WorldWideScience

Sample records for student research laboratories

  1. Research Review: Laboratory Student Magazine Programs.

    Science.gov (United States)

    Wheeler, Tom

    1994-01-01

    Explores research on student-produced magazines at journalism schools, including the nature of various programs and curricular structures, ethical considerations, and the role of faculty advisors. Addresses collateral sources that provide practical and philosophical foundations for the establishment and conduct of magazine production programs.…

  2. The Johns Hopkins Hunterian Laboratory Philosophy: Mentoring Students in a Scientific Neurosurgical Research Laboratory.

    Science.gov (United States)

    Tyler, Betty M; Liu, Ann; Sankey, Eric W; Mangraviti, Antonella; Barone, Michael A; Brem, Henry

    2016-06-01

    After over 50 years of scientific contribution under the leadership of Harvey Cushing and later Walter Dandy, the Johns Hopkins Hunterian Laboratory entered a period of dormancy between the 1960s and early 1980s. In 1984, Henry Brem reinstituted the Hunterian Neurosurgical Laboratory, with a new focus on localized delivery of therapies for brain tumors, leading to several discoveries such as new antiangiogenic agents and Gliadel chemotherapy wafers for the treatment of malignant gliomas. Since that time, it has been the training ground for 310 trainees who have dedicated their time to scientific exploration in the lab, resulting in numerous discoveries in the area of neurosurgical research. The Hunterian Neurosurgical Laboratory has been a unique example of successful mentoring in a translational research environment. The laboratory's philosophy emphasizes mentorship, independence, self-directed learning, creativity, and people-centered collaboration, while maintaining productivity with a focus on improving clinical outcomes. This focus has been served by the diverse backgrounds of its trainees, both in regard to educational status as well as culturally. Through this philosophy and strong legacy of scientific contribution, the Hunterian Laboratory has maintained a positive and productive research environment that supports highly motivated students and trainees. In this article, the authors discuss the laboratory's training philosophy, linked to the principles of adult learning (andragogy), as well as the successes and the limitations of including a wide educational range of students in a neurosurgical translational laboratory and the phenomenon of combining clinical expertise with rigorous scientific training.

  3. A New Model for Transitioning Students from the Undergraduate Teaching Laboratory to the Research Laboratory

    Science.gov (United States)

    Hollenbeck, Jessica J.; Wixson, Emily N.; Geske, Grant D.; Dodge, Matthew W.; Tseng, T. Andrew; Clauss, Allen D.; Blackwell, Helen E.

    2006-01-01

    The transformation of 346 chemistry courses into a training experience that could provide undergraduate students with a skill set essential for a research-based chemistry career is presented. The course has an innovative structure that connects undergraduate students with graduate research labs at the semester midpoint and also includes new,…

  4. Method to Increase Undergraduate Laboratory Student Confidence in Performing Independent Research

    Directory of Open Access Journals (Sweden)

    Colton E. Kempton

    2017-05-01

    Full Text Available The goal of an undergraduate laboratory course should be not only to introduce the students to biology methodologies and techniques, but also to teach them independent analytical thinking skills and proper experiment design.  This is especially true for advanced biology laboratory courses that undergraduate students typically take as a junior or senior in college.  Many courses achieve the goal of teaching techniques, but fail to approach the larger goal of teaching critical thinking, experimental design, and student independence.  Here we describe a study examining the application of the scaffolding instructional philosophy in which students are taught molecular techniques with decreasing guidance to force the development of analytical thinking skills and prepare undergraduate students for independent laboratory research. This method was applied to our advanced molecular biology laboratory class and resulted in an increase of confidence among the undergraduate students in their abilities to perform independent research.

  5. Introducing Students to Psychological Research: General Psychology as a Laboratory Course

    Science.gov (United States)

    Thieman, Thomas J.; Clary, E. Gil; Olson, Andrea M.; Dauner, Rachel C.; Ring, Erin E.

    2009-01-01

    For 6 years, we have offered an integrated weekly laboratory focusing on research methods as part of our general psychology course. Through self-report measures and controlled comparisons, we found that laboratory projects significantly increase students' knowledge and comfort level with scientific approaches and concepts, sustain interest in…

  6. Fundamental Research in Engineering Education. Student Learning in Industrially Situated Virtual Laboratories

    Science.gov (United States)

    Koretsky, Milo D.; Kelly, Christine; Gummer, Edith

    2011-01-01

    The instructional design and the corresponding research on student learning of two virtual laboratories that provide an engineering task situated in an industrial context are described. In this problem-based learning environment, data are generated dynamically based on each student team's distinct choices of reactor parameters and measurements.…

  7. Effect of virtual analytical chemistry laboratory on enhancing student research skills and practices

    Directory of Open Access Journals (Sweden)

    Boris Bortnik

    2017-12-01

    Full Text Available This article aims to determine the effect of a virtual chemistry laboratory on university student achievement. The article describes a model of a laboratory course that includes a virtual component. This virtual component is viewed as a tool of student pre-lab autonomous learning. It presents electronic resources designed for a virtual laboratory and outlines the methodology of e-resource application. To find out how virtual chemistry laboratory affects student scientific literacy, research skills and practices, a pedagogical experiment has been conducted. Student achievement was compared in two learning environments: traditional – in-class hands-on – learning (control group and blended learning – online learning combined with in-person learning (experimental group. The effectiveness of integrating an e-lab in the laboratory study was measured by comparing student lab reports of the two groups. For that purpose, a set of 10 criteria was developed. The experimental and control student groups were also compared in terms of test results and student portfolios. The study showed that the adopted approach blending both virtual and hands-on learning environments has the potential to enhance student research skills and practices in analytical chemistry studies.

  8. Student teaching and research laboratory focusing on brain-computer interface paradigms--A creative environment for computer science students.

    Science.gov (United States)

    Rutkowski, Tomasz M

    2015-08-01

    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.

  9. A Hybrid Integrated Laboratory and Inquiry-Based Research Experience: Replacing Traditional Laboratory Instruction with a Sustainable Student-Led Research Project

    Science.gov (United States)

    Hartings, Matthew R.; Fox, Douglas M.; Miller, Abigail E.; Muratore, Kathryn E.

    2015-01-01

    The Department of Chemistry at American University has replaced its junior- and senior-level laboratory curriculum with two, two-semester long, student-led research projects as part of the department's American Chemical Society-accredited program. In the first semester of each sequence, a faculty instructor leads the students through a set of…

  10. The Advanced Interdisciplinary Research Laboratory: A Student Team Approach to the Fourth-Year Research Thesis Project Experience

    Science.gov (United States)

    Piunno, Paul A. E.; Boyd, Cleo; Barzda, Virginijus; Gradinaru, Claudiu C.; Krull, Ulrich J.; Stefanovic, Sasa; Stewart, Bryan

    2014-01-01

    The advanced interdisciplinary research laboratory (AIRLab) represents a novel, effective, and motivational course designed from the interdisciplinary research interests of chemistry, physics, biology, and education development faculty members as an alternative to the independent thesis project experience. Student teams are assembled to work…

  11. Faculty and Student Teams and National Laboratories: Expanding the Reach of Research Opportunities and Workforce Development

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn,N.; White, K.; Stegman, M.

    2009-08-05

    The Faculty and Student Teams (FaST) Program, a cooperative effort between the US Department of Energy (DOE) Office of Science and the National Science Foundation (NSF), brings together collaborative research teams composed of a researcher at Brookhaven National Laboratory, and a faculty member with two or three undergraduate students from a college or university. Begun by the Department of Energy in 2000 with the primary goal of building research capacity at a faculty member's home institution, the FaST Program focuses its recruiting efforts on faculty from colleges and universities with limited research facilities and those institutions that serve populations under-represented in the fields of science, engineering and technology, particularly women and minorities. Once assembled, a FaST team spends a summer engaged in hands-on research working alongside a laboratory scientist. This intensely collaborative environment fosters sustainable relationships between the faulty members and BNL that allow faculty members and their BNL colleagues to submit joint proposals to federal agencies, publish papers in peer-reviewed journals, reform local curriculum, and develop new or expand existing research labs at their home institutions.

  12. Effect of Virtual Analytical Chemistry Laboratory on Enhancing Student Research Skills and Practices

    Science.gov (United States)

    Bortnik, Boris; Stozhko, Natalia; Pervukhina, Irina; Tchernysheva, Albina; Belysheva, Galina

    2017-01-01

    This article aims to determine the effect of a virtual chemistry laboratory on university student achievement. The article describes a model of a laboratory course that includes a virtual component. This virtual component is viewed as a tool of student pre-lab autonomous learning. It presents electronic resources designed for a virtual laboratory…

  13. Method to Increase Undergraduate Laboratory Student Confidence in Performing Independent Research?

    OpenAIRE

    Kempton, Colton E.; Weber, K. Scott; Johnson, Steven M.

    2017-01-01

    The goal of an undergraduate laboratory course should be not only to introduce the students to biology methodologies and techniques, but also to teach them independent analytical thinking skills and proper experiment design.  This is especially true for advanced biology laboratory courses that undergraduate students typically take as a junior or senior in college.  Many courses achieve the goal of teaching techniques, but fail to approach the larger goal of teaching critical thinking, experim...

  14. MicroTracker: a Data Management Tool for Facilitating the Education of Undergraduate Students in Laboratory Research Environments

    Directory of Open Access Journals (Sweden)

    David Ammons

    2010-10-01

    Full Text Available Many undergraduate laboratories are, too often, little more than an exercise in “cooking” where students are instructed step-by-step what to add, mix, and, most unfortunately, expect as an outcome. Although the shortcomings of “cookbook” laboratories are well known, they are considerably easier to manage than the more desirable inquiry-based laboratories. Thus the ability to quickly access, share, sort, and analyze research data would make a significant contribution towards the feasibility of teaching/mentoring large numbers of inexperienced students in an inquiry-based research environment, as well as facilitating research collaborations among students. Herein we report on a software tool (MicroTracker designed to address the educational problems that we experienced with inquiry-based research education due to constraints on data management and accessibility.

  15. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  16. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  17. Engaging Students in Authentic Microbiology Research in an Introductory Biology Laboratory Course is Correlated with Gains in Student Understanding of the Nature of Authentic Research and Critical Thinking

    Directory of Open Access Journals (Sweden)

    Brittany J. Gasper

    2013-02-01

    Full Text Available Recent recommendations for biology education highlight the role of authentic research experiences early in undergraduate education as a means of increasing the number and quality of biology majors. These experiences will inform students on the nature of science, increase their confidence in doing science, as well as foster critical thinking skills, an area that has been lacking despite it being one of the desired outcomes at undergraduate institutions and with future employers. With these things in mind, we have developed an introductory biology laboratory course where students design and execute an authentic microbiology research project. Students in this course are assimilated into the community of researchers by engaging in scholarly activities such as participating in inquiry, reading scientific literature, and communicating findings in written and oral formats. After three iterations of a semester-long laboratory course, we found that students who took the course showed a significant increase in their understanding of the nature of authentic research and their level of critical thinking skills.

  18. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  19. Participation in college laboratory research apprenticeships among students considering careers in medicine

    Directory of Open Access Journals (Sweden)

    Dorothy A. Andriole

    2015-06-01

    Full Text Available Objective: We sought to determine the prevalence of college laboratory research apprenticeship (CLRA participation among students considering medical careers and to examine the relationship between CLRA participation and medical-school acceptance among students who applied to medical school. Methods: We used multivariate logistic regression to identify predictors of: 1 CLRA participation in a national cohort of 2001–2006 Pre-Medical College Admission Test (MCAT Questionnaire (PMQ respondents and 2 among those PMQ respondents who subsequently applied to medical school, medical-school acceptance by June 2013, reporting adjusted odds ratios (aOR and 95% confidence intervals (95% CI. Results: Of 213,497 PMQ respondents in the study sample (81.2% of all 262,813 PMQ respondents in 2001–2006, 72,797 (34.1% reported CLRA participation. Each of under-represented minorities in medicine (URM race/ethnicity (vs. white, aOR: 1.04; 95% CI: 1.01–1.06, Asian/Pacific Islander race/ethnicity (vs. white, aOR: 1.20; 95% CI: 1.17–1.22, and high school summer laboratory research apprenticeship (HSLRA participation (aOR: 3.95; 95% CI: 3.84–4.07 predicted a greater likelihood of CLRA participation. Of the 213,497 PMQ respondents in the study sample, 144,473 (67.7% had applied to medical school and 87,368 (60.5% of 144,473 medical-school applicants had been accepted to medical school. Each of female gender (vs. male, aOR: 1.19; 95% CI: 1.16–1.22, URM race/ethnicity (vs. white, aOR: 3.91; 95% CI: 3.75–4.08, HSLRA participation (aOR: 1.11; 95% CI: 1.03–1.19, CLRA participation (aOR: 1.12; 95% CI: 1.09–1.15, college summer academic enrichment program participation (aOR: 1.26; 95% CI: 1.21–1.31, and higher MCAT score (per point increase, aOR: 1.31; 95% CI: 1.30–1.31 predicted a greater likelihood of medical-school acceptance. Conclusions: About one-third of all PMQ respondents had participated in CLRAs prior to taking the MCAT, and such participation

  20. Improving Students' Inquiry Skills and Self-Efficacy through Research-Inspired Modules in the General Chemistry Laboratory

    Science.gov (United States)

    Winkelmann, Kurt; Baloga, Monica; Marcinkowski, Tom; Giannoulis, Christos; Anquandah, George; Cohen, Peter

    2015-01-01

    Research projects conducted by faculty in STEM departments served as the inspiration for a new curriculum of inquiry-based, multiweek laboratory modules in the general chemistry 1 course. The purpose of this curriculum redesign was to improve students' attitudes about chemistry as well as their self-efficacy and skills in performing inquiry…

  1. Demand for Interdisciplinary Laboratories for Physiology Research by Undergraduate Students in Biosciences and Biomedical Engineering

    Science.gov (United States)

    Clase, Kari L.; Hein, Patrick W.; Pelaez, Nancy J.

    2008-01-01

    Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary…

  2. Senior Research Connects Students with a Living Laboratory As Part of an Integrated Crop and Livestock System

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Brevik, Eric C.

    2015-04-01

    highest expenses in beef cattle production. Senior research investigating the impact of livestock integration and multi-species cover crop grown within the crop rotation is studying changes in soil attributes resulting from the crop-animal integration by measuring bulk density and in-season soil fertility in the crop rotation. These responses are further contrasted with results from within the crop rotation and responses from perennial native range. Students that become engaged in the research represent a broad cross section of the consuming public and include high school junior and senior students, college undergraduate students that conduct research projects, postdoctoral research scientists engaged in senior level research, agricultural extension educators, and finally, farmer and rancher businessmen. The integrated nature of the research provides a wealth of learning opportunities for these various groups. For the high school students, visits to the living laboratory increase awareness and introduces students to a potential career path in agriculture, natural resource fields, and the many allied vocational fields that support agriculture. When college undergraduate students visit the living laboratory, they seek to address a researchable question or a problem in agriculture, while fulfilling requirements for graduation by conducting a research project. Because postdoctoral students want to be actively engaged in research and advanced learning, they are interested in conducting research in the living laboratory that can be published in peer reviewed journals. Agricultural extension educators, who advise farmers and ranchers, are looking for research results from the living laboratory that can be convey to their constituents. Farmers and ranchers participate in workshop events that give them face-to-face learning opportunities that they can use to effect change in their farm and ranch businesses. Each of these demographic groups are unique in their interest in the

  3. Student evaluation of research projects in a first-year physics laboratory

    International Nuclear Information System (INIS)

    Sharma, Manjula D; Mendez, Alberto; Sefton, Ian M; Khachan, Joe

    2014-01-01

    We describe the evaluation by students of a scheme of open-ended, research-based group project work which has become a standard component of first-year physics courses at the University of Sydney and is now in its 19th year of operation. Data were gathered from two sources: direct observations of the classes and a written survey. A summary of the classroom observations and the results from a detailed analysis of the survey responses are presented. The feedback from the cohort of approximately 800 students is largely positive but we identify a few discrepancies between stated course goals and the results from the survey. (paper)

  4. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  5. Simula Research Laboratory

    CERN Document Server

    Tveito, Aslak

    2010-01-01

    The Simula Research Laboratory, located just outside Oslo in Norway, is rightly famed as a highly successful research facility, despite being, at only eight years old, a very young institution. This fascinating book tells the history of Simula, detailing the culture and values that have been the guiding principles of the laboratory throughout its existence. Dedicated to tackling scientific challenges of genuine social importance, the laboratory undertakes important research with long-term implications in networks, computing and software engineering, including specialist work in biomedical comp

  6. NASA's Propulsion Research Laboratory

    Science.gov (United States)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  7. Bringing the excitement and motivation of research to students; Using inquiry and research-based learning in a year-long biochemistry laboratory : Part II-research-based laboratory-a semester-long research approach using malate dehydrogenase as a research model.

    Science.gov (United States)

    Knutson, Kristopher; Smith, Jennifer; Nichols, Paul; Wallert, Mark A; Provost, Joseph J

    2010-09-01

    Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments for the entire semester. This style of laboratory replaces a variety of shorter labs in favor of an in depth research-based learning experience. The concept is to allow students to function in independent research groups. The research projects are focused on a series of wild-type and mutant clones of malate dehydrogenase. A common research theme for the laboratory helps instructors administer the course and is key to delivering a research opportunity to a large number of students. The outcome of this research-based learning laboratory results in students who are much more confident and skilled in critical areas in biochemistry and molecular biology. Students with research experience have significantly higher confidence and motivation than those students without a previous research experience. We have also found that all students performed better in advanced courses and in the workplace. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  8. Green Building Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David Jean [Portland State Univ., Portland, OR (United States)

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  9. The underground research laboratories

    International Nuclear Information System (INIS)

    1997-06-01

    This educational booklet is a general presentation of the selected sites for the installation of underground research laboratories devoted to the feasibility studies of deep repositories for long-life radioactive wastes. It describes the different type of wastes and their management, the management of long life radioactive wastes, the site selection and the 4 sites retained, the preliminary research studies, and the other researches carried out in deep disposal facilities worldwide. (J.S.)

  10. Independent Synthesis Projects in the Organic Chemistry Teaching Laboratories: Bridging the Gap between Student and Researcher

    Science.gov (United States)

    Keller, Valerie A.; Kendall, Beatrice Lin

    2017-01-01

    Science educators strive to teach students how to be well-rounded scientists with the ability to problem solve, anticipate errors, and adapt to unexpected roadblocks. Traditional organic chemistry experiments seldom teach these skills, no matter how novel or contemporary the subject material. This paper reports on the success of a quarter-long…

  11. Effects of Discovery, Iteration, and Collaboration in Laboratory Courses on Undergraduates' Research Career Intentions Fully Mediated by Student Ownership.

    Science.gov (United States)

    Corwin, Lisa A; Runyon, Christopher R; Ghanem, Eman; Sandy, Moriah; Clark, Greg; Palmer, Gregory C; Reichler, Stuart; Rodenbusch, Stacia E; Dolan, Erin L

    2018-06-01

    Course-based undergraduate research experiences (CUREs) provide a promising avenue to attract a larger and more diverse group of students into research careers. CUREs are thought to be distinctive in offering students opportunities to make discoveries, collaborate, engage in iterative work, and develop a sense of ownership of their lab course work. Yet how these elements affect students' intentions to pursue research-related careers remain unexplored. To address this knowledge gap, we collected data on three design features thought to be distinctive of CUREs (discovery, iteration, collaboration) and on students' levels of ownership and career intentions from ∼800 undergraduates who had completed CURE or inquiry courses, including courses from the Freshman Research Initiative (FRI), which has a demonstrated positive effect on student retention in college and in science, technology, engineering, and mathematics. We used structural equation modeling to test relationships among the design features and student ownership and career intentions. We found that discovery, iteration, and collaboration had small but significant effects on students' intentions; these effects were fully mediated by student ownership. Students in FRI courses reported significantly higher levels of discovery, iteration, and ownership than students in other CUREs. FRI research courses alone had a significant effect on students' career intentions.

  12. Metallurgical Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to increase basic knowledge of metallurgical processing for controlling the microstructure and mechanical properties of metallic aerospace alloys and...

  13. Materials Behavior Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to evaluate mechanical properties of materials including metals, intermetallics, metal-matrix composites, and ceramic-matrix composites under typical...

  14. Laboratory for Large Data Research

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Laboratory for Large Data Research (LDR) addresses a critical need to rapidly prototype shared, unified access to large amounts of data across both the...

  15. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  16. Geocentrifuge Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The geocentrifuge subjects a sample to a high-gravity field by spinning it rapidly around a central shaft. In this high-gravity field, processes, such as fluid flow,...

  17. General Chemistry Students' Goals for Chemistry Laboratory Coursework

    Science.gov (United States)

    DeKorver, Brittland K.; Towns, Marcy H.

    2015-01-01

    Little research exists on college students' learning goals in chemistry, let alone specifically pertaining to laboratory coursework. Because students' learning goals are linked to achievement and dependent on context, research on students' goals in the laboratory context may lead to better understanding about the efficacy of lab curricula. This…

  18. Sandia National Laboratories: Research

    Science.gov (United States)

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD and decision-making. Materials science Leading the nation in the knowledge of materials engineering success is our foundational scientific research, which provides us with knowledge and capabilities that

  19. Korogwe Research Laboratory

    DEFF Research Database (Denmark)

    Knudsen, Jakob

    2012-01-01

    . It is a large vaccine trial programme simultaneously conducted in several countries in Africa funded by the Bill and Melinda Gates Foundation. The laboratory is an extension to a district hospital placed quite isolated and rural in the north-eastern part of Tanzania. It’s close to the equator and the climate...... and ceiling have been separated leaving a large space for natural ventilation creating a general chimney effect. To provide independent backup water supply all rainwater falling on the roof is collected and directed through a sand filter into a 100m3 subterranean water tank. All constructions, details...... and materials have been carefully selected to last a long time even in a future situation with limited maintenance. Except from the high-end lab equipment only local available materials have been used. All major spaces are reached from colonnades surrounding an inner calm and cool garden space equipped...

  20. Physical Research Laboratory

    Indian Academy of Sciences (India)

    Studies on star formation processes, active galaxies, BL Lac objects and ... photospheric and chromospheric studies and observations for the international GONG ... Research in computer science with focus on image processing and.

  1. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    Science.gov (United States)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  2. Immersing Undergraduate Students in the Research Experience: A Practical Laboratory Module on Molecular Cloning of Microbial Genes

    Science.gov (United States)

    Wang, Jack T. H.; Schembri, Mark A.; Ramakrishna, Mathitha; Sagulenko, Evgeny; Fuerst, John A.

    2012-01-01

    Molecular cloning skills are an essential component of biological research, yet students often do not receive this training during their undergraduate studies. This can be attributed to the complexities of the cloning process, which may require many weeks of progressive design and experimentation. To address this issue, we incorporated an…

  3. Great Lakes Environmental Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  4. Research System Integration Laboratory (SIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The VEA Research SIL (VRS) is essential to the success of the TARDEC 30-Year Strategy. The vast majority of the TARDEC Capability Sets face challenging electronics...

  5. Research laboratories annual report 1991

    International Nuclear Information System (INIS)

    1992-08-01

    The 1990-1991 activities, of the Israel Atomic Energy Commission's research laboratories, are presented in this report. The main fields of interest are chemistry and material sciences, life and environmental sciences, nuclear physics and technology

  6. Small-Engine Research Laboratory (SERL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Small-Engine Research Laboratory (SERL) is a facility designed to conduct experimental small-scale propulsion and power generation systems research....

  7. Undergraduate students' goals for chemistry laboratory coursework

    Science.gov (United States)

    DeKorver, Brittland K.

    Chemistry laboratory coursework has the potential to offer many benefits to students, yet few of these learning goals are realized in practice. Therefore, this study seeks to characterize undergraduate students' learning goals for their chemistry laboratory coursework. Data were collected by recording video of students completing laboratory experiments and conducting interviews with the students about their experiences that were analyzed utilizing the frameworks of Human Constructivism and Self-Regulated Learning. A cross-sectional sampling of students allowed comparisons to be made among students with varying levels of chemistry experience and interest in chemistry. The student goals identified by this study were compared to previously described laboratory learning goals of the faculty who instruct these courses in an effort to identify potential avenues to improve laboratory learning.

  8. Laboratory directed research and development

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  9. Physics Research at the Naval Research Laboratory

    Science.gov (United States)

    Coffey, Timothy

    2001-03-01

    The United States Naval Research Laboratory conducts a broad program of research into the physical properties of matter. Studies range from low temperature physics, such as that associated with superconducting systems to high temperature systems such as laser produced or astrophysical plasmas. Substantial studies are underway on surface science and nanoscience. Studies are underway on the electronic and optical properties of materials. Studies of the physical properties of the ocean and the earth’s atmosphere are of considerable importance. Studies of the earth’s sun particularly as it effects the earth’s ionosphere and magnetosphere are underway. The entire program involves a balance of laboratory experiments, field experiments and supporting theoretical and computational studies. This talk will address NRL’s funding of physics, its employment of physicists and will illustrate the nature of NRL’s physics program with several examples of recent accomplishments.

  10. Students' Psychosocial Perception of Science Laboratory ...

    African Journals Online (AJOL)

    Data was obtained with the Science Laboratory Environment Questionnaire, administered on 338 third year science students. Four factors were found to influence students' perception of their science laboratory environment. Two distinct material environments emerged, which have not been reported in the literature.

  11. NAS Human Factors Safety Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts an integrated program of research on the relationship of factors concerning individuals, work groups, and organizations as employees perform...

  12. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  13. Fuel Combustion Laboratory | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion Laboratory Fuel Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on designs, using both today's technology and future advanced combustion concepts. This lab supports the combustion chamber platform for fuel ignition kinetics research, was acquired to expand the lab's

  14. Institute of Laboratory Animal Research

    National Research Council Canada - National Science Library

    Dell, Ralph

    2000-01-01

    ...; and reports on specific issues of humane care and use of laboratory animals. ILAR's mission is to help improve the availability, quality, care, and humane and scientifically valid use of laboratory animals...

  15. Students Share Their Research at Student Poster Day | Poster

    Science.gov (United States)

    Students Share Their Research at Student Poster Day  By Ashley DeVine, Staff Writer More than 50 Werner H. Kirsten student interns and college interns presented their research at Summer Student Poster Day on August 6 in the Building 549 lobby.  Joseph Bergman, a high school intern in the Center for Cancer Research Nanobiology Laboratory, participated in the event “for the

  16. laboratory activities and students practical performance

    African Journals Online (AJOL)

    unesco

    as necessary and important, very little justification was given for their .... Chemistry laboratory activities refer to the practical activities which students ..... equations, formulae, definitions, terminology, physical properties, hazards or disposal.

  17. Students' perceptions of academic dishonesty in a chemistry classroom laboratory

    Science.gov (United States)

    Del Carlo, Dawn Irene

    Academic dishonesty has been an important issue in the classroom for as long as the classroom has been in use. Most reports pertain to exams, homework, and plagiarism of term papers but, one area that has not been studied extensively is that of the classroom laboratory. My work focuses on three guiding questions: (1) What are students' perceptions toward academic dishonesty in a laboratory based class? (2) What distinction if any do students make between this type of academic dishonesty compared to dishonesty that may occur in a research laboratory? (3) How if at all do these perceptions change with age and/or research experience? Four major assertions come from this work. The first is that students do not think that what they do in the classroom laboratory is science and consequently do not treat the classroom laboratory differently than any other academic class. Additionally, they make a clear distinction between what happens in a class lab and what happens in a research or industrial lab. Consequently, students perceive there to be a significant difference in dishonesty between those two settings. Finally, this distinction is not as pronounced in graduate students and is seen as an element of maturity. In the process of determining the above assertions, students perceptions on the nature of science were revealed and are also discussed. These beliefs have direct relevance to students' perceptions of dishonesty in both lab atmospheres.

  18. EDITORIAL: Student undergraduate laboratory and project work

    Science.gov (United States)

    Schumacher, Dieter

    2007-05-01

    that new experiments which illustrate both fundamental physics and modern technology can be realized even with a small budget. Traditional labwork courses often provide a catalogue of well known experiments. The students must first learn the theoretical background. They then assemble the setup from specified equipment, collect the data and perform the default data processing. However, there is no way to learn to swim without water. In order to achieve a constructivist access to learning, 'project labs' are needed. In a project labwork course a small group of students works as a team on a mini research project. The students have to specify the question of research, develop a suitable experimental setup, conduct the experiment and find a suitable way to evaluate the data. Finally they must present their results e.g. in the framework of a public poster session. Three contributions refer to this approach, however they focus on different aspects: 'Project laboratory for first-year students' by Gorazd Planinšič, 'RealTime Physics: active learning laboratories' by David Sokoloff et al and 'Labs outside labs: miniprojects at a spring camp for future physics teachers' by Leos Dvorák. Is it possible to prepare the students specifically for project labwork? This question is answered by the contribution 'A new labwork course for physics students: devices, methods and research projects' by Knut Neumann and Manuela Welzel. The two main parts of the labwork course cover first experimental devices (e.g. multimeters, oscilloscopes, different sensors, operational amplifiers, step motors, AD/DA-converters). Then subjects such as data processing, consideration of measurement uncertainties, keeping records or using tools like LABVIEW etc are focused on. Another concrete proposal for a new curriculum is provided by James Sharp et al, in 'Computer based learning in an undergraduate physics laboratory: interfacing and instrument control using MATLAB'. One can well imagine that project labs

  19. Researching with undergraduate students

    DEFF Research Database (Denmark)

    Wulf-Andersen, Trine Østergaard; Mogensen, Kevin; Hjort-Madsen, Peder

    2013-01-01

    The article presents a particular case of undergraduate students working on subprojects within the framework of their supervisors' (the authors') research project during Autumn Semester 2012 and Spring Semester 2013. The article's purpose is to show that an institutionalized focus on students...... as "research learners" rather than merely curriculum learners proves productive for both research and teaching. We describe the specific university learning context and the particular organization of undergraduate students' supervision and assistantships. The case builds on and further enhances a well......-established and proven university model of participant-directed, problem-oriented project work. We explore students' and researchers' experiences of being part of the collaboration, focusing on learning potentials and dilemmas associated with the multiple roles of researcher and student that characterized...

  20. Biometrics Research and Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As the Department of Defense moves forward in its pursuit of integrating biometrics technology into facility access control, the Global War on Terrorism and weapon...

  1. Subsonic Aerodynamic Research Laboratory (SARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The SARL is a unique high contraction, open circuit subsonic wind tunnel providing a test velocity up to 436 mph (0.5 Mach number) and a high quality,...

  2. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  3. Techniques in cancer research: a laboratory manual

    International Nuclear Information System (INIS)

    Deo, M.G.; Seshadri, R.; Mulherkar, R.; Mukhopadhyaya, R.

    1995-01-01

    Cancer Research Institute (CRI) works on all facets of cancer using the latest biomedical tools. For this purpose, it has established modern laboratories in different branches of cancer biology such as cell and molecular biology, biochemistry, immunology, chemical and viral oncogenesis, genetics of cancer including genetic engineering, tissue culture, cancer chemotherapy, neurooncology and comparative oncology. This manual describes the protocols used in these laboratories. There is also a chapter on handling and care of laboratory animals, an essential component of any modern cancer biology laboratory. It is hoped that the manual will be useful to biomedical laboratories, specially those interested in cancer research. refs., tabs., figs

  4. Sandia National Laboratories: Research: Research Foundations: Engineering

    Science.gov (United States)

    Foundations Bioscience Computing & Information Science Electromagnetics Engineering Science Geoscience Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community Library Events Careers View All Jobs Students & Postdocs Internships & Co-ops Fellowships

  5. Students' Satisfaction toward the Services of the Chemical Laboratory

    Science.gov (United States)

    Lukum, Astin; Paramata, Yoseph

    2015-01-01

    Chemistry Laboratory serves all of the students that were programmed chemistry laboratory works. The satisfaction of the students was studied that involving 50 students. The study was conducted to measure the students' satisfaction towards the services offered by the laboratory. Measurement of the students' satisfaction was conducted using…

  6. Naval Research Laboratory Arctic Initiatives

    Science.gov (United States)

    2011-06-01

    Campaign Code 7420 Arctic Modeling Code 7320/7500/7600 In-situ NRL, CRREL NRL boreholes Strategy Remote Sensing Synergism −Collect in-situ...Navy and Marine Corps Corporate Laboratory An array of BMFCs being prepared for deployment. Each BMFC consists of a weighted anode laid flat onto...Gas CH4 E C D CO2 BGHS Free Methane Gas Hydrates HCO3- HCO3- Seismic and geochemical data to predict deep sediment hydrates Estimate spatial

  7. INDUSTRIAL RADIOGRAPHY STUDENT GUIDE AND LABORATORY EXERCISES.

    Science.gov (United States)

    Bureau of Adult, Vocational, and Technical Education (DHEW/OE), Washington, DC. Div. of Vocational and Technical Education.

    THIS INSTRUCTOR'S GUIDE TO AN 80-HOUR COURSE IN INDUSTRIAL RADIOGRAPHY IS COORDINATED WITH LESSONS IN THE STUDENT GUIDE AND LABORATORY EXERCISES AND IS BASED ON MATERIAL IN THE COURSE MANUAL, INDUSTRIAL RADIOGRAPHY. THE COURSE IS INTENDED TO TRAIN HIGH SCHOOL GRADUATES AS BEGINNING RADIOGRAPHERS WHO ARE EXPECTED TO BE ABLE TO EXTEND THEIR…

  8. HUMAN RELATIONS LABORATORY TRAINING STUDENT NOTEBOOK.

    Science.gov (United States)

    Springport High School, MI.

    THE MAJOR OBJECTIVE OF THIS NOTEBOOK IS TO HELP THOSE STUDENTS INTERESTED IN TAKING PART IN THE SPRINGPORT HIGH SCHOOL HUMAN RELATIONS TRAINING LABORATORIES TO BETTER UNDERSTAND THEMSELVES, SOCIETY, AND HUMAN EMOTIONS SO THAT THEY MAY DEVELOP SOCIALLY AND EMOTIONALLY. THE SUBJECT MATTER OF THE NOTEBOOK IS DIVIDED INTO FOUR MAJOR AREAS--(1)…

  9. Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  10. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  11. Laboratory Safety Awareness Among General Physics Undergraduate Students

    Directory of Open Access Journals (Sweden)

    C. O. Ponferrada

    2017-12-01

    Full Text Available Safety awareness in the laboratory is essential to reduce occupational risks. This study was conducted to determine the students’ safety awareness in a Physics laboratory. This study determined the student perception towards safety awareness by factors of gender and college from which students are enrolled. A sum of 324 students enrolled in Physics10 (Mechanics and Heat and Physics11 (Electricity and Magnetism in the Mindanao University of Science and Technology (MUST were randomly selected as survey respondents. A modified survey questionnaire was used as research instrument. The results show that the students had positive level of safety awareness and perceived positively on the preventive measures to reduce laboratory risk. Further, regardless of gender students enrolled in Physics 10 were more positively aware towards safety awareness than students enrolled in Physics 11. Similarly, a variation among the students perception towards safety awareness from the College of Engineering and Architecture (CEA and College of Industrial and Information Technology (CIIT occurred. Overall, present findings indicate a need to introduce laboratory safety awareness in Physics classes.

  12. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    Science.gov (United States)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  13. Argonne Research Library | Argonne National Laboratory

    Science.gov (United States)

    Argonne Argonne Research Library The Argonne Research Library supports the scientific and technical research needs of Argonne National Laboratory employees. Our library catalog is available via the Research questions or concerns, please contact us at librarians@anl.gov. Contact the Library Argonne Research Library

  14. Sandia National Laboratories: Research: Biodefense

    Science.gov (United States)

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD knowledge to counter disease Sandia conducts research into how pathogens interact and subvert a host's immune response to develop the knowledge base needed to create new novel environmental detectors, medical

  15. Research and Progress on Virtual Cloud Laboratory

    Directory of Open Access Journals (Sweden)

    Zhang Jian Wei

    2016-01-01

    Full Text Available In recent years, cloud computing technology has experienced continuous development and improvement, and has gradually expanded to the education sector. First, this paper will introduce the background knowledge of the current virtual cloud laboratory; by comparing the advantages and disadvantages between traditional laboratory and virtual cloud laboratory, and comparing the application, advantages and disadvantages, and development trend of OpenStack technology and VMWare technology in safety, performance, design, function, use case, and value of virtual cloud laboratory, this paper concludes that application based on OpenStack virtual cloud laboratory in universities and research institutes and other departments is essential.

  16. Examining Summer Laboratory Research Apprenticeships for High School Students as a Factor in Entry to MD/PhD Programs at Matriculation

    Science.gov (United States)

    Tai, Robert H.; Kong, Xiaoqing; Mitchell, Claire E.; Dabney, Katherine P.; Read, Daniel M.; Jeffe, Donna B.; Andriole, Dorothy A.; Wathington, Heather D.

    2017-01-01

    Do summer laboratory research apprenticeships during high school have an impact on entry into MD/PhD programs? Apart from the nearly decade-long span of time between high school and matriculation into an MD/PhD program, young people have many life-shaping experiences that presumably impact their education and career trajectories. This quantitative…

  17. Research laboratories annual report 1994

    International Nuclear Information System (INIS)

    1996-01-01

    The publication is the 1994 annual report of the Israel atomic energy commission in a new format. The report includes three invited papers and a bibliographic list of publications by the commission scientific researches

  18. Research laboratories annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The publication is the 1994 annual report of the Israel atomic energy commission in a new format. The report includes three invited papers and a bibliographic list of publications by the commission scientific researches.

  19. The Binary System Laboratory Activities Based on Students Mental Model

    Science.gov (United States)

    Albaiti, A.; Liliasari, S.; Sumarna, O.; Martoprawiro, M. A.

    2017-09-01

    Generic science skills (GSS) are required to develop student conception in learning binary system. The aim of this research was to know the improvement of students GSS through the binary system labotoratory activities based on their mental model using hypothetical-deductive learning cycle. It was a mixed methods embedded experimental model research design. This research involved 15 students of a university in Papua, Indonesia. Essay test of 7 items was used to analyze the improvement of students GSS. Each items was designed to interconnect macroscopic, sub-microscopic and symbolic levels. Students worksheet was used to explore students mental model during investigation in laboratory. The increase of students GSS could be seen in their N-Gain of each GSS indicators. The results were then analyzed descriptively. Students mental model and GSS have been improved from this study. They were interconnect macroscopic and symbolic levels to explain binary systems phenomena. Furthermore, they reconstructed their mental model with interconnecting the three levels of representation in Physical Chemistry. It necessary to integrate the Physical Chemistry Laboratory into a Physical Chemistry course for effectiveness and efficiency.

  20. Engaging college physics students with photonics research

    Science.gov (United States)

    Adams, Rhys; Chen, Lawrence R.

    2017-08-01

    As educators and researchers in the field of photonics, we find what we do to be very exciting, and sharing this passion and excitement to our university students is natural to us. Via outreach programs and college research funding, a new college and university collaboration has broadened our student audience: photonics is brought into the college classroom and research opportunities are provided to college students. Photonics-themed active learning activities are conducted in the college Waves and Modern Physics class, helping students forge relationships between course content and modern communications technologies. Presentations on photonics research are prepared and presented by the professor and past college student-researchers. The students are then given a full tour of the photonics university laboratories. Furthermore, funds are set aside to give college students a unique opportunity to assist the college professor with experiments during a paid summer research internship.

  1. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    Science.gov (United States)

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-01-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual…

  2. Naval Research Laboratory 1986 Review

    Science.gov (United States)

    1986-01-01

    probabil- infinitesimal impedance elements cannot be dep- ity density, icted .) If PR (r. 1 is the joint probability den- sity function for r and 1, a...Dynamics. 1-5 Sept. 1986, finse Research. Medellin , Colombia. % Rosenblum, L.J., Chairperson, IEEE Computer Saks, N.S., Coorganizer and lecturer, IEEE

  3. Research laboratories annual report 1992

    International Nuclear Information System (INIS)

    1993-07-01

    The report book presents the various research activities within the Israel Atomic Energy Commission, during 1992 calendar year. The discipline reported here are (by chapters): theoretical physics and theoretical chemistry, optics and lasers, solid states and nuclear physics, material sciences, chemistry, radiopharmaceuticals, labelled compounds and environmental studies, radiation effects, dosimetry and protection, instrumentation and techniques

  4. Sandia National Laboratories: Research: Research Foundations: Nanodevices

    Science.gov (United States)

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community support for research; technology advancement and maturation; and small-lot, fast-turn prototyping Our

  5. Research laboratories annual report 1993

    International Nuclear Information System (INIS)

    1994-08-01

    The 1993 annual report of the Israel Atomic Energy Commission presents, in brief and concise form, recent results and achievements of the well established program of the basic and applied research carried out by the scientists and engineers of the Israel Atomic Energy Commission in collaboration with colleagues at the other institutions in Israel and abroad. In terms of contents, the report presents the usual combination of topical basic applied research. Much of the work has been published or submitted for publication in the international scientific or technical literature. The main headings in the report are: theoretical physics and theoretical chemistry; optics and lasers; solid states and nuclear physics; materials sciences; chemistry; environmental studies and radiopharmaceuticals; radiation effects, dosimetry and radioprotection; and instrumentation and techniques

  6. Research laboratories annual report 1987

    International Nuclear Information System (INIS)

    1988-08-01

    The 1987 report reflects a continuation of trends and patterns established in previous years. It does not reveal novel revolutionary developments and does not open new horizons and vistas. Rather, the report represents what we believe is a sound and mature program striving to achieve a proper balance between innovative basic research and economically viable practical applications. In the field of nuclear power, six entries are devoted to an analysis of the economics, safety and vulnerability of HTGR's. Theoretical work on more advanced concepts of hybrid and fusion reactors, is also a part of our research program. In plasma physics, the highly innovative applied topic of electrothermal propulsion was added to the more familiar research on laser induced plasmas and use of cool, low density plasmas to produce coatings and other thin layers of refractory materials. Results from the airborne radiometric survey carried out in collaboration with the Geological Survey of Israel and some of the techniques developed for this purpose are shown here for the first time. Of particular interest are the anomalies found in the Gevanim Valley in the Machtesh Ramon area and their interpretation. Noteworthy achievements in radiopharmaceutics include the development of a new improved 99 Mo/ 99m Tc generator and successful clinical tests of the innovative generator of ultrashort-lived 191m Ir. The food irradiation program has reached the stage of true commercial implementation: over 50 tons of spices and condiments were treated for the food industry in 1987. In the field of non-nuclear applications, important achievements were attained in the development of surgical holmium solid state lasers and their application to gastroenterology, cardiac and vascular surgery, urology, neurosurgery and other disciplines

  7. Laboratory research in homeopathy: pro.

    Science.gov (United States)

    Khuda-Bukhsh, Anisur R

    2006-12-01

    Homeopathy is a holistic method of treatment that uses ultralow doses of highly diluted natural substances originating from plants, minerals, or animals and is based on the principle of "like cures like." Despite being occasionally challenged for its scientific validity and mechanism of action, homeopathy continues to enjoy the confidence of millions of patients around the world who opt for this mode of treatment. Contrary to skeptics' views, research on home-opathy using modern tools mostly tends to support its efficacy and advocates new ideas toward understanding its mechanism of action. As part of a Point-Counterpoint feature, this review and its companion piece in this issue by Moffett et al (Integr Cancer Ther. 2006;5:333-342) are composed of a thesis section, a response section in reaction to the companion thesis, and a rebuttal section to address issues raised in the companion response.

  8. Student Research Projects

    Science.gov (United States)

    Yeske, Lanny A.

    1998-01-01

    Numerous FY1998 student research projects were sponsored by the Mississippi State University Center for Air Sea Technology. This technical note describes these projects which include research on: (1) Graphical User Interfaces, (2) Master Environmental Library, (3) Database Management Systems, (4) Naval Interactive Data Analysis System, (5) Relocatable Modeling Environment, (6) Tidal Models, (7) Book Inventories, (8) System Analysis, (9) World Wide Web Development, (10) Virtual Data Warehouse, (11) Enterprise Information Explorer, (12) Equipment Inventories, (13) COADS, and (14) JavaScript Technology.

  9. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  10. Cyber Defense Research and Monitoring Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility acts as a fusion point for bridging ARL's research in tactical and operational Information Assurance (IA) areas and the development and assessment of...

  11. Location | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  12. Video Episodes and Action Cameras in the Undergraduate Chemistry Laboratory: Eliciting Student Perceptions of Meaningful Learning

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2016-01-01

    A series of quantitative studies investigated undergraduate students' perceptions of their cognitive and affective learning in the undergraduate chemistry laboratory. To explore these quantitative findings, a qualitative research protocol was developed to characterize student learning in the undergraduate chemistry laboratory. Students (N = 13)…

  13. Safe handling of plutonium in research laboratories

    International Nuclear Information System (INIS)

    1976-01-01

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ''Protection of Workers'' at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  14. Safe handling of plutonium in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ``Protection of Workers`` at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  15. Meteorological Development Laboratory Student Career Experience Program

    Science.gov (United States)

    McCalla, C., Sr.

    2007-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) provides weather, hydrologic, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy. The NWS's Meteorological Development Laboratory (MDL) supports this mission by developing meteorological prediction methods. Given this mission, NOAA, NWS, and MDL all have a need to continually recruit talented scientists. One avenue for recruiting such talented scientist is the Student Career Experience Program (SCEP). Through SCEP, MDL offers undergraduate and graduate students majoring in meteorology, computer science, mathematics, oceanography, physics, and statistics the opportunity to alternate full-time paid employment with periods of full-time study. Using SCEP as a recruiting vehicle, MDL has employed students who possess some of the very latest technical skills and knowledge needed to make meaningful contributions to projects within the lab. MDL has recently expanded its use of SCEP and has increased the number of students (sometimes called co- ops) in its program. As a co-op, a student can expect to develop and implement computer based scientific techniques, participate in the development of statistical algorithms, assist in the analysis of meteorological data, and verify forecasts. This presentation will focus on describing recruitment, projects, and the application process related to MDL's SCEP. In addition, this presentation will also briefly explore the career paths of students who successfully completed the program.

  16. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  17. A 13-week research-based biochemistry laboratory curriculum.

    Science.gov (United States)

    Lefurgy, Scott T; Mundorff, Emily C

    2017-09-01

    Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with mutations designed by the students. Ideal enzymes for this curriculum are able to be structurally modeled, solubly expressed, and monitored for activity by UV/Vis spectroscopy, and an example curriculum for haloalkane dehalogenase is given. Unique to this curriculum is a successful implementation of saturation mutagenesis and high-throughput screening of enzyme function, along with bioinformatics analysis, homology modeling, structural analysis, protein expression and purification, polyacrylamide gel electrophoresis, UV/Vis spectroscopy, and enzyme kinetics. Each of these techniques is carried out using a novel student-designed mutant library or enzyme variant unique to the lab team and, importantly, not described previously in the literature. Use of a well-established set of protocols promotes student data quality. Publication may result from the original student-generated hypotheses and data, either from the class as a whole or individual students that continue their independent projects upon course completion. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):437-448, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  18. NASA Ames Fluid Mechanics Laboratory research briefs

    Science.gov (United States)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  19. Investigating Student Perceptions of the Chemistry Laboratory and Their Approaches to Learning in the Laboratory

    Science.gov (United States)

    Berger, Spencer Granett

    This dissertation explores student perceptions of the instructional chemistry laboratory and the approaches students take when learning in the laboratory environment. To measure student perceptions of the chemistry laboratory, a survey instrument was developed. 413 students responded to the survey during the Fall 2011 semester. Students' perception of the usefulness of the laboratory in helping them learn chemistry in high school was related to several factors regarding their experiences in high school chemistry. Students' perception of the usefulness of the laboratory in helping them learn chemistry in college was also measured. Reasons students provided for the usefulness of the laboratory were categorized. To characterize approaches to learning in the laboratory, students were interviewed midway through semester (N=18). The interviews were used to create a framework describing learning approaches that students use in the laboratory environment. Students were categorized into three levels: students who view the laboratory as a requirement, students who believe that the laboratory augments their understanding, and students who view the laboratory as an important part of science. These categories describe the types of strategies students used when conducting experiments. To further explore the relationship between students' perception of the laboratory and their approaches to learning, two case studies are described. These case studies involve interviews in the beginning and end of the semester. In the interviews, students reflect on what they have learned in the laboratory and describe their perceptions of the laboratory environment. In order to encourage students to adopt higher-level approaches to learning in the laboratory, a metacognitive intervention was created. The intervention involved supplementary questions that students would answer while completing laboratory experiments. The questions were designed to encourage students to think critically about the

  20. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  1. Effects of Students' Pre- and Post-Laboratory Concept Maps on Students' Attitudes toward Chemistry Laboratory in University General Chemistry

    Science.gov (United States)

    Kilic, Ziya; Kaya, Osman Nafiz; Dogan, Alev

    2004-01-01

    The purpose of this study was to investigate the effects of scientific discussions based on student-constructed pre- and post-laboratory concept maps on students' attitudes toward chemistry laboratory in the university general chemistry. As part of instruction, during the first four laboratory sessions, students were taught how to construct and…

  2. The effect of restructuring student writing in the general chemistry laboratory on student understanding of chemistry and on students' approach to the laboratory course

    Science.gov (United States)

    Rudd, James Andrew, II

    Many students encounter difficulties engaging with laboratory-based instruction, and reviews of research have indicated that the value of such instruction is not clearly evident. Traditional forms of writing associated with laboratory activities are commonly in a style used by professional scientists to communicate developed explanations. Students probably lack the interpretative skills of a professional, and writing in this style may not support students in learning how to develop scientific explanations. The Science Writing Heuristic (SWH) is an inquiry-based approach to laboratory instruction designed in part to promote student ability in developing such explanations. However, there is not a convincing body of evidence for the superiority of inquiry-based laboratory instruction in chemistry. In a series of studies, the performance of students using the SWH student template in place of the standard laboratory report format was compared to the performance of students using the standard format. The standard reports had Title, Purpose, Procedure, Data & Observations, Calculations & Graphs, and Discussion sections. The SWH reports had Beginning Questions & Ideas, Tests & Procedures, Observations, Claims, Evidence, and Reflection sections. The pilot study produced evidence that using the SWH improved the quality of laboratory reports, improved student performance on a laboratory exam, and improved student approach to laboratory work. A main study found that SWH students statistically exhibited a better understanding of physical equilibrium when written explanations and equations were analyzed on a lecture exam and performed descriptively better on a physical equilibrium practical exam task. In another main study, the activities covering the general equilibrium concept were restructured as an additional change, and it was found that SWH students exhibited a better understanding of chemical equilibrium as shown by statistically greater success in overcoming the common

  3. Developing Guided Inquiry-Based Student Lab Worksheet for Laboratory Knowledge Course

    Science.gov (United States)

    Rahmi, Y. L.; Novriyanti, E.; Ardi, A.; Rifandi, R.

    2018-04-01

    The course of laboratory knowledge is an introductory course for biology students to follow various lectures practicing in the biology laboratory. Learning activities of laboratory knowledge course at this time in the Biology Department, Universitas Negeri Padang has not been completed by supporting learning media such as student lab worksheet. Guided inquiry learning model is one of the learning models that can be integrated into laboratory activity. The study aimed to produce student lab worksheet based on guided inquiry for laboratory knowledge course and to determine the validity of lab worksheet. The research was conducted using research and developmet (R&D) model. The instruments used in data collection in this research were questionnaire for student needed analysis and questionnaire to measure the student lab worksheet validity. The data obtained was quantitative from several validators. The validators consist of three lecturers. The percentage of a student lab worksheet validity was 94.18 which can be categorized was very good.

  4. A biochemistry laboratory course designed to enhance students autonomy

    Directory of Open Access Journals (Sweden)

    T. Silva

    2015-08-01

    Full Text Available INTRODUCTION: Laboratory sessions are responsible for promoting instrumentation skills desirable in biochemistry and biochemistry related careers. They are traditionally based on experimental protocols that lead to the expected results, and students usually have not autonomy to plan and execute their experiments. GOALS: This work aimed to enhance a traditional biochemistry lab course, applying pre-lab quizzes on protein biochemistry and lab techniques in order to have students better prepared to plan, execute and interpret experiments. This approach also aims to bring the laboratory sessions into an inquiry-based environment capable to improve students’ independent capabilities in 2 autonomy domains: learning and communication. MATERIAL AND METHODS: Online quizzes are delivered one week before each laboratory session, containing questions regarding the experimental techniques and theoretical basis related to them. Laboratory activities are presented in an inquiry-based approach where the first class of each activity is dedicated to plan experiments in order to answer the research questions presented by instructors. Activities are also organized in order to enhance students’ autonomy. The first activity is the simplest and more instructor-controlled and the last one is the most complex and less driven, transferring gradually to students the responsibility for their decisions in laboratory, supporting students’ autonomy. RESULTS: Online quizzes allowed instructors to identify students’ difficulties and to timely intervene. Scientific reports presented by students at the end of each activity showed that they performed better on less driven activities in which autonomy support were more complex than in the instructor controlled activities. CONCLUSIONS: Scientific reports analysis reveals students capabilities related to different scopes of autonomy, such as: discuss different strategies; find multiple solutions to solve problems; make their

  5. Development of a Research-Oriented Inorganic Chemistry Laboratory Course

    Science.gov (United States)

    Vallarino, L. M.; Polo, D. L.; Esperdy, K.

    2001-02-01

    We report the development of a research-oriented, senior-level laboratory course in inorganic chemistry, which is a requirement for chemistry majors who plan to receive the ACS-approved Bachelor of Science degree and is a recommended elective for other chemistry majors. The objective of this course is to give all students the advantage of a research experience in which questions stemming from the literature lead to the formulation of hypotheses, and answers are sought through experiment. The one-semester Inorganic Chemistry Laboratory is ideal for this purpose, since for most students it represents the last laboratory experience before graduation and can assume the role of "capstone" course--a course where students are challenged to recall previously learned concepts and skills and put them into practice in the performance of an individual, original research project. The medium chosen for this teaching approach is coordination chemistry, a branch of chemistry that involves the interaction of inorganic and organic compounds and requires the use of various synthetic and analytical methods. This paper presents an outline of the course organization and requirements, examples of activities performed by the students, and a critical evaluation of the first five years' experience.

  6. Idaho National Laboratory Research & Development Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, Nicole [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  7. 1999 LDRD Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  8. Laboratory and cyclotron requirements for PET research

    International Nuclear Information System (INIS)

    Schlyer, D.J.

    1993-01-01

    The requirements for carrying out PET research can vary widely depending on the type of basic research being carried out and the extent of a clinical program at a particular center. The type of accelerator and laboratory facilities will, of course, depend on the exact mix. These centers have been divided into four categories. 1. Clinical PET with no radionuclide production facilities, 2. clinical PET with some radionuclide production facilities, 3. clinical PET with research support, and 4. a PET research facility developing new tracers and exploring clinical applications. Guidelines for the choice of an accelerator based on these categories and the practical yields of the common nuclear reactions for production of PET isotopes have been developed and are detailed. Guidelines as to the size and physical layout of the laboratory space necessary for the synthesis of various radiopharmaceuticals have also been developed and are presented. Important utility and air flow considerations are explored

  9. Occupational radiation exposures in research laboratories

    International Nuclear Information System (INIS)

    Vaccari, S.; Papotti, E.; Pedrazzi, G.

    2006-01-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ( 57 Co in Moessbauer application) and unsealed form ( 3 H, 14 C, 32 P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  10. Occupational radiation exposures in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Vaccari, S.; Papotti, E. [Parma Univ., Health Physics (Italy); Pedrazzi, G. [Parma Univ., Dept. of Public Health (Italy)

    2006-07-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ({sup 57}Co in Moessbauer application) and unsealed form ({sup 3}H, {sup 14}C, {sup 32}P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  11. National Renewable Energy Laboratory 2004 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    In-depth articles on several NREL technologies and advances, including: aligning quantum dots and related nanoscience and nanotechnology research; using NREL's Advanced Automotive Manikin (ADAM) to help test and design ancillary automotive systems; and harvesting ocean wind to generate electricity with deep-water wind turbines. Also covered are NREL news, research updates, and awards and honors received by the Laboratory.

  12. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  13. Research laboratories annual report. 1973 and 1974

    International Nuclear Information System (INIS)

    1975-02-01

    This report presents brief summaries of the research carried out at the Israel A.E.C. laboratories during the two years 1973 and 1974 in the following fields: theoretical physics and chemistry, neutron and reactor physics, solid state physics and metallurgy, laser-induced plasma research, nuclear physics and chemistry, radiation chemistry and applications of radiation and radioisotopes, physical and inorganic chemistry, analytical chemistry, health physics, environmental studies, instrumentation and techniques. (B.G.)

  14. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    Science.gov (United States)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  15. Virtual laboratory for fusion research in Japan

    International Nuclear Information System (INIS)

    Tsuda, K.; Nagayama, Y.; Yamamoto, T.; Horiuchi, R.; Ishiguro, S.; Takami, S.

    2008-01-01

    A virtual laboratory system for nuclear fusion research in Japan has been developed using SuperSINET, which is a super high-speed network operated by National Institute of Informatics. Sixteen sites including major Japanese universities, Japan Atomic Energy Agency and National Institute for Fusion Science (NIFS) are mutually connected to SuperSINET with the speed of 1 Gbps by the end of 2006 fiscal year. Collaboration categories in this virtual laboratory are as follows: the large helical device (LHD) remote participation; the remote use of supercomputer system; and the all Japan ST (Spherical Tokamak) research program. This virtual laboratory is a closed network system, and is connected to the Internet through the NIFS firewall in order to keep higher security. Collaborators in a remote station can control their diagnostic devices at LHD and analyze the LHD data as they were at the LHD control room. Researchers in a remote station can use the supercomputer of NIFS in the same environment as NIFS. In this paper, we will describe detail of technologies and the present status of the virtual laboratory. Furthermore, the items that should be developed in the near future are also described

  16. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  17. Laboratory research irradiators with enhanced security features

    International Nuclear Information System (INIS)

    Srivastava, Piyush

    2016-01-01

    Over the years BRIT has developed state of art technology for laboratory research irradiators which are suited most for carrying out research and development works in the fields of radiation processing. These equipment which house radioactive sources up to 14 kCi are having a number of features to meet users requirements. They are manufactured as per the national and International standards of safety codes. The paper deals with design, development and application aspects of laboratory research irradiator called Gamma Chamber and also the new security features planned for incorporation in the equipment. Equipment are being regularly manufactured, supplied and installed by BRIT in India and Abroad. There is a number of such equipment in use at different institutions and are found to be very useful. (author)

  18. Laboratory research irradiators with enhanced security features

    International Nuclear Information System (INIS)

    Srivastava, Piyush

    2014-01-01

    Over the years BRIT has developed state of art technology for laboratory research irradiators which are suited most for carrying out research and development works in the fields of radiation processing. These equipment which house radioactive sources up to 14 kCi are having a number of features to meet users requirements. They are manufactured as per the national and International standards of safety codes. The paper deals with design, development and application aspects of laboratory research irradiator called Gamma Chamber and also the new security features planned for incorporation in the equipment. Equipment are being regularly manufactured, supplied and installed by BRIT in India and Abroad. There are a number of such equipment in use at different institutions and are found to be very useful. (author)

  19. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  20. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  1. pGLO Mutagenesis: A Laboratory Procedure in Molecular Biology for Biology Students

    Science.gov (United States)

    Bassiri, Eby A.

    2011-01-01

    A five-session laboratory project was designed to familiarize or increase the laboratory proficiency of biology students and others with techniques and instruments commonly used in molecular biology research laboratories and industries. In this project, the EZ-Tn5 transposon is used to generate and screen a large number of cells transformed with…

  2. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    Hansen, Todd; Levy, Karin

    2001-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  3. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  4. Laboratory Directed Research and Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory's core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology

  5. Laboratory directed research and development FY91

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K. (eds.)

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator. (GHH)

  6. Laboratory directed research and development FY91

    International Nuclear Information System (INIS)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K.

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator

  7. National Renewable Energy Laboratory 2003 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2004-04-01

    In-depth articles on several NREL technologies and advances, including: production of hydrogen using renewable resources and technologies; use of carbon nanotubes for storing hydrogen; enzymatic reduction of cellulose to simple sugars as a platform for making fuel, chemicals, and materials; and the potential of electricity from wind energy to offset carbon dioxide emissions. Also covered are NREL news, awards and honors received by the Laboratory, and patents granted to NREL researchers.

  8. Laboratory-directed research and development

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Caughran, A.B.

    1992-05-01

    This report summarizes progress from the Laboratory-Directed Research and Development (LDRD) program during fiscal year 1991. In addition to a programmatic and financial overview, the report includes progress reports from 230 individual R ampersand D projects in 9 scientific categories: atomic and molecular physics; biosciences; chemistry; engineering and base technologies; geosciences; space sciences, and astrophysics; materials sciences; mathematics and computational sciences; nuclear and particle physics; and plasmas, fluids, and particle beams

  9. Bridging the Gap between Instructional and Research Laboratories: Teaching Data Analysis Software Skills through the Manipulation of Original Research Data

    Science.gov (United States)

    Hansen, Sarah J. R.; Zhu, Jieling; Karch, Jessica M.; Sorrento, Cristina M.; Ulichny, Joseph C.; Kaufman, Laura J.

    2016-01-01

    The gap between graduate research and introductory undergraduate teaching laboratories is often wide, but the development of teaching activities rooted within the research environment offers an opportunity for undergraduate students to have first-hand experience with research currently being conducted and for graduate students to develop…

  10. MSU-DOE Plant Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

  11. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  12. Master plan of Mizunami underground research laboratory

    International Nuclear Information System (INIS)

    1999-04-01

    In June 1994, the Atomic Energy Commission of Japan reformulated the Long-Term Programme for Research, Development and Utilisation of Nuclear Energy (LTP). The LTP (item 7, chapter 3) sets out the guidelines which apply to promoting scientific studies of the deep geological environment, with a view to providing a sound basis for research and development programmes for geological disposal projects. The Japan Nuclear Cycle Development Institute (JNC) has been conducting scientific studies of the deep geological environment as part of its Geoscientific Research Programme. The LTP also emphasised the importance of deep underground research facilities in the following terms: Deep underground research facilities play an important role in research relating to geological disposal. They allow the characteristics and features of the geological environment, which require to be considered in performance assessment of disposal systems, to be investigated in situ and the reliability of the models used for evaluating system performance to be developed and refined. They also provide opportunities for carrying out comprehensive research that will contribute to an improved overall understanding of Japan's deep geological environment. It is recommended that more than one facility should be constructed, considering the range of characteristics and features of Japan's geology and other relevant factors. It is important to plan underground research facilities on the basis of results obtained from research and development work already carried out, particularly the results of scientific studies of the deep geological environment. Such a plan for underground research facilities should be clearly separated from the development of an actual repository. JNC's Mizunami underground research laboratory (MIU) Project will be a deep underground research facility as foreseen by the above provisions of the LTP. (author)

  13. Chemistry Students' Challenges in Using MBL's in Science Laboratories.

    Science.gov (United States)

    Atar, Hakan Yavuz

    Understanding students' challenges about using microcomputer based laboratories (MBLs) would provide important data in understanding the appropriateness of using MBLs in high school chemistry laboratories. Identifying students' concerns about this technology will in part help educators identify the obstacles to science learning when using this…

  14. Development of performance assessment instrument based contextual learning for measuring students laboratory skills

    Science.gov (United States)

    Susilaningsih, E.; Khotimah, K.; Nurhayati, S.

    2018-04-01

    The assessment of laboratory skill in general hasn’t specific guideline in assessment, while the individual assessment of students during a performance and skill in performing laboratory is still not been observed and measured properly. Alternative assessment that can be used to measure student laboratory skill is use performance assessment. The purpose of this study was to determine whether the performance assessment instrument that the result of research can be used to assess basic skills student laboratory. This research was conducted by the Research and Development. The result of the data analysis performance assessment instruments developed feasible to implement and validation result 62.5 with very good categories for observation sheets laboratory skills and all of the components with the very good category. The procedure is the preliminary stages of research and development stages. Preliminary stages are divided in two, namely the field studies and literature studies. The development stages are divided into several parts, namely 1) development of the type instrument, 2) validation by an expert, 3) a limited scale trial, 4) large-scale trials and 5) implementation of the product. The instrument included in the category of effective because 26 from 29 students have very high laboratory skill and high laboratory skill. The research of performance assessment instrument is standard and can be used to assess basic skill student laboratory.

  15. National Renewable Energy Laboratory 2005 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  16. How Should Students Learn in the School Science Laboratory? The Benefits of Cooperative Learning

    Science.gov (United States)

    Raviv, Ayala; Cohen, Sarit; Aflalo, Ester

    2017-07-01

    Despite the inherent potential of cooperative learning, there has been very little research into its effectiveness in middle school laboratory classes. This study focuses on an empirical comparison between cooperative learning and individual learning in the school science laboratory, evaluating the quality of learning and the students' attitudes. The research included 67 seventh-grade students who undertook four laboratory experiments on the subject of "volume measuring skills." Each student engaged both in individual and cooperative learning in the laboratory, and the students wrote individual or group reports, accordingly. A total of 133 experiment reports were evaluated, 108 of which also underwent textual analysis. The findings show that the group reports were superior, both in terms of understanding the concept of "volume" and in terms of acquiring skills for measuring volume. The students' attitudes results were statistically significant and demonstrated that they preferred cooperative learning in the laboratory. These findings demonstrate that science teachers should be encouraged to implement cooperative learning in the laboratory. This will enable them to improve the quality and efficiency of laboratory learning while using a smaller number of experimental kits. Saving these expenditures, together with the possibility to teach a larger number of students simultaneously in the laboratory, will enable greater exposure to learning in the school science laboratory.

  17. Effect of a Virtual Chemistry Laboratory on Students' Achievement

    Science.gov (United States)

    Tatli, Zeynep; Ayas, Alipasa

    2013-01-01

    It is well known that laboratory applications are of significant importance in chemistry education. However, laboratory applications have generally been neglected in recent educational environments for a variety of reasons. In order to address this gap, this study examined the effect of a virtual chemistry laboratory (VCL) on student achievement…

  18. Research Opportunities at Storm Peak Laboratory

    Science.gov (United States)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation of 3210 m MSL (Borys and Wetzel, 1997). SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. The ridge-top location produces almost daily transition from free tropospheric to boundary layer air which occurs near midday in both summer and winter seasons. Long-term observations at SPL document the role of orographically induced mixing and convection on vertical pollutant transport and dispersion. During winter, SPL is above cloud base 25% of the time, providing a unique capability for studying aerosol-cloud interactions (Borys and Wetzel, 1997). A comprehensive set of continuous aerosol measurements was initiated at SPL in 2002. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a cold room for precipitation and cloud rime ice sample handling and ice crystal microphotography, a 150 m2 roof deck area for outside sampling equipment, a full kitchen and two bunk rooms with sleeping space for nine persons. The laboratory is currently well equipped for aerosol and cloud measurements. Particles are sampled from an insulated, 15 cm diameter manifold within approximately 1 m of its horizontal entry point through an outside wall. The 4 m high vertical section outside the building is capped with an inverted can to exclude large particles.

  19. Laboratory Directed Research and Development FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A. [eds.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  20. Laboratory Directed Research and Development FY 1992

    International Nuclear Information System (INIS)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-01-01

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation's only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible

  1. New working paradigms in research laboratories.

    Science.gov (United States)

    Keighley, Wilma; Sewing, Andreas

    2009-07-01

    Work in research laboratories, especially within centralised functions in larger organisations, is changing fast. With easier access to external providers and Contract Research Organisations, and a focus on budgets and benchmarking, scientific expertise has to be complemented with operational excellence. New concepts, globally shared projects and restricted resources highlight the constraints of traditional operating models working from Monday to Friday and nine to five. Whilst many of our scientists welcome this new challenge, organisations have to enable and foster a more business-like mindset. Organisational structures, remuneration, as well as systems in finance need to be adapted to build operations that are best-in-class rather than merely minimising negative impacts of current organisational structures.

  2. Bulletin of the Research Laboratory for Nuclear Reactors

    International Nuclear Information System (INIS)

    Aritomi, Masanori

    2008-01-01

    The bulletin consists of two parts. The first part includes General Research Report. The Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology has three engineering divisions such as Energy Engineering, Mass Transmutation Engineering, and System and Safety Engineering. In this part, 17 reports of Energy Engineering division, 8 reports of Mass transmutation Engineering division, 11 reports of System and Safety Engineering division are described as their activities. In addition, 3 reports of Cooperative Researches are also summarized. The second part is Special Issue about COE-INES RESEARCH REPORT 2007. In this part, 3 reports of Innovative Reactor Group, 2 reports of Innovative Nuclear Energy Utilization System Group, 3 reports of Innovative Transmutation/Separation Group, 2 reports of Relationship between Nuclear and Society Group, 1 report of RA Students in the COE-INES Captainship Educational Program are described as results to their researches. (J.P.N.)

  3. Bringing ayahuasca to the clinical research laboratory.

    Science.gov (United States)

    Riba, Jordi; Barbanoj, Manel J

    2005-06-01

    Since the winter of 1999, the authors and their research team have been conducting clinical studies involving the administration of ayahuasca to healthy volunteers. The rationale for conducting this kind of research is twofold. First, the growing interest of many individuals for traditional indigenous practices involving the ingestion of natural psychotropic drugs such as ayahuasca demands the systematic study of their pharmacological profiles in the target species, i.e., human beings. The complex nature of ayahuasca brews combining a large number of pharmacologically active compounds requires that research be carried out to establish the safety and overall pharmacological profile of these products. Second, the authors believe that the study of psychedelics in general calls for renewed attention. Although the molecular and electrophysiological level effects of these drugs are relatively well characterized, current knowledge of the mechanisms by which these compounds modify the higher order cognitive processes in the way they do is still incomplete, to say the least. The present article describes the development of the research effort carried out at the Autonomous University of Barcelona, commenting on several methodological aspects and reviewing the basic clinical findings. It also describes the research currently underway in our laboratory, and briefly comments on two new studies we plan to undertake in order to further our knowledge of the pharmacology of ayahuasca.

  4. Safety Teams: An Approach to Engage Students in Laboratory Safety

    Science.gov (United States)

    Alaimo, Peter J.; Langenhan, Joseph M.; Tanner, Martha J.; Ferrenberg, Scott M.

    2010-01-01

    We developed and implemented a yearlong safety program into our organic chemistry lab courses that aims to enhance student attitudes toward safety and to ensure students learn to recognize, demonstrate, and assess safe laboratory practices. This active, collaborative program involves the use of student "safety teams" and includes…

  5. Students' Framing of Laboratory Exercises Using Infrared Cameras

    Science.gov (United States)

    Haglund, Jesper; Jeppsson, Fredrik; Hedberg, David; Schönborn, Konrad J.

    2015-01-01

    Thermal science is challenging for students due to its largely imperceptible nature. Handheld infrared cameras offer a pedagogical opportunity for students to see otherwise invisible thermal phenomena. In the present study, a class of upper secondary technology students (N = 30) partook in four IR-camera laboratory activities, designed around the…

  6. Students' Written Arguments in General Chemistry Laboratory Investigations

    Science.gov (United States)

    Choi, Aeran; Hand, Brian; Greenbowe, Thomas

    2013-01-01

    This study aimed to examine the written arguments developed by college freshman students using the Science Writing Heuristic approach in inquiry-based general chemistry laboratory classrooms and its relationships with students' achievement in chemistry courses. Fourteen freshman students participated in the first year of the study while 19…

  7. A Laboratory to Teach Leadership to Undergraduate Students

    DEFF Research Database (Denmark)

    Pelzmann, Sabine; Winkler, Ingo

    2014-01-01

    This article reports on a leadership laboratory provided as an elective within a Bachelor degree programme in Business Administration. The core understanding of this laboratory was that people can learn leadership. Moreover, the laboratory built on the assumption that an experienced-based approac...... to learn about leadership offers many advantages to leadership novices, in this case students without prior work experience.......This article reports on a leadership laboratory provided as an elective within a Bachelor degree programme in Business Administration. The core understanding of this laboratory was that people can learn leadership. Moreover, the laboratory built on the assumption that an experienced-based approach...

  8. National Storage Laboratory: a collaborative research project

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  9. Students' motivation toward laboratory work in physiology teaching.

    Science.gov (United States)

    Dohn, Niels Bonderup; Fago, Angela; Overgaard, Johannes; Madsen, Peter Teglberg; Malte, Hans

    2016-09-01

    The laboratory has been given a central role in physiology education, and teachers report that it is motivating for students to undertake experimental work on live animals or measuring physiological responses on the students themselves. Since motivation is a critical variable for academic learning and achievement, then we must concern ourselves with questions that examine how students engage in laboratory work and persist at such activities. The purpose of the present study was to investigate how laboratory work influences student motivation in physiology. We administered the Lab Motivation Scale to assess our students' levels of interest, willingness to engage (effort), and confidence in understanding (self-efficacy). We also asked students about the role of laboratory work for their own learning and their experience in the physiology laboratory. Our results documented high levels of interest, effort, and self-efficacy among the students. Correlation analyses were performed on the three motivation scales and exam results, yet a significant correlation was only found between self-efficacy in laboratory work and academic performance at the final exam. However, almost all students reported that laboratory work was very important for learning difficult concepts and physiological processes (e.g., action potential), as the hands-on experiences gave a more concrete idea of the learning content and made the content easier to remember. These results have implications for classroom practice as biology students find laboratory exercises highly motivating, despite their different personal interests and subject preferences. This highlights the importance of not replacing laboratory work by other nonpractical approaches, for example, video demonstrations or computer simulations. Copyright © 2016 The American Physiological Society.

  10. A wonderful laboratory and a great researcher

    Science.gov (United States)

    Sheikh, N. M.

    2004-05-01

    It was great to be associated with Prof. Dr. Karl Rawer. He devoted his life to make use of the wonderful laboratory of Nature, the Ionosphere. Through acquisition of the experimental data from AEROS satellites and embedding it with data from ground stations, it was possible to achieve a better empirical model, the International Reference Ionosphere. Prof. Dr. Karl Rawer has been as dynamic as the Ionosphere. His vision about the ionospheric data is exceptional and has helped the scientific and engineering community to make use of his vision in advancing the dimensions of empirical modelling. As a human being, Prof. Dr. Karl Rawer has all the traits of an angel from Heaven. In short he developed a large team of researchers forming a blooming tree from the parent node. Ionosphere still plays an important role in over the horizon HF Radar and GPs satellite data reduction.

  11. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in

  12. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  13. Effective Laboratory Work in Biochemistry Subject: Students' and Lecturers' Perspective in Indonesia

    Science.gov (United States)

    Anwar, Yunita Arian Sani; Senam; Laksono F. X., Endang Widjajanti

    2017-01-01

    Biochemistry subject had problem in learning and teaching, especially in laboratory work. We explored laboratory learning implementation in Biochemistry subject. Participants of this research were 195 students who took biochemistry subject and 4 lecturers of biochemistry in three universities in Indonesia. We obtained data using questionnaires and…

  14. Role of Skill Laboratory Training in Medical Education - Students Perspective

    International Nuclear Information System (INIS)

    Hashim, R.; Qamar, K.; Rehman, S.; Khan, M. A.

    2016-01-01

    Objective: To evaluate the perceptions of medical students regarding their training utilizing facilities provided in the skill laboratory of a public sector medical college. Study Design: Cross-sectional study. Place and Duration of Study: Army Medical College, Rawalpindi, from October to December 2014. Methodology: Students of final year MBBS who had underwent skill laboratory training were recruited through convenience purposive sampling. Students not exposed to skill laboratory training were excluded. Data collection tool was a questionnaire having 23 questions with responses on Likert Scale as strongly disagree, disagree, agree and strongly agree coded as 1, 2, 3 and 4, respectively. Data was analysed on SPSS version 22. Results: There were 78 (57 percent) male and 59 (43 percent) female students out of 137, with mean age of 22.59 ± 0.74 years. The response rate was 68.5 percent. Cronbach's Alpha test was 0.84 showing high reliability. The mean of sum of all the 23 items was 63.85 ± 8.71, whereas item means was 2.78 ± 0.38, reflecting a high inclination of students towards skill laboratory training. Frequency of students responding in favour of skill laboratory training was significantly high (p < 0.05). Conclusion: Medical students perceived skill laboratory training as a favoured learning strategy as compared to practising on real patients for acquisition of various aspects of clinical skills, knowledge and attitude. (author)

  15. Argonne National Laboratory Research Highlights 1988

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The research and development highlights are summarized. The world's brightest source of X-rays could revolutionize materials research. Test of a prototype insertion device, a key in achieving brilliant X-ray beams, have given the first glimpse of the machine's power. Superconductivity research focuses on the new materials' structure, economics and applications. Other physical science programs advance knowledge of material structures and properties, nuclear physics, molecular structure, and the chemistry and structure of coal. New programming approaches make advanced computers more useful. Innovative approaches to fighting cancer are being developed. More experiments confirm the passive safety of Argonne's Integral Fast Reactor concept. Device simplifies nuclear-waste processing. Advanced fuel cell could provide better mileage, more power than internal combustion engine. New instruments find leaks in underground pipe, measure sodium impurities in molten liquids, detect flaws in ceramics. New antibody findings may explain ability to fight many diseases. Cadmium in cigarettes linked to bone loss in women. Programs fight deforestation in Nepal. New technology could reduce acid rain, mitigate greenhouse effect, enhance oil recovery. Innovative approaches transfer Argonne-developed technology to private industry. Each year Argonne educational programs reach some 1200 students

  16. Tritium Research Laboratory safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D.A.

    1979-03-01

    Design and operational philosophy has been evolved to keep radiation exposures to personnel and radiation releases to the environment as low as reasonably achievable. Each experiment will be doubly contained in a glove box and will be limited to 10 grams of tritium gas. Specially designed solid-hydride storage beds may be used to store temporarily up to 25 grams of tritium in the form of tritides. To evaluate possible risks to the public or the environment, a review of the Sandia Laboratories Livermore (SLL) site was carried out. Considered were location, population, land use, meteorology, hydrology, geology, and seismology. The risks and the extent of damage to the TRL and vital systems were evaluated for flooding, lightning, severe winds, earthquakes, explosions, and fires. All of the natural phenomena and human error accidents were considered credible, although the extent of potential damage varied. However, rather than address the myriad of specific individual consequences of each accident scenario, a worst-case tritium release caused indirectly by an unspecified natural phenomenon or human error was evaluated. The maximum credible radiological accident is postulated to result from the release of the maximum quantity of gas from one experiment. Thus 10 grams of tritium gas was used in the analysis to conservatively estimate the maximum whole-body dose of 1 rem at the site boundary and a maximum population dose of 600 man-rem. Accidental release of this amount of tritium implies simultaneous failure of two doubly contained systems, an occurrence considered not credible. Nuclear criticality is impossible in this facility. Based upon the analyses performed for this report, we conclude that the Tritium Research Laboratory can be operated without undue risk to employees, the general public, or the environment. (ERB)

  17. Tritium Research Laboratory safety analysis report

    International Nuclear Information System (INIS)

    Wright, D.A.

    1979-03-01

    Design and operational philosophy has been evolved to keep radiation exposures to personnel and radiation releases to the environment as low as reasonably achievable. Each experiment will be doubly contained in a glove box and will be limited to 10 grams of tritium gas. Specially designed solid-hydride storage beds may be used to store temporarily up to 25 grams of tritium in the form of tritides. To evaluate possible risks to the public or the environment, a review of the Sandia Laboratories Livermore (SLL) site was carried out. Considered were location, population, land use, meteorology, hydrology, geology, and seismology. The risks and the extent of damage to the TRL and vital systems were evaluated for flooding, lightning, severe winds, earthquakes, explosions, and fires. All of the natural phenomena and human error accidents were considered credible, although the extent of potential damage varied. However, rather than address the myriad of specific individual consequences of each accident scenario, a worst-case tritium release caused indirectly by an unspecified natural phenomenon or human error was evaluated. The maximum credible radiological accident is postulated to result from the release of the maximum quantity of gas from one experiment. Thus 10 grams of tritium gas was used in the analysis to conservatively estimate the maximum whole-body dose of 1 rem at the site boundary and a maximum population dose of 600 man-rem. Accidental release of this amount of tritium implies simultaneous failure of two doubly contained systems, an occurrence considered not credible. Nuclear criticality is impossible in this facility. Based upon the analyses performed for this report, we conclude that the Tritium Research Laboratory can be operated without undue risk to employees, the general public, or the environment

  18. Researching Student Motivation

    Science.gov (United States)

    Alkaabi, Sultan Ali R.; Alkaabi, Warda; Vyver, Glen

    2017-01-01

    Motivation has been studied by different scientists in different fields of knowledge such as biology, psychology, and education for a long period, which has cultivated a wealth of knowledge in these disciplines. The richness in motivation theories poses complexity in motivation research. Due to these complexities, many researchers focus on using a…

  19. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  20. From Cookbook to Research: Redesigning an Advanced Biochemistry Laboratory

    Science.gov (United States)

    Boyd-Kimball, Debra; Miller, Keith R.

    2018-01-01

    Laboratory courses are often designed using step-by-step protocols which encourage students to conduct experiments without thinking about what they are doing or why they are doing it. Such course design limits the growth of our students as scientists and can make it more difficult for a student to transition to the expectations of a research…

  1. Research Laboratory of Mixed Radiation Dosimetry

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: Two main topics of the research work in the Laboratory of Mixed Radiation Dosimetry in 2001 were: development of recombination methods for dosimetry of mixed radiation fields and maintenance and development of unique in Poland reference neutron fields. Additionally research project on internal dosimetry were carried out in collaboration with Division of Radiation Protection Service. RECOMBINATION METHODS Recombination methods make use of the fact that the initial recombination of ions in the gas cavity of the ionization chamber depends on local ionization density. The later can be related to linear energy transfer (LET) and provides information on radiation quality of the investigated radiation fields. Another key feature of the initial recombination is that it does not depend of dose rate. Conditions of initial (local) recombination can be achieved in specially designed high pressure tissue-equivalent ionization chambers, called the recombination chambers. They are usually parallel-plate ionization chambers filled with a tissue-equivalent gas mixture under a pressure of order 1 MPa. The spacing between electrodes is of order of millimeters. At larger spacing, the volume recombination limits the maximum dose rate at which the chamber can be properly operated. The output of the chamber is the ionization current (or collected charge) as a function of collecting voltage. All the recombination methods require the measurement of the ionization current (or charge) at least at two values of the collecting voltage applied to the chamber. The highest voltage should provide the conditions close to saturation (but below discharge or multiplication). The ionization current measured at maximum applied voltage is proportional to the absorbed dose, D, (some small corrections for lack of saturation can be introduced when needed). Measurements at other voltages are needed for the determination of radiation quality. The total dose equivalent in a mixed radiation field is

  2. A comparison of student reactions to biology instruction by interactive videodisc or conventional laboratory

    Science.gov (United States)

    Leonard, William H.

    This study was designed to learn if students perceived an interactive computer/videodisc learning system to represent a viable alternative to (or extension of) the conventional laboratory for learning biology skills and concepts normally taught under classroom laboratory conditions. Data were collected by questionnaire for introductory biology classes at a large midwestern university where students were randomly assigned to two interactive videodisc/computer lessons titled Respiration and Climate and Life or traditional laboratory investigation with the same titles and concepts. The interactive videodisc system consisted of a TRS-80 Model III microcomputer interfaced to a Pioneer laser-disc player and a color TV monitor. Students indicated an overall level satisfaction with this strategy very similar to that of conventional laboratory instruction. Students frequently remarked that videodisc instruction gave them more experimental and procedural options and more efficient use of instructional time than did the conventional laboratory mode. These two results are consistent with past CAI research. Students also had a strong perception that the images on the videodisc were not real and this factor was perceived as having both advantages and disadvantages. Students found the two approaches to be equivalent to conventional laboratory instruction in the areas of general interest, understanding of basic principles, help on examinations, and attitude toward science. The student-opinion data in this study do not suggest that interactive videodisc technology serve as a substitute to the wet laboratory experience, but that this medium may enrich the spectrum of educational experiences usually not possible in typical classroom settings.

  3. Students' Understanding and Perceptions of Assigned Team Roles in a Classroom Laboratory Environment

    Science.gov (United States)

    Ott, Laura E.; Kephart, Kerrie; Stolle-McAllister, Kathleen; LaCourse, William R.

    2018-01-01

    Using a cooperative learning framework in a quantitative reasoning laboratory course, students were assigned to static teams of four in which they adopted roles that rotated regularly. The roles included: team leader, protocol manager, data recorder, and researcher. Using a mixed-methods approach, we investigated students' perceptions of the team…

  4. Implementing a Student-Designed Green Chemistry Laboratory Project in Organic Chemistry

    Science.gov (United States)

    Graham, Kate J.; Jones, T. Nicholas; Schaller, Chris P.; McIntee, Edward J.

    2014-01-01

    A multiweek organic chemistry laboratory project is described that emphasizes sustainable practices in experimental design. An emphasis on student-driven development of the project is meant to mirror the independent nature of research. Students propose environmentally friendly modifications of several reactions. With instructor feedback, students…

  5. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  6. A General Chemistry Laboratory Course Designed for Student Discussion

    Science.gov (United States)

    Obenland, Carrie A.; Kincaid, Kristi; Hutchinson, John S.

    2014-01-01

    We report a study of the general chemistry laboratory course at one university over four years. We found that when taught as a traditional laboratory course, lab experiences do not encourage students to deepen their understanding of chemical concepts. Although the lab instructor emphasized that the lab experiences were designed to enhance…

  7. Agreed Discoveries: Students' Negotiations in a Virtual Laboratory Experiment

    Science.gov (United States)

    Karlsson, Goran; Ivarsson, Jonas; Lindstrom, Berner

    2013-01-01

    This paper presents an analysis of the scientific reasoning of a dyad of secondary school students about the phenomenon of dissolution of gases in water as they work on this in a simulated laboratory experiment. A web-based virtual laboratory was developed to provide learners with the opportunity to examine the influence of physical factors on gas…

  8. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    Science.gov (United States)

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.

  9. Research and Progress on Virtual Cloud Laboratory

    OpenAIRE

    Zhang Jian Wei; Shang Zhi Hui; Yuan Chen; Ma Lin Lin; Cai Zeng Yu; Hu Chun Hui

    2016-01-01

    In recent years, cloud computing technology has experienced continuous development and improvement, and has gradually expanded to the education sector. First, this paper will introduce the background knowledge of the current virtual cloud laboratory; by comparing the advantages and disadvantages between traditional laboratory and virtual cloud laboratory, and comparing the application, advantages and disadvantages, and development trend of OpenStack technology and VMWare technology in safety,...

  10. Network Science Research Laboratory (NSRL) Discrete Event Toolkit

    Science.gov (United States)

    2016-01-01

    ARL-TR-7579 ● JAN 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Discrete Event Toolkit by...Laboratory (NSRL) Discrete Event Toolkit by Theron Trout and Andrew J Toth Computational and Information Sciences Directorate, ARL...Research Laboratory (NSRL) Discrete Event Toolkit 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Theron Trout

  11. Students' Motivation toward Laboratory Work in Physiology Teaching

    Science.gov (United States)

    Dohn, Niels Bonderup; Fago, Angela; Overgaard, Johannes; Madsen, Peter Teglberg; Malte, Hans

    2016-01-01

    The laboratory has been given a central role in physiology education, and teachers report that it is motivating for students to undertake experimental work on live animals or measuring physiological responses on the students themselves. Since motivation is a critical variable for academic learning and achievement, then we must concern ourselves…

  12. Welded rupture disc assemblies for use in Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Faltings, R.E.

    1976-01-01

    Welded rupture disc assemblies were investigated and developed in various ranges for probable use by experimenters in their activities in the Tritium Research Laboratory at Sandia Laboratories, Livermore. This study indicates that currently welded rupture disc assemblies with appropriate testing and installation by certified pressure installers may be used in pressure systems in the Tritium Research Laboratory and other areas at SLL

  13. Science laboratory behavior strategies of students relative to performance in and attitude to laboratory work

    Science.gov (United States)

    Okebukola, Peter Akinsola

    The relationship between science laboratory behavior strategies of students and performance in and attitude to laboratory work was investigated in an observational study of 160 laboratory sessions involving 600 class five (eleventh grade) biology students. Zero-order correlations between the behavior strategies and outcome measures reveal a set of low to strong relationships. Transmitting information, listening and nonlesson related behaviors exhibited low correlations with practical skills and the attitude measure. The correlations between manipulating apparatus and observation with practical skills measures were found to be strong. Multiple correlation analysis revealed that the behaviors of students in the laboratories observed accounted for a large percentage of the variance in the scores on manipulative skills and a low percentage on interpretation of data, responsibility, initiative, and work habits. One significant canonical correlation emerged. The loadings on this canonical variate indicate that the practical skills measures, i.e., planning and design, manipulative skills and conduct of experiments, observation and recording of data, and attitude to laboratory work made primary contributions to the canonical relationship. Suggestions as to how students can be encouraged to go beyond cookbook-like laboratories and develop a more favorable attitude to laboratory work are made.

  14. Research at the Oak Ridge National Laboratory (ORNL)

    International Nuclear Information System (INIS)

    Postma, H.

    1980-01-01

    The Oak Ridge National Laboratory is a large (5300 people), US-government-funded laboratory, which performs research in many disciplines and in many technological areas. Programs and organization of ORNL are described for the People's Republic of China

  15. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    Science.gov (United States)

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  16. Development and Assessment of Green, Research-Based Instructional Materials for the General Chemistry Laboratory

    Science.gov (United States)

    Cacciatore, Kristen L.

    2010-01-01

    This research entails integrating two novel approaches for enriching student learning in chemistry into the context of the general chemistry laboratory. The first is a pedagogical approach based on research in cognitive science and the second is the green chemistry philosophy. Research has shown that inquiry-based approaches are effective in…

  17. Undergraduate medical research: the student perspective.

    LENUS (Irish Health Repository)

    Burgoyne, Louise N

    2010-01-01

    Research training is essential in a modern undergraduate medical curriculum. Our evaluation aimed to (a) gauge students\\' awareness of research activities, (b) compare students\\' perceptions of their transferable and research-specific skills competencies, (c) determine students\\' motivation for research and (d) obtain students\\' personal views on doing research.

  18. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings; Amendment The... Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development...

  19. The Swedish Research Councils' Laboratory progress report for 1975

    International Nuclear Information System (INIS)

    Rudstam, G.

    1976-01-01

    The Swedish Research Councils' Laboratory herewith presents its progress report for 1975. The report summarizes the current projects carried out by the research groups working at the laboratory. The very efficient assistance of the staff of the laboratory is greatfully acknowledged. The laboratory has been financially supported by the Atomic Research Council, the Medical Research Council, the Natural Science Research Council, and the Board of Technical Development. Valuable support in various ways has also been given by the Atomic Energy Company (AB Atomenergi). (author)

  20. Research report 1987-1989: Environmental Quality Laboratory and Environmental Engineering Science, W. M. Keck Laboratories

    OpenAIRE

    Brooks, Norman H.

    1990-01-01

    This research biennial report for 1987-89 covers the activities of both the Environmental Engineering Science program and the Environmental Quality Laboratory for the period October 1987-November 1989. Environmental Engineering Science is the degree-granting academic program housed in the Keck Laboratories, with associated research projects. The Environmental Quality Laboratory is a research center focusing on large scale problems of environmental quality and natural resources. All the facult...

  1. Gamification of the Laboratory Experience to Encourage Student Engagement

    Directory of Open Access Journals (Sweden)

    Kevin Drace

    2013-08-01

    Full Text Available The American Society for Microbiology (ASM Task Force on Curriculum Guidelines for Undergraduate Microbiology Students published recommendations for introductory microbiology courses that suggest teaching specific skill sets in the laboratory beyond just fundamental knowledge and concepts of microbiology (6; however, students can sometimes view a skills-based laboratory experience as a task list of unrelated assignments to complete for a grade. Therefore, providing explicit connections throughout the lecture and laboratory exercises is critical for a truly integrated learning experience. Several pedagogical techniques can provide a coherent framework throughout a course. For example, case-based studies can connect lecture with laboratory skills and increase student engagement by applying newly developed knowledge and skills to tackle real-world simulations (2, 3. One reason that case-based studies succeed is that they can provide intrinsic motivations and an alternate purpose for students to engage with the material. A more recent trend in pedagogy involves using game design elements to increase student engagement and motivation. Gamification is the application of game design (accruing points or badges, reaching significant levels of accomplishment, or other reward elements in a non-game context to motivate or influence participation (1, 5. A natural extension of both of these methods is to gamify a case-based approach where a fictional scenario is presented for students to role-play as scientists using their developed skills to solve a complex problem. The typical microbiology laboratory, as described by the ASM Task Force, can easily incorporate game design elements without extensive modification of the exercises themselves. Instead, gamification involves structuring the lab in a way that gives the course a coherent and unified purpose. This ultimately allows the student to see how the principles and concepts of lecture and laboratory connect

  2. Guided-inquiry based laboratory instruction: Investigation of critical thinking skills, problem solving skills, and implementing student roles in chemistry

    Science.gov (United States)

    Gupta, Tanya

    Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with peers and in facilitation by the instructor. A student-centered active learning approach may be an effective way to enhance student understanding of concepts in the laboratory. The dissertation research work explores the impact of laboratory instruction and its relevance for college-level chemistry. Each chapter is different from the preceding chapter in terms of the purpose of the study and the research questions asked. However, the overarching idea is to address the importance of guided-inquiry based laboratory instruction in chemistry and its relevance in helping students to make connections with the chemistry content and in imparting skills to students. Such skills include problem solving, collaborative group work and critical thinking. The first research study (Chapter 2) concerns the impact of first year co-requisite general chemistry laboratory instruction on the problem-solving skills of students. The second research study (Chapter 3) examines the impact of implementing student roles also known as Student-Led Instructor Facilitated Guided-Inquiry based Laboratories, SLIFGIL) by modifying the Science Writing Heuristic approach of laboratory instruction. In the third research study (Chapter 4), critical thinking skills of first semester general chemistry laboratory students were compared to advanced (third or fourth year) chemistry laboratory students based on the analysis of their laboratory reports.

  3. Mobile teleoperator research at Savannah River Laboratory

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1985-01-01

    A Robotics Technology Group was organized at Savannah River Laboratory to employ modern automation and robotics for applications at the Savannah River site. Several industrial robots have been installed in plant processes. Other robotics systems are under development in the laboratories, including mobile teleoperators for general remote tasks and emergency response operations. This paper discusses present work on a low-cost wheeled mobile vehicle, a modular light duty manipulator arm, a large gantry telerobot system, and a high technology six-legged walking robot with a teleoperated arm

  4. The Expectations of Teachers and Students Who Visit a Non-Formal Student Chemistry Laboratory

    Science.gov (United States)

    Garner, Nicole; Eilks, Ingo

    2015-01-01

    Non-formal student laboratory environments for primary and secondary school science education have become a major trend in the German educational arena in recent years. These non-formal student laboratory environments are thought to offer unique experimental learning experiences that often cannot be realized in daily school routines. The biggest…

  5. Identification of the students' critical thinking skills through biochemistry laboratory work report

    Science.gov (United States)

    Anwar, Yunita Arian Sani; Senam, Laksono, Endang W.

    2017-08-01

    This work aims to (1) identify the critical thinking skills of student based on their ability to set up laboratory work reports, and (2) analyze the implementation of biochemistry laboratory work. The method of quantitative content analysis was employed. Quantitative data were in the form of critical thinking skills through the assessment of students' laboratory work reports and questionnaire data. Hoyo rubric was used to measure critical thinking skills with 10 indicators, namely clarity, accuracy, precision, consistency, relevance, evidence, reason, depth, breadth, and fairness. The research sample consisted of 105 students (35 male, 70 female) of Mataram University who took a Biochemistry course and 2 lecturers of Biochemistry course. The results showed students' critical thinking skills through laboratory work reports were still weak. Analysis of the questionnaire showed that three indicators become the biggest problems during the laboratory work implementation, namely, lecturers' involved in laboratory work implementation, the integration of laboratory work implementation of learning in the classroom has not been done optimally and laboratory work implementation as an effort to train critical thinking skills is not optimal yet.

  6. Student Understanding of Time in an Introductory Astronomy Laboratory

    Science.gov (United States)

    Traxler, A. L.; Batuski, D. J.; Comins, N. F.; Thompson, J. R.

    2005-09-01

    The astronomy lab at the University of Maine consists of discrete weekly lessons in which students work in small groups. Individual pretests and post-tests accompany each lesson. The lesson studied here covers the topic of time, including sidereal time, Apparent Solar Time, and time zones. The pretest consists of four multiple-choice questions, which are also administered after instruction as a post-test. In the fall 2004 semester, the pretest was rewritten to focus on some major conceptual components of the lab, while the lesson materials were not modified from previous years. Examination of class performance (n = 96) revealed no significant improvements in score from pre- to post-lesson. In the spring 2005 semester, the lesson was altered to incorporate the Starry Night software for simulating the sky instead of the celestial sphere models previously used. The goal of the change was to give students a more interactive environment for completing the laboratory exercise, which was otherwise altered as little as possible. Data from the spring semester show some gains on the pre/post-test questions covering sidereal time and Daylight Savings Time. Results to date have informed planned modifications to the lesson. A. L. T. was supported during this research by the University of Maine through a Provost Fellowship.

  7. Teaching Laboratory and Research Skills as Preparation for Careers in Science and Education

    Science.gov (United States)

    Thoms, Brian

    2007-03-01

    Recipients of bachelor's degrees in physics have identified lab skills, team work, and research skills as abilities necessary for success in their jobs. However, they also report having received less than adequate preparation in these areas during their college careers. We report on the redesign of a junior physics-major modern physics laboratory course into an inquiry-based, research-like laboratory course. The overall strategy was such as to require the students to approach the experiments in a research-like fashion. In addition, experiments which explore materials properties which can't be looked up in textbooks, e.g. Hall Effect, have been added to further emphasize a research-like approach to the investigations. Laboratory reporting requirements were written to closely reproduce current practices in scientific journals. Assessment of the redesign was performed through surveys of current and graduated students and through comparison of laboratory reports.

  8. Ultra-Short-Pulse Laser Effects Research and Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables research into advanced laser countermeasure techniques.DESCRIPTION: This laser facility has a capability to produce very high peak power levels of...

  9. Solar Radiation Research Laboratory | Energy Systems Integration Facility |

    Science.gov (United States)

    Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar continuous operation. More than 75 instruments contribute to the Baseline Measurement System by recording

  10. Design and testing of a compact X-ray diode. 1998 summer research program for high school juniors at the University of Rochester's Laboratory for Laser Energetics. Student research reports

    International Nuclear Information System (INIS)

    Stern, A.

    1999-03-01

    Omega, the University of Rochester's high powered laser dedicated to fusion research gives off x-rays with different energy levels. Measuring the number of x-rays and the energy of each is important in understanding what happens in the target chamber when Omega is fired. Existing x-ray detectors are expensive, big, and cumbersome. Imaging detectors such as x-ray pinhole cameras which record onto film, x-ray framing cameras which make videos, and most often, x-ray streak cameras which measure time dependences of x-rays. They require a lot of maintenance and are difficult to keep operational. Lawrence Livermore National Laboratory has developed the Dante Diode. The Dante diode array on Omega functions as a group of 12 diodes which take up a 24 inch port in the target chamber, making it space-consuming and difficult to move for alternate views. In designing a new detector, space was the main issue. The smallest possible functional diode, without losing accuracy was desired. Since the laser pulse only lasts a few nanoseconds it is important that the x-ray detector have a response time of a few tenths of a nanosecond. Other criteria include that it be easy to use for measuring the energy and number of x-ray photons and that cost be kept down. This report discusses the design process and testing of the new diode

  11. Sandia, California Tritium Research Laboratory transition and reutilization project

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T.B. [Sandia National Lab., Albuquerque, NM (United States)

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  12. Student laboratory reports: an approach to improving feedback and quality

    Science.gov (United States)

    Ellingsen, Pål Gunnar; Støvneng, Jon Andreas

    2018-05-01

    We present an ongoing effort in improving the quality of laboratory reports written by first and second year physics students. The effort involves a new approach where students are given the opportunity to submit reports at intermediate deadlines, receive feedback, and then resubmit for the final deadline. In combination with a differential grading system, instead of pass/fail, the improved feedback results in higher quality reports. Improvement in the quality of the reports is visible through the grade statistics.

  13. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1992

    International Nuclear Information System (INIS)

    1993-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1992 are summarized. In this Laboratory, there are four large research facilities, that are, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of research by using respective research facilities have been summarized in separate reports. The course of the management and operation of each research facility is described, and the research activities, the theses for doctorate and graduation these of teachers, personnel and graduate students in the Laboratory are summarized. (J.P.N.)

  14. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  15. Full-participation of students with physical disabilities in science and engineering laboratories.

    Science.gov (United States)

    Jeannis, Hervens; Joseph, James; Goldberg, Mary; Seelman, Katherine; Schmeler, Mark; Cooper, Rory A

    2018-02-01

    To conduct a literature review identifying barriers and facilitators students with physical disabilities (SwD-P) may encounter in science and engineering (S&E) laboratories. Publications were identified from 1991 to 2015 in ERIC, web of science via web of knowledge, CINAHL, SCOPUS, IEEEXplore, engineering village, business source complete and PubMed databases using search terms and synonyms for accommodations, advanced manufacturing, additive manufacturing, assistive technology (AT), barriers, engineering, facilitators, instructor, laboratory, STEM education, science, students with disabilities and technology. Twenty-two of the 233 publications that met the review's inclusion criteria were examined. Barriers and facilitators were grouped based on the international classification of functioning, disability and health framework (ICF). None of the studies directly found barriers or facilitators to SwD-P in science or engineering laboratories within postsecondary environments. The literature is not clear on the issues specifically related to SwD-P. Given these findings, further research (e.g., surveys or interviews) should be conducted to identify more details to obtain more substantial information on the barriers that may prevent SwD-P from fully participating in S&E instructional laboratories. Implications for Rehabilitation Students with disabilities remain underrepresented going into STEM careers. A need exist to help uncover barriers students with disabilities encounter in STEM laboratory. Environments. Accommodations and strategies that facilitate participation in STEM laboratory environments are promising for students with disabilities.

  16. Laboratory Directed Research and Development FY-10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  17. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  18. Senior Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  19. Use and Acceptance of Information and Communication Technology Among Laboratory Science Students

    Science.gov (United States)

    Barnes, Brenda C.

    Online and blended learning platforms are being promoted within laboratory science education under the assumption that students have the necessary skills to navigate online and blended learning environments. Yet little research has examined the use of information and communication technology (ICT) among the laboratory science student population. The purpose of this correlational, survey research study was to explore factors that affect use and acceptance of ICT among laboratory science students through the theoretical lens of the unified theory of acceptance and use of technology (UTAUT) model. An electronically delivered survey drew upon current students and recent graduates (within 2 years) of accredited laboratory science training programs. During the 4 week data collection period, 168 responses were received. Results showed that the UTAUT model did not perform well within this study, explaining 25.2% of the variance in use behavior. A new model incorporating attitudes toward technology and computer anxiety as two of the top variables, a model significantly different from the original UTAUT model, was developed that explained 37.0% of the variance in use behavior. The significance of this study may affect curriculum design of laboratory science training programs wanting to incorporate more teaching techniques that use ICT-based educational delivery, and provide more options for potential students who may not currently have access to this type of training.

  20. Laboratory Directed Research and Development annual report, fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  1. Laboratory 3.0: Manufacturing Technologies Laboratory Virtualization with a Student-Centred Methodology

    Science.gov (United States)

    Fabregat-Sanjuan, Albert; Pàmies-Vilà, Rosa; Ferrando Piera, Francesc; De la Flor López, Silvia

    2017-01-01

    This paper presents a blended-learning strategy for improving the teaching method applied in the laboratory subject Manufacturing Technologies. The teaching method has been changed from a predominantly teacher-centred to an active learning system with a student-centred focus and e-learning activities. In face-to-face classes, a game-based learning…

  2. Student perceptions of the clinical laboratory science profession.

    Science.gov (United States)

    McClure, Karen

    2009-01-01

    The purpose of this paper is to describe the attitudes and perceptions among college biology and CLS/CLT students. These students were on selected college campuses at Texas universities in Houston, Dallas and the Austin/San Antonio areas for the Spring 2007 semester. Specifically, students were questioned on factors that influence their choice of field of study, career expectations, legislative measures which might be used to attract individuals to the career, and factors that will be required to keep them in the field of practice. This study was part of a larger qualitative study which included exploratory discovery and inductive logic regarding the attitudes of four focus groups in Texas. Focus groups took place on college campuses or in hotel conference rooms. (1) junior/senior-level college biology students and (2) junior/senior-level students currently enrolled in CLS/CLT programs. Focus group discussions using a standard set of questions; group sessions lasted about 45 minutes. This study was a qualitative study which included exploratory discovery and inductive logic regarding the attitudes of two groups in Texas. College biology and CLS/CLT students find the clinical laboratory science profession to be interesting and exciting as a career prospect, however, many do not see themselves remaining in the profession and perceive it does not have good prospects for career advancement. The majority of students must work to support themselves through their college education and would welcome additional grants, scholarships and loan forgiveness programs as incentives to study the clinical laboratory sciences. Students believe that additional recruitment on high school and college campuses is needed to increase the visibility of the field as career choice. The majority of students who are entering the clinical laboratory science profession do not see the profession as their final career choice, but rather a stepping stone to another career field in healthcare or a

  3. New Laboratory Course for Senior-Level Chemical Engineering Students

    Science.gov (United States)

    Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J.

    2009-01-01

    A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…

  4. Effluent-Monitoring Procedures: Basic Laboratory Skills. Student Reference Manual.

    Science.gov (United States)

    Engel, William T.; And Others

    This is one of several short-term courses developed to assist in the training of waste water treatment plant operational personnel in the tests, measurements, and report preparation required for compliance with their NPDES Permits. This Student Reference Manual provides a review of basic mathematics as it applies to the chemical laboratory. The…

  5. Differentiating Biochemistry Course Laboratories Based on Student Experience

    Science.gov (United States)

    Jakubowski, Henry V.

    2011-01-01

    Content and emphases in undergraduate biochemistry courses can be readily tailored to accommodate the standards of the department in which they are housed, as well as the backgrounds of the students in the courses. A more challenging issue is how to construct laboratory experiences for a class with both chemistry majors, who usually have little or…

  6. Preparing clinical laboratory science students with teaching skills.

    Science.gov (United States)

    Isabel, Jeanne M

    2010-01-01

    Training clinical laboratory science (CLS) students in techniques of preparation and delivery of an instructional unit is an important component of all CLS education programs and required by the national accrediting agency. Participants of this study included students admitted to the CLS program at Northern Illinois University and enrolled in the teaching course offered once a year between the years of 1997 and 2009. Courses on the topic of "teaching" may be regarded by CLS students as unnecessary. However, entry level practitioners are being recruited to serve as clinical instructors soon after entering the workforce. Evaluation of the data collected indicates that students are better prepared to complete tasks related to instruction of a topic after having an opportunity to study and practice skills of teaching. Mentoring CLS students toward the career role of clinical instructor or professor is important to maintaining the workforce.

  7. Laboratory Technology Research: Abstracts of FY 1996 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  8. Laboratory 3.0: Manufacturing technologies laboratory virtualization with a student-centred methodology

    Directory of Open Access Journals (Sweden)

    Albert Fabregat-Sanjuan

    2017-06-01

    Full Text Available This paper presents a blended-learning strategy for improving the teaching method applied in the laboratory subject Manufacturing Technologies. The teaching method has been changed from a predominantly teacher-centred to an active learning system with a student-centred focus and e-learning activities. In face-to-face classes, a game-based learning platform has been used. This methodology ensured engaging classes at the same time that provided a useful live feedback for students and teachers. The virtualization of the laboratory was achieved by two different e-learning activities, self-assessment tasks and video clips. These e-learning tools have been used not only to improve the students’ learning but also to enhance their motivation. The results from academic outputs show a significant improvement after the new blended learning method is applied. Moreover, a student satisfaction survey shows the positive impact of the methodology on the students’ engagement and motivation.

  9. Students integrate knowledge acquisition and practical work in the laboratory.

    Science.gov (United States)

    Agüera, E I; Sánchez-Hermosín, P; Díz-Pérez, J; Tovar, P; Camacho, R; Escribano, B M

    2015-09-01

    The aim of the present work was to transfer a wider concept of teamwork and self-learning to the laboratory, encouraging students' capabilities when seeking, acquiring, and processing knowledge. This educational innovation was carried out with a total of 38 students (fourth year of degree in Biology) in the area of physiology (Advances in Reproduction course) at University of Córdoba in Córdoba, Spain. The design of the project's application methodology consisted of establishing a way in which problems would be tackled in the practical classes. For this purpose, the different tasks were set up so that students could relate them to the concepts learned in the theory classes. On the first day of class, the project was presented to the students. Groups of two to three students worked in the laboratory and set up an outline of the protocol of the practical work that they had done. This outline was performed individually and sent to the lecturers through a learning management system (Moodle). The teachers gave feedback and assessed student submissions. Upon finishing the course, students completed a survey. The project-based learning method promotes practical self-learning on the part of students. This methodology demonstrated to us that it stimulates a critical and self-critical capacity in students, both individually and in groups, and that writing didactic practical material helped students to enhance their theory knowledge. The experiment was a success in view of the scores obtained upon finishing the subject. Copyright © 2015 The American Physiological Society.

  10. Safeguards research at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Dunn, D.R.; Huebel, J.G.; Poggio, A.J.

    1980-01-01

    The LLL safeguards research program includes inspection methods, facility assessment methodologies, value-impact analysis, vulnerability analysis of accounting systems, compliance with regulations, process monitoring, etc. Each of those projects is described as are their goals and progress

  11. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  12. Translating University Biosensor Research to a High School Laboratory Experience

    Science.gov (United States)

    Heldt, Caryn L.; Bank, Alex; Turpeinen, Dylan; King, Julia A.

    2016-01-01

    The need to increase science, technology, engineering, and mathematics (STEM) graduates is great. To interest more students into STEM degrees, we made our graphene biosensor research portable, inexpensive, and safe to demonstrate technology development to high school students. The students increased their knowledge of biosensors and proteins, and…

  13. [Guidelines for blood transfusion teaching to medical laboratory technology students].

    Science.gov (United States)

    Moncharmont, P; Tourlourat, M; Fourcade, C; Julien, E; Peyrard, T; Cabaud, J-J

    2012-02-01

    The new French law about clinical laboratory medicine, the requirements of the ISO/CEI 15189 standard, the numerous abilities expected from the medical laboratory technologists and their involvement in blood bank management has led the working group "Recherche et démarche qualité" of the French Society of Blood Transfusion to initiate an inventory of blood transfusion teaching syllabus for medical laboratory technology students and to propose transfusion medicine teaching guidelines. Seven worksheets have been established for that purpose including red blood cell antigen typing and antibody screening, blood sampling in immunohaematology, automation, clinical practices, blood products, blood delivery and haemovigilance. These guidelines aim at contributing to the harmonization of transfusion medicine teaching and at providing objective elements to the medical laboratory managers regarding the practical and theoretical skills of theirs collaborators. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. Laboratory Directed Research and Development Annual Report FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O.

    2018-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  15. Laboratory Directed Research and Development Annual Report FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  16. Walking the bridge: Nursing students' learning in clinical skill laboratories.

    Science.gov (United States)

    Ewertsson, Mona; Allvin, Renée; Holmström, Inger K; Blomberg, Karin

    2015-07-01

    Despite an increasing focus on simulation as a learning strategy in nursing education, there is limited evidence on the transfer of simulated skills into clinical practice. Therefore it's important to increase knowledge of how clinical skills laboratories (CSL) can optimize students' learning for development of professional knowledge and skills, necessary for quality nursing practice and for patient safety. Thus, the aim was to describe nursing students' experiences of learning in the CSL as a preparation for their clinical practice. Interviews with 16 students were analysed with content analysis. An overall theme was identified - walking the bridge - in which the CSL formed a bridge between the university and clinical settings, allowing students to integrate theory and practice and develop a reflective stance. The theme was based on categories: conditions for learning, strategies for learning, tension between learning in the skills laboratory and clinical settings, and development of professional and personal competence. The CSL prepared the students for clinical practice, but a negative tension between learning in CSL and clinical settings was experienced. However, this tension may create reflection. This provides a new perspective that can be used as a pedagogical approach to create opportunities for students to develop their critical thinking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Development of an Assessment Tool to Measure Students' Meaningful Learning in the Undergraduate Chemistry Laboratory

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Research on learning in the undergraduate chemistry laboratory necessitates an understanding of students' perspectives of learning. Novak's Theory of Meaningful Learning states that the cognitive (thinking), affective (feeling), and psychomotor (doing) domains must be integrated for meaningful learning to occur. The psychomotor domain is the…

  18. Purification and Characterization of Taq Polymerase: A 9-Week Biochemistry Laboratory Project for Undergraduate Students

    Science.gov (United States)

    Bellin, Robert M.; Bruno, Mary K.; Farrow, Melissa A.

    2010-01-01

    We have developed a 9-week undergraduate laboratory series focused on the purification and characterization of "Thermus aquaticus" DNA polymerase (Taq). Our aim was to provide undergraduate biochemistry students with a full-semester continuing project simulating a research-like experience, while having each week's procedure focus on a single…

  19. Podcast Effectiveness as Scaffolding Support for Students Enrolled in First-Semester General Chemistry Laboratories

    Science.gov (United States)

    Powell, Mary Cynthia Barton

    2010-01-01

    Podcasts covering essential first-semester general chemistry laboratory techniques and central concepts that aid in experimental design or data processing were prepared and made available for students to access on an as-needed basis on iPhones [arrow right] or iPod touches [arrow right]. Research focused in three areas: the extent of podcast…

  20. Naval Research Laboratory Fact Book 2012

    Science.gov (United States)

    2012-11-01

    markets NRL’s patented inventions, negotiates patent license agreements under which the Navy grants a licensee the right to make, use, and sell NRL...Sr. Licensing Associate Social Media Marketing Associate Licensing Associate Management Analyst Administrative Assistant (SCEP) Administrative...ADMINISTRATIVE OFFICE SENIOR SCIENTIST FOR SUN-EARTH SYSTEMS RESEARCH 7605 GEOSPACE SCIENCE AND TECHNOLOGY BRANCH 7630 SPACE TEST PROGRAM ( STP

  1. Teacher Research Programs = Increased Student Achievement

    Science.gov (United States)

    Dubner, J.

    2011-12-01

    Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university professional development programs for science teachers in the U.S. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University's research faculty. In addition to the laboratory experience, all teachers meet weekly during the summer for a series of pedagogical activities to assist them in transferring the experience to their classrooms. The primary goal of the program is to provide K-12 science teachers with opportunities to work at the cutting edge of science and engineering, and thus to revitalize their teaching and help them to appreciate the use of inquiry-based methods in their classroom instruction. The secondary goals of the program are to give the pre-college teacher the ability to guide their students toward careers in science and engineering, to develop new teaching strategies, and to foster long-term scholarly collaborations. The last is especially important as it leads to a model of the teacher as active in science yet committed to the pre-college classroom. Since its inception, SRP has focused on an objective assessment of the program's impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors' laboratories, and most importantly, on the impact of their participation in the program has on student interest and performance in science. Our research resulted in a paper published in the journal Science. SRP also facilitates a multi-site survey-based evaluation of other teacher research programs around the country. The author will present the findings of both studies.

  2. Questioning Behavior of Students in the Inquiry Chemistry Laboratory: Differences between Sectors and Genders in the Israeli Context

    Science.gov (United States)

    Blonder, Ron; Rap, Shelley; Mamlok-Naaman, Rachel; Hofstein, Avi

    2015-01-01

    The present research is part of a longitude research study regarding the questioning behavior of students in the inquiry chemistry laboratory in Israel. We found that students who were involved in learning chemistry by the inquiry method ask more and higher-level questions. However, throughout the years, we have observed that differences between…

  3. The Conceptions of Learning Science by Laboratory among University Science-Major Students: Qualitative and Quantitative Analyses

    Science.gov (United States)

    Chiu, Yu-Li; Lin, Tzung-Jin; Tsai, Chin-Chung

    2016-01-01

    Background: The sophistication of students' conceptions of science learning has been found to be positively related to their approaches to and outcomes for science learning. Little research has been conducted to particularly investigate students' conceptions of science learning by laboratory. Purpose: The purpose of this research, consisting of…

  4. Network Science Research Laboratory (NSRL) Telemetry Warehouse

    Science.gov (United States)

    2016-06-01

    Development of an architectural framework to validate performance of a distributed trust management protocol, called trustd, required a high...all of the most popular programming languages currently in use, including Java , Python, and C#. Work is underway to provide Python bindings to the...client library. NSRL researchers plan to develop Python and Java wrappers for this library. Sensors must obtain an experiment session token in

  5. Air Force Research Laboratory Technology Milestones 2007

    Science.gov (United States)

    2007-01-01

    alertness. For more information contact7 publicaffairs@afosraf.mil , (703)696-7797 ....... F d ed Researc ers Develop New Software Model to Improve Aircraft...and replacing conventional tail control surfaces with more innovative control U effectors. m For more information contact 22 afri. rb. marketing ...City, New Jersey). U For more information contact 23 ofr1.rb, marketing @wpafb.afmi1 (937)255-2074 AFRL Researchers Perform Functionally - Graded Material

  6. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  7. Finding viscosity of liquids from Brownian motion at students' laboratory

    International Nuclear Information System (INIS)

    Greczylo, Tomasz; Debowska, Ewa

    2005-01-01

    Brownian motion appears to be a good subject for investigation at advanced students' laboratory [1]. The paper presents such an investigation carried out in Physics Laboratory II at the Institute of Experimental Physics of Wroclaw University. The experiment has been designed to find viscosity of liquids from Brownian motion phenomenon. Authors use modern technology that helps to proceed with measurements and makes the procedure less time and effort consuming. Discussion of the process of setting up the experiment and the results obtained for three different solutions of glycerin in water are presented. Advantages and disadvantages of the apparatus are pointed out along with descriptions of possible future uses

  8. Using Intersectionality in Student Affairs Research

    Science.gov (United States)

    Strayhorn, Terrell L.

    2017-01-01

    This chapter presents intersectionality as a useful heuristic for conducting research in higher education and student affairs contexts. Much more than just another theory, intersectionality can powerfully shape student affairs research in both obvious and tacit ways.

  9. Student Poster Days Showcase Young Researchers | Poster

    Science.gov (United States)

    Student interns presented their research to the NCI at Frederick community during the annual Student Poster Days event, held in the Building 549 lobby and the Advanced Technology Research Facility (ATRF) atrium over two days.

  10. Adverse reproduction outcomes among employees working in biomedical research laboratories

    DEFF Research Database (Denmark)

    Wennborg, H.; Bonde, Jens Peter; Stenbeck, M.

    2002-01-01

    Objectives The aim of the study was to investigate reproductive outcomes such as birthweight, preterm births, and postterm births among women working in research laboratories while pregnant. Methods Female university personnel were identified from a source cohort of Swedish laboratory employees...

  11. Laboratory Directed Research and Development Program Assessment for FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  12. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  13. Radiotracer laboratory for agricultural research at the Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Nashriyah Mat; Misman Sumin; Maizatul Akmam Mhd Nasir

    2007-01-01

    Radiotracer Laboratory for agricultural research at the Malaysian Nuclear Agency was established since 1990. It accommodates three laboratories, three chemical temporary storage compartments plus one compartment for storage of pressurized gas. This facility is situated in ground floor of Block 44, Agrotechnology and Biosciences Division, Dengkil Complex. Currently it houses a liquid scintillation counter, sample oxidizer, gas liquid chromatography, high performance liquid chromatography and auxiliary equipments. A road map for this laboratory will be discussed in relation with present scenario i.e. R and D service, training and consultancy provided by this laboratory; and future requirements and direction. (Author)

  14. Laboratory Works Designed for Developing Student Motivation in Computer Architecture

    Directory of Open Access Journals (Sweden)

    Petre Ogrutan

    2017-02-01

    Full Text Available In light of the current difficulties related to maintaining the students’ interest and to stimulate their motivation for learning, the authors have developed a range of new laboratory exercises intended for first-year students in Computer Science as well as for engineering students after completion of at least one course in computers. The educational goal of the herein proposed laboratory exercises is to enhance the students’ motivation and creative thinking by organizing a relaxed yet competitive learning environment. The authors have developed a device including LEDs and switches, which is connected to a computer. By using assembly language, commands can be issued to flash several LEDs and read the states of the switches. The effectiveness of this idea was confirmed by a statistical study.

  15. Argonne National Laboratory research offers clues to Alzheimer's plaques

    CERN Multimedia

    2003-01-01

    Researchers from Argonne National Laboratory and the University of Chicago have developed methods to directly observe the structure and growth of microscopic filaments that form the characteristic plaques found in the brains of those with Alzheimer's Disease (1 page).

  16. Laboratory directed research and development 2006 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  17. Global Impact | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Through its direct support of clinical research, Frederick National Laboratory activities are not limited to national programs. The labis actively involved in more than 400 domestic and international studies related to cancer; influenza, HIV, E

  18. Earth System Research Laboratory Long-Term Surface Aerosol Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerosol measurements began at the NOAA Earth System Research Laboratory (ESRL) Global Monitoring Division (GMD) baseline observatories in the mid-1970's with the...

  19. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  20. Laboratory Directed Research and Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1992-12-01

    This report briefly discusses the following research: Advances in Geoexploration; Transvenous Coronary Angiography with Synchrotron X-Rays; Borehole Measurements of Global Warming; Molecular Ecology: Development of Field Methods for Microbial Growth Rate and Activity Measurements; A New Malaria Enzyme - A Potential Source for a New Diagnostic Test for Malaria and a Target for a New Antimalarial Drug; Basic Studies on Thoron and Thoron Precursors; Cloning of the cDNA for a Human Serine/Threonine Protein Kinase that is Activated Specifically by Double-Stranded DNA; Development of an Ultra-Fast Laser System for Accelerator Applications; Cluster Impact Fusion; Effect of a Bacterial Spore Protein on Mutagenesis; Structure and Function of Adenovirus Penton Base Protein; High Resolution Fast X-Ray Detector; Coherent Synchrotron Radiation Longitudinal Bunch Shape Monitor; High Grain Harmonic Generation Experiment; BNL Maglev Studies; Structural Investigations of Pt-Based Catalysts; Studies on the Cellular Toxicity of Cocaine and Cocaethylene; Human Melanocyte Transformation; Exploratory Applications of X-Ray Microscopy; Determination of the Higher Ordered Structure of Eukaryotic Chromosomes; Uranium Neutron Capture Therapy; Tunneling Microscopy Studies of Nanoscale Structures; Nuclear Techiques for Study of Biological Channels; RF Sources for Accelerator Physics; Induction and Repair of Double-Strand Breaks in the DNA of Human Lymphocytes; and An EBIS Source of High Charge State Ions up to Uranium

  1. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1992-12-01

    This report briefly discusses the following research: Advances in Geoexploration; Transvenous Coronary Angiography with Synchrotron X-Rays; Borehole Measurements of Global Warming; Molecular Ecology: Development of Field Methods for Microbial Growth Rate and Activity Measurements; A New Malaria Enzyme - A Potential Source for a New Diagnostic Test for Malaria and a Target for a New Antimalarial Drug; Basic Studies on Thoron and Thoron Precursors; Cloning of the cDNA for a Human Serine/Threonine Protein Kinase that is Activated Specifically by Double-Stranded DNA; Development of an Ultra-Fast Laser System for Accelerator Applications; Cluster Impact Fusion; Effect of a Bacterial Spore Protein on Mutagenesis; Structure and Function of Adenovirus Penton Base Protein; High Resolution Fast X-Ray Detector; Coherent Synchrotron Radiation Longitudinal Bunch Shape Monitor; High Grain Harmonic Generation Experiment; BNL Maglev Studies; Structural Investigations of Pt-Based Catalysts; Studies on the Cellular Toxicity of Cocaine and Cocaethylene; Human Melanocyte Transformation; Exploratory Applications of X-Ray Microscopy; Determination of the Higher Ordered Structure of Eukaryotic Chromosomes; Uranium Neutron Capture Therapy; Tunneling Microscopy Studies of Nanoscale Structures; Nuclear Techiques for Study of Biological Channels; RF Sources for Accelerator Physics; Induction and Repair of Double-Strand Breaks in the DNA of Human Lymphocytes; and An EBIS Source of High Charge State Ions up to Uranium.

  2. Students' Understanding and Perceptions of Assigned Team Roles in a Classroom Laboratory Environment

    Science.gov (United States)

    Ott, Laura E.; Kephart, Kerrie; Stolle-McAllister, Kathleen; LaCourse, William R.

    2018-01-01

    Using a cooperative learning framework in a quantitative reasoning laboratory course, students were assigned to static teams of four in which they adopted roles that rotated regularly. The roles included: team leader, protocol manager, data recorder, and researcher. Using a mixed-methods approach, we investigated students' perceptions of the team roles and specifically addressed students' understanding of the roles, students' beliefs in their ability to enact the roles, and whether working with assigned team roles supported the teams to work effectively and cohesively. Although students expressed confidence in their understanding of the team roles, their understanding differed from the initial descriptions. This suggests that students' understanding of team roles may be influenced by a variety of factors, including their experiences within their teams. Students also reported that some roles appeared to lack a purpose, implying that for roles to be successful, they must have a clear purpose. Finally, the fact that many students reported ignoring the team roles suggests that students do not perceive roles as a requirement for team productivity and cohesion. On the basis of these findings, we provide recommendations for instructors wishing to establish a classroom group laboratory environment. PMID:29681667

  3. Space Station life science research facility - The vivarium/laboratory

    Science.gov (United States)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  4. Infusing Bioinformatics and Research-Like Experience into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Nogaj, Luiza A.

    2014-01-01

    A nine-week laboratory project designed for a sophomore level molecular biology course is described. Small groups of students (3-4 per group) choose a tumor suppressor gene (TSG) or an oncogene for this project. Each group researches the role of their TSG/oncogene from primary literature articles and uses bioinformatics engines to find the gene…

  5. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    Science.gov (United States)

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  6. Using Green Chemistry Principles as a Framework to Incorporate Research into the Organic Laboratory Curriculum

    Science.gov (United States)

    Lee, Nancy E.; Gurney, Rich; Soltzberg, Leonard

    2014-01-01

    Despite the accepted pedagogical value of integrating research into the laboratory curriculum, this approach has not been widely adopted. The activation barrier to this change is high, especially in organic chemistry, where a large number of students are required to take this course, special glassware or setups may be needed, and dangerous…

  7. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  8. 1995 Laboratory-Directed Research and Development Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  9. 1995 Laboratory-Directed Research and Development Annual report

    International Nuclear Information System (INIS)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-01-01

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy

  10. Design study of underground facility of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Hibiya, Keisuke; Akiyoshi, Kenji; Ishizuka, Mineo; Anezaki, Susumu

    1998-03-01

    Geoscientific research program to study deep geological environment has been performed by Power Reactor and Nuclear Fuel Development Corporation (PNC). This research is supported by 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. An Underground Research Laboratory is planned to be constructed at Shoma-sama Hora in the research area belonging to PNC. A wide range of geoscientific research and development activities which have been previously studied at the Tono Area is planned in the laboratory. The Underground Research Laboratory is consisted of Surface Laboratory and Underground Research Facility located from the surface down to depth between several hundreds and 1,000 meters. Based on the results of design study in last year, the design study performed in this year is to investigate the followings in advance of studies for basic design and practical design: concept, design procedure, design flow and total layout. As a study for the concept of the underground facility, items required for the facility are investigated and factors to design the primary form of the underground facility are extracted. Continuously, design methods for the vault and the underground facility are summarized. Furthermore, design procedures of the extracted factors are summarized and total layout is studied considering the results to be obtained from the laboratory. (author)

  11. LDRD 2013 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-12-31

    This LDRD project establishes a research program led by Jingguang Chen, who has started a new position as a Joint Appointee between BNL and Columbia University as of FY2013. Under this project, Dr. Chen will establish a new program in catalysis science at BNL and Columbia University. The LDRD program will provide initial research funding to start research at both BNL and Columbia. At BNL, Dr. Chen will initiate laboratory research, including hiring research staff, and will collaborate with the existing BNL catalysis and electrocatalysis research groups. At Columbia, a subcontract to Dr. Chen will provide startup funding for his laboratory research, including initial graduate student costs. The research efforts will be linked under a common Catalysis Program in Sustainable Fuels. The overall impact of this project will be to strengthen the BNL catalysis science program through new linked research thrusts and the addition of an internationally distinguished catalysis scientist.

  12. Joint reactor laboratory course for students in KUCA

    International Nuclear Information System (INIS)

    Misawa, Tsuyoshi; Unesaki, Hironobu; Ichihara, Chihiro; Pyeon Cheol Ho; Shiroya, Seiji

    2004-06-01

    This book is a revised version of Joint Reactor Laboratory Course for Students, which we have given over 30 years from 1975 at Kyoto University Critical Assembly (KUCA). The major objective of this course is to help the students for understanding the essence of nuclear reactor physics through the experiments carried out in KUCA C-core. At the same time, it is expected that by the end of the course the students will be able to obtain good and fruitful results by their efforts through this course. This textbook is composed of these following chapters; Introduction to Kyoto University Critical Assembly (KUCA). Chapter 1: Approach to Criticality. Chapter 2: Control Rod Calibration. Chapter 3: Measurement of Reaction Rate Distribution. Chapter 4: Neutron Correlation Experiment Feynman-α Method. Chapter 5: Measurement of Reactivity by the Pulsed Neutron Method. Chapter 6: Reactor Operation Training (Reactor Operation for Education). (author)

  13. Joint reactor laboratory course for students in KUCA

    International Nuclear Information System (INIS)

    Misawa, Tsuyoshi; Unesaki, Hironobu; Ichihara, Chihiro; Pyeon Cheol Ho; Shiroya, Seiji

    2004-04-01

    This book is based on Joint Reactor Laboratory Course for Students, which we have given over 30 years from 1975 at Kyoto University Critical Assembly (KUCA), and is one translated from Japanese into English. The major objective of this course is to help the students for understanding the essence of nuclear reactor physics through the experiments carried out in KUCA C-core. At the same time, it is expected that by the end of the course the students will be able to obtain good and fruitful results by their efforts through this course. This textbook is composed of these following chapters; Introduction to Kyoto University Critical Assembly (KUCA). Chapter 1: Approach to Criticality. Chapter 2: Control Rod Calibration. Chapter 3: Measurement of Reaction Rate Distribution. Chapter 4: Neutron Correlation Experiment Feynman-α Method. Chapter 5: Measurement of Reactivity by the Pulsed Neutron Method. (author)

  14. Laboratory directed research and development annual report: Fiscal year 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  15. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  16. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  17. Idaho National Laboratory Directed Research and Development FY-2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  18. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-04-06

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research.... Neurobiology-D June 10, 2011 Crowne Plaza DC/Silver Spring. Clinical Research Program June 13, 2011 VA Central...

  19. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-11-07

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research..., behavioral, and clinical science research. The panel meetings will be open to the public for approximately...

  20. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-09-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... Crowne Plaza Clinical Research Program December 3, 2010 *VA Central Office Mental Hlth & Behav Sci-A...

  1. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-04-16

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... biomedical, behavioral and clinical science research. The panel meetings will be open to the public for...

  2. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... & Behav Sci-A June 7, 2010 L'Enfant Plaza Hotel. Clinical Research Program June 9, 2010 *VA Central Office...

  3. Laboratory Directed Research and Development annual report, Fiscal year 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER ampersand D, as well as other discretionary research and development activities not provided for in a DOE program.'' Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL's LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  4. Laboratory Directed Research and Development annual report, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  5. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  6. Tensions within an industrial research laboratory: the Philips laboratory's x-ray department between the wars

    NARCIS (Netherlands)

    Boersma, F.K.

    2003-01-01

    Tensions arose in the X-ray department of the Philips research laboratory during the interwar period, caused by the interplay among technological development, organizational culture, and individual behavior. This article traces the efforts of Philips researchers to find a balance between their

  7. Laboratory services series: the utilization of scientific glassblowing in a national research and development laboratory

    International Nuclear Information System (INIS)

    Farnham, R.M.; Poole, R.W.

    1976-04-01

    Glassblowing services at a national research and development laboratory provide unique equipment tailored for specific research efforts, small-scale process items for flowsheet demonstrations, and solutions for unusual technical problems such as glass-ceramic unions. Facilities, equipment, and personnel necessary for such services are described

  8. Energy engineering: Student-researcher collaboration

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Beckowska, Patrycja Maria

    2013-01-01

    This article reports on cooperation methods between researchers and students at different levels. Levels included in this work are BSc, MSc and PhD student levels. At Aalborg University, Department of Energy Technology education and research are closely linked. The relationship between student...

  9. Research Skills Development in Higher Education Students

    Science.gov (United States)

    Bergamini, Tiziana Priede; Navarro, Cristina Lopez-Cozar

    2014-01-01

    This case study presents the development of a research project in a third-year undergraduate course, Family Business Administration. The research project aimed at promoting research skills in students. The authors formed working groups of no more than six students, and each group had to select an original research topic after conducting a…

  10. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  11. Computer-aided design and modeling of nickel dithiolene near-infrared dyes. 1998 summer research program for high school juniors at the University of Rochester's Laboratory for Laser Energetics. Student research reports

    International Nuclear Information System (INIS)

    Corsello, S.

    1999-03-01

    Recent advances in computational chemistry have made it feasible to design many types of molecules and predict their properties theoretically. The author applied these techniques to the design of organometallic transition-metal dyes absorbing in the near-infrared region of the spectrum which possess the combination of a large molar extinction coefficient, good chemical and thermal stability, and a high solubility in liquid crystal (LC) hosts. These properties are required for the dye to function as a near-infrared (IR) attenuator in a liquid crystal point diffraction interferometer (LCPDI) device that will be used as a beam diagnostic on the 60-beam OMEGA solid-state Nd:glass laser system at the University of Rochester's Laboratory for Laser Energetics. Using commercially available software, both the absorption spectra and solubility characteristics of bis[1,2-di-(p-n alkoxyphenyl)ethane-1,2-dithione] nickel dye complexes were modeled in an isotropic host (cyclohexane) and, in most cases, excellent agreement was found with experimental data. Two additional compounds utilizing the same nickel dithiolene core but with alkylthio and phenylalkylthio terminal groups have been designed and show excellent potential to produce dramatic improvements in both solubility and optical density (absorbance) in liquid crystalline hosts. Based upon my work, a new dye not previously reported, 2(C 4 S)2(C 4 SPh)DTNi, has been proposed to satisfy the LCPDI device requirements. The nickel dithiolene dyes may also find important applications in other technology areas such as near-IR photography and laser-based near-IR communications

  12. Secondary students in professional laboratories: Discoveries about science learning in a community of practitioners

    Science.gov (United States)

    Song, Mary Elizabeth

    This study explores what educators may learn from the experiences of secondary students working in professional scientific laboratories. My investigation is guided by the methodology of phenomenological; I depend primarily on interviews conducted with students and professional researchers. This material is supported primarily by on-site observations, and by informal conversations between me and the study participants. My dissertation has three goals: (one) to use the work of secondary students in scientific research laboratories to consider how they know the discipline; (two) to distinguish the students' professional accomplishments from science learning at school; and, (three) to engage readers in a reflection about authority within the scientific community, and the possibility that by accomplishing research, students take their legitimate place among those who construct scientific knowledge. My methods and focus have allowed me to capture qualities of the student narratives that support the emergence of three major themes: the importance of doing "real work" in learning situations; the inapplicability of "school learning" to professional research arenas; and the inclusive nature of the scientific community. At the same time, the study is confined by the narrow pool of participants I interviewed over a short period of time. These talented students were all academically successful, articulate, "well-rounded" and in this sense, mature. They typically had strong family support, and they talked about ideas with their parents. Indeed, the students were all capable story-tellers who were anxious to share their experiences publicly. Yet they themselves remind the reader of their struggles to overcome naivete in the lab. By doing so they suggested to me that their experiences might be accessible to a broad range of young men and women; thus this study is a good beginning for further research.

  13. GaInSn usage in the research laboratory

    International Nuclear Information System (INIS)

    Morley, N. B.; Burris, J.; Cadwallader, L. C.; Nornberg, M. D.

    2008-01-01

    GaInSn, a eutectic alloy, has been successfully used in the Magneto-Thermofluid Research Laboratory at the University of California-Los Angeles and at the Princeton Plasma Physics Laboratory for the past six years. This paper describes the handling and safety of GaInSn based on the experience gained in these institutions, augmented by observations from other researchers in the liquid metal experimental community. GaInSn is an alloy with benign properties and shows considerable potential in liquid metal experimental research and cooling applications

  14. Use of Laboratory Animals in Biomedical and Behavioral Research

    National Research Council Canada - National Science Library

    1988-01-01

    ... of Laboratory Animals in Biomedical and Behavioral Research Commission on Life Sciences National Research Council Institute of Medicine NATIONAL ACADEMY PRESS Washington, D.C. 1988 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the typesetting-specific created from the as publ...

  15. Quality assurance in a large research and development laboratory

    International Nuclear Information System (INIS)

    Neill, F.H.

    1980-01-01

    Developing a quality assurance program for a large research and development laboratory provided a unique opportunity for innovative planning. The quality assurance program that emerged has been tailored to meet the requirements of several sponsoring organizations and contains the flexibility for experimental programs ranging from large engineering-scale development projects to bench-scale basic research programs

  16. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    Science.gov (United States)

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  17. U.S. Army Research Laboratory Annual Review 2011

    Science.gov (United States)

    2011-12-01

    bioremediation of wastewater. The researchers created a functional atomic circuit with stationary barrier. This “atom circuit” is composed of ultra...high energy content approaching jet propellant (JP)-8/ diesel fuel, are a means to address these demands. The Army Research Laboratory has

  18. Laboratory directed research and development. FY 1995 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  19. Field Research Studying Whales in an Undergraduate Animal Behavior Laboratory

    Science.gov (United States)

    MacLaren, R. David; Schulte, Dianna; Kennedy, Jen

    2012-01-01

    This work describes a new field research laboratory in an undergraduate animal behavior course involving the study of whale behavior, ecology and conservation in partnership with a non-profit research organization--the Blue Ocean Society for Marine Conservation (BOS). The project involves two weeks of training and five weekend trips on whale watch…

  20. Laboratory technology research: Abstracts of FY 1998 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  1. A DOE University-national laboratory waste-management education and research consortium (WERC)

    International Nuclear Information System (INIS)

    Bhada, R.K.; Morgan, J.D.; Townsend, J.S.

    1991-01-01

    This paper presents the results and current status of a consortium of three universities and two national laboratories working closely with industry for an Education and Research program on waste-management and environmental restoration. The program sponsored by the US Department of Energy has been in effect for 18 months and has achieved significant progress towards establishing: undergraduate, graduate and associate degree programs involving environmental management, interactive TV courses from the consortium members transmitted throughout the United States, Mexico ampersand Canada, a satellite TV network, a professional development teleconference series, research programs at the leading edge of technology training multi-disciplinary students, research laboratories for analyses, testing, and student training, technology transfer programs, including a TV series on research applications, outreach programs, including pre-college and minority education, community monitoring

  2. Improvement of Student Critical Thinking Skills with the Natural Product Mini Project Laboratory Learning

    Directory of Open Access Journals (Sweden)

    Aliefman Hakim

    2016-12-01

    Full Text Available This research aims to investigate effect of learning using natural product mini project laboratory on students’ critical thinking skills. The research was conducted on sixth semester of 59 students of chemistry and chemistry education program from one of the state universities in West Nusa Tenggara, Indonesia in 2012/2013. This research revealed class where the student learn using natural product mini project laboratory had more critical thinking skills than those using verification laboratory. The average n-gain of critical thinking skills for experiment class was 0.58 while for the control class was 0.37. The highest n-gain in the experiment class was 0.70 for “deciding on an action (selecting criteria to judge possible solutions indicators”, while the smallest n-gain was 0.47 for “the making and judging value of judgments (balancing, weighing, and deciding indicators. We concluded that the natural product mini project laboratory was better than verification laboratory in improving the students’ critical thinking skills.

  3. Current safety practices in nano-research laboratories in China.

    Science.gov (United States)

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  4. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of Meeting Amendment The... Development and Clinical Science Research and Development Services Scientific Merit Review Board have changed...

  5. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    Energy Technology Data Exchange (ETDEWEB)

    FOX, K.J.

    2006-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.

  6. Mapping cognitive structures of community college students engaged in basic electrostatics laboratories

    Science.gov (United States)

    Haggerty, Dennis Charles

    Community college students need to be abstract thinkers in order to be successful in the introductory Physics curriculum. The purpose of this dissertation is to map the abstract thinking of community college Physics students. The laboratory environment was used as a vehicle for the mapping. Three laboratory experiments were encountered. One laboratory was based on the classic Piagetian task, the centripetal motion (CM) problem. The other two laboratories were introductory electrostatic Physics experiments, Resistance (RES) and Capacitance (CAP). The students performed all laboratories using the thinking-aloud technique. The researcher collected their verbal protocols using audiotapes. The audiotaped data was quantified by comparing it to a scoring matrix based on the Piagetian logical operators (Inhelder & Piaget, 1958) for abstract thinking. The students received scores for each laboratory experiment. These scores were compared to a reliable test of intellectual functioning, the Shipley Institute of Living Scale (SILS). Spearman rank correlation coefficients (SRCC) were obtained for SILS versus CM; SILS versus RES; and SILS versus CAP. Statistically significant results were obtained for SILS versus CM and SILS versus RES at the p < 0.05 level. When an outlier to the data was considered and suppressed, the SILS versus CAP was also statistically significant at the p < 0.05 level. The scoring matrix permits a bridge from the qualitative Piagetian level of cognitive development to a quantified, mapped level of cognitive development. The ability to quantify student abstract thinking in Physics education provides a means to adjust an instructional approach. This approach could lead to a proper state of Physics education.

  7. 1.2 million kids and counting-Mobile science laboratories drive student interest in STEM.

    Science.gov (United States)

    Jones, Amanda L; Stapleton, Mary K

    2017-05-01

    In today's increasingly technological society, a workforce proficient in science, technology, engineering, and mathematics (STEM) skills is essential. Research has shown that active engagement by K-12 students in hands-on science activities that use authentic science tools promotes student learning and retention. Mobile laboratory programs provide this type of learning in schools and communities across the United States and internationally. Many programs are members of the Mobile Lab Coalition (MLC), a nonprofit organization of mobile and other laboratory-based education programs built on scientist and educator collaborations. A recent survey of the member programs revealed that they provide an impressive variety of programming and have collectively served over 1.2 million students across the US.

  8. Biotechnology by Design: An Introductory Level, Project-Based, Synthetic Biology Laboratory Program for Undergraduate Students.

    Science.gov (United States)

    Beach, Dale L; Alvarez, Consuelo J

    2015-12-01

    Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniques, and information literacy. During the spring semesters of 2014 and 2015, the Synthetic Biology Laboratory Project was delivered to sophomore genetics courses. Using a cloning strategy based on standardized BioBrick genetic "parts," students construct a "reporter plasmid" expressing a reporter gene (GFP) controlled by a hybrid promoter regulated by the lac-repressor protein (lacI). In combination with a "sensor plasmid," the production of the reporter phenotype is inhibited in the presence of a target environmental agent, arabinose. When arabinose is absent, constitutive GFP expression makes cells glow green. But the presence of arabinose activates a second promoter (pBAD) to produce a lac-repressor protein that will inhibit GFP production. Student learning was assessed relative to five learning objectives, using a student survey administered at the beginning (pre-survey) and end (post-survey) of the course, and an additional 15 open-ended questions from five graded Progress Report assignments collected throughout the course. Students demonstrated significant learning gains (p Biology Laboratory Project enhanced their understanding of molecular genetics. The laboratory project is highly adaptable for both introductory and advanced courses.

  9. Research and Teaching. From Verification to Guided Inquiry: What Happens When a Chemistry Laboratory Curriculum Changes?

    Science.gov (United States)

    Scott, Pamela; Pentecost, Thomas C.

    2013-01-01

    How does the degree of inquiry-based laboratory instruction impact student performance and student perseverance in the laboratory portion of a first-semester general chemistry course? The implementation of a new

  10. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-10-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical...) that the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the...

  11. A Research-Based Laboratory Course Designed to Strengthen the Research-Teaching Nexus

    Science.gov (United States)

    Parra, Karlett J.; Osgood, Marcy P.; Pappas, Donald L., Jr.

    2010-01-01

    We describe a 10-week laboratory course of guided research experiments thematically linked by topic, which had an ultimate goal of strengthening the undergraduate research-teaching nexus. This undergraduate laboratory course is a direct extension of faculty research interests. From DNA isolation, characterization, and mutagenesis, to protein…

  12. Laboratory Activity Worksheet to Train High Order Thinking Skill of Student on Surface Chemistry Lecture

    Science.gov (United States)

    Yonata, B.; Nasrudin, H.

    2018-01-01

    A worksheet has to be a set with activity which is help students to arrange their own experiments. For this reason, this research is focused on how to train students’ higher order thinking skills in laboratory activity by developing laboratory activity worksheet on surface chemistry lecture. To ensure that the laboratory activity worksheet already contains aspects of the higher order thinking skill, it requires theoretical and empirical validation. From the data analysis results, it shows that the developed worksheet worth to use. The worksheet is worthy of theoretical and empirical feasibility. This conclusion is based on the findings: 1) Assessment from the validators about the theoretical feasibility aspects in the category is very feasible with an assessment range of 95.24% to 97.92%. 2) students’ higher thinking skill from N Gain values ranges from 0.50 (enough) to 1.00 (high) so it can be concluded that the laboratory activity worksheet on surface chemistry lecture is empirical in terms of worth. The empirical feasibility is supported by the responses of the students in very reasonable categories. It is expected that the laboratory activity worksheet on surface chemistry lecture can train students’ high order thinking skills for students who program surface chemistry lecture.

  13. Inter-Cultural Communication in Student Research

    DEFF Research Database (Denmark)

    Hjaltadóttir, Rannveig Edda

    This article describes a project undertaken at the University of Southern Denmark designed to support active group work and inter-cultural communication between international students. The project is based on using group work and cooperative learning principles to do student research, therefore...... challenging the students to solve problems as a group. The main aim of the research is to investigate the possible effects of using integrated student research and group work using cooperative learning methods to develop international communication skills of students in multi-cultural higher education courses....

  14. Research Collaborations Between Universities and Department of Defense Laboratories

    Science.gov (United States)

    2014-07-31

    Council – Resident Research Associateship (USAF/NRC-RRA) Program,” last accessed March 10, 2013, http://www.wpafb.af.mil/ library /factsheets...as CRAs and CTAs, could enable collaboration through university consortia designed to support DOD laboratory research. Such alliances would have the...university consortia , may be able to leverage partnerships that meet their collaborative research needs. 5. Increased Patent Filing Fees when Partnering

  15. An analysis of the uncertainty in temperature and density estimates from fitting model spectra to data. 1998 summer research program for high school juniors at the University of Rochester's Laboratory for Laser Energetics. Student research reports

    International Nuclear Information System (INIS)

    Schubmehl, M.

    1999-03-01

    Temperature and density histories of direct-drive laser fusion implosions are important to an understanding of the reaction's progress. Such measurements also document phenomena such as preheating of the core and improper compression that can interfere with the thermonuclear reaction. Model x-ray spectra from the non-LTE (local thermodynamic equilibrium) radiation transport post-processor for LILAC have recently been fitted to OMEGA data. The spectrum fitting code reads in a grid of model spectra and uses an iterative weighted least-squares algorithm to perform a fit to experimental data, based on user-input parameter estimates. The purpose of this research was to upgrade the fitting code to compute formal uncertainties on fitted quantities, and to provide temperature and density estimates with error bars. A standard error-analysis process was modified to compute these formal uncertainties from information about the random measurement error in the data. Preliminary tests of the code indicate that the variances it returns are both reasonable and useful

  16. Computer-based laboratory simulation: evaluations of student perceptions

    Directory of Open Access Journals (Sweden)

    Norrie S. Edward

    1996-12-01

    Full Text Available Laboratory experimentation in engineering is an essential part of the three main components in an engineer's formation. The theoretical constructs and models are imparted in lectures and tutorials. Workshop hands-on activity allows the student to acquire an understanding of the interaction of design and manufacture, and the constraints both impose. Characteristics of plant are investigated through experiment, and this aids the learner's understanding of the limitation of models in predicting performance. The learner also gains an appreciation of the nature of errors and of the construction of plant. But while the oil industry has brought prosperity to the North- East, it has also brought unique educational demands: the working arrangements place severe restrictions on part-time student attendance. Technicians work a block of two to four weeks offshore, followed by a similar period of leave. Different companies have different arrangements, and shift-change days.

  17. Exploring students' perceptions and performance on predict-observe-explain tasks in high school chemistry laboratory

    Science.gov (United States)

    Vadapally, Praveen

    This study sought to understand the impact of gender and reasoning level on students' perceptions and performances of Predict-Observe-Explain (POE) laboratory tasks in a high school chemistry laboratory. Several literature reviews have reported that students at all levels have not developed the specific knowledge and skills that were expected from their laboratory work. Studies conducted over the last several decades have found that boys tend to be more successful than girls in science and mathematics courses. However, some recent studies have suggested that girls may be reducing this gender gap. This gender difference is the focal point of this research study, which was conducted at a mid-western, rural high school. The participants were 24 boys and 25 girls enrolled in two physical science classes taught by the same teacher. In this mixed methods study, qualitative and quantitative methods were implemented simultaneously over the entire period of the study. MANOVA statistics revealed significant effects due to gender and level of reasoning on the outcome variables, which were POE performances and perceptions of the chemistry laboratory environment. There were no significant interactions between these effects. For the qualitative method, IRB-approved information was collected, coded, grouped, and analyzed. This method was used to derive themes from students' responses on questionnaires and semi-structured interviews. Students with different levels of reasoning and gender were interviewed, and many of them expressed positive themes, which was a clear indication that they had enjoyed participating in the POE learning tasks and they had developed positive perceptions towards POE inquiry laboratory learning environment. When students are capable of formal reasoning, they can use an abstract scientific concept effectively and then relate it to the ideas they generate in their minds. Thus, instructors should factor the nature of students' thinking abilities into their

  18. Chemical Research Writing: A Preparatory Course for Student Capstone Research

    Science.gov (United States)

    Schepmann, Hala G.; Hughes, Laura A.

    2006-01-01

    A research writing course was developed to prepare chemistry majors to conduct and report on their capstone research projects. The course guides students through a multistep process of preparing a literature review and research proposal. Students learn how to identify and avoid plagiarism, critically read and summarize a scientific article,…

  19. Interpreting Assessments of Student Learning in the Introductory Physics Classroom and Laboratory

    Science.gov (United States)

    Dowd, Jason Edward

    Assessment is the primary means of feedback between students and instructors. However, to effectively use assessment, the ability to interpret collected information is essential. We present insights into three unique, important avenues of assessment in the physics classroom and laboratory. First, we examine students' performance on conceptual surveys. The goal of this research project is to better utilize the information collected by instructors when they administer the Force Concept Inventory (FCI) to students as a pre-test and post-test of their conceptual understanding of Newtonian mechanics. We find that ambiguities in the use of the normalized gain, g, may influence comparisons among individual classes. Therefore, we propose using stratagrams, graphical summaries of the fraction of students who exhibit "Newtonian thinking," as a clearer, more informative method of both assessing a single class and comparing performance among classes. Next, we examine students' expressions of confusion when they initially encounter new material. The goal of this research project is to better understand what such confusion actually conveys to instructors about students' performance and engagement. We investigate the relationship between students' self-assessment of their confusion over material and their performance, confidence in reasoning, pre-course self-efficacy and several other measurable characteristics of engagement. We find that students' expressions of confusion are negatively related to initial performance, confidence and self-efficacy, but positively related to final performance when all factors are considered together. Finally, we examine students' exhibition of scientific reasoning abilities in the instructional laboratory. The goal of this research project is to explore two inquiry-based curricula, each of which proposes a different degree of scaffolding. Students engage in sequences of these laboratory activities during one semester of an introductory physics

  20. A Survey on Faculty Perspectives on the Transition to a Biochemistry Course-Based Undergraduate Research Experience Laboratory

    Science.gov (United States)

    Craig, Paul A.

    2017-01-01

    It will always remain a goal of an undergraduate biochemistry laboratory course to engage students hands-on in a wide range of biochemistry laboratory experiences. In 2006, our research group initiated a project for "in silico" prediction of enzyme function based only on the 3D coordinates of the more than 3800 proteins "of unknown…

  1. Group velocity effects in broadband frequency conversion on OMEGA. 1998 summer research program for high school juniors at the University of Rochester's Laboratory for Laser Energetic. Student research reports

    International Nuclear Information System (INIS)

    Grossman, P.

    1999-03-01

    The powerful lasers needed for ICF can only produce light in the infrared wavelengths. However, the one micron wavelength produced by the neodymium glass that powers OMEGA and other lasers used for fusion research does not efficiently compress the fuel pellet. This happens because the infrared light is not well absorbed by the target, and because of the creation of suprathermal electrons. These suprathermal electrons preheat the fuel, adding extra resistance to compression. To eliminate these problems associated with longer wavelengths of light, the process of frequency converting the laser beam was invented. This process efficiently converts the initial beam to a beam which has three times the frequency and one third the wavelength. The third-harmonic beam, in the UV range, has a better absorption rate. The PV-WAVE computer program that the author has written has shown that increasing the frequency of SSD (Smoothing by Spectral Dispersion) on OMEGA to approximately 10 GHz as planned will not hurt the third harmonic generation conversion efficiency significantly. The increased bandwidth and increased frequency of SSD will make the laser beams that strike the target on OMEGA much smoother and more uniform than ever before. Therefore it is both safe and advisable to add a second tripler crystal to the OMEGA system and decrease the SSD time cycle to around 100 picoseconds. Since the conversion efficiency remains high up to approximately 30 GHz, more experiments on OMEGA may be carried out with even higher modulation frequencies. These modifications to the existing OMEGA laser should make target irradiation more uniform, leading to more uniform compression and hopefully, a higher energy yield

  2. Study of the comprehension of the scientific method by members of a university health research laboratory.

    Science.gov (United States)

    Burlamaque-Neto, A C; Santos, G R; Lisbôa, L M; Goldim, J R; Machado, C L B; Matte, U; Giugliani, R

    2012-02-01

    In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research.

  3. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  4. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  5. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  6. The waste management at research laboratories - problems and solutions

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio; Vicente, Roberto

    2011-01-01

    The radioactive management in radioactive installations must be planned and controlled. However, in the case of research laboratories, that management is compromised due to the common use of materials and installations, the lack of trained personnel and the nonexistence of clear and objective orientations by the regulator organism. Such failures cause an increasing of generated radioactive wastes and the imprecision or nonexistence of record of radioactive substances, occasioning a financial wastage, and the cancelling of licences for use of radioactive substances. This paper discusses and proposes solutions for the problems found at radioactive waste management in research laboratories

  7. Environmental survey at Lucas Heights Research Laboratories, 1989

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Arthur, J.

    1990-09-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1989. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 9 refs., 17 tabs., 2 figs

  8. Environmental survey at Lucas Heights Research Laboratories, 1990

    International Nuclear Information System (INIS)

    Hoffmann, E.L.

    1991-10-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1990. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 11 refs., 16 tabs., 2 figs

  9. Environmental survey at Lucas Heights Research Laboratories, 1987

    International Nuclear Information System (INIS)

    Giles, M.S.; Foy, J.J.; Hoffmann, E.L.

    1989-12-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1987. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorized limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 9 refs., 18 tabs., 2 figs

  10. Environmental survey at Lucas Heights Research Laboratories, 1984

    International Nuclear Information System (INIS)

    Giles, M.S.; Dudaitis, A.

    1986-12-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1984. These results are satisfactory. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste discharges during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council

  11. Environmental survey at the Lucas Heights Research Laboratories. 1983

    International Nuclear Information System (INIS)

    Giles, M.S.; Dudaitis, A.

    1985-12-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1983. These results are satisfactory. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste discharges during this period is estimated to be less than 0.01 millisieverts, which is 1 per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council

  12. Student Research Projects Inhibiting Factors from the Students Perspective

    Directory of Open Access Journals (Sweden)

    Laila Nikrooz

    2012-09-01

    Full Text Available Background & Objective: Identifying the research barriers and assess the ability of students to use the university services and facilities is crucial to promote research activities. Present study was carried out to determine the inhibiting factors influencing the student's research projects from the view point of Yasuj University of Medical Sciences students in 2008. Materials & Methods: In this cross sectional study 96 students of Yasuj Medical University were selected by stratified random sampling. The data were collected by validate & reliable questionnaire, containing demographic information, inhibiting factors related to students (personal and organization. The data were analyzed by SPSS software. Results: The mean scores against the personal barriers and the organizational barriers questions were 43.23±12.96 and 62.58±12.08 respectively. There was a significant difference between personal and organizational barriers (P<0.001 and personal barriers were more important. According to the results, the student's inadequate skills & knowledge of research methodology and lack of awareness of research topics were the most prevalent personal barriers. The most prevalent organizational barriers were unavailability of research consulters, inadequate research skills of consulter, insufficient facilities & equipment and lack of motivating staff & faculties. Other variables such as gender, subject of study and research experience are mentioned in the full text. Conclusion: This study showed that the personal barriers were more important than organizational barriers which interfere with the student's research projects. This can be corrected and controlled by teachers, faculty members, university officials and students, themselves.

  13. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  14. Smart Electronic Laboratory Notebooks for the NIST Research Environment.

    Science.gov (United States)

    Gates, Richard S; McLean, Mark J; Osborn, William A

    2015-01-01

    Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time.

  15. Laboratory Directed Research and Development Program FY 2007 Annual Report

    International Nuclear Information System (INIS)

    Sjoreen, Terrence P.

    2008-01-01

    The Oak Ridge National LaboratoryLaboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R and D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R and D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  16. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  17. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  18. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  19. Laboratory directed research and development FY98 annual report; TOPICAL

    International Nuclear Information System (INIS)

    Al-Ayat, R; Holzrichter, J

    1999-01-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs

  20. Impact of Argumentation in the Chemistry Laboratory on Conceptual Comprehension of Turkish Students

    Directory of Open Access Journals (Sweden)

    Ali Riza Sekerci

    2014-11-01

    Full Text Available Aim of this research is to evaluate the impact of argumentation in the chemistry laboratory on conceptual comprehension of students. This research follows a triangulation design, categorized under mixed-method design variations, which include both qualitative and quantitative research designs. The research is conducted with 91 first grade university students studying in two different classes of the Department of Science Education, Kazım Karabekir Education Faculty at the Ataturk University, located in eastern Turkey. One class was randomly designated as the experimental group, with another as the control group. Research data was collected via a General Chemistry Laboratory Concept Test (GCLCT containing 33 items, a test containing ten open-ended items, a semi-structured interview form, and a written feedback form, all designed by the researchers. Data from the GCLCT were analyzed through predictive statistics method, while data from the open-ended questions, semi-structured interview and written feedback form were analyzed through the descriptive analysis method. It is concluded from this research, that there is statistically significant difference between the GCLC post-test averages of the experimental and control groups. It was found that when compared to the control group, the proportion of experimental group students who answered the GCLC post-test items correctly is higher. In addition to this, the proportion of students who demonstrated misconceptions were higher in the control group students compared to the experimental group. It is concluded by this research, that argumentation provides more effective results in terms of comprehension of fundamental chemistry concepts, when compared to a traditional approach.

  1. Laboratory directed research and development annual report. Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  2. Teaching ethical aptitude to graduate student researchers.

    Science.gov (United States)

    Weyrich, Laura S; Harvill, Eric T

    2013-01-01

    Limited time dedicated to each training areas, irrelevant case-studies, and ethics "checklists" have resulted in bare-bones Responsible Conduct of Research (RCR) training for present biomedical graduate student researchers. Here, we argue that science graduate students be taught classical ethical theory, such as virtue ethics, consequentialist theory, and deontological theory, to provide a basic framework to guide researchers through ethically complex situations and examine the applicability, implications, and societal ramifications of their research. Using a relevant biomedical research example to illustrate this point, we argue that proper ethics training for graduate student researchers not only will enhance current RCR training, but train more creative, responsible scientists.

  3. Frederick National Laboratory Rallies to Meet Demand for Zika Vaccine | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research is producing another round of Zika vaccine for ongoing studies to determine the best delivery method and dosage. This will lay the groundwork for additional tests to see if the vaccine prevents i

  4. Immersion research education: students as catalysts in international collaboration research.

    Science.gov (United States)

    Anderson, K H; Friedemann, M L; Bűscher, A; Sansoni, J; Hodnicki, D

    2012-12-01

    This paper describes an international nursing and health research immersion program. Minority students from the USA work with an international faculty mentor in teams conducting collaborative research. The Minority Health International Research Training (MHIRT) program students become catalysts in the conduct of cross-cultural research. To narrow the healthcare gap for disadvantaged families in the USA and partner countries. Faculty from the USA, Germany, Italy, Colombia, England, Austria and Thailand formed an international research and education team to explore and compare family health issues, disparities in chronic illness care, social inequities and healthcare solutions. USA students in the MHIRT program complete two introductory courses followed by a 3-month research practicum in a partner country guided by faculty mentors abroad. The overall program development, student study abroad preparation, research project activities, cultural learning, and student and faculty team outcomes are explored. Cross-fertilization of research, cultural awareness and ideas about improving family health occur through education, international exchange and research immersion. Faculty research and international team collaboration provide opportunities for learning about research, health disparities, cultural influences and healthcare systems. The students are catalysts in the research effort, the dissemination of research findings and other educational endeavours. Five steps of the collaborative activities lead to programmatic success. MHIRT scholars bring creativity, enthusiasm, and gain a genuine desire to conduct health research about families with chronic illness. Their cultural learning stimulates career plans that include international research and attention to vulnerable populations. © 2012 The Authors. International Nursing Review © 2012 International Council of Nurses.

  5. International Research Students' Experiences in Academic Success

    Science.gov (United States)

    Yeoh, Joanne Sin Wei; Terry, Daniel R.

    2013-01-01

    The flow of international students to study in Australia increases each year. It is a challenge for students to study abroad in a different sociocultural environment, especially for postgraduate research students, as they experience numerous difficulties in an unfamiliar and vastly different study environment. A study aimed to investigate the…

  6. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  7. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  8. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.

  9. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  10. From students to researchers: The education of physics graduate students

    Science.gov (United States)

    Lin, Yuhfen

    This dissertation aims to make two research contributions: (1) In physics education research, this work aims to advance our understanding of physics student learning at the graduate level. This work attempts to better understand how physics researchers and teachers are produced, and what factors support or encourage the process of becoming a researcher and a teacher. (2) In cognitive science research in the domain of expert/novice differences, researchers are interested in defining and understanding what expertise is. This work aims to provide some insight into some of the components of expertise that go into becoming a competent expert researcher in the domain of physics. This in turn may contribute to our general understanding of expertise across multiple domains. Physics graduate students learn in their classes as students, teach as teaching assistants, and do research with research group as apprentices. They are expected to transition from students to independent researchers and teachers. The three activities of learning, teaching, and research appear to be very different and demand very different skill-sets. In reality, these activities are interrelated and have subtle effects on each other. Understanding how students transition from students to researchers and teachers is important both to PER and physics in general. In physics, an understanding of how physics students become researchers may help us to keep on training physicists who will further advance our understanding of physics. In PER, an understanding of how graduate students learn to teach will help us to train better physics teachers for the future. In this dissertation, I examine physics graduate students' approaches to teaching, learning, and research through semi-structured interviews. The collected data is interpreted and analyzed through a framework that focuses on students' epistemological beliefs and locus of authority. The data show how students' beliefs about knowledge interact with their

  11. Students in search of research scientists

    CERN Multimedia

    HR Department

    2010-01-01

    CERN is a magnet for many young people wanting to discover for themselves what the Laboratory is about through a traineeship. During their traineeships, the students develop an interest in engineering, informatics and also in physics, a discipline where there has been a marked fall-off in university applications.  We would therefore encourage you to take part in hosting students.   In 2009, CERN granted 270 students unremunerated traineeships lasting a few days or more. However, many applications could not be satisfied owing to the lack of CERN volunteers to supervise the students. The hosting of students in an aspect of one of the Organization’s fundamental missions, namely education and training. CERN’s traineeships offer secondary schoolchildren and university students the opportunity to discover how fascinating science can be and contribute to encouraging young people to choose to study branches of science that have seen a fall-off of applications in recent years. &...

  12. Laboratory Directed Research and Development FY2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with

  13. Laboratory Directed Research and Development FY2008 Annual Report

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Jackson, K.J.; Sketchley, J.A.; Kotta, P.R.

    2009-01-01

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  14. Laboratory directed research development annual report. Fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  15. Fermilab a laboratory at the frontier of research

    CERN Document Server

    Gillies, James D

    2002-01-01

    Since its foundation in 1967, creeping urbanization has taken away some of Fermilab's remoteness, but the famous buffalo still roam, and farm buildings evocative of frontier America dot the landscape - appropriately for a laboratory at the high-energy frontier of modern research. Topics discussed are the Tevatron, detector upgrades, the neutrino programme, Fermilab and the LHC and the non-accelerator programme.

  16. Overview of environmental research at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1977-01-01

    Research in the environmental sciences by the Savannah River Laboratory (SRL) has the general objective of improving our understanding of transport through ecosystems and functional processes within ecosystems. With increased understanding, the basis for environmental assessments can be improved for releases from the Savannah River Plant or from the power industry of the southeastern United States

  17. LBNL Laboratory Directed Research and Development Program FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Ho, D.

    2017-03-01

    The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.

  18. Sequim Marine Research Laboratory routine environmental measurements during CY-1978

    International Nuclear Information System (INIS)

    Houston, J.R.; Blumer, P.J.

    1979-03-01

    Environmental data collected during 1978 in the vicinity of the Marine Research Laboratory show continued compliance with all applicable state and federal regulations and furthermore show no detectable change from conditions that existed in previous years. Samples collected for radiological analysis included soil, drinking water, bay water, clams, and seaweed. Radiation dose rates at 1 meter aboveground were also measured

  19. Magnetic mirror fusion research at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Post, R.F.

    1979-01-01

    An overall view is given of progress and plans for pressing forward with mirror research at Livermore. No detail is given on any one subject, and many interesting investigations being carried out at University laboratories in the U.S. that augment and support efforts at Livermore are omitted

  20. Nuclear fuel cycle safety research at Sandia Laboratories

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.

    1978-11-01

    This paper provides a brief introduction to Sandia Laboratories and an overview of Nuclear Regulatory Commission sponsored safety research with particular emphasis on light water reactor related activities. Several experimental and analytical programs are highlighted and the range of activities of a typical staff member illustrated

  1. Laboratory directed research and development program FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  2. Laboratory directed research and development program FY 1997

    International Nuclear Information System (INIS)

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized

  3. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division

  4. Naval Arctic Research Laboratory (NARL) Subsurface Containment Berm Investigation

    Science.gov (United States)

    2015-10-01

    Degree-Days CRREL Cold Regions Research and Engineering Laboratory ERDC U.S. Army Engineer Research and Development Center FWENC Foster Wheeler ...contract with the Navy, Foster Wheeler Environmental Corporation (FWENC) constructed a subsurface containment berm at the airfield of the Naval...659J91.61 ncURE 3- 3 NAVAl.. AACnC R(Sf.ARCH l,.ASORATORY POINT 9ARROW. AlASKA AS-BUILT CONTAINMENT BERM EXTENSION AND MONITORING WELLS FOSTER W

  5. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  6. Pump and valve research at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Haynes, H.D.

    1992-01-01

    Over the last several years, the Oak Ridge National Laboratory (ORNL) has carried out several aging assessments on pumps and valves under the NRC's Nuclear Plant Aging Research (NPAR) Program. In addition, ORNL has established an Advanced Diagnostic Engineering Research and Development Center (ADEC) in order to play a key role in the field of diagnostic engineering. Initial ADEC research projects have addressed problems that were identified, at least in part, by the NPAR and other NRC-sponsored programs. This paper summarizes the pump and valve related research that has been done at ORNL and describes in more detail several diagnostic techniques developed at ORNL which are new commercially available

  7. Laboratory Directed Research and Development LDRD-FY-2011

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  8. Shaft extension design at the Underground Research Laboratory, Pinawa, Manitoba

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Ball, A.E.

    1991-01-01

    AECL Research has constructed an underground laboratory for the research and development required for the Canadian Nuclear Fuel Waste Management Program. The experimental program in the laboratory will contribute to the assessment of the feasibility and safety of nuclear fuel waste disposal deep in stable plutonic rock. In 1988, AECL extended the shaft of the Underground Research Laboratory (URL) from the existing 255 m depth to a depth of 443 m in cooperation with the United States Department of Energy. The project, which involved carrying out research activities while excavation and construction work was in progress, required careful planning. To accommodate the research programs, full-face blasting with a burn cut was used to advance the shaft. Existing facilities at the URL had to be modified to accommodate an expanded underground facility at a new depth. This paper discusses the design criteria, shaft-sinking methods and approaches used to accommodate the research work during this shaft extension project. (11 refs., 11 figs.)

  9. Reactor safety research and development in Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Nitheanandan, T. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Atomic Energy of Canada Limited's Chalk River Laboratories provides three different services to stakeholders and customers. The first service provided by the laboratory is the implementation of Research and Development (R&D) programs to provide the underlying technological basis of safe nuclear power reactor designs. A significant portion of the Canadian R&D capability in reactor safety resides at Atomic Energy of Canada Limited's Chalk River Laboratories, and this capability was instrumental in providing the science and technology required to aid in the safety design of CANDU power reactors. The second role of the laboratory has been in supporting nuclear facility licensees to ensure the continued safe operation of nuclear facilities, and to develop safety cases to justify continued operation. The licensing of plant life extension is a key industry objective, requiring extensive research on degradation mechanisms, such that safety cases are based on the original safety design data and valid and realistic assumptions regarding the effect of ageing and management of plant life. Recently, Chalk River Laboratories has been engaged in a third role in research to provide the technical basis and improved understanding for decision making by regulatory bodies. The state-of-the-art test facilities in Chalk River Laboratories have been contributing to the R&D needs of all three roles, not only in Canada but also in the international community, thorough Canada's participation in cooperative programs lead by International Atomic Energy Agency and the OECD's Nuclear Energy Agency. (author)

  10. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).

  11. Guided-inquiry laboratory experiments to improve students' analytical thinking skills

    Science.gov (United States)

    Wahyuni, Tutik S.; Analita, Rizki N.

    2017-12-01

    This study aims to improve the experiment implementation quality and analytical thinking skills of undergraduate students through guided-inquiry laboratory experiments. This study was a classroom action research conducted in three cycles. The study has been carried out with 38 undergraduate students of the second semester of Biology Education Department of State Islamic Institute (SII) of Tulungagung, as a part of Chemistry for Biology course. The research instruments were lesson plans, learning observation sheets and undergraduate students' experimental procedure. Research data were analyzed using quantitative-descriptive method. The increasing of analytical thinking skills could be measured using gain score normalized and statistical paired t-test. The results showed that guided-inquiry laboratory experiments model was able to improve both the experiment implementation quality and the analytical thinking skills. N-gain score of the analytical thinking skills was increased, in spite of just 0.03 with low increase category, indicated by experimental reports. Some of undergraduate students have had the difficulties in detecting the relation of one part to another and to an overall structure. The findings suggested that giving feedback the procedural knowledge and experimental reports were important. Revising the experimental procedure that completed by some scaffolding questions were also needed.

  12. Undergraduate Research as Engaged Student Learning

    Science.gov (United States)

    Wolf, Lorraine W.

    2018-01-01

    This chapter discusses the impact of undergraduate research as a form of engaged student learning. It summarizes the gains reported in post-fellowship assessment essays acquired from students participating in the Auburn University Undergraduate Research Fellowship Program. The chapter also discusses the program's efforts to increase opportunities…

  13. Progress report from the Studsvik Neutron Research Laboratory 1987-89

    International Nuclear Information System (INIS)

    Dahlborg, U.; Ebbsjoe, I.; Holmqvist, B.

    1993-01-01

    The present publication contains information from activities at the Studsvik Neutron Research Laboratory (NFL) and the Department of Neutron Research. NFL is the base for the research activities at the Studvik reactors. It is administrated by the University of Uppsala and is established to facilitate reactor based research. The laboratory is intended to, in co-operation with institutes and departments at universities in Sweden, develop, construct and maintain experimental equipment for this kind of research and to make it available for scientists at Swedish universitites and, if possible, also to scientists outside the universities. The research at the Studsvik facilities has during 1989 been performed by groups from Uppsala University, Royal Institute of Technology in Stockholm, Chalmers Technical University, Gothenburg, and by scientists at NFL. The research program of the groups is divided into three main areas, scattering of thermal neutrons, nuclear chemistry and nuclear physics, and neutron capture radiography. The program for subatomic physics, especially neutron physics, at the Department for Neutron Research, Uppsala University has also staff permanently placed at NFL but they are in their research using the facilities at the The Svedberg Laboratory, Uppsala. In addition to supporting research NFL has also put substantial efforts on creating facilities for training of undergraduate students. Thus a facility for practical exercises in neutron physics, activation analysis and radiography has recently been installed at the R2-0 reactor as a collaboration between NFL, Dept. of Neutron Research, Upppsala and Department for Reactor Physics, KTH

  14. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1991

    International Nuclear Information System (INIS)

    1992-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1991 are summarized. In this Laboratory, there are four large research facilities, that is, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of the research by using respective research facilities were summarized in separate reports. In this annual report, the course of the management and operation of respective research facilities is described, and the research activities, the theses for doctorate and graduation theses of the teachers, personnel and graduate students in the Laboratory are summarized. In the research, those on first wall engineering for fusion reactors, fuel cycle engineering, electromagnetic structure engineering, AI and robotics, quantum beam engineering, new type reactor design and so on are included. (K.I.)

  15. Laboratory-Directed Research and Development 2016 Summary Annual Report

    International Nuclear Information System (INIS)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world's energy future and secure our critical infrastructure. Operating since 1949, INL is the nation's leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL's research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy, enable clean

  16. Laboratory-Directed Research and Development 2016 Summary Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Julie Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy

  17. 1999 Summer Research Program for High School Juniors at the University of Rochester's Laboratory for Laser Energetics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-10-09

    oak-B202--During the summer of 1999, 12 students from Rochester-area high schools participated in the Laboratory for Laser Energetics' Summer High School Research Program. The goal of this program is to excite a group of high school students about careers in the areas of science and technology by exposing them to research in a state-of-the-art environment. Too often, students are exposed to ''research'' only through classroom laboratories that have prescribed procedures and predictable results. In LLE's summer program, the students experience all of the trials, tribulations, and rewards of scientific research. By participating in research in a real environment, the students often become more enthusiastic about careers in science and technology. In addition, LLE gains from the contributions of the many highly talented students who are attracted to the program. The students spent most of their time working on their individual research projects with members of LLE's technical staff. The projects were related to current research activities at LLE and covered a broad range of areas of interest including laser modeling, diagnostic development, chemistry, liquid crystal devices, and opacity data visualization. The students, their high schools, their LLE supervisors and their project titles are listed in the table. Their written reports are collected in this volume. The students attended weekly seminars on technical topics associated with LLE's research. Topics this year included lasers, fusion, holography, optical materials, global warming, measurement errors, and scientific ethics. The students also received safety training, learned how to give scientific presentations, and were introduced to LLE's resources, especially the computational facilities. The program culminated with the High School Student Summer Research Symposium on 25 August at which the students presented the results of their research to an audience that

  18. Laboratory Directed Research and Development Program. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  19. A 50-year research journey. From laboratory to clinic.

    Science.gov (United States)

    Ross, John

    2009-01-01

    Prior important research is not always cited, exemplified by Oswald Avery's pioneering discovery that DNA is the genetic transforming factor; it was not cited by Watson and Crick 10 years later. My first laboratory research (National Institutes of Health 1950s) resulted in the clinical development of transseptal left heart catheterization. Laboratory studies on cardiac muscle mechanics in normal and failing hearts led to the concept of afterload mismatch with limited preload reserve. At the University of California, San Diego in La Jolla (1968) laboratory experiments on coronary artery reperfusion after sustained coronary occlusion showed salvage of myocardial tissue, a potential treatment for acute myocardial infarction proven in clinical trials of thrombolysis 14 years later. Among 60 trainees who worked with me in La Jolla, one-third were Japanese and some of their important laboratory experiments are briefly recounted, beginning with Sasayama, Tomoike and Shirato in the 1970 s. Recently, we developed a method for cardiac gene transfer, and subsequently we showed that gene therapy for the defect in cardiomyopathic hamsters halted the progression of advanced disease. Cardiovascular research and medicine are producing continuing advances in technologies for gene transfer and embryonic stem cell transplantation, targeting of small molecules, and tissue and organ engineering.

  20. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  1. Laboratory Directed Research and Development Program. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  2. Effect of Using Separate Laboratory and Lecture Courses for Introductory Crop Science on Student Performance.

    Science.gov (United States)

    Wiebold, W. J.; Slaughter, Leon

    1986-01-01

    Reviews a study that examined the effects of laboratories on the grade performance of undergraduates in an introductory crop science course. Results indicated that students enrolled in lecture and laboratory concurrently did not receive higher lecture grades than students enrolled solely in lecture, but did have higher laboratory grades. (ML)

  3. Students' Perceptions of a Project-Based Organic Chemistry Laboratory Environment: A Phenomenographic Approach

    Science.gov (United States)

    Burrows, Nikita L.; Nowak, Montana K.; Mooring, Suazette R.

    2017-01-01

    Students can perceive the laboratory environment in a variety of ways that can affect what they take away from the laboratory course. This qualitative study characterizes undergraduate students' perspectives of a project-based Organic Chemistry laboratory using the theoretical framework of phenomenography. Eighteen participants were interviewed in…

  4. Guidelines for euthanasia of laboratory animals used in biomedical research

    Directory of Open Access Journals (Sweden)

    Adina Baias,

    2012-06-01

    Full Text Available Laboratory animals are used in several fields of science research, especially in biology, medicine and veterinary medicine. The majority of laboratory animals used in research are experimental models that replace the human body in study regarding pharmacological or biological safety products, studies conducted for a betterunderstanding of oncologic processes, toxicology, genetic studies or even new surgical techniques. Experimental protocols include a stage in which animals are euthanized in order to remove organs and tissues,or for no unnecessary pain and suffering of animals (humane endpoints or to mark the end of research. The result of euthanasia techniques is a rapid loss of consciousness followed by cardiac arrest, respiratory arrest and disruption of brain activity. Nowadays, the accepted euthanasia techniques can use chemicals (inhalant agents like: carbon dioxide, nitrogen or argon, overdoses of injectable anesthetics or physical methods (decapitation, cervical spine dislocation, stunning, gunshot, pitching.

  5. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  6. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  7. FY2007 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  8. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC ampersand FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate

  9. Tritium monitoring at the Sandia Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Devlin, T.K.

    1978-10-01

    Sandia Laboratories at Livermore, California, is presently beginning operation of a Tritium Research Laboratory (TRL). The laboratory incorporates containment and cleanup facilities such that any unscheduled tritium release is captured rather than vented to the atmosphere. A sophisticated tritium monitoring system is in use at the TRL to protect operating personnel and the environment, as well as ensure the safe and effective operation of the TRL decontamination systems. Each monitoring system has, in addition to a local display, a display in a centralized control room which, when coupled room which, when coupled with the TRL control computer, automatically provides an immediate assessment of the status of the entire facility. The computer controls a complex alarm array status of the entire facility. The computer controls a complex alarm array and integrates and records all operational and unscheduled tritium releases

  10. Current Sandia programs and laboratory facilities for tritium research

    International Nuclear Information System (INIS)

    Swansiger, W.A.; West, L.A.

    1975-01-01

    Currently envisioned fusion reactor systems will contain substantial quantities of tritium. Strict control of the overall tritium inventory and environmental safety considerations require an accurate knowledge of the behavior of this isotope in the presence of Controlled Thermonuclear Reactor (CTR) materials. A 14,000 ft 2 laboratory for tritium research is currently under construction at Sandia Laboratories in Livermore. Details about the laboratory in general are provided. Results from studies of hydrogen isotope diffusion in surface-characterized metals will be presented. Details of two permeation systems (one for hydrogen and deuterium, the other for tritium) will be discussed. Data will also be presented concerning the gettering of hydrogen isotopes and application to CTR collector designs. (auth)

  11. The Laboratories at Seibersdorf: Multi-disciplinary research and support centre

    International Nuclear Information System (INIS)

    Danesi, P.R.

    1987-01-01

    The main research activities performed at the IAEA laboratories at Seibersdorf in the Agriculture Laboratory, Physics-Chemistry-Instrumentation Laboratory and Safeguards Analytical Laboratory, as well as the training activities are briefly described

  12. Using HeLa Cell Stress Response to Introduce First Year Students to the Scientific Method, Laboratory Techniques, Primary Literature, and Scientific Writing

    Science.gov (United States)

    Resendes, Karen K.

    2015-01-01

    Incorporating scientific literacy into inquiry driven research is one of the most effective mechanisms for developing an undergraduate student's strength in writing. Additionally, discovery-based laboratories help develop students who approach science as critical thinkers. Thus, a three-week laboratory module for an introductory cell and molecular…

  13. Inquiry-Based Laboratory Activities in Electrochemistry: High School Students' Achievements and Attitudes

    Science.gov (United States)

    Sesen, Burcin Acar; Tarhan, Leman

    2013-01-01

    This study aimed to investigate the effects of inquiry-based laboratory activities on high school students' understanding of electrochemistry and attitudes towards chemistry and laboratory work. The participants were 62 high school students (average age 17 years) in an urban public high school in Turkey. Students were assigned to experimental (N =…

  14. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    International Nuclear Information System (INIS)

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, 'Yayoi', electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  15. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, `Yayoi`, electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  16. The performance assessment of undergraduate students in physics laboratory by using guided inquiry

    Science.gov (United States)

    Mubarok, H.; Lutfiyah, A.; Kholiq, A.; Suprapto, N.; Putri, N. P.

    2018-03-01

    The performance assessment of basic physics experiment among undergraduate physics students which includes three stages: pre-laboratory, conducting experiment and final report was explored in this study. The research used a descriptive quantitative approach by utilizing guidebook of basic physics experiment. The findings showed that (1) the performance of pre-laboratory rate among undergraduate physics students in good category (average score = 77.55), which includes the ability of undergraduate physics students’ theory before they were doing the experiment. (2) The performance of conducting experiment was in good category (average score = 78.33). (3) While the performance of final report was in moderate category (average score = 73.73), with the biggest weakness at how to analyse and to discuss the data and writing the abstract.

  17. Update on Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Jay Keller; Gurpreet Singh

    2001-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work

  18. Laboratory Directed Research and Development FY2011 Annual Report

    International Nuclear Information System (INIS)

    Craig, W.; Sketchley, J.; Kotta, P.

    2012-01-01

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  19. Status of Avian Research at the National Renewable Energy Laboratory

    International Nuclear Information System (INIS)

    Sinclair, K.

    2001-01-01

    As the use of wind energy expands across the United States, concerns about the impacts of commercial wind farms on bird and bat populations are frequently raised. Two primary areas of concern are (1) possible litigation resulting from the killing of even one bird if it is protected by the Migratory Bird Treaty Act, the Endangered Species Act, or both; and (2) the effect of avian mortality on bird populations. To properly address these concerns, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) supports scientifically based avian/wind power interaction research. In this paper I describe NREL's field-based research projects and summarize the status of the research. I also summarize NREL's other research activities, including lab-based vision research to increase the visibility of moving turbine blades and avian acoustic research, as well as our collaborative efforts with the National Wind Coordinating Committee's Avian Subcommittee

  20. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  1. Research Students' Satisfaction in Jamshoro Education City

    Directory of Open Access Journals (Sweden)

    Jagul Huma Lashari

    2014-10-01

    Full Text Available This study is performed to identify and examine research students? satisfaction in three universities; SU (University of Sindh, MUET (Mehran University of Engineering & Technology and LUMHS (Liaquat University of Medical & Health Sciences at Jamshoro Education City. Different service factors required for research students are identified and examined by using a triangulation technique (interviews and quantitative (survey questionnaire. Data is analyzed by using descriptive analysis and chi-square test to obtain the required results. In total, 27 service factors related to research students? satisfaction, identified by interviews & literature review have been organized under three clusters: ?University policies?; ?University Services? and ?Role of Supervisor?. The survey analysis revealed that all identified factors are positively related to research students? satisfaction. Result identifies difference in the research students? experiences with respect to their characteristics including (enrolled university, financial resources, employment status. The comparison of different service factors also shows differences in three clusters within the universities. The satisfaction of research students associated with ?role of supervisor? were identified as most satisfying experience in comparison to ?university policies? and ?university services? of Jamshoro Education City. In the end, research has derived a new framework of SDC (Satisfaction for Degree Completion framework to identify and examine the research students satisfaction

  2. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In

  3. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009

    International Nuclear Information System (INIS)

    2010-01-01

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  4. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  5. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  6. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  7. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  8. Teacher Research Experience Programs = Increase in Student Achievement

    Science.gov (United States)

    Dubner, J.

    2010-12-01

    Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university-based professional development programs for science teachers in the U.S. The program’s basic premise is simple: teachers cannot effectively teach science if they have not experienced it firsthand. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University’s research faculty. In addition to the laboratory experience, all teachers meet as a group one day each week during the summer for a series of pedagogical activities. A unique quality of the Summer Research Program is its focus on objective assessment of its impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors’ laboratories, and most importantly, on the impact of their participation in the program on student interest and performance in science. SRP uses pass rate on the New York State Regents standardized science examinations as an objective measure of student achievement. SRP's data is the first scientific evidence of a connection between a research experience for teachers program and gains in student achievement. As a result of the research, findings were published in Science Magazine. The author will present an overview of Columbia's teacher research program and the results of the published program evaluation.

  9. Environmental survey at Lucas Heights Research Laboratories, 1993

    International Nuclear Information System (INIS)

    Hoffmann, E.L.; Looz, T.

    1995-04-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1993. No activity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne discharges during this period is estimated to be less than 0.01 mSv, which is one per cent of the dose limit for long term exposure that is recommended by the National Health and Medical Research Council. A list of previous environmental survey reports is attached. 22 refs., 21 tabs., 4 figs

  10. Eighteenth annual risk reduction engineering laboratory research symposium

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Eighteenth Annual Risk Reduction Engineering Laboratory Research Symposium was held in Cincinnati, Ohio, April 14-16, 1992. The purpose of this Symposium was to present the latest significant research findings from ongoing and recently completed projects funded by the Risk Reduction Engineering Laboratory (RREL). These Proceedings are organized into two sections. Sessions A and B, which contain extended abstracts of the paper presentations. A list of poster displays is also included. Subjects include remedial action, treatment, and control technologies for waste disposal, landfill liner and cover systems, underground storage tanks, and demonstration and development of innovative/alternative treatment technologies for hazardous waste. Alternative technology subjects include thermal destruction of hazardous wastes, field evaluations, existing treatment options, emerging treatment processes, waste minimization, and biosystems for hazardous waste destruction

  11. Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies

    Science.gov (United States)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2005-01-01

    The virtual laboratory is a new technology, based on the internet, that has had wide usage in a variety of technical fields because of its inherent ability to allow many users to participate simultaneously in instruction (education) or in the collaborative study of a common problem (real-world application). The leadership in the Applied Vehicle Technology panel has encouraged the utilization of this technology in its task groups for some time and its parent organization, the Research and Technology Agency, has done the same for its own administrative use. This paper outlines the application of the virtual laboratory to those fields important to applied vehicle technologies, gives the status of the effort, and identifies the benefit it can have on collaborative research. The latter is done, in part, through a specific example, i.e. the experience of one task group.

  12. Medical laboratory science and nursing students' perception of academic learning environment in a Philippine university using Dundee Ready Educational Environment Measure (DREEM).

    Science.gov (United States)

    Barcelo, Jonathan M

    2016-01-01

    This study aimed to compare the perception of the academic learning environment between medical laboratory science students and nursing students at Saint Louis University, Baguio City, Philippines. A cross-sectional survey research design was used to measure the perceptions of the participants. A total of 341 students from the Department of Medical Laboratory Science, School of Natural Sciences, and the School of Nursing answered the Dundee Ready Education Environment Measure (DREEM) instrument from April to May 2016. Responses were compared according to course of study, gender, and year level. The total mean DREEM scores of the medical laboratory science students and nursing students did not differ significantly when grouped according to course of study, gender, or year level. Medical laboratory science students had significantly lower mean scores in the sub-domains 'perception of learning' and 'perception of teaching.' Male medical laboratory science students had significantly lower mean scores in the sub-domain 'perception of learning' among second year students. Medical laboratory science students had significantly lower mean scores in the sub-domain 'perception of learning.' Nursing students identified 7 problem areas, most of which were related to their instructors. Medical laboratory science and nursing students viewed their academic learning environment as 'more positive than negative.' However, the relationship of the nursing instructors to their students needs improvement.

  13. Federal laboratory nondestructive testing research and development applicable to industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  14. Laboratory directed research and development FY91. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K. [eds.

    1991-12-31

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director`s initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator. (GHH)

  15. Air Force Research Laboratory Success Stories. A Review of 2003

    Science.gov (United States)

    2003-01-01

    or non-NBC mode. The ECU can act as either a heater or an air conditioner and can be operated with a remote control. Compared to previous models...separation system, PSC is developing a motorized activation mechanism. Once completed, this will allow for virtually unlimited testing of the actual...stories in this book or on the CD-ROM, or for other technical activities in the Air Force Research Laboratory, contact TECH CONNECT at (800) 203-6451

  16. Environmental Quality Laboratory Research Report, 1985-1987

    OpenAIRE

    Brooks, Norman H.

    1988-01-01

    The Environmental Quality Laboratory at Caltech is a center for research on large-scale systems problems of natural resources and environmental quality. The principal areas of investigation at EQL are: 1. Air quality management. 2. Water resources and water quality management. 3. Control of hazardous substances in the environment. 4. Energy policy, including regulation, conservation and energy-environment tradeoffs. 5. Resources policy (other than energy); residuals m...

  17. HTGR safety research at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stroh, K.R.; Anderson, C.A.; Kirk, W.L.

    1982-01-01

    This paper summarizes activities undertaken at the Los Alamos National Laboratory as part of the High-Temperature Gas-Cooled Reactor (HTGR) Safety Research Program sponsored by the US Nuclear Regulatory Commission. Technical accomplishments and analysis capabilities in six broad-based task areas are described. These tasks are: fission-product technology, primary-coolant impurities, structural investigations, safety instrumentation and control systems, accident delineation, and phenomena modeling and systems analysis

  18. Mission of mediation on planting underground research laboratories

    International Nuclear Information System (INIS)

    Bataille, C.

    1994-01-01

    France, who chose to have a strong nuclear industry, is confronted to the problem of management, treatment, storage and elimination of radioactive waste. The law defined an important research program with a study of underground storage in laboratories. Here is the report of this mission. A problem of people confidence arose; there is a difference between the great level of science or technology and the level of understanding of public opinion. The only answer brought by a democratic society is to develop information

  19. Controlled drill ampersand blast excavation at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Onagi, D.P.; Thompson, P.M.

    1996-01-01

    A controlled drill and blast method has been developed and used to excavate the Underground Research Laboratory, a geotechnical facility constructed by Atomic Energy of Canada Limited (AECL) in crystalline rock. It has been demonstrated that the method can effectively reduce the excavation disturbed zone (EDZ) and is suitable for the construction of a used fuel disposal vault in the plutonic rock of the Canadian Shield

  20. Teacher Professional Development to Foster Authentic Student Research Experiences

    Science.gov (United States)

    Conn, K.; Iyengar, E.

    2004-12-01

    This presentation reports on a new teacher workshop design that encourages teachers to initiate and support long-term student-directed research projects in the classroom setting. Teachers were recruited and engaged in an intensive marine ecology learning experience at Shoals Marine Laboratory, Appledore Island, Maine. Part of the weeklong summer workshop was spent in field work, part in laboratory work, and part in learning experimental design and basic statistical analysis of experimental results. Teachers were presented with strategies to adapt their workshop learnings to formulate plans for initiating and managing authentic student research projects in their classrooms. The authors will report on the different considerations and constraints facing the teachers in their home school settings and teachers' progress in implementing their plans. Suggestions for replicating the workshop will be offered.

  1. Lower Secondary School Students' Attitudes Toward Computer-Supported Laboratory Exercises

    Directory of Open Access Journals (Sweden)

    Andreja Špernjak

    2010-03-01

    Full Text Available In Science teaching laboratory work is recognized as one of the cornerstones. In school science laboratory work computers can be used as computer supported laboratory (real and as virtual laboratory. In the first case “real” laboratories involve bench top experiments utilizing data acquisition systems while “virtual” laboratory entails interactive simulations and animations. Lower secondary school students in age between 11 and 15 performed three laboratory exercises (Activity of yeast, Gas exchange in breathing, Heart rate as classic, computer-supported and virtual laboratory. As a result of testing we know that all three methods are suitable even for younger students. When they were asked which method they liked the most, their first choice was computer-supported laboratory, followed by classic laboratory, and virtual laboratory at the end. Additionally recognized weak and strong sides of used methods are discussed.

  2. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  3. CNR LARA project, Italy: Airborne laboratory for environmental research

    Science.gov (United States)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  4. Geospatial Education and Research Development: A Laboratory for Remote Sensing and Environmental Analysis (LaRSEA)

    Science.gov (United States)

    Allen, Thomas R., Jr.

    1999-01-01

    Old Dominion University has claimed the title "University of the 21st Century," with a bold emphasis on technology innovation and application. In keeping with this claim, the proposed work has implemented a new laboratory equipped for remote sensing as well as curriculum and research innovations afforded for present and future faculty and students. The developments summarized within this report would not have been possible without the support of the NASA grant and significant cost-sharing of several units within the University. The grant effectively spring-boarded the university into major improvements in its approach to remote sensing and geospatial information technologies. The university has now committed to licensing Erdas Imagine software for the laboratory, a campus-wide ESRI geographic information system (GIS) products license, and several smaller software and hardware utilities available to faculty and students through the laboratory. Campus beneficiaries of this grant have included faculty from departments including Ocean, Earth. and Atmospheric Sciences, Political Science and Geography, Ecological Sciences, Environmental Health, and Civil and Environmental Engineering. High student interest is evidenced in students in geology, geography, ecology, urban studies, and planning. Three new courses have been added to the catalog and offered this year. Cross-cutting curriculum changes are in place with growing enrollments in remote sensing, GIS, and a new co-taught seminar in applied coastal remote sensing. The enabling grant has also allowed project participants to attract external funding for research grants, thereby providing additional funds beyond the planned matching, maintenance and growth of software and hardware, and stipends for student assistants. Two undergraduate assistants and two graduate assistants have been employed by full-time assistantships as a result. A new certificate is offered to students completing an interdisciplinary course sequence

  5. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    Science.gov (United States)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  6. Laboratory Directed Research and Development Program, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  7. Laboratory Directed Research and Development Program, FY 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology

  8. 1996 Laboratory directed research and development annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P. [comp.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  9. Laboratory-directed research and development: FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  10. Laboratory-directed research and development: FY 1996 progress report

    International Nuclear Information System (INIS)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects' principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences

  11. Environmental Research Laboratories annual report for 1979 and 1980

    International Nuclear Information System (INIS)

    1981-03-01

    The Atmospheric Turbulence and Diffusion Laboratory (ATDL) research program is organized around the following subject areas: transport and diffusion over complex terrain, atmospheric turbulence and plume diffusion, and forest meteorology and climatological studies. Current research efforts involve experimental and numerical modeling studies of flow over rugged terrain, studies of transport of airborne material in and above a forest canopy, basic studies of atmospheric diffusion parameters for applications to environmental impact evaluation, plume rise studies, and scientific collaboration with personnel in DOE-funded installations, universities, and government agencies on meteorological studies in our area of expertise. Abstracts of fifty-two papers that have been published or are awaiting publication are included

  12. Radiation protection in a multi-disciplinary research laboratory

    International Nuclear Information System (INIS)

    O'Donovan, E.J.B.; Jenks, G.J.; Brighton, D.R.

    1993-01-01

    This paper describes the measures for the protection of personnel against the hazards of ionising and non-ionising radiation at the Materials Research Laboratory (MRL) in Victoria. The paper describes MRL safety and protection policy and management, and gives brief details of procedures and problems at the working level. A comparison of MRL average annual photon doses with all Governmental Research Institutions and industry is given. The good safety record of MRL is evident and shows that the radioactive protection issues are well handled. 4 figs

  13. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    Science.gov (United States)

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.

  14. Student research in Canada's north

    Energy Technology Data Exchange (ETDEWEB)

    Admas, P [ed.; Johnson, P G [ed.

    1988-01-01

    A conference was organized in Canada to allow a large number of students with northern interests to meet together to present the results of their work and to discuss many other matters of mutual interset. In addition, this conference allowed students from many disciplines in the natural and social sciences to advance northern scholarship, and to foster a multidisciplinary approach to northern studies. A wide range of topics from the physical, biological, and social sciences were covered, including Inuit music, traditional medicine, mammoth bones, fossil trees, icebreaker design, archaeology, caves, naturally acid and other lakes, glaciers, bogs, Inuit clothing, education, northern parks, river ice jams, geology, marine science including large marine mammals, and global strategy. Separate abstracts have been prepared for twelve papers from this conference.

  15. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  16. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  17. Research-oriented medical education for graduate medical students.

    Science.gov (United States)

    Deo, Madhav G

    2013-01-01

    In most parts of the world, medical education is predominantly geared to create service personnel for medical and health services. Training in research is ignored, which is a major handicap for students who are motivated to do research. The main objective of this study was to develop, for such students, a cost-effective 'in-study' research training module that could be adopted even by medical colleges, which have a modest research infrastructure, in different regions of India. Short-duration workshops on the clinical and laboratory medicine research methods including clinical protocol development were held in different parts of India to facilitate participation of students from various regions. Nine workshops covering the entire country were conducted between July 2010 and December 2011. Participation was voluntary and by invitation only to the recipients of the Indian Council of Medical Research-Short-term Studentship programme (ICMR- STS), which was taken as an index of students' research motivation. Faculty was drawn from the medical institutions in the region. All expenses on students, including their travel, and that of the faculty were borne by the academy. Impact of the workshop was judged by the performance of the participants in pre- and post-workshop tests with multiple-choice questions (MCQs) containing the same set of questions. There was no negative marking. Anonymous student feedback was obtained using a questionnaire. Forty-one per cent of the 1009 invited students attended the workshops. These workshops had a positive impact on the participants. Only 20% students could pass and just 2.3% scored >80% marks in the pre-workshop test. There was a three-fold increase in the pass percentage and over 20% of the participants scored >80% marks (A grade) in the post-workshop test. The difference between the pre- and post- workshop performance was statistically significant at all the centres. In the feedback from participants, the workshop received an average

  18. Enhancing the Student Experiment Experience: Visible Scientific Inquiry Through a Virtual Chemistry Laboratory

    Science.gov (United States)

    Donnelly, Dermot; O'Reilly, John; McGarr, Oliver

    2013-08-01

    Practical work is often noted as a core reason many students take on science in secondary schools (high schools). However, there are inherent difficulties associated with classroom practical work that militate against scientific inquiry, an approach espoused by many science educators. The use of interactive simulations to facilitate student inquiry has emerged as a complement to practical work. This study presents case studies of four science teachers using a virtual chemistry laboratory (VCL) with their students in an explicitly guided inquiry manner. Research tools included the use of the Inquiry Science Implementation Scale in a `talk-aloud' manner, Reformed Teaching Observation Protocol for video observations, and teacher interviews. The findings suggest key aspects of practical work that hinder teachers in adequately supporting inquiry and highlight where a VCL can overcome many of these difficulties. The findings also indicate considerations in using the VCL in its own right.

  19. Sequim Marine Research Laboratory routine environmental measurements during CY-1977

    International Nuclear Information System (INIS)

    Fix, J.J.; Blumer, P.J.

    1978-06-01

    Beginning in 1976, a routine environmental program was established at the Marine Research Laboratory (MRL) at Sequim, Washington. The program is intended to demonstrate the negligible impact of current MRL operations on the surrounding environs and to provide baseline data through which any cumulative impact could be detected. The sampling frequency is greater during the first 2 years of the program to provide sufficient initial information to allow reliable estimates of observed radionuclide concentrations and to construct a long-term sampling program. The program is designed, primarily, to determine levels of radioactivity present in selected biota in Sequim Bay. The biota were selected because of their presence near the laboratory and their capacity to concentrate trace elements. Other samples were obtained to determine the radionuclides in Sequim Bay and laboratory drinking water, as well as the ambient radiation exposure levels and surface deposition of fallout radionuclides for the laboratory area. Appendix A provides a summary of the analytical methods used. The present document includes data obtained during CY 1977 in addition to CY-1976 data published previously

  20. Peer Instruction in the Learning Laboratory: A Strategy To Decrease Student Anxiety.

    Science.gov (United States)

    Owens, Laura D.; Walden, Debra J.

    2001-01-01

    To decrease nursing students' anxiety during psychomotor skills testing in learning laboratories, paid peer instructors were trained to assist. Over 3 years, 270 students participated and reported positive outcomes. (SK)

  1. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    International Nuclear Information System (INIS)

    Smith, M.H.

    1996-01-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory's research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL)

  2. Research supervision: Perceptions of postgraduate nursing students ...

    African Journals Online (AJOL)

    Ethical clearance was obtained from UKZN's Ethics Committee. The population consisted of the PG coursework Master's nursing students who were registered for the research project module during 2012. A total of 56 students participated, with a response rate of 70%. Data were analysed using the Statistical Package for ...

  3. Students' perspectives of undergraduate research methods ...

    African Journals Online (AJOL)

    Introduction: in this study we used a model of adult learning to explore undergraduate students' views on how to improve the teaching of research methods and biostatistics. Methods: this was a secondary analysis of survey data of 600 undergraduate students from three medical schools in Uganda. The analysis looked at ...

  4. The monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-01-01

    Computerized tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia designed accessories, have been combined with a PDP 11/40 computer to provide maximum personnel and environmental protection. Each individual monitoring system, in addition to a local display in the area of interest, has a visual/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from uCi/m 3 levels for room air monitoring to KCi/m 3 levels for glove box and process system monitoring. The overall monitoring system and its capabilities will be presented

  5. Monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, CA

    International Nuclear Information System (INIS)

    Wall, W.R.; Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-11-01

    Automated tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia-designed accessories, have been combined with a PDP 11/40 computer to automatically read and record tritium concentrations of room air, containment, and cleanup systems. Each individual monitoring system, in addition to a local display in the area of interest, has a visible/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from μCi/m 3 levels for room air monitoring to kCi/m 3 levels for glove box and cleanup systems monitoring. In this report the overall monitoring system and its capabilities are discussed, with detailed descriptions given of monitors and their components

  6. The need for econometric research in laboratory animal operations.

    Science.gov (United States)

    Baker, David G; Kearney, Michael T

    2015-06-01

    The scarcity of research funding can affect animal facilities in various ways. These effects can be evaluated by examining the allocation of financial resources in animal facilities, which can be facilitated by the use of mathematical and statistical methods to analyze economic problems, a discipline known as econometrics. The authors applied econometrics to study whether increasing per diem charges had a negative effect on the number of days of animal care purchased by animal users. They surveyed animal numbers and per diem charges at 20 research institutions and found that demand for large animals decreased as per diem charges increased. The authors discuss some of the challenges involved in their study and encourage research institutions to carry out more robust econometric studies of this and other economic questions facing laboratory animal research.

  7. Comparing the Impact of Course-Based and Apprentice-Based Research Experiences in a Life Science Laboratory Curriculum†

    Science.gov (United States)

    Shapiro, Casey; Moberg-Parker, Jordan; Toma, Shannon; Ayon, Carlos; Zimmerman, Hilary; Roth-Johnson, Elizabeth A.; Hancock, Stephen P.; Levis-Fitzgerald, Marc; Sanders, Erin R.

    2015-01-01

    This four-year study describes the assessment of a bifurcated laboratory curriculum designed to provide upper-division undergraduate majors in two life science departments meaningful exposure to authentic research. The timing is critical as it provides a pathway for both directly admitted and transfer students to enter research. To fulfill their degree requirements, all majors complete one of two paths in the laboratory program. One path immerses students in scientific discovery experienced through team research projects (course-based undergraduate research experiences, or CUREs) and the other path through a mentored, independent research project (apprentice-based research experiences, or AREs). The bifurcated laboratory curriculum was structured using backwards design to help all students, irrespective of path, achieve specific learning outcomes. Over 1,000 undergraduates enrolled in the curriculum. Self-report survey results indicate that there were no significant differences in affective gains by path. Students conveyed which aspects of the curriculum were critical to their learning and development of research-oriented skills. Students’ interests in biology increased upon completion of the curriculum, inspiring a subset of CURE participants to subsequently pursue further research. A rubric-guided performance evaluation, employed to directly measure learning, revealed differences in learning gains for CURE versus ARE participants, with evidence suggesting a CURE can reduce the achievement gap between high-performing students and their peers. PMID:26751568

  8. Zoonoses of occupational health importance in contemporary laboratory animal research.

    Science.gov (United States)

    Hankenson, F Claire; Johnston, Nancy A; Weigler, Benjamin J; Di Giacomo, Ronald F

    2003-12-01

    In contemporary laboratory animal facilities, workplace exposure to zoonotic pathogens, agents transmitted to humans from vertebrate animals or their tissues, is an occupational hazard. The primary (e.g., macaques, pigs, dogs, rabbits, mice, and rats) and secondary species (e.g., sheep, goats, cats, ferrets, and pigeons) of animals commonly used in biomedical research, as classified by the American College of Laboratory Animal Medicine, are established or potential hosts for a large number of zoonotic agents. Diseases included in this review are principally those wherein a risk to biomedical facility personnel has been documented by published reports of human cases in laboratory animal research settings, or under reasonably similar circumstances. Diseases are listed alphabetically, and each section includes information about clinical disease, transmission, occurrence, and prevention in animal reservoir species and humans. Our goal is to provide a resource for veterinarians, health-care professionals, technical staff, and administrators that will assist in the design and on-going evaluation of institutional occupational health and safety programs.

  9. CSI flight experiment projects of the Naval Research Laboratory

    Science.gov (United States)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  10. Teaching Students about Research: Classroom Poster Sessions.

    Science.gov (United States)

    Crowley-Long, Kathleen; And Others

    1997-01-01

    Finds that undergraduate students in an introductory psychology class acquired more favorable attitudes toward research as a result of their active participation in the creation and presentation of a poster that illustrates their independent work. Appends poster session instructions. (RS)

  11. Visiting summer students enhance research skills

    OpenAIRE

    Constantinescu, Ana

    2007-01-01

    Seven undergraduate students from universities across the nation and one from Virginia Tech are working side by side with Virginia Tech professors this summer on research projects related to sustainable management of resources.

  12. Student Augmentation for Crystal Growth Research

    National Research Council Canada - National Science Library

    Prasad, V

    1999-01-01

    ... intelligent modeling, design and control of crystal growth processes. One doctoral student worked on integrating the radiation heat transfer model into MASTRAPP, the crystal growth model developed by the Consortium for Crystal Growth Research...

  13. Enhanced Learning of Biotechnology Students by an Inquiry-Based Cellulase Laboratory

    Science.gov (United States)

    Ketpichainarong, Watcharee; Panijpan, Bhinyo; Ruenwongsa, Pintip

    2010-01-01

    This study explored the effectiveness of an inquiry-based cellulase laboratory unit in promoting inquiry in undergraduate students in biotechnology. The following tools were used to assess the students' achievements and attitude: conceptual understanding test, concept mapping, students' documents, CLES questionnaire, students' self reflection, and…

  14. Radioisotope research and development at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Peterson, E.J.

    1993-01-01

    Throughout its fifty year history, Los Alamos National Laboratory has conducted research and development in the production, isolation, purification, and application of radioactive isotopes. Initially this work supported the weapons development mission of the Laboratory. Over the years the work has evolved to support basic and applied research in many diverse fields, including nuclear medicine, biomedical studies, materials science, environmental research and the physical sciences. In the early 1970s people in the Medical Radioisotope Research Program began irradiating targets at the Los Alamos Meson Physics Facility (LAMPF) to investigate the production and recovery of medically important radioisotopes. Since then spallation production using the high intensity beam at LAMPF has become a significant source of many important radioisotopes. Los Alamos posesses other facilities with isotope production capabilities. Examples are the Omega West Reactor (OWR) and the Van de Graaf Ion Beam Facility (IBF). Historically these facilities have had limited availability for radioisotope production, but recent developments portend a significant radioisotope production mission in the future

  15. Laboratory directed research and development annual report: 2005

    International Nuclear Information System (INIS)

    2006-01-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2005 for Sandia National Laboratories. In addition to a programmatic and financial overview, the report includes progress reports from 410 individual R and D projects in 19 categories. The categories and subheadings are: Science, Technology and Engineering (Advanced Components and Certification Engineering; Advanced Manufacturing; Biotechnology; Chemical and Earth Sciences; Computational and Information Sciences; Electronics and Photonics; Engineering Sciences; Materials Science and Technology; Pulsed Power Sciences and High Energy Density Sciences; Science and Technology Strategic Objectives); Mission Technologies (Energy and Infrastructure Assurance; Homeland Security; Military Technologies and Applications; Nonproliferation and Assessments; Grand Challanges); and Corporate Objectives (Advanced Concepts; Seniors' Council; University Collaborations)

  16. Laboratory contamination in the early period of radiation research

    International Nuclear Information System (INIS)

    Rona, E.

    1979-01-01

    Meagre records exist of the levels of contamination and human exposure encountered by those who took part in the early research on radioactive materials. In order to throw some light on the nature and extent of the problem the author presents some recollections of the conditions of the laboratories in which she worked from 1924-1940. These include the Kaiser Wilhelm Institute, the Radium Institute of Vienna and the Curie Institute. The health, radiation injuries and causes of death of some early workers are discussed. Although the effects of acute exposure were recognised early on, there was less awareness of the possible effects of chronic exposure, and lack of prompt clinical signs of injury encouraged complacency. Laboratory contamination was often seen more as a problem affecting experimental results than as a health hazard. (author)

  17. Outline of new extra high voltage research equipment at Kumatori research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hohki, S; Ikeda, G

    1965-01-01

    Following up the construction in 1939 of an ehv research laboratory, another new research laboratory was established at Kumatori with a ground area of 142,000 square meters. As the first stage of this construction plan, the new research equipment was installed in November 1963 and began operation. The laboratory consists of comprehensive ehv research equipment and facilities relating to atomic energy. The former includes a 6000-kV impulse voltage generator, a 1650-kV alternating current testing transformer, a 300-m overhead transmission test line, a tower strength testing facility, and other various high-power test facilities. Studies on a 400- to 500-kV overhead power transmission system and other new transmission systems are currently being conducted. The details of the construction of the ehv research equipment together with the research policy for future ehv engineering are given.

  18. Customized laboratory information management system for a clinical and research leukemia cytogenetics laboratory.

    Science.gov (United States)

    Bakshi, Sonal R; Shukla, Shilin N; Shah, Pankaj M

    2009-01-01

    We developed a Microsoft Access-based laboratory management system to facilitate database management of leukemia patients referred for cytogenetic tests in regards to karyotyping and fluorescence in situ hybridization (FISH). The database is custom-made for entry of patient data, clinical details, sample details, cytogenetics test results, and data mining for various ongoing research areas. A number of clinical research laboratoryrelated tasks are carried out faster using specific "queries." The tasks include tracking clinical progression of a particular patient for multiple visits, treatment response, morphological and cytogenetics response, survival time, automatic grouping of patient inclusion criteria in a research project, tracking various processing steps of samples, turn-around time, and revenue generated. Since 2005 we have collected of over 5,000 samples. The database is easily updated and is being adapted for various data maintenance and mining needs.

  19. Laboratory Directed Research and Development FY2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High

  20. The development of Metacognition test in genetics laboratory for undergraduate students

    Science.gov (United States)

    A-nongwech, Nattapong; Pruekpramool, Chaninan

    2018-01-01

    The purpose of this research was to develop a Metacognition test in a Genetics Laboratory for undergraduate students. The participants were 30 undergraduate students of a Rajabhat university in Rattanakosin group in the second semester of the 2016 academic year using purposive sampling. The research instrument consisted of 1) Metacognition test and 2) a Metacognition test evaluation form for experts focused on three main points which were an accurate evaluation form of content, a consistency between Metacognition experiences and questions and the appropriateness of the test. The quality of the test was analyzed by using the Index of Consistency (IOC), discrimination and reliability. The results of developing Metacognition test were summarized as 1) The result of developing Metacognition test in a Genetics Laboratory for undergraduate students found that the Metacognition test contained 56 items of open - ended questions. The test composed of 1) four scientific situations, 2) fourteen items of open - ended questions in each scientific situation for evaluating components of Metacognition. The components of Metacognition consisted of Metacognitive knowledge, which were divided into person knowledge, task knowledge and strategy knowledge and Metacognitive experience, which were divided into planning, monitoring and evaluating, and 3) fourteen items of scoring criteria divided into four scales. 2) The results of the item analysis of Metacognition in Genetics Laboratory for undergraduate students found that Index of Consistency between Metacognitive experiences and questions were in the range between 0.75 - 1.00. An accuracy of content equaled 1.00. The appropriateness of the test equaled 1.00 in all situations and items. The discrimination of the test was in the range between 0.00 - 0.73. Furthermore, the reliability of the test equaled 0.97.

  1. Using the Human Systems Simulation Laboratory at Idaho National Laboratory for Safety Focused Research

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey .C; Boring, Ronald L.

    2016-07-01

    Under the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program, researchers at Idaho National Laboratory (INL) have been using the Human Systems Simulation Laboratory (HSSL) to conduct critical safety focused Human Factors research and development (R&D) for the nuclear industry. The LWRS program has the overall objective to develop the scientific basis to extend existing nuclear power plant (NPP) operating life beyond the current 60-year licensing period and to ensure their long-term reliability, productivity, safety, and security. One focus area for LWRS is the NPP main control room (MCR), because many of the instrumentation and control (I&C) system technologies installed in the MCR, while highly reliable and safe, are now difficult to replace and are therefore limiting the operating life of the NPP. This paper describes how INL researchers use the HSSL to conduct Human Factors R&D on modernizing or upgrading these I&C systems in a step-wise manner, and how the HSSL has addressed a significant gap in how to upgrade systems and technologies that are built to last, and therefore require careful integration of analog and new advanced digital technologies.

  2. Supporting research projects via student workshops

    DEFF Research Database (Denmark)

    Marschall, Max; Schmeck, Michel; Gengnagel, Christoph

    2016-01-01

    As part of a joint research project between the Centre for Information Technology and Architecture (CITA) and te Department for Structural Design and Technology (KET), a one week student workshop was organised at the Royal Danish Academy of Fine Arts (KADK) in Copenhagen. This paper outlines...... the teaching methods applied to reach maximum insight from student interaction, despite the unfamiliarity the students had with the research matter: physical and numeric form-finding for lightweight hybrid structures. Hybrid structures are defined here as combining different components of low stiffness...

  3. Research and learning opportunities in a reactor-based nuclear analytical laboratory

    International Nuclear Information System (INIS)

    Robinson, L.

    1994-01-01

    Although considered by many to be a mature science, neutron activation analysis (NAA) continues to be a valuable tool in trace-element research applications. Examples of the applicability of NAA can be found in a variety of areas including archaeology, environmental science, epidemiology, forensic science, and material science to name a few. Each stage of NAA provides opportunities to share numerous practical and fundamental scientific principles with high school teachers and students. This paper will present an overview of these opportunities and give a specific example from collaboration with a high school teacher whose research involved the automation of a gamma-ray spectroscopy counting system using a laboratory robot

  4. The Implementation of a New Method of Student Assessment in a Pathogenic Bacteriology Laboratory Course

    Directory of Open Access Journals (Sweden)

    M. Frances Hite

    2009-12-01

    Full Text Available A new case study method of assessment was developed to challenge advanced undergraduate biology majors interested in medical careers and allied health professions. This method is an alternative to traditional "unknown" identifications used in many microbiology laboratories. Students used various biochemical tests and selective media throughout the course to identify organisms cultured from their own bodies. In preparing a final assessment for the course, an assignment was developed to challenge the students to apply what they had learned in a medically relevant setting. Also of importance was the elimination of further biochemical testing by these students and prevention of contact with strict pathogens in this lab, due to budget and safety constraints, respectively. Each student was provided with a clinical specimen data record sheet and additional information about their "diseased patient". Students used analytical skills and critical thinking, as well as knowledge gained throughout the semester, to logically deduce the causative agent of disease in the mock patients. Students were required to: (i describe the steps in this logical deduction, (ii provide a brief overview of the characteristics and virulence factors of the organism(s, (iii investigate all disease(s caused by the organism, (iv describe symptomology of the patient in detail, and (v investigate disease treatment and prevention methods. The final assignment involved library and Internet research and culminated in a written report, which further developed writing and communication skills. Detailed descriptions of and materials for this assignment are provided along with an overall evaluation of this method after implementation.

  5. Aespoe hard rock laboratory. Current research projects 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a `dress rehearsal` for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book `Aespoe Hard Rock Laboratory - 10 years of Research` published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  6. Aespoe hard rock laboratory. Current research projects 1998

    International Nuclear Information System (INIS)

    1998-01-01

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a 'dress rehearsal' for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book 'Aespoe Hard Rock Laboratory - 10 years of Research' published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  7. NEW IRRADIATION RESEARCH FACILITIES AT THE ARMY NATICK LABORATORIES

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R. D.; Brynjolfsson, A.

    1963-03-15

    New facilities built by the U. S. Army for research on the preservation of food by ionizing radiation consist of a food processing and packaging facility and a radiation sources laboratory with two powerful low-energy radiation sources. One is a 1.3 million-curie Co/sup 60/ source consisting of 98 tubes each containing four doubly encapsulated Co/sup 60/ slugs. The second source is an electron linear accelerator with energy variable between 2 and 32 Mev. Research with the Co/sup 60/ source is concentrated on investigation of macroscopic and microscopic dose distribution in different materials irradiated with Co/sup 60/ gamma rays. Research with the linear accelerator is concentrated on dosimetry and photonuclear reactions. (A.G.W.)

  8. Lawrence Livermore National Laboratory FY 2016 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gard, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sketchley, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Watkins, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    The LDRD annual report for FY2016 consists of two parts: The Overview. This section contains a broad description of the LDRD Program, highlights of recent accomplishments and awards, Program statistics, and the LDRD portfolio-management processes. Project Reports. Project reports are submitted by all principal investigators at the end of the fiscal year. The length and depth of the report depends on the project’s lifecycle. For projects that will be continuing the following year, the principal investigator submits a continuing project report, which is a brief update containing descriptions of the goals, scope, motivation, relevance (to DOE/NNSA and Livermore mission areas), and technical progress achieved in FY16, as well as a list of selected publications and presentations that resulted from the research. For projects that concluded in FY16, a more detailed final report is provided that is technical in nature and includes the background, objectives, scientific approach, accomplishments, and impacts on the Laboratory missions, as well as a list of publications and presentations that resulted from the research. Project reports are listed under their research topics and organized by year and type, such as exploratory research (ER), feasibility study (FS), laboratory-wide competition (LW), and strategic initiative (SI). Each project is assigned a unique tracking code, an identifier that consists of three elements. The first is the fiscal year in which the project began, the second represents the project type, and the third identifies the serial number of the project for that fiscal year. For example, 16-ERD-100 means the project is an exploratory research project that began in FY16. The three-digit number (100) represents the serial number for the project.

  9. Peer Teaching in the Food Chemistry Laboratory: Student-produced Experiments, Peer and Audio Feedback and Integration of Employability

    OpenAIRE

    Dunne, Julie

    2014-01-01

    This paper describes the author’s experience over the last several years of implementing an alternative Food Chemistry laboratory practical for a group of third-year BSc Nutraceuticals students. The initial main objectives were to prepare students for the more independent final-year research project; to incorporate innovative approaches to feedback; and to integrate key employability skills into the curriculum. These were achieved through building the skills required to ultimately allow stude...

  10. Laboratory Directed Research and Development Annual Report for 2010

    International Nuclear Information System (INIS)

    Hughes, Pamela J.

    2011-01-01

    This report documents progress made on all LDRD-funded projects during fiscal year 2010. The projects supported by LDRD funding all have demonstrable ties to DOE missions. In addition, many of the LDRD projects are relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff needed to serve the highest priority DOE mission objectives. The flexibility provided by the LDRD program allows us to make rapid decisions about projects that address emerging scientific challenges so that PNNL remains a modern research facility well into the 21st century. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline. Though multidisciplinary, each project in this report appears under one of the following primary research categories: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; and (6) Engineering and Manufacturing Processes.

  11. The Mammalian Microbiome and Its Importance in Laboratory Animal Research.

    Science.gov (United States)

    Bleich, André; Fox, James G

    2015-01-01

    In this issue are assembled 10 fascinating, well-researched papers that describe the emerging field centered on the microbiome of vertebrate animals and how these complex microbial populations play a fundamental role in shaping homeostasis of the host. The content of the papers will deal with bacteria and, because of relative paucity of information on these organisms, will not include discussions on viruses, fungus, protozoa, and parasites that colonize various animals. Dissecting the number and interactions of the 500-1000 bacterial species that can inhabit the intestines of animals is made possible by advanced DNA sequencing methods, which do not depend on whether the organism can be cultured or not. Laboratory animals, particularly rodents, have proven to be an indispensable component in not only understanding how the microbiome aids in digestion and protects the host against pathogens, but also in understanding the relationship of various species of bacteria to development of the immune system. Importantly, this research elucidates purported mechanisms for how the microbiome can profoundly affect initiation and progression of diseases such as type 1 diabetes, metabolic syndromes, obesity, autoimmune arthritis, inflammatory bowel disease, and irritable bowel syndrome. The strengths and limitations of the use of germfree mice colonized with single species of bacteria, a restricted flora, or most recently the use of human-derived microbiota are also discussed. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  13. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  14. Laboratory directed research and development annual report 2004

    International Nuclear Information System (INIS)

    Not Available

    2005-01-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Density Sciences; and (15) Corporate Objectives

  15. Tritium research laboratory cleanup and transition project final report

    International Nuclear Information System (INIS)

    Johnson, A.J.

    1997-02-01

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project's multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition

  16. Oak Ridge National Laboratory Research Reactor Experimenters' Guide

    International Nuclear Information System (INIS)

    Cagle, C.D.

    1982-10-01

    The Oak Ridge National Laboratory has three multipurpose research reactors which accommodate testing loops, target irradiations, and beam-type experiments. Since the experiments must share common or similar facilities and utilities, be designed and fabricated by the same groups, and meet the same safety criteria, certain standards for these have been developed. These standards deal only with those properties from which safety and economy of time and money can be maximized and do not relate to the intent of the experiment or quality of the data obtained. The necessity for, and the limitations of, the standards are discussed; and a compilation of general standards is included

  17. 1997 Laboratory directed research and development. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P. [comps.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  18. A university hot laboratory for teaching and research

    International Nuclear Information System (INIS)

    Heinonen, O.; Miettinen, J.K.

    1976-01-01

    In small countries which have limited material and capital resources there is more need for studying and teaching reactor chemistry in universities than there is in countries with special nuclear research and training centres. A new 150-m 2 laboratory of reactor chemistry was added to the premises of the Department of Radiochemistry, University of Helsinki, in October 1975. It contains a hot area with low-pressure air-conditioning, a sanitary room, a low-activity area, and an office area. The main instrument is a mass-spectrometer MI-1309 equipped with an ion counter which is particularly useful for plutonium analysis. The laboratory can handle samples up-to 10Ci gamma-acitivity - which equals one pellet of a fuel rod - in a sealed lead cell which has an interchangeable box for alpha-active work. Pretreated samples are submitted to chemical separations in glove-boxes. Samples for alpha and mass spectroscopy are also prepared in glove-boxes. Also the laboratory is provided with fume hoods suitable for building lead shields. Radiation protection and special features typical to the university environment are discussed. Methods for verfication of contamination and protection against internal and external contamination are applied. These include air monitoring, analysis of excreta, and whole-body counting. (author)

  19. A design guide for energy-efficient research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Wishner, N.; Chen, A.; Cook, L. [eds.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

    1996-09-24

    This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

  20. Research Microcultures as Socialization Contexts for Underrepresented Science Students.

    Science.gov (United States)

    Thoman, Dustin B; Muragishi, Gregg A; Smith, Jessi L

    2017-06-01

    How much does scientific research potentially help people? We tested whether prosocial-affordance beliefs (PABs) about science spread among group members and contribute to individual students' motivation for science. We tested this question within the context of research experience for undergraduates working in faculty-led laboratories, focusing on students who belong to underrepresented minority (URM) groups. Longitudinal survey data were collected from 522 research assistants in 41 labs at six institutions. We used multilevel modeling, and results supported a socialization effect for URM students: The aggregate PABs of their lab mates predicted the students' own initial PABs, as well as their subsequent experiences of interest and their motivation to pursue a career in science, even after controlling for individual-level PABs. Results demonstrate that research labs serve as microcultures of information about the science norms and values that influence motivation. URM students are particularly sensitive to this information. Efforts to broaden participation should be informed by an understanding of the group processes that convey such prosocial values.

  1. Comparison of student achievement among two science laboratory types: traditional and virtual

    Science.gov (United States)

    Reese, Mary Celeste

    Technology has changed almost every aspect of our daily lives. It is not surprising then that technology has made its way into the classroom. More and more educators are utilizing technological resources in creative ways with the intent to enhance learning, including using virtual laboratories in the sciences in place of the "traditional" science laboratories. This has generated much discussion as to the influence on student achievement when online learning replaces the face-to-face contact between instructor and student. The purpose of this study was to discern differences in achievement of two laboratory instruction types: virtual laboratory and a traditional laboratory. Results of this study indicate statistical significant differences in student achievement defined by averages on quiz scores in virtual labs compared with traditional face-to-face laboratories and traditional laboratories result in greater student learning gains than virtual labs. Lecture exam averages were also greater for students enrolled in the traditional laboratories compared to students enrolled in the virtual laboratories. To account for possible differences in ability among students, a potential extraneous variable, GPA and ACT scores were used as covariates.

  2. Mixed Methods Student Evaluation of an Online Systemic Human Anatomy Course with Laboratory

    Science.gov (United States)

    Attardi, Stefanie M.; Choi, Suwhan; Barnett, John; Rogers, Kem A.

    2016-01-01

    A fully online section of an existing face-to-face (F2F) systemic human anatomy course with a prosection laboratory was offered for the first time in 2012-2013. Lectures for F2F students (N = 365) were broadcast in both live and archived format to online students (N = 40) using virtual classroom software. Laboratories were delivered online by a…

  3. Grade Distribution Digests: A Novel Tool to Enhance Teaching and Student Learning in Laboratory Practicals

    Science.gov (United States)

    Arthur, Peter G.; Zareie, Reza; Kirkwood, Paul; Ludwig, Martha; Attwood, Paul V.

    2018-01-01

    Assessment is a central component of course curriculums and is used to certify student learning, but it can also be used as a tool to improve teaching and learning. Many laboratory courses are structured such that there is only a grade for a particular laboratory, which limits the insights that can be gained in student learning. We developed a…

  4. University Physics Students' Ideas of Thermal Radiation Expressed in Open Laboratory Activities Using Infrared Cameras

    Science.gov (United States)

    Haglund, Jesper; Melander, Emil; Weiszflog, Matthias; Andersson, Staffan

    2017-01-01

    Background: University physics students were engaged in open-ended thermodynamics laboratory activities with a focus on understanding a chosen phenomenon or the principle of laboratory apparatus, such as thermal radiation and a heat pump. Students had access to handheld infrared (IR) cameras for their investigations. Purpose: The purpose of the…

  5. Effect of Availability and Utilization of Physics Laboratory Equipment on Students' Academic Achievement in Senior Secondary School Physics

    Science.gov (United States)

    Olufunke, Bello Theodora

    2012-01-01

    The study determined the available Physics Laboratory Equipment (PLE) for the teaching and learning of physics in senior secondary schools in Nigeria as well as the extent of utilizing the available equipment. The research design adopted for the study was descriptive survey. The sample consisted of nine hundred students who were randomly chosen…

  6. How Fifth Grade Latino/a Bilingual Students Use Their Linguistic Resources in the Classroom and Laboratory during Science Instruction

    Science.gov (United States)

    Stevenson, Alma R.

    2013-01-01

    This qualitative, sociolinguistic research study examines how bilingual Latino/a students use their linguistic resources in the classroom and laboratory during science instruction. This study was conducted in a school in the southwestern United States serving an economically depressed, predominantly Latino population. The object of study was a…

  7. Assessment of three medical and research laboratories using WHO ...

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... in all three laboratories, lack of quality audit schemes by two laboratories and only one laboratory enrolled into external quality assurance schemes.

  8. Establishment of a clean chemistry laboratory at JAERI. Clean laboratory for environmental analysis and research (CLEAR)

    Energy Technology Data Exchange (ETDEWEB)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2003-02-01

    The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for analyses of ultra trace amounts of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. One of the special features of the CLEAR is that it meets double requirements of a cleanroom and for handling of nuclear materials. As another feature of the CLEAR, much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using considerable amounts of corrosive acids. The air conditioning and purification system, specially designed experimental equipment to provide clean work surfaces, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials and other heavy elements in environmental samples. (author)

  9. Engaging undergraduate students in hadron physics research and instrumentation

    Science.gov (United States)

    Horn, Tanja

    2017-09-01

    Nuclear physics research is fundamental to our understanding of the visible universe and at the same time intertwined with our daily life. Nuclear physics studies the origin and structure of the atomic nuclei in terms of their basic constituents, the quarks and gluons. Atoms and molecules would not exist without underlying quark-gluon interactions, which build nearly all the mass of the visible universe from an assembly of massless gluons and nearly-massless quarks. The study of hadron structure with electromagnetic probes through exclusive and semi-inclusive scattering experiments carried out at the 12 GeV Jefferson Laboratory plays an important role in this effort. In particular, planned precision measurements of pion and kaon form factors and longitudinal-transverse separated deep exclusive pion and kaon electroproduction cross sections to the highest momentum transfers achievable play an important role in understanding hadron structure and masses and provide essential constraints for 3D hadron imaging. While a growing fraction of nuclear physics research is carried out at large international laboratories, individual university research groups play critical roles in the success of that research. These include data analysis projects and the development of state-of-the-art instrumentation demanded by increasingly sophisticated experiments. These efforts are empowered by the creativity of university faculty, staff, postdocs, and provide students with unique hands-on experience. As an example, an aerogel Cherenkov detector enabling strangeness physics research in Hall C at Jefferson Lab was constructed at the Catholic University of America with the help of 16 undergraduate and high school students. The ''Conference Experience for Undergraduates'' (CEU) provides a venue for these students who have conducted research in nuclear physics. This presentation will present the experiences of one of the participants in the first years of the CEU, her current research program

  10. The Laboratory Course Assessment Survey: A Tool to Measure Three Dimensions of Research-Course Design

    Science.gov (United States)

    Corwin, Lisa A.; Runyon, Christopher; Robinson, Aspen; Dolan, Erin L.

    2015-01-01

    Course-based undergraduate research experiences (CUREs) are increasingly being offered as scalable ways to involve undergraduates in research. Yet few if any design features that make CUREs effective have been identified. We developed a 17-item survey instrument, the Laboratory Course Assessment Survey (LCAS), that measures students’ perceptions of three design features of biology lab courses: 1) collaboration, 2) discovery and relevance, and 3) iteration. We assessed the psychometric properties of the LCAS using established methods for instrument design and validation. We also assessed the ability of the LCAS to differentiate between CUREs and traditional laboratory courses, and found that the discovery and relevance and iteration scales differentiated between these groups. Our results indicate that the LCAS is suited for characterizing and comparing undergraduate biology lab courses and should be useful for determining the relative importance of the three design features for achieving student outcomes. PMID:26466990

  11. Reducing Research Anxiety among MSW Students

    Science.gov (United States)

    Einbinder, Susan Dana

    2014-01-01

    Research anxiety significantly declined in a diverse sample of 59 MSW students in their first-year hybrid online research course in which the instructor used an array of innovative educational techniques empirically proven to reduce this phenomenon. The pretest/posttest study, the standardized survey instruments used, and a summary of these…

  12. Cross-disciplinary, authentic student research projects

    NARCIS (Netherlands)

    Heck, A.; Uylings, P.; Kędzierska, E.; Ellermeijer, T.

    2010-01-01

    In the Dutch secondary education system, students must carry out at the end of their school career a rather large research or design project to demonstrate their ability to apply acquired knowledge and skills while pursuing a research question or design goal in some depth. They are encouraged to

  13. Sudanese Medical Students and Scientific Research | Mohamed ...

    African Journals Online (AJOL)

    Only 14.7% knew the engines used for finding medical literature. Conclusion: The low knowledge score is due to lack of application of research in the academic curriculum; however, the students have a fairly positive attitude. The knowledge is expected to improve with the intended policy to include practical research in the ...

  14. Pathways over Time: Functional Genomics Research in an Introductory Laboratory Course.

    Science.gov (United States)

    Reeves, Todd D; Warner, Douglas M; Ludlow, Larry H; O'Connor, Clare M

    2018-01-01

    National reports have called for the introduction of research experiences throughout the undergraduate curriculum, but practical implementation at many institutions faces challenges associated with sustainability, cost, and large student populations. We describe a novel course-based undergraduate research experience (CURE) that introduces introductory-level students to research in functional genomics in a 3-credit, multisection laboratory class. In the Pathways over Time class project, students study the functional conservation of the methionine biosynthetic pathway between divergent yeast species. Over the five semesters described in this study, students ( N = 793) showed statistically significant and sizable growth in content knowledge ( d = 1.85) and in self-reported research methods skills ( d = 0.65), experimental design, oral and written communication, database use, and collaboration. Statistical analyses indicated that content knowledge growth was larger for underrepresented minority students and that growth in content knowledge, but not research skills, varied by course section. Our findings add to the growing body of evidence that CUREs can support the scientific development of large numbers of students with diverse characteristics. The Pathways over Time project is designed to be sustainable and readily adapted to other institutional settings. © 2018 T. D. Reeves et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Charged particle beam propagation studies at the Naval Research Laboratory

    International Nuclear Information System (INIS)

    Meger, R.A.; Hubbard, R.F.; Antoniades, J.A.; Fernsler, R.F.; Lampe, M.; Murphy, D.P.; Myers, M.C.; Pechacek, R.E.; Peyser, T.A.; Santos, J.; Slinker, S.P.

    1993-01-01

    The Plasma Physics Division of the Naval Research Laboratory has been performing research into the propagation of high current electron beams for 20 years. Recent efforts have focused on the stabilization of the resistive hose instability. Experiments have utilized the SuperIBEX e-beam generator (5-MeV, 100-kA, 40-ns pulse) and a 2-m diameter, 5-m long propagation chamber. Full density air propagation experiments have successfully demonstrated techniques to control the hose instability allowing stable 5-m transport of 1-2 cm radius, 10-20 kA total current beams. Analytic theory and particle simulations have been used to both guide and interpret the experimental results. This paper will provide background on the program and summarize the achievements of the NRL propagation program up to this point. Further details can be found in other papers presented in this conference

  16. Environmental and effluent monitoring at Lucas Heights Research Laboratories, 1994

    International Nuclear Information System (INIS)

    Hoffmann, E.L.; Camilleri, A.; Loosz, T.; Farrar, Y.

    1995-12-01

    Results are presented of environmental and effluent monitoring conducted in the vicinity of the Lucas Heights Research Laboratories (LHRL) during 1994. All low level liquid and gaseous effluent discharges complied with existing discharge authorisations and relevant environmental regulations. Potential effective doses to the general public from controlled airborne discharges during this period, were estimated to be less than 0.015 mSv/year for receptor locations on the 1.6 km buffer zone boundary around HIFAR. This value represents 1.5 % of the 1 mSv/year dose limit for long term exposure that is recommended by the National Health and Medical Research Council, and 5 % of the site dose constraint of 0.3 mSv/year adopted by ANSTO. 27 refs., 22 tabs., 6 figs

  17. Radioactive waste management research at CEGB Berkeley nuclear laboratories

    International Nuclear Information System (INIS)

    Bradbury, D.

    1988-01-01

    The CEGB is the major electric utility in the United Kingdom. This paper discusses how, at the research laboratories at Berkeley (BNL), several programs of work are currently taking place in the radioactive waste management area. The theme running through all this work is the safe isolation of radionuclides from the environment. Normally this means disposal of waste in solid form, but it may also be desirable to segregate and release nonradioactive material from the waste to reduce volume or improve the solid waste characteristics (e.g., the release of liquid or gaseous effluents after treatment to convert the radioactivity to solid form). The fuel cycle and radioactive waste section at BNL has a research program into these aspects for wastes arising from the operation or decommissioning of power stations. The work is done both in-house and on contract, with primarily the UKAEA

  18. UTRaLab – Urban Traffic Research Laboratory

    Directory of Open Access Journals (Sweden)

    Karsten Kozempel

    2017-08-01

    Full Text Available The Urban Traffic Research Laboratory (UTRaLab is a research and test track for traffic detection methods and sensors. It is located at the Ernst-Ruska-Ufer, in the southeast of the city of Berlin (Germany. The UTRaLab covers 1 km of a highly-frequented urban road and is connected to a motorway. It is equipped with two gantries with distance of 850 m in between and has several outstations for data collection. The gantries contain many different traffic sensors like inductive loops, cameras, lasers or wireless sensors for traffic data acquisition. Additionally a weather station records environmental data. The UTRaLab’s main purposes are the data collection of traffic data on the one hand and testing newly developed sensors on the other hand.

  19. Environmental and effluent monitoring at Lucas Heights Research Laboratories, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, E L; Camilleri, A; Loosz, T; Farrar, Y

    1995-12-01

    Results are presented of environmental and effluent monitoring conducted in the vicinity of the Lucas Heights Research Laboratories (LHRL) during 1994. All low level liquid and gaseous effluent discharges complied with existing discharge authorisations and relevant environmental regulations. Potential effective doses to the general public from controlled airborne discharges during this period, were estimated to be less than 0.015 mSv/year for receptor locations on the 1.6 km buffer zone boundary around HIFAR. This value represents 1.5 % of the 1 mSv/year dose limit for long term exposure that is recommended by the National Health and Medical Research Council, and 5 % of the site dose constraint of 0.3 mSv/year adopted by ANSTO. 27 refs., 22 tabs., 6 figs.

  20. Tungsten alloy research at the US Army Materials Technology Laboratory

    International Nuclear Information System (INIS)

    Dowding, R.J.

    1991-01-01

    This paper reports that recent research into tungsten heavy alloys at the U. S. Army Materials Technology Laboratory (MTL) has explored many areas of processing and process development. The recrystallization and respheroidization of tungsten grains in a heavily cold worked heavy alloy has been examined and resulted in the identification of a method of grain refinement. Another area of investigation has been lightly cold worked. It was determined that it was possible to increase the strength and hardness of the tungsten grains by proper hat treatment. MTL has been involved in the Army's small business innovative research (SBIR) program and several programs have been funded. Included among these are a method of coating the tungsten powders with the alloying elements and the development of techniques of powder injection molding of heavy alloys

  1. Multi-modal virtual environment research at Armstrong Laboratory

    Science.gov (United States)

    Eggleston, Robert G.

    1995-01-01

    One mission of the Paul M. Fitts Human Engineering Division of Armstrong Laboratory is to improve the user interface for complex systems through user-centered exploratory development and research activities. In support of this goal, many current projects attempt to advance and exploit user-interface concepts made possible by virtual reality (VR) technologies. Virtual environments may be used as a general purpose interface medium, an alternative display/control method, a data visualization and analysis tool, or a graphically based performance assessment tool. An overview is given of research projects within the division on prototype interface hardware/software development, integrated interface concept development, interface design and evaluation tool development, and user and mission performance evaluation tool development.

  2. Behavioral Economic Laboratory Research in Tobacco Regulatory Science.

    Science.gov (United States)

    Tidey, Jennifer W; Cassidy, Rachel N; Miller, Mollie E; Smith, Tracy T

    2016-10-01

    Research that can provide a scientific foundation for the United States Food and Drug Administration (FDA) tobacco policy decisions is needed to inform tobacco regulatory policy. One factor that affects the impact of a tobacco product on public health is its intensity of use, which is determined, in part, by its abuse liability or reinforcing efficacy. Behavioral economic tasks have considerable utility for assessing the reinforcing efficacy of current and emerging tobacco products. This paper provides a narrative review of several behavioral economic laboratory tasks and identifies important applications to tobacco regulatory science. Behavioral economic laboratory assessments, including operant self-administration, choice tasks and purchase tasks, can be used generate behavioral economic data on the effect of price and other constraints on tobacco product consumption. These tasks could provide an expedited simulation of the effects of various tobacco control policies across populations of interest to the FDA. Tobacco regulatory research questions that can be addressed with behavioral economic tasks include assessments of the impact of product characteristics on product demand, assessments of the abuse liability of novel and potential modified risk tobacco products (MRTPs), and assessments of the impact of conventional and novel products in vulnerable populations.

  3. Laboratory Directed Research and Development 1998 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work in atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.

  4. The Relationships between University Students' Chemistry Laboratory Anxiety, Attitudes, and Self-Efficacy Beliefs

    Science.gov (United States)

    Kurbanoglu, N. Izzet; Akin, Ahmet

    2010-01-01

    The aim of this study is to examine the relationships between chemistry laboratory anxiety, chemistry attitudes, and self-efficacy. Participants were 395 university students. Participants completed the Chemistry Laboratory Anxiety Scale, the Chemistry Attitudes Scale, and the Self-efficacy Scale. Results showed that chemistry laboratory anxiety…

  5. Development and Use of Online Prelaboratory Activities in Organic Chemistry to Improve Students' Laboratory Experience

    Science.gov (United States)

    Chaytor, Jennifer L.; Al Mughalaq, Mohammad; Butler, Hailee

    2017-01-01

    Online prelaboratory videos and quizzes were prepared for all experiments in CHEM 231, Organic Chemistry I Laboratory. It was anticipated that watching the videos would help students be better prepared for the laboratory, decrease their anxiety surrounding the laboratory, and increase their understanding of the theories and concepts presented.…

  6. Integration of Video-Based Demonstrations to Prepare Students for the Organic Chemistry Laboratory

    Science.gov (United States)

    Nadelson, Louis S.; Scaggs, Jonathan; Sheffield, Colin; McDougal, Owen M.

    2015-01-01

    Consistent, high-quality introductions to organic chemistry laboratory techniques effectively and efficiently support student learning in the organic chemistry laboratory. In this work, we developed and deployed a series of instructional videos to communicate core laboratory techniques and concepts. Using a quasi-experimental design, we tested the…

  7. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  8. Improvement of the military academy education system for aeronautics students using the flying laboratory

    Directory of Open Access Journals (Sweden)

    Slobodan N. Stupar

    2013-02-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 This paper describes a proposal to improve the educational process of students of the Military Academy to support the maintenance process of the Serbian Army aircraft based on the introduction of objects in flight test aircraft. It is particularly emphasized the importance of establishing airline laboratories with basic characteristics of the test-measuring equipment that is necessary to integrate the aircraft to perform a practical test of an aircraft in flight. The formation of aircraft laboratories would form a very strong didactic tool, which provides for optimal synthesis of theory and practice. This concept of improving the educational process would be substantially affected the awareness of the necessity of working together and put together all the research capacity of scientific institutions in the Ministry of Defence of the Republic of Serbia.

  9. Reactor laboratory course for students majoring in nuclear engineering with the Kyoto University Critical Assembly (KUCA)

    International Nuclear Information System (INIS)

    Nishihara, H.; Shiroya, S.; Kanda, K.

    1996-01-01

    With the use of the Kyoto University Critical Assembly (KUCA), a joint reactor laboratory course of graduate level is offered every summer since 1975 by nine associated Japanese universities (Hokkaido University, Tohoku University, Tokyo Institute of Technology, Musashi Institute of Technology, Tokai University, Nagoya University, Osaka University, Kobe University of Mercantile Marine and Kyushu University) in addition to a reactor laboratory course of undergraduate level for Kyoto University. These courses are opened for three weeks (two weeks for the joint course and one week for the undergraduate course) to students majoring in nuclear engineering and a total of 1,360 students have taken the course in the last 21 years. The joint course has been institutionalized with the background that it is extremely difficult for a single university in Japan to have her own research or training reactor. By their effort, the united faculty team of the joint course have succeeded in giving an effective, unique one-week course, taking advantage of their collaboration. Last year, an enquete (questionnaire survey) was conducted to survey the needs for the educational experiments of graduate level and precious data have been obtained for promoting reactor laboratory courses. (author)

  10. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    Energy Technology Data Exchange (ETDEWEB)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  11. Fissile solution dynamics: Student research

    Energy Technology Data Exchange (ETDEWEB)

    Hetrick, D.L.

    1994-09-01

    There are two research projects in criticality safety at the University of Arizona: one in dynamic simulation of hypothetical criticality accidents in fissile solutions, and one in criticality benchmarks using transport theory. We have used the data from nuclear excursions in KEWB, CRAC, and SILENE to help in building models for solution excursions. An equation of state for liquids containing gas bubbles has been developed and coupled to point-reactor dynamics in an attempt to predict fission rate, yield, pressure, and kinetic energy. It appears that radiolytic gas is unimportant until after the first peak, but that it does strongly affect the shape of the subsequent power decrease and also the dynamic pressure.

  12. Engineered nanomaterials: toward effective safety management in research laboratories.

    Science.gov (United States)

    Groso, Amela; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Hofmann, Heinrich; Meyer, Thierry

    2016-03-15

    It is still unknown which types of nanomaterials and associated doses represent an actual danger to humans and environment. Meanwhile, there is consensus on applying the precautionary principle to these novel materials until more information is available. To deal with the rapid evolution of research, including the fast turnover of collaborators, a user-friendly and easy-to-apply risk assessment tool offering adequate preventive and protective measures has to be provided. Based on new information concerning the hazards of engineered nanomaterials, we improved a previously developed risk assessment tool by following a simple scheme to gain in efficiency. In the first step, using a logical decision tree, one of the three hazard levels, from H1 to H3, is assigned to the nanomaterial. Using a combination of decision trees and matrices, the second step links the hazard with the emission and exposure potential to assign one of the three nanorisk levels (Nano 3 highest risk; Nano 1 lowest risk) to the activity. These operations are repeated at each process step, leading to the laboratory classification. The third step provides detailed preventive and protective measures for the determined level of nanorisk. We developed an adapted simple and intuitive method for nanomaterial risk management in research laboratories. It allows classifying the nanoactivities into three levels, additionally proposing concrete preventive and protective measures and associated actions. This method is a valuable tool for all the participants in nanomaterial safety. The users experience an essential learning opportunity and increase their safety awareness. Laboratory managers have a reliable tool to obtain an overview of the operations involving nanomaterials in their laboratories; this is essential, as they are responsible for the employee safety, but are sometimes unaware of the works performed. Bringing this risk to a three-band scale (like other types of risks such as biological, radiation

  13. Preparing nursing students for contemporary practice: restructuring the psychomotor skills laboratory.

    Science.gov (United States)

    Snyder, M D; Fitzloff, B M; Fiedler, R; Lambke, M R

    2000-05-01

    The restructured laboratory experience offered a safe environment that supported student experimentation with psychomotor skills and self-initiated approaches to problem solving. Restructuring psychomotor laboratory experiences with emphasis on communication and conceptualization of principles supported students to begin addressing clinical problems with flexibility, creativity, and the premise for lifelong skill acquisition. Students who have skills that extend beyond technique will inevitably be better prepared to meet the demands of health care systems and patients now and in the future.

  14. Research potential and cognitive features of students.

    Directory of Open Access Journals (Sweden)

    Bordovskaia N.V.

    2014-12-01

    Full Text Available This article examines the theoretical and methodological justifications for studying students’ research potential. It presents proof of the isomorphic nature of human research activity and research potential as well as of the fluid nature of its development: from research-like behavior to science-based research activity. It defines three functional components (motivational, cognitive, and behavioral that form the structure of research potential. It further presents the results of empirically studying the cognitive features of master’s students possessing different levels of research potential. It provides data on the dynamics of research-potential components at different educational levels (bachelor’s and master’s programs. Special attention is given to a comparative analysis of evaluations by research tutors regarding their students’ research potential and of the indicators obtained using psychodiagnostic methods.

  15. Synthesized research report in the second mid-term research phase. Mizunami Underground Research Laboratory project, Horonobe Underground Research Laboratory project and geo-stability project (Translated document)

    International Nuclear Information System (INIS)

    Hama, Katsuhiro; Sasao, Eiji; Iwatsuki, Teruki; Onoe, Hironori; Sato, Toshinori; Yasue, Kenichi; Asamori, Koichi; Niwa, Masakazu; Osawa, Hideaki; Nagae, Isako; Natsuyama, Ryoko; Fujita, Tomoo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Takeda, Masaki; Aoyagi, Kazuhei; Nakayama, Masashi; Miyakawa, Kazuya; Ito, Hiroaki; Ohyama, Takuya; Senba, Takeshi; Amano, Kenji

    2016-08-01

    We have synthesized the research results from the Mizunami/Horonobe Underground Research Laboratories (URLs) and geo-stability projects in the second mid-term research phase. This report can be used as a technical basis for the Nuclear Waste Management Organization of Japan/Regulator at each decision point from siting to beginning of disposal (Principal Investigation to Detailed Investigation Phase). High-quality construction techniques and field investigation methods have been developed and implemented, which will be directly applicable to the National Disposal Program (together with general assessments of hazardous natural events and processes). Acquisition of technical knowledge on decisions of partial backfilling and final closure from actual field experiments in the Mizunami/Horonobe URLs will be crucial as the main theme for the next phases. (author)

  16. Remote Laboratory NetLab for Effective Teaching of 1st Year Engineering Students

    Directory of Open Access Journals (Sweden)

    Z. Nedic

    2007-08-01

    Full Text Available Practical skills are important attributes of every engineering graduate. The Internet has provided tertiary education with the opportunity to develop innovative learning environments. The teaching and learning of practical skills has gained a new dimension with the emergence of remote laboratories. The rapidly growing number of remote laboratories (RL worldwide is the evidence that the educational community has recognized their potential to develop into a creative, flexible, engaging, and student-cantered learning environment. Even a brief review of the existing RLs shows a large diversity in their structure, design and implementation. However, not many researchers disclose how their RLs are integrated within their curricula. Therefore, an important question still remains to be answered: how to optimize the design of RLs and their integration in a course curriculum for the best learning outcomes? This problem is particularly important when RLs are used in teaching 1st year students who have limited technical knowledge and practical experience in using real equipment. In this paper we would like to share our experiences with NetLab, an RL developed at the University of South Australia (UniSA for teaching 1st year engineering students and make recommendations for improvements in teaching practices based on it.

  17. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    International Nuclear Information System (INIS)

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G.

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs

  18. Laboratory directed research and development program FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  19. Mizunami Underground Research Laboratory project. Plan for fiscal year 2017

    International Nuclear Information System (INIS)

    Ishibashi, Masayuki; Hama, Katsuhiro; Iwatsuki, Teruki; Matsui, Hiroya; Takeuchi, Ryuji; Ikeda, Koki; Mikake, Shinichiro; Iyatomi, Yosuke; Sasao, Eiji; Koide, Kaoru

    2017-10-01

    The Mizunami Underground Research Laboratory (MIU) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami, Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified three important issues on the geoscientific research program: 'Development of countermeasure technologies for reducing groundwater inflow', 'Development of modelling technologies for mass transport' and 'Development of drift backfilling technology', based on the latest results of the synthesizing research and development (R and D). The R and D on three remaining important issues has been carrying out on the MIU Project. This report summarizes the R and D activities planned for fiscal year 2017 on the basis of the MIU Master Plan updated in 2015 and Investigation Plan for the Third Medium to Long-term Research Phase. (author)

  20. AECL's underground research laboratory: technical achievements and lessons learned

    International Nuclear Information System (INIS)

    Ohta, M.M.; Chandler, N.A.

    1997-03-01

    During the development of the research program for the Canadian Nuclear Fuel Waste Management Program in the 1970's, the need for an underground facility was recognized. AECL constructed an Underground Research Laboratory (URL) for large-scale testing and in situ engineering and performance-assessment-related experiments on key aspects of deep geological disposal in a representative geological environment. Ale URL is a unique geotechnical research and development facility because it was constructed in a previously undisturbed portion of a granitic pluton that was well characterized before construction began, and because most of the shaft and experimental areas are below the water table. The specific areas of research, development and demonstration include surface and underground characterization; groundwater and solute transport; in situ rock stress conditions; temperature and time-dependent deformation and failure characteristics of rock; excavation techniques to minimize damage to surrounding rock and to ensure safe working conditions; and the performance of seals and backfills. This report traces the evolution of the URL and summarizes the technical achievements and lessons learned during its siting, design and construction, and operating phases over the last 18 years. (author)