertise. Our hypothesis is that sociocognitive systems, such as those needed for collaborative inq...

  9. Classroom Research: Assessment of Student Understanding of Sampling Distributions of Means and the Central Limit Theorem in Post-Calculus Probability and Statistics Classes

    Science.gov (United States)

    Lunsford, M. Leigh; Rowell, Ginger Holmes; Goodson-Espy, Tracy

    2006-01-01

    We applied a classroom research model to investigate student understanding of sampling distributions of sample means and the Central Limit Theorem in post-calculus introductory probability and statistics courses. Using a quantitative assessment tool developed by previous researchers and a qualitative assessment tool developed by the authors, we…

  10. Climate Change and Costs: Investigating Students' Reasoning on Nature and Economic Development

    Science.gov (United States)

    Sternang, Li; Lundholm, Cecilia

    2012-01-01

    The tensions between environmental protection and economic growth are critical to future well-being, and it is therefore important to understand how young people conceptualize these tensions. The aim of the present study is to explore students' solutions to the dilemma of economic development and mitigating climate change, with regard to societal…

  11. Using Self-Efficacy Beliefs to Understand How Students in a General Chemistry Course Approach the Exam Process

    Science.gov (United States)

    Willson-Conrad, Angela; Kowalske, Megan Grunert

    2018-01-01

    Retention of students who major in STEM continues to be a major concern for universities. Many students cite poor teaching and disappointing grades as reasons for dropping out of STEM courses. Current college chemistry courses often assess what a student has learned through summative exams. To understand students' experiences of the exam process,…

  12. Proportional Reasoning and Related Concepts: Analysis of Gaps and Understandings of Middle Grade Students

    Science.gov (United States)

    Ojose, Bobby

    2015-01-01

    This study investigated proportional reasoning and the related concepts of decimal, percent, and ratio. In particular, the research focused on analyzing the gaps and understandings that grades 6, 7, and 8 students have and advanced factors for such gaps and understandings. The study employed a mixed method approach in which quantitative data was…

  13. Hands in medicine: understanding the impact of competency-based education on the formation of medical students' identities in the United States.

    Science.gov (United States)

    Gonsalves, Catherine; Zaidi, Zareen

    2016-01-01

    There have been critiques that competency training, which defines the roles of a physician by simple, discrete tasks or measurable competencies, can cause students to compartmentalize and focus mainly on being assessed without understanding how the interconnected competencies help shape their role as future physicians. Losing the meaning and interaction of competencies can result in a focus on 'doing the work of a physician' rather than identity formation and 'being a physician.' This study aims to understand how competency-based education impacts the development of a medical student's identity. Three ceramic models representing three core competencies 'medical knowledge,' 'patient care,' and 'professionalism' were used as sensitizing objects, while medical students reflected on the impact of competency-based education on identity formation. Qualitative analysis was used to identify common themes. Students across all four years of medical school related to the 'professionalism' competency domain (50%). They reflected that 'being an empathetic physician' was the most important competency. Overall, students agreed that competency-based education played a significant role in the formation of their identity. Some students reflected on having difficulty in visualizing the interconnectedness between competencies, while others did not. Students reported that the assessment structure deemphasized 'professionalism' as a competency. Students perceive 'professionalism' as a competency that impacts their identity formation in the social role of 'being a doctor,' albeit a competency they are less likely to be assessed on. High-stakes exams, including the United States Medical Licensing Exam clinical skills exam, promote this perception.

  14. The Meta Language of Accounting: What's the Level of Students' Understanding?

    Science.gov (United States)

    Elson, Raymond J.; O'Callaghan, Susanne; Walker, John P.; Williams, Robert

    2013-01-01

    Students rely on rote knowledge to learn accounting concepts. However, this approach does not allow them to understanding the meta language of accounting. Meta language is simply the concepts and terms that are used in a profession and are easily understood by its users. Terms such as equity, assets, and balance sheet are part of the accounting…

  15. Using Solution Strategies to Examine and Promote High-School Students' Understanding of Exponential Functions: One Teacher's Attempt

    Science.gov (United States)

    Brendefur, Jonathan

    2014-01-01

    Much research has been conducted on how elementary students develop mathematical understanding and subsequently how teachers might use this information. This article builds on this type of work by investigating how one high-school algebra teacher designs and conducts a lesson on exponential functions. Through a lesson study format she studies with…

  16. Deepening Understanding of Prior Knowledge: What Diverse First-Generation College Students in the U.S. Can Teach Us

    Science.gov (United States)

    Castillo-Montoya, Milagros

    2017-01-01

    Educational research indicates that teachers revealing and utilizing students' prior knowledge supports students' academic learning. Yet, the variation in students' prior knowledge is not fully known. To better understand students' prior knowledge, I drew on sociocultural learning theories to examine racially and ethnically diverse college…

  17. Understanding Immigrant College Students: Applying a Developmental Ecology Framework to the Practice of Academic Advising

    Science.gov (United States)

    Stebleton, Michael J.

    2011-01-01

    Immigrant college student populations continue to grow, but the complexity of their unique needs and issues remain relatively unknown. To gain a better understanding of the multiple contextual factors impacting immigrant students from a systems-based approach, I applied Bronfenbrenner's (1977) human ecology framework to the study. Students…

  18. Understanding the relationship between student attitudes and student learning

    Science.gov (United States)

    Cahill, Michael J.; McDaniel, Mark A.; Frey, Regina F.; Hynes, K. Mairin; Repice, Michelle; Zhao, Jiuqing; Trousil, Rebecca

    2018-02-01

    Student attitudes, defined as the extent to which one holds expertlike beliefs about and approaches to physics, are a major research topic in physics education research. An implicit but rarely tested assumption underlying much of this research is that student attitudes play a significant part in student learning and performance. The current study directly tested this attitude-learning link by measuring the association between incoming attitudes (Colorado Learning Attitudes about Science Survey) and student learning during the semester after statistically controlling for the effects of prior knowledge [early-semester Force Concept Inventory (FCI) or Brief Electricity and Magnetism Assessment (BEMA)]. This study spanned four different courses and included two complementary measures of student knowledge: late-semester concept inventory scores (FCI or BEMA) and exam averages. In three of the four courses, after controlling for prior knowledge, attitudes significantly predicted both late-semester concept inventory scores and exam averages, but in all cases these attitudes explained only a small amount of variance in concept-inventory and exam scores. Results indicate that after accounting for students' incoming knowledge, attitudes may uniquely but modestly relate to how much students learn and how well they perform in the course.

  19. Leadership development for dental students: what do students think?

    Science.gov (United States)

    Victoroff, Kristin Z; Schneider, Keith; Perry, Crystal

    2008-09-01

    Effective leaders are needed to move the dental profession forward, building on past accomplishments, meeting new challenges, and leading innovation and change. There is a lack of research findings regarding students' perceptions of the importance of leadership abilities and/or their interest in developing leadership skills during their dental school experience. The purpose of this study was to explore dental students' perceptions related to leadership development. A forty-seven-question, self-administered, paper and pencil survey was administered to all students enrolled in the D.M.D. program at one Midwestern dental school. The response rate was 83 percent (225/272). The majority of students agreed that it is important for dentists to have leadership skills and that leadership skills can be learned. Most reported that they expect to assume a leadership role in their dental practices (97 percent), to participate in volunteerism in dentistry (85 percent), and to participate in non-dentistry-related leadership roles in the community (72 percent). Over one-third (37 percent) anticipate participating in leadership roles in dental associations, 28 percent in academic dentistry, and 14 percent in military dentistry. Approximately two-thirds of respondents agreed (42 percent) or strongly agreed (24 percent) that they would be interested in participating in a leadership development program if one were offered at their school. Students reported interest in improving their confidence, assertiveness, ability to communicate effectively (including public speaking), ability to listen to others, organizational skills, and ability to influence others. The results of this study suggest that many dental students are interested in developing leadership skills. Insights from this study can inform the design of leadership development programs.

  20. Exploring Democracy: Nordic Music Teachers' Approaches to the Development of Immigrant Students' Musical Agency

    Science.gov (United States)

    Karlsen, Sidsel

    2014-01-01

    In this article, a multi-sited ethnographic study was taken as a point of departure for exploring how Nordic music teachers, who work in multicultural environments, understand the development of their students' musical agency. The study was based on theories developed within general sociology and the sociology of music, as well as in previous…