WorldWideScience

Sample records for student computer lab

  1. Introduction to Computing: Lab Manual. Faculty Guide [and] Student Guide.

    Science.gov (United States)

    Frasca, Joseph W.

    This lab manual is designed to accompany a college course introducing students to computing. The exercises are designed to be completed by the average student in a supervised 2-hour block of time at a computer lab over 15 weeks. The intent of each lab session is to introduce a topic and have the student feel comfortable with the use of the machine…

  2. Community College Uses a Video-Game Lab to Lure Students to Computer Courses

    Science.gov (United States)

    Young, Jeffrey R.

    2007-01-01

    A computer lab has become one of the most popular hangouts at Northern Virginia Community College after officials decided to load its PCs with popular video games, install a PlayStation and an Xbox, and declare it "for gamers only." The goal of this lab is to entice students to take game-design and other IT courses. John Min, dean of…

  3. A Series of Computational Neuroscience Labs Increases Comfort with MATLAB.

    Science.gov (United States)

    Nichols, David F

    2015-01-01

    Computational simulations allow for a low-cost, reliable means to demonstrate complex and often times inaccessible concepts to undergraduates. However, students without prior computer programming training may find working with code-based simulations to be intimidating and distracting. A series of computational neuroscience labs involving the Hodgkin-Huxley equations, an Integrate-and-Fire model, and a Hopfield Memory network were used in an undergraduate neuroscience laboratory component of an introductory level course. Using short focused surveys before and after each lab, student comfort levels were shown to increase drastically from a majority of students being uncomfortable or with neutral feelings about working in the MATLAB environment to a vast majority of students being comfortable working in the environment. Though change was reported within each lab, a series of labs was necessary in order to establish a lasting high level of comfort. Comfort working with code is important as a first step in acquiring computational skills that are required to address many questions within neuroscience.

  4. An interactive computer lab of the galvanic cell for students in biochemistry.

    Science.gov (United States)

    Ahlstrand, Emma; Buetti-Dinh, Antoine; Friedman, Ran

    2018-01-01

    We describe an interactive module that can be used to teach basic concepts in electrochemistry and thermodynamics to first year natural science students. The module is used together with an experimental laboratory and improves the students' understanding of thermodynamic quantities such as Δ r G, Δ r H, and Δ r S that are calculated but not directly measured in the lab. We also discuss how new technologies can substitute some parts of experimental chemistry courses, and improve accessibility to course material. Cloud computing platforms such as CoCalc facilitate the distribution of computer codes and allow students to access and apply interactive course tools beyond the course's scope. Despite some limitations imposed by cloud computing, the students appreciated the approach and the enhanced opportunities to discuss study questions with their classmates and instructor as facilitated by the interactive tools. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):58-65, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  5. Advanced LabVIEW Labs

    International Nuclear Information System (INIS)

    Jones, Eric D.

    1999-01-01

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW to create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in ''G'' a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn ''G''. Without going into details here, ''G'' incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the ''perfect environment in which to

  6. Computer-based Astronomy Labs for Non-science Majors

    Science.gov (United States)

    Smith, A. B. E.; Murray, S. D.; Ward, R. A.

    1998-12-01

    We describe and demonstrate two laboratory exercises, Kepler's Third Law and Stellar Structure, which are being developed for use in an astronomy laboratory class aimed at non-science majors. The labs run with Microsoft's Excel 98 (Macintosh) or Excel 97 (Windows). They can be run in a classroom setting or in an independent learning environment. The intent of the labs is twofold; first and foremost, students learn the subject matter through a series of informational frames. Next, students enhance their understanding by applying their knowledge in lab procedures, while also gaining familiarity with the use and power of a widely-used software package and scientific tool. No mathematical knowledge beyond basic algebra is required to complete the labs or to understand the computations in the spreadsheets, although the students are exposed to the concepts of numerical integration. The labs are contained in Excel workbook files. In the files are multiple spreadsheets, which contain either a frame with information on how to run the lab, material on the subject, or one or more procedures. Excel's VBA macro language is used to automate the labs. The macros are accessed through button interfaces positioned on the spreadsheets. This is done intentionally so that students can focus on learning the subject matter and the basic spreadsheet features without having to learn advanced Excel features all at once. Students open the file and progress through the informational frames to the procedures. After each procedure, student comments and data are automatically recorded in a preformatted Lab Report spreadsheet. Once all procedures have been completed, the student is prompted for a filename in which to save their Lab Report. The lab reports can then be printed or emailed to the instructor. The files will have full worksheet and workbook protection, and will have a "redo" feature at the end of the lab for students who want to repeat a procedure.

  7. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    Science.gov (United States)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  8. LabVIEW 8 student edition

    CERN Document Server

    Bishop, Robert H

    2007-01-01

    For courses in Measurement and Instrumentation, Electrical Engineering lab, and Physics and Chemistry lab. This revised printing has been updated to include new LabVIEW 8.2 Student Edition. National Instruments' LabVIEW is the defacto industry standard for test, measurement, and automation software solutions. With the Student Edition of LabVIEW, students can design graphical programming solutions to their classroom problems and laboratory experiments with software that delivers the graphical programming capabilites of the LabVIEW professional version. . The Student Edition is also compatible with all National Instruments data acquisition and instrument control hardware. Note: The LabVIEW Student Edition is available to students, faculty, and staff for personal educational use only. It is not intended for research, institutional, or commercial use. For more information about these licensing options, please visit the National Instruments website at (http:www.ni.com/academic/)

  9. The Influence of Tablet PCs on Students' Use of Multiple Representations in Lab Reports

    Science.gov (United States)

    Guelman, Clarisa Bercovich; De Leone, Charles; Price, Edward

    2009-11-01

    This study examined how different tools influenced students' use of representations in the Physics laboratory. In one section of a lab course, every student had a Tablet PC that served as a digital-ink based lab notebook. Students could seamlessly create hand-drawn graphics and equations, and write lab reports on the same computer used for data acquisition, simulation, and analysis. In another lab section, students used traditional printed lab guides, kept paper notebooks, and then wrote lab reports on regular laptops. Analysis of the lab reports showed differences between the sections' use of multiple representations, including an increased use of diagrams and equations by the Tablet users.

  10. Model to Implement Virtual Computing Labs via Cloud Computing Services

    Directory of Open Access Journals (Sweden)

    Washington Luna Encalada

    2017-07-01

    Full Text Available In recent years, we have seen a significant number of new technological ideas appearing in literature discussing the future of education. For example, E-learning, cloud computing, social networking, virtual laboratories, virtual realities, virtual worlds, massive open online courses (MOOCs, and bring your own device (BYOD are all new concepts of immersive and global education that have emerged in educational literature. One of the greatest challenges presented to e-learning solutions is the reproduction of the benefits of an educational institution’s physical laboratory. For a university without a computing lab, to obtain hands-on IT training with software, operating systems, networks, servers, storage, and cloud computing similar to that which could be received on a university campus computing lab, it is necessary to use a combination of technological tools. Such teaching tools must promote the transmission of knowledge, encourage interaction and collaboration, and ensure students obtain valuable hands-on experience. That, in turn, allows the universities to focus more on teaching and research activities than on the implementation and configuration of complex physical systems. In this article, we present a model for implementing ecosystems which allow universities to teach practical Information Technology (IT skills. The model utilizes what is called a “social cloud”, which utilizes all cloud computing services, such as Software as a Service (SaaS, Platform as a Service (PaaS, and Infrastructure as a Service (IaaS. Additionally, it integrates the cloud learning aspects of a MOOC and several aspects of social networking and support. Social clouds have striking benefits such as centrality, ease of use, scalability, and ubiquity, providing a superior learning environment when compared to that of a simple physical lab. The proposed model allows students to foster all the educational pillars such as learning to know, learning to be, learning

  11. An Algebra-Based Introductory Computational Neuroscience Course with Lab.

    Science.gov (United States)

    Fink, Christian G

    2017-01-01

    A course in computational neuroscience has been developed at Ohio Wesleyan University which requires no previous experience with calculus or computer programming, and which exposes students to theoretical models of neural information processing and techniques for analyzing neural data. The exploration of theoretical models of neural processes is conducted in the classroom portion of the course, while data analysis techniques are covered in lab. Students learn to program in MATLAB and are offered the opportunity to conclude the course with a final project in which they explore a topic of their choice within computational neuroscience. Results from a questionnaire administered at the beginning and end of the course indicate significant gains in student facility with core concepts in computational neuroscience, as well as with analysis techniques applied to neural data.

  12. Increasing Students' Motivation by Using Computers

    Directory of Open Access Journals (Sweden)

    Rodríguez Aura Stella

    2000-08-01

    Full Text Available The lack of motivation in the 9th grade students of Tomás Rueda Vargas School was the objective of this project, so we planned a series of workshops in Microsoft Word to apply in the computer lab. We observed that by working in groups of four in the computer lab, the students did the activities with enthusiasm. It could also be noticed that the workshops were effective in reinforcing English learning.

  13. Teaching mathematics in the PC lab - the students' viewpoints

    Science.gov (United States)

    Schmidt, Karsten; Köhler, Anke

    2013-04-01

    The Matrix Algebra portion of the intermediate mathematics course at the Schmalkalden University Faculty of Business and Economics has been moved from a traditional classroom setting to a technology-based setting in the PC lab. A Computer Algebra System license was acquired that also allows its use on the students' own PCs. A survey was carried out to analyse the students' attitudes towards the use of technology in mathematics teaching.

  14. Student teaching and research laboratory focusing on brain-computer interface paradigms--A creative environment for computer science students.

    Science.gov (United States)

    Rutkowski, Tomasz M

    2015-08-01

    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.

  15. Development of a Computer-Assisted Instrumentation Curriculum for Physics Students: Using LabVIEW and Arduino Platform

    Science.gov (United States)

    Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang

    2016-01-01

    We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum "Computer-Assisted Instrumentation in the Design of Physics Laboratories" brings…

  16. Teaching Mathematics in the PC Lab--The Students' Viewpoints

    Science.gov (United States)

    Schmidt, Karsten; Kohler, Anke

    2013-01-01

    The Matrix Algebra portion of the intermediate mathematics course at the Schmalkalden University Faculty of Business and Economics has been moved from a traditional classroom setting to a technology-based setting in the PC lab. A Computer Algebra System license was acquired that also allows its use on the students' own PCs. A survey was carried…

  17. Incorporating lab experience into computer security courses

    NARCIS (Netherlands)

    Ben Othmane, L.; Bhuse, V.; Lilien, L.T.

    2013-01-01

    We describe our experience with teaching computer security labs at two different universities. We report on the hardware and software lab setups, summarize lab assignments, present the challenges encountered, and discuss the lessons learned. We agree with and emphasize the viewpoint that security

  18. Labs not in a lab: A case study of instructor and student perceptions of an online biology lab class

    Science.gov (United States)

    Doiron, Jessica Boyce

    Distance learning is not a new phenomenon but with the advancement in technology, the different ways of delivering an education have increased. Today, many universities and colleges offer their students the option of taking courses online instead of sitting in a classroom on campus. In general students like online classes because they allow for flexibility, the comfort of sitting at home, and the potential to save money. Even though there are advantages to taking online classes, many students and instructors still debate the effectiveness and quality of education in a distant learning environment. Many universities and colleges are receiving pressure from students to offer more and more classes online. Research argues for both the advantages and disadvantages of online classes and stresses the importance of colleges and universities weighing both sides before deciding to adopt an online class. Certain classes may not be suitable for online instruction and not all instructors are suitable to teach online classes. The literature also reveals that there is a need for more research on online biology lab classes. With the lack of information on online biology labs needed by science educators who face the increasing demand for online biology labs, this case study hopes to provide insight into the use of online biology lab classes and the how students and an instructor at a community college in Virginia perceive their online biology lab experience as well as the effectiveness of the online labs.

  19. ScalaLab and GroovyLab: Comparing Scala and Groovy for Scientific Computing

    Directory of Open Access Journals (Sweden)

    Stergios Papadimitriou

    2015-01-01

    Full Text Available ScalaLab and GroovyLab are both MATLAB-like environments for the Java Virtual Machine. ScalaLab is based on the Scala programming language and GroovyLab is based on the Groovy programming language. They present similar user interfaces and functionality to the user. They also share the same set of Java scientific libraries and of native code libraries. From the programmer's point of view though, they have significant differences. This paper compares some aspects of the two environments and highlights some of the strengths and weaknesses of Scala versus Groovy for scientific computing. The discussion also examines some aspects of the dilemma of using dynamic typing versus static typing for scientific programming. The performance of the Java platform is continuously improved at a fast pace. Today Java can effectively support demanding high-performance computing and scales well on multicore platforms. Thus, both systems can challenge the performance of the traditional C/C++/Fortran scientific code with an easier to use and more productive programming environment.

  20. Providing Learning Computing Labs using Hosting and Virtualization Technologies

    Directory of Open Access Journals (Sweden)

    Armide González

    2011-05-01

    Full Text Available This paper presents a computing hosting system to provide virtual computing laboratories for learning activities. This system is based on hosting and virtualization technologies. All the components used in its development are free software tools. The computing lab model provided by the system is a more sustainable and scalable alternative than the traditional academic computing lab, and it requires lower costs of installation and operation.

  1. Using lab notebooks to examine students' engagement in modeling in an upper-division electronics lab course

    Science.gov (United States)

    Stanley, Jacob T.; Su, Weifeng; Lewandowski, H. J.

    2017-12-01

    We demonstrate how students' use of modeling can be examined and assessed using student notebooks collected from an upper-division electronics lab course. The use of models is a ubiquitous practice in undergraduate physics education, but the process of constructing, testing, and refining these models is much less common. We focus our attention on a lab course that has been transformed to engage students in this modeling process during lab activities. The design of the lab activities was guided by a framework that captures the different components of model-based reasoning, called the Modeling Framework for Experimental Physics. We demonstrate how this framework can be used to assess students' written work and to identify how students' model-based reasoning differed from activity to activity. Broadly speaking, we were able to identify the different steps of students' model-based reasoning and assess the completeness of their reasoning. Varying degrees of scaffolding present across the activities had an impact on how thoroughly students would engage in the full modeling process, with more scaffolded activities resulting in more thorough engagement with the process. Finally, we identified that the step in the process with which students had the most difficulty was the comparison between their interpreted data and their model prediction. Students did not use sufficiently sophisticated criteria in evaluating such comparisons, which had the effect of halting the modeling process. This may indicate that in order to engage students further in using model-based reasoning during lab activities, the instructor needs to provide further scaffolding for how students make these types of experimental comparisons. This is an important design consideration for other such courses attempting to incorporate modeling as a learning goal.

  2. EarthLabs Modules: Engaging Students In Extended, Rigorous Investigations Of The Ocean, Climate and Weather

    Science.gov (United States)

    Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.

    2016-02-01

    EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.

  3. Developing Guided Inquiry-Based Student Lab Worksheet for Laboratory Knowledge Course

    Science.gov (United States)

    Rahmi, Y. L.; Novriyanti, E.; Ardi, A.; Rifandi, R.

    2018-04-01

    The course of laboratory knowledge is an introductory course for biology students to follow various lectures practicing in the biology laboratory. Learning activities of laboratory knowledge course at this time in the Biology Department, Universitas Negeri Padang has not been completed by supporting learning media such as student lab worksheet. Guided inquiry learning model is one of the learning models that can be integrated into laboratory activity. The study aimed to produce student lab worksheet based on guided inquiry for laboratory knowledge course and to determine the validity of lab worksheet. The research was conducted using research and developmet (R&D) model. The instruments used in data collection in this research were questionnaire for student needed analysis and questionnaire to measure the student lab worksheet validity. The data obtained was quantitative from several validators. The validators consist of three lecturers. The percentage of a student lab worksheet validity was 94.18 which can be categorized was very good.

  4. Restructuring the CS 1 classroom: Examining the effect of open laboratory-based classes vs. closed laboratory-based classes on Computer Science 1 students' achievement and attitudes toward computers and computer courses

    Science.gov (United States)

    Henderson, Jean Foster

    The purpose of this study was to assess the effect of classroom restructuring involving computer laboratories on student achievement and student attitudes toward computers and computer courses. The effects of the targeted student attributes of gender, previous programming experience, math background, and learning style were also examined. The open lab-based class structure consisted of a traditional lecture class with a separate, unscheduled lab component in which lab assignments were completed outside of class; the closed lab-based class structure integrated a lab component within the lecture class so that half the class was reserved for lecture and half the class was reserved for students to complete lab assignments by working cooperatively with each other and under the supervision and guidance of the instructor. The sample consisted of 71 students enrolled in four intact classes of Computer Science I during the fall and spring semesters of the 2006--2007 school year at two southern universities: two classes were held in the fall (one at each university) and two classes were held in the spring (one at each university). A counterbalanced repeated measures design was used in which all students experienced both class structures for half of each semester. The order of control and treatment was rotated among the four classes. All students received the same amount of class and instructor time. A multivariate analysis of variance (MANOVA) via a multiple regression strategy was used to test the study's hypotheses. Although the overall MANOVA model was statistically significant, independent follow-up univariate analyses relative to each dependent measure found that the only significant research factor was math background: Students whose mathematics background was at the level of Calculus I or higher had significantly higher student achievement than students whose mathematics background was less than Calculus I. The results suggest that classroom structures that

  5. Porcine wet lab improves surgical skills in third year medical students.

    Science.gov (United States)

    Drosdeck, Joseph; Carraro, Ellen; Arnold, Mark; Perry, Kyle; Harzman, Alan; Nagel, Rollin; Sinclair, Lynnsay; Muscarella, Peter

    2013-09-01

    Medical students desire to become proficient in surgical techniques and believe their acquisition is important. However, the operating room is a challenging learning environment. Small group procedural workshops can improve confidence, participation, and performance. The use of fresh animal tissues has been rated highly among students and improves their surgical technique. Greater exposure to surgical procedures and staff could positively influence students' interest in surgical careers. We hypothesized that a porcine "wet lab" course for third year medical students would improve their surgical skills. Two skills labs were conducted for third year medical students during surgery clerkships in the fall of 2011. The students' surgical skills were first evaluated in the operating room across nine dimensions. Next, the students performed the following procedures during the skills lab: (1) laparotomy; (2) small bowel resection; (3) splenectomy; (4) partial hepatectomy; (5) cholecystectomy; (6) interrupted abdominal wall closure; (7) running abdominal wall closure; and (8) skin closure. After the skills lab, the students were re-evaluated in the operating room across the same nine dimensions. Student feedback was also recorded. Fifty-one participants provided pre- and post-lab data for use in the final analysis. The mean scores for all nine surgical skills improved significantly after participation in the skills lab (P ≤ 0.002). Cumulative post-test scores also showed significant improvement (P = 0.002). Finally, the student feedback was largely positive. The surgical skills of third year medical students improved significantly after participation in a porcine wet lab, and the students rated the experience as highly educational. Integration into the surgery clerkship curriculum would promote surgical skill proficiency and could elicit interest in surgical careers. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Graduate student training and creating new physics labs for biology students, killing two birds with one stone.

    Science.gov (United States)

    Jones, Barbara

    2001-03-01

    At UCSD biology majors are required to take 3 quarters of a calculus based physics course. This is taught in a standard format large lecture class partly by faculty and partly by freeway flyers. We are working with physics graduate students who are also participating in our PFPF (Preparing Future Physics Faculty) program to write, review, and teach new weekly labs for these biology students. This provides an experience for the grad student that is both rewarding to them and useful to the department. The grad students participate in curriculum development, they observe the students behaviour in the labs, and assess the effectiveness of different lab formats. The labs are intended to provide an interactive, hands on experience with a wide variety of equipment which is mostly both simple and inexpensive. Both students and grads find the labs to be engaging and fun. Based on group discussions the labs are modified to try to try to create the best teaching environment. The biology students benefit from the improvements both in the quality of the labs they do, and from the enthusiasm of the TAs who take an active interest in their learning. The ability to make significant changes to the material taught maintains the interest of the grad students and helps to make the labs a stable and robust environment.

  7. Undergraduate Student Construction and Interpretation of Graphs in Physics Lab Activities

    Science.gov (United States)

    Nixon, Ryan S.; Godfrey, T. J.; Mayhew, Nicholas T.; Wiegert, Craig C.

    2016-01-01

    Lab activities are an important element of an undergraduate physics course. In these lab activities, students construct and interpret graphs in order to connect the procedures of the lab with an understanding of the related physics concepts. This study investigated undergraduate students' construction and interpretation of graphs with best-fit…

  8. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    International Nuclear Information System (INIS)

    Hules, John A.

    2008-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics

  9. Identifying potential types of guidance for supporting student inquiry when using virtual and remote labs in science: a literature review

    NARCIS (Netherlands)

    Zacharia, Zacharias C.; Manoli, Constantinos; Xenofontos, Nikoletta; de Jong, Anthonius J.M.; Pedaste, Margus; van Riesen, Siswa; Kamp, E.T.; Kamp, Ellen T.; Mäeots, Mario; Siiman, Leo; Tsourlidaki, Eleftheria

    2015-01-01

    The aim of this review is to identify specific types of guidance for supporting student use of online labs, that is, virtual and remote labs, in an inquiry context. To do so, we reviewed the literature on providing guidance within computer supported inquiry learning (CoSIL) environments in science

  10. Using FlowLab, an educational computational fluid dynamics tool, to perform a comparative study of turbulence models

    International Nuclear Information System (INIS)

    Parihar, A.; Kulkarni, A.; Stern, F.; Xing, T.; Moeykens, S.

    2005-01-01

    Flow over an Ahmed body is a key benchmark case for validating the complex turbulent flow field around vehicles. In spite of the simple geometry, the flow field around an Ahmed body retains critical features of real, external vehicular flow. The present study is an attempt to implement such a real life example into the course curriculum for undergraduate engineers. FlowLab, which is a Computational Fluid Dynamics (CFD) tool developed by Fluent Inc. for use in engineering education, allows students to conduct interactive application studies. This paper presents a synopsis of FlowLab, a description of one FlowLab exercise, and an overview of the educational experience gained by students through using FlowLab, which is understood through student surveys and examinations. FlowLab-based CFD exercises were implemented into 57:020 Mechanics of Fluids and Transport Processes and 58:160 Intermediate Mechanics of Fluids courses at the University of Iowa in the fall of 2004, although this report focuses only on experiences with the Ahmed body exercise, which was used only in the intermediate-level fluids class, 58:160. This exercise was developed under National Science Foundation funding by the authors of this paper. The focus of this study does not include validating the various turbulence models used for the Ahmed body simulation, because a two-dimensional simplification was applied. With the two-dimensional simplification, students may setup, run, and post process this model in a 50 minute class period using a single-CPU PC, as required for the 58:160 class at the University of Iowa. It is educational for students to understand the implication of a two- dimensional approximation for essentially a three-dimensional flow field, along with the consequent variation in both qualitative and quantitative results. Additionally, through this exercise, students may realize that the choice of the respective turbulence model will affect simulation prediction. (author)

  11. Exploring problem-based cooperative learning in undergraduate physics labs: student perspectives

    Science.gov (United States)

    Bergin, S. D.; Murphy, C.; Shuilleabhain, A. Ni

    2018-03-01

    This study examines the potential of problem-based cooperative learning (PBCL) in expanding undergraduate physics students’ understanding of, and engagement with, the scientific process. Two groups of first-year physics students (n = 180) completed a questionnaire which compared their perceptions of learning science with their engagement in physics labs. One cohort completed a lab based on a PBCL approach, whilst the other completed the same experiment, using a more traditional, manual-based lab. Utilising a participant research approach, the questionnaire was co-constructed by researchers and student advisers from each cohort in order to improve shared meaning between researchers and participants. Analysis of students’ responses suggests that students in the PBCL cohort engaged more in higher-order problem-solving skills and evidenced a deeper understanding of the scientific process than students in the more traditional, manual-based cohort. However, the latter cohort responses placed more emphasis on accuracy and measurement in lab science than the PBCL cohort. The students in the PBCL cohort were also more positively engaged with their learning than their counterparts in the manual led group.

  12. "Teaching students how to wear their Computer"

    DEFF Research Database (Denmark)

    Guglielmi, Michel; Johannesen, Hanne Louise

    2005-01-01

    to address this question trough the angle of what we called ‘Physical Computing’ and asked ourselves and the students if new fields like ‘tangible media’ or ‘wearable computers’ can contribute to improvements of life? And whose life improvement are we aiming for? Computers are a ubiquitous part....... Through the workshop the students were encouraged to disrupt the myth of how a computer should be used and to focus on the human-human interaction (HHI) through the computer rather than human-computer interaction (HCI). The physical computing approach offered furthermore a unique opportunity to break down......This paper intends to present the goal, results and methodology of a workshop run in collaboration with Visual Culture (humanities), University of Copenhagen, the Danish academy of Design in Copenhagen and Media lab Aalborg, University of Aalborg. The workshop was related to a design competition...

  13. Computer-Aided College Algebra: Learning Components that Students Find Beneficial

    Science.gov (United States)

    Aichele, Douglas B.; Francisco, Cynthia; Utley, Juliana; Wescoatt, Benjamin

    2011-01-01

    A mixed-method study was conducted during the Fall 2008 semester to better understand the experiences of students participating in computer-aided instruction of College Algebra using the software MyMathLab. The learning environment included a computer learning system for the majority of the instruction, a support system via focus groups (weekly…

  14. Assessing Usage and Maximizing Finance Lab Impact: A Case Exploration

    Science.gov (United States)

    Noguera, Magdy; Budden, Michael Craig; Silva, Alberto

    2011-01-01

    This paper reports the results of a survey conducted to assess students' usage and perceptions of a finance lab. Finance labs differ from simple computer labs as they typically contain data boards, streaming market quotes, terminals and software that allow for real-time financial analyses. Despite the fact that such labs represent significant and…

  15. Clinical training in medical students during preclinical years in the skill lab

    Directory of Open Access Journals (Sweden)

    Upadhayay N

    2017-03-01

    Full Text Available Namrata Upadhayay Department of Physiology, Gandaki Medical College Teaching Hospital and Research Center, Kaski, Nepal Background: In Nepal, medical education is a high-stakes and stressful course. To enhance learning and minimize students’ stress, the conventional method has been replaced by integrated, student-centered learning. As an approach to train effectively, colleges have started establishing skill labs.Objectives: To evaluate the effectiveness of clinical skill training on exam performance as compared with the conventional teaching practice. Further, to assess the perceptions of students of the importance of skill lab training in college.Method: Twenty students were randomly selected to participate in this cross-sectional study. On the internal examination, students showed skills on manikins, and examiners evaluated them. A sample question in the exam was “To perform cardiopulmonary resuscitation (CPR on half body human manikin.” On completion of the exam, opinions were collected from the students via a predesigned self-administered questionnaire. The questionnaire included questions regarding skill lab use and its benefits to them in developing their skills, with a few questions related to the exam pattern. The responses were expressed in frequencies.Results: We found that all (20/20 students performed CPR with confidence and without hesitation on the manikin. The practical examination performance (marks was categorized as excellent (7/20, good (8/20, average (3/20, and poor (2/20. The pass percentage after skill training was increased by 25% as compared with conventional teaching practice. The majority of the students (17/20 mentioned that skill is better learned by doing than by observing others’ performance or watching videos. A few students (6/20 said skills are better learned by observing the real disease state. They mentioned that skill lab is the better choice for learning major skills such as catheterization, opening

  16. Improving Student Success in Calculus I Using a Co-Requisite Calculus I Lab

    Science.gov (United States)

    Vestal, Sharon Schaffer; Brandenburger, Thomas; Furth, Alfred

    2015-01-01

    This paper describes how one university mathematics department was able to improve student success in Calculus I by requiring a co-requisite lab for certain groups of students. The groups of students required to take the co-requisite lab were identified by analyzing student data, including Math ACT scores, ACT Compass Trigonometry scores, and…

  17. Online Lab Books for Supervision of Project Students

    Science.gov (United States)

    Badge, J. L.; Badge, R. M.

    2009-01-01

    In this article, the authors report a case study where Blackboard's wiki function was used to create electronic lab books for the supervision of undergraduate students completing laboratory based research projects. This successful experiment in supervision using electronic notebooks provided a searchable record of student work and a permanent…

  18. Peer Assessment of Student-Produced Mechanics Lab Report Videos

    Science.gov (United States)

    Douglas, Scott S.; Aiken, John M.; Lin, Shih-Yin; Greco, Edwin F.; Alicea-Muñoz, Emily; Schatz, Michael F.

    2017-01-01

    We examine changes in students' rating behavior during a semester-long sequence of peer evaluation laboratory exercises in an introductory mechanics course. We perform a quantitative analysis of the ratings given by students to peers' physics lab reports, and conduct interviews with students. We find that peers persistently assign higher ratings…

  19. Peer assessment of student-produced mechanics lab report videos

    Science.gov (United States)

    Douglas, Scott S.; Aiken, John M.; Lin, Shih-Yin; Greco, Edwin F.; Alicea-Muñoz, Emily; Schatz, Michael F.

    2017-12-01

    We examine changes in students' rating behavior during a semester-long sequence of peer evaluation laboratory exercises in an introductory mechanics course. We perform a quantitative analysis of the ratings given by students to peers' physics lab reports, and conduct interviews with students. We find that peers persistently assign higher ratings to lab reports than do experts, that peers begin the semester by giving high ratings most frequently and end the semester with frequent middle ratings, and that peers go through the semester without much change in the frequency of low ratings. We then use student interviews to develop a model for student engagement with peer assessment. This model is based on two competing influences which appear to shape peer evaluation behavior: a strong disinclination to give poor ratings with a complementary preference to give high ratings when in doubt, and an attempt to develop an expertlike criticality when assessing peers' work.

  20. Assessment of Student Learning in Modern Experiments in the Introductory Calculus-Based Physics Labs

    Science.gov (United States)

    Woodahl, Brian; Ross, John; Lang, Sarah; Scott, Derek; Williams, Jeremy

    2010-10-01

    With the advent of newer microelectronic sensors it's now possible to modernize introductory physics labs with the latest technology and this may allow for enhanced student participation/learning in the experiments. For example, force plate sensors can digitize and record the force on an object, later it can be analyzed in detail (i.e, impulse from force vs. time). Small 3-axis accelerometers can record 3-dim, time-dependent acceleration of objects undergoing complex motions. These devices are small, fairly easy to use, and importantly, are likely to enhance student learning by ``personalizing'' data collection, i.e. making the student an active part of the measurement process and no longer a passive observer. To assess whether these new high-tech labs enhance student learning, we have implemented pre- and post- test sessions to measure the effectiveness of student learning. Four of our calculus-based lab sections were used: Two sections the control group, using the previous ``old technology'' labs, the other two, the experimental group, using the new ``modern technology'' labs. Initial returns of assessment data offer some surprising insight.

  1. Virtual labs in Leonardo da Vinci

    Directory of Open Access Journals (Sweden)

    Stanislaw Nagy

    2006-10-01

    Full Text Available This paper discusses the problem of virtual lab capabilities in the e-learning. Using combination of web conferencing and "virtual labs" capabilities, a new quality distance learning teaching is now in preparation and will be included in the course teaching to produce interactive, online simulations for the natural gas engineering studies. The activities are designed to enhance the existing curriculum and to include online assessments. A special care is devoted to the security problem between a server and a client computer. Several examples of the virtual labs related to the PVT thermodynamics, fluid flow, the natural gas well-testing, and thev gas network flow are prepared and tested. A major challenge for the 'CELGAS' system is in managing the delicate balance between the student collaboration and the isolation. Students may be encouraged to collaborate and work with each other, simulating their exploration of the lab material.

  2. Peer assessment of student-produced mechanics lab report videos

    Directory of Open Access Journals (Sweden)

    Scott S. Douglas

    2017-11-01

    Full Text Available We examine changes in students’ rating behavior during a semester-long sequence of peer evaluation laboratory exercises in an introductory mechanics course. We perform a quantitative analysis of the ratings given by students to peers’ physics lab reports, and conduct interviews with students. We find that peers persistently assign higher ratings to lab reports than do experts, that peers begin the semester by giving high ratings most frequently and end the semester with frequent middle ratings, and that peers go through the semester without much change in the frequency of low ratings. We then use student interviews to develop a model for student engagement with peer assessment. This model is based on two competing influences which appear to shape peer evaluation behavior: a strong disinclination to give poor ratings with a complementary preference to give high ratings when in doubt, and an attempt to develop an expertlike criticality when assessing peers’ work.

  3. A study on the effect of varying sequence of lab performance skills on lab performance of high school physics students

    Science.gov (United States)

    Bournia-Petrou, Ethel A.

    The main goal of this investigation was to study how student rank in class, student gender and skill sequence affect high school students' performance on the lab skills involved in a laboratory-based inquiry task in physics. The focus of the investigation was the effect of skill sequence as determined by the particular task. The skills considered were: Hypothesis, Procedure, Planning, Data, Graph, Calculations and Conclusion. Three physics lab tasks based on the simple pendulum concept were administered to 282 Regents physics high school students. The reliability of the designed tasks was high. Student performance was evaluated on individual student written responses and a scoring rubric. The tasks had high discrimination power and were of moderate difficulty (65%). It was found that, student performance was weak on Conclusion (42%), Hypothesis (48%), and Procedure (51%), where the numbers in parentheses represent the mean as a percentage of the maximum possible score. Student performance was strong on Calculations (91%), Data (82%), Graph (74%) and Plan (68%). Out of all seven skills, Procedure had the strongest correlation (.73) with the overall task performance. Correlation analysis revealed some strong relationships among the seven skills which were grouped in two distinct clusters: Hypothesis, Procedure and Plan belong to one, and Data, Graph, Calculations, and Conclusion belong to the other. This distinction may indicate different mental processes at play within each skill cluster. The effect of student rank was not statistically significant according to the MANOVA results due to the large variation of rank levels among the participating schools. The effect of gender was significant on the entire test because of performance differences on Calculations and Graph, where male students performed better than female students. Skill sequence had a significant effect on the skills of Procedure, Plan, Data and Conclusion. Students are rather weak in proposing a

  4. Three pedagogical approaches to introductory physics labs and their effects on student learning outcomes

    Science.gov (United States)

    Chambers, Timothy

    This dissertation presents the results of an experiment that measured the learning outcomes associated with three different pedagogical approaches to introductory physics labs. These three pedagogical approaches presented students with the same apparatus and covered the same physics content, but used different lab manuals to guide students through distinct cognitive processes in conducting their laboratory investigations. We administered post-tests containing multiple-choice conceptual questions and free-response quantitative problems one week after students completed these laboratory investigations. In addition, we collected data from the laboratory practical exam taken by students at the end of the semester. Using these data sets, we compared the learning outcomes for the three curricula in three dimensions of ability: conceptual understanding, quantitative problem-solving skill, and laboratory skills. Our three pedagogical approaches are as follows. Guided labs lead students through their investigations via a combination of Socratic-style questioning and direct instruction, while students record their data and answers to written questions in the manual during the experiment. Traditional labs provide detailed written instructions, which students follow to complete the lab objectives. Open labs provide students with a set of apparatus and a question to be answered, and leave students to devise and execute an experiment to answer the question. In general, we find that students performing Guided labs perform better on some conceptual assessment items, and that students performing Open labs perform significantly better on experimental tasks. Combining a classical test theory analysis of post-test results with in-lab classroom observations allows us to identify individual components of the laboratory manuals and investigations that are likely to have influenced the observed differences in learning outcomes associated with the different pedagogical approaches. Due to

  5. Race to improve student understanding of uncertainty: Using LEGO race cars in the physics lab

    Science.gov (United States)

    Parappilly, Maria; Hassam, Christopher; Woodman, Richard J.

    2018-01-01

    Laboratories using LEGO race cars were developed for students in an introductory physics topic with a high early drop-out rate. In a 2014 pilot study, the labs were offered to improve students' confidence with experiments and laboratory skills, especially uncertainty propagation. This intervention was extended into the intro level physics topic the next year, for comparison and evaluation. Considering the pilot study, we subsequently adapted the delivery of the LEGO labs for a large Engineering Mechanics cohort. A qualitative survey of the students was taken to gain insight into their perception of the incorporation of LEGO race cars into physics labs. For Engineering, the findings show that LEGO physics was instrumental in teaching students the measurement and uncertainty, improving their lab reporting skills, and was a key factor in reducing the early attrition rate. This paper briefly recalls the results of the pilot study, and how variations in the delivery yielded better learning outcomes. A novel method is proposed for how LEGO race cars in a physics lab can help students increase their understanding of uncertainty and motivate them towards physics practicals.

  6. Creating a lab to facilitate high school student engagement in authentic paleoclimate science practices

    Science.gov (United States)

    Maloney, A.; Walsh, E.

    2012-12-01

    A solid understanding of timescales is crucial for any climate change discussion. This hands-on lab was designed as part of a dual-credit climate change course in which high school students can receive college credit. Using homemade ice cores, students have the opportunity to participate in scientific practices associated with collecting, processing, and interpreting temperature and CO2 data. Exploring millennial-scale cycles in ice core data and extending the CO2 record to the present allows students to discover timescales from an investigators perspective. The Ice Core Lab has been piloted in two high school classrooms and student engagement, and epistemological and conceptual understanding was evaluated using quantitative pre and post assessment surveys. The process of creating this lab involved a partnership between an education assessment professional, high school teachers, and University of Washington professors and graduate students in Oceanography, Earth and Space Sciences, Atmospheric Sciences and the Learning Sciences as part of the NASA Global Climate Change University of Washington in the High School program. This interdisciplinary collaboration led to the inception of the lab and was necessary to ensure that the lesson plan was pedagogically appropriate and scientifically accurate. The lab fits into a unit about natural variability and is paired with additional hands-on activities created by other graduate students that explore short-timescale temperature variations, Milankovitch cycles, isotopes, and other proxies. While the Ice Core Lab is intended to follow units that review the scientific process, global energy budget, and transport, it can be modified to fit any teaching platform.

  7. The effects of different gender groupings on middle school students' performance in science lab

    Science.gov (United States)

    Drab, Deborah D.

    Grouping students for labs in science classes is a common practice. This mixed methods quasi-experimental action research study examines homogeneous and heterogeneous gender grouping strategies to determine what gender grouping strategy is the most effective in a coeducational science classroom setting. Sixth grade students were grouped in same-gender and mixed-gender groups, alternating each quarter. Over the course of an academic year, data were collected from four sources. The teacher-researcher observed groups working during hands-on activities to collect data on student behaviors. Students completed post-lab questionnaires and an end-of-course questionnaire about their preferences and experiences in the different grouping strategies. Student scores on written lab assignments were also utilized. Data analysis focused on four areas: active engagement, student achievement, student perceptions of success and cooperative teamwork. Findings suggest that teachers may consider grouping students of different ability levels according to different gender grouping strategies to optimize learning.

  8. Attracting STEM talent: do STEM students prefer traditional or work/life-interaction labs?

    Science.gov (United States)

    DeFraine, William C; Williams, Wendy M; Ceci, Stephen J

    2014-01-01

    The demand for employees trained in science, technology, engineering, and mathematics (STEM) fields continues to increase, yet the number of Millennial students pursuing STEM is not keeping pace. We evaluated whether this shortfall is associated with Millennials' preference for flexibility and work/life-interaction in their careers-a preference that may be inconsistent with the traditional idea of a science career endorsed by many lab directors. Two contrasting approaches to running STEM labs and training students were explored, and we created a lab recruitment video depicting each. The work-focused video emphasized the traditional notions of a science lab, characterized by long work hours and a focus on individual achievement and conducting research above all else. In contrast, the work/life-interaction-focused video emphasized a more progressive view - lack of demarcation between work and non-work lives, flexible hours, and group achievement. In Study 1, 40 professors rated the videos, and the results confirmed that the two lab types reflected meaningful real-world differences in training approaches. In Study 2, we recruited 53 current and prospective graduate students in STEM fields who displayed high math-identification and a commitment to science careers. In a between-subjects design, they watched one of the two lab-recruitment videos, and then reported their anticipated sense of belonging to and desire to participate in the lab depicted in the video. Very large effects were observed on both primary measures: Participants who watched the work/life-interaction-focused video reported a greater sense of belonging to (d = 1.49) and desire to participate in (d = 1.33) the lab, relative to participants who watched the work-focused video. These results suggest Millennials possess a strong desire for work/life-interaction, which runs counter to the traditional lab-training model endorsed by many lab directors. We discuss implications of these findings for STEM

  9. Exploring the changing learning environment of the gross anatomy lab.

    Science.gov (United States)

    Hopkins, Robin; Regehr, Glenn; Wilson, Timothy D

    2011-07-01

    The objective of this study was to assess the impact of virtual models and prosected specimens in the context of the gross anatomy lab. In 2009, student volunteers from an undergraduate anatomy class were randomly assigned to study groups in one of three learning conditions. All groups studied the muscles of mastication and completed identical learning objectives during a 45-minute lab. All groups were provided with two reference atlases. Groups were distinguished by the type of primary tools they were provided: gross prosections, three-dimensional stereoscopic computer model, or both resources. The facilitator kept observational field notes. A prepost multiple-choice knowledge test was administered to evaluate students' learning. No significant effect of the laboratory models was demonstrated between groups on the prepost assessment of knowledge. Recurring observations included students' tendency to revert to individual memorization prior to the posttest, rotation of models to match views in the provided atlas, and dissemination of groups into smaller working units. The use of virtual lab resources seemed to influence the social context and learning environment of the anatomy lab. As computer-based learning methods are implemented and studied, they must be evaluated beyond their impact on knowledge gain to consider the effect technology has on students' social development.

  10. Introducing computer-assisted training sessions in the clinical skills lab at the Faculty of Medicine, Suez Canal University.

    Science.gov (United States)

    Hosny, Somaya; Mishriky, Adel M; Youssef, Mirella

    2008-01-01

    The Faculty of Medicine, Suez Canal University clinical skills lab was established in 1981 as the first skills lab in Egypt to cope with innovation in medical education adopted since school inauguration in 1978. Students are trained using their peers or models. Training is done weekly, guided by checklists tested for validity and reliability and updated regularly. Students receive immediate feedback on their performance. Recently, the number of students has increased, leading to challenges in providing adequate supervision and training experiences. A project to design and implement a computer-assisted training (CAT) system seemed to be a plausible solution. To assess the quality of a newly developed CAT product, faculty and students' satisfaction with it, and its impact on the learning process. The project involved preparation of multimedia video-films with a web interface for links of different scientific materials. The project was implemented on second year students. A quality check was done to assess the product's scientific content, and technical quality using questionnaires filled by 84 faculty members (139 filled forms) and 175 students (924 filled forms). For assessment of impact, results of examinations after project implementation were compared with results of 2nd year students of previous 3 years. More faculty (96.3%) were satisfied with the product and considered its quality good to excellent, compared to 93.9% of students, p < 0.001. Most faculty (76.2%) have agreed on its suitability for self-learning, while most students considered the product would be suitable after modification. The percentage of students' failures was lower after project implementation, compared to previous 3 years, p < 0.05. CAT materials developed for training of second year students in skills lab proved to be of good scientific content and quality, and suitable for self-learning. Their use was associated with lower failure rates among students. A randomized trial is recommended

  11. SoftLab: A Soft-Computing Software for Experimental Research with Commercialization Aspects

    Science.gov (United States)

    Akbarzadeh-T, M.-R.; Shaikh, T. S.; Ren, J.; Hubbell, Rob; Kumbla, K. K.; Jamshidi, M

    1998-01-01

    SoftLab is a software environment for research and development in intelligent modeling/control using soft-computing paradigms such as fuzzy logic, neural networks, genetic algorithms, and genetic programs. SoftLab addresses the inadequacies of the existing soft-computing software by supporting comprehensive multidisciplinary functionalities from management tools to engineering systems. Furthermore, the built-in features help the user process/analyze information more efficiently by a friendly yet powerful interface, and will allow the user to specify user-specific processing modules, hence adding to the standard configuration of the software environment.

  12. Faculty Perceptions of Students in Life and Physical Science Research Labs

    Science.gov (United States)

    Gonyo, Claire P.; Cantwell, Brendan

    2015-01-01

    This qualitative study involved interviews of 32 faculty principle investigators at three research institutions and explored how they view the role of students within physical and life science labs. We used socialization theory and student engagement literature to analyze faculty views, which can contribute to student investment in STEM fields.…

  13. Synchronized Pair Configuration in Virtualization-Based Lab for Learning Computer Networks

    Science.gov (United States)

    Kongcharoen, Chaknarin; Hwang, Wu-Yuin; Ghinea, Gheorghita

    2017-01-01

    More studies are concentrating on using virtualization-based labs to facilitate computer or network learning concepts. Some benefits are lower hardware costs and greater flexibility in reconfiguring computer and network environments. However, few studies have investigated effective mechanisms for using virtualization fully for collaboration.…

  14. Attracting STEM talent: do STEM students prefer traditional or work/life-interaction labs?

    Directory of Open Access Journals (Sweden)

    William C DeFraine

    Full Text Available The demand for employees trained in science, technology, engineering, and mathematics (STEM fields continues to increase, yet the number of Millennial students pursuing STEM is not keeping pace. We evaluated whether this shortfall is associated with Millennials' preference for flexibility and work/life-interaction in their careers-a preference that may be inconsistent with the traditional idea of a science career endorsed by many lab directors. Two contrasting approaches to running STEM labs and training students were explored, and we created a lab recruitment video depicting each. The work-focused video emphasized the traditional notions of a science lab, characterized by long work hours and a focus on individual achievement and conducting research above all else. In contrast, the work/life-interaction-focused video emphasized a more progressive view - lack of demarcation between work and non-work lives, flexible hours, and group achievement. In Study 1, 40 professors rated the videos, and the results confirmed that the two lab types reflected meaningful real-world differences in training approaches. In Study 2, we recruited 53 current and prospective graduate students in STEM fields who displayed high math-identification and a commitment to science careers. In a between-subjects design, they watched one of the two lab-recruitment videos, and then reported their anticipated sense of belonging to and desire to participate in the lab depicted in the video. Very large effects were observed on both primary measures: Participants who watched the work/life-interaction-focused video reported a greater sense of belonging to (d = 1.49 and desire to participate in (d = 1.33 the lab, relative to participants who watched the work-focused video. These results suggest Millennials possess a strong desire for work/life-interaction, which runs counter to the traditional lab-training model endorsed by many lab directors. We discuss implications of these

  15. Development of Guided Inquiry-Based Student Lab Worksheet on the Making of Pineapple Flavoring

    Science.gov (United States)

    Dwiyanti, G.; Suryatna, A.; Taibah, I.

    2017-02-01

    The aim of this research was to develop guided inquiry based student lab worksheet on making pineapple flavour and knowing the quality of worksheet that is being developed. Research methods that is being conducted is research and development that is limited by a preliminary studies (literature studies, field surveys, and preparation of the initial product) and development of the model (within limited testing). The results from analyze the books sources and fields survey showed that the characteristic of esterification lab worksheet that currently available still in the direct instruction form (cookbook). The optimization result of making pineapple flavour experiment that was conducted are the ethanol volume 3 mL, butyric acid volume 2 mL, sulfuric acid 5 drops, saturated NaHCO3 solution volume 9 mL, and temperature of heating was 80 °C. The characteristic of guided inquiry based student lab worksheet that was developed contained phenomenon and instructions that suitable with inquiry stages to guide the students in doing the experiment of making pineapple flavour. The evaluation of designated teachers and lecturers of the developed student worksheet were very good (96,08%). Lab-experiment feasibility achieved by using guided inquiry based student lab worksheets that is being developed based on the inquiry stages that conducted by student were found very good (97,50%) and accomplishment based on students’ answer of the tasks in the worksheet were found very good (83,84%). Students’ responses of the experiments using the developed worksheet are found very good (81,84%).

  16. Differences between Lab Completion and Non-Completion on Student Performance in an Online Undergraduate Environmental Science Program

    Science.gov (United States)

    Corsi, Gianluca

    2011-12-01

    Web-based technology has revolutionized the way education is delivered. Although the advantages of online learning appeal to large numbers of students, some concerns arise. One major concern in online science education is the value that participation in labs has on student performance. The purpose of this study was to assess the relationships between lab completion and student academic success as measured by test grades, scientific self-confidence, scientific skills, and concept mastery. A random sample of 114 volunteer undergraduate students, from an online Environmental Science program at the American Public University System, was tested. The study followed a quantitative, non-experimental research design. Paired sample t-tests were used for statistical comparison between pre-lab and post-lab test grades, two scientific skills quizzes, and two scientific self-confidence surveys administered at the beginning and at the end of the course. The results of the paired sample t-tests revealed statistically significant improvements on all post-lab test scores: Air Pollution lab, t(112) = 6.759, p virtual reality platforms and digital animations. Future research is encouraged to investigate possible correlations between socio-demographic attributes and academic success of students enrolled in online science programs in reference to lab completion.

  17. Computational simulations of frictional losses in pipe networks confirmed in experimental apparatusses designed by honors students

    Science.gov (United States)

    Pohlman, Nicholas A.; Hynes, Eric; Kutz, April

    2015-11-01

    Lectures in introductory fluid mechanics at NIU are a combination of students with standard enrollment and students seeking honors credit for an enriching experience. Most honors students dread the additional homework problems or an extra paper assigned by the instructor. During the past three years, honors students of my class have instead collaborated to design wet-lab experiments for their peers to predict variable volume flow rates of open reservoirs driven by gravity. Rather than learn extra, the honors students learn the Bernoulli head-loss equation earlier to design appropriate systems for an experimental wet lab. Prior designs incorporated minor loss features such as sudden contraction or multiple unions and valves. The honors students from Spring 2015 expanded the repertoire of available options by developing large scale set-ups with multiple pipe networks that could be combined together to test the flexibility of the student team's computational programs. The engagement of bridging the theory with practice was appreciated by all of the students such that multiple teams were able to predict performance within 4% accuracy. The challenges, schedules, and cost estimates of incorporating the experimental lab into an introductory fluid mechanics course will be reported.

  18. Innovative Use of a Classroom Response System During Physics Lab

    Science.gov (United States)

    Walgren, Jay

    2011-01-01

    More and more physics instructors are making use of personal/classroom response systems or "clickers." The use of clickers to engage students with multiple-choice questions during lecture and available instructor resources for clickers have been well documented in this journal.1-4 Newer-generation clickers, which I refer to as classroom response systems (CRS), have evolved to accept numeric answers (such as 9.81) instead of just single "multiple-choice" entries (Fig. 1). This advancement is available from most major clicker companies and allows for a greater variety of engaging questions during lecture. In addition, these new "numeric ready" clickers are marketed to be used for student assessments. During a test or quiz, students' answers are entered into their clicker instead of on paper or Scantron® and immediately absorbed by wireless connection into a computer for grading and analysis. I recognize the usefulness and benefit these new-generation CRSs provide for many instructors. However, I do not use my CRS in either of the aforementioned activities. Instead, I use it in an unconventional way. I use the CRS to electronically capture students' lab data as they are performing a physics lab (Fig. 2). I set up the clickers as if I were going to use them for a test, but instead of entering answers to a test, my students enter lab data as they collect it. In this paper I discuss my use of a classroom response system during physics laboratory and three benefits that result: 1) Students are encouraged to "take ownership of" and "have integrity with" their physics lab data. 2) Students' measuring and unit conversion deficiencies are identified immediately during the lab. 3) The process of grading students' labs is simplified because the results of each student's lab calculations can be pre-calculated for the instructor using a spreadsheet. My use of clickers during lab can be implemented with most clicker systems available to instructors today. The CRS I use is the e

  19. Heat transfer virtual lab for students and engineers theory and guide for setting up

    CERN Document Server

    Fridman, Ella

    2014-01-01

    Laboratory experiments are a vital part of engineering education,which historically were considered impractical for distance learning.This book presents a guide for the practical employment of a heattransfer virtual lab for students and engineers.Inside, the authors have detailed this virtual lab which is designedand can implement a real-time, robust, and scalable software systemthat provides easy access to lab equipment anytime and anywhereover the Internet. They introduce and explain LabVIEW ineasy-to-understand language. LabVIEW is a proprietary softwaretool by National Instruments, and can

  20. Improving Performance to Engineering Students through Virtual Labs and its Monitoring in Cockpit

    Directory of Open Access Journals (Sweden)

    Leandro Rosniak Tibola

    2014-10-01

    Full Text Available Modern education needs use all resources to improve teaching-learning process. To achieve this goal, technology can be a sharp allied. Especially to the engineering education, which seeks the balance among theoretical and practice lessons. Thus, many universities are using the virtual labs and virtual worlds 3D like way to support the student's learning and enrich the teaching methods. High tech classes, broadband communication, mobility and ubiquity aren't enough if the student's engagement can't be measured. This work presents a proposal to monitor the virtual lab use by students, showing the educational parameters in a graphical interface, following the suitable pedagogical concepts.

  1. Impacts of Digital Imaging versus Drawing on Student Learning in Undergraduate Biodiversity Labs

    Science.gov (United States)

    Basey, John M.; Maines, Anastasia P.; Francis, Clinton D.; Melbourne, Brett

    2014-01-01

    We examined the effects of documenting observations with digital imaging versus hand drawing in inquiry-based college biodiversity labs. Plant biodiversity labs were divided into two treatments, digital imaging (N = 221) and hand drawing (N = 238). Graduate-student teaching assistants (N = 24) taught one class in each treatment. Assessments…

  2. E-Labs - Learning with Authentic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, Marjorie G. [Fermilab; Wayne, Mitchell [Notre Dame U.

    2016-01-01

    the success teachers have had providing an opportunity for students to: • Organize and conduct authentic research. • Experience the environment of scientific collaborations. • Possibly make real contributions to a burgeoning scientific field. We've created projects that are problem-based, student driven and technology dependent. Students reach beyond classroom walls to explore data with other students and experts and share results, publishing original work to a worldwide audience. Students can discover and extend the research of other students, modeling the processes of modern, large-scale research projects. From start to finish e-Labs are student-led, teacher-guided projects. Students need only a Web browser to access computing techniques employed by professional researchers. A Project Map with milestones allows students to set the research plan rather than follow a step-by-step process common in other online projects. Most importantly, e-Labs build the learning experience around the students' own questions and let them use the very tools that scientists use. Students contribute to and access shared data, most derived from professional research databases. They use common analysis tools, store their work and use metadata to discover, replicate and confirm the research of others. This is where real scientific collaboration begins. Using online tools, students correspond with other research groups, post comments and questions, prepare summary reports, and in general participate in the part of scientific research that is often left out of classroom experiments. Teaching tools such as student and teacher logbooks, pre- and post-tests and an assessment rubric aligned with learner outcomes help teachers guide student work. Constraints on interface designs and administrative tools such as registration databases give teachers the "one-stop-shopping" they seek for multiple e-Labs. Teaching and administrative tools also allow us to track usage and assess the

  3. Focused didactic training for skills lab student tutors - which techniques are considered helpful?

    Science.gov (United States)

    Heni, Martin; Lammerding-Köppel, Maria; Celebi, Nora; Shiozawa, Thomas; Riessen, Reimer; Nikendei, Christoph; Weyrich, Peter

    2012-01-01

    Peer-assisted learning is widely used in medical education. However, little is known about an appropriate didactic preparation for peer tutors. We herein describe the development of a focused didactic training for skills lab tutors in Internal Medicine and report on a retrospective survey about the student tutors' acceptance and the perceived transferability of attended didactic training modules. The course consisted of five training modules: 1. 'How to present and explain effectively': the student tutors had to give a short presentation with subsequent video analysis and feedback in order to learn methods of effective presentation. 2. 'How to explain precisely': Precise explanation techniques were trained by exercises of exact description of geometric figures and group feedback. 3. 'How to explain on impulse': Spontaneous teaching presentations were simulated and feedback was given. 4. 'Peyton's 4 Step Approach': Peyton's Method for explanation of practical skills was introduced and trained by the participants. 5. 'How to deal with critical incidents': Possibilities to deal with critical teaching situations were worked out in group sessions. Twenty-three student tutors participated in the retrospective survey by filling out an electronic questionnaire, after at least 6 months of teaching experience. The exercise 'How to present and explain effectively' received the student tutors' highest rating for their improvement of didactic qualification and was seen to be most easily transferable into the skills lab environment. This module was rated as the most effective module by nearly half of the participants. It was followed by 'Peyton's 4 Step Approach' , though it was also seen to be the most delicate method in regard to its transfer into the skills lab owing to time concerns. However, it was considered to be highly effective. The other modules received lesser votes by the tutors as the most helpful exercise in improving their didactic qualification for skills lab

  4. Kinematic Labs with Mobile Devices

    Science.gov (United States)

    Kinser, Jason M.

    2015-07-01

    This book provides 13 labs spanning the common topics in the first semester of university-level physics. Each lab is designed to use only the student's smartphone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than 8 per student, per lab.

  5. Lab at Home: Hardware Kits for a Digital Design Lab

    Science.gov (United States)

    Oliver, J. P.; Haim, F.

    2009-01-01

    An innovative laboratory methodology for an introductory digital design course is presented. Instead of having traditional lab experiences, where students have to come to school classrooms, a "lab at home" concept is proposed. Students perform real experiments in their own homes, using hardware kits specially developed for this purpose. They…

  6. Are Statistics Labs Worth the Effort?--Comparison of Introductory Statistics Courses Using Different Teaching Methods

    Directory of Open Access Journals (Sweden)

    Jose H. Guardiola

    2010-01-01

    Full Text Available This paper compares the academic performance of students in three similar elementary statistics courses taught by the same instructor, but with the lab component differing among the three. One course is traditionally taught without a lab component; the second with a lab component using scenarios and an extensive use of technology, but without explicit coordination between lab and lecture; and the third using a lab component with an extensive use of technology that carefully coordinates the lab with the lecture. Extensive use of technology means, in this context, using Minitab software in the lab section, doing homework and quizzes using MyMathlab ©, and emphasizing interpretation of computer output during lectures. Initially, an online instrument based on Gardner’s multiple intelligences theory, is given to students to try to identify students’ learning styles and intelligence types as covariates. An analysis of covariance is performed in order to compare differences in achievement. In this study there is no attempt to measure difference in student performance across the different treatments. The purpose of this study is to find indications of associations among variables that support the claim that statistics labs could be associated with superior academic achievement in one of these three instructional environments. Also, this study tries to identify individual student characteristics that could be associated with superior academic performance. This study did not find evidence of any individual student characteristics that could be associated with superior achievement. The response variable was computed as percentage of correct answers for the three exams during the semester added together. The results of this study indicate a significant difference across these three different instructional methods, showing significantly higher mean scores for the response variable on students taking the lab component that was carefully coordinated with

  7. Smartphones - the Geophysics Lab in Your Students' Pocket

    Science.gov (United States)

    Salaree, A.; Stein, S.; Saloor, N.; Elling, R. P.

    2017-12-01

    Many interesting topics are hard to demonstrate in geophysics classes without costly equipment and logistic hassles. For instance, the speed of P-waves in the Earth's crust is usually calculated using printed seismic sections from published studies, giving students little insight into the recording process. This is mainly due to the complex, costly, and weather-dependent logistics of conducting seismic reflection experiments using arrays of - either purchased or borrowed - expensive seismometers and recording units. Smartphones, which students own and are (perhaps unduly) comfortable with, have many otherwise expensive instruments as built-in sensors. These instruments are nifty tools that make labs easier, faster, and more fun. We use smartphones in several labs in an introductory geophysics class. In one, students use their phones to measure the latitude and longitude of a point on campus. Combining the data shows a nice spread of positions illustrating the precision of measurements, spatial trends in the scatter, and even differences between Android and iPhone data. Hence concepts about data that are often presented with ideal theoretical examples emerge from the students' measurements. Another uses the phones' accelerometers and available software to measure the speed of P-waves using a linear array of smartphones/seismometers along a table, similar to the procedure used in reflection seismology. In a third, students used their smartphones in an elevator to measure the acceleration of gravity in a moving reference frame, and thus explore key concepts that arise in many geophysical applications. These three applications illustrate the potential for using smartphones in a wide variety of geophysics teaching, much as their value is being increasingly recognized in other educational applications. Here are some links to an instructions document and a video from the seismic experiment: Instructions: http://www.earth.northwestern.edu/ amir/202/smartphone

  8. Virtual Reality Lab Assistant

    Science.gov (United States)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  9. The community FabLab platform: applications and implications in biomedical engineering.

    Science.gov (United States)

    Stephenson, Makeda K; Dow, Douglas E

    2014-01-01

    Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.

  10. Games, Simulations and Virtual Labs for Science Education: a Compendium and Some Examples

    Science.gov (United States)

    Russell, R. M.

    2012-12-01

    We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations and games. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.

  11. Reforming Cookbook Labs

    Science.gov (United States)

    Peters, Erin

    2005-01-01

    Deconstructing cookbook labs to require the students to be more thoughtful could break down perceived teacher barriers to inquiry learning. Simple steps that remove or disrupt the direct transfer of step-by-step procedures in cookbook labs make students think more critically about their process. Through trials in the author's middle school…

  12. Impact of Fab Lab Tulsa on Student Self-Efficacy toward STEM Education

    Science.gov (United States)

    Dubriwny, Nicholas; Pritchett, Nathan; Hardesty, Michelle; Hellman, Chan M.

    2016-01-01

    Student self-confidence is important to any attempt to increase interest and achievement in Science, Technology, Engineering, and Math (STEM) education. This study presents a longitudinal examination of Fab Lab Tulsa's impact on attitude and self-efficacy toward STEM education among middle-school aged students. Paired samples t-test showed a…

  13. Active Learning Improves Student Performance in a Respiratory Physiology Lab

    Science.gov (United States)

    Wolf, Alex M.; Liachovitzky, Carlos; Abdullahi, Abass S.

    2015-01-01

    This study assessed the effectiveness of the introduction of active learning exercises into the anatomy and physiology curriculum in a community college setting. Specifically, the incorporation of a spirometry-based respiratory physiology lab resulted in improved student performance in two concepts (respiratory volumes and the hallmarks of…

  14. Focused didactic training for skills lab student tutors – which techniques are considered helpful?

    Science.gov (United States)

    Heni, Martin; Lammerding-Köppel, Maria; Celebi, Nora; Shiozawa, Thomas; Riessen, Reimer; Nikendei, Christoph; Weyrich, Peter

    2012-01-01

    Objective: Peer-assisted learning is widely used in medical education. However, little is known about an appropriate didactic preparation for peer tutors. We herein describe the development of a focused didactic training for skills lab tutors in Internal Medicine and report on a retrospective survey about the student tutors’ acceptance and the perceived transferability of attended didactic training modules. Methods: The course consisted of five training modules: ‘How to present and explain effectively’: the student tutors had to give a short presentation with subsequent video analysis and feedback in order to learn methods of effective presentation. ‘How to explain precisely’: Precise explanation techniques were trained by exercises of exact description of geometric figures and group feedback. ‘How to explain on impulse’: Spontaneous teaching presentations were simulated and feedback was given. ‘Peyton’s 4 Step Approach’: Peyton‘s Method for explanation of practical skills was introduced and trained by the participants. ‘How to deal with critical incidents’: Possibilities to deal with critical teaching situations were worked out in group sessions. Twenty-three student tutors participated in the retrospective survey by filling out an electronic questionnaire, after at least 6 months of teaching experience. Results: The exercise ‘How to present and explain effectively’ received the student tutors’ highest rating for their improvement of didactic qualification and was seen to be most easily transferable into the skills lab environment. This module was rated as the most effective module by nearly half of the participants. It was followed by ‘Peyton’s 4 Step Approach’ , though it was also seen to be the most delicate method in regard to its transfer into the skills lab owing to time concerns. However, it was considered to be highly effective. The other modules received lesser votes by the tutors as the most helpful exercise in

  15. Practice for beginners programming lesson using App Lab: Introduction of programming learning for undergraduate students

    OpenAIRE

    榊原, 直樹

    2017-01-01

    App Lab is an online programming education environment. It was designed classes of programming for beginners using the App Lab. Through 15 lessons of the class, it was to understand the basic structure of the programming of the sequential-repetition-branch. Students were allowed to complete the game as a final project. The effectiveness of App the Lab has been confirmed from these results.

  16. The Art-Science Connection: Students Create Art Inspired by Extracurricular Lab Investigations

    Science.gov (United States)

    Hegedus, Tess; Segarra, Verónica A.; Allen, Tawannah G.; Wilson, Hillary; Garr, Casey; Budzinski, Christina

    2016-01-01

    The authors developed an integrated science-and-art program to engage science students from a performing arts high school in hands-on, inquiry based lab experiences. The students participated in eight biology-focused investigations at a local university with undergraduate mentors. After the laboratory phase of the project, the high school students…

  17. Mobile Robot Lab Project to Introduce Engineering Students to Fault Diagnosis in Mechatronic Systems

    Science.gov (United States)

    Gómez-de-Gabriel, Jesús Manuel; Mandow, Anthony; Fernández-Lozano, Jesús; García-Cerezo, Alfonso

    2015-01-01

    This paper proposes lab work for learning fault detection and diagnosis (FDD) in mechatronic systems. These skills are important for engineering education because FDD is a key capability of competitive processes and products. The intended outcome of the lab work is that students become aware of the importance of faulty conditions and learn to…

  18. Computer Simulations of Quantum Theory of Hydrogen Atom for Natural Science Education Students in a Virtual Lab

    Science.gov (United States)

    Singh, Gurmukh

    2012-01-01

    The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…

  19. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    Science.gov (United States)

    Haagen-Schuetzenhoefer, Claudia

    2012-10-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab activities are frequently based on recipe-like, step-by-step instructions ("cookbook style"), which do not motivate students to engage cognitively. Consequently, students put the emphasis on "task completion" or "manipulating equipment."2

  20. Simulations, Games, and Virtual Labs for Science Education: a Compendium and Some Examples

    Science.gov (United States)

    Russell, R. M.

    2011-12-01

    We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations, including the "Very, Very Simple Climate Model", and report on formative evaluations of these resources. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.

  1. Awakening interest in the natural sciences - BASF's Kids' Labs.

    Science.gov (United States)

    Lang, Cinthia

    2012-01-01

    At BASF's Ludwigshafen headquarters, kids and young adults in grades 1-13 can learn about chemistry in the Kids' Labs. Different programs exist for different levels of knowledge. In the two 'Hands-on Lab H(2)O & Co.' Kids' Labs, students from grades 1-6 explore the secrets of chemistry. BASF Kids' Labs have now been set up in over 30 countries. In Switzerland alone, almost 2,000 students have taken part in the 'Water Loves Chemistry' Kids' Lab since it was started in 2011. In Alsace, 600 students have participated to date. In the Teens' Lab 'Xplore Middle School', middle school students explore five different programs with the themes 'substance labyrinth', 'nutrition', 'coffee, caffeine & co.', 'cosmetics' and 'energy'. Biotechnological methods are the focus of the Teens' Lab 'Xplore Biotech' for students taking basic and advanced biology courses. In the 'Xplore High School' Teens' Lab, chemistry teachers present their own experimental lab instruction for students in basic and advanced chemistry courses. The Virtual Lab has been expanding the offerings of the BASF Kids' Labs since 2011. The online lab was developed by the company for the International Year Of Chemistry and gives kids and young adults the opportunity to do interactive experiments outside of the lab.

  2. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    Science.gov (United States)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  3. Helping Students to Think Like Scientists in Socratic Dialogue-Inducing Labs

    Science.gov (United States)

    Hake, Richard

    2012-01-01

    Socratic dialogue-inducing (SDI) labs are based on Arnold Arons' half-century of ethnographic research, listening carefully to students' responses to probing Socratic questions on physics, science, and ways of thinking, and culminating in his landmark "Teaching Introductory Physics." They utilize "interactive engagement" methods and are designed,…

  4. Engineering Computer Games: A Parallel Learning Opportunity for Undergraduate Engineering and Primary (K-5 Students

    Directory of Open Access Journals (Sweden)

    Mark Michael Budnik

    2011-04-01

    Full Text Available In this paper, we present how our College of Engineering is developing a growing portfolio of engineering computer games as a parallel learning opportunity for undergraduate engineering and primary (grade K-5 students. Around the world, many schools provide secondary students (grade 6-12 with opportunities to pursue pre-engineering classes. However, by the time students reach this age, many of them have already determined their educational goals and preferred careers. Our College of Engineering is developing resources to provide primary students, still in their educational formative years, with opportunities to learn more about engineering. One of these resources is a library of engineering games targeted to the primary student population. The games are designed by sophomore students in our College of Engineering. During their Introduction to Computational Techniques course, the students use the LabVIEW environment to develop the games. This software provides a wealth of design resources for the novice programmer; using it to develop the games strengthens the undergraduates

  5. Evaluation of oral microbiology lab curriculum reform.

    Science.gov (United States)

    Nie, Min; Gao, Zhen Y; Wu, Xin Y; Jiang, Chen X; Du, Jia H

    2015-12-07

    According to the updated concept of oral microbiology, the School of Stomatology, Wuhan University, has carried out oral microbiology teaching reforms during the last 5 years. There was no lab curriculum before 2009 except for a theory course of oral microbiology. The school has implemented an innovative curriculum with oral medicine characteristics to strengthen understanding of knowledge, cultivate students' scientific interest and develop their potential, to cultivate the comprehensive ability of students. This study was designed to evaluate the oral microbiology lab curriculum by analyzing student performance and perceptions regarding the curriculum from 2009 to 2013. The lab curriculum adopted modalities for cooperative learning. Students collected dental plaque from each other and isolated the cariogenic bacteria with selective medium plates. Then they purified the enrichment culture medium and identified the cariogenic strains by Gram stain and biochemical tests. Both quantitative and qualitative data for 5 years were analysed in this study. Part One of the current study assessed student performance in the lab from 2009 to 2013. Part Two used qualitative means to assess students' perceptions by an open questionnaire. The 271 study students' grades on oral microbiology improved during the lab curriculum: "A" grades rose from 60.5 to 81.2 %, and "C" grades fell from 28.4 to 6.3 %. All students considered the lab curriculum to be interesting and helpful. Quantitative and qualitative data converge to suggest that the lab curriculum has strengthened students' grasp of important microbiology-related theory, cultivated their scientific interest, and developed their potential and comprehensive abilities. Our student performance and perception data support the continued use of the innovative teaching system. As an extension and complement of the theory course, the oral microbiology lab curriculum appears to improve the quality of oral medicine education and help to

  6. Promoting Student Learning through the Integration of Lab and Lecture: The Seamless Biology Curriculum

    Science.gov (United States)

    Burrowes, Patricia; Nazario, Gladys

    2008-01-01

    The authors engaged in an education experiment to determine if the integration of lab and lecture activities in zoology and botany proved beneficial to student learning and motivation toward biology. Their results revealed that this strategy positively influenced students' academic achievement, conceptual understanding, and ability to apply…

  7. Innovative Educational Practice: Using Virtual Labs in the Secondary Classroom

    Directory of Open Access Journals (Sweden)

    Marcel Satsky Kerr, PhD

    2004-07-01

    Full Text Available Two studies investigated the effectiveness of teaching science labs online to secondary students. Study 1 compared achievement among students instructed using hands-on Chemistry labs versus those instructed using virtual Chemistry labs (eLabs. Study 2 compared the same groups of students again while both teachers instructed using hands-on Chemistry labs to determine whether teacher or student characteristics may have affected Study 1’s findings. Participants were high school Chemistry students from a Central Texas Independent School District. Results indicated that: students learn science effectively online, schools may experience cost savings from delivering labs online, and students gain valuable technology skills needed later in college and in the workplace.

  8. Vortex-Concept for Radioactivity Release Prevention at NPP: Development of Computational Model of Lab-Scale Experimental Setup

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Sana; Sung, Yim Man; Park, Jin Soo; Sung Hyung Jin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The experimental validation of the vortex-like air curtain concept and use of an appropriate CFD modelling approach for analyzing the problem becomes crucial. A lab-scale experimental setup is designed to validate the proposed concept and CFD modeling approach as a part of validation process. In this study, a computational model of this lab-scale experiment setup is developed using open source CFD code OpenFOAM. The computational results will be compared with experimental data for validation purposes in future, when experimental data is available. 1) A computation model of a lab-scale experimental setup, designed to validate the concept of artificial vortex-like airflow generation for application to radioactivity dispersion prevention in the event of severe accident, was developed. 2) The mesh sensitivity study was performed and a mesh of about 2 million cells was found to be sufficient for this setup.

  9. Island Explorations: Discovering Effects of Environmental Research-Based Lab Activities on Analytical Chemistry Students

    Science.gov (United States)

    Tomasik, Janice Hall; LeCaptain, Dale; Murphy, Sarah; Martin, Mary; Knight, Rachel M.; Harke, Maureen A.; Burke, Ryan; Beck, Kara; Acevedo-Polakovich, I. David

    2014-01-01

    Motivating students in analytical chemistry can be challenging, in part because of the complexity and breadth of topics involved. Some methods that help encourage students and convey real-world relevancy of the material include incorporating environmental issues, research-based lab experiments, and service learning projects. In this paper, we…

  10. Student Use of Physics to Make Sense of Incomplete but Functional VPython Programs in a Lab Setting

    Science.gov (United States)

    Weatherford, Shawn A.

    2011-12-01

    Computational activities in Matter & Interactions, an introductory calculus-based physics course, have the instructional goal of providing students with the experience of applying the same set of a small number of fundamental principles to model a wide range of physical systems. However there are significant instructional challenges for students to build computer programs under limited time constraints, especially for students who are unfamiliar with programming languages and concepts. Prior attempts at designing effective computational activities were successful at having students ultimately build working VPython programs under the tutelage of experienced teaching assistants in a studio lab setting. A pilot study revealed that students who completed these computational activities had significant difficultly repeating the exact same tasks and further, had difficulty predicting the animation that would be produced by the example program after interpreting the program code. This study explores the interpretation and prediction tasks as part of an instructional sequence where students are asked to read and comprehend a functional, but incomplete program. Rather than asking students to begin their computational tasks with modifying program code, we explicitly ask students to interpret an existing program that is missing key lines of code. The missing lines of code correspond to the algebraic form of fundamental physics principles or the calculation of forces which would exist between analogous physical objects in the natural world. Students are then asked to draw a prediction of what they would see in the simulation produced by the VPython program and ultimately run the program to evaluate the students' prediction. This study specifically looks at how the participants use physics while interpreting the program code and creating a whiteboard prediction. This study also examines how students evaluate their understanding of the program and modification goals at the

  11. Acceptance, Usability and Usefulness of WebLab-Deusto from the Students Point of View

    Directory of Open Access Journals (Sweden)

    Jaime Irurzun

    2009-02-01

    Full Text Available In the engineering curriculum, remote labs are becoming a popular learning tool. The advantages of these laboratories and the different deployments have been analyzed many times, but in this paper we want to show the results of the students’ opinion about WebLab-Deusto as a learning tool. This work is focused on the subjects Programmable Logic (PL in the third year of Electronics Engineering and in Electronics Design (ED of the fifth year of the same degree. The paper presents the results of the surveys done by students since 2004. This survey consists of fifteen questions and its main objective is to measure the acceptance, usability and usefulness of the remote laboratory developed at University of Deusto from the students point of view.

  12. California State University, Bakersfield Fab Lab: "Making" a Difference in Middle School Students' STEM Attitudes

    Science.gov (United States)

    Medina, Andrea Lee

    2017-01-01

    The digital fabrication lab, or Fab Lab, at California State University, Bakersfield provided a 1-week, half-day summer program for local area middle school students. The purpose of this study was to examine the effect this summer program had on their attitudes towards math and science. The theoretical framework used for this study was based on…

  13. The Next Generation of Lab and Classroom Computing - The Silver Lining

    Science.gov (United States)

    2016-12-01

    Figure 2.  Basic Client Server Network. Source: Dean (2012, p. 6). .........................14  Figure 3.  The OSI Model . Source: Rivero (2015...connection is ended. Communications among multiple computers on a network was accomplished through the open systems interconnection ( OSI ) model (see Figure...architecture, which is currently in use in most networks including the labs and classrooms at NPS. Figure 3. The OSI Model . Source: Rivero (2015

  14. METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS IN LAB COATS OF NURSING STUDENTS

    Directory of Open Access Journals (Sweden)

    Jean Phellipe Marques do Nascimento

    2016-05-01

    Full Text Available The aim of the present study was to investigate the presence of Staphylococcus sp. in lab coats nursing students, in addition to determining the antimicrobial sensitivity profile of the isolated bacteria. The bacterial samples were collected, identified and characterized phenotypically, with subsequent determination of antimicrobial sensitivity profile by disk diffusion technique, according to recommendation of the Clinical and Laboratory Standards Institute. 57 colonies were isolated, where 51% were identified as Staphylococcus coagulase negative, 47% as Staphylococcus aureus and 2% belonging to a genus not identified. Among the samples identified as S. aureus, 15% were resistant to Oxacillin and 55% showed resistance to more than one antimicrobial.The results obtained in this work strengthen the role of the lab coat as a source of contamination of pathogenic microorganisms, as well as its possible role in the spread of these pathogens within and outside the hospital environment

  15. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  16. Teaching computer interfacing with virtual instruments in an object-oriented language.

    Science.gov (United States)

    Gulotta, M

    1995-01-01

    LabVIEW is a graphic object-oriented computer language developed to facilitate hardware/software communication. LabVIEW is a complete computer language that can be used like Basic, FORTRAN, or C. In LabVIEW one creates virtual instruments that aesthetically look like real instruments but are controlled by sophisticated computer programs. There are several levels of data acquisition VIs that make it easy to control data flow, and many signal processing and analysis algorithms come with the software as premade VIs. In the classroom, the similarity between virtual and real instruments helps students understand how information is passed between the computer and attached instruments. The software may be used in the absence of hardware so that students can work at home as well as in the classroom. This article demonstrates how LabVIEW can be used to control data flow between computers and instruments, points out important features for signal processing and analysis, and shows how virtual instruments may be used in place of physical instrumentation. Applications of LabVIEW to the teaching laboratory are also discussed, and a plausible course outline is given. PMID:8580361

  17. Experiential Learning of Digital Communication Using LabVIEW

    Science.gov (United States)

    Zhan, Wei; Porter, Jay R.; Morgan, Joseph A.

    2014-01-01

    This paper discusses the design and implementation of laboratories and course projects using LabVIEW in an instrumentation course. The pedagogical challenge is to enhance students' learning of digital communication using LabVIEW. LabVIEW was extensively used in the laboratory sessions, which better prepared students for the course projects. Two…

  18. Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project

    Science.gov (United States)

    Thiet, Rachel K.

    2014-01-01

    The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…

  19. Teaching Business Statistics in a Computer Lab: Benefit or Distraction?

    Science.gov (United States)

    Martin, Linda R.

    2011-01-01

    Teaching in a classroom configured with computers has been heralded as an aid to learning. Students receive the benefits of working with large data sets and real-world problems. However, with the advent of network and wireless connections, students can now use the computer for alternating tasks, such as emailing, web browsing, and social…

  20. Tele-Lab IT-Security: an Architecture for an online virtual IT Security Lab

    Directory of Open Access Journals (Sweden)

    Christoph Meinel

    2008-05-01

    Full Text Available Recently, Awareness Creation in terms of IT security has become a big thing – not only for enterprises. Campaigns for pupils try to highlight the importance of IT security even in the user’s early years. Common practices in security education – as seen in computer science courses at universities – mainly consist of literature and lecturing. In the best case, the teaching facility offers practical courses in a dedicated isolated computer lab. Additionally, there are some more or less interactive e-learning applications around. Most existing offers can do nothing more than impart theoretical knowledge or basic information. They all lack of possibilities to provide practical experience with security software or even hacker tools in a realistic environment. The only exceptions are the expensive and hard-to-maintain dedicated computer security labs. Those can only be provided by very few organizations. Tele-Lab IT-Security was designed to offer hands-on experience exercises in IT security without the need of additional hardware or maintenance expenses. The existing implementation of Tele-Lab even provides access to the learning environment over the Internet – and thus can be used anytime and anywhere. The present paper describes the extended architecture on which the current version of the Tele-Lab server is built.

  1. Hydrogel Beads: The New Slime Lab?

    Science.gov (United States)

    Brockway, Debra; Libera, Matthew; Welner, Heidi

    2011-01-01

    Creating slime fascinates students. Unfortunately, though intrigue is at its peak, the educational aspect of this activity is often minimal. This article describes a chemistry lab that closely relates to the slime lab and allows high school students to explore the concepts of chemical bonding, properties, and replacement reactions. It involves the…

  2. Bringing Art, Music, Theater and Dance Students into Earth and Space Science Research Labs: A New Art Prize Science and Engineering Artists-in-Residence Program

    Science.gov (United States)

    Moldwin, M.; Mexicotte, D.

    2017-12-01

    A new Arts/Lab Student Residence program was developed at the University of Michigan that brings artists into a research lab. Science and Engineering undergraduate and graduate students working in the lab describe their research and allow the artists to shadow them to learn more about the work. The Arts/Lab Student Residencies are designed to be unique and fun, while encouraging interdisciplinary learning and creative production by exposing students to life and work in an alternate discipline's maker space - i.e. the artist in the engineering lab, the engineer in the artist's studio or performance space. Each residency comes with a cash prize and the expectation that a work of some kind will be produced as a response to experience. The Moldwin Prize is designed for an undergraduate student currently enrolled in the Penny W. Stamps School of Art & Design, the Taubman School of Architecture and Urban Planning or the School of Music, Theatre and Dance who is interested in exchange and collaboration with students engaged in research practice in an engineering lab. No previous science or engineering experience is required, although curiosity and a willingness to explore are essential! Students receiving the residency spend 20 hours over 8 weeks (February-April) participating with the undergraduate research team in the lab of Professor Mark Moldwin, which is currently doing work in the areas of space weather (how the Sun influences the space environment of Earth and society) and magnetic sensor development. The resident student artist will gain a greater understanding of research methodologies in the space and climate fields, data visualization and communication techniques, and how the collision of disciplinary knowledge in the arts, engineering and sciences deepens the creative practice and production of each discipline. The student is expected to produce a final work of some kind within their discipline that reflects, builds on, explores, integrates or traces their

  3. Computer-based medical education in Benha University, Egypt: knowledge, attitude, limitations, and suggestions.

    Science.gov (United States)

    Bayomy, Hanaa; El Awadi, Mona; El Araby, Eman; Abed, Hala A

    2016-12-01

    Computer-assisted medical education has been developed to enhance learning and enable high-quality medical care. This study aimed to assess computer knowledge and attitude toward the inclusion of computers in medical education among second-year medical students in Benha Faculty of Medicine, Egypt, to identify limitations, and obtain suggestions for successful computer-based learning. This was a one-group pre-post-test study, which was carried out on second-year students in Benha Faculty of Medicine. A structured self-administered questionnaire was used to compare students' knowledge, attitude, limitations, and suggestions toward computer usage in medical education before and after the computer course to evaluate the change in students' responses. The majority of students were familiar with use of the mouse and keyboard, basic word processing, internet and web searching, and e-mail both before and after the computer course. The proportion of students who were familiar with software programs other than the word processing and trouble-shoot software/hardware was significantly higher after the course (Pcomputer (P=0.008), the inclusion of computer skills course in medical education, downloading lecture handouts, and computer-based exams (Pcomputers limited the inclusion of computer in medical education (Pcomputer labs, lack of Information Technology staff mentoring, large number of students, unclear course outline, and lack of internet access were more frequently reported before the course (Pcomputer labs, inviting Information Technology staff to support computer teaching, and the availability of free Wi-Fi internet access covering several areas in the university campus; all would support computer-assisted medical education. Medical students in Benha University are computer literate, which allows for computer-based medical education. Staff training, provision of computer labs, and internet access are essential requirements for enhancing computer usage in medical

  4. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab

  5. eComLab: remote laboratory platform

    Science.gov (United States)

    Pontual, Murillo; Melkonyan, Arsen; Gampe, Andreas; Huang, Grant; Akopian, David

    2011-06-01

    Hands-on experiments with electronic devices have been recognized as an important element in the field of engineering to help students get familiar with theoretical concepts and practical tasks. The continuing increase the student number, costly laboratory equipment, and laboratory maintenance slow down the physical lab efficiency. As information technology continues to evolve, the Internet has become a common media in modern education. Internetbased remote laboratory can solve a lot of restrictions, providing hands-on training as they can be flexible in time and the same equipment can be shared between different students. This article describes an on-going remote hands-on experimental radio modulation, network and mobile applications lab project "eComLab". Its main component is a remote laboratory infrastructure and server management system featuring various online media familiar with modern students, such as chat rooms and video streaming.

  6. A Low-Cost Remote Lab for Internet Services Distance Education

    Directory of Open Access Journals (Sweden)

    James Sissom

    2006-08-01

    Full Text Available Academic departments seeking to reach students via distance education course offerings find that some on-line curricula require a traditional hands-on lab model for student evaluation and assessment. The authors solve the problem of providing distance education curriculum and supporting instruction lab components by using a low-cost remote lab. The remote lab is used to evaluate student performance in managing web services and website development, solving security problems, patch management, scripting and web server management. In addition, the authors discuss assessment and evaluation techniques that will be used to determine instructional quality and student performance. Discussed are the remote lab architecture, use of disk images and utilization of Windows 2003 Internet Information Service, and Linux Red Hat 9.0 platforms.

  7. A Data Mining Approach to Study the Impact of the Methodology Followed in Chemistry Lab Classes on the Weight Attributed by the Students to the Lab Work on Learning and Motivation

    Science.gov (United States)

    Figueiredo, M.; Esteves, L.; Neves, J.; Vicente, H.

    2016-01-01

    This study reports the use of data mining tools in order to examine the influence of the methodology used in chemistry lab classes, on the weight attributed by the students to the lab work on learning and own motivation. The answer frequency analysis was unable to discriminate the opinions expressed by the respondents according to the type of the…

  8. Group dynamic and its effect on classroom climate, achievement, and time in lab in the organic chemistry laboratory classroom

    Science.gov (United States)

    Hall, Rachael S.

    Despite the many studies on the benefits of cooperative learning, there is surprising little research into how the classroom as a whole changes when these cooperative groups are reassigned. In one section of CHEM 3011 in Fall 2013, students were allowed to pick their partner and kept the same partner all semester. In another section during the same semester, students were assigned a different partner for every wet lab and were allowed to pick their partners during the computer simulation labs. The students in both sections were given the "preferred" version of the Science Laboratory Environment Inventory (SLEI) at the beginning of the semester to elicit student preferences for the class environment, and the "actual" version of the SLEI and the Class Life Instrument at the end of the semester to determine what actually occurred during the semester. The students' interactions were recorded using an observational instrument developed specifically for this project. The students' responses to surveys, interactions, grades, and time in lab were analyzed for differences between the two sections. The results of this study will be discussed.

  9. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    Science.gov (United States)

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-01-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…

  10. A Hardware Lab Anywhere At Any Time

    Directory of Open Access Journals (Sweden)

    Tobias Schubert

    2004-12-01

    Full Text Available Scientific technical courses are an important component in any student's education. These courses are usually characterised by the fact that the students execute experiments in special laboratories. This leads to extremely high costs and a reduction in the maximum number of possible participants. From this traditional point of view, it doesn't seem possible to realise the concepts of a Virtual University in the context of sophisticated technical courses since the students must be "on the spot". In this paper we introduce the so-called Mobile Hardware Lab which makes student participation possible at any time and from any place. This lab nevertheless transfers a feeling of being present in a laboratory. This is accomplished with a special Learning Management System in combination with hardware components which correspond to a fully equipped laboratory workstation that are lent out to the students for the duration of the lab. The experiments are performed and solved at home, then handed in electronically. Judging and marking are also both performed electronically. Since 2003 the Mobile Hardware Lab is now offered in a completely web based form.

  11. Gender Effects of Computer Use in a Conceptual Physics Lab Course

    Science.gov (United States)

    Van Domelen, Dave

    2010-01-01

    It's always hard to know what to expect when bringing computers into an educational setting, as things are always changing. Student skills with computers are different today than they were 10 years ago, and 20 years ago almost counts as an alien world. Still, one hopes that some of these changes result in positive trends, such as student attitudes…

  12. Increasing Students’ Interest by Encouraging them to Create Original Lab Projects

    Directory of Open Access Journals (Sweden)

    Petre Lucian Ogrutan

    2017-11-01

    Full Text Available Sometimes traditional lab projects based on standard kits and modules fail to stimulate students’ interest and creativity. This paper presents a novel laboratory concept which allows students to develop their own lab projects using open-source resources. The lab experiment includes competition aspects allowing every student to come up with ideas of which the best are selected. The lab projects include both hard and software components using Arduino-compatible systems and interfaces. Before starting the practical activities as well as after the completion of the lab session, the students were asked to fill in an anonymous questionnaire.

  13. The Evaluation of Students' Written Reflection on the Learning of General Chemistry Lab Experiment

    Science.gov (United States)

    Han, Ng Sook; Li, Ho Ket; Sin, Lee Choy; Sin, Keng Pei

    2014-01-01

    Reflective writing is often used to increase understanding and analytical ability. The lack of empirical evidence on the effect of reflective writing interventions on the learning of general chemistry lab experiment supports the examination of this concept. The central goal of this exploratory study was to evaluate the students' written…

  14. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. copyright 1997 American Institute of Physics

  15. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    Science.gov (United States)

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability.

  16. Promoting Metacognition in Introductory Calculus-based Physics Labs

    Science.gov (United States)

    Grennell, Drew; Boudreaux, Andrew

    2010-10-01

    In the Western Washington University physics department, a project is underway to develop research-based laboratory curriculum for the introductory calculus-based course. Instructional goals not only include supporting students' conceptual understanding and reasoning ability, but also providing students with opportunities to engage in metacognition. For the latter, our approach has been to scaffold reflective thinking with guided questions. Specific instructional strategies include analysis of alternate reasoning presented in fictitious dialogues and comparison of students' initial ideas with their lab group's final, consensus understanding. Assessment of student metacognition includes pre- and post- course data from selected questions on the CLASS survey, analysis of written lab worksheets, and student opinion surveys. CLASS results are similar to a traditional physics course and analysis of lab sheets show that students struggle to engage in a metacognitive process. Future directions include video studies, as well as use of additional written assessments adapted from educational psychology.

  17. Developing a strategy for computational lab skills training through Software and Data Carpentry: Experiences from the ELIXIR Pilot action

    NARCIS (Netherlands)

    Pawlik, A.; Gelder, C.W.G. van; Nenadic, A.; Palagi, P.M.; Korpelainen, E.; Lijnzaad, P.; Marek, D.; Sansone, S.A.; Hancock, J.; Goble, C.

    2017-01-01

    Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training

  18. Competence-Based, Research-Related Lab Courses for Materials Modeling: The Case of Organic Photovoltaics

    Science.gov (United States)

    Schellhammer, Karl Sebastian; Cuniberti, Gianaurelio

    2017-01-01

    We are hereby presenting a didactic concept for an advanced lab course that focuses on the design of donor materials for organic solar cells. Its research-related and competence-based approach qualifies the students to independently and creatively apply computational methods and to profoundly and critically discuss the results obtained. The high…

  19. VIBA-Lab 3.0: Computer program for simulation and semi-quantitative analysis of PIXE and RBS spectra and 2D elemental maps

    Energy Technology Data Exchange (ETDEWEB)

    Orlić, Ivica; Mekterović, Darko [Department of Physics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka (Croatia); Mekterović, Igor [Faculty of Electrical Engineering and Computing, University of Zagreb (Croatia); Ivošević, Tatjana [Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51000 Rijeka (Croatia)

    2015-11-15

    VIBA-Lab is a computer program originally developed by the author and co-workers at the National University of Singapore (NUS) as an interactive software package for simulation of Particle Induced X-ray Emission and Rutherford Backscattering Spectra. The original program is redeveloped to a VIBA-Lab 3.0 in which the user can perform semi-quantitative analysis by comparing simulated and measured spectra as well as simulate 2D elemental maps for a given 3D sample composition. The latest version has a new and more versatile user interface. It also has the latest data set of fundamental parameters such as Coster–Kronig transition rates, fluorescence yields, mass absorption coefficients and ionization cross sections for K and L lines in a wider energy range than the original program. Our short-term plan is to introduce routine for quantitative analysis for multiple PIXE and XRF excitations. VIBA-Lab is an excellent teaching tool for students and researchers in using PIXE and RBS techniques. At the same time the program helps when planning an experiment and when optimizing experimental parameters such as incident ions, their energy, detector specifications, filters, geometry, etc. By “running” a virtual experiment the user can test various scenarios until the optimal PIXE and BS spectra are obtained and in this way save a lot of expensive machine time.

  20. VIBA-Lab 3.0: Computer program for simulation and semi-quantitative analysis of PIXE and RBS spectra and 2D elemental maps

    International Nuclear Information System (INIS)

    Orlić, Ivica; Mekterović, Darko; Mekterović, Igor; Ivošević, Tatjana

    2015-01-01

    VIBA-Lab is a computer program originally developed by the author and co-workers at the National University of Singapore (NUS) as an interactive software package for simulation of Particle Induced X-ray Emission and Rutherford Backscattering Spectra. The original program is redeveloped to a VIBA-Lab 3.0 in which the user can perform semi-quantitative analysis by comparing simulated and measured spectra as well as simulate 2D elemental maps for a given 3D sample composition. The latest version has a new and more versatile user interface. It also has the latest data set of fundamental parameters such as Coster–Kronig transition rates, fluorescence yields, mass absorption coefficients and ionization cross sections for K and L lines in a wider energy range than the original program. Our short-term plan is to introduce routine for quantitative analysis for multiple PIXE and XRF excitations. VIBA-Lab is an excellent teaching tool for students and researchers in using PIXE and RBS techniques. At the same time the program helps when planning an experiment and when optimizing experimental parameters such as incident ions, their energy, detector specifications, filters, geometry, etc. By “running” a virtual experiment the user can test various scenarios until the optimal PIXE and BS spectra are obtained and in this way save a lot of expensive machine time.

  1. VIBA-Lab 3.0: Computer program for simulation and semi-quantitative analysis of PIXE and RBS spectra and 2D elemental maps

    Science.gov (United States)

    Orlić, Ivica; Mekterović, Darko; Mekterović, Igor; Ivošević, Tatjana

    2015-11-01

    VIBA-Lab is a computer program originally developed by the author and co-workers at the National University of Singapore (NUS) as an interactive software package for simulation of Particle Induced X-ray Emission and Rutherford Backscattering Spectra. The original program is redeveloped to a VIBA-Lab 3.0 in which the user can perform semi-quantitative analysis by comparing simulated and measured spectra as well as simulate 2D elemental maps for a given 3D sample composition. The latest version has a new and more versatile user interface. It also has the latest data set of fundamental parameters such as Coster-Kronig transition rates, fluorescence yields, mass absorption coefficients and ionization cross sections for K and L lines in a wider energy range than the original program. Our short-term plan is to introduce routine for quantitative analysis for multiple PIXE and XRF excitations. VIBA-Lab is an excellent teaching tool for students and researchers in using PIXE and RBS techniques. At the same time the program helps when planning an experiment and when optimizing experimental parameters such as incident ions, their energy, detector specifications, filters, geometry, etc. By "running" a virtual experiment the user can test various scenarios until the optimal PIXE and BS spectra are obtained and in this way save a lot of expensive machine time.

  2. A Computer-Based Simulation of an Acid-Base Titration

    Science.gov (United States)

    Boblick, John M.

    1971-01-01

    Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)

  3. A Case Study of a High School Fab Lab

    Science.gov (United States)

    Lacy, Jennifer E.

    This dissertation examines making and design-based STEM education in a formal makerspace. It focuses on how the design and implementation of a Fab Lab learning environment and curriculum affect how instructors and students see themselves engaging in science, and how the Fab Lab relates to the social sorting practices that already take place at North High School. While there is research examining design-based STEM education in informal and formal learning environments, we know little about how K-12 teachers define STEM in making activities when no university or museum partnership exists. This study sought to help fill this gap in the research literature. This case study of a formal makerspace followed instructors and students in one introductory Fab Lab course for one semester. Additional observations of an introductory woodworking course helped build the case and set it into the school context, and provided supplementary material to better understand the similarities and differences between the Fab Lab course and a more traditional design-based learning course. Using evidence from observational field notes, participant interviews, course materials, and student work, I found that the North Fab Lab relies on artifacts and rhetoric symbolic of science and STEM to set itself apart from other design-based courses at North High School. Secondly, the North Fab Lab instructors and students were unable to explain how what they were doing in the Fab Lab was science, and instead relied on vague and unsupported claims related to interdisciplinary STEM practices and dated descriptions of science. Lastly, the design and implementation of the Fab Lab learning environment and curriculum and its separation from North High School's low tech, design-based courses effectively reinforced social sorting practices and cultural assumptions about student work and intelligence.

  4. An Educational Approach to Computationally Modeling Dynamical Systems

    Science.gov (United States)

    Chodroff, Leah; O'Neal, Tim M.; Long, David A.; Hemkin, Sheryl

    2009-01-01

    Chemists have used computational science methodologies for a number of decades and their utility continues to be unabated. For this reason we developed an advanced lab in computational chemistry in which students gain understanding of general strengths and weaknesses of computation-based chemistry by working through a specific research problem.…

  5. Development of an Android Application in the Form of a Simulation Lab as Learning Media for Senior High School Students

    Science.gov (United States)

    Astra, I Made; Nasbey, Hadi; Nugraha, Aditiya

    2015-01-01

    The aim of this research is to create learning media for senior high school students through an android application in the form of a simulation lab. The method employed in the study is research and development. A simulation lab which has been made subsequently validated by concept and media experts, further empirical testing by teachers and…

  6. Electronics lab instructors' approaches to troubleshooting instruction

    Science.gov (United States)

    Dounas-Frazer, Dimitri R.; Lewandowski, H. J.

    2017-06-01

    In this exploratory qualitative study, we describe instructors' self-reported practices for teaching and assessing students' ability to troubleshoot in electronics lab courses. We collected audio data from interviews with 20 electronics instructors from 18 institutions that varied by size, selectivity, and other factors. In addition to describing participants' instructional practices, we characterize their perceptions about the role of troubleshooting in electronics, the importance of the ability to troubleshoot more generally, and what it means for students to be competent troubleshooters. One major finding of this work is that, while almost all instructors in our study said that troubleshooting is an important learning outcome for students in electronics lab courses, only half of instructors said they directly assessed students' ability to troubleshoot. Based on our findings, we argue that there is a need for research-based instructional materials that attend to both cognitive and noncognitive aspects of troubleshooting proficiency. We also identify several areas for future investigation related to troubleshooting instruction in electronics lab courses.

  7. BUILDING A COMPLETE FREE AND OPEN SOURCE GIS INFRASTRUCTURE FOR HYDROLOGICAL COMPUTING AND DATA PUBLICATION USING GIS.LAB AND GISQUICK PLATFORMS

    Directory of Open Access Journals (Sweden)

    M. Landa

    2017-07-01

    Full Text Available Building a complete free and open source GIS computing and data publication platform can be a relatively easy task. This paper describes an automated deployment of such platform using two open source software projects – GIS.lab and Gisquick. GIS.lab (http: //web.gislab.io is a project for rapid deployment of a complete, centrally managed and horizontally scalable GIS infrastructure in the local area network, data center or cloud. It provides a comprehensive set of free geospatial software seamlessly integrated into one, easy-to-use system. A platform for GIS computing (in our case demonstrated on hydrological data processing requires core components as a geoprocessing server, map server, and a computation engine as eg. GRASS GIS, SAGA, or other similar GIS software. All these components can be rapidly, and automatically deployed by GIS.lab platform. In our demonstrated solution PyWPS is used for serving WPS processes built on the top of GRASS GIS computation platform. GIS.lab can be easily extended by other components running in Docker containers. This approach is shown on Gisquick seamless integration. Gisquick (http://gisquick.org is an open source platform for publishing geospatial data in the sense of rapid sharing of QGIS projects on the web. The platform consists of QGIS plugin, Django-based server application, QGIS server, and web/mobile clients. In this paper is shown how to easily deploy complete open source GIS infrastructure allowing all required operations as data preparation on desktop, data sharing, and geospatial computation as the service. It also includes data publication in the sense of OGC Web Services and importantly also as interactive web mapping applications.

  8. Is LabTutor a helpful component of the blended learning approach to biosciences?

    Science.gov (United States)

    Swift, Amelia; Efstathiou, Nikolaos; Lameu, Paula

    2016-09-01

    To evaluate the use of LabTutor (a physiological data capture and e-learning package) in bioscience education for student nurses. Knowledge of biosciences is important for nurses the world over, who have to monitor and assess their patient's clinical condition, and interpret that information to determine the most appropriate course of action. Nursing students have long been known to find acquiring useable bioscience knowledge challenging. Blended learning strategies are common in bioscience teaching to address the difficulties students have. Student nurses have a preference for hands-on learning, small group sessions and are helped by close juxtaposition of theory and practice. An evaluation of a new teaching method using in-classroom voluntary questionnaire. A structured survey instrument including statements and visual analogue response format and open questions was given to students who participated in Labtutor sessions. The students provided feedback in about the equipment, the learning and the session itself. First year (n = 93) and third year (n = 36) students completed the evaluation forms. The majority of students were confident about the equipment and using it to learn although a few felt anxious about computer-based learning. They all found the equipment helpful as part of their bioscience education and they all enjoyed the sessions. This equipment provides a helpful way to encourage guided independent learning through practice and discovery and because each session is case study based and the relationship of the data to the patient is made clear. Our students helped to evaluate our initial use of LabTutor and found the sessions enjoyable and helpful. LabTutor provides an effective learning tool as part of a blended learning strategy for biosciences teaching. Improving bioscience knowledge will lead to a greater understanding of pathophysiology, treatments and interventions and monitoring. © 2016 John Wiley & Sons Ltd.

  9. Students "Hacking" School Computer Systems

    Science.gov (United States)

    Stover, Del

    2005-01-01

    This article deals with students hacking school computer systems. School districts are getting tough with students "hacking" into school computers to change grades, poke through files, or just pit their high-tech skills against district security. Dozens of students have been prosecuted recently under state laws on identity theft and unauthorized…

  10. Effect of the Level of Inquiry of Lab Experiments on General Chemistry Students' Written Reflections

    Science.gov (United States)

    Xu, Haozhi; Talanquer, Vincente

    2013-01-01

    The central goal of this exploratory study was to characterize the effects of experiments involving different levels of inquiry on the nature of college students' written reflections about laboratory work. Data were collected in the form of individual lab reports written using a science writing heuristic template by a subset of the students…

  11. Virtual Lab Demonstrations Improve Students’ Mastery of Basic Biology Laboratory Techniques

    Directory of Open Access Journals (Sweden)

    Grace A. Maldarelli

    2009-12-01

    Full Text Available Biology laboratory classes are designed to teach concepts and techniques through experiential learning. Students who have never performed a technique must be guided through the process, which is often difficult to standardize across multiple lab sections. Visual demonstration of laboratory procedures is a key element in teaching pedagogy. The main goals of the study were to create videos explaining and demonstrating a variety of lab techniques that would serve as teaching tools for undergraduate and graduate lab courses and to assess the impact of these videos on student learning. Demonstrations of individual laboratory procedures were videotaped and then edited with iMovie. Narration for the videos was edited with Audacity. Undergraduate students were surveyed anonymously prior to and following screening to assess the impact of the videos on student lab performance by completion of two Participant Perception Indicator surveys. A total of 203 and 171 students completed the pre- and posttesting surveys, respectively. Statistical analyses were performed to compare student perceptions of knowledge of, confidence in, and experience with the lab techniques before and after viewing the videos. Eleven demonstrations were recorded. Chi-square analysis revealed a significant increase in the number of students reporting increased knowledge of, confidence in, and experience with the lab techniques after viewing the videos. Incorporation of instructional videos as prelaboratory exercises has the potential to standardize techniques and to promote successful experimental outcomes.

  12. MatLab Script and Functional Programming

    Science.gov (United States)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  13. GeoMapApp Learning Activities: A Virtual Lab Environment for Student-Centred Engagement with Geoscience Data

    Science.gov (United States)

    Kluge, S.; Goodwillie, A. M.

    2012-12-01

    As STEM learning requirements enter the mainstream, there is benefit to providing the tools necessary for students to engage with research-quality geoscience data in a cutting-edge, easy-to-use map-based interface. Funded with an NSF GeoEd award, GeoMapApp Learning Activities ( http://serc.carleton.edu/geomapapp/collection.html ) are being created to help in that endeavour. GeoMapApp Learning Activities offer step-by-step instructions within a guided inquiry approach that enables students to dictate the pace of learning. Based upon GeoMapApp (http://www.geomapapp.org), a free, easy-to-use map-based data exploration and visualisation tool, each activity furnishes the educator with an efficient package of downloadable documents. This includes step-by-step student instructions and answer sheet; an educator's annotated worksheet containing teaching tips, additional content and suggestions for further work; and, quizzes for use before and after the activity to assess learning. Examples of activities so far created involve calculation and analysis of the rate of seafloor spreading; compilation of present-day evidence for huge ancient landslides on the seafloor around the Hawaiian islands; a study of radiometrically-dated volcanic rocks to help understand the concept of hotspots; and, the optimisation of contours as a means to aid visualisation of 3-D data sets on a computer screen. The activities are designed for students at the introductory undergraduate, community college and high school levels, and present a virtual lab-like environment to expose students to content and concepts typically found in those educational settings. The activities can be used in the classroom or out of class, and their guided nature means that the requirement for teacher intervention is reduced thus allowing students to spend more time analysing and understanding geoscience data, content and concepts. Each activity is freely available through the SERC-Carleton web site.

  14. Black hole based quantum computing in labs and in the sky

    Energy Technology Data Exchange (ETDEWEB)

    Dvali, Gia [Arnold Sommerfeld Center for Theoretical Physics, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY (United States); Panchenko, Mischa [Arnold Sommerfeld Center for Theoretical Physics, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2016-08-15

    Analyzing some well established facts, we give a model-independent parameterization of black hole quantum computing in terms of a set of macro and micro quantities and their relations. These include the relations between the extraordinarily-small energy gap of black hole qubits and important time-scales of information-processing, such as, scrambling time and Page's time. We then show, confirming and extending previous results, that other systems of nature with identical quantum informatics features are attractive Bose-Einstein systems at the critical point of quantum phase transition. Here we establish a complete isomorphy between the quantum computational properties of these two systems. In particular, we show that the quantum hair of a critical condensate is strikingly similar to the quantum hair of a black hole. Irrespectively whether one takes the similarity between the two systems as a remarkable coincidence or as a sign of a deeper underlying connection, the following is evident. Black holes are not unique in their way of quantum information processing and we can manufacture black hole based quantum computers in labs by taking advantage of quantum criticality. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Black hole based quantum computing in labs and in the sky

    International Nuclear Information System (INIS)

    Dvali, Gia; Panchenko, Mischa

    2016-01-01

    Analyzing some well established facts, we give a model-independent parameterization of black hole quantum computing in terms of a set of macro and micro quantities and their relations. These include the relations between the extraordinarily-small energy gap of black hole qubits and important time-scales of information-processing, such as, scrambling time and Page's time. We then show, confirming and extending previous results, that other systems of nature with identical quantum informatics features are attractive Bose-Einstein systems at the critical point of quantum phase transition. Here we establish a complete isomorphy between the quantum computational properties of these two systems. In particular, we show that the quantum hair of a critical condensate is strikingly similar to the quantum hair of a black hole. Irrespectively whether one takes the similarity between the two systems as a remarkable coincidence or as a sign of a deeper underlying connection, the following is evident. Black holes are not unique in their way of quantum information processing and we can manufacture black hole based quantum computers in labs by taking advantage of quantum criticality. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Ding Dong, You've Got Mail! A Lab Activity for Teaching the Internet of Things

    Science.gov (United States)

    Frydenberg, Mark

    2017-01-01

    Connecting ordinary devices to the Internet is a defining characteristic of the Internet of Things. In this hands-on lab activity, students will connect a wireless doorbell to the Internet using a Raspberry Pi computer. By modifying and running a program on the Raspberry Pi to send an email or text message notifying a recipient that someone is at…

  17. USNA DIGITAL FORENSICS LAB

    Data.gov (United States)

    Federal Laboratory Consortium — To enable Digital Forensics and Computer Security research and educational opportunities across majors and departments. Lab MissionEstablish and maintain a Digital...

  18. Interesting Guided-Inquiry Labs for a Large-Enrollment, Active Learning Physics II Course

    Science.gov (United States)

    Wagoner, Kasey; Hynes, K. Mairin; Flanagan, Daniel

    2018-04-01

    Introductory physics labs often focus on a series of common experiments intending to teach the student the measurement side of physics. While these experiments have the potential to be quite instructive, we observed that our students often consider them to be boring and monotonous, which often leads to them being uninstructive. To combat this, we have designed a series of labs with two major goals: the experiments should be relevant to the students' world, and the labs should gently guide the students to develop the experimental process on their own. Meeting these goals is difficult, particularly in a course with large enrollment where labs are instructed by graduate students. We have had success meeting these goals in our classroom, where over the last decade our introductory physics course has transformed from a traditional, lecture-learning class to a flipped class based on the textbook Six Ideas that Shaped Physics. Here we describe the structure of the new labs we have designed to capitalize on our classroom success while overcoming the aforementioned difficulties. These new labs are more engaging and instructive for our introductory physics students.

  19. Incorporating inquiry and the process of science into introductory astronomy labs at the George Washington University

    Science.gov (United States)

    Cobb, Bethany E.

    2018-01-01

    Since 2013, the Physics Department at GWU has used student-centered active learning in the introductory astronomy course “Introduction to the Cosmos.” Class time is spent in groups on questions, math problems, and hands-on activities, with multiple instructors circulating to answer questions and engage with the students. The students have responded positively to this active-learning. Unfortunately, in transitioning to active-learning there was no time to rewrite the labs. Very quickly, the contrast between the dynamic classroom and the traditional labs became apparent. The labs were almost uniformly “cookie-cutter” in that the procedure and analysis were specified step-by-step and there was just one right answer. Students rightly criticized the labs for lacking a clear purpose and including busy-work. Furthermore, this class fulfills the GWU scientific reasoning general education requirement and thus includes learning objectives related to understanding the scientific method, testing hypotheses with data, and considering uncertainty – but the traditional labs did not require these skills. I set out to rejuvenate the lab sequence by writing new inquiry labs based on both topic-specific and scientific reasoning learning objectives. While inquiry labs can be challenging for the students, as they require active thinking and creativity, these labs engage the students more thoroughly in the scientific process. In these new labs, whenever possible, I include real astronomical data and ask the students to use digital tools (SDSS SkyServer, SOHO archive) as if they are real astronomers. To allow students to easily plot, manipulate and analyze data, I built “smart” Excel files using formulas, dropdown menus and macros. The labs are now much more authentic and thought-provoking. Whenever possible, students independently develop questions, hypotheses, and procedures and the scientific method is “scaffolded” over the semester by providing more guidance in the

  20. Developing and Implementing Lab Skills Seminars, a Student-Led Learning Approach in the Organic Chemistry Laboratory: Mentoring Current Students While Benefiting Facilitators

    Science.gov (United States)

    Sabanayagam, Kalyani; Dani, Vivek D.; John, Matthew; Restivo, Wanda; Mikhaylichenko, Svetlana; Dalili, Shadi

    2017-01-01

    This paper describes the successful adaptation of certain components of peer-led team learning (PLTL) as well as service learning principles into our initiative: lab skills seminars (LSS). These seminars were organized for large, second year organic chemistry laboratory courses. Prior to LSS, the only help available for students was traditional…

  1. The Affective Experience of Novice Computer Programmers

    Science.gov (United States)

    Bosch, Nigel; D'Mello, Sidney

    2017-01-01

    Novice students (N = 99) participated in a lab study in which they learned the fundamentals of computer programming in Python using a self-paced computerized learning environment involving a 25-min scaffolded learning phase and a 10-min unscaffolded fadeout phase. Students provided affect judgments at approximately 100 points (every 15 s) over the…

  2. Modifying Cookbook Labs.

    Science.gov (United States)

    Clark, Robert, L.; Clough, Michael P.; Berg, Craig A.

    2000-01-01

    Modifies an extended lab activity from a cookbook approach for determining the percent mass of water in copper sulfate pentahydrate crystals to one which incorporates students' prior knowledge, engenders active mental struggling with prior knowledge and new experiences, and encourages metacognition. (Contains 12 references.) (ASK)

  3. Magnetic Viscous Drag for Friction Labs

    Science.gov (United States)

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  4. Undergraduate Student Involvement in International Research - The IRES Program at MAX-lab, Sweden

    Science.gov (United States)

    Briscoe, William; O'Rielly, Grant; Fissum, Kevin

    2014-03-01

    Undergraduate students associated with The George Washington University and UMass Dartmouth have had the opportunity to participate in nuclear physics research as a part of the PIONS@MAXLAB Collaboration performing experiments at MAX-lab at Lund University in Sweden. This project has supported thirteen undergraduate students during 2009 - 2011. The student researchers are involved with all aspects of the experiments performed at the laboratory, from set-up to analysis and presentation at national conferences. These experiments investigate the dynamics responsible for the internal structure of the nucleon through the study of pion photoproduction off the nucleon and high-energy Compton scattering. Along with the US and Swedish project leaders, members of the collaboration (from four different countries) have contributed to the training and mentoring of these students. This program provides students with international research experiences that prepare them to operate successfully in a global environment and encourages them to stay in areas of science, technology, engineering and math (STEM) that are crucial for our modern, technology-dependent society. We will present the history, goals and outcomes in both physics results and student success that have come from this program. This work supported by NSF OISE/IRES award 0553467.

  5. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    Science.gov (United States)

    Bayer, Chris N; Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  6. Microbial Life in a Winogradsky Column: From Lab Course to Diverse Research Experience ?

    OpenAIRE

    Parks, Samantha T.

    2015-01-01

    Many traditional lab courses include both standard and inquiry-based experiments, yet lack cooperative and authentic lab experiences.  Such experiences are important for microbiology students and burgeoning researchers.  In a novel lab environment, students constructed Winogradsky columns using common soil and water sources.  During initial column incubation, students learned methods for identification of microbial isolates including staining, microscopy, biochemistry and 16S-rRNA sequencing....

  7. Cane Toad or Computer Mouse? Real and Computer-Simulated Laboratory Exercises in Physiology Classes

    Science.gov (United States)

    West, Jan; Veenstra, Anneke

    2012-01-01

    Traditional practical classes in many countries are being rationalised to reduce costs. The challenge for university educators is to provide students with the opportunity to reinforce theoretical concepts by running something other than a traditional practical program. One alternative is to replace wet labs with comparable computer simulations.…

  8. The Design of NetSecLab: A Small Competition-Based Network Security Lab

    Science.gov (United States)

    Lee, C. P.; Uluagac, A. S.; Fairbanks, K. D.; Copeland, J. A.

    2011-01-01

    This paper describes a competition-style of exercise to teach system and network security and to reinforce themes taught in class. The exercise, called NetSecLab, is conducted on a closed network with student-formed teams, each with their own Linux system to defend and from which to launch attacks. Students are expected to learn how to: 1) install…

  9. Developing skills versus reinforcing concepts in physics labs: Insight from a survey of students' beliefs about experimental physics

    Science.gov (United States)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2017-06-01

    Physics laboratory courses have been generally acknowledged as an important component of the undergraduate curriculum, particularly with respect to developing students' interest in, and understanding of, experimental physics. There are a number of possible learning goals for these courses including reinforcing physics concepts, developing laboratory skills, and promoting expertlike beliefs about the nature of experimental physics. However, there is little consensus among instructors and researchers interested in the laboratory learning environment as to the relative importance of these various learning goals. Here, we contribute data to this debate through the analysis of students' responses to the laboratory-focused assessment known as the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a large, national data set of students' responses, we compare students' E-CLASS performance in classes in which the instructor self-reported focusing on developing skills, reinforcing concepts, or both. As the classification of courses was based on instructor self-report, we also provide additional description of these courses with respect to how often students engage in particular activities in the lab. We find that courses that focus specifically on developing lab skills have more expertlike postinstruction E-CLASS responses than courses that focus either on reinforcing physics concepts or on both goals. Within first-year courses, this effect is larger for women. Moreover, these findings hold when controlling for the variance in postinstruction scores that is associated with preinstruction E-CLASS scores, student major, and student gender.

  10. Student Learning Outcomes and Attitudes When Biotechnology Lab Partners Are of Different Academic Levels

    Science.gov (United States)

    Miller, Heather B.; Witherow, D. Scott; Carson, Susan

    2012-01-01

    The North Carolina State University Biotechnology Program offers laboratory-intensive courses to both undergraduate and graduate students. In “Manipulation and Expression of Recombinant DNA,” students are separated into undergraduate and graduate sections for the laboratory, but not the lecture, component. Evidence has shown that students prefer pairing with someone of the same academic level. However, retention of main ideas in peer learning environments has been shown to be greater when partners have dissimilar abilities. Therefore, we tested the hypothesis that there will be enhanced student learning when lab partners are of different academic levels. We found that learning outcomes were met by both levels of student, regardless of pairing. Average undergraduate grades on every assessment method increased when undergraduates were paired with graduate students. Many of the average graduate student grades also increased modestly when graduate students were paired with undergraduates. Attitudes toward working with partners dramatically shifted toward favoring working with students of different academic levels. This work suggests that offering dual-level courses in which different-level partnerships are created does not inhibit learning by students of different academic levels. This format is useful for institutions that wish to offer “boutique” courses in which student enrollment may be low, but specialized equipment and faculty expertise are needed. PMID:22949428

  11. Map Your Way to a Better Lab.

    Science.gov (United States)

    Roth, Wolff-Michael

    1990-01-01

    The use of concept maps, Vee diagrams, flow charts, and productive questions to increase student understanding of laboratory exercises and to improve student attitudes toward lab classes is discussed. Examples of each are provided. Student responses to these teaching methods are described. (CW)

  12. Using Saccharomyces cerevisiae to Test the Mutagenicity of Household Compounds: An Open Ended Hypothesis-Driven Teaching Lab

    OpenAIRE

    Marshall, Pamela A.

    2007-01-01

    In our Fundamentals of Genetics lab, students perform a wide variety of labs to reinforce and extend the topics covered in lecture. I developed an active-learning lab to augment the lecture topic of mutagenesis. In this lab exercise, students determine if a compound they bring from home is a mutagen. Students are required to read extensive background material, perform research to find a potential mutagen to test, develop a hypothesis, and bring to the lab their own suspected mutagen. This lab...

  13. The Use of Online Pre-Lab Assessments Compared with Written Pre-Lab Assignments Requiring Experimental Result Prediction Shows No Difference in Student Performance

    OpenAIRE

    Erica L. Suchman

    2015-01-01

    Exam performance was compared for students who hand wrote questions designed to prepare them for daily lab activities in a senior level virology laboratory course versus those who answered questions created to mirror the written questions on-line.  No significant difference was noted in exam scores on any of the three midterms, written final exam, nor the practical exam.  Neither was there a significant difference in the quality of the laboratory reports turned in as evidenced by similar aver...

  14. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    Directory of Open Access Journals (Sweden)

    Chris N Bayer

    Full Text Available Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  15. The Earth is our lab: Ten years of geoscience school lab in Potsdam

    Science.gov (United States)

    Nikolaus Küppers, Andreas

    2016-04-01

    Starting in 2004, a geoscientific school lab for senior high school students was developed in the historical "Großer Refraktor" premises on the Telegraphenberg in Potsdam. Based on a one-day course architecture, laboratory days were developed covering singular themes: - Magnetic field of the Earth - Geographical Information Systems and geodata - Gravity field of the Earth - Geodynamics: seismology and seismics - Geoscience math - Geodata Brandenburg (Geological mapping with aerophotographs, remote sensing, underground data processing) With a focus on geophysical methodologies, course days generally focused on the field work around the Telegraphenberg site while introducing into the art of handling original professional equipment. Field data were afterwards compiled, analysed and interpreted in the group. Single days could be combined as clusters of up to one week and were bookable for national and international groups of max. 25 students. The courses were taught by active scientists with the assistance of student guides as the larger groups had to be split up. The paper gives an overview over the development history of the school lab and explains the course contents, the teaching methods and several employed escorting measures. Possible impact on the professional career decisions of the students is discussed.

  16. Using "Saccharomyces cerevisiae" to Test the Mutagenicity of Household Compounds: An Open Ended Hypothesis-Driven Teaching Lab

    Science.gov (United States)

    Marshall, Pamela A.

    2007-01-01

    In our Fundamentals of Genetics lab, students perform a wide variety of labs to reinforce and extend the topics covered in lecture. I developed an active-learning lab to augment the lecture topic of mutagenesis. In this lab exercise, students determine if a compound they bring from home is a mutagen. Students are required to read extensive…

  17. Use of tablets for instruction and learning in microbiology labs

    DEFF Research Database (Denmark)

    Møller, Karen Louise; Jelsbak, Vibe Alopaeus; Georgsen, Marianne

    of this project are to develop a technological infrastructure to support students’ work in the lab and to develop teaching and learning resources. Our research question is: How is teaching and learning in the laboratory influenced by the tablets and the following multimodal teaching and learning materials...... and taken notes by hand. Use of tablets in the lab offers new opportunities. In September 2012, nine tablets were introduced into one of the labs of the college. Groups of students use the tablets to access documents, watch video instructions, and to document results and procedures digitally. The objectives......? The empirical part of the project has been documented through field observations in the lab (in writing and with photos). We have found the following to be characteristic of the work of the students: the students use the tablets collaboratively, take more photos than requested, use the video based instructions...

  18. FameLab Switzerland: a CERN PhD student triumphs

    CERN Multimedia

    Alexander Brown

    2013-01-01

    Would you be able to explain your work to a non-specialist in just three minutes? On Friday 24 May, the Swiss national final of FameLab saw six young researchers from CERN attempt just that. FameLab is an international competition in the style of a TV talent show, seeking out the next generation of talent in science communication.   Participants in the Swiss national final of FameLab alongside Deni Subasic, presenter of the event (far left), on Friday 24 May. Having qualified from the Geneva heat held in the Globe in March, the six CERN representatives took to the stage in Moods bar in Zurich. As well as particle physics, from the fundamental building blocks (literally) of the Standard Model to medical applications, the line-up featured immunology, neurology and genetics. Although slideshows are strictly banned from FameLab, other visual props are strongly encouraged. For instance, Piotr Traczyk (CMS) represented the apparent chaos of particle collisions by throwing together two decks of ca...

  19. The experiment editor: supporting inquiry-based learning with virtual labs

    Science.gov (United States)

    Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.

    2017-05-01

    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.

  20. Teaching psychology to computing students

    OpenAIRE

    Taylor, Jacqui

    2008-01-01

    The aim of this paper is twofold. The first aim is to discuss some observations gained from teaching Psychology to Computing students, highlighting both the wide range of areas where Psychology is relevant to Computing education and the topics that are relevant at different stages of students’ education. The second aim is to consider findings from research investigating the characteristics of Computing and Psychology students. It is proposed that this information could be considered in the de...

  1. An Interactive Computer Lab of the Galvanic Cell for Students in Biochemistry

    Science.gov (United States)

    Ahlstrand, Emma; Buetti-Dinh, Antoine; Friedman, Ran

    2018-01-01

    We describe an interactive module that can be used to teach basic concepts in electrochemistry and thermodynamics to first year natural science students. The module is used together with an experimental laboratory and improves the students' understanding of thermodynamic quantities such as ?rG, ?rH, and ?rS that are calculated but not directly…

  2. The Advanced Lab Course at the University of Houston

    Science.gov (United States)

    Forrest, Rebecca

    2009-04-01

    The University of Houston Advanced Lab course is designed to help students understand the physics in classic experiments, become familiar with experimental equipment and techniques, gain experience with independent experimentation, and learn to communicate results orally and in writing. It is a two semester course, with a Lab Seminar also required during the first semester. In the Seminar class we discuss keeping a notebook and writing a laboratory report, error analysis, data fitting, and scientific ethics. The students give presentations, in pairs, on the workings and use of basic laboratory equipment. In the Lab courses students do a one week introductory experiment, followed by six two-week experiments each semester. These range from traditional experiments in modern physics to contemporary experiments with superconductivity and chaos. The students are required to keep a laboratory notebook and to write a four-page paper for each experiment in the publication style of the American Institute of Physics. This course introduces students to the experimental tools and techniques used in physics, engineering, and industry laboratories, and allows them to mature as experimentalists.

  3. Metacognition Lab at Miles College Takes Peer Mentoring to a Higher Level

    Science.gov (United States)

    Chekwa, Emmanuel; Dorius, Tina

    2016-01-01

    Albert Einstein famously said, "I never teach my students. I only attempt to provide the conditions in which they can learn." At the Miles College Metacognition Lab, we follow a similar philosophy. In the Metacognition Lab, we teach our students to think about how they are thinking. We have created a system of student interactions that…

  4. Learning Experience on Transformer Using HOT Lab for Pre-service Physics Teacher’s

    Science.gov (United States)

    Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.

    2017-09-01

    This study aimed at investigating pre-service teacher’s critical thinking skills improvement through Higher Order Thinking (HOT) Lab on transformer learning. This research used mix method with the embedded experimental model. Research subjects are 60 students of Physics Education in UIN Sunan Gunung Djati Bandung. The results showed that based on the results of the analysis of practical reports and observation sheet shows students in the experimental group was better in carrying out the practicum and can solve the real problem while the control group was going on the opposite. The critical thinking skills of students applying the HOT Lab were higher than the verification lab. Critical thinking skills could increase due to HOT Lab based problems solving that can develop higher order thinking skills through laboratory activities. Therefore, it was concluded that the application of HOT Lab was more effective than verification lab on improving students’ thinking skills on transformer topic learning. Finally, HOT Lab can be implemented in other subject learning and could be used to improve another higher order thinking skills.

  5. Student Engagement in a Computer Rich Science Classroom

    Science.gov (United States)

    Hunter, Jeffrey C.

    The purpose of this study was to examine the student lived experience when using computers in a rural science classroom. The overarching question the project sought to examine was: How do rural students relate to computers as a learning tool in comparison to a traditional science classroom? Participant data were collected using a pre-study survey, Experience Sampling during class and post-study interviews. Students want to use computers in their classrooms. Students shared that they overwhelmingly (75%) preferred a computer rich classroom to a traditional classroom (25%). Students reported a higher level of engagement in classes that use technology/computers (83%) versus those that do not use computers (17%). A computer rich classroom increased student control and motivation as reflected by a participant who shared; "by using computers I was more motivated to get the work done" (Maggie, April 25, 2014, survey). The researcher explored a rural school environment. Rural populations represent a large number of students and appear to be underrepresented in current research. The participants, tenth grade Biology students, were sampled in a traditional teacher led class without computers for one week followed by a week using computers daily. Data supported that there is a new gap that separates students, a device divide. This divide separates those who have access to devices that are robust enough to do high level class work from those who do not. Although cellular phones have reduced the number of students who cannot access the Internet, they may have created a false feeling that access to a computer is no longer necessary at home. As this study shows, although most students have Internet access, fewer have access to a device that enables them to complete rigorous class work at home. Participants received little or no training at school in proper, safe use of a computer and the Internet. It is clear that the majorities of students are self-taught or receive guidance

  6. Undergraduate Labs for Biological Physics: Brownian Motion and Optical Trapping

    Science.gov (United States)

    Chu, Kelvin; Laughney, A.; Williams, J.

    2006-12-01

    We describe a set of case-study driven labs for an upper-division biological physics course. These labs are motivated by case-studies and consist of inquiry-driven investigations of Brownian motion and optical-trapping experiments. Each lab incorporates two innovative educational techniques to drive the process and application aspects of scientific learning. Case studies are used to encourage students to think independently and apply the scientific method to a novel lab situation. Student input from this case study is then used to decide how to best do the measurement, guide the project and ultimately evaluate the success of the program. Where appropriate, visualization and simulation using VPython is used. Direct visualization of Brownian motion allows students to directly calculate Avogadro's number or the Boltzmann constant. Following case-study driven discussion, students use video microscopy to measure the motion of latex spheres in different viscosity fluids arrive at a good approximation of NA or kB. Optical trapping (laser tweezer) experiments allow students to investigate the consequences of 100-pN forces on small particles. The case study consists of a discussion of the Boltzmann distribution and equipartition theorem followed by a consideration of the shape of the potential. Students can then use video capture to measure the distribution of bead positions to determine the shape and depth of the trap. This work supported by NSF DUE-0536773.

  7. Requiring students to have computers: questions for consideration.

    Science.gov (United States)

    McAuley, R J

    1998-06-01

    For the past several years a dialogue has been taking place in the offices, lounges, and meeting rooms of medical schools about whether medical students should be required to bring or purchase computers when they enter school. Microcomputers offer educators a unique opportunity to provide students with access to computer-assisted instruction, asynchronous communication, and extensive knowledge bases. However, there is still no evidence attesting to the effectiveness of computers as teaching or learning tools in medical education. The author raises questions that schools need to consider before requiring students to own computers: What kind of computer best suits their needs? What might impede using computers to teach? And who is currently requiring computers? In addressing the last question, the author presents information about 15 North American schools that currently require their students to have computers, reporting each school's software and hardware requirements; how each expects students to use the computers; and who covers the cost of the computers (the students or the school). Finally, he argues that major institutional commitment is needed for computers to be successfully integrated into any medical school curriculum.

  8. S'Cool LAB Summer CAMP 2017

    CERN Multimedia

    Woithe, Julia

    2017-01-01

    The S’Cool LAB Summer CAMP is an opportunity for high-school students (aged 16-19) from all around the world to spend 2 weeks exploring the fascinating world of particle physics. The 24 selected participants spend their summer at S’Cool LAB, CERN’s hands-on particle physics learning laboratory, for an epic programme of lectures and tutorials, team research projects, visits of CERN’s research installations, and social activities.

  9. SuperFormLab: showing SuperFormLab

    DEFF Research Database (Denmark)

    2013-01-01

    bachelor program, followed by two years of master studies. The courses are offered equally to students from other design disciplines, e.g. industrial design. Teaching is mainly in English as the program is attended by a relatively large group of non-Danish students, who seek exactly this combination......3D-printing in clay and ceramic objects shaped by your own sounds and movements! Digital form transferred via CNC-milling to ornamental ceramic wall-cladding. Brave New World… Students and their teacher at SuperFormLab, the new ceramic workshop of the School of Design at the Royal Danish Academy...... of Fine Arts in Copenhagen, will be showing results of their investigations into the potential of combining digital technologies with ceramic materials. It is now possible to shape the most complex mathematical, virtual 3D objects through the use of advanced software-programs. And more than that – you can...

  10. Towards a Computable Data Corpus of Temporal Correlations between Drug Administration and Lab Value Changes.

    Directory of Open Access Journals (Sweden)

    Axel Newe

    Full Text Available The analysis of electronic health records for an automated detection of adverse drug reactions is an approach to solve the problems that arise from traditional methods like spontaneous reporting or manual chart review. Algorithms addressing this task should be modeled on the criteria for a standardized case causality assessment defined by the World Health Organization. One of these criteria is the temporal relationship between drug intake and the occurrence of a reaction or a laboratory test abnormality. Appropriate data that would allow for developing or validating related algorithms is not publicly available, though.In order to provide such data, retrospective routine data of drug administrations and temporally corresponding laboratory observations from a university clinic were extracted, transformed and evaluated by experts in terms of a reasonable time relationship between drug administration and lab value alteration.The result is a data corpus of 400 episodes of normalized laboratory parameter values in temporal context with drug administrations. Each episode has been manually classified whether it contains data that might indicate a temporal correlation between the drug administration and the change of the lab value course, whether such a change is not observable or whether a decision between those two options is not possible due to the data. In addition, each episode has been assigned a concordance value which indicates how difficult it is to assess. This is the first open data corpus of a computable ground truth of temporal correlations between drug administration and lab value alterations.The main purpose of this data corpus is the provision of data for further research and the provision of a ground truth which allows for comparing the outcome of other assessments of this data with the outcome of assessments made by human experts. It can serve as a contribution towards systematic, computerized ADR detection in retrospective data. With

  11. Constructing the Components of a Lab Report Using Peer Review

    Science.gov (United States)

    Berry, David E.; Fawkes, Kelli L.

    2010-01-01

    A protocol that emphasizes lab report writing using a piecemeal approach coupled with peer review is described. As the lab course progresses, the focus of the report writing changes sequentially through the abstract and introduction, the discussion, and the procedure. Two styles of lab programs are presented. One style rotates the students through…

  12. Building Automatic Grading Tools for Basic of Programming Lab in an Academic Institution

    Science.gov (United States)

    Harimurti, Rina; Iwan Nurhidayat, Andi; Asmunin

    2018-04-01

    The skills of computer programming is a core competency that must be mastered by students majoring in computer sciences. The best way to improve this skill is through the practice of writing many programs to solve various problems from simple to complex. It takes hard work and a long time to check and evaluate the results of student labs one by one, especially if the number of students a lot. Based on these constrain, web proposes Automatic Grading Tools (AGT), the application that can evaluate and deeply check the source code in C, C++. The application architecture consists of students, web-based applications, compilers, and operating systems. Automatic Grading Tools (AGT) is implemented MVC Architecture and using open source software, such as laravel framework version 5.4, PostgreSQL 9.6, Bootstrap 3.3.7, and jquery library. Automatic Grading Tools has also been tested for real problems by submitting source code in C/C++ language and then compiling. The test results show that the AGT application has been running well.

  13. Project-based physics labs using low-cost open-source hardware

    Science.gov (United States)

    Bouquet, F.; Bobroff, J.; Fuchs-Gallezot, M.; Maurines, L.

    2017-03-01

    We describe a project-based physics lab, which we proposed to third-year university students. These labs are based on new open-source low-cost equipment (Arduino microcontrollers and compatible sensors). Students are given complete autonomy: they develop their own experimental setup and study the physics topic of their choice. The goal of these projects is to let students to discover the reality of experimental physics. Technical specifications of the acquisition material and case studies are presented for practical implementation in other universities.

  14. Assessing the Impact of a Virtual Lab in an Allied Health Program.

    Science.gov (United States)

    Kay, Robin; Goulding, Helene; Li, Jia

    2018-01-01

    Competency-based education in health care requires rigorous standards to ensure professional proficiency. Demonstrating competency in hands-on laboratories calls for effective preparation, knowledge, and experience, all of which can be difficult to achieve using traditional teaching methods. Virtual laboratories are an alternative, cost-effective approach to providing students with sufficient preparatory information. Research on the use of virtual labs in allied health education is limited. The current study investigated the benefits, challenges, and perceived impact of a virtual lab in an allied health program. The sample consisted of 64 students (55 females, 9 males) enrolled in a university medical laboratory science program. A convergent mixed-methods approach (Likert survey, open-ended questions, think-aloud protocol data) revealed that students had positive attitudes towards visual learning, authenticity, learner control, organization, and scaffolding afforded by the virtual lab. Challenges reported included navigational difficulties, an absence of control over content selection, and lack of understanding for certain concepts. Over 90% of students agreed that the virtual lab helped them prepare for hands-on laboratory sessions and that they would use this format of instruction again. Overall, 84% of the students agreed that the virtual lab helped them to achieve greater success in learning.

  15. Introducing Environmental Toxicology in Instructional Labs: The Use of a Modified Amphibian Developmental Toxicity Assay to Support Inquiry-Based Student Projects

    Science.gov (United States)

    Sauterer, Roger; Rayburn, James R.

    2012-01-01

    Introducing students to the process of scientific inquiry is a major goal of high school and college labs. Environmental toxins are of great concern and public interest. Modifications of a vertebrate developmental toxicity assay using the frog Xenopus laevis can support student-initiated toxicology experiments that are relevant to humans. Teams of…

  16. Three Online Neutron Beam Experiments Based on the iLab Shared Architecture

    Directory of Open Access Journals (Sweden)

    Yakov Ostrocsky

    2011-02-01

    Full Text Available Students at MIT have traditionally executed certain experiments in the containment building of the MIT nuclear reactor as part of courses in Nuclear Engineering and the third year laboratory course for Physics majors. A joint team of faculty and research staff from the MIT Nuclear Reactor Laboratory (MIT-NRL and MIT’s Center for Educational Computing Initiatives have implemented online versions of three classic experiments; (a a determination of MIT reactor coolant temperature through measurement of thermal neutron velocity, (b a demonstration of the DeBroglie relationship of the kinetic energy and momentum of thermal neutrons and study of Bragg diffraction through a single copper crystal at various orientations, and (c a measurement of beam depletion using a variety of shielding filters. These online experiments were implemented using the LabVIEW® virtual instrumentation package and the interactive version of the iLab Shared Architecture (ISA. Initial assessment of the online experiments indicates that they achieve comparable educational outcomes to traditional versions of the labs executed in the reactor containment building.

  17. Optics and optics-based technologies education with the benefit of LabVIEW

    Science.gov (United States)

    Wan, Yuhong; Man, Tianlong; Tao, Shiquan

    2015-10-01

    The details of design and implementation of incoherent digital holographic experiments based on LabVIEW are demonstrated in this work in order to offer a teaching modal by making full use of LabVIEW as an educational tool. Digital incoherent holography enables holograms to be recorded from incoherent light with just a digital camera and spatial light modulator and three-dimensional properties of the specimen are revealed after the hologram is reconstructed in the computer. The experiment of phase shifting incoherent digital holography is designed and implemented based on the principle of Fresnel incoherent correlation holography. An automatic control application is developed based on LabVIEW, which combines the functions of major experimental hardware control and digital reconstruction of the holograms. The basic functions of the system are completed and a user-friendly interface is provided for easy operation. The students are encouraged and stimulated to learn and practice the basic principle of incoherent digital holography and other related optics-based technologies during the programming of the application and implementation of the system.

  18. The Role of Telematic Practices in Computer Engineering: A Low-cost Remote Power Control in a Network Lab

    Directory of Open Access Journals (Sweden)

    Tomas Mateo Sanguino

    2012-05-01

    Full Text Available The present paper describes a practical solution of e-learning laboratory devoted to the study of computer networks. This laboratory has been proven with two groups of students from the University of Huelva (Spain during two academic years. In order to achieve this objective, it has been necessary to create an entire network infrastructure that includes both the telematic access to the laboratory equipment and the remote power control. The interest of this work lies in an economical and simple system of remote control and telematic access with a twofold objective. On the one hand, to develop distance practices with attendance appearance by means of real hardware systems, not simulated. On the other hand, to reduce the power consumption regarding other proposals of remote labs with permanent power connection, providing herein an on demand connection only when required. As a result, a versatile and flexible laboratory has been put into practice whose basic network topology allows transferring traditional practices to telematic practices in a natural way and without harsh changes

  19. Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction.

    Science.gov (United States)

    Zhang, Yaoyun; Soysal, Ergin; Moon, Sungrim; Wang, Jingqi; Tao, Cui; Xu, Hua

    2015-01-01

    A computable knowledge base containing relations between diseases and lab tests would be a great resource for many biomedical informatics applications. This paper describes our initial step towards establishing a comprehensive knowledge base of disease and lab tests relations utilizing three public on-line resources. LabTestsOnline, MedlinePlus and Wikipedia are integrated to create a freely available, computable disease-lab test knowledgebase. Disease and lab test concepts are identified using MetaMap and relations between diseases and lab tests are determined based on source-specific rules. Experimental results demonstrate a high precision for relation extraction, with Wikipedia achieving the highest precision of 87%. Combining the three sources reached a recall of 51.40%, when compared with a subset of disease-lab test relations extracted from a reference book. Moreover, we found additional disease-lab test relations from on-line resources, indicating they are complementary to existing reference books for building a comprehensive disease and lab test relation knowledge base.

  20. Lab architecture

    Science.gov (United States)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  1. Computer Self-Efficacy: A Practical Indicator of Student Computer Competency in Introductory IS Courses

    Directory of Open Access Journals (Sweden)

    Rex Karsten

    1998-01-01

    Full Text Available Students often receive their first college-level computer training in introductory information systems courses. Students and faculty frequently expect this training to develop a level of student computer competence that will support computer use in future courses. In this study, we applied measures of computer self-efficacy to students in a typical introductory IS course. The measures provided useful evidence that student perceptions of their ability to use computers effectively in the future significantly improved as a result of their training experience. The computer self-efficacy measures also provided enhanced insight into course-related factors of practical concern to IS educators. Study results also suggest computer self-efficacy measures may be a practical and informative means of assessing computer-training outcomes in the introductory IS course context

  2. [Musculoskeletal disorders among university student computer users].

    Science.gov (United States)

    Lorusso, A; Bruno, S; L'Abbate, N

    2009-01-01

    Musculoskeletal disorders are a common problem among computer users. Many epidemiological studies have shown that ergonomic factors and aspects of work organization play an important role in the development of these disorders. We carried out a cross-sectional survey to estimate the prevalence of musculoskeletal symptoms among university students using personal computers and to investigate the features of occupational exposure and the prevalence of symptoms throughout the study course. Another objective was to assess the students' level of knowledge of computer ergonomics and the relevant health risks. A questionnaire was distributed to 183 students attending the lectures for second and fourth year courses of the Faculty of Architecture. Data concerning personal characteristics, ergonomic and organizational aspects of computer use, and the presence of musculoskeletal symptoms in the neck and upper limbs were collected. Exposure to risk factors such as daily duration of computer use, time spent at the computer without breaks, duration of mouse use and poor workstation ergonomics was significantly higher among students of the fourth year course. Neck pain was the most commonly reported symptom (69%), followed by hand/wrist (53%), shoulder (49%) and arm (8%) pain. The prevalence of symptoms in the neck and hand/wrist area was signifcantly higher in the students of the fourth year course. In our survey we found high prevalence of musculoskeletal symptoms among university students using computers for long time periods on a daily basis. Exposure to computer-related ergonomic and organizational risk factors, and the prevalence ofmusculoskeletal symptoms both seem to increase significantly throughout the study course. Furthermore, we found that the level of perception of computer-related health risks among the students was low. Our findings suggest the need for preventive intervention consisting of education in computer ergonomics.

  3. Time Trials--An AP Physics Challenge Lab

    Science.gov (United States)

    Jones, David

    2009-01-01

    I have come to the conclusion that for high school physics classroom and laboratory experiences, simpler is better! In this paper I describe a very simple and effective lab experience that my AP students have thoroughly enjoyed year after year. I call this lab exercise "Time Trials." The experiment is simple in design and it is a lot of fun for…

  4. Baseball Physics: A New Mechanics Lab

    Science.gov (United States)

    Wagoner, Kasey; Flanagan, Daniel

    2018-05-01

    The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in The Physics Teacher, available on Professor Alan Nathan's website, and discussed in Physics of Baseball & Softball). We have developed a lab, for an introductory-level physics course, that investigates many of these phenomena. The lab uses inexpensive, readily available equipment such as wooden baseball bats, baseballs, and actual Major League Baseball data. By the end of the lab, students have revisited many concepts they learned earlier in the semester and come away with an understanding of how to put seemingly disparate ideas together to analyze a fun sport.

  5. Development and Interaction between LMS Services and Remote Labs

    Directory of Open Access Journals (Sweden)

    Manuel Castro

    2008-03-01

    Full Text Available Nowadays there is a great number of universities and organizations working in e-learning and i-learning solutions. One of the most well-known is the learning management system or LMS that allows displaying theoretical content in an organized and controlled way. In some jobs and studies it is necessary for the student to get a practical knowledge as well as a theoretical one. To obtain this practical knowledge, the universities and organizations are developing Virtual, Remote and Web labs. At these moments the LMS and Web labs are working independently. We are studying a new architecture allowing the integration of the LMS with different Web labs. This architecture must allow the students, teachers and administrators to use the services of LMS and virtual lab’s features as if they were working with the same software.

  6. A New Twist on Torque Labs

    Science.gov (United States)

    Lane, W. Brian

    2014-01-01

    The traditional introductory-level meterstick-balancing lab assumes that students already know what torque is and that they readily identify it as a physical quantity of interest. We propose a modified version of this activity in which students qualitatively and quantitatively measure the amount of force required to keep the meterstick level. The…

  7. Using Saccharomyces cerevisiae to test the mutagenicity of household compounds: an open ended hypothesis-driven teaching lab.

    Science.gov (United States)

    Marshall, Pamela A

    2007-01-01

    In our Fundamentals of Genetics lab, students perform a wide variety of labs to reinforce and extend the topics covered in lecture. I developed an active-learning lab to augment the lecture topic of mutagenesis. In this lab exercise, students determine if a compound they bring from home is a mutagen. Students are required to read extensive background material, perform research to find a potential mutagen to test, develop a hypothesis, and bring to the lab their own suspected mutagen. This lab uses a specially developed strain of Saccharomyces cerevisiae, D7, to determine if a compound is a mutagen. Mutagenesis of the D7 genome can lead to a scorable alteration in the phenotypes of this strain. Students outline and carry out a protocol for treatment of the yeast tester strain, utilizing the concept of dose/response and positive and negative controls. Students report on their results using a PowerPoint presentation to simulate giving a scientific presentation. The students' self-assessment of their knowledge indicated that, in all cases, the students felt that they knew more about the assay, mutagenesis, and the relationship between genotype and phenotype (P exercise.

  8. An investigation of the effects of relevant samples and a comparison of verification versus discovery based lab design

    Science.gov (United States)

    Rieben, James C., Jr.

    This study focuses on the effects of relevance and lab design on student learning within the chemistry laboratory environment. A general chemistry conductivity of solutions experiment and an upper level organic chemistry cellulose regeneration experiment were employed. In the conductivity experiment, the two main variables studied were the effect of relevant (or "real world") samples on student learning and a verification-based lab design versus a discovery-based lab design. With the cellulose regeneration experiment, the effect of a discovery-based lab design vs. a verification-based lab design was the sole focus. Evaluation surveys consisting of six questions were used at three different times to assess student knowledge of experimental concepts. In the general chemistry laboratory portion of this study, four experimental variants were employed to investigate the effect of relevance and lab design on student learning. These variants consisted of a traditional (or verification) lab design, a traditional lab design using "real world" samples, a new lab design employing real world samples/situations using unknown samples, and the new lab design using real world samples/situations that were known to the student. Data used in this analysis were collected during the Fall 08, Winter 09, and Fall 09 terms. For the second part of this study a cellulose regeneration experiment was employed to investigate the effects of lab design. A demonstration creating regenerated cellulose "rayon" was modified and converted to an efficient and low-waste experiment. In the first variant students tested their products and verified a list of physical properties. In the second variant, students filled in a blank physical property chart with their own experimental results for the physical properties. Results from the conductivity experiment show significant student learning of the effects of concentration on conductivity and how to use conductivity to differentiate solution types with the

  9. Turning a Common Lab Exercise into a Challenging Lab Experiment: Revisiting the Cart on an Inclined Track

    Science.gov (United States)

    Amato, Joseph C.; Williams, Roger E.

    2010-01-01

    A common lab exercise in the introductory college physics course employs a low-friction cart and associated track to study the validity of Newton's second law. Yet for college students, especially those who have already encountered a good high school physics course, the exercise must seem a little pointless. These students have already learned to…

  10. What Is LAB and Why Was It Renormed?

    Science.gov (United States)

    Abbott, Muriel

    A report on the Language Assessment Battery (LAB) explains, in question-and-answer form, the causes and results of some changes made in the test norms. The LAB is a test of communicative language competence, written in English and Spanish versions and used for student placement in the New York City Public Schools. The report describes the test…

  11. A Simple, Successful Capacitor Lab

    Science.gov (United States)

    Ennis, William

    2011-01-01

    Capacitors are a fundamental component of modern electronics. They appear in myriad devices and in an enormous range of sizes. Although our students are taught the function and analysis of capacitors, few have the opportunity to use them in our labs.

  12. BioMEMS and Lab-on-a-Chip Course Education at West Virginia University

    Directory of Open Access Journals (Sweden)

    Yuxin Liu

    2011-01-01

    Full Text Available With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS and microfluidic-based lab-on-a-chip (LOC technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEMS, microfluidic and LOC science and technology. A course entitled BioMEMS and Lab-on-a-Chip was taught recently at the senior undergraduate and graduate levels in the Department of Computer Science and Electrical Engineering at West Virginia University (WVU. The course focused on the basic principles and applications of BioMEMS and LOC technology to the areas of biomedicine, biology, and biotechnology. The course was well received and the enrolled students had diverse backgrounds in electrical engineering, material science, biology, mechanical engineering, and chemistry. Student feedback and a review of the course evaluations indicated that the course was effective in achieving its objectives. Student presentations at the end of the course were a highlight and a valuable experience for all involved. The course proved successful and will continue to be offered regularly. This paper provides an overview of the course as well as some development and future improvements.

  13. Encouraging Creativity in the Science Lab

    Science.gov (United States)

    Eyster, Linda

    2010-01-01

    Although science is a creative endeavor (NRC 1996, p. 46), many students think they are not encouraged--or even allowed--to be creative in the laboratory. When students think there is only one correct way to do a lab, their creativity is inhibited. Park and Seung (2008) argue for the importance of creativity in science classrooms and for the…

  14. An investigation of communication patterns and strategies between international teaching assistants and undergraduate students in university-level science labs

    Science.gov (United States)

    Gourlay, Barbara Elas

    This research project investigates communication between international teaching assistants and their undergraduate students in university-level chemistry labs. During the fall semester, introductory-level chemistry lab sections of three experienced non-native speaking teaching assistants and their undergraduate students were observed. Digital audio and video recordings documented fifteen hours of lab communication, focusing on the activities and interactions in the first hour of the chemistry laboratory sessions. In follow-up one-on-one semi-structured interviews, the participants (undergraduates, teaching assistants, and faculty member) reviewed interactions and responded to a 10-item, 7-point Likert-scaled interview. Interactions were classified into success categories based on participants' opinions. Quantitative and qualitative data from the observations and interviews guided the analysis of the laboratory interactions, which examined patterns of conversational listening. Analysis of laboratory communication reveals that undergraduates initiated nearly two-thirds of laboratory communication, with three-fourths of interactions less than 30 seconds in duration. Issues of gender and topics of interaction activity were also explored. Interview data identified that successful undergraduate-teaching assistant communication in interactive science labs depends on teaching assistant listening comprehension skills to interpret and respond successfully to undergraduate questions. Successful communication in the chemistry lab depended on the coordination of visual and verbal sources of information. Teaching assistant responses that included explanations and elaborations were also seen as positive features in the communicative exchanges. Interaction analysis focusing on the listening comprehension demands placed on international teaching assistants revealed that undergraduate-initiated questions often employ deixis (exophoric reference), requiring teaching assistants to

  15. ORGANIZATION OF ACTIVITIES IN THE COMPUTER LAB AT THE SECONDARY EDUCATIONAL ESTABLISHMENTS IN VIEW OF MEASURES OF INFORMATION SECURITY.

    Directory of Open Access Journals (Sweden)

    V.N. Kovalchuk

    2010-11-01

    Full Text Available The paper the organizational activities of informational security in the secondary school are considered In particular the planning of organizational activities on stages of the lifecycle of the system of information security of educational computer complex is proposed. There are purified the methods of unification for the software installed at the pupils’ workstations. There is developed the tentative calendar plan of regular activities and main approaches to the management of system of informational security of educational computer complex on the basis of hardware-software level and the organization of antivirus security in computer lab is described.

  16. Efektivitas virtual lab berbasis STEM dalam meningkatkan literasi sains siswa dengan perbedaan gender

    Directory of Open Access Journals (Sweden)

    Ismail Ismail

    2016-10-01

    This study aimed to know theeffectiveness of STEM-based virtual lab in improving the scientific literacy of students by gender differences.The design of this research one group pretest-posttest consisting of class 7B by the number of students 29 women and 7D class by the number of students 30 men.The data Ade collected through questionnaires, observations, and tests. The effectiveness of STEM-based virtual lab was analyzed through Independent-samples t test then calculated the value of effect size. the results showed that there are differences the resulting increase inscientific literacy class students women (7B of 0.46 and a class of men (7D of 0.29 with both of them in the medium category.The value of effect size using STEM-based virtual lab on the science content domain and competencies of 0.39 with the moderate category and attitude domain of 0.75 to a high category. Keywords: virtual lab, STEM, Scientific literacy, gender

  17. Developing a strategy for computational lab skills training through Software and Data Carpentry: Experiences from the ELIXIR Pilot action.

    Science.gov (United States)

    Pawlik, Aleksandra; van Gelder, Celia W G; Nenadic, Aleksandra; Palagi, Patricia M; Korpelainen, Eija; Lijnzaad, Philip; Marek, Diana; Sansone, Susanna-Assunta; Hancock, John; Goble, Carole

    2017-01-01

    Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training from Software and Data Carpentry, aimed at increasing the number of skilled life scientists and building a sustainable training community in this field. This article describes the Pilot action, which introduced the Carpentry training model to the ELIXIR community.

  18. Comparing the social skills of students addicted to computer games with normal students.

    Science.gov (United States)

    Zamani, Eshrat; Kheradmand, Ali; Cheshmi, Maliheh; Abedi, Ahmad; Hedayati, Nasim

    2010-01-01

    This study aimed to investigate and compare the social skills of studentsaddicted to computer games with normal students. The dependentvariable in the present study is the social skills. The study population included all the students in the second grade ofpublic secondary school in the city of Isfahan at the educational year of2009-2010. The sample size included 564 students selected using thecluster random sampling method. Data collection was conducted usingQuestionnaire of Addiction to Computer Games and Social SkillsQuestionnaire (The Teenage Inventory of Social Skill or TISS). The results of the study showed that generally, there was a significantdifference between the social skills of students addicted to computer gamesand normal students. In addition, the results indicated that normal studentshad a higher level of social skills in comparison with students addicted tocomputer games. As the study results showed, addiction to computer games may affectthe quality and quantity of social skills. In other words, the higher theaddiction to computer games, the less the social skills. The individualsaddicted to computer games have less social skills.).

  19. LINUX, Virtualization, and the Cloud: A Hands-On Student Introductory Lab

    Science.gov (United States)

    Serapiglia, Anthony

    2013-01-01

    Many students are entering Computer Science education with limited exposure to operating systems and applications other than those produced by Apple or Microsoft. This gap in familiarity with the Open Source community can quickly be bridged with a simple exercise that can also be used to strengthen two other important current computing concepts,…

  20. The StratusLab cloud distribution: Use-cases and support for scientific applications

    Science.gov (United States)

    Floros, E.

    2012-04-01

    The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take

  1. Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing

    Science.gov (United States)

    Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.

    2010-12-01

    Teaching Ocean Science in the 21st Century Classroom (TOST) is a Center for Ocean Sciences Education Excellence (COSEE CA) initiative aimed at developing and disseminating technology-based instructional strategies, tools and ocean science resources for both formal and informal science education. San Diego Unified School District (SDUSD), Scripps Institution of Oceanography (SIO) and the Lawrence Hall of Science (LHS) have established a proving ground for TOST activities and for development of effective, sustainable solutions for researchers seeking to fulfill NSF and other funding agency broader impact requirements. Lab to Classroom Videoconferencing: Advances in Information and Communications Technology (ICT) are making it easier to connect students and researchers using simple online tools that allow them to interact in novel ways. COSEE CA is experimenting with these tools and approaches to identify effective practices for providing students with insight into the research process and close connections to researchers and their laboratory activities. At the same time researchers, including graduate students, are learning effective communication skills and how to align their presentations to specific classroom needs - all from the comfort of their own lab. The lab to classroom videoconferencing described here is an ongoing partnership between the Gerwick marine biomedical research lab and a group of three life science teachers (7th grade) at Pershing Middle School (SDUSD) that started in 2007. Over the last 5 years, the Pershing science teachers have created an intensive, semester-long unit focused on drug discovery. Capitalizing on the teacher team’s well-developed unit of study and the overlap with leading-edge research at SIO, COSEE CA created the videoconferencing program as a broader impact solution for the lab. The team has refined the program over 3 iterations, experimenting with structuring the activities to most effectively reach the students. In the

  2. Virtual Simulations as Preparation for Lab Exercises: Assessing Learning of Key Laboratory Skills in Microbiology and Improvement of Essential Non-Cognitive Skills

    DEFF Research Database (Denmark)

    Makransky, Guido; Warming Thisgaard, Malene; Gadegaard, Helen

    2016-01-01

    Objective To investigate if a virtual laboratory simulation (vLAB) could be used to replace a face to face tutorial (demonstration) to prepare students for a laboratory exercise in microbiology. Methods A total of 189 students who were participating in an undergraduate biology course were randomly...... selected into a vLAB or demonstration condition. In the vLAB condition students could use a vLAB at home to 'practice' streaking out bacteria on agar plates in a virtual environment. In the demonstration condition students were given a live demonstration from a lab tutor showing them how to streak out......-efficacy in the field of microbiology. Conclusion Our data show that vLABs function just as well as face to face tutorials in preparing students for a physical lab activity in microbiology. The results imply that vLABs could be used instead of face to face tutorials, and a combination of virtual and physical lab...

  3. Science Lab Restructuring of a Public School Elementary and High School

    Directory of Open Access Journals (Sweden)

    Elisiane da Costa Moro

    2016-02-01

    Full Text Available This paper presents the process of restructuring the science lab of a state school in Caxias do Sul, whose main objective was to create a space where teachers could develop practical and experimental activities with their students. The restructuring of the science lab this school, was only possible through the project "More and Better Students and Teachers in Science, Mathematics, Engineering and Technologies" Initiation Program in Science and Mathematics, Engineering, Creative Technologies and Letters - PICMEL sponsored jointly by the University of Caxias do Sul, the SEDUC-RS, FAPERGS and CAPES. The project was developed at school by a teacher of physics and three high school students. Through the restructuring of the science lab, practical activities were developed and workshops where students had the opportunity to be more active in the process of teaching and learning. With the development of such activities was observed that the students were more willing to learn Science and Mathematics and could relate scientific knowledge to their daily lives, giving greater meaning to their learning.

  4. The development of a new chemistry lab course

    DEFF Research Database (Denmark)

    Troelsen, Rie Nørager Popp

    2007-01-01

    teaching form and the important learning goals of the course. ? Peer reviews and student talks as assessment is added to the traditional assessment forms. ? The pedagogic of teaching in the lab is given high priority. All members of the teaching staff must at least be aware of the elements...... research and developmental projects with focus on competence-based teaching in a lab work setting. The next step is to describe the first edition of the laboratory course and to analyse it in terms of the relationship between the teacher?s intended objectives and the students? perceived learning outcome...... course. This should have some general features: ? The course is structured with a theoretical and technical introduction followed by the students working on their own projects in groups of two or three. ? The students and the involved teachers negotiate a ?didactical contract?, which points out preferred...

  5. Online simulation of classical inorganic analysis - interactive, self instructive simulations give more lab-time

    DEFF Research Database (Denmark)

    Josephsen, Jens

    2005-01-01

    Laboratory exercises, investigations, and experiments are invariably included in university chemistry teaching. The learning of empirical facts, chemical procedures and methods in chemistry depends heavily on the experience, which may be obtained from such teaching activities [1]. Experimental work...... in teaching is, however, both expensive and time consuming, and should therefor effectively benefit from the allotted student time, money, and staff time. If the instructions are too ambitious regarding what the students can manage to do and are overloaded with information [2,3] it may result in the students...... (and in university programmes it often isn’t), but rather to give them experience with chemicals and methods, a computer-based laboratory simulation may function as a cheap and fast extension of student lab time. Virtual investigations seem to be a promising kind of tool [6,7,8] for several reasons...

  6. Field Botanist for a Day: A Group Exercise for the Introductory Botany Lab

    Science.gov (United States)

    Barbatt, Natalie M.

    2004-01-01

    A group exercise, suggested to be most effective when used near the semester-end, enables entry-level students to appreciate the application of plant biology and makes botany labs experimental. It is believed that this series of labs helps students to appreciate their own learning when they teach and explain things to others.

  7. Value added or misattributed? A multi-institution study on the educational benefit of labs for reinforcing physics content

    Science.gov (United States)

    Holmes, N. G.; Olsen, Jack; Thomas, James L.; Wieman, Carl E.

    2017-06-01

    Instructional labs are widely seen as a unique, albeit expensive, way to teach scientific content. We measured the effectiveness of introductory lab courses at achieving this educational goal across nine different lab courses at three very different institutions. These institutions and courses encompassed a broad range of student populations and instructional styles. The nine courses studied had two key things in common: the labs aimed to reinforce the content presented in lectures, and the labs were optional. By comparing the performance of students who did and did not take the labs (with careful normalization for selection effects), we found universally and precisely no added value to learning course content from taking the labs as measured by course exam performance. This work should motivate institutions and departments to reexamine the goals and conduct of their lab courses, given their resource-intensive nature. We show why these results make sense when looking at the comparative mental processes of students involved in research and instructional labs, and offer alternative goals and instructional approaches that would make lab courses more educationally valuable.

  8. Designing virtual science labs for the Islamic Academy of Delaware

    Science.gov (United States)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the

  9. Web-based e-learning and virtual lab of human-artificial immune system.

    Science.gov (United States)

    Gong, Tao; Ding, Yongsheng; Xiong, Qin

    2014-05-01

    Human immune system is as important in keeping the body healthy as the brain in supporting the intelligence. However, the traditional models of the human immune system are built on the mathematics equations, which are not easy for students to understand. To help the students to understand the immune systems, a web-based e-learning approach with virtual lab is designed for the intelligent system control course by using new intelligent educational technology. Comparing the traditional graduate educational model within the classroom, the web-based e-learning with the virtual lab shows the higher inspiration in guiding the graduate students to think independently and innovatively, as the students said. It has been found that this web-based immune e-learning system with the online virtual lab is useful for teaching the graduate students to understand the immune systems in an easier way and design their simulations more creatively and cooperatively. The teaching practice shows that the optimum web-based e-learning system can be used to increase the learning effectiveness of the students.

  10. Advanced teaching labs in physics - celebrating progress; challenges ahead

    Science.gov (United States)

    Peterson, Richard

    A few examples of optical physics experiments may help us first reflect on significant progress on how advanced lab initiatives may now be more effectively developed, discussed, and disseminated - as opposed to only 10 or 15 years back. Many cooperative developments of the last decade are having profound impacts on advanced lab workers and students. Central to these changes are the programs of the Advanced Laboratory Physics Association (ALPhA) (Immersions, BFY conferences), AAPT (advlab-l server, ComPADRE, apparatus competitions, summer workshops/sessions), APS (Reichert Award, FEd activities and sessions), and the Jonathan F. Reichert Foundation (ALPhA support and institution matched equipment grants for Immersion participants). Broad NSF support has helped undergird several of these initiatives. Two of the most significant challenges before this new advanced lab community are (a) to somehow enhance funding opportunities for teaching equipment and apparatus in an era of minimal NSF equipment support, and (b) to help develop a more complementary relationship between research-based advanced lab pedagogies and the development of fresh physics experiments that help enable the mentoring and experimental challenge of our students.

  11. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  12. EVALUATION OF THE USE OF IPAD IN TEACHING GENERAL CHEMISTRY LAB TO FRESHMEN STUDENTS

    Directory of Open Access Journals (Sweden)

    N. EID

    2015-02-01

    Full Text Available It is generally accepted that the use of iPad enhances students’ engagement in the classroom. However, assessing the benefits of using iPad in teaching laboratory sessions have seen less attention, due to the hands-on nature of these courses. To do this assessment, iPad was applied in teaching two pilot sessions of the General Chemistry Lab, and students’ evaluation was compared to that of other students in sections taught by conventional teaching techniques. The evaluation was based on the students’ assessment of their achievements in meeting the main course outcomes, which indicated that the students in the classes taught using iPad showed more satisfaction with the course, and believed that they have better achieved the outcomes of the course compared to the conventional classes. Furthermore, the comparison process included the overall students’ quantitative performance, which showed insignificant difference between the two classes, with slightly better performance of students in normal classes in quizzes, whereas final exam marks were almost the same for both the iPad piloted students and conventional class students. The differences in quizzes results were attributed to the normal variation in the students’ academic merits. In addition, the piloted students were asked about their experience of using iPad in class and their satisfaction by using different iPad Apps. The feedback was collected and analysed, and the results showed that the students generally enjoyed using iPad in the class and appreciated all Apps.

  13. Assessing the development & implementation of a student-centered, "flipped" secondary physics curriculum in which IO-lab digital sensors are issued to students on a 1-to-1 basis

    Science.gov (United States)

    Cunnings, Christopher P.

    This teacher-driven, action research dissertation study chronicles the development and implementation of a transformative, two-pronged, student-centered secondary physics education curriculum. From an instructional perspective, the curriculum was situated in the "flipped classroom" teaching approach, which minimizes in-class lecturing and instead predicates classroom learning on collaborative, hands-on, and activity-based lessons. Additionally, all students were issued IO-Lab digital sensors--learning tools developed by professors at the University of Illinois at Urbana-Champaign capable of collecting a vast array of real-time physical data-- on a 1-to-1, 24/7 basis for both in-class and at-home use. In-class, students participated in predominantly activity-based learning, with a sizeable portion of in-class activities incorporating IO-Labs for experimental data collection. Outside of class, students designed real-world research projects using their IO-Labs to study the physics underlying their everyday experiences, and all projects were video recorded, uploaded to YouTube, and then watched in-class to simulate a "mock science conference" in which students provided constructive feedback to each other on their experimental methods and results. The synergistic blending of a) flipped physics instruction, and b) perpetual access to state-of-the-art laboratory equipment, the two prongs forming the basis of this research study, inspired the curriculum title "Flipped IO-Lab," or "F-IO" curriculum. This dissertation study will provide a comprehensive assessment of the benefits and challenges that emerged while designing and implementing the F-IO curriculum from a practitioner's perspective. The assessment of the F-IO curriculum came about through a mixed-methods research methodology during kinematics and dynamics instruction. Specifically, this study includes "Force Concept Inventory" (FCI) pretest/posttest analysis to gauge changes in students' conceptual understanding of

  14. Integration of LCoS-SLM and LabVIEW based software to simulate fundamental optics, wave optics, and Fourier optics

    Science.gov (United States)

    Lyu, Bo-Han; Wang, Chen; Tsai, Chun-Wei

    2017-08-01

    Jasper Display Corp. (JDC) offer high reflectivity, high resolution Liquid Crystal on Silicon - Spatial Light Modulator (LCoS-SLM) which include an associated controller ASIC and LabVIEW based modulation software. Based on this LCoS-SLM, also called Education Kit (EDK), we provide a training platform which includes a series of optical theory and experiments to university students. This EDK not only provides a LabVIEW based operation software to produce Computer Generated Holograms (CGH) to generate some basic diffraction image or holographic image, but also provides simulation software to verity the experiment results simultaneously. However, we believe that a robust LCoSSLM, operation software, simulation software, training system, and training course can help students to study the fundamental optics, wave optics, and Fourier optics more easily. Based on these fundamental knowledges, they could develop their unique skills and create their new innovations on the optoelectronic application in the future.

  15. Assessing Computer Knowledge among College Students.

    Science.gov (United States)

    Parrish, Allen; And Others

    This paper reports on a study involving the administration of two examinations that were designed to evaluate student knowledge in several areas of computing. The tests were given both to computer science majors and to those enrolled in computer science classes from other majors. They sought to discover whether computer science majors demonstrated…

  16. Teaching Physics to Deaf College Students in a 3-D Virtual Lab

    Science.gov (United States)

    Robinson, Vicki

    2013-01-01

    Virtual worlds are used in many educational and business applications. At the National Technical Institute for the Deaf at Rochester Institute of Technology (NTID/RIT), deaf college students are introduced to the virtual world of Second Life, which is a 3-D immersive, interactive environment, accessed through computer software. NTID students use…

  17. Computer game assisted instruction and students' achievement in ...

    African Journals Online (AJOL)

    Computer game assisted instruction and students' achievement in social studies. ... This paper examines the effects of computer game assisted instructional method, student's achievement in social studies in ... AJOL African Journals Online.

  18. MatLab Programming for Engineers Having No Formal Programming Knowledge

    Science.gov (United States)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.

  19. A Big Bang Lab

    Science.gov (United States)

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  20. Computer Anxiety, Academic Stress, and Academic Procrastination on College Students

    Directory of Open Access Journals (Sweden)

    Wahyu Rahardjo

    2013-01-01

    Full Text Available Academic procrastination is fairly and commonly found among college students. The lack of understanding in making the best use of computer technology may lead to anxiety in terms of operating computer hence cause postponement in completing course assignments related to computer operation. On the other hand, failure in achieving certain academic targets as expected by parents and/or the students themselves also makes students less focused and leads to tendency of postponing many completions of course assignments. The aim of this research is to investigate contribution of anxiety in operating computer and academic stress toward procrastination on students. As much as 65 students majoring in psychology became participants in this study. The results showed that anxiety in operating computer and academic stress play significant role in influencing academic procrastination among social sciences students. In terms of academic procrastination tendencies, anxiety in operating computer and academic stress, male students have higher percentage than female students.

  1. The software developing method for multichannel computer-aided system for physical experiments control, realized by resources of national instruments LabVIEW instrumental package

    International Nuclear Information System (INIS)

    Gorskaya, E.A.; Samojlov, V.N.

    1999-01-01

    This work is describing the method of developing the computer-aided control system in integrated environment of LabVIEW. Using the object-oriented design of complex systems, the hypothetical model for methods of developing the software for computer-aided system for physical experiments control was constructed. Within the framework of that model architecture solutions and implementations of suggested method were described. (author)

  2. Exploratory study of the acceptance of two individual practical classes with remote labs

    Science.gov (United States)

    Tirado-Morueta, Ramón; Sánchez-Herrera, Reyes; Márquez-Sánchez, Marco A.; Mejías-Borrero, Andrés; Andujar-Márquez, José Manuel

    2018-03-01

    Remote lab experiences are proliferating in higher education, although there are still few studies that manage to build a theoretical framework for educational assessment and design of this technology. In order to explore to what extent the use of facilitators of proximity to the laboratory and the autonomy of the experiment makes remote laboratories a technology accepted by students, two remote labs different yet similar educational conditions in laboratories are used. A sample of 98 undergraduate students from a degree course in Energy Engineering was used for this study; 57 of these students ran experiments in a laboratory of electrical machines and 41 in a photovoltaic systems laboratory. The data suggest using conditions that facilitate the proximity of the laboratory and the autonomy in the realisation of the experiment; in both laboratories the experience was positively valued by the students. Also, data suggest that the types of laboratory and experiment have influences on usability - autonomy and lab proximity - perceived by students.

  3. Learning Style and Attitude toward Computer among Iranian Medical Students

    Directory of Open Access Journals (Sweden)

    Seyedeh Shohreh Alavi

    2016-02-01

    Full Text Available Background and purpose: Presently, the method of medical teaching has shifted from lecture-based to computer-based. The learning style may play a key role in the attitude toward learning computer. The goal of this study was to study the relationship between the learning style and attitude toward computer among Iranian medical students.Methods: This cross-sectional study included 400 medical students. Barsch learning style inventory and a questionnaire on the attitude toward computer was sent to each student. The enthusiasm, anxiety, and overall attitude toward computer were compared among the different learning styles.Results: The response rate to the questionnaire was 91.8%. The distribution of learning styles in the students was 181 (49.3% visual, 106 (28.9% auditory, 27 (7.4% tactual, and 53 (14.4% overall. Visual learners were less anxious for computer use and showed more positive attitude toward computer. Sex, age, and academic grade were not associated with students’ attitude toward computer.Conclusions: The learning style is an important factor in the students’ attitude toward computer among medical students, which should be considered in planning computer-based learning programs.Keywords: LEARNING STYLE, ATTITUDE, COMPUTER, MEDICAL STUDENT, ANXIETY, ENTHUSIASM

  4. The Student/Library Computer Science Collaborative

    Science.gov (United States)

    Hahn, Jim

    2015-01-01

    With funding from an Institute of Museum and Library Services demonstration grant, librarians of the Undergraduate Library at the University of Illinois at Urbana-Champaign partnered with students in computer science courses to design and build student-centered mobile apps. The grant work called for demonstration of student collaboration…

  5. A Multi-Purpose Math Lab: A Place for All Seasons.

    Science.gov (United States)

    Habib, Berthe

    Two services offered by Bellevue Community College's Multipurpose Math Lab are described in this report. The first of these is the lab's drop-in tutorial center, which offers tutorial support, worksheets, and other instructional materials to students at all levels of mathematics course work. This section of the report describes the philosophy of…

  6. Tracking the PhD Students' Daily Computer Use

    Science.gov (United States)

    Sim, Kwong Nui; van der Meer, Jacques

    2015-01-01

    This study investigated PhD students' computer activities in their daily research practice. Software that tracks computer usage (Manic Time) was installed on the computers of nine PhD students, who were at their early, mid and final stage in doing their doctoral research in four different discipline areas (Commerce, Humanities, Health Sciences and…

  7. Functional Automata - Formal Languages for Computer Science Students

    Directory of Open Access Journals (Sweden)

    Marco T. Morazán

    2014-12-01

    Full Text Available An introductory formal languages course exposes advanced undergraduate and early graduate students to automata theory, grammars, constructive proofs, computability, and decidability. Programming students find these topics to be challenging or, in many cases, overwhelming and on the fringe of Computer Science. The existence of this perception is not completely absurd since students are asked to design and prove correct machines and grammars without being able to experiment nor get immediate feedback, which is essential in a learning context. This article puts forth the thesis that the theory of computation ought to be taught using tools for actually building computations. It describes the implementation and the classroom use of a library, FSM, designed to provide students with the opportunity to experiment and test their designs using state machines, grammars, and regular expressions. Students are able to perform random testing before proceeding with a formal proof of correctness. That is, students can test their designs much like they do in a programming course. In addition, the library easily allows students to implement the algorithms they develop as part of the constructive proofs they write. Providing students with this ability ought to be a new trend in the formal languages classroom.

  8. Remote Laboratory NetLab for Effective Teaching of 1st Year Engineering Students

    Directory of Open Access Journals (Sweden)

    Z. Nedic

    2007-08-01

    Full Text Available Practical skills are important attributes of every engineering graduate. The Internet has provided tertiary education with the opportunity to develop innovative learning environments. The teaching and learning of practical skills has gained a new dimension with the emergence of remote laboratories. The rapidly growing number of remote laboratories (RL worldwide is the evidence that the educational community has recognized their potential to develop into a creative, flexible, engaging, and student-cantered learning environment. Even a brief review of the existing RLs shows a large diversity in their structure, design and implementation. However, not many researchers disclose how their RLs are integrated within their curricula. Therefore, an important question still remains to be answered: how to optimize the design of RLs and their integration in a course curriculum for the best learning outcomes? This problem is particularly important when RLs are used in teaching 1st year students who have limited technical knowledge and practical experience in using real equipment. In this paper we would like to share our experiences with NetLab, an RL developed at the University of South Australia (UniSA for teaching 1st year engineering students and make recommendations for improvements in teaching practices based on it.

  9. A Virtual PV Systems Lab for Engineering Undergraduate Curriculum

    Directory of Open Access Journals (Sweden)

    Emre Ozkop

    2014-01-01

    Full Text Available Design and utilization of a Virtual Photovoltaic Systems Laboratory for undergraduate curriculum are introduced in this paper. The laboratory introduced in this study is developed to teach students the basics and design steps of photovoltaic solar energy systems in a virtual environment before entering the field. The users of the proposed virtual lab will be able to determine the sizing by selecting related parameters of the photovoltaic system to meet DC and AC loading conditions. Besides, the user will be able to analyze the effect of changing solar irradiation and temperature levels on the operating characteristics of the photovoltaic systems. Common DC bus concept and AC loading conditions are also included in the system by utilizing a permanent magnet DC motor and an RLC load as DC and AC loading examples, respectively. The proposed Virtual Photovoltaic Systems Laboratory is developed in Matlab/Simulink GUI environment. The proposed virtual lab has been used in Power Systems Lab in the Department of Electrical and Electronics Engineering at Karadeniz Technical University as a part of undergraduate curriculum. A survey on the students who took the lab has been carried out and responses are included in this paper.

  10. Implementasi Cloud Computing Menggunakan Openvz dalam Perkuliahan Praktikum Sistem Operasi

    Directory of Open Access Journals (Sweden)

    Muhammad Arif Fadhly Ridha

    2016-03-01

    Full Text Available Cloud computing is the latest technology that are built using virtualization service that makes server becomes abstract and can be accessed from anywhere. One of the virtualization technology that can be used to build a cloud network is OpenVZ on Linux operating system. Currently the lab lectures operating systems generally use desktop virtualization software such as VMWare or Vritualbox that often cause problems such as the threat of viruses, loss of data and configuration. Therefore, a centralized system using cloud computing and virtualization designed and implemented so that such problems can be avoided. Cloud Computing systems are made using OpenVZ so that each student will have a virtual server account on the cloud system. Results from the research showed that the use of Cloud Computing in the lab can be applied to operating system course and can solve error plobems than using Virtual Machine Application.

  11. A Simple Inquiry-Based Lab for Teaching Osmosis

    Science.gov (United States)

    Taylor, John R.

    2014-01-01

    This simple inquiry-based lab was designed to teach the principle of osmosis while also providing an experience for students to use the skills and practices commonly found in science. Students first design their own experiment using very basic equipment and supplies, which generally results in mixed, but mostly poor, outcomes. Classroom "talk…

  12. Advancing Student Productivity: An Introduction to Evernote

    Science.gov (United States)

    Korzaan, Melinda; Lawrence, Cameron

    2016-01-01

    This lab exercise exposes students to Evernote, which is a powerful productivity application that has gained significant purchase in professional work environments. In many academic settings the introductory computer applications course has a specific focus on standard productivity applications such as MS Word and MS Excel. While ensuring fluency…

  13. Virtual Simulations as Preparation for Lab Exercises: Assessing Learning of Key Laboratory Skills in Microbiology and Improvement of Essential Non-Cognitive Skills.

    Directory of Open Access Journals (Sweden)

    Guido Makransky

    Full Text Available To investigate if a virtual laboratory simulation (vLAB could be used to replace a face to face tutorial (demonstration to prepare students for a laboratory exercise in microbiology.A total of 189 students who were participating in an undergraduate biology course were randomly selected into a vLAB or demonstration condition. In the vLAB condition students could use a vLAB at home to 'practice' streaking out bacteria on agar plates in a virtual environment. In the demonstration condition students were given a live demonstration from a lab tutor showing them how to streak out bacteria on agar plates. All students were blindly assessed on their ability to perform the streaking technique in the physical lab, and were administered a pre and post-test to determine their knowledge of microbiology, intrinsic motivation to study microbiology, and self-efficacy in the field of microbiology prior to, and after the experiment.The results showed that there were no significant differences between the two groups on their lab scores, and both groups had similar increases in knowledge of microbiology, intrinsic motivation to study microbiology, as well as self-efficacy in the field of microbiology.Our data show that vLABs function just as well as face to face tutorials in preparing students for a physical lab activity in microbiology. The results imply that vLABs could be used instead of face to face tutorials, and a combination of virtual and physical lab exercises could be the future of science education.

  14. Explorations in computing an introduction to computer science

    CERN Document Server

    Conery, John S

    2010-01-01

    Introduction Computation The Limits of Computation Algorithms A Laboratory for Computational ExperimentsThe Ruby WorkbenchIntroducing Ruby and the RubyLabs environment for computational experimentsInteractive Ruby Numbers Variables Methods RubyLabs The Sieve of EratosthenesAn algorithm for finding prime numbersThe Sieve Algorithm The mod Operator Containers Iterators Boolean Values and the delete if Method Exploring the Algorithm The sieve Method A Better Sieve Experiments with the Sieve A Journey of a Thousand MilesIteration as a strategy for solving computational problemsSearching and Sortin

  15. RoboLab and virtual environments

    Science.gov (United States)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  16. Collaborative Learning in the Remote Laboratory NetLab

    Directory of Open Access Journals (Sweden)

    Jan Machotka

    2008-06-01

    Full Text Available At the University of South Australia (UniSA the practical component of engineering education is considered to be a vital factor in developing university graduate qualities [1]. Practical experiments performed in laboratory facilitate students' abilities to apply their knowledge, work collaboratively, control equipment and analyse the measured data. The remote laboratory NetLab has been developed within the School of Electrical and Information Engineering (EIE. A fully functional system has been used by up to 200 onshore and offshore students to conduct remote experiments every year since 2003. This paper describes the remote laboratory and discusses how collaborative team oriented tasks can be conducted in the online environment. The functionality of NetLab is demonstrated by an example of a remote experiment.

  17. THE TRENDS AND USE OF COMPUTER AND INTERNET AMONG MEDICAL STUDENTS

    Directory of Open Access Journals (Sweden)

    M. Sathikumar

    2018-02-01

    Full Text Available BACKGROUND Computer-based learning is becoming more and more widespread and it has been important especially in medical subjects since lifelong learning is a goal of medical professional. The study was conducted to find out the computer literacy, computer and internet availability and the trend of use of computer, laptop and other gadget among medical students. MATERIALS AND METHODS A cross sectional descriptive study was conducted among the medical students of Jubilee Mission Medical College & Research Institute, Thrissur and SUT Academy of Medical Sciences, Thiruvananthapuram, Kerala. A total of 420 students participated in the study. RESULTS Out of the 420 students, 42.38% students had their own laptop or computer and 45.71% students were using family shared computer or laptop for their use. 80.48% students were found using mobile phones or tablets with internet facility. Most of the students, access internet for recreational facilities. Regarding e- learning 54.29% of the students participated in the study were of aware of it. Majority of medical students are of the opinion that computer and internet use should be encouraged in medical colleges. CONCLUSION Those who have participated in the study have necessary infrastructure and positive attitude about computer-based learning even though they are using it mainly for recreational purposes.

  18. Two web-based laboratories of the FisLabs network: Hooke's and Snell's laws

    International Nuclear Information System (INIS)

    De la Torre, L; Sanchez, J; Dormido, S; Sanchez, J P; Yuste, M; Carreras, C

    2011-01-01

    FisLabs is a network of remote and virtual laboratories for physics university education via the Internet that offers students the possibility of performing hands-on experiments in different fields of physics in two ways: simulation and real remote operation. This paper gives a detailed account of a novel way in physics in which distance learning students can gain practical experience autonomously. FisLabs uses the same structure as AutomatLabs, a network of virtual and remote laboratories for learning/teaching of control engineering, which has been in operation for four years. Students can experiment with the laboratories offered using an Internet connection and a Java-compatible web browser. This paper, specially intended for university educators but easily comprehensible even for undergraduate students, explains how the portal works and the hardware and software tools used to create it. In addition, it also describes two physics experiments already available: spring elasticity and the laws of reflection and refraction.

  19. Computer literacy and attitudes towards e-learning among first year medical students.

    Science.gov (United States)

    Link, Thomas Michael; Marz, Richard

    2006-06-19

    At the Medical University of Vienna, most information for students is available only online. In 2005, an e-learning project was initiated and there are plans to introduce a learning management system. In this study, we estimate the level of students' computer skills, the number of students having difficulty with e-learning, and the number of students opposed to e-learning. The study was conducted in an introductory course on computer-based and web-based training (CBT/WBT). Students were asked to fill out a questionnaire online that covered a wide range of relevant attitudes and experiences. While the great majority of students possess sufficient computer skills and acknowledge the advantages of interactive and multimedia-enhanced learning material, a small percentage lacks basic computer skills and/or is very skeptical about e-learning. There is also a consistently significant albeit weak gender difference in available computer infrastructure and Internet access. As for student attitudes toward e-learning, we found that age, computer use, and previous exposure to computers are more important than gender. A sizable number of students, 12% of the total, make little or no use of existing e-learning offerings. Many students would benefit from a basic introduction to computers and to the relevant computer-based resources of the university. Given to the wide range of computer skills among students, a single computer course for all students would not be useful nor would it be accepted. Special measures should be taken to prevent students who lack computer skills from being disadvantaged or from developing computer-hostile attitudes.

  20. Lab notebooks as scientific communication: Investigating development from undergraduate courses to graduate research

    Directory of Open Access Journals (Sweden)

    Jacob T. Stanley

    2016-09-01

    Full Text Available In experimental physics, lab notebooks play an essential role in the research process. For all of the ubiquity of lab notebooks, little formal attention has been paid to addressing what is considered “best practice” for scientific documentation and how researchers come to learn these practices in experimental physics. Using interviews with practicing researchers, namely, physics graduate students, we explore the different experiences researchers had in learning how to effectively use a notebook for scientific documentation. We find that very few of those interviewed thought that their undergraduate lab classes successfully taught them the benefit of maintaining a lab notebook. Most described training in lab notebook use as either ineffective or outright missing from their undergraduate lab course experience. Furthermore, a large majority of those interviewed explained that they did not receive any formal training in maintaining a lab notebook during their graduate school experience and received little to no feedback from their advisors on these records. Many of the interviewees describe learning the purpose of, and how to maintain, these kinds of lab records only after having a period of trial and error, having already started doing research in their graduate program. Despite the central role of scientific documentation in the research enterprise, these physics graduate students did not gain skills in documentation through formal instruction, but rather through informal hands-on practice.

  1. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers.

    Science.gov (United States)

    Roach, Michael

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals' pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers.

  2. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers

    Science.gov (United States)

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals’ pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers. PMID:28178270

  3. LabVIEW Library to EPICS Channel Access

    CERN Document Server

    Liyu, Andrei; Thompson, Dave H

    2005-01-01

    The Spallation Neutron Source (SNS) accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The SNS diagnostics platform is PC-based and will run Windows for its OS and LabVIEW as its programming language. Data acquisition hardware will be based on PCI cards. There will be about 300 rack-mounted computers. The Channel Access (CA) protocol of the Experimental Physics and Industrial Control System (EPICS) is the SNS control system communication standard. This paper describes the approaches, implementation, and features of LabVIEW library to CA for Windows, Linux, and Mac OS X. We also discuss how the library implements the asynchronous CA monitor routine using LabVIEW's occurrence mechanism instead of a callback function (which is not available in LabVIEW). The library is used to acquire accelerator data and applications have been ...

  4. Computer Games for the Math Achievement of Diverse Students

    Science.gov (United States)

    Kim, Sunha; Chang, Mido

    2010-01-01

    Although computer games as a way to improve students' learning have received attention by many educational researchers, no consensus has been reached on the effects of computer games on student achievement. Moreover, there is lack of empirical research on differential effects of computer games on diverse learners. In response, this study…

  5. Etablierung eines Skills Labs in der Tiermedizin in Deutschland

    Directory of Open Access Journals (Sweden)

    Dilly, Marc

    2014-05-01

    Full Text Available [english] The amendments introduced to the current Veterinary Licensing Ordinance (TAppV by the Veterinary Licensing Regulation (TAppO have brought a high degree of skills orientation to fill the gap between academic study and preparing for a wide range of professional skills. In order to improve the veterinary skills of students while conveying fundamental methods in a structured and reproducible way, the University of Veterinary Medicine Hannover, Foundation, has set up the first central veterinary skills lab in Germany.Practical training is provided by means of a three-tier delivery approach. This involves around 40 simulators on an area of approx. 800 m² under the guidance of 6-8 staff members, along with supplementary resources such as posters, text instructions and YouTube videos. Since it opened in March 2013, there have been 769 visits to the skills lab and 30,734 hits on YouTube.Initial results show that the skills lab helps to maintain student motivation by teaching them practical skills at an early stage of the basic study-based acquisition of knowledge, whilst reinforcing skills acquisition per se in competence-based teaching. It enables veterinary students to prepare for their first examinations and treatments of live patients in a manner compliant with animal welfare.

  6. Library-Labs-for-Science Literacy Courses.

    Science.gov (United States)

    Pestel, Beverly C.; Engeldinger, Eugene A.

    1992-01-01

    Describes two library-lab exercises the authors have incorporated into their college chemistry course. The first exercise introduces students to scientific information and familiarizes them with the tools for accessing it. The second provides a framework for evaluating the reliability of that information and addresses the criteria that should be…

  7. Cisco Networking Academy Program for high school students: Formative & summative evaluation

    Science.gov (United States)

    Cranford-Wesley, Deanne

    This study examined the effectiveness of the Cisco Network Technology Program in enhancing students' technology skills as measured by classroom strategies, student motivation, student attitude, and student learning. Qualitative and quantitative methods were utilized to determine the effectiveness of this program. The study focused on two 11th grade classrooms at Hamtramck High School. Hamtramck, an inner-city community located in Detroit, is racially and ethnically diverse. The majority of students speak English as a second language; more than 20 languages are represented in the school district. More than 70% of the students are considered to be economically at risk. Few students have computers at home, and their access to the few computers at school is limited. Purposive sampling was conducted for this study. The sample consisted of 40 students, all of whom were trained in Cisco Networking Technologies. The researcher examined viable learning strategies in teaching a Cisco Networking class that focused on a web-based approach. Findings revealed that the Cisco Networking Academy Program was an excellent vehicle for teaching networking skills and, therefore, helping to enhance computer skills for the participating students. However, only a limited number of students were able to participate in the program, due to limited computer labs and lack of qualified teaching personnel. In addition, the cumbersome technical language posed an obstacle to students' success in networking. Laboratory assignments were preferred by 90% of the students over lecture and PowerPoint presentations. Practical applications, lab projects, interactive assignments, PowerPoint presentations, lectures, discussions, readings, research, and assessment all helped to increase student learning and proficiency and to enrich the classroom experience. Classroom strategies are crucial to student success in the networking program. Equipment must be updated and utilized to ensure that students are

  8. Teaching the Thrill of Discovery: Student Exploration of Ultra-Faint Dwarf Galaxies with the NOAO Data Lab

    Science.gov (United States)

    Olsen, Knut; Walker, Constance E.; Smith, Blake; NOAO Data Lab Team

    2018-01-01

    We describe an activity aimed at teaching students how ultra-faint Milky Way dwarf galaxies are typically discovered: through filtering of optical photometric catalogs and cross-examination with deep images. The activity, which was developed as part of the Teen Astronomy Café program (https://teensciencecafe.org/cafes/az-teen-astronomy-cafe-tucson/), uses the NOAO Data Lab (http://datalab.noao.edu) and other professional-grade tools to lead high school students through exploration of the object catalog and images from the Survey of the Magellanic Stellar History (SMASH). The students are taught how to use images and color-magnitude diagrams to analyze and interpret stellar populations of increasing complexity, including those of star clusters and the Magellanic Clouds, and culminating with the discovery of the Hydra II ultra-faint dwarf galaxy. The tools and datasets presented allow the students to explore and discover other known stellar systems, as well as unknown candidate star clusters and dwarf galaxies. The ultimate goal of the activity is to give students insight into the methods of modern astronomical research and to allow them to participate in the thrill of discovery.

  9. A Moodle extension to book online labs

    Directory of Open Access Journals (Sweden)

    Antonio C. Cardoso

    2005-11-01

    Full Text Available The social constructivist philosophy of Moodle makes it an excellent choice to deliver e-learning contents that require collaborative activities, such as those that are associated with online labs. In the case of online labs that enable web access to real devices (remote workbenches, access time should be reserved beforehand. A booking tool will avoid access conflicts and at the same time will help the students to organise their time and activities. This paper presents a Moodle extension that was developed within the Leonardo da Vinci MARVEL project, with the objective of meeting this requirement. The booking tool presented enables resource sharing in general and may be used to organise access to any type of scarce resources, such as to online labs and to the videoconferencing rooms that are needed to support collaborative activities.

  10. Using collaborative technologies in remote lab delivery systems for topics in automation

    Science.gov (United States)

    Ashby, Joe E.

    Lab exercises are a pedagogically essential component of engineering and technology education. Distance education remote labs are being developed which enable students to access lab facilities via the Internet. Collaboration, students working in teams, enhances learning activity through the development of communication skills, sharing observations and problem solving. Web meeting communication tools are currently used in remote labs. The problem identified for investigation was that no standards of practice or paradigms exist to guide remote lab designers in the selection of collaboration tools that best support learning achievement. The goal of this work was to add to the body of knowledge involving the selection and use of remote lab collaboration tools. Experimental research was conducted where the participants were randomly assigned to three communication treatments and learning achievement was measured via assessments at the completion of each of six remote lab based lessons. Quantitative instruments used for assessing learning achievement were implemented, along with a survey to correlate user preference with collaboration treatments. A total of 53 undergraduate technology students worked in two-person teams, where each team was assigned one of the treatments, namely (a) text messaging chat, (b) voice chat, or (c) webcam video with voice chat. Each had little experience with the subject matter involving automation, but possessed the necessary technical background. Analysis of the assessment score data included mean and standard deviation, confirmation of the homogeneity of variance, a one-way ANOVA test and post hoc comparisons. The quantitative and qualitative data indicated that text messaging chat negatively impacted learning achievement and that text messaging chat was not preferred. The data also suggested that the subjects were equally divided on preference to voice chat verses webcam video with voice chat. To the end of designing collaborative

  11. Digital Social Science Lab

    DEFF Research Database (Denmark)

    Svendsen, Michael; Lauersen, Christian Ulrich

    2015-01-01

    At the Faculty Library of Social Sciences (part of Copenhagen University Library) we are currently working intensely towards the establishment of a Digital Social Science Lab (DSSL). The purpose of the lab is to connect research, education and learning processes with the use of digital tools...... at the Faculty of Social Sciences. DSSL will host and facilitate an 80 m2 large mobile and intelligent study- and learning environment with a focus on academic events, teaching and collaboration. Besides the physical settings DSSL has two primary functions: 1. To implement relevant social scientific software...... and hardware at the disposal for students and staff at The Faculty of Social Sciences along with instruction and teaching in the different types of software, e.g. Stata, Nvivo, Atlas.ti, R Studio, Zotero and GIS-software. 2. To facilitate academic events focusing on use of digital tools and analytic software...

  12. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers

    OpenAIRE

    Roach, Michael

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discoura...

  13. THE EFFECTIVENESS OF E-LAB TO IMPROVE GENERIC SCIENCE SKILLS AND UNDERSTANDING THE CONCEPT OF PHYSICS

    Directory of Open Access Journals (Sweden)

    J. Siswanto

    2016-01-01

    Full Text Available The aimed of this sudy are: (1 investigate the effectiveness of E-Lab to improve generic science skills and understanding the concepts oh physics; and (2 investigate the effect of generic science skills towards understanding the concept of students after learning by using the E-Lab. The method used in this study is a pre-experimental design with one group pretest-posttest. Subjects were students of Physics Education in University PGRI Semarang with methode random sampling. The results showed that: (1 learning to use E-Lab effective to increase generic science skills of students; and (2 Generic science skills give positive effect on student conceptual understanding on the material of the photoelectric effect, compton effect, and electron diffraction. Tujuan penelitian ini yaitu: (1 menyelidiki efektifitas E-Lab untuk meningkatkan keterampilan generik sains dan pemahaman konsep mahasiswa; dan (2  menyelidiki pengaruh keterampilan generik sains terhadap pemahaman konsep mahasiswa setelah dilakukan pembelajaran dengan menggunakan E-Lab. Metode penelitian yang digunakan dalam penelitian ini adalah pre-experimental dengan desain one group pretest-posttest. Subjek penelitian adalah mahasiswa Program Studi Pendidikan  Fisika  Universitas PGRI Semarang, dengan metode pengambilan sampel penelitian secara random. Hasil penelitian menunjukkan bahwa bahwa: (1 pembelajaran menggunakan E-Lab efektif untuk meningkatkan keterampilan generik sains mahasiswa; dan  (2 Keterampilan generik sains berpengaruh positif terhadap pemahaman konsep mahasiswa pada materi efek fotolistrik, efek compton, dan difraksi elektron. 

  14. Project PEACH at UCLH: Student Projects in Healthcare Computing.

    Science.gov (United States)

    Ramachandran, Navin; Mohamedally, Dean; Taylor, Paul

    2017-01-01

    A collaboration between clinicians at UCLH and the Dept of Computer Science at UCL is giving students of computer science the opportunity to undertake real healthcare computing projects as part of their education. This is enabling the creation of a significant research computing platform within the Trust, based on open source components and hosted in the cloud, while providing a large group of students with experience of the specific challenges of health IT.

  15. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers.

    Directory of Open Access Journals (Sweden)

    Michael Roach

    Full Text Available This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals' pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers.

  16. LabVIEW: a software system for data acquisition, data analysis, and instrument control.

    Science.gov (United States)

    Kalkman, C J

    1995-01-01

    Computer-based data acquisition systems play an important role in clinical monitoring and in the development of new monitoring tools. LabVIEW (National Instruments, Austin, TX) is a data acquisition and programming environment that allows flexible acquisition and processing of analog and digital data. The main feature that distinguishes LabVIEW from other data acquisition programs is its highly modular graphical programming language, "G," and a large library of mathematical and statistical functions. The advantage of graphical programming is that the code is flexible, reusable, and self-documenting. Subroutines can be saved in a library and reused without modification in other programs. This dramatically reduces development time and enables researchers to develop or modify their own programs. LabVIEW uses a large amount of processing power and computer memory, thus requiring a powerful computer. A large-screen monitor is desirable when developing larger applications. LabVIEW is excellently suited for testing new monitoring paradigms, analysis algorithms, or user interfaces. The typical LabVIEW user is the researcher who wants to develop a new monitoring technique, a set of new (derived) variables by integrating signals from several existing patient monitors, closed-loop control of a physiological variable, or a physiological simulator.

  17. Beyond Classroom, Lab, Studio and Field

    Science.gov (United States)

    Waller, J. L.; Brey, J. A.; DeMuynck, E.; Weglarz, T. C.

    2017-12-01

    When the arts work in tandem with the sciences, the insights of these disciplines can be easily shared and teaching and learning are enriched. Our shared experiences in classroom/lab/studio instruction and in art and science based exhibitions reward all involved. Our individual disciplines cover a wide range of content- Art, Biology, Geography, Geology- yet we connect on aspects that link to the others'. We easily move from lab to studio and back again as we teach—as do our students as they learn! Art and science education can take place outside labs and studios through study abroad, international workshops, museum or gallery spaces, and in forums like the National Academies' programs. We can reach our neighbors at local public gatherings, nature centers and libraries. Our reach is extended in printed publications and in conferences. We will describe some of our activities listed above, with special focus on exhibitions: "Layers: Places in Peril"; "small problems, BIG TROUBLE" and the in-progress "River Bookends: Headwaters, Delta and the Volume of Stories In Between". Through these, learning and edification take place between the show and gallery visitors and is extended via class visits and related assignments, field trips for child and adult learners, interviews, films and panel presentations. These exhibitions offer the important opportunities for exhibit- participating scientists to find common ground with each other about their varied work. We will highlight a recent collaborative show opening a new university-based environmental research center and the rewarding activities there with art and science students and professors. We will talk about the learning enhancement added through a project that brought together a physical geography and a painting class. We will explore how students shared the form and content of their research projects with each other and then, became the educators through paintings and text of their geoscience topics on gallery walls.

  18. Computer Access and Computer Use for Science Performance of Racial and Linguistic Minority Students

    Science.gov (United States)

    Chang, Mido; Kim, Sunha

    2009-01-01

    This study examined the effects of computer access and computer use on the science achievement of elementary school students, with focused attention on the effects for racial and linguistic minority students. The study used the Early Childhood Longitudinal Study (ECLS-K) database and conducted statistical analyses with proper weights and…

  19. Folding Inquiry into Cookbook Lab Activities

    Science.gov (United States)

    Gooding, Julia; Metz, Bill

    2012-01-01

    Cookbook labs have been a part of science programs for years, even though they serve little purpose other than to verify phenomena that have been previously presented by means other than through investigations. Cookbook science activities follow a linear path to a known outcome, telling students what procedures to follow, which materials to use,…

  20. A "Language Lab" for Architectural Design.

    Science.gov (United States)

    Mackenzie, Arch; And Others

    This paper discusses a "language lab" strategy in which traditional studio learning may be supplemented by language lessons using computer graphics techniques to teach architectural grammar, a body of elements and principles that govern the design of buildings belonging to a particular architectural theory or style. Two methods of…

  1. RiskLab - a joint Teaching Lab on Hazard and Risk Management

    Science.gov (United States)

    Baruffini, Mi.; Baruffini, Mo.; Thuering, M.

    2009-04-01

    In the future natural disasters are expected to increase due to climatic changes that strongly affect environmental, social and economical systems. For this reason and because of the limited resources, governments require analytical risk analysis for a better mitigation planning. Risk analysis is a process to determine the nature and extent of risk by estimating potential hazards and evaluating existing conditions of vulnerability that could pose a potential threat or harm to people, property, livelihoods and environment. This process has become a generally accepted approach for the assessment of cost-benefit scenarios; originating from technical risks it is being applied to natural hazards for several years now in Switzerland. Starting from these premises "Risk Lab", a joint collaboration between the Institute of Earth Sciences of the University of Applied Sciences of Southern Switzerland and the Institute for Economic Research of the University of Lugano, has been started in 2006, aiming to become a competence centre about Risk Analysis and Evaluation. The main issue studied by the lab concerns the topic "What security at what price?" and the activities follow the philosophy of the integral risk management as proposed by PLANAT, that defines the process as a cycle that contains different and interrelated phases. The final aim is to change the population and technician idea about risk from "defending against danger" to "being aware of risks" through a proper academic course specially addressed to young people. In fact the most important activity of the laboratory consists in a degree course, offered both to Engineering and Architecture students of the University of Applied Sciences of Southern Switzerland and Economy Students of the University of Lugano. The course is structured in two main parts: an introductive, theoretical part, composed by class lessons, where the main aspects of natural hazards, risk perception and evaluation and risk management are presented

  2. Safety in the Chemical Laboratory: Chemical Wastes in Academic Labs.

    Science.gov (United States)

    Walton, Wendy A.

    1987-01-01

    Encourages instruction about disposal of hazardous wastes in college chemistry laboratories as an integral part of experiments done by students. Discusses methods such as down-the-drain disposal, lab-pack disposal, precipitation and disposal, and precipitation and recovery. Suggests that faculty and students take more responsibility for waste…

  3. Faraday's Principle and Air Travel in the Introductory Labs

    Science.gov (United States)

    Abdul-Razzaq, Wathiq; Thakur, Saikat Chakraborty

    2017-01-01

    We all know that we must improve the quality of teaching in science at all levels. Not only physicists but also many students from other areas of study take the introductory physics courses in college. Physics introductory laboratories (labs) can be one of the best tools to help these students understand applications of scientific principles that…

  4. Chapter 3 – VPPD-Lab: The Chemical Product Simulator

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Cignitti, Stefano; Zhang, L.

    2017-01-01

    for computer-aided chemical product design and evaluation, implemented in the software called VPPD-Lab, is presented. In the same way a typical process simulator works, the VPPD-Lab allows users to: (1) analyze chemical-based products by performing virtual experiments (product property and performance......Computer-aided methods and tools for current and future product–process design and development need to manage problems requiring efficient handling of models, data, and knowledge from different sources and at different times and size scales. In this chapter, a systematic model-based framework...... lotion design. Through these case studies, the use of design templates, associated workflows (methods), data flows (software integration), and solution strategies (database and tools) are highlighted....

  5. Practical Clinical Training in Skills Labs: Theory and Practice

    Directory of Open Access Journals (Sweden)

    Bugaj, T. J.

    2016-08-01

    Full Text Available Today, skills laboratories or “skills labs”, i.e. specific practical skill training facilities, are a firmly established part of medical education offering the possibility of training clinical procedures in a safe and fault-forging environment prior to real life application at bedside or in the operating room. Skills lab training follows a structured teaching concept, takes place under supervision and in consideration of methodological-didactic concepts, ideally creating an atmosphere that allows the repeated, anxiety- and risk-free practice of targeted skills.In this selective literature review, the first section is devoted to (I the development and dissemination of the skills lab concept. There follows (II an outline of the underlying idea and (III an analysis of key efficacy factors. Thereafter, (IV the training method’s effectiveness and transference are illuminated, before (V the use of student tutors, in the sense of peer-assisted-learning, in skills labs is discussed separately. Finally, (VI the efficiency of the skills lab concept is analyzed, followed by an outlook on future developments and trends in the field of skills lab training.

  6. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    Science.gov (United States)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  7. COMPUTER-BASED SYSTEMS OF PHYSICAL EXPERIMENT IN INDEPENDENT WORK OF STUDENTS OF TECHNICAL UNIVERSITY

    Directory of Open Access Journals (Sweden)

    Iryna Slipukhina

    2016-11-01

    Full Text Available Purpose: The self-study activity of students is an important form of educational process under the conditions of rapid changes of technologies. Ability and readiness of future engineers for independent education is one of their key competences. Investigation of modern methods of planning, organization and control of independent cognitive activity of students while studying physics as effective means of complex forming of their professional qualities is the object of the research. Methods: We analyse the curricula of some engineering specialities in leading technical universities, existent methods and forms of organization of students’ self-study, and own pedagogical experience. Results: Based on the theoretical analysis of existing methods of students’ self-study, it was found that a systematizing factor of appropriate educational technology is the problem focused cognitive tasks. They have to be implemented by application of the modern technological devices integrated with a computer-based experiment. We define the aim of individual or group laboratory works; the necessary theoretical and practical knowledge and skills of students are rationalized; timing and form of presentation of the results are clarified after individual and group consulting. The details of preparatory, searching-organizational, operational, and control stages in organization of students’ self-study with the use of computer oriented physical experiment are specified, these details differ depending on the didactic purpose, form of organization and students’ individuality. Discussion: The research theoretical aspect confirms the determining role of subject-subject cooperation in forming of competences of independent learning of the future engineers. Basic practical achievements of the research consist of improving methods of using of digital learning systems, creation of textbooks that promote consultative and guiding role for the educational process, working-out of

  8. Computer Anxiety, Academic Stress, and Academic Procrastination on College Students

    OpenAIRE

    Wahyu Rahardjo; Juneman Juneman; Yeni Setiani

    2013-01-01

    Academic procrastination is fairly and commonly found among college students. The lack of understanding in making the best use of computer technology may lead to anxiety in terms of operating computer hence cause postponement in completing course assignments related to computer operation. On the other hand, failure in achieving certain academic targets as expected by parents and/or the students themselves also makes students less focused and leads to tendency of postponing many completions of...

  9. Causes of The occurrence of Obstacles in The Implementation of “Normal Labor Attendance” Skills Lab for Midwifery Students at Institute of Health Science "Surya Mitra Husada Kediri"

    Directory of Open Access Journals (Sweden)

    Retno Palupi Yonni Siwi

    2017-11-01

    Full Text Available This study aimed to analyze the factors that influence the occurrence of obstacles in the skills lab about Normal Labor Attendance for the students in midwifery school of Institute of Health Sciences "Surya Mitra Husada" Kediri, with cross sectional design. The subjects were 37 students of Semester IV, selected using total sampling technique. Factors studied were mentor roles, interest in learning, and tool limitations. Data were collected through questionnaires and observation sheets, then analyzed using ordinal regression test. The p-value of the ordinal regression test was 0.000; so it was concluded that the mentor roles, interest in learning and tool limitations affected the occurrence of obstacles in the skills lab.

  10. Predicting success for college students enrolled in an online, lab-based, biology course for non-majors

    Science.gov (United States)

    Foster, Regina

    Online education has exploded in popularity. While there is ample research on predictors of traditional college student success, little research has been done on effective methods of predicting student success in online education. In this study, a number of demographic variables including GPA, ACT, gender, age and others were examined to determine what, if any, role they play in successfully predicting student success in an online, lab-based biology for non-majors course. Within course variables such as participation in specific categories of assignment and frequency of online visits were also examined. Groups of students including Native American/Non-Native American and Digital Immigrants and Digital Natives and others were also examined to determine if overall course success differed significantly. Good predictors of online success were found to be GPA, ACT, previous course experience and frequency of online visits with the course materials. Additionally, students who completed more of the online assignments within the course were more successful. Native American and Non-Native American students were found to differ in overall course success significantly as well. Findings indicate student academic background, previous college experience and time spent with course materials are the most important factors in course success. Recommendations include encouraging enrollment advisors to advise students about the importance of maintaining high academic levels, previous course experience and spending time with course materials may impact students' choices for online courses. A need for additional research in several areas is indicated, including Native American and Non-Native American differences. A more detailed examination of students' previous coursework would also be valuable. A study involving more courses, a larger number of students and surveys from faculty who teach online courses would help improve the generalizability of the conclusions.

  11. Assessment of computer-related health problems among post-graduate nursing students.

    Science.gov (United States)

    Khan, Shaheen Akhtar; Sharma, Veena

    2013-01-01

    The study was conducted to assess computer-related health problems among post-graduate nursing students and to develop a Self Instructional Module for prevention of computer-related health problems in a selected university situated in Delhi. A descriptive survey with co-relational design was adopted. A total of 97 samples were selected from different faculties of Jamia Hamdard by multi stage sampling with systematic random sampling technique. Among post-graduate students, majority of sample subjects had average compliance with computer-related ergonomics principles. As regards computer related health problems, majority of post graduate students had moderate computer-related health problems, Self Instructional Module developed for prevention of computer-related health problems was found to be acceptable by the post-graduate students.

  12. MATLAB-Like Scripting of Java Scientific Libraries in ScalaLab

    Directory of Open Access Journals (Sweden)

    Stergios Papadimitriou

    2014-01-01

    Full Text Available Although there are a lot of robust and effective scientific libraries in Java, the utilization of these libraries in pure Java is difficult and cumbersome, especially for the average scientist that does not expertise in software development. We illustrate that ScalaLab presents an easier and productive MATLAB like front end. Also, the main strengths and weaknesses of the core Java libraries of ScalaLab are elaborated. Since performance is of paramount importance for scientific computation, the article discusses extensively performance aspects of the ScalaLab environment. Also, Java bytecode performance is compared to native code.

  13. Students' Computing Use and Study: When More is Less

    Directory of Open Access Journals (Sweden)

    Christine A McLachlan

    2016-02-01

    Full Text Available Since the turn of the century there has been a steady decline in enrolments of students in senior secondary computing classes in Australia. A flow on effect has seen reduced enrolments in tertiary computing courses and the subsequent predictions of shortages in skilled computing professionals. This paper investigates the relationship between students’ computing literacy levels, their use and access to computing tools, and students’ interest in and attitudes to formal computing study. Through the use of secondary data obtained from Australian and international reports, a reverse effect was discovered indicating that the more students used computing tools, the less interested they become in computing studies. Normal 0 false false false EN-AU X-NONE X-NONE

  14. Student Perceived Importance and Correlations of Selected Computer Literacy Course Topics

    Science.gov (United States)

    Ciampa, Mark

    2013-01-01

    Traditional college-level courses designed to teach computer literacy are in a state of flux. Today's students have high rates of access to computing technology and computer ownership, leading many policy decision makers to conclude that students already are computer literate and thus computer literacy courses are dinosaurs in a modern digital…

  15. Teaching Research in the Traditional Classroom: Why Make Graduate Students Wait?

    Science.gov (United States)

    Carr, Lincoln D.

    2016-05-01

    Physics graduate programs tend to divide the degree into two parts: (1) theory, taught in classes, almost totally divorced from the lab setting; and (2) research, taught in a research group through hands-on lab experience and mentorship. As we come to understand from undergraduate physics education research that modifying our teaching can rather easily produce quantifiably better results, it is reasonable to ask if we can make similar improvements at the graduate level. In this talk I will present the results of beginning research instruction in the classroom in the very first semester of graduate school, in the most traditional of classes - classical mechanics. In this approach, students build their knowledge from hands-on projects. They get immediately certified and experienced in the machine shop and electronics lab. There are no formal lectures. Students develop and present their own problems, and teach and challenge each other in the classroom. In contrast to polished lectures, both the instructor and the students together learn from their many public mistakes. Students give conference-style presentations instead of exams. As a result, students not only excel in analytical skills, but they also learn to tie theory to measurement, identify statistical and systematic errors, simulate computationally and model theoretically, and design their own experiments. Funded by NSF.

  16. Computer Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  17. Hands-On Open Access Broadband Wireless Technology Lab Mapping Course Outcomes to Lab Experiments

    Directory of Open Access Journals (Sweden)

    Yazan Alqudah

    2012-10-01

    Full Text Available The unprecedented growth in wireless communication is offering opportunities and challenges for educators. Thanks to technology advances and job opportunities, more and more students are interested in wireless communications courses. However, bridging the gap between classroom and real-world experience remains a challenge. Advanced undergraduate communications courses typically focus more on theory. Some courses are given online, and lack hands-on experiments. Driven by feedback from industry and students, we propose practical laboratory experiments that attempt to bridge the gap between classroom and real world. The laboratory exercises take advantage of the infrastructure of deployed wireless networks and allow students to measure, and analyze data, as well as to interact. The proposed labs can be used even in online courses. This paper describes the experiments proposed, the procedures and typical results. The experiments are tied to course objective.

  18. Engineering and Scientific Applications: Using MatLab(Registered Trademark) for Data Processing and Visualization

    Science.gov (United States)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    MatLab(TradeMark)(MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many countries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its real strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbox. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using symbolic operations. MatLab in its interpreter programming language form (command interface) is similar with well known programming languages such as C/C++, support data structures and cell arrays to define classes in object oriented programming. As such, MatLab is equipped with most of the essential constructs of a higher programming language. MatLab is packaged with an editor and debugging functionality useful to perform analysis of large MatLab programs and find errors. We believe there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and analysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applications. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientific problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabular format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed.

  19. The Computer Student Worksheet Based Mathematical Literacy for Statistics

    Science.gov (United States)

    Manoy, J. T.; Indarasati, N. A.

    2018-01-01

    The student worksheet is one of media teaching which is able to improve teaching an activity in the classroom. Indicators in mathematical literacy were included in a student worksheet is able to help the students for applying the concept in daily life. Then, the use of computers in learning can create learning with environment-friendly. This research used developmental research which was Thiagarajan (Four-D) development design. There are 4 stages in the Four-D, define, design, develop, and disseminate. However, this research was finish until the third stage, develop stage. The computer student worksheet based mathematical literacy for statistics executed good quality. This student worksheet is achieving the criteria if able to achieve three aspects, validity, practicality, and effectiveness. The subject in this research was the students at The 1st State Senior High School of Driyorejo, Gresik, grade eleven of The 5th Mathematics and Natural Sciences. The computer student worksheet products based mathematical literacy for statistics executed good quality, while it achieved the aspects for validity, practical, and effectiveness. This student worksheet achieved the validity aspects with an average of 3.79 (94.72%), and practical aspects with an average of 2.85 (71.43%). Besides, it achieved the effectiveness aspects with a percentage of the classical complete students of 94.74% and a percentage of the student positive response of 75%.

  20. Using LEGO NXT Mobile Robots with LabVIEW for Undergraduate Courses on Mechatronics

    Science.gov (United States)

    Gomez-de-Gabriel, J. M.; Mandow, A.; Fernandez-Lozano, J.; Garcia-Cerezo, A.

    2011-01-01

    The paper proposes lab work and student competitions based on the LEGO NXT Mindstorms kits and standard LabVIEW. The goal of this combination is to stimulate design and experimentation with real hardware and representative software in courses where mobile robotics is adopted as a motivating platform to introduce mechatronics competencies. Basic…

  1. Using RSpec in an introductory bright star spectroscopy lab activity

    Science.gov (United States)

    Howe, James; Sitar, David J.

    2018-01-01

    After presenting at the North Carolina Section of the American Association of Physics Teachers during the fall 2016 meeting, we were encouraged to turn our poster into a paper. This article describes the strengthening of a bright star spectroscopy lab activity for introductory astronomy lab students (AST1002) at Appalachian State University. Explanations of the tools and methods used in the activity are included, particularly the preparation of additional materials using RSpec and calibrated instrument response curves.

  2. Interfacing LabVIEW With Instrumentation for Electronic Failure Analysis and Beyond

    Science.gov (United States)

    Buchanan, Randy K.; Bryan, Coleman; Ludwig, Larry

    1996-01-01

    The Laboratory Virtual Instrumentation Engineering Workstation (LabVIEW) software is designed such that equipment and processes related to control systems can be operationally lined and controlled by the use of a computer. Various processes within the failure analysis laboratories of NASA's Kennedy Space Center (KSC) demonstrate the need for modernization and, in some cases, automation, using LabVIEW. An examination of procedures and practices with the Failure Analaysis Laboratory resulted in the conclusion that some device was necessary to elevate the potential users of LabVIEW to an operational level in minimum time. This paper outlines the process involved in creating a tutorial application to enable personnel to apply LabVIEW to their specific projects. Suggestions for furthering the extent to which LabVIEW is used are provided in the areas of data acquisition and process control.

  3. Computer simulation of thermal-hydraulics of MNSR fuel-channel assembly using LabView

    International Nuclear Information System (INIS)

    Gadri, L. A.

    2013-07-01

    A LabView simulator of thermal hydraulics has been developed to demonstrate the temperature profile of coolant flow in the reactor core during normal operation. The simulator could equally be used for any transient behaviour of the reactor. Heat generation, transfer and the associated temperature profile in the fuel-channel elements viz: the coolant, cladding and fuel were studied and the corresponding analytical temperature equations in the axial and radial directions for the coolant, outer surface of the cladding, fuel surface and fuel center were obtained for the simulation using LabView. Tables of values for the equations were constructed by MATLAB and excel software programs. Plots of the equations with LabView were verified and validated with the graphs drawn by the MATLAB. In this thesis, an analysis of the effects of the coolant inlet temperature of 24.5°C and exit temperature of 70.0° on the temperature distribution in fuel-channel elements of the reactor core of cylindrical geometry was carried out. Other parameters, including the total fuel channel power, mass flow rate and convective heat transfer coefficient were varied to study the effects on the temperature profile. The analytical temperature equations in the fuel channel elements of the reactor core were obtained. MATLAB and Excel software were used to construct data for the equations. The plots by MATLAB were used to benchmark the LabVIEW simulation. Excellent agreement was obtained between the MATLAB plots and the LabView simulation results with an error margin of 0.001. The analysis of the results by comparing gradients of inlet temperature, total reactor channel power and mass flow indicated that inlet temperature gradient is one of the key parameters in determining the temperature profile in the MNSR core. (au)

  4. Story Lab: Student Data Privacy

    Science.gov (United States)

    Herold, Benjamin

    2015-01-01

    Student data privacy is an increasingly high-profile--and controversial--issue that touches schools and families across the country. There are stories to tell in virtually every community. About three dozen states have passed legislation addressing student data privacy in the past two years, and eight different proposals were floating around…

  5. Arduino: a low-cost multipurpose lab equipment.

    Science.gov (United States)

    D'Ausilio, Alessandro

    2012-06-01

    Typical experiments in psychological and neurophysiological settings often require the accurate control of multiple input and output signals. These signals are often generated or recorded via computer software and/or external dedicated hardware. Dedicated hardware is usually very expensive and requires additional software to control its behavior. In the present article, I present some accuracy tests on a low-cost and open-source I/O board (Arduino family) that may be useful in many lab environments. One of the strengths of Arduinos is the possibility they afford to load the experimental script on the board's memory and let it run without interfacing with computers or external software, thus granting complete independence, portability, and accuracy. Furthermore, a large community has arisen around the Arduino idea and offers many hardware add-ons and hundreds of free scripts for different projects. Accuracy tests show that Arduino boards may be an inexpensive tool for many psychological and neurophysiological labs.

  6. Simulation and visualization of fundamental optics phenomenon by LabVIEW

    Science.gov (United States)

    Lyu, Bohan

    2017-08-01

    Most instructors teach complex phenomenon by equation and static illustration without interactive multimedia. Students usually memorize phenomenon by taking note. However, only note or complex formula can not make user visualize the phenomenon of the photonics system. LabVIEW is a good tool for in automatic measurement. However, the simplicity of coding in LabVIEW makes it not only suit for automatic measurement, but also suitable for simulation and visualization of fundamental optics phenomenon. In this paper, five simple optics phenomenon will be discuss and simulation with LabVIEW. They are Snell's Law, Hermite-Gaussian beam transverse mode, square and circular aperture diffraction, polarization wave and Poincare sphere, and finally Fabry-Perrot etalon in spectrum domain.

  7. EDITORIAL: Student undergraduate laboratory and project work

    Science.gov (United States)

    Schumacher, Dieter

    2007-05-01

    During the last decade 'labwork' courses at university level have changed significantly. The beginning of this development was indicated and partly initiated by the EU-project 'Labwork in Science Education' funded by the European Community (1999-2001). The present special issue of the European Journal of Physics focuses on a multitude of different aspects of this process. The aim of this publication is to improve the exchange of experience and to promote this important trend. In physics research labs a silent revolution has taken place. Today the personal computer is omnipresent. It controls the experiment via stepping motors, piezo-microdrives etc, it monitors all parameters and collects the experimental data with the help of smart sensors. In particular, computer-based modern scanning and imaging techniques open the possibility of creating really new types of experiments. The computer allows data storage and processing on the one hand and simulation and modelling on the other. These processes occur in parallel or may even be interwoven. The web plays an important role in modern science for inquiry, communication, cooperation and publication. Traditional labwork courses do not prepare students for the many resulting demands. Therefore it is necessary to redefine the learning targets and to reconsider the learning methods. Two contributions show exemplarily how modern experimental devices could find their way into students' labs. In the article 'Infrared thermal imaging as a tool in university physics education' by Klaus-Peter Möllmann and Michael Vollmer we can see that infrared thermal imaging is a valuable tool in physics education at university level. It can help to visualize and thereby enhance understanding of physical phenomena of mechanics, thermal physics, electromagnetism, optics and radiation physics. The contribution 'Using Peltier cells to study solid-liquid-vapor transitions and supercooling' by Giacomo Torzo, Isabella Soletta and Mario Branca proves

  8. Who am I? ~ Undergraduate Computer Science Student

    OpenAIRE

    Ferris, Jane

    2012-01-01

    As part of a school review process a survey of the students was designed to gain insight into who the students of the school were. The survey was a voluntary anonymous online survey. Students were able to skip questions and select more than one option in some questions. This was to reduce frustration with participation in the survey and ensure that the survey was completed. This conference details the average undergraduate Computer Science student of a large third level institute.

  9. [Chances and Potential of a Modern Surgical Skills Lab as Substantial Practical Part of the Study of Human Medicine - "The Magdeburg Model"].

    Science.gov (United States)

    Piatek, S; Altmann, S; Haß, H-J; Werwick, K; Winkler-Stuck, K; Zardo, P; von Daake, S; Baumann, B; Rahmanzadeh, A; Chiapponi, C; Reschke, K; Meyer, F

    2017-02-01

    Introduction: Surgical education of medical students within "skills labs" have not been standardised throughout Germany as yet; there is a substantial impact of available aspects such as personal and space at the various medical schools. Aim: The aim of this contribution is to illustrate the concept of a surgical skills lab in detail, including curricular teaching and integrated facultative courses at the Medical School, University of Magdeburg ("The Magdeburg Model") in the context of a new and reconstructed area for the skills lab at the Magdeburg's apprenticeship center for medical basic abilities (MAMBA). Method: We present an overview on the spectrum of curricular and facultative teaching activities within the surgical part of the skills lab. Student evaluation of this teaching concept is implemented using the programme "EvaSys" and evaluation forms adapted to the single courses. Results: By establishing MAMBA, the options for a practice-related surgical education have been substantially improved. Student evaluations of former courses presented within the skills lab and the chance of moving the skills lab into a more generous and reconstructed area led to a reorganisation of seminars and courses. New additional facultative courses held by student tutors have been introduced and have shown to be of great effect, in particular, because of their interdisciplinary character. Conclusion: Practice-related surgical education within a skills lab may have the potential to effectively prepare medical students for their professional life. In addition, it allows one to present and teach the most important basic skills in surgery, which need to be pursued by every student. An enthusiastic engagement of the Office for Student Affairs can be considered the crucial and indispensable link between clinical work and curricular as well as facultative teaching with regard to organisation and student evaluation. The practice-related teaching parts and contents at the surgical

  10. Low Cost Implementation of Remote Lab with Large Number of Configurations for a BJT Amplifier

    Directory of Open Access Journals (Sweden)

    Olaf H. Graven

    2011-09-01

    Full Text Available This paper demonstrate how to construct an advanced yet low cost remote lab for experiments for an module in analogue electronics at an electrical engineering course at second year bachelor level. The remote lab is designed for running experiments on a normal BJT common emitter amplifier circuit, while maintaining the possibility for the students to use a wide range of different setups. The main reasons for using remote lab are the opportunity to give the students the chance to focus on the theory for the laboratory and not setup problems, in addition the availability of the exercise is 24/7 and not dependent on the opening hours of the physical laboratory.

  11. California State University, Bakersfield Fab Lab: "Making" A Difference in Middle School Students' STEM Attitudes

    Science.gov (United States)

    Medina, Andrea Lee

    The digital fabrication lab, or Fab Lab, at California State University, Bakersfield provided a 1-week, half-day summer program for local area middle school students. The purpose of this study was to examine the effect this summer program had on their attitudes towards math and science. The theoretical framework used for this study was based on Papert’s (1980) theory of constructionism and Bandura’s (1977) self-efficacy theory. Papert’s interest in how learners engaged in discussions with the items they made, and how these interactions increased self-guided learning, promoted the development of new knowledge. Self-efficacy, or one’s belief in his or her ability to perform behaviors necessary to produce specific achievements, increases as a result of the self-guided learning. These beliefs are proposed to influence future aspirations and the commitment to them. Results of the paired t-tests show a marked difference between 2016 participants (n= 49) and 2017 participants (n=31). Of the 2016 participants, no overall significance was found on attitudes towards math or science, but male attitudes within the math subset did show significance. The results of the 2017 program do show statistical significance in the area of science for females. It is hypothesized that the difference in results were due to the delivery of the program between the 2 years. Further research is necessary to confirm this hypothesis.

  12. Beyond the first "click:" Women graduate students in computer science

    Science.gov (United States)

    Sader, Jennifer L.

    This dissertation explored the ways that constructions of gender shaped the choices and expectations of women doctoral students in computer science. Women who do graduate work in computer science still operate in an environment where they are in the minority. How much of women's underrepresentation in computer science fields results from a problem of imagining women as computer scientists? As long as women in these fields are seen as exceptions, they are exceptions that prove the "rule" that computing is a man's domain. The following questions were the focus of this inquiry: What are the career aspirations of women doctoral students in computer science? How do they feel about their chances to succeed in their chosen career and field? How do women doctoral students in computer science construct womanhood? What are their constructions of what it means to be a computer scientist? In what ways, if any, do they believe their gender has affected their experience in their graduate programs? The goal was to examine how constructions of computer science and of gender---including participants' own understanding of what it meant to be a woman, as well as the messages they received from their environment---contributed to their success as graduate students in a field where women are still greatly outnumbered by men. Ten women from four different institutions of higher education were recruited to participate in this study. These women varied in demographic characteristics like age, race, and ethnicity. Still, there were many common threads in their experiences. For example, their construction of womanhood did not limit their career prospects to traditionally female jobs. They had grown up with the expectation that they would be able to succeed in whatever field they chose. Most also had very positive constructions of programming as something that was "fun," rewarding, and intellectually stimulating. Their biggest obstacles were feelings of isolation and a resulting loss of

  13. Ionic liquids and green chemistry : a lab experiment

    NARCIS (Netherlands)

    Stark, A.; Ott-Reinhardt, D.; Kralisch, D.; Kreisel, G.; Ondruschka, B.

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few

  14. A Moment of Mindfulness: Computer-Mediated Mindfulness Practice Increases State Mindfulness

    OpenAIRE

    Mahmood, L.; Hopthrow, T.; Randsley de Moura, G.

    2016-01-01

    Three studies investigated the use of a 5-minute, computer-mediated mindfulness practice in increasing levels of state mindfulness. In Study 1, 54 high school students completed the computer-mediated mindfulness practice in a lab setting and Toronto Mindfulness Scale (TMS) scores were measured before and after the practice. In Study 2 (N = 90) and Study 3 (N = 61), the mindfulness practice was tested with an entirely online sample to test the delivery of the 5-minute mindfulness practice via ...

  15. Using the particle beam optics lab. (PBO LABtm) for beamline design and analysis

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Martono, H.; Moore, J.M.; Lampel, M.C.; Brown, N.A.

    1999-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) represents a new approach to providing software for particle beam optics modeling. The PBO Lab includes four key elements: a graphic user interface shell; a graphic beamline construction kit for users to interactively and visually construct optical beam lines; a knowledge database on the physics and technology of optical elements, and various charged particle optics computational engines. A first-order matrix code, including a space charge model, can be used to produce scaled images of beamlines together with overlays of single trajectories and beam envelopes. The qualitative results of graphically sliding beamline components, or adjusting bend angles, can be explored interactively. Quantitative computational engines currently include the third-order TRANSPORT code and the multi-particle ray tracing program TURTLE. The use of the PBO Lab for designing and analyzing a second order achromatic bend is illustrated with the Windows 95/NT version of the software. (authors)

  16. Examining the Computer Self-Efficacy Perceptions of Gifted Students

    Science.gov (United States)

    Kaplan, Abdullah; Öztürk, Mesut; Doruk, Muhammet; Yilmaz, Alper

    2013-01-01

    This study was conducted in order to determine the computer self-efficacy perceptions of gifted students. The research group of this study is composed of gifted students (N = 36) who were studying at the Science and Arts Center in Gümüshane province in the spring semester of the 2012-2013 academic year. The "Computer Self-Efficacy Perception…

  17. Integration of the HTC Vive into the medical platform MeVisLab

    Science.gov (United States)

    Egger, Jan; Gall, Markus; Wallner, Jürgen; de Almeida Germano Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter

    2017-03-01

    Virtual Reality (VR) is an immersive technology that replicates an environment via computer-simulated reality. VR gets a lot of attention in computer games but has also great potential in other areas, like the medical domain. Examples are planning, simulations and training of medical interventions, like for facial surgeries where an aesthetic outcome is important. However, importing medical data into VR devices is not trivial, especially when a direct connection and visualization from your own application is needed. Furthermore, most researcher don't build their medical applications from scratch, rather they use platforms, like MeVisLab, Slicer or MITK. The platforms have in common that they integrate and build upon on libraries like ITK and VTK, further providing a more convenient graphical interface to them for the user. In this contribution, we demonstrate the usage of a VR device for medical data under MeVisLab. Therefore, we integrated the OpenVR library into MeVisLab as an own module. This enables the direct and uncomplicated usage of head mounted displays, like the HTC Vive under MeVisLab. Summarized, medical data from other MeVisLab modules can directly be connected per drag-and-drop to our VR module and will be rendered inside the HTC Vive for an immersive inspection.

  18. The Software Architecture for Performing Scientific Computation with the JLAPACK Libraries in ScalaLab

    Directory of Open Access Journals (Sweden)

    Stergios Papadimitriou

    2012-01-01

    Full Text Available Although LAPACK is a powerful library its utilization is difficult. JLAPACK, a Java translation obtained automatically from the Fortran LAPACK sources, retains exactly the same difficult to use interface of LAPACK routines. The MTJ library implements an object oriented Java interface to JLAPACK that hides many complicated details. ScalaLab exploits the flexibility of the Scala language to present an even more friendly and convenient interface to the powerful but complicated JLAPACK library. The article describes the interfacing of the low-level JLAPACK routines within the ScalaLab environment. This is performed rather easily by exploiting well suited features of the Scala language. Also, the paper demonstrates the convenience of using JLAPACK routines for linear algebra operations from within ScalaLab.

  19. Computer vision syndrome and associated factors among medical and engineering students in chennai.

    Science.gov (United States)

    Logaraj, M; Madhupriya, V; Hegde, Sk

    2014-03-01

    Almost all institutions, colleges, universities and homes today were using computer regularly. Very little research has been carried out on Indian users especially among college students the effects of computer use on the eye and vision related problems. The aim of this study was to assess the prevalence of computer vision syndrome (CVS) among medical and engineering students and the factors associated with the same. A cross-sectional study was conducted among medical and engineering college students of a University situated in the suburban area of Chennai. Students who used computer in the month preceding the date of study were included in the study. The participants were surveyed using pre-tested structured questionnaire. Among engineering students, the prevalence of CVS was found to be 81.9% (176/215) while among medical students; it was found to be 78.6% (158/201). A significantly higher proportion of engineering students 40.9% (88/215) used computers for 4-6 h/day as compared to medical students 10% (20/201) (P medical students. Students who used computer for 4-6 h were at significantly higher risk of developing redness (OR = 1.2, 95% CI = 1.0-3.1,P = 0.04), burning sensation (OR = 2.1,95% CI = 1.3-3.1, P computer for less than 4 h. Significant correlation was found between increased hours of computer use and the symptoms redness, burning sensation, blurred vision and dry eyes. The present study revealed that more than three-fourth of the students complained of any one of the symptoms of CVS while working on the computer.

  20. A Framework for Understanding Physics Students' Computational Modeling Practices

    Science.gov (United States)

    Lunk, Brandon Robert

    With the growing push to include computational modeling in the physics classroom, we are faced with the need to better understand students' computational modeling practices. While existing research on programming comprehension explores how novices and experts generate programming algorithms, little of this discusses how domain content knowledge, and physics knowledge in particular, can influence students' programming practices. In an effort to better understand this issue, I have developed a framework for modeling these practices based on a resource stance towards student knowledge. A resource framework models knowledge as the activation of vast networks of elements called "resources." Much like neurons in the brain, resources that become active can trigger cascading events of activation throughout the broader network. This model emphasizes the connectivity between knowledge elements and provides a description of students' knowledge base. Together with resources resources, the concepts of "epistemic games" and "frames" provide a means for addressing the interaction between content knowledge and practices. Although this framework has generally been limited to describing conceptual and mathematical understanding, it also provides a means for addressing students' programming practices. In this dissertation, I will demonstrate this facet of a resource framework as well as fill in an important missing piece: a set of epistemic games that can describe students' computational modeling strategies. The development of this theoretical framework emerged from the analysis of video data of students generating computational models during the laboratory component of a Matter & Interactions: Modern Mechanics course. Student participants across two semesters were recorded as they worked in groups to fix pre-written computational models that were initially missing key lines of code. Analysis of this video data showed that the students' programming practices were highly influenced by

  1. Virtual Lab Demonstrations Improve Students’ Mastery of Basic Biology Laboratory Techniques

    OpenAIRE

    Maldarelli, Grace A.; Hartmann, Erica M.; Cummings, Patrick J.; Horner, Robert D.; Obom, Kristina. M.; Shingles, Richard; Pearlman, Rebecca S.

    2009-01-01

    Biology laboratory classes are designed to teach concepts and techniques through experiential learning. Students who have never performed a technique must be guided through the process, which is often difficult to standardize across multiple lab sections. Visual demonstration of laboratory procedures is a key element in teaching pedagogy. The main goals of the study were to create videos explaining and demonstrating a variety of lab techniques that would serve as teaching tools for undergradu...

  2. Theoretical Hammett Plot for the Gas-Phase Ionization of Benzoic Acid versus Phenol: A Computational Chemistry Lab Exercise

    Science.gov (United States)

    Ziegler, Blake E.

    2013-01-01

    Computational chemistry undergraduate laboratory courses are now part of the chemistry curriculum at many universities. However, there remains a lack of computational chemistry exercises available to instructors. This exercise is presented for students to develop skills using computational chemistry software while supplementing their knowledge of…

  3. Using NCLab-karel to improve computational thinking skill of junior high school students

    Science.gov (United States)

    Kusnendar, J.; Prabawa, H. W.

    2018-05-01

    Increasingly human interaction with technology and the increasingly complex development of digital technology world make the theme of computer science education interesting to study. Previous studies on Computer Literacy and Competency reveal that Indonesian teachers in general have fairly high computational skill, but their skill utilization are limited to some applications. This engenders limited and minimum computer-related learning for the students. On the other hand, computer science education is considered unrelated to real-world solutions. This paper attempts to address the utilization of NCLab- Karel in shaping the computational thinking in students. This computational thinking is believed to be able to making learn students about technology. Implementation of Karel utilization provides information that Karel is able to increase student interest in studying computational material, especially algorithm. Observations made during the learning process also indicate the growth and development of computing mindset in students.

  4. Professional Development for Graduate Students through Internships at Federal Labs: an NSF/USGS Collaboration

    Science.gov (United States)

    Snow, E.; Jones, E.; Patino, L. C.; Wasserman, E.; Isern, A. R.; Davies, T.

    2016-12-01

    In 2013 the White House initiated an effort to coordinate STEM education initiatives across federal agencies. This idea spawned several important collaborations, one of which is a set of National Science Foundation programs designed to place graduate students in federal labs for 2-12 months of their Ph.D. training. The Graduate Research Internship Program (GRIP) and the Graduate Student Preparedness program (GSP) each have the goal of exposing PhD students to the federal work environment while expanding their research tools and mentoring networks. Students apply for supplementary support to their Graduate Research Fellowship (GRIP) or their advisor's NSF award (GSP). These programs are available at several federal agencies; the USGS is one partner. At the U.S. Geological Survey, scientists propose projects, which students can find online by searching USGS GRIP, or students and USGS scientists can work together to develop a research project. At NSF, projects are evaluated on both the scientific merit and the professional development opportunities they afford the student. The career development extends beyond the science (new techniques, data, mentors) into the professional activity of writing the proposal, managing the budget, and working in a new and different environment. The USGS currently has 18 GRIP scholars, including Madeline Foster-Martinez, a UC Berkeley student who spent her summer as a GRIP fellow at the USGS Pacific Coastal and Marine Science Center working with USGS scientist Jessica Lacy. Madeline's Ph.D. work is on salt marshes and she has studied geomorphology, accretion, and gas transport using a variety of research methods. Her GRIP fellowship allowed her to apply new data-gathering tools to the question of sediment delivery to the marsh, and build and test a model for sediment delivery along marsh edges. In addition, she gained professional skills by collaborating with a new team of scientists, running a large-scale field deployment, and

  5. Developing a strategy for computational lab skills training through Software and Data Carpentry: Experiences from the ELIXIR Pilot action [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Aleksandra Pawlik

    2017-07-01

    Full Text Available Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training from Software and Data Carpentry, aimed at increasing the number of skilled life scientists and building a sustainable training community in this field. This article describes the Pilot action, which introduced the Carpentry training model to the ELIXIR community.

  6. Teaching Astronomy and Computation with Gaia: A New Curriculum for an Extra-curricular High School Program

    Science.gov (United States)

    Schwab, Ellianna; Faherty, Jacqueline K.; Barua, Prachurjya; Cooper, Ellie; Das, Debjani; Simone-Gonzalez, Luna; Sowah, Maxine; Valdez, Laura; BridgeUP: STEM

    2018-01-01

    BridgeUP: STEM (BridgeUP) is a program at the American Museum of Natural History (AMNH) that seeks to empower women by providing early-career scientists with research fellowships and high-school aged women with instruction in computer science and algorithmic methods. BridgeUP achieves this goal by employing post-baccalaureate women as Helen Fellows, who, in addition to conducting their own scientific research, mentor and teach high school students from the New York City area. The courses, targeted at early high-school students, are designed to teach algorithmic thinking and scientific methodology through the lens of computational science. In this poster we present the new BridgeUP astronomy curriculum created for 9th and 10th grade girls.The astronomy course we present is designed to introduce basic concepts as well as big data manipulation through a guided exploration of Gaia (DR1). Students learn about measuring astronomical distances through hands-on lab experiments illustrating the brightness/distance relationship, angular size calculations of the height of AMNH buildings, and in-depth Hertzsprung-Russell Diagram activities. Throughout these labs, students increase their proficiency in collecting and analyzing data, while learning to build and share code in teams. The students use their new skills to create color-color diagrams of known co-moving clusters (Oh et al. 2017) in the DR1 dataset using Python, Pandas and Matplotlib. We discuss the successes and lessons learned in the first implementation of this curriculum and show the preliminary work of six of the students, who are continuing with computational astronomy research over the current school year.

  7. Advanced HVAC modeling with FemLab/Simulink/MatLab

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2003-01-01

    The combined MatLab toolboxes FemLab and Simulink are evaluated as solvers for HVAC problems based on partial differential equations (PDEs). The FemLab software is designed to simulate systems of coupled PDEs, 1-D, 2-D or 3-D, nonlinear and time dependent. In order to show how the program works, a

  8. Using Computer Games for Instruction: The Student Experience

    Science.gov (United States)

    Grimley, Michael; Green, Richard; Nilsen, Trond; Thompson, David; Tomes, Russell

    2011-01-01

    Computer games are fun, exciting and motivational when used as leisure pursuits. But do they have similar attributes when utilized for educational purposes? This article investigates whether learning by computer game can improve student experiences compared with a more formal lecture approach and whether computer games have potential for improving…

  9. A study of the effects of gender and different instructional media (computer-assisted instruction tutorials vs. textbook) on student attitudes and achievement in a team-taught integrated science class

    Science.gov (United States)

    Eardley, Julie Anne

    The purpose of this study was to determine the effect of different instructional media (computer assisted instruction (CAI) tutorial vs. traditional textbook) on student attitudes toward science and computers and achievement scores in a team-taught integrated science course, ENS 1001, "The Whole Earth Course," which was offered at Florida Institute of Technology during the Fall 2000 term. The effect of gender on student attitudes toward science and computers and achievement scores was also investigated. This study employed a randomized pretest-posttest control group experimental research design with a sample of 30 students (12 males and 18 females). Students had registered for weekly lab sessions that accompanied the course and had been randomly assigned to the treatment or control group. The treatment group used a CAI tutorial for completing homework assignments and the control group used the required textbook for completing homework assignments. The Attitude toward Science and Computers Questionnaire and Achievement Test were the two instruments administered during this study to measure students' attitudes and achievement score changes. A multivariate analysis of covariance (MANCOVA), using hierarchical multiple regression/correlation (MRC), was employed to determine: (1) treatment versus control group attitude and achievement differences; and (2) male versus female attitude and achievement differences. The differences between the treatment group's and control group's homework averages were determined by t test analyses. The overall MANCOVA model was found to be significant at p factor set independent variables separately resulted in gender being the only variable that significantly contributed in explaining the variability in a dependent variable, attitudes toward science and computers. T test analyses of the homework averages showed no significant differences. Contradictory to the findings of this study, anecdotal information from personal communication, course

  10. The Virtual Genetics Lab II: Improvements to a Freely Available Software Simulation of Genetics

    Science.gov (United States)

    White, Brian T.

    2012-01-01

    The Virtual Genetics Lab II (VGLII) is an improved version of the highly successful genetics simulation software, the Virtual Genetics Lab (VGL). The software allows students to use the techniques of genetic analysis to design crosses and interpret data to solve realistic genetics problems involving a hypothetical diploid insect. This is a brief…

  11. Modelling the Landing of a Plane in a Calculus Lab

    Science.gov (United States)

    Morante, Antonio; Vallejo, Jose A.

    2012-01-01

    We exhibit a simple model of a plane landing that involves only basic concepts of differential calculus, so it is suitable for a first-year calculus lab. We use the computer algebra system Maxima and the interactive geometry software GeoGebra to do the computations and graphics. (Contains 5 figures and 1 note.)

  12. Two web-based laboratories of the FisLabs network: Hooke's and Snell's laws

    Energy Technology Data Exchange (ETDEWEB)

    De la Torre, L; Sanchez, J; Dormido, S [Department of Computer Science and Automatic Control, Spanish University of Distance Education (UNED), C/Juan del Rosal, 16, 28040, Madrid (Spain); Sanchez, J P; Yuste, M; Carreras, C, E-mail: ldelatorre@bec.uned.es, E-mail: jsanchez@dia.uned.es, E-mail: sdormido@dia.uned.es, E-mail: jpsanchez@ccia.uned.es, E-mail: myuste@ccia.uned.es, E-mail: ccarreras@ccia.uned.es [Department of Material Physics, Spanish University of Distance Education (UNED), C/Senda del Rey, s/n, 28040, Madrid (Spain)

    2011-03-15

    FisLabs is a network of remote and virtual laboratories for physics university education via the Internet that offers students the possibility of performing hands-on experiments in different fields of physics in two ways: simulation and real remote operation. This paper gives a detailed account of a novel way in physics in which distance learning students can gain practical experience autonomously. FisLabs uses the same structure as AutomatLabs, a network of virtual and remote laboratories for learning/teaching of control engineering, which has been in operation for four years. Students can experiment with the laboratories offered using an Internet connection and a Java-compatible web browser. This paper, specially intended for university educators but easily comprehensible even for undergraduate students, explains how the portal works and the hardware and software tools used to create it. In addition, it also describes two physics experiments already available: spring elasticity and the laws of reflection and refraction.

  13. Application of LabVIEW in SSRF digital power supply development

    International Nuclear Information System (INIS)

    Tang Junlong; Chen Huanguang; Ke Xinhua; Chinese Academy of Science, Beijing; Xu Ruinian; Li Deming

    2007-01-01

    During development of the Shanghai Synchrotron Radiation Facility (SSRF) digital power supply, a digital pulse-width modulator (PWM) directly controls the power circuit insulated gate bipolar transistor (IGBT). A program in LabVIEW language has been developed to perform computer control and monitor for the digital PS via serial communication (RS232). The program provides a friendly user interface to the digital PS that makes it easy to observe its behavior and modify its parameters. Another program, also in LabVIEW language, has been developed to test long term stability of the digital power supply and store the experimental data via extremely precise Keithley instrument and computer. The experimental data are stored in an Excel file which can be processed and analyzed in the future. (authors)

  14. A Financial Technology Entrepreneurship Program for Computer Science Students

    Science.gov (United States)

    Lawler, James P.; Joseph, Anthony

    2011-01-01

    Education in entrepreneurship is becoming a critical area of curricula for computer science students. Few schools of computer science have a concentration in entrepreneurship in the computing curricula. The paper presents Technology Entrepreneurship in the curricula at a leading school of computer science and information systems, in which students…

  15. The ISCB Student Council Internship Program: Expanding computational biology capacity worldwide.

    Science.gov (United States)

    Anupama, Jigisha; Francescatto, Margherita; Rahman, Farzana; Fatima, Nazeefa; DeBlasio, Dan; Shanmugam, Avinash Kumar; Satagopam, Venkata; Santos, Alberto; Kolekar, Pandurang; Michaut, Magali; Guney, Emre

    2018-01-01

    Education and training are two essential ingredients for a successful career. On one hand, universities provide students a curriculum for specializing in one's field of study, and on the other, internships complement coursework and provide invaluable training experience for a fruitful career. Consequently, undergraduates and graduates are encouraged to undertake an internship during the course of their degree. The opportunity to explore one's research interests in the early stages of their education is important for students because it improves their skill set and gives their career a boost. In the long term, this helps to close the gap between skills and employability among students across the globe and balance the research capacity in the field of computational biology. However, training opportunities are often scarce for computational biology students, particularly for those who reside in less-privileged regions. Aimed at helping students develop research and academic skills in computational biology and alleviating the divide across countries, the Student Council of the International Society for Computational Biology introduced its Internship Program in 2009. The Internship Program is committed to providing access to computational biology training, especially for students from developing regions, and improving competencies in the field. Here, we present how the Internship Program works and the impact of the internship opportunities so far, along with the challenges associated with this program.

  16. The ISCB Student Council Internship Program: Expanding computational biology capacity worldwide.

    Directory of Open Access Journals (Sweden)

    Jigisha Anupama

    2018-01-01

    Full Text Available Education and training are two essential ingredients for a successful career. On one hand, universities provide students a curriculum for specializing in one's field of study, and on the other, internships complement coursework and provide invaluable training experience for a fruitful career. Consequently, undergraduates and graduates are encouraged to undertake an internship during the course of their degree. The opportunity to explore one's research interests in the early stages of their education is important for students because it improves their skill set and gives their career a boost. In the long term, this helps to close the gap between skills and employability among students across the globe and balance the research capacity in the field of computational biology. However, training opportunities are often scarce for computational biology students, particularly for those who reside in less-privileged regions. Aimed at helping students develop research and academic skills in computational biology and alleviating the divide across countries, the Student Council of the International Society for Computational Biology introduced its Internship Program in 2009. The Internship Program is committed to providing access to computational biology training, especially for students from developing regions, and improving competencies in the field. Here, we present how the Internship Program works and the impact of the internship opportunities so far, along with the challenges associated with this program.

  17. College Students' Use of the Internet

    Directory of Open Access Journals (Sweden)

    Anna C. McFadden

    1999-02-01

    Full Text Available Over the last several years there has been mounting concern about children being exposed to sex-related material on the Internet. Concern about pornography and obscenity is widespread and this concern has spawned a host of products to block or filter content. The notorious Time magazine article (July 3, 1995 "Cyberporn"--which Time later acknowledged had doubtful credibility (July 24, 1995--undoubtedly inflamed this trend. The article, which asserted that much of traffic on the Internet dealt with pornography, was based on the largely discredited research of a Carnegie Mellon undergraduate student who examined 32 alt.binaries newsgroups on Usenet, not the Internet. Nonetheless, the article was fodder for the Communications Decency Act of 1996. While the Supreme Court struck down the Act, pending bills such as the "Safe Schools Internet Act" (H.R. 3177 would require all public libraries and schools that receive federal funds for Internet access to install blocking software to restrict minors' access to "inappropriate" material. Other pending bills would punish commercial online distributors for access to material they do not directly control and require service providers to offer blocking software to customers. While most students who use computers in university computer labs are legally adults, many are not. If laws restrict access to minors, there will be a host of technical problems to provide access to scholars and adult students. Labs are open spaces where students come and go, using computers for many purposes but only part of the time for Internet access. Determining policies and creating procedures to implement and monitor policies will entail considerable resources for something that may not be a serious problem and something that cannot be effectively controlled with filtering software. It could require students to present identification to prove they are adults in order to access certain computer resources, not to mention the

  18. ASTRO 101 Labs and the Invasion of the Cognitive Scientists

    Science.gov (United States)

    Slater, Stephanie J.

    2015-04-01

    Since the mid 1800's there has been widespread agreement that we should be about the business of engaging students in the practices of scientific research in order to best teach the methods and practices of science. There has been significantly less agreement on precisely how to teach science by mimicking scientific inquiry in a way that can be empirically supported, even with our ``top students.'' Engaging ``ASTRO 101 students'' in scientific inquiry is a task that has left our astronomy education research community more than a little stymied, to the extent that it is difficult to find non-major science students practicing anything other than confirmation exercises in college labs. Researchers at the CAPER Center for Astronomy & Physics Education Research have struggled with this problem as well, until in our frustration we had to ask: ``Can research tell us anything about how to get students to do research?'' This talk presents an overview of the cognitive science that we've brought to bear in the ASTRO 101 laboratory setting for non-science majoring undergraduates and future teachers, along with the results of early studies that suggest that a ``backwards faded scaffolding'' approach to instruction in Intro Labs can successfully support large numbers of students in enhancing their understanding of the nature of scientific inquiry. Supported by NSF DUE 1312562.

  19. Vision Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Vision Lab personnel perform research, development, testing and evaluation of eye protection and vision performance. The lab maintains and continues to develop...

  20. Parallel Structures of Computer-Assisted Signature Pedagogy: The Case of Integrated Spreadsheets

    Science.gov (United States)

    Abramovich, Sergei; Easton, Jonathan; Hayes, Victoria O.

    2012-01-01

    This article was motivated by the authors' work on a project with a group of 2nd-grade students in a computer lab of a rural school in upstate New York. From this project, one goal of which was to provide a capstone experience for a teacher candidate in teaching application-oriented mathematics with technology, the ideas about parallel structures…

  1. Implementation and use of cloud-based electronic lab notebook in a bioprocess engineering teaching laboratory.

    Science.gov (United States)

    Riley, Erin M; Hattaway, Holly Z; Felse, P Arthur

    2017-01-01

    Electronic lab notebooks (ELNs) are better equipped than paper lab notebooks (PLNs) to handle present-day life science and engineering experiments that generate large data sets and require high levels of data integrity. But limited training and a lack of workforce with ELN knowledge have restricted the use of ELN in academic and industry research laboratories which still rely on cumbersome PLNs for recordkeeping. We used LabArchives, a cloud-based ELN in our bioprocess engineering lab course to train students in electronic record keeping, good documentation practices (GDPs), and data integrity. Implementation of ELN in the bioprocess engineering lab course, an analysis of user experiences, and our development actions to improve ELN training are presented here. ELN improved pedagogy and learning outcomes of the lab course through stream lined workflow, quick data recording and archiving, and enhanced data sharing and collaboration. It also enabled superior data integrity, simplified information exchange, and allowed real-time and remote monitoring of experiments. Several attributes related to positive user experiences of ELN improved between the two subsequent years in which ELN was offered. Student responses also indicate that ELN is better than PLN for compliance. We demonstrated that ELN can be successfully implemented in a lab course with significant benefits to pedagogy, GDP training, and data integrity. The methods and processes presented here for ELN implementation can be adapted to many types of laboratory experiments.

  2. Ionic Liquids and Green Chemistry: A Lab Experiment

    Science.gov (United States)

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

  3. Gender Differences in Computer Ethics among Business Administration Students

    Directory of Open Access Journals (Sweden)

    Ali ACILAR

    2010-12-01

    Full Text Available Because of the various benefits and advantages that computers and the Internet offer, these technologies have become an essential part of our daily life. The dependence on these technologies has been continuously and rapidly increasing. Computers and the Internet use also has become an important part for instructional purposes in academic environments. Even though the pervasive use of computers and the Internet has many benefits for almost everyone, but it has also increased the use of these technologies for illegal purposes or unethical activities such as spamming, making illegal copies of software, violations of privacy, hacking and computer viruses. The main purpose of this study is to explore gender differences in computer ethics among Business Administration students and examine their attitudes towards ethical use of computers. Results from 248 students in the Department of Business Administration at a public university in Turkey reveal that significant differences exist between male and female students’ attitudes towards ethical use of computers

  4. Designing inquiry learning spaces for online labs in the Go-Lab platform

    NARCIS (Netherlands)

    de Jong, Ton; Gillet, Dennis; Sotiriou, Sofoklis; Agogi, Ellinogermaniki; Zacharia, Zacharias

    2015-01-01

    The Go-Lab project (http://www.go-lab-project.eu/) aims to enable the integration of online labs through inquiry-based learning approaches into science classrooms. Through the use of an advanced plug and play technological solution the Go-Lab project opens up remote science laboratories, data

  5. Happenstance and compromise: a gendered analysis of students' computing degree course selection

    Science.gov (United States)

    Lang, Catherine

    2010-12-01

    The number of students choosing to study computing at university continues to decline this century, with an even sharper decline in female students. This article presents the results of a series of interviews with university students studying computing courses in Australia that uncovered the influence of happenstance and compromise on course choice. This investigation provides an insight into the contributing factors into the continued downturn of student diversity in computing bachelor degree courses. Many females interviewed made decisions based on happenstance, many males interviewed had chosen computing as a compromise course, and family helped in the decision-making to a large degree in both genders. The major implication from this investigation is the finding that students of both genders appear to be socialised away from this discipline, which is perceived as a support or insurance skill, not a career in itself, in all but the most technical-oriented (usually male) student.

  6. Guided-Inquiry Labs Using Bean Beetles for Teaching the Scientific Method & Experimental Design

    Science.gov (United States)

    Schlueter, Mark A.; D'Costa, Allison R.

    2013-01-01

    Guided-inquiry lab activities with bean beetles ("Callosobruchus maculatus") teach students how to develop hypotheses, design experiments, identify experimental variables, collect and interpret data, and formulate conclusions. These activities provide students with real hands-on experiences and skills that reinforce their understanding of the…

  7. GridSpace Engine of the ViroLab Virtual Laboratory

    NARCIS (Netherlands)

    Ciepiela, E.; Kocot, J.; Gubala, T.; Malawski, M.; Kasztelnik, M.; Bubak, M.; Bubak, M.; Turała, M.; Wiatr, K.

    2008-01-01

    GridSpace Engine is the central operational unit of the ViroLab Virtual Laboratory. This specific runtime environment enables access to computational and data resources by coordinating execution of experiments written in the Ruby programming language extended with virtual laboratory capabilities.

  8. Using hot lab to increase pre-service physics teacher’s critical thinking skills related to the topic of RLC circuit

    Science.gov (United States)

    Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.; Samsudin, A.; Safitri, D.; Lisdiani, S. A. S.; Sapriadil, S.; Hermita, N.

    2018-05-01

    This research purposes to explore the used of Higher Order Thinking Laboratory (HOT-Lab) in enhancing the critical thinking skills of pre-service teachers related to the topic of Resistors, Inductors, Capacitor (RLC circuit). This study utilised a quasi-experiment method with Pretest-Posttest Control Group design. The sample of the study was 60 students that were divided into two groups covering in experiment and control group, consists of 30 students. The instrument for measuring critical thinking skills is essay test. Data has been analyzed using normalized gain average, effect size, and t-test. The results show that students’ critical thinking skills using the HOT Lab are higher than the verification lab. Using HOT-lab was implemented in the form of activity in the laboratory can improve high-order thinking skills. Hence, it was concluded that the use of HOT Lab had a greater impact on improving students’ critical thinking skills on RLC topic. Finally, HOT Lab can be used for other physics topics.

  9. Integrated Computer Controlled Glow Discharge Tube

    Science.gov (United States)

    Kaiser, Erik; Post-Zwicker, Andrew

    2002-11-01

    An "Interactive Plasma Display" was created for the Princeton Plasma Physics Laboratory to demonstrate the characteristics of plasma to various science education outreach programs. From high school students and teachers, to undergraduate students and visitors to the lab, the plasma device will be a key component in advancing the public's basic knowledge of plasma physics. The device is fully computer controlled using LabVIEW, a touchscreen Graphical User Interface [GUI], and a GPIB interface. Utilizing a feedback loop, the display is fully autonomous in controlling pressure, as well as in monitoring the safety aspects of the apparatus. With a digital convectron gauge continuously monitoring pressure, the computer interface analyzes the input signals, while making changes to a digital flow controller. This function works independently of the GUI, allowing the user to simply input and receive a desired pressure; quickly, easily, and intuitively. The discharge tube is a 36" x 4"id glass cylinder with 3" side port. A 3000 volt, 10mA power supply, is used to breakdown the plasma. A 300 turn solenoid was created to demonstrate the magnetic pinching of a plasma. All primary functions of the device are controlled through the GUI digital controllers. This configuration allows for operators to safely control the pressure (100mTorr-1Torr), magnetic field (0-90Gauss, 7amps, 10volts), and finally, the voltage applied across the electrodes (0-3000v, 10mA).

  10. Virtual Labs in proteomics: new E-learning tools.

    Science.gov (United States)

    Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva

    2012-05-17

    Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Reciprocal Questioning and Computer-based Instruction in Introductory Auditing: Student Perceptions.

    Science.gov (United States)

    Watters, Mike

    2000-01-01

    An auditing course used reciprocal questioning (Socratic method) and computer-based instruction. Separate evaluations by 67 students revealed a strong aversion to the Socratic method; students expected professors to lecture. They showed a strong preference for the computer-based assignment. (SK)

  12. Computer Use and Behavior Problems in Twice-Exceptional Students

    Science.gov (United States)

    Alloway, Tracy Packiam; Elsworth, Miquela; Miley, Neal; Seckinger, Sean

    2016-01-01

    This pilot study investigated how engagement with computer games and TV exposure may affect behaviors of gifted students. We also compared behavioral and cognitive profiles of twice-exceptional students and children with Attention Deficit/Hyperactivity Disorder (ADHD). Gifted students were divided into those with behavioral problems and those…

  13. Students' perceptions of a multimedia computer-aided instruction ...

    African Journals Online (AJOL)

    Objective. To develop an interactive muttimedia-based computer-aided instruction (CAI) programme, to detennine its educational worth and efficacy in a multicuttural academic environment and to evaluate its usage by students with differing levels of computer literacy. Design. A prospective descriptive study evaluating ...

  14. Greek Undergraduate Physical Education Students' Basic Computer Skills

    Science.gov (United States)

    Adamakis, Manolis; Zounhia, Katerina

    2013-01-01

    The purposes of this study were to determine how undergraduate physical education (PE) students feel about their level of competence concerning basic computer skills and to examine possible differences between groups (gender, specialization, high school graduation type, and high school direction). Although many students and educators believe…

  15. Students' Opinions on the Use of Tablet Computers in Education

    Science.gov (United States)

    Duran, Muharrem; Aytaç, Tufan

    2016-01-01

    One of the most important tools for the integration of ICT in education, especially with tablet computers, has been employed in Turkey through the FATIH Project. This study aimed to determine students' views on the use of tablet computers in learning and teaching processes. Eighty-four first-year high school students studying at three schools in…

  16. The Science Teaching Self-Efficacy of Prospective Elementary Education Majors Enrolled in Introductory Geology Lab Sections

    Science.gov (United States)

    Baldwin, Kathryn A.

    2014-01-01

    This study examined prospective elementary education majors' science teaching self-efficacy while they were enrolled in an introductory geology lab course for elementary education majors. The Science Teaching Efficacy Belief Instrument Form B (STEBI-B) was administered during the first and last lab class sessions. Additionally, students were…

  17. Computer Graphics for Student Engagement in Science Learning.

    Science.gov (United States)

    Cifuentes, Lauren; Hsieh, Yi-Chuan Jane

    2001-01-01

    Discusses student use of computer graphics software and presents documentation from a visualization workshop designed to help learners use computer graphics to construct meaning while they studied science concepts. Describes problems and benefits when delivering visualization workshops in the natural setting of a middle school. (Author/LRW)

  18. PENINGKATAN AKTIVITAS MENGGUNAKAN LABORATORIUM KOMPUTER DAN HASIL BELAJAR SISWA SMK PROGRAM KEAHLIAN AKUNTANSI MELALUI PENERAPAN PROJECT BASED LEARNING

    Directory of Open Access Journals (Sweden)

    David Firna Setiawan

    2017-06-01

    Full Text Available The existence of the computer lab is one thing that is essential to support the improvement of students’ competence. Some other researcherssaid that some of the characteristics of PBL and its influence on motivation and learning outcomes, however, these studies can not describe the improvement of the activity in utilizing a computer lab. This study aimed to analyze the differences in the use of computer labs and student learning outcomes at the accounting program to operate accounting computer before and after the implementation of project based learning (PBL. The population of this study was all students of XI class and XII class in accounting programof SMK Al Falah Winong. Sampling in this study is using proportionate stratified random sampling. Data collected through observation. Hypothesis testing is done through t test with two independent samples. The results showed that the application of PBL was able to increase the activity in computer lab and student learning outcomes in the competence particularity on operate computer accounting application.   Keywords: Project based learning, computer lab, Student learning outcomes

  19. Innovations in STEM education: the Go-Lab federation of online labs

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.; Sotiriou, Sofoklis; Gillet, Dennis

    2014-01-01

    The Go-Lab federation of online labs opens up virtual laboratories (simulation), remote laboratories (real equipment accessible at distance) and data sets from physical laboratory experiments (together called “online labs”) for large-scale use in education. In this way, Go-Lab enables inquiry-based

  20. Acting like a physicist: Student approach study to experimental design

    Science.gov (United States)

    Karelina, Anna; Etkina, Eugenia

    2007-12-01

    National studies of science education have unanimously concluded that preparing our students for the demands of the 21st century workplace is one of the major goals. This paper describes a study of student activities in introductory college physics labs, which were designed to help students acquire abilities that are valuable in the workplace. In these labs [called Investigative Science Learning Environment (ISLE) labs], students design their own experiments. Our previous studies have shown that students in these labs acquire scientific abilities such as the ability to design an experiment to solve a problem, the ability to collect and analyze data, the ability to evaluate assumptions and uncertainties, and the ability to communicate. These studies mostly concentrated on analyzing students’ writing, evaluated by specially designed scientific ability rubrics. Recently, we started to study whether the ISLE labs make students not only write like scientists but also engage in discussions and act like scientists while doing the labs. For example, do students plan an experiment, validate assumptions, evaluate results, and revise the experiment if necessary? A brief report of some of our findings that came from monitoring students’ activity during ISLE and nondesign labs was presented in the Physics Education Research Conference Proceedings. We found differences in student behavior and discussions that indicated that ISLE labs do in fact encourage a scientistlike approach to experimental design and promote high-quality discussions. This paper presents a full description of the study.

  1. Acting like a physicist: Student approach study to experimental design

    Directory of Open Access Journals (Sweden)

    Anna Karelina

    2007-10-01

    Full Text Available National studies of science education have unanimously concluded that preparing our students for the demands of the 21st century workplace is one of the major goals. This paper describes a study of student activities in introductory college physics labs, which were designed to help students acquire abilities that are valuable in the workplace. In these labs [called Investigative Science Learning Environment (ISLE labs], students design their own experiments. Our previous studies have shown that students in these labs acquire scientific abilities such as the ability to design an experiment to solve a problem, the ability to collect and analyze data, the ability to evaluate assumptions and uncertainties, and the ability to communicate. These studies mostly concentrated on analyzing students’ writing, evaluated by specially designed scientific ability rubrics. Recently, we started to study whether the ISLE labs make students not only write like scientists but also engage in discussions and act like scientists while doing the labs. For example, do students plan an experiment, validate assumptions, evaluate results, and revise the experiment if necessary? A brief report of some of our findings that came from monitoring students’ activity during ISLE and nondesign labs was presented in the Physics Education Research Conference Proceedings. We found differences in student behavior and discussions that indicated that ISLE labs do in fact encourage a scientistlike approach to experimental design and promote high-quality discussions. This paper presents a full description of the study.

  2. Patterns of students' computer use and relations to their computer and information literacy

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe; Gerick, Julia

    2017-01-01

    Background: Previous studies have shown that there is a complex relationship between students’ computer and information literacy (CIL) and their use of information and communication technologies (ICT) for both recreational and school use. Methods: This study seeks to dig deeper into these complex...... relations by identifying different patterns of students’ school-related and recreational computer use in the 21 countries participating in the International Computer and Information Literacy Study (ICILS 2013). Results: Latent class analysis (LCA) of the student questionnaire and performance data from......, raising important questions about differences in contexts. Keywords: ICILS, Computer use, Latent class analysis (LCA), Computer and information literacy....

  3. Experience gained in using a computer-aided teaching system in Azov maritime institute

    Directory of Open Access Journals (Sweden)

    Олександр Миколайович Зиновченко

    2017-06-01

    Full Text Available Brief analysis of the known teaching methods through the use of computer has been given. Computer-aided teaching system includes an interactive lecture, laboratory works, an application for online testing and evaluation of the new knowledge assimilation and the software used by the teacher. The virtual lecture presents information as sound tracked dynamic pictures accompanied by permanent practical work that fixes the acquired knowledge in the student’s mind. Each teaching step in the virtual lecture is followed with practical work evaluated by the computer. Virtual labs make it possible to consolidate the new knowledge by practice. They provide for the individual activity of the student, monitor his progress and automatically evaluate his knowledge. These applications are installed in the student's computer. The computer applications of the teacher include a generator of the tests for testing and evaluation of the new knowledge, a typical problems base, personal information files generator for each student and a computer application forming the final mark of the student. The results of the testing of this teaching system show that it is efficient, making it possible to organize a flexible schedule of the educational process,cutting down the working hours of the teacher

  4. EXAMINATION OF THE COMPUTATIONAL THINKING SKILLS OF STUDENTS

    Directory of Open Access Journals (Sweden)

    Agah Tugrul Korucu

    2017-01-01

    Full Text Available Computational thinking is generally considered as a kind of analytical way of thinking. According to Wings (2008 it shares with mathematical thinking, engineering thinking and scientific thinking in the general ways in which we may use for solving a problem, designing and evaluating complex systems or understanding computability and intelligence as well as the mind and human behaviour. It is generally accepted important that like high order thinking skills the analytical way of thinking should be taught to the children at very early ages. The aim of this study is to investigate the computational thinking skills of secondary school students in terms of different variables. The study group of the research is 160 secondary school students who continue their education at different levels in Konya. The “Computational Thinking Skills Scale” which has been developed by Korkmaz, Çakır and Özden (2015 used for data collection. The scale includes 22 items and it is a 5 point likert type scale. The Cronbach Alpha reliability of the scale has been calculated as 0.80 and it has been found to be valid to measure the computational skills levels of the secondary school students as a result of the analysis. As a result of this research, the computational thinking skill levels of participants differ meaningfully in terms of their class levels, do not differ meaningfully in terms of their genders, do not differ meaningfully in terms of their weekly internet usage durations, do not differ meaningfully in terms of their mobile device usage competence situations, differ meaningfully in terms of their mobile Technologies possession durations.

  5. Lab-on-a-Chip: Frontier Science in the Classroom

    Science.gov (United States)

    Wietsma, Jan Jaap; van der Veen, Jan T.; Buesink, Wilfred; van den Berg, Albert; Odijk, Mathieu

    2018-01-01

    Lab-on-a-chip technology is brought into the classroom through development of a lesson series with hands-on practicals. Students can discover the principles of microfluidics with different practicals covering laminar flow, micromixing, and droplet generation, as well as trapping and counting beads. A quite affordable novel production technique…

  6. Measuring and Advancing Experimental Design Ability in an Introductory Course without Altering Existing Lab Curriculum

    Directory of Open Access Journals (Sweden)

    Ryan A. Shanks

    2017-05-01

    Full Text Available Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT and uncovered two latent factors which provide valid means to assess this overlay model’s ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads.

  7. The Isolation of Rubber from Milkweed Leaves. An Introductory Organic Chemistry Lab

    Science.gov (United States)

    Volaric, Lisa; Hagen, John P.

    2002-01-01

    We present an introductory organic chemistry lab in which students isolate rubber from the leaves of milkweed plants (Asclepias syriaca). Students isolated rubber with a recovery of 2.4 ± 1.8% and 1.8 ± 0.7% for the microscale and macroscale procedures, respectively. Infrared spectra of their products were compared with the spectrum of synthetic rubber, cis-polyisoprene. Students tested for elasticity of their product by twisting it on a spatula and pulling; all students found some degree of elasticity.

  8. Unsystematic Technology Adoption in Cambodia: Students' Perceptions of Computer and Internet Use

    Science.gov (United States)

    Richardson, Jayson W.; Nash, John B.; Flora, Kevin L.

    2014-01-01

    This study was designed to understand how upper secondary school students in Cambodia perceive the use of computers and the Internet. Data were collected from students in three urban upper secondary schools (n = 1,137) in Cambodia using questionnaires. The data indicate that the more exposure a Cambodian student had to computers and the Internet…

  9. Practical guide to machine vision software an introduction with LabVIEW

    CERN Document Server

    Kwon, Kye-Si

    2014-01-01

    For both students and engineers in R&D, this book explains machine vision in a concise, hands-on way, using the Vision Development Module of the LabView software by National Instruments. Following a short introduction to the basics of machine vision and the technical procedures of image acquisition, the book goes on to guide readers in the use of the various software functions of LabView's machine vision module. It covers typical machine vision tasks, including particle analysis, edge detection, pattern and shape matching, dimension measurements as well as optical character recognition, enabli

  10. Computer literacy among first year medical students in a developing country: A cross sectional study

    Science.gov (United States)

    2012-01-01

    Background The use of computer assisted learning (CAL) has enhanced undergraduate medical education. CAL improves performance at examinations, develops problem solving skills and increases student satisfaction. The study evaluates computer literacy among first year medical students in Sri Lanka. Methods The study was conducted at Faculty of Medicine, University of Colombo, Sri Lanka between August-September 2008. First year medical students (n = 190) were invited for the study. Data on computer literacy and associated factors were collected by an expert-validated pre-tested self-administered questionnaire. Computer literacy was evaluated by testing knowledge on 6 domains; common software packages, operating systems, database management and the usage of internet and E-mail. A linear regression was conducted using total score for computer literacy as the continuous dependant variable and other independent covariates. Results Sample size-181 (Response rate-95.3%), 49.7% were Males. Majority of the students (77.3%) owned a computer (Males-74.4%, Females-80.2%). Students have gained their present computer knowledge by; a formal training programme (64.1%), self learning (63.0%) or by peer learning (49.2%). The students used computers for predominately; word processing (95.6%), entertainment (95.0%), web browsing (80.1%) and preparing presentations (76.8%). Majority of the students (75.7%) expressed their willingness for a formal computer training programme at the faculty. Mean score for the computer literacy questionnaire was 48.4 ± 20.3, with no significant gender difference (Males-47.8 ± 21.1, Females-48.9 ± 19.6). There were 47.9% students that had a score less than 50% for the computer literacy questionnaire. Students from Colombo district, Western Province and Student owning a computer had a significantly higher mean score in comparison to other students (p computer training was the strongest predictor of computer literacy (β = 13.034), followed by using

  11. From e-manufacturing to Internet Product Process Development (IPPD) through remote – labs

    International Nuclear Information System (INIS)

    Nieto, Ernesto Córdoba; Parra, Paulo Andres Cifuentes; Díaz, Juan Camilo Parra

    2014-01-01

    This paper presents the research developed at Universidad Nacional de Colombia about the e-Manufacturing platform that is being developed and implemented at LabFabEx (acronym in Spanish as L aboratorio Fabrica Experimental ) . This platform besides has an approach to virtual-remote labs that have been tested by several students and engineers of different industrial fields. At this paper it is shown the physical and communication experimental platform, the general scope and characteristics of this e-Manufacturing platform and the virtual lab approach. This research project is funded by COLCIENCIAS (Administrative Department of science, technology and innovation in Colombia) and the enterprise IMOCOM S.A

  12. Accommodative insufficiency as cause of asthenopia in computer-using students

    Directory of Open Access Journals (Sweden)

    Husnun Amalia

    2010-08-01

    Full Text Available To date the use of computers is widely distributed throughout the world and the associated ocular complaints are found in 75-90% of the population of computer users. Symptoms frequently reported by computer users were eyestrain, tired eyes, irritation, redness, blurred vision, diplopia, burning of the eyes, and asthenopia (visual fatigue of the eyes. A cross-sectional study was conducted to determine the etiology of asthenopia in computer-using students. A questionnaire consisting of 15 items was used to assess symptoms experienced by the computer users. The ophthalmological examination comprised visual acuity, the Hirschberg test, near point accommodation, amplitude accommodation, near point convergence, the cover test, and the alternate cover test. A total of 99 computer science students, of whom 69.7% had asthenopia, participated in the study. The symptoms that were significantly associated with asthenopia were visual fatigue (p=0.031, heaviness in the eye (p=0.002, blurred vision (p=0.001, and headache at the temples or the back of the head (p=0.000. Refractive asthenopia was found in 95.7% of all asthenopia patients with accommodative insufficiency (AI, constituting the most frequent cause at 50.7%. The duration of computer use per day was not significantly associated with the prevalence of asthenopia (p=0.700. There was a high prevalence of asthenopia among computer science students, mostly caused by refractive asthenopia. Accommodation measurements should be performed more routinely and regularly, maybe as screening, especially in computer users

  13. Accommodative insufficiency as cause of asthenopia in computer-using students

    Directory of Open Access Journals (Sweden)

    Husnun Amalia

    2016-02-01

    Full Text Available To date the use of computers is widely distributed throughout the world and the associated ocular complaints are found in 75-90% of the population of computer users. Symptoms frequently reported by computer users were eyestrain, tired eyes, irritation, redness, blurred vision, diplopia, burning of the eyes, and asthenopia (visual fatigue of the eyes. A cross-sectional study was conducted to determine the etiology of asthenopia in computer-using students. A questionnaire consisting of 15 items was used to assess symptoms experienced by the computer users. The ophthalmological examination comprised visual acuity, the Hirschberg test, near point accommodation, amplitude accommodation, near point convergence, the cover test, and the alternate cover test. A total of 99 computer science students, of whom 69.7% had asthenopia, participated in the study. The symptoms that were significantly associated with asthenopia were visual fatigue (p=0.031, heaviness in the eye (p=0.002, blurred vision (p=0.001, and headache at the temples or the back of the head (p=0.000. Refractive asthenopia was found in 95.7% of all asthenopia patients with accommodative insufficiency (AI, constituting the most frequent cause at 50.7%. The duration of computer use per day was not significantly associated with the prevalence of asthenopia (p=0.700. There was a high prevalence of asthenopia among computer science students, mostly caused by refractive asthenopia. Accommodation measurements should be performed more routinely and regularly, maybe as screening, especially in computer users.

  14. Comparing the Social Skills of Students Addicted to Computer Games with Normal Students

    OpenAIRE

    Zamani, Eshrat; Kheradmand, Ali; Cheshmi, Maliheh; Abedi, Ahmad; Hedayati, Nasim

    2010-01-01

    Background This study aimed to investigate and compare the social skills of studentsaddicted to computer games with normal students. The dependentvariable in the present study is the social skills. Methods The study population included all the students in the second grade ofpublic secondary school in the city of Isfahan at the educational year of2009-2010. The sample size included 564 students selected using thecluster random sampling method. Data collection was conducted usingQuestionnaire o...

  15. Psychology of computer use: XXIV. Computer-related stress among technical college students.

    Science.gov (United States)

    Ballance, C T; Rogers, S U

    1991-10-01

    Hudiburg's Computer Technology Hassles Scale, along with a measure of global stress and a scale on attitudes toward computers, were administered to 186 students in a two-year technical college. Hudiburg's work with the hassles scale as a measure of "technostress" was affirmed. Moderate, but statistically significant, correlations among the three scales are reported. No relationship between the hassles scale and achievement as measured by GPA was detected.

  16. Effectiveness of a Case-Based Computer Program on Students' Ethical Decision Making.

    Science.gov (United States)

    Park, Eun-Jun; Park, Mihyun

    2015-11-01

    The aim of this study was to test the effectiveness of a case-based computer program, using an integrative ethical decision-making model, on the ethical decision-making competency of nursing students in South Korea. This study used a pre- and posttest comparison design. Students in the intervention group used a computer program for case analysis assignments, whereas students in the standard group used a traditional paper assignment for case analysis. The findings showed that using the case-based computer program as a complementary tool for the ethics courses offered at the university enhanced students' ethical preparedness and satisfaction with the course. On the basis of the findings, it is recommended that nurse educators use a case-based computer program as a complementary self-study tool in ethics courses to supplement student learning without an increase in course hours, particularly in terms of analyzing ethics cases with dilemma scenarios and exercising ethical decision making. Copyright 2015, SLACK Incorporated.

  17. Enhancing learning in geosciences and water engineering via lab activities

    Science.gov (United States)

    Valyrakis, Manousos; Cheng, Ming

    2016-04-01

    This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.

  18. Student generated assignments about electrical circuits in a computer simulation

    NARCIS (Netherlands)

    Vreman-de Olde, Cornelise; de Jong, Anthonius J.M.

    2004-01-01

    In this study we investigated the design of assignments by students as a knowledge-generating activity. Students were required to design assignments for 'other students' in a computer simulation environment about electrical circuits. Assignments consisted of a question, alternatives, and feedback on

  19. Attitudes of health care students about computer-aided neuroanatomy instruction.

    Science.gov (United States)

    McKeough, D Michael; Bagatell, Nancy

    2009-01-01

    This study examined students' attitudes toward computer-aided instruction (CAI), specifically neuroanatomy learning modules, to assess which components were primary in establishing these attitudes and to discuss the implications of these attitudes for successfully incorporating CAI in the preparation of health care providers. Seventy-seven masters degree, entry-level, health care professional students matriculated in an introductory neuroanatomy course volunteered as subjects for this study. Students independently reviewed the modules as supplements to lecture and completed a survey to evaluate teaching effectiveness. Responses to survey statements were compared across the learning modules to determine if students viewed the modules differently. Responses to individual survey statements were averaged to measure the strength of agreement or disagreement with the statement. Responses to open-ended questions were theme coded, and frequencies and percentages were calculated for each. Students saw no differences between the learning modules. Students perceived the learning modules as valuable; they enjoyed using the modules but did not prefer CAI over traditional lecture format. The modules were useful in learning or reinforcing neuroanatomical concepts and improving clinical problem-solving skills. Students reported that the visual representation of the neuroanatomical systems, computer animation, ability to control the use of the modules, and navigational fidelity were key factors in determining attitudes. The computer-based learning modules examined in this study were effective as adjuncts to lecture in helping entry-level health care students learn and make clinical applications of neuroanatomy information.

  20. University Students and Ethics of Computer Technology Usage: Human Resource Development

    Science.gov (United States)

    Iyadat, Waleed; Iyadat, Yousef; Ashour, Rateb; Khasawneh, Samer

    2012-01-01

    The primary purpose of this study was to determine the level of students' awareness about computer technology ethics at the Hashemite University in Jordan. A total of 180 university students participated in the study by completing the questionnaire designed by the researchers, named the Computer Technology Ethics Questionnaire (CTEQ). Results…

  1. Computer literacy among first year medical students in a developing country: A cross sectional study

    Directory of Open Access Journals (Sweden)

    Ranasinghe Priyanga

    2012-09-01

    Full Text Available Abstract Background The use of computer assisted learning (CAL has enhanced undergraduate medical education. CAL improves performance at examinations, develops problem solving skills and increases student satisfaction. The study evaluates computer literacy among first year medical students in Sri Lanka. Methods The study was conducted at Faculty of Medicine, University of Colombo, Sri Lanka between August-September 2008. First year medical students (n = 190 were invited for the study. Data on computer literacy and associated factors were collected by an expert-validated pre-tested self-administered questionnaire. Computer literacy was evaluated by testing knowledge on 6 domains; common software packages, operating systems, database management and the usage of internet and E-mail. A linear regression was conducted using total score for computer literacy as the continuous dependant variable and other independent covariates. Results Sample size-181 (Response rate-95.3%, 49.7% were Males. Majority of the students (77.3% owned a computer (Males-74.4%, Females-80.2%. Students have gained their present computer knowledge by; a formal training programme (64.1%, self learning (63.0% or by peer learning (49.2%. The students used computers for predominately; word processing (95.6%, entertainment (95.0%, web browsing (80.1% and preparing presentations (76.8%. Majority of the students (75.7% expressed their willingness for a formal computer training programme at the faculty. Mean score for the computer literacy questionnaire was 48.4 ± 20.3, with no significant gender difference (Males-47.8 ± 21.1, Females-48.9 ± 19.6. There were 47.9% students that had a score less than 50% for the computer literacy questionnaire. Students from Colombo district, Western Province and Student owning a computer had a significantly higher mean score in comparison to other students (p Conclusion Sri Lankan medical undergraduates had a low-intermediate level of computer

  2. PD Lab

    NARCIS (Netherlands)

    Bilow, Marcel; Entrop, Alexis Gerardus; Lichtenberg, Jos; Stoutjesdijk, Pieter

    2015-01-01

    PD Lab explores the applications of building sector related product development. PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory

  3. Frequency spectrum analysis of 252Cf neutron source based on LabVIEW

    International Nuclear Information System (INIS)

    Mi Deling; Li Pengcheng

    2011-01-01

    The frequency spectrum analysis of 252 Cf Neutron source is an extremely important method in nuclear stochastic signal processing. Focused on the special '0' and '1' structure of neutron pulse series, this paper proposes a fast-correlation algorithm to improve the computational rate of the spectrum analysis system. And the multi-core processor technology is employed as well as multi-threaded programming techniques of LabVIEW to construct frequency spectrum analysis system of 252 Cf neutron source based on LabVIEW. It not only obtains the auto-correlation and cross correlation results, but also auto-power spectrum,cross-power spectrum and ratio of spectral density. The results show that: analysis tools based on LabVIEW improve the fast auto-correlation and cross correlation code operating efficiency about by 25% to 35%, also verify the feasibility of using LabVIEW for spectrum analysis. (authors)

  4. Assessing attitudes toward computers and the use of Internet resources among undergraduate microbiology students

    Science.gov (United States)

    Anderson, Delia Marie Castro

    Computer literacy and use have become commonplace in our colleges and universities. In an environment that demands the use of technology, educators should be knowledgeable of the components that make up the overall computer attitude of students and be willing to investigate the processes and techniques of effective teaching and learning that can take place with computer technology. The purpose of this study is two fold. First, it investigates the relationship between computer attitudes and gender, ethnicity, and computer experience. Second, it addresses the question of whether, and to what extent, students' attitudes toward computers change over a 16 week period in an undergraduate microbiology course that supplements the traditional lecture with computer-driven assignments. Multiple regression analyses, using data from the Computer Attitudes Scale (Loyd & Loyd, 1985), showed that, in the experimental group, no significant relationships were found between computer anxiety and gender or ethnicity or between computer confidence and gender or ethnicity. However, students who used computers the longest (p = .001) and who were self-taught (p = .046) had the lowest computer anxiety levels. Likewise students who used computers the longest (p = .001) and who were self-taught (p = .041) had the highest confidence levels. No significant relationships between computer liking, usefulness, or the use of Internet resources and gender, ethnicity, or computer experience were found. Dependent T-tests were performed to determine whether computer attitude scores (pretest and posttest) increased over a 16-week period for students who had been exposed to computer-driven assignments and other Internet resources. Results showed that students in the experimental group were less anxious about working with computers and considered computers to be more useful. In the control group, no significant changes in computer anxiety, confidence, liking, or usefulness were noted. Overall, students in

  5. Non-Stop Lab Week: A Real Laboratory Experience for Life Sciences Postgraduate Courses

    Science.gov (United States)

    Freitas, Maria João; Silva, Joana Vieira; Korrodi-Gregório, Luís; Fardilha, Margarida

    2016-01-01

    At the Portuguese universities, practical classes of life sciences are usually professor-centered 2-hour classes. This approach results in students underprepared for a real work environment in a research/clinical laboratory. To provide students with a real-life laboratory environment, the Non-Stop Lab Week (NSLW) was created in the Molecular…

  6. Invocation of Grid operations in the ViroLab Virtual Laboratory

    NARCIS (Netherlands)

    Bartyński, T.; Malawski, M.; Bubak, M.; Bubak, M.; Turała, M.; Wiatr, K.

    2008-01-01

    This paper presents invocation of grid operations within the ViroLab Virtual Laboratory. Virtual laboratory enables users to develop and execute experiments that access computational resources on the Grid exposed via various middleware technologies. An abstraction over the Grid environment is

  7. In silico and wet lab approaches to study transcriptional regulation

    NARCIS (Netherlands)

    Hestand, Matthew Scott

    2010-01-01

    Gene expression is a complicated process with multiple types of regulation, including binding of proteins termed transcription factors. This thesis looks at transcription factors and transcription factor binding site discovery through computational predictions and wet lab work to better elucidate

  8. Macintosh/LabVIEW based control and data acquisition system for a single photon counting fluorometer

    Science.gov (United States)

    Stryjewski, Wieslaw J.

    1991-08-01

    A flexible software system has been developed for controlling fluorescence decay measurements using the virtual instrument approach offered by LabVIEW. The time-correlated single photon counting instrument operates under computer control in both manual and automatic mode. Implementation time was short and the equipment is now easier to use, reducing the training time required for new investigators. It is not difficult to customize the front panel or adapt the program to a different instrument. We found LabVIEW much more convenient to use for this application than traditional, textual computer languages.

  9. Computer assisted instruction in the general chemistry laboratory

    Science.gov (United States)

    Pate, Jerry C.

    This dissertation examines current applications concerning the use of computer technology to enhance instruction in the general chemistry laboratory. The dissertation critiques widely-used educational software, and explores examples of multimedia presentations such as those used in beginning chemistry laboratory courses at undergraduate and community colleges. The dissertation describes a prototype compact disc (CD) used to (a) introduce the general chemistry laboratory, (b) familiarize students with using chemistry laboratory equipment, (c) introduce laboratory safety practices, and (d) provide approved techniques for maintaining a laboratory notebook. Upon completing the CD portion of the pre-lab, students are linked to individual self-help (WebCT) quizzes covering the information provided on the CD. The CD is designed to improve student understanding of basic concepts, techniques, and procedures used in the general chemistry laboratory.

  10. Engaging Digital Natives

    Science.gov (United States)

    Preusse-Burr, Beatrix

    2011-01-01

    Many classrooms have interactive whiteboards and several computers and many schools are equipped with a computer lab and mobile labs. However, there typically are not enough computers for every student in each classroom; mobile labs are often shared between several members of a team and time in the computer labs needs to be scheduled in advance.…

  11. Enhancing Communication Skills of Pre-service Physics Teacher through HOT Lab Related to Electric Circuit

    Science.gov (United States)

    Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.; Dirgantara, Y.; Yuniarti, H.; Sapriadil, S.; Hermita, N.

    2018-01-01

    This study aimed to investigate the improvement to pre-service teacher’s communication skills through Higher Order Thinking Laboratory (HOT Lab) on electric circuit topic. This research used the quasi-experiment method with pretest-posttest control group design. Research subjects were 60 students of Physics Education in UIN Sunan Gunung Djati Bandung. The sample was chosen by random sampling technique. Students’ communication skill data collected using a communication skills test instruments-essays form and observations sheets. The results showed that pre-service teacher communication skills using HOT Lab were higher than verification lab. Student’s communication skills in groups using HOT Lab were not influenced by gender. Communication skills could increase due to HOT Lab based on problems solving that can develop communication through hands-on activities. Therefore, the conclusion of this research shows the application of HOT Lab is more effective than the verification lab to improve communication skills of pre-service teachers in electric circuit topic and gender is not related to a person’s communication skills.

  12. Computer vision syndrome: a study of knowledge and practices in university students.

    Science.gov (United States)

    Reddy, S C; Low, C K; Lim, Y P; Low, L L; Mardina, F; Nursaleha, M P

    2013-01-01

    Computer vision syndrome (CVS) is a condition in which a person experiences one or more of eye symptoms as a result of prolonged working on a computer. To determine the prevalence of CVS symptoms, knowledge and practices of computer use in students studying in different universities in Malaysia, and to evaluate the association of various factors in computer use with the occurrence of symptoms. In a cross sectional, questionnaire survey study, data was collected in college students regarding the demography, use of spectacles, duration of daily continuous use of computer, symptoms of CVS, preventive measures taken to reduce the symptoms, use of radiation filter on the computer screen, and lighting in the room. A total of 795 students, aged between 18 and 25 years, from five universities in Malaysia were surveyed. The prevalence of symptoms of CVS (one or more) was found to be 89.9%; the most disturbing symptom was headache (19.7%) followed by eye strain (16.4%). Students who used computer for more than 2 hours per day experienced significantly more symptoms of CVS (p=0.0001). Looking at far objects in-between the work was significantly (p=0.0008) associated with less frequency of CVS symptoms. The use of radiation filter on the screen (p=0.6777) did not help in reducing the CVS symptoms. Ninety percent of university students in Malaysia experienced symptoms related to CVS, which was seen more often in those who used computer for more than 2 hours continuously per day. © NEPjOPH.

  13. A cyber-linked undergraduate research experience in computational biomolecular structure prediction and design.

    Science.gov (United States)

    Alford, Rebecca F; Leaver-Fay, Andrew; Gonzales, Lynda; Dolan, Erin L; Gray, Jeffrey J

    2017-12-01

    Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology.

  14. A cyber-linked undergraduate research experience in computational biomolecular structure prediction and design.

    Directory of Open Access Journals (Sweden)

    Rebecca F Alford

    2017-12-01

    Full Text Available Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology.

  15. Assessing computer skills in Tanzanian medical students: an elective experience

    Directory of Open Access Journals (Sweden)

    Melvin Rob

    2004-08-01

    Full Text Available Abstract Background One estimate suggests that by 2010 more than 30% of a physician's time will be spent using information technology tools. The aim of this study is to assess the information and communication technologies (ICT skills of medical students in Tanzania. We also report a pilot intervention of peer mentoring training in ICT by medical students from the UK tutoring students in Tanzania. Methods Design: Cross sectional study and pilot intervention study. Participants: Fourth year medical students (n = 92 attending Muhimbili University College of Health Sciences, Dar es Salaam, Tanzania. Main outcome measures: Self-reported assessment of competence on ICT-related topics and ability to perform specific ICT tasks. Further information related to frequency of computer use (hours per week, years of computer use, reasons for use and access to computers. Skills at specific tasks were reassessed for 12 students following 4 to 6 hours of peer mentoring training. Results The highest levels of competence in generic ICT areas were for email, Internet and file management. For other skills such as word processing most respondents reported low levels of competence. The abilities to perform specific ICT skills were low – less than 60% of the participants were able to perform the core specific skills assessed. A period of approximately 5 hours of peer mentoring training produced an approximate doubling of competence scores for these skills. Conclusion Our study has found a low level of ability to use ICT facilities among medical students in a leading university in sub-Saharan Africa. A pilot scheme utilising UK elective students to tutor basic skills showed potential. Attention is required to develop interventions that can improve ICT skills, as well as computer access, in order to bridge the digital divide.

  16. Stepwise Approach to Writing Journal-Style Lab Reports in the Organic Chemistry Course Sequence

    Science.gov (United States)

    Wackerly, Jay Wm.

    2018-01-01

    An approach is described that gradually transitions second-year organic chemistry students to writing full "The Journal of Organic Chemistry" ("JOC") style lab reports. The primary goal was to introduce students to and build rhetorical skills in scientific and technical writing. This was accomplished by focusing on four main…

  17. Mobile Learning According to Students of Computer Engineering and Computer Education: A Comparison of Attitudes

    Directory of Open Access Journals (Sweden)

    Deniz Mertkan GEZGIN

    2018-01-01

    Full Text Available Mobile learning has started to perform an increasingly significant role in improving learning outcomes in education. Successful and efficient implementation of m-learning in higher education, as with all educational levels, depends on users’ acceptance of this technology. This study focuses on investigating the attitudes of undergraduate students of Computer Engineering (CENG and Computer Education and Instructional Technology (CEIT departments in a Turkish public university towards m-learning from three perspectives; gender, area of study, and mobile device ownership. Using a correlational survey method, a Mobile Learning Attitude Scale (MLAS was administered to 531 students, analysis of which revealed a positive attitude to m-learning in general. A further investigation of the aforementioned three variables showed a more positive attitude for female students in terms of usability, for CEIT students in terms of advantages, usability and independence, and for those owning a mobile device in terms of usability. An important implication from the findings, among others, is supplementing Computer Engineering curriculum with elective courses on the fundamentals of mobile learning, and/or the design and development of m-learning software, so as to create, in the long run, more specialized and complementary teams comprised of trained CENG and CEIT graduates in m-learning sector.

  18. Teaching advance care planning to medical students with a computer-based decision aid.

    Science.gov (United States)

    Green, Michael J; Levi, Benjamin H

    2011-03-01

    Discussing end-of-life decisions with cancer patients is a crucial skill for physicians. This article reports findings from a pilot study evaluating the effectiveness of a computer-based decision aid for teaching medical students about advance care planning. Second-year medical students at a single medical school were randomized to use a standard advance directive or a computer-based decision aid to help patients with advance care planning. Students' knowledge, skills, and satisfaction were measured by self-report; their performance was rated by patients. 121/133 (91%) of students participated. The Decision-Aid Group (n = 60) outperformed the Standard Group (n = 61) in terms of students' knowledge (p satisfaction with their learning experience (p student performance. Use of a computer-based decision aid may be an effective way to teach medical students how to discuss advance care planning with cancer patients.

  19. OpenLabNotes

    DEFF Research Database (Denmark)

    List, Markus; Franz, Michael; Tan, Qihua

    2015-01-01

    be advantageous if an ELN was Integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to Open......LabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively Closes the gap between research documentation and sample management......, thus making Open-Lab Framework more attractive for laboratories that seek to increase productivity through electronic data management....

  20. Teacher Conceptions and Approaches Associated with an Immersive Instructional Implementation of Computer-Based Models and Assessment in a Secondary Chemistry Classroom

    Science.gov (United States)

    Waight, Noemi; Liu, Xiufeng; Gregorius, Roberto Ma.; Smith, Erica; Park, Mihwa

    2014-01-01

    This paper reports on a case study of an immersive and integrated multi-instructional approach (namely computer-based model introduction and connection with content; facilitation of individual student exploration guided by exploratory worksheet; use of associated differentiated labs and use of model-based assessments) in the implementation of…

  1. Student Motivation in Computer Networking Courses

    OpenAIRE

    Wen-Jung Hsin, PhD

    2007-01-01

    This paper introduces several hands-on projects that have been used to motivate students in learning various computer networking concepts. These projects are shown to be very useful and applicable to the learners’ daily tasks and activities such as emailing, Web browsing, and online shopping and banking, and lead to an unexpected byproduct, self-motivation.

  2. Cloud Computing as Network Environment in Students Work

    OpenAIRE

    Piotrowski, Dominik Mirosław

    2013-01-01

    The purpose of the article was to show the need for literacy education from a variety of services available in the cloud computing as a specialist information field of activity. Teaching at university in the field of cloud computing related to the management of information could provide tangible benefits in the form of useful learning outcomes. This allows students and future information professionals to begin enjoying the benefits of cloud computing SaaS model at work, thereby freeing up of...

  3. Effects of Implementing a Hybrid Wet Lab and Online Module Lab Curriculum into a General Chemistry Course: Impacts on Student Performance and Engagement with the Chemistry Triplet

    Science.gov (United States)

    Irby, Stefan M.; Borda, Emily J.; Haupt, Justin

    2018-01-01

    Here, we describe the implementation a hybrid general chemistry teaching laboratory curriculum that replaces a portion of a course's traditional "wet lab" experiences with online virtual lab modules. These modules intentionally utilize representations on all three levels of the chemistry triplet-macroscopic, submicroscopic, and symbolic.…

  4. The Impact Of Using Computer Software On Vocabulary Learning Of Iranian EFL University Students

    Directory of Open Access Journals (Sweden)

    Samira Pahlavanpoorfard

    2014-07-01

    Full Text Available Today, using computer is common in all fields. Education is not an exception. In fact, this approach of technology has been using increasingly in language classrooms. We have witnessed there are more and more language teachers are using computers in their classrooms. This research study investigates the impact of using computer   on vocabulary learning of Iranian EFL university students. To this end, a sample of 40 university students in Islamic Azad University, Larestan branch were randomly assigned into the experimental and control groups. Prior the treatment and to catch the initial deferences between the participants, all the students sat for a pre-test that was an Oxford Placement Test. Then the students were received the treatment for 10 weeks. The students in the experimental group were taught by computer software for vocabulary learning while the students in the control group were taught through traditional method for vocabulary learning. After the treatment, all the students sat for a post-test. The statistical analysis through running Independent-Sample T-tests revealed thatthe students in the experimental group who used the computer software for vocabulary learning performed better than the students in the control group were taught through traditional method for vocabulary learning.

  5. Promoting healthy computer use among middle school students: a pilot school-based health promotion program.

    Science.gov (United States)

    Ciccarelli, Marina; Portsmouth, Linda; Harris, Courtenay; Jacobs, Karen

    2012-01-01

    Introduction of notebook computers in many schools has become integral to learning. This has increased students' screen-based exposure and the potential risks to physical and visual health. Unhealthy computing behaviours include frequent and long durations of exposure; awkward postures due to inappropriate furniture and workstation layout, and ignoring computer-related discomfort. Describe the framework for a planned school-based health promotion program to encourage healthy computing behaviours among middle school students. This planned program uses a community- based participatory research approach. Students in Year 7 in 2011 at a co-educational middle school, their parents, and teachers have been recruited. Baseline data was collected on students' knowledge of computer ergonomics, current notebook exposure, and attitudes towards healthy computing behaviours; and teachers' and self-perceived competence to promote healthy notebook use among students, and what education they wanted. The health promotion program is being developed by an inter-professional team in collaboration with students, teachers and parents to embed concepts of ergonomics education in relevant school activities and school culture. End of year changes in reported and observed student computing behaviours will be used to determine the effectiveness of the program. Building a body of evidence regarding physical health benefits to students from this school-based ergonomics program can guide policy development on the healthy use of computers within children's educational environments.

  6. A case study on support for students' thinking through computer-mediated communication.

    Science.gov (United States)

    Sannomiya, M; Kawaguchi, A

    2000-08-01

    This is a case study on support for thinking through computer-mediated communication. Two graduate students were supervised in their research using computer-mediated communication, which was asynchronous and written; the supervisor was not present. The students' reports pointed out there was more planning and editing and low interactivity in this approach relative to face-to-face communication. These attributes were confirmed by their supervisor's report. The students also suggested that the latter was effective in support of a production stage of thinking in research, while the former approach was effective in support of examination of thinking. For distance education to be successful, an appropriate combination of communication media must consider students' thinking stages. Finally, transient and permanent effects should be discriminated in computer-mediated communication.

  7. The survey of American college students computer technology preferences & purchasing plans

    CERN Document Server

    2009-01-01

    This report presents data from a survey of more than 400 American college students.  The report presents data on student computer ownership of both PCs and laptops, purchasing plans for PCs and laptops, as well as purchasing plans for cell phones and digital cameras.  The report also provides details on how student finance their computer purchases, how much money comes from parents or guardians, and how much from the student themselves, or from their parties.  In addition to data on PCs the report provides detailed info on use of popular word processing packages such as Word, WordPerfect and Open Office.

  8. Students' views about the nature of experimental physics

    Science.gov (United States)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2017-12-01

    The physics community explores and explains the physical world through a blend of theoretical and experimental studies. The future of physics as a discipline depends on training of students in both the theoretical and experimental aspects of the field. However, while student learning within lecture courses has been the subject of extensive research, lab courses remain relatively under-studied. In particular, there is little, if any, data available that address the effectiveness of physics lab courses at encouraging students to recognize the nature and importance of experimental physics within the discipline as a whole. To address this gap, we present the first large-scale, national study (Ninstitutions=75 and Nstudents=7167 ) of undergraduate physics lab courses through analysis of students' responses to a research-validated assessment designed to investigate students' beliefs about the nature of experimental physics. We find that students often enter and leave physics lab courses with ideas about experimental physics as practiced in their courses that are inconsistent with the views of practicing experimental physicists, and this trend holds at both the introductory and upper-division levels. Despite this inconsistency, we find that both introductory and upper-division students are able to accurately predict the expertlike response even in cases where their views about experimentation in their lab courses disagree. These finding have implications for the recruitment, retention, and adequate preparation of students in physics.

  9. Students Computer Skills in Faculty of Education

    Directory of Open Access Journals (Sweden)

    Mehmet Caglar

    2010-09-01

    Full Text Available Nowadays; the usage of technology is not a privilege but an obligation. Technological developments influence structures andfunctions of educational institutions. It is also expected from the teachers that they integrate technology in their lessons inorder to educate the individuals of information society. This research has covered 145(68 female, 78 male students, studying inNear East University Faculty of Education. The Computer Skills Scale developed by Güçlü (2010 was used as a data collectingtool. Data were analysed using SPSS software program. In this study, students’ computer skills were investigated; the variationsin the relationships between computer skills and (a gender, (b family’s net monthly income, (c presence of computers athome, (d presence of a computer laboratory at school and (e parents’ computer skills were examined. Frequency analysis,percentage and mean calculations were used. In addition, t-test and multi-variate analysis were used to look at the relationshipbetween different variables. As a result of this study, a statistically significant relationship between computer skills of studentswho had a computer at home and computer skills of those who didn’t have a computer at home were found.

  10. Using Laptop Computers in Class: A Student Motivation Perspective

    Science.gov (United States)

    Houle, Philip A.; Reed, Diana; Vaughan, Amy Grace; Clayton, Suzanne R.

    2013-01-01

    This study examined the reasons why students choose to take laptop computers into college classes. The model involved the individual student choice involving opportunity, ability and motivation. The resulting model demonstrated how some (primary) factors, such as effective learning, directly impact the laptop usage choice, and other factors…

  11. Biology Students Building Computer Simulations Using StarLogo TNG

    Science.gov (United States)

    Smith, V. Anne; Duncan, Ishbel

    2011-01-01

    Confidence is an important issue for biology students in handling computational concepts. This paper describes a practical in which honours-level bioscience students simulate complex animal behaviour using StarLogo TNG, a freely-available graphical programming environment. The practical consists of two sessions, the first of which guides students…

  12. Open-ended versus guided laboratory activities:Impact on students' beliefs about experimental physics

    Science.gov (United States)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2016-12-01

    Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the process of experimental physics. Alternatively, open-ended laboratory activities can provide a more authentic learning environment by, for example, allowing students to exercise greater autonomy in what and how physical phenomena are investigated. Engaging in authentic practices may be a critical part of improving students' beliefs around the nature of experimental physics. Here, we investigate the impact of open-ended activities in undergraduate lab courses on students' epistemologies and expectations about the nature of experimental physics, as well as their confidence and affect, as measured by the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a national data set of student responses to the E-CLASS, we find that the inclusion of some open-ended lab activities in a lab course correlates with more expertlike postinstruction responses relative to courses that include only traditional guided lab activities. This finding holds when examining postinstruction E-CLASS scores while controlling for the variance associated with preinstruction scores, course level, student major, and student gender.

  13. Student Motivation in Computer Networking Courses

    Directory of Open Access Journals (Sweden)

    Wen-Jung Hsin

    2007-01-01

    Full Text Available This paper introduces several hands-on projects that have been used to motivate students in learning various computer networking concepts. These projects are shown to be very useful and applicable to the learners’ daily tasks and activities such as emailing, Web browsing, and online shopping and banking, and lead to an unexpected byproduct, self-motivation.

  14. Development of software in LabVIEW for measurement of transport properties of high Tc superconductors

    International Nuclear Information System (INIS)

    Reilly, D.; Savvides, N.

    1996-01-01

    Full text: The gathering of data and their analysis are vital processes in experiments. We have used LabVIEW (National Instruments) to develop programs to measure transport properties of high - T c superconductors, eg. resistivity, ac susceptibility, I-V characteristics. Our systems make use of GPIB (IEEE - 488.2) programmable instruments and a personal computer. LabVIEW is a graphical programming system for instrument control and data acquisition, data analysis and presentation. A key feature of LabVIEW is the ability to graphically assemble software modules or virtual instruments (VIs) and 'wire' them together. In this paper we describe the development of several programs and will offer advice to colleagues wanting to explore LabVIEW

  15. Do Policies that Encourage Better Attendance in Lab Change Students' Academic Behaviors and Performances in Introductory Science Courses?

    Science.gov (United States)

    Moore, Randy; Jensen, Philip A.

    2008-01-01

    Science courses with hands-on investigative labs are a typical part of the general education requirements at virtually all colleges and universities. In these courses, labs that satisfy a curricular requirement for "lab experience" are important because they provide the essence of the scientific experience--that is, they give students…

  16. Linear Motor Motion Control Experiment System Design Based on LabVIEW

    Directory of Open Access Journals (Sweden)

    Cuixian He

    2018-01-01

    Full Text Available In order to meet the needs of experimental training of electrical information industry, a linear motor motion experiment system based on LabVIEW was developed. This system is based on the STM32F103ZET6 system processor controller, a state signal when the motor moves through the grating encoder feedback controller to form a closed loop, through the RS232 serial port communication with the host computer, the host computer is designed in the LabVIEW interactive environment monitoring software. Combined with the modular design concept proposed overall program, given the detailed hardware circuit, targeted for the software function design, to achieve man-machine interface. The system control of high accuracy, good stability, meet the training requirements for laboratory equipment, but also as a reference embodiment of the linear motor monitoring system.

  17. Bringing optics to Fab Labs in Europe

    Science.gov (United States)

    Adam, Aurèle; Zuidwijk, Thim; Urbach, Paul

    2017-08-01

    The Optics Group of Delft University of Technology plays a major role in teaching optics to bachelor and master students. In addition, the group has a long record of introducing, demonstrating and teaching optics to quite diverse groups of people from outside of the university. We will describe some of these activities and focus on a recently started project funded by the European Commission called Phablabs 4.0, which aims to bring photonics to European Fab labs.

  18. Computer use and vision-related problems among university students in ajman, United arab emirate.

    Science.gov (United States)

    Shantakumari, N; Eldeeb, R; Sreedharan, J; Gopal, K

    2014-03-01

    The extensive use of computers as medium of teaching and learning in universities necessitates introspection into the extent of computer related health disorders among student population. This study was undertaken to assess the pattern of computer usage and related visual problems, among University students in Ajman, United Arab Emirates. A total of 500 Students studying in Gulf Medical University, Ajman and Ajman University of Science and Technology were recruited into this study. Demographic characteristics, pattern of usage of computers and associated visual symptoms were recorded in a validated self-administered questionnaire. Chi-square test was used to determine the significance of the observed differences between the variables. The level of statistical significance was at P computer users were headache - 53.3% (251/471), burning sensation in the eyes - 54.8% (258/471) and tired eyes - 48% (226/471). Female students were found to be at a higher risk. Nearly 72% of students reported frequent interruption of computer work. Headache caused interruption of work in 43.85% (110/168) of the students while tired eyes caused interruption of work in 43.5% (98/168) of the students. When the screen was viewed at distance more than 50 cm, the prevalence of headaches decreased by 38% (50-100 cm - OR: 0.62, 95% of the confidence interval [CI]: 0.42-0.92). Prevalence of tired eyes increased by 89% when screen filters were not used (OR: 1.894, 95% CI: 1.065-3.368). High prevalence of vision related problems was noted among university students. Sustained periods of close screen work without screen filters were found to be associated with occurrence of the symptoms and increased interruptions of work of the students. There is a need to increase the ergonomic awareness among students and corrective measures need to be implemented to reduce the impact of computer related vision problems.

  19. Specially Designed Sound-Boxes Used by Students to Perform School-Lab Sensor–Based Experiments, to Understand Sound Phenomena

    Directory of Open Access Journals (Sweden)

    Stefanos Parskeuopoulos

    2011-02-01

    Full Text Available The research presented herein investigates and records students’ perceptions relating to sound phenomena and their improvement during a specialised laboratory practice utilizing ICT and a simple experimental apparatus, especially designed for teaching. This school-lab apparatus and its operation are also described herein. A number of 71 first and second grade Vocational-school students, aged 16 to 20, participated in the research. These were divided into groups of 4-5 students, each of which worked for 6 hours in order to complete all activities assigned. Data collection was carried out through personal interviews as well as questionnaires which were distributed before and after the instructive intervention. The results shows that students’ active involvement with the simple teaching apparatus, through which the effects of sound waves are visible, helps them comprehend sound phenomena. It also altered considerably their initial misconceptions about sound propagation. The results are presented diagrammatically herein, while some important observations are made, relating to the teaching and learning of scientific concepts concerning sound.

  20. ASSESSMENT OF KNOWLEDGE AND ATTITUDE OF COMPUTER ASSISTED LEARNING AMONG MEDICAL STUDENTS

    Directory of Open Access Journals (Sweden)

    Ravish

    2015-12-01

    Full Text Available INTRODUCTION: It is going truth globally that the medical course in medical college students are developed via computer mediated learning.1 Utilization of both the range upon online messages options must create study exciting, monetization, and likely as hired. We Hypothesized that survey will facilitate to permit us to be able to blueprint some on this necessary condition among my medical students and also to improve our study facilities a lot of automatically. A set of closed ended problems remained displayed on departmental website, to evaluate their computer skills and talents and their own assessment in computer and internet skills helping in learning. In the beginning months of 1st year MBBS college students 2014-15 batch taken up voluntarily to the study through MCQs questions provided to them in the form of departmental website. A batch of 50 college students surveyed on 3 different days. Although 80% students were confident with the operational skills of the computer, the opinion regarding the usage of computers for web based learning activities was not uniform i.e., 55% of the participants felt uncomfortable with web assisted activity in comparison to paper based activity. However, 49% were of the opinion that paper based activity might become redundant and websites will take over books in the future. Expansion on computer-assisted study requires traditional changes as well as thoughtful strategic planning, resource giving, staff benefits, Edutainment promotion by multidisciplinary working, and efficient quality control.

  1. A Survey of Current Computer Information Science (CIS) Students.

    Science.gov (United States)

    Los Rios Community Coll. District, Sacramento, CA. Office of Institutional Research.

    This document is a survey designed to be completed by current students of Computer Information Science (CIS) in the Los Rios Community College District (LRCCD), which consists of three community colleges: American River College, Cosumnes River College, and Sacramento City College. The students are asked about their educational goals and how…

  2. Student Engagement with Computer-Generated Feedback: A Case Study

    Science.gov (United States)

    Zhang, Zhe

    2017-01-01

    In order to benefit from feedback on their writing, students need to engage effectively with it. This article reports a case study on student engagement with computer-generated feedback, known as automated writing evaluation (AWE) feedback, in an EFL context. Differing from previous studies that explored commercially available AWE programs, this…

  3. Influence of Learning Strategy of Cognitive Conflict on Student Misconception in Computational Physics Course

    Science.gov (United States)

    Akmam, A.; Anshari, R.; Amir, H.; Jalinus, N.; Amran, A.

    2018-04-01

    Misconception is one of the factors causing students are not suitable in to choose a method for problem solving. Computational Physics course is a major subject in the Department of Physics FMIPA UNP Padang. The problem in Computational Physics learning lately is that students have difficulties in constructing knowledge. The indication of this problem was the student learning outcomes do not achieve mastery learning. The root of the problem is the ability of students to think critically weak. Student critical thinking can be improved using cognitive by conflict learning strategies. The research aims to determine the effect of cognitive conflict learning strategy to student misconception on the subject of Computational Physics Course at the Department of Physics, Faculty of Mathematics and Science, Universitas Negeri Padang. The experimental research design conducted after-before design cycles with a sample of 60 students by cluster random sampling. Data were analyzed using repeated Anova measurements. The cognitive conflict learning strategy has a significant effect on student misconception in the subject of Computational Physics Course.

  4. DOE EiR at Oakridge National Lab 2008/09

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Michael

    2012-11-30

    This project placed an experienced technology entrepreneur at Oak Ridge National Lab, one of DOE's premier laboratories undertaking cutting edge research in a variety of fields, including energy technologies. With the goal of accelerating the commercialization of advanced energy technologies, the task was to review available technologies at the lab and identify those that qualify for licensing and commercialization by a private startup company, backed by private venture capital. During the project, more than 1,500 inventions filed at the lab were reviewed over a 1 year period; a successively smaller number was selected for more detailed review, ultimately resulting in five, and then 1 technology, being reviewed for immediate commercialization. The chosen technology, consisting in computational chemistry based approached to optimization of enzymes, was tested in lab experiments, paid for by funds raised by ORNL for the purpose of proving out the effectiveness of the technology and readiness for commercialization. The experiments proved out that the technology worked however it's performance proved not yet mature enough to qualify for private venture capital funded commercialization in a high tech startup. As a consequence, the project did not result in a new startup company being formed, as originally intended.

  5. A Further Characterization of Empirical Research Related to Learning Outcome Achievement in Remote and Virtual Science Labs

    Science.gov (United States)

    Brinson, James R.

    2017-10-01

    This paper further characterizes recently reviewed literature related to student learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) science labs, as well as factors to consider when evaluating the state and progress of research in this field as a whole. Current research is characterized according to (1) participant nationality and culture, (2) participant education level, (3) participant demography, (4) scientific discipline, and (5) research methodology, which could provide avenues for further research and useful dialog regarding the measurement and interpretation of data related to student learning outcome achievement in, and thus the efficacy of, non-traditional versus traditional science labs. Current research is also characterized by (6) research publication media and (7) availability of non-traditional labs used, which demonstrate some of the obstacles to progress and consensus in this research field.

  6. Promoting Undergraduate Surgical Education: Current Evidence and Students' Views on ESMSC International Wet Lab Course.

    Science.gov (United States)

    Sideris, Michail; Papalois, Apostolos; Theodoraki, Korina; Dimitropoulos, Ioannis; Johnson, Elizabeth O; Georgopoulou, Efstratia-Maria; Staikoglou, Nikolaos; Paparoidamis, Georgios; Pantelidis, Panteleimon; Tsagkaraki, Ismini; Karamaroudis, Stefanos; Potoupnis, Michael E; Tsiridis, Eleftherios; Dedeilias, Panagiotis; Papagrigoriadis, Savvas; Papalois, Vassilios; Zografos, Georgios; Triantafyllou, Aggeliki; Tsoulfas, Georgios

    2017-04-01

    Undergraduate Surgical Education is becoming an essential element in the training of the future generation of safe and efficient surgeons. Essential Skills in the Management of Surgical Cases (ESMSC), is an international, joint applied surgical science and simulation-based learning wet lab course. We performed a review of the existing literature on the topic of undergraduate surgical education. Following that, we analyzed the feedback questionnaire received 480 from 2 recent series of ESMSC courses (May 2015, n = 49 and November 2015, n = 40), in order to evaluate European Union students' (UK, Germany, Greece) views on the ESMSC course, as well as on the undergraduate surgical education. Results Using a 10 point graded scale, the overall ESMSC concept was positively evaluated, with a mean score of 9.41 ± 0.72 (range: 8-10) and 8.94 ± 1.1 (range: 7-10). The majority of delegates from both series [9.86 ± 0.43 (range: 8-10) and 9.58 ± 0.91 (range: 6-10), respectively] believed that ESMSC should be incorporated in the undergraduate surgical curriculum. Comparison of responses from the UK to the Greek Medical Student, as well as the findings from the third and fourth year versus the fifth and sixth year Medical Students, revealed no statistically significant differences pertaining to any of the questions (p > 0.05). Current evidence in the literature supports the enhancement of surgical education through the systematic use of various modalities that provide Simulation-Based Training (SBT) hands-on experience, starting from the early undergraduate level. The findings of the present study are in agreement with these previous reports.

  7. Improving student retention in computer engineering technology

    Science.gov (United States)

    Pierozinski, Russell Ivan

    The purpose of this research project was to improve student retention in the Computer Engineering Technology program at the Northern Alberta Institute of Technology by reducing the number of dropouts and increasing the graduation rate. This action research project utilized a mixed methods approach of a survey and face-to-face interviews. The participants were male and female, with a large majority ranging from 18 to 21 years of age. The research found that participants recognized their skills and capability, but their capacity to remain in the program was dependent on understanding and meeting the demanding pace and rigour of the program. The participants recognized that curriculum delivery along with instructor-student interaction had an impact on student retention. To be successful in the program, students required support in four domains: academic, learning management, career, and social.

  8. A REAL-TIME DATA ACQUISITION APPORACH OF ENVIROMENTAL ERGONOMIC PARAMETER USING LabVIEW

    Directory of Open Access Journals (Sweden)

    ZULFADLI ZAILAN

    2016-04-01

    Full Text Available A safe and comfort workstation can increase the performances of the worker. Environment parameter is one of the factor that need to be monitor and display to create a safe and comfort work station. An acquisition system that can monitored and display these environment parameter need to be developed. In this paper, an acquisition system is developed to monitored and display three environment parameter which is sound, light and temperature. An acquisition system consists of sensor, data acquisition (DAQ, power supply board, computer and LabVIEW. Sensor will captured the environment parameter then DAQ convert the signal gained from sensor into computer. All the data from sensor and DAQ then will be program by using LabVIEW. An acquisition system has been test and able to captured all three environment data and test is conducted in the lab scale. It is hoped that with this acquisition system, a safe and comfort workstation can be provided to a worker and eventually can increase workers performance and decrease worker’s medical cost due to low accident and health problem among workers.

  9. How Science Students Can Learn about Unobservable Phenomena Using Computer-Based Analogies

    Science.gov (United States)

    Trey, L.; Khan, S.

    2008-01-01

    A novel instructional computer simulation that incorporates a dynamic analogy to represent Le Chatelier's Principle was designed to investigate the contribution of this feature to students' understanding. Two groups of 12th grade Chemistry students (n=15) interacted with the computer simulation during the study. Both groups did the same…

  10. Effects of Computer Graphics Types and Epistemological Beliefs on Students' Learning of Mathematical Concepts.

    Science.gov (United States)

    Lin, Chi-Hui

    2002-01-01

    Describes a study that determined the implications of computer graphics types and epistemological beliefs with regard to the design of computer-based mathematical concept learning with elementary school students in Taiwan. Discusses the factor structure of the epistemological belief questionnaire, student performance, and students' attitudes…

  11. Graduate teaching assistants' perceptions of teaching competencies required for work in undergraduate science labs

    Science.gov (United States)

    Deacon, Christopher; Hajek, Allyson; Schulz, Henry

    2017-11-01

    Many post-secondary institutions provide training and resources to help GTAs fulfil their teaching roles. However, few programmes focus specifically on the teaching competencies required by GTAs who work with undergraduate students in laboratory settings where learning tends to be more active and inquiry based than in classroom settings. From a review of 8 GTA manuals, we identified 20 competencies and then surveyed faculty and lab coordinators (FIS) and GTAs from a Faculty of Science at a comprehensive Canadian university to identify which of those competencies are required of GTAs who work in undergraduate science labs. GTAs and FIS did not significantly differ in the competencies they view as required for GTAs to work effectively in undergraduate labs. But, when comparing the responses of GTAs and FIS to TA manuals, 'Clearly and effectively communicates ideas and information with students' was the only competency for which there was agreement on the level of requirement. We also examined GTAs' self-efficacy for each of the identified competencies and found no overall relationship between self-efficacy and demographic characteristics, including experience and training. Our results can be used to inform the design of training programmes specifically for GTAs who work in undergraduate science labs, for example, programmes should provide strategies for GTAs to obtain feedback which they can use to enhance their teaching skills. The goal of this study is to improve undergraduate lab instruction in faculties of science and to enhance the teaching experience of GTAs by better preparing them for their role.

  12. [Skills lab training in veterinary medicine. Effective preparation for clinical work at the small animal clinic of the University for Veterinary Medicine Hannover, Foundation].

    Science.gov (United States)

    Engelskirchen, Simon; Ehlers, Jan; Kirk, Ansgar T; Tipold, Andrea; Dilly, Marc

    2017-09-20

    During five and a half years of studying veterinary medicine, students should in addition to theoretical knowledge acquire sufficient practical skills. Considering animal welfare and ethical aspects, opportunities for hands-on learning on living animals are limited because of the high annual number of students. The first German veterinary clinical-skills lab, established in 2013 at the University for Veterinary Medicine Hannover, Foundation (TiHo), offers opportunities for all students to learn, train and repeat clinical skills on simulators and models as frequently as they would like, until they feel sufficiently confident to transfer these skills to living animals. This study describes the establishment of clinical-skills lab training within the students' practical education, using the example of the small-animal clinic of the TiHo. Two groups of students were compared: without skills lab training (control group K) and with skills lab training (intervention group I). At the end of both the training and a subsequent 10-week clinical rotation in different sections of the clinic, an objective structured clinical examination (OSCE) was performed, testing the students' practical skills at 15 stations. An additional multiple-choice test was performed before and after the clinical rotation to evaluate the increased theoretical knowledge. Students of group I achieved significantly (p ≤ 0.05) better results in eight of the 15 tested skills. The multiple-choice test revealed a significant (p ≤ 0.05) gain of theoretical knowledge in both groups without any differences between the groups. Students displayed a high degree of acceptance of the skills lab training. Using simulators and models in veterinary education is an efficient teaching concept, and should be used continually and integrated in the curriculum.

  13. Data acquisition and real-time bolometer tomography using LabVIEW RT

    International Nuclear Information System (INIS)

    Giannone, L.; Eich, T.; Fuchs, J.C.; Ravindran, M.; Ruan, Q.; Wenzel, L.; Cerna, M.; Concezzi, S.

    2011-01-01

    The currently available multi-core PCI Express systems running LabVIEW RT (real-time), equipped with FPGA cards for data acquisition and real-time parallel signal processing, greatly shorten the design and implementation cycles of large-scale, real-time data acquisition and control systems. This paper details a data acquisition and real-time tomography system using LabVIEW RT for the bolometer diagnostic on the ASDEX Upgrade tokamak (Max Planck Institute for Plasma Physics, Garching, Germany). The transformation matrix for tomography is pre-computed based on the geometry of distributed radiation sources and sensors. A parallelized iterative algorithm is adapted to solve a constrained linear system for the reconstruction of the radiated power density. Real-time bolometer tomography is performed with LabVIEW RT. Using multi-core machines to execute the parallelized algorithm, a cycle time well below 1 ms is reached.

  14. Lower Secondary School Students' Attitudes Toward Computer-Supported Laboratory Exercises

    Directory of Open Access Journals (Sweden)

    Andreja Špernjak

    2010-03-01

    Full Text Available In Science teaching laboratory work is recognized as one of the cornerstones. In school science laboratory work computers can be used as computer supported laboratory (real and as virtual laboratory. In the first case “real” laboratories involve bench top experiments utilizing data acquisition systems while “virtual” laboratory entails interactive simulations and animations. Lower secondary school students in age between 11 and 15 performed three laboratory exercises (Activity of yeast, Gas exchange in breathing, Heart rate as classic, computer-supported and virtual laboratory. As a result of testing we know that all three methods are suitable even for younger students. When they were asked which method they liked the most, their first choice was computer-supported laboratory, followed by classic laboratory, and virtual laboratory at the end. Additionally recognized weak and strong sides of used methods are discussed.

  15. Open Educational Resources: The Role of OCW, Blogs and Videos in Computer Networks Classroom

    Directory of Open Access Journals (Sweden)

    Pablo Gil

    2012-09-01

    Full Text Available This paper analyzes the learning experiences and opinions obtained from a group of undergraduate students in their interaction with several on-line multimedia resources included in a free on-line course about Computer Networks. These new educational resources employed are based on the Web2.0 approach such as blogs, videos and virtual labs which have been added in a web-site for distance self-learning.

  16. A New Project-Based Lab for Undergraduate Environmental and Analytical Chemistry

    Science.gov (United States)

    Adami, Gianpiero

    2006-01-01

    A new project-based lab was developed for third year undergraduate chemistry students based on real world applications. The experience suggests that the total analytical procedure (TAP) project offers a stimulating alternative for delivering science skills and developing a greater interest for analytical chemistry and environmental sciences and…

  17. Computer Use and Vision-Related Problems Among University Students In Ajman, United Arab Emirate

    OpenAIRE

    Shantakumari, N; Eldeeb, R; Sreedharan, J; Gopal, K

    2014-01-01

    Background: The extensive use of computers as medium of teaching and learning in universities necessitates introspection into the extent of computer related health disorders among student population. Aim: This study was undertaken to assess the pattern of computer usage and related visual problems, among University students in Ajman, United Arab Emirates. Materials and Methods: A total of 500 Students studying in Gulf Medical University, Ajman and Ajman University of Science and Technology we...

  18. Interdisciplinary Team-Teaching Experience for a Computer and Nuclear Energy Course for Electrical and Computer Engineering Students

    Science.gov (United States)

    Kim, Charles; Jackson, Deborah; Keiller, Peter

    2016-01-01

    A new, interdisciplinary, team-taught course has been designed to educate students in Electrical and Computer Engineering (ECE) so that they can respond to global and urgent issues concerning computer control systems in nuclear power plants. This paper discusses our experience and assessment of the interdisciplinary computer and nuclear energy…

  19. Thinking processes used by high-performing students in a computer programming task

    Directory of Open Access Journals (Sweden)

    Marietjie Havenga

    2011-07-01

    Full Text Available Computer programmers must be able to understand programming source code and write programs that execute complex tasks to solve real-world problems. This article is a trans- disciplinary study at the intersection of computer programming, education and psychology. It outlines the role of mental processes in the process of programming and indicates how successful thinking processes can support computer science students in writing correct and well-defined programs. A mixed methods approach was used to better understand the thinking activities and programming processes of participating students. Data collection involved both computer programs and students’ reflective thinking processes recorded in their journals. This enabled analysis of psychological dimensions of participants’ thinking processes and their problem-solving activities as they considered a programming problem. Findings indicate that the cognitive, reflective and psychological processes used by high-performing programmers contributed to their success in solving a complex programming problem. Based on the thinking processes of high performers, we propose a model of integrated thinking processes, which can support computer programming students. Keywords: Computer programming, education, mixed methods research, thinking processes.  Disciplines: Computer programming, education, psychology

  20. National Labs Host Classroom Ready Energy Educational Materials

    Science.gov (United States)

    Howell, C. D.

    2009-12-01

    The Department of Energy (DOE) has a clear goal of joining all climate and energy agencies in the task of taking climate and energy research and development to communities across the nation and throughout the world. Only as information on climate and energy education is shared with the nation and world do research labs begin to understand the massive outreach work yet to be accomplished. The work at hand is to encourage and ensure the climate and energy literacy of our society. The national labs have defined the K-20 population as a major outreach focus, with the intent of helping them see their future through the global energy usage crisis and ensure them that they have choices and a chance to redirect their future. Students embrace climate and energy knowledge and do see an opportunity to change our energy future in a positive way. Students are so engaged that energy clubs are springing up in highschools across the nation. Because of such global clubs university campuses are being connected throughout the world (Energy Crossroads www.energycrossroads.org) etc. There is a need and an interest, but what do teachers need in order to faciliate this learning? It is simple, they need financial support for classroom resources; standards based classroom ready lessons and materials; and, training. The National Renewable Energy Laboratory (NREL), a Department of Energy Lab, provides standards based education materials to schools across the nation. With a focus on renewable energy and energy efficiency education, NREL helps educators to prompt students to analyze and then question their energy choices and evaluate their carbon footprint. Classrooms can then discover the effects of those choices on greenhouse gas emmissions and climate change. The DOE Office of Science has found a way to contribute to teachers professional development through the Department of Energy Academics Creating Teacher Scientists (DOE ACTS) Program. This program affords teachers an opportunity to

  1. Implementation of a Research-Based Lab Module in a High School Chemistry Curriculum: A Study of Classroom Dynamics

    Science.gov (United States)

    Pilarz, Matthew

    2013-01-01

    For this study, a research-based lab module was implemented in two high school chemistry classes for the purpose of examining classroom dynamics throughout the process of students completing the module. A research-based lab module developed for use in undergraduate laboratories by the Center for Authentic Science Practice in Education (CASPiE) was…

  2. Novartis School Lab: bringing young people closer to the world of research and discovering the excitement of science.

    Science.gov (United States)

    Michel, Christiane Röckl; Standke, Gesche; Naef, Reto

    2012-01-01

    The Novartis School Lab (http://www.novartis.ch/schullabor) is an institution with an old tradition. The School Lab reaches about 5000 students through internal courses and an additional 5000 children at public science events where they can enjoy hands-on science in disciplines of biomedical research. The subjects range from chemistry, physics, molecular biology and genetics to toxicology and medical topics. The Novartis School Lab offers a variety of activities for youngsters aged 10-20 ranging from lab courses for school classes, continuing education for teachers and development of teaching kits, support for individual research projects to outreach for public science events. Innovation and adaptation to changes of current needs are essential aspects for the Novartis School Lab. Ongoing activities to shape the Novartis Biomedical Learning Lab include design of new teaching experiments, exploration into additional disciplines of biomedical science and the creation of a fascinating School Lab of the future.

  3. Using Arduino to Teach Programming to First-Year Computer Science Students

    Science.gov (United States)

    Tan, Wee Lum; Venema, Sven; Gonzalez, Ruben

    2017-01-01

    Transitioning to university is recognised as a challenging endeavour for commencing students. For commencing Computer Science students specifically, evidence suggests a link between poor performance in introductory technical courses, such as programming, and high attrition rates. Building resilience in students, particularly at the start of their…

  4. Computer-Based Mathematics Instructions for Engineering Students

    Science.gov (United States)

    Khan, Mustaq A.; Wall, Curtiss E.

    1996-01-01

    Almost every engineering course involves mathematics in one form or another. The analytical process of developing mathematical models is very important for engineering students. However, the computational process involved in the solution of some mathematical problems may be very tedious and time consuming. There is a significant amount of mathematical software such as Mathematica, Mathcad, and Maple designed to aid in the solution of these instructional problems. The use of these packages in classroom teaching can greatly enhance understanding, and save time. Integration of computer technology in mathematics classes, without de-emphasizing the traditional analytical aspects of teaching, has proven very successful and is becoming almost essential. Sample computer laboratory modules are developed for presentation in the classroom setting. This is accomplished through the use of overhead projectors linked to graphing calculators and computers. Model problems are carefully selected from different areas.

  5. Musculoskeletal Problems Associated with University Students Computer Users: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Rakhadani PB

    2017-07-01

    Full Text Available While several studies have examined the prevalence and correlates of musculoskeletal problems among university students, scanty information exists in South African context. The objective of this study was to determine the prevalence, causes and consequences of musculoskeletal problems among University of Venda students’ computer users. This cross-sectional study involved 694 university students at the University of Venda. A self-designed questionnaire was used to collect information on the sociodemographic characteristics, problems associated with computer users, and causes of musculoskeletal problems associated with computer users. The majority (84.6% of the participants use computer for internet, wording processing (20.3%, and games (18.7%. The students reported neck pain when using computer (52.3%; shoulder (47.0%, finger (45.0%, lower back (43.1%, general body pain (42.9%, elbow (36.2%, wrist (33.7%, hip and foot (29.1% and knee (26.2%. Reported causes of musculoskeletal pains associated with computer usage were: sitting position, low chair, a lot of time spent on computer, uncomfortable laboratory chairs, and stressfulness. Eye problems (51.9%, muscle cramp (344.0%, headache (45.3%, blurred vision (38.0%, feeling of illness (39.9% and missed lectures (29.1% were consequences of musculoskeletal problems linked to computer use. The majority of students reported having mild pain (43.7%, moderate (24.2%, and severe (8.4% pains. Years of computer use were significantly associated with neck, shoulder and wrist pain. Using computer for internet was significantly associated with neck pain (OR=0.60; 95% CI 0.40-0.93; games: neck (OR=0.60; 95% CI 0.40-0.85 and hip/foot (OR=0.60; CI 95% 0.40-0.92, programming for elbow (OR= 1.78; CI 95% 1.10-2.94 and wrist (OR=2.25; CI 95% 1.36-3.73, while word processing was significantly associated with lower back (OR=1.45; CI 95% 1.03-2.04. Undergraduate study had a significant association with elbow pain (OR=2

  6. Using National Instruments LabVIEW[TM] Education Edition in Schools

    Science.gov (United States)

    Butlin, Chris A.

    2011-01-01

    With the development of LabVIEW[TM] Education Edition schools can now provide experience of using this widely used software. Here, a few of the many applications that students aged around 11 years and over could develop are outlined in the resulting front panel screen displays and block diagrams showing the associated graphical programmes, plus a…

  7. Laboratory Works Designed for Developing Student Motivation in Computer Architecture

    Directory of Open Access Journals (Sweden)

    Petre Ogrutan

    2017-02-01

    Full Text Available In light of the current difficulties related to maintaining the students’ interest and to stimulate their motivation for learning, the authors have developed a range of new laboratory exercises intended for first-year students in Computer Science as well as for engineering students after completion of at least one course in computers. The educational goal of the herein proposed laboratory exercises is to enhance the students’ motivation and creative thinking by organizing a relaxed yet competitive learning environment. The authors have developed a device including LEDs and switches, which is connected to a computer. By using assembly language, commands can be issued to flash several LEDs and read the states of the switches. The effectiveness of this idea was confirmed by a statistical study.

  8. Effect of Tutorial Mode of Computer-Assisted Instruction on Students ...

    African Journals Online (AJOL)

    This study investigated the effect of Tutorial Mode of Computer- Assisted Instruction (CAI) on students' academic performance in practical geography in Nigeria, However, the sample population of eighty (80) Senior Secondary School Two geography students that were randomly selected from two privately owned secondary ...

  9. Increasing Mathematical Computation Skills for Students with Physical and Health Disabilities

    Science.gov (United States)

    Webb, Paula

    2017-01-01

    Students with physical and health disabilities struggle with basic mathematical concepts. The purpose of this research study was to increase the students' mathematical computation skills through implementing new strategies and/or methods. The strategies implemented with the students was utilizing the ten-frame tiles and technology with the purpose…

  10. Designing for deeper learning in a blended computer science course for middle school students

    Science.gov (United States)

    Grover, Shuchi; Pea, Roy; Cooper, Stephen

    2015-04-01

    The focus of this research was to create and test an introductory computer science course for middle school. Titled "Foundations for Advancing Computational Thinking" (FACT), the course aims to prepare and motivate middle school learners for future engagement with algorithmic problem solving. FACT was also piloted as a seven-week course on Stanford's OpenEdX MOOC platform for blended in-class learning. Unique aspects of FACT include balanced pedagogical designs that address the cognitive, interpersonal, and intrapersonal aspects of "deeper learning"; a focus on pedagogical strategies for mediating and assessing for transfer from block-based to text-based programming; curricular materials for remedying misperceptions of computing; and "systems of assessments" (including formative and summative quizzes and tests, directed as well as open-ended programming assignments, and a transfer test) to get a comprehensive picture of students' deeper computational learning. Empirical investigations, accomplished over two iterations of a design-based research effort with students (aged 11-14 years) in a public school, sought to examine student understanding of algorithmic constructs, and how well students transferred this learning from Scratch to text-based languages. Changes in student perceptions of computing as a discipline were measured. Results and mixed-method analyses revealed that students in both studies (1) achieved substantial learning gains in algorithmic thinking skills, (2) were able to transfer their learning from Scratch to a text-based programming context, and (3) achieved significant growth toward a more mature understanding of computing as a discipline. Factor analyses of prior computing experience, multivariate regression analyses, and qualitative analyses of student projects and artifact-based interviews were conducted to better understand the factors affecting learning outcomes. Prior computing experiences (as measured by a pretest) and math ability were

  11. The Lab of the Future: Using Technology to Teach Foreign Language.

    Science.gov (United States)

    Underwood, John H.

    1993-01-01

    Describes the role of technology in teaching foreign languages. Offers a brief history of language lab technologies, including computer use for drill-and-practice, text reconstruction, and simulations and games. Discusses tool programs, intelligent systems, video technology, satellite television, videodisc and interactive video, hypertext and…

  12. Chemical engineering and thermodynamics using Mat lab

    International Nuclear Information System (INIS)

    Kim Heon; Kim, Moon Gap; Lee, Hak Yeong; Yeo, Yeong Gu; Ham, Seong Won

    2002-02-01

    This book consists of twelve chapters and four appendixes about chemical engineering and thermodynamics using Mat lab, which deals with introduction, energy budget, entropy, thermodynamics process, generalization on any fluid, engineering equation of state for PVT properties, deviation of the function, phase equilibrium of pure fluid, basic of multicomponent, phase equilibrium of compound by state equation, activity model and reaction system. The appendixes is about summary of computer program, related mathematical formula and material property of pure component.

  13. TRANSFORMING RURAL SECONDARY SCHOOLS IN ZIMBABWE THROUGH TECHNOLOGY: LIVED EXPERIENCES OF STUDENT COMPUTER USERS

    Directory of Open Access Journals (Sweden)

    Gomba Clifford

    2016-04-01

    Full Text Available A technological divide exists in Zimbabwe between urban and rural schools that puts rural based students at a disadvantage. In Zimbabwe, the government, through the president donated computers to most rural schools in a bid to bridge the digital divide between rural and urban schools. The purpose of this phenomenological study was to understand the experiences of Advanced Level students using computers at two rural boarding Catholic High Schools in Zimbabwe. The study was guided by two research questions: (1 How do Advanced level students in the rural areas use computers at their school? and (2 What is the experience of using computers for Advanced Level students in the rural areas of Zimbabwe? By performing this study, it was possible to understand from the students’ experiences whether computer usage was for educational learning or not. The results of the phenomenological study showed that students’ experiences can be broadly classified into five themes, namely worthwhile (interesting experience, accessibility issues, teachers’ monopoly, research and social use, and Internet availability. The participants proposed teachers use computers, but not monopolize computer usage. The solution to the computer shortage may be solved by having donors and government help in the acquisitioning of more computers.

  14. LabVIEW workshops 2016: a free and fun way to learn a new programming language

    CERN Multimedia

    2016-01-01

    We are organising about 5 workshops (1 day per week - 2 hours after work) at CERN in the following months, particularly aimed at CERN people (especially technical students).      The courses will start with the basics of LabVIEW. During the course, which is based on official National Instruments (NI) training materials, we'll learn together how to program in LabVIEW and how to interface with NI hardware. Depending on the participants’ needs and requests, the topics of FPGA and Real-Time could also be explored. The course ends with the CLAD certificate exam. The course and materials are in English. What is LabVIEW? A highly productive development environment for creating custom applications, allowing users to code in a single language for devices ranging from FPGA, through RT systems to PCs. The software is used at CERN, but not everybody has had the opportunity to work with it. Now could be a good time for you to start. Target audience: For students a...

  15. Development and validation of the computer technology literacy self-assessment scale for Taiwanese elementary school students.

    Science.gov (United States)

    Chang, Chiung-Sui

    2008-01-01

    The purpose of this study was to describe the development and validation of an instrument to identify various dimensions of the computer technology literacy self-assessment scale (CTLS) for elementary school students. The instrument included five CTLS dimensions (subscales): the technology operation skills, the computer usages concepts, the attitudes toward computer technology, the learning with technology, and the Internet operation skills. Participants were 1,539 elementary school students in Taiwan. Data analysis indicated that the instrument developed in the study had satisfactory validity and reliability. Correlations analysis supported the legitimacy of using multiple dimensions in representing students' computer technology literacy. Significant differences were found between male and female students, and between grades on some CTLS dimensions. Suggestions are made for use of the instrument to examine complicated interplays between students' computer behaviors and their computer technology literacy.

  16. Simulation in computer forensics teaching: the student experience

    OpenAIRE

    Crellin, Jonathan; Adda, Mo; Duke-Williams, Emma; Chandler, Jane

    2011-01-01

    The use of simulation in teaching computing is well established, with digital forensic investigation being a subject area where the range of simulation required is both wide and varied demanding a corresponding breadth of fidelity. Each type of simulation can be complex and expensive to set up resulting in students having only limited opportunities to participate and learn from the simulation. For example students' participation in mock trials in the University mock courtroom or in simulation...

  17. Effect of Varied Computer Based Presentation Sequences on Facilitating Student Achievement.

    Science.gov (United States)

    Noonen, Ann; Dwyer, Francis M.

    1994-01-01

    Examines the effectiveness of visual illustrations in computer-based education, the effect of order of visual presentation, and whether screen design affects students' use of graphics and text. Results indicate that order of presentation and choice of review did not influence student achievement; however, when given a choice, students selected the…

  18. Computer attitudes of primary and secondary students in South Africa.

    NARCIS (Netherlands)

    Bovee, Chantal; Voogt, Joke; Meelissen, Martina R.M.

    2007-01-01

    This study investigated computer attitudes of 240 students from eight primary and secondary schools in South Africa. The student population of six of the eight schools that participated in the study can be characterised as middle or upper class. Two schools were from South African townships. All

  19. New GPIB Control Software at Jefferson Lab

    International Nuclear Information System (INIS)

    Matthew Bickley; Pavel Chevtsov

    2005-01-01

    The control of GPIB devices at Jefferson Lab is based on the GPIB device/driver library. The library is a part of the device/driver development framework. It is activated with the use of the device configuration files that define all hardware components used in the control system to communicate with GPIB devices. As soon as the software is activated, it is ready to handle any device connected to these components and only needs to know the set of commands that the device can understand. The old GPIB control software at Jefferson Lab requires the definition of these commands in the form of a device control software module written in C for each device. Though such modules are relatively simple, they have to be created, successfully compiled, and supported for all control computer platforms. In the new version of GPIB control software all device communication commands are defined in device protocol (ASCII text) files. This makes the support of GPIB devices in the control system much easier

  20. The Study on Virtual Medical Instrument based on LabVIEW.

    Science.gov (United States)

    Chengwei, Li; Limei, Zhang; Xiaoming, Hu

    2005-01-01

    With the increasing performance of computer, the virtual instrument technology has greatly advanced over the years, and then virtual medical instrument technology becomes available. This paper presents the virtual medical instrument, and then as an example, an application of a signal acquisition, processing and analysis system using LabVIEW is also given.

  1. PD Lab

    Directory of Open Access Journals (Sweden)

    Marcel Bilow

    2015-08-01

    Full Text Available PD Lab explores the applications of building sector related product development.  PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory production, to explore the potential in the field of sustainability, material use, logistics and the interaction of stakeholders within the chain of the building process.

  2. MarkoLAB: A simulator to study ionic channel's stochastic behavior.

    Science.gov (United States)

    da Silva, Robson Rodrigues; Goroso, Daniel Gustavo; Bers, Donald M; Puglisi, José Luis

    2017-08-01

    channel. It has been implemented in two platforms MATLAB ® and LabVIEW ® to enhance the target users of this new didactical tool. The computational cost of implementing a stochastic simulation is within the range of a personal computer performance; making MarkoLAB suitable to be run during a lecture or presentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Development of LabVIEW Program for Lock-In Infrared Thermography

    International Nuclear Information System (INIS)

    Min, Tae Hoon; Na, Hyung Chul; Kim, Noh Yu

    2011-01-01

    A LabVIEW program has been developed together with simple infrared thermography(IRT) system to control the lock-in conditions of the system efficiently. The IR imaging software was designed to operate both of infrared camera and halogen lamp by synchronizing them with periodic sine signal based on thyristor(SCR) circuits. LabVIEW software was programmed to provide users with screen-menu functions by which it can change the period and energy of heat source, operate the camera to acquire image, and monitor the state of the system on the computer screen In experiment, lock-in IR image for a specimen with artificial hole defects was obtained by the developed IRT system and compared with optical image

  4. Exploring linear algebra labs and projects with Mathematica

    CERN Document Server

    Arangala, Crista

    2014-01-01

    Matrix Operations Lab 0: An Introduction to Mathematica Lab 1: Matrix Basics and Operations Lab 2: A Matrix Representation of Linear Systems Lab 3: Powers, Inverses, and Special Matrices Lab 4: Graph Theory and Adjacency Matrices Lab 5: Permutations and Determinants Lab 6: 4 x 4 Determinants and Beyond Project Set 1 Invertibility Lab 7: Singular or Nonsingular? Why Singularity Matters Lab 8: Mod It Out, Matrices with Entries in ZpLab 9: It's a Complex World Lab 10: Declaring Independence: Is It Linear? Project Set 2 Vector Spaces Lab 11: Vector Spaces and SubspacesLab 12: Basing It All on Just a Few Vectors Lab 13: Linear Transformations Lab 14: Eigenvalues and Eigenspaces Lab 15: Markov Chains, An Application of Eigenvalues Project Set 3 Orthogonality Lab 16: Inner Product Spaces Lab 17: The Geometry of Vector and Inner Product SpacesLab 18: Orthogonal Matrices, QR Decomposition, and Least Squares Regression Lab 19: Symmetric Matrices and Quadratic Forms Project Set 4 Matrix Decomposition with Applications L...

  5. Students' Motivation toward Computer-Based Language Learning

    Science.gov (United States)

    Genc, Gulten; Aydin, Selami

    2011-01-01

    The present article examined some factors affecting the motivation level of the preparatory school students in using a web-based computer-assisted language-learning course. The sample group of the study consisted of 126 English-as-a-foreign-language learners at a preparatory school of a state university. After performing statistical analyses…

  6. A LabVIEW based Remote DSP Laboratory

    Directory of Open Access Journals (Sweden)

    Athanasios Kalantzopoulos

    2008-07-01

    Full Text Available Remote laboratories provide the students with the capability to perform laboratory exercises exploiting the relevant equipment any time of the day without their physical presence. Furthermore, providing the ability to use a single workstation by more than one student, they contribute to the reduction of the laboratory cost. Turning to advantage the above and according to the needs of post graduate modules in the fields of DSP Systems Design and Signal Processing Systems with DSPs, we designed and developed a Remote DSP Laboratory. A student using a Web Browser has the ability via internet to turn to account the R-DSP Lab and perform experiments using DSPs (Digital Signal Processors. For now, there is the opportunity to carry out laboratory exercises such as FIR, IIR digital filters and FFT as well as run any executable file developed by the user. In any case the observation of the results is carried out through the use of specially designed Graphical User Interfaces (GUIs.

  7. Factors that Influence the Success of Male and Female Computer Programming Students in College

    Science.gov (United States)

    Clinkenbeard, Drew A.

    As the demand for a technologically skilled work force grows, experience and skill in computer science have become increasingly valuable for college students. However, the number of students graduating with computer science degrees is not growing proportional to this need. Traditionally several groups are underrepresented in this field, notably women and students of color. This study investigated elements of computer science education that influence academic achievement in beginning computer programming courses. The goal of the study was to identify elements that increase success in computer programming courses. A 38-item questionnaire was developed and administered during the Spring 2016 semester at California State University Fullerton (CSUF). CSUF is an urban public university comprised of about 40,000 students. Data were collected from three beginning programming classes offered at CSUF. In total 411 questionnaires were collected resulting in a response rate of 58.63%. Data for the study were grouped into three broad categories of variables. These included academic and background variables; affective variables; and peer, mentor, and role-model variables. A conceptual model was developed to investigate how these variables might predict final course grade. Data were analyzed using statistical techniques such as linear regression, factor analysis, and path analysis. Ultimately this study found that peer interactions, comfort with computers, computer self-efficacy, self-concept, and perception of achievement were the best predictors of final course grade. In addition, the analyses showed that male students exhibited higher levels of computer self-efficacy and self-concept compared to female students, even when they achieved comparable course grades. Implications and explanations of these findings are explored, and potential policy changes are offered.

  8. Evaluation and recommendations for work group integration within the Materials and Processes Lab

    Science.gov (United States)

    Farrington, Phillip A.

    1992-01-01

    The goal of this study was to evaluate and make recommendations for improving the level of integration of several work groups within the Materials and Processes Lab at the Marshall Space Flight Center. This evaluation has uncovered a variety of projects that could improve the efficiency and operation of the work groups as well as the overall integration of the system. In addition, this study provides the foundation for specification of a computer integrated manufacturing test bed environment in the Materials and Processes Lab.

  9. Spectrum of tablet computer use by medical students and residents at an academic medical center

    Directory of Open Access Journals (Sweden)

    Robert Robinson

    2015-07-01

    Full Text Available Introduction. The value of tablet computer use in medical education is an area of considerable interest, with preliminary investigations showing that the majority of medical trainees feel that tablet computers added value to the curriculum. This study investigated potential differences in tablet computer use between medical students and resident physicians.Materials & Methods. Data collection for this survey was accomplished with an anonymous online questionnaire shared with the medical students and residents at Southern Illinois University School of Medicine (SIU-SOM in July and August of 2012.Results. There were 76 medical student responses (26% response rate and 66 resident/fellow responses to this survey (21% response rate. Residents/fellows were more likely to use tablet computers several times daily than medical students (32% vs. 20%, p = 0.035. The most common reported uses were for accessing medical reference applications (46%, e-Books (45%, and board study (32%. Residents were more likely than students to use a tablet computer to access an electronic medical record (41% vs. 21%, p = 0.010, review radiology images (27% vs. 12%, p = 0.019, and enter patient care orders (26% vs. 3%, p < 0.001.Discussion. This study shows a high prevalence and frequency of tablet computer use among physicians in training at this academic medical center. Most residents and students use tablet computers to access medical references, e-Books, and to study for board exams. Residents were more likely to use tablet computers to complete clinical tasks.Conclusions. Tablet computer use among medical students and resident physicians was common in this survey. All learners used tablet computers for point of care references and board study. Resident physicians were more likely to use tablet computers to access the EMR, enter patient care orders, and review radiology studies. This difference is likely due to the differing educational and professional demands placed on

  10. EarthLabs Climate Detectives: Using the Science, Data, and Technology of IODP Expedition 341 to Investigate the Earth's Past Climate

    Science.gov (United States)

    Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.

    2014-12-01

    EarthLabs, an exemplary series of lab-based climate science learning modules, is a model for high school Earth Science lab courses. Each module includes a variety of learning activities that allow students to explore the Earth's complex and dynamic climate history. The most recent module, Climate Detectives, uses data from IODP Expedition 341, which traveled to the Gulf of Alaska during the summer of 2013 to study past climate, sedimentation, and tectonics along the continental margin. At the onset of Climate Detectives, students are presented with a challenge engaging them to investigate how the Earth's climate has changed since the Miocene in southern Alaska. To complete this challenge, students join Exp. 341 to collect and examine sediments collected from beneath the seafloor. The two-week module consists of six labs that provide students with the content and skills needed to solve this climate mystery. Students discover how an international team collaborates to examine a scientific problem with the IODP, compete in an engineering design challenge to learn about scientific ocean drilling, and learn about how different types of proxy data are used to detect changes in Earth's climate. The NGSS Science and Engineering Practices are woven into the culminating activity, giving students the opportunity to think and act like scientists as they investigate the following questions: 1) How have environmental conditions in in the Gulf of Alaska changed during the time when the sediments in core U1417 were deposited? (2) What does the occurrence of different types of diatoms and their abundance reveal about the timing of the cycles of glacial advance and retreat? (3) What timeline is represented by the section of core? (4) How do results from the Gulf of Alaska compare with the global record of glaciations during this period based on oxygen isotopes proxies? Developed by educators in collaboration with Expedition 341 scientists, Climate Detectives is a strong example of

  11. BioLab: Using Yeast Fermentation as a Model for the Scientific Method.

    Science.gov (United States)

    Pigage, Helen K.; Neilson, Milton C.; Greeder, Michele M.

    This document presents a science experiment demonstrating the scientific method. The experiment consists of testing the fermentation capabilities of yeasts under different circumstances. The experiment is supported with computer software called BioLab which demonstrates yeast's response to different environments. (YDS)

  12. Personalized Computer-Assisted Mathematics Problem-Solving Program and Its Impact on Taiwanese Students

    Science.gov (United States)

    Chen, Chiu-Jung; Liu, Pei-Lin

    2007-01-01

    This study evaluated the effects of a personalized computer-assisted mathematics problem-solving program on the performance and attitude of Taiwanese fourth grade students. The purpose of this study was to determine whether the personalized computer-assisted program improved student performance and attitude over the nonpersonalized program.…

  13. Improving computer usage for students with physical disabilities through a collaborative approach: a pilot study.

    Science.gov (United States)

    Borgestig, Maria; Falkmer, Torbjörn; Hemmingsson, Helena

    2013-11-01

    The aim of this study was to evaluate the effect of an assistive technology (AT) intervention to improve the use of available computers as assistive technology in educational tasks for students with physical disabilities during an ongoing school year. Fifteen students (aged 12-18) with physical disabilities, included in mainstream classrooms in Sweden, and their teachers took part in the intervention. Pre-, post-, and follow-up data were collected with Goal Attainment Scaling (GAS), a computer usage diary, and with the Psychosocial Impact of Assistive Devices Scale (PIADS). Teachers' opinions of goal setting were collected at follow-up. The intervention improved the goal-related computer usage in educational tasks and teachers reported they would use goal setting again when appropriate. At baseline, students reported a positive impact from computer usage with no differences over time regarding the PIADS subscales independence, adaptability, or self-esteem. The AT intervention showed a positive effect on computer usage as AT in mainstream schools. Some additional support to teachers is recommended as not all students improved in all goal-related computer usage. A clinical implication is that students' computer usage can be improved and collaboratively established computer-based strategies can be carried out by teachers in mainstream schools.

  14. Entrepreneurial Health Informatics for Computer Science and Information Systems Students

    Science.gov (United States)

    Lawler, James; Joseph, Anthony; Narula, Stuti

    2014-01-01

    Corporate entrepreneurship is a critical area of curricula for computer science and information systems students. Few institutions of computer science and information systems have entrepreneurship in the curricula however. This paper presents entrepreneurial health informatics as a course in a concentration of Technology Entrepreneurship at a…

  15. Student Study Choices in the Principles of Economics: A Case Study of Computer Usage

    OpenAIRE

    Grimes, Paul W.; Sanderson, Patricia L.; Ching, Geok H.

    1996-01-01

    Principles of Economics students at Mississippi State University were provided the opportunity to use computer assisted instruction (CAI) as a supplemental study activity. Students were free to choose the extent of their computer work. Throughout the course, weekly surveys were conducted to monitor the time each student spent with their textbook, computerized tutorials, workbook, class notes, and study groups. The surveys indicated that only a minority of the students actively pursued CAI....

  16. Successes and Challenges in Transitioning to Large Enrollment NEXUS/Physics IPLS Labs

    Science.gov (United States)

    Moore, Kimberly

    2017-01-01

    UMd-PERG's NEXUS/Physics for Life Sciences laboratory curriculum, piloted in 2012-2013 in small test classes, has been implemented in large-enrollment environments at UMD from 2013-present. These labs address physical issues at biological scales using microscopy, image and video analysis, electrophoresis, and spectroscopy in an open, non-protocol-driven environment. We have collected a wealth of data (surveys, video analysis, etc.) that enables us to get a sense of the students' responses to this curriculum in a large-enrollment environment and with teaching assistants both `new to' and `experienced in' the labs. In this talk, we will provide a brief overview of what we have learned, including the challenges of transitioning to large N, student perception then and now, and comparisons of our large-enrollment results to the results from our pilot study. We will close with a discussion of the acculturation of teaching assistants to this novel environment and suggestions for sustainability.

  17. The Grad Cohort Workshop: Evaluating an Intervention to Retain Women Graduate Students in Computing.

    Science.gov (United States)

    Stout, Jane G; Tamer, Burçin; Wright, Heather M; Clarke, Lori A; Dwarkadas, Sandhya; Howard, Ayanna M

    2016-01-01

    Women engaged in computing career tracks are vastly outnumbered by men and often must contend with negative stereotypes about their innate technical aptitude. Research suggests women's marginalized presence in computing may result in women psychologically disengaging, and ultimately dropping out, perpetuating women's underrepresentation in computing. To combat this vicious cycle, the Computing Research Association's Committee on the Status of Women in Computing Research (CRA-W) runs a multi-day mentorship workshop for women graduate students called Grad Cohort, which consists of a speaker series and networking opportunities. We studied the long-term impact of Grad Cohort on women Ph.D. students' (a) dedication to becoming well-known in one's field, and giving back to the community ( professional goals ), (b) the degree to which one feels computing is an important element of "who they are" ( computing identity) , and (c) beliefs that computing skills are innate ( entity beliefs ). Of note, entity beliefs are known to be demoralizing and can lead to disengagement from academic endeavors. We compared a propensity score matched sample of women and men Ph.D. students in computing programs who had never participated in Grad Cohort to a sample of past Grad Cohort participants. Grad Cohort participants reported interest in becoming well-known in their field to a greater degree than women non-participants, and to an equivalent degree as men. Also, Grad Cohort participants reported stronger interest in giving back to the community than their peers. Further, whereas women non-participants identified with computing to a lesser degree than men and held stronger entity beliefs than men, Grad Cohort participants' computing identity and entity beliefs were equivalent to men. Importantly, stronger entity beliefs predicted a weaker computing identity among students, with the exception of Grad Cohort participants. This latter finding suggests Grad Cohort may shield students

  18. Promoting Intrinsic and Extrinsic Motivation among Chemistry Students Using Computer-Assisted Instruction

    Science.gov (United States)

    Gambari, Isiaka A.; Gbodi, Bimpe E.; Olakanmi, Eyitao U.; Abalaka, Eneojo N.

    2016-01-01

    The role of computer-assisted instruction in promoting intrinsic and extrinsic motivation among Nigerian secondary school chemistry students was investigated in this study. The study employed two modes of computer-assisted instruction (computer simulation instruction and computer tutorial instructional packages) and two levels of gender (male and…

  19. Investigating the Role of Student Motivation in Computer Science Education through One-on-One Tutoring

    Science.gov (United States)

    Boyer, Kristy Elizabeth; Phillips, Robert; Wallis, Michael D.; Vouk, Mladen A.; Lester, James C.

    2009-01-01

    The majority of computer science education research to date has focused on purely cognitive student outcomes. Understanding the "motivational" states experienced by students may enhance our understanding of the computer science learning process, and may reveal important instructional interventions that could benefit student engagement and…

  20. Indicators of computer skill use among university students. Educational and social implications

    Directory of Open Access Journals (Sweden)

    María del Pilar QUICIOS GARCÍA

    2013-07-01

    Full Text Available This article divulges the findings of the preliminary study for Research Project SEJ 2004-06803 I+D. It provides indicators of the use of the computer skills developed by two groups of Spanish university students. It then indicates the training the sample groups under study declared necessary in order to gain autonomy in their use of computer skills. The sample groups analyzed were two groups of students enrolled in the first year of the audiovisual communication curriculum and the third year of the journalism curriculum at the Complutensian University of Madrid. Each group was made up of 60 students who answered a quantitative questionnaire (Likert scale and a series of questions requiring qualitative answers. One finding was that age is not a telling factor in the use of computer skills, nor is the curriculum a student has chosen to follow. The declared educational needs include systematic instruction in tools and educational training that places limits on the relational use of virtual tools.

  1. Brewing for Students: An Inquiry-Based Microbiology Lab.

    Science.gov (United States)

    Sato, Brian K; Alam, Usman; Dacanay, Samantha J; Lee, Amanda K; Shaffer, Justin F

    2015-12-01

    In an effort to improve and assess student learning, there has been a push to increase the incorporation of discovery-driven modules and those that contain real-world relevance into laboratory curricula. To further this effort, we have developed, implemented, and assessed an undergraduate microbiology laboratory experiment that requires students to use the scientific method while brewing beer. The experiment allows students to brew their own beer and characterize it based on taste, alcohol content, calorie content, pH, and standard reference method. In addition, we assessed whether students were capable of achieving the module learning objectives through a pre-/posttest, student self-evaluation, exam-embedded questions, and an associated worksheet. These objectives included describing the role of the brewing ingredients and predicting how altering the ingredients would affect the characteristics of the beer, amongst others. By completing this experimental module, students accomplished the module objectives, had greater interest in brewing, and were more likely to view beer in scientific terms. Journal of Microbiology & Biology Education.

  2. Pedagogy Matters: Engaging Diverse Students as Community Researchers in Three Computer Science Classrooms

    Science.gov (United States)

    Ryoo, Jean Jinsun

    2013-01-01

    Computing occupations are among the fastest growing in the U.S. and technological innovations are central to solving world problems. Yet only our most privileged students are learning to use technology for creative purposes through rigorous computer science education opportunities. In order to increase access for diverse students and females who…

  3. Online Learning for Students from Diverse Backgrounds: Learning Disability Students, Excellent Students and Average Students

    Directory of Open Access Journals (Sweden)

    Miri Shonfeld

    2015-09-01

    Full Text Available The perceived contribution of science education online course to pre-service students (N=121 from diverse backgrounds - students with learning disabilities (25 LD students, 28 excellent students and 68 average students is presented in this five years research. During the online course students were asked to choose a scientific subject; to map it and to plan teaching activities; to carry out the proposed activities with students in a classroom experience; and to reflect the process. The assumption was that adapting the online course by using information and communication technology following formative assessment will improve students' self-learning ability as well as broaden their science knowledge, their lab performance and teaching skills. Data were collected using quantitative and qualitative tools including: pre and post questionnaires and nine (three students from each group depth interviews upon completion of the course. Findings, based on students` perceived evaluation, pinpointed on the advantages of the online course for students of the three groups. LD students’ achievements were not inferior to those of their peers, excellent students and average students. Yet, it carefully reports on a slight but explicitly marginal perceived evaluation of the LD students in comparison to excellent students and average students regarding: forum participation, authentic task and water lab performance. The article discusses the affordance of the online course via additional features that can be grouped into two categories: knowledge construction and flexibility in time, interaction and knowledge. Further research is suggested to extend the current study by examine the effect of other courses and different contents and by considering various evaluation methods of online courses, such as: observation, the think aloud, text and tasks analysis, and reflection.

  4. Does Computer Use Promote the Mathematical Proficiency of ELL Students?

    Science.gov (United States)

    Kim, Sunha; Chang, Mido

    2010-01-01

    The study explored the effects of computer use on the mathematical performance of students with special attention to ELL students. To achieve a high generalizability of findings, the study used a U.S. nationally representative database, the Early Childhood Longitudinal Survey Kindergarten Cohort (ECLS-K), and adopted proper weights. The study…

  5. A green chemistry lab course

    International Nuclear Information System (INIS)

    Rank, J.; Lenoir, D.; Bahadir, M.; Koning, B.

    2006-01-01

    The traditional course content of chemistry classes must change to achieve better awareness of the important issues of sustainability in chemistry within the next generation of professional chemists. To provide the necessary material for the organic chemistry teaching lab course, which is part of almost all study programs in chemistry, material was developed and collected (http://www.oc-praktikum.de/en) that allows students and teachers to assess reactions beyond the experimental set up, reaction mechanism and chemical yield. Additional parameters like atom economy of chemical transformations, energy efficiency, and questions of waste, renewable feed stocks, toxicity and ecotoxicity, as well as the safety measures for the chemicals used are discussed. (author)

  6. Replacing textbook problems with lab experiences

    Science.gov (United States)

    Register, Trevor

    2017-10-01

    End-of-the-chapter textbook problems are often the bread and butter of any traditional physics classroom. However, research strongly suggests that students be given the opportunity to apply their knowledge in multiple contexts as well as be provided with opportunities to do the process of science through laboratory experiences. Little correlation has been shown linking the number of textbook problems solved with conceptual understanding of topics in mechanics. Furthermore, textbook problems as the primary source of practice for students robs them of the joy and productive struggle of learning how to think like an experimental physicist. Methods such as Modeling Instruction tackle this problem head-on by starting each instructional unit with an inquiry-based lab aimed at establishing the important concepts and equations for the unit, and this article will discuss ideas and experiences for how to carry that philosophy throughout a unit.

  7. The effects of computer-aided design software on engineering students' spatial visualisation skills

    Science.gov (United States)

    Kösa, Temel; Karakuş, Fatih

    2018-03-01

    The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations (PSVT:R) for both the pre- and the post-test. The participants were 116 freshman students in the first year of their undergraduate programme in the Department of Mechanical Engineering at a university in Turkey. A total of 72 students comprised the experimental group; they were instructed with CAD-based activities in an engineering drawing course. The control group consisted of 44 students who did not attend this course. The results of the study showed that a CAD-based engineering drawing course had a positive effect on developing engineering students' spatial visualisation skills. Additionally, the results of the study showed that spatial visualisation skills can be a predictor for success in a computer-aided engineering drawing course.

  8. Motivational beliefs, student effort, and feedback behaviour in computer-based formative assessment

    NARCIS (Netherlands)

    Timmers, C.F.; Braber-van den Broek, J.; van den Berg, Stéphanie Martine

    2013-01-01

    Feedback can only be effective when students seek feedback and process it. This study examines the relations between students' motivational beliefs, effort invested in a computer-based formative assessment, and feedback behaviour. Feedback behaviour is represented by whether a student seeks feedback

  9. Scientific publications laboratory of remote experimentation - RExLab: a systematic review

    Directory of Open Access Journals (Sweden)

    Janine De Lavechia

    2017-10-01

    Full Text Available Introduction: The Information and Communication Technologies TICs are allowing day by day the improvement in all levels of the institutions, providing in a general context a greater communication, and enabling the creation of new knowledge. And with the emergence of the Remote Experimentation Laboratory - RExLab, which allows the student to perform experiments, makes possible the construction of new knowledge. Objective: Identify and present the NICT (New Information and Communication Technologies studied in the laboratory and explained in the publications of the members linked RExLab. Methodology: In this article a systematic research was done on the articles published in RExLab, and located at the Federal University of Santa Catarina, Araranguá. And the articles with the highest citations, the NICT used in each research were presented. Result: It was possible to identify that a great majority of articles published was related to questions of remote experimentation through the usage of mobile devices, and today it allows almost all the students to have a great access to it. Conclusion: It was possible to analyze that the greatest objective of published research is the achievement of democratization and the dissemination of knowledge through their experiments. These are projects that can be applied at all levels of education and also in public and private schools.With this, there are many ICTs that are inserted in the projects and that they have as purpose the aid to the education.

  10. Towards an Online Lab Portal for Inquiry-Based STEM Learning at School

    NARCIS (Netherlands)

    Govaerts, Sten; Cao, Yiwei; Vozniuk, Andrii; Holzer, Adrian; Zutin, Danilo Garbi; San Cristobal Ruiz, Elio; Bollen, Lars; Manske, Sven; Faltin, Nils; Salzmann, Christophe; Wang, Jhing-Fa; Rynson, Lau

    2013-01-01

    Nowadays, the knowledge economy is growing rapidly. To sustain future growth, more well educated people in STEM (science, technology, engineering and mathematics) are needed. In the Go-Lab project we aim to motivate and orient students from an early age on to study STEM fields in their future

  11. Computer programing for geosciences: Teach your students how to make tools

    Science.gov (United States)

    Grapenthin, Ronni

    2011-12-01

    When I announced my intention to pursue a Ph.D. in geophysics, some people gave me confused looks, because I was working on a master's degree in computer science at the time. My friends, like many incoming geoscience graduate students, have trouble linking these two fields. From my perspective, it is pretty straightforward: Much of geoscience evolves around novel analyses of large data sets that require custom tools—computer programs—to minimize the drudgery of manual data handling; other disciplines share this characteristic. While most faculty adapted to the need for tool development quite naturally, as they grew up around computer terminal interfaces, incoming graduate students lack intuitive understanding of programing concepts such as generalization and automation. I believe the major cause is the intuitive graphical user interfaces of modern operating systems and applications, which isolate the user from all technical details. Generally, current curricula do not recognize this gap between user and machine. For students to operate effectively, they require specialized courses teaching them the skills they need to make tools that operate on particular data sets and solve their specific problems. Courses in computer science departments are aimed at a different audience and are of limited help.

  12. Impacts of Watching Television and Computer Using on Student' Reading Habits

    Directory of Open Access Journals (Sweden)

    Ayşe Gül Aksaçlıoğlu

    2013-11-01

    Full Text Available Reading habits contribute both to the cognitive and social developments of indi- viduals in so many aspects. This function of the reading habit continues in the rapid social changing process of today’s world. However, children’s habits of te- levision watching and computer using have been recently seen to affect their reading habits. Therefore, defining the positive or negative impacts of television and computers on children and finding solutions carries significant importance. The aim of this study is to determine the influences of the television watching and computer using on children’s reading habits. In order to find out the influ- ences, a survey was performed on all 5th grade students at Bilkent Private Primary School and Çankaya Public Primary School located within Ankara Büyükþehir Municipality borders. The questionaire was applied to 222 students in these two schools. As a result of the study, it is clear that students prefer to play on com- puters and watch television in their leisure time to reading books. There is an inverse proportion apparent between the time spent using computers and watching television and the time spent on reading.

  13. Design and Verification of Application Specific Integrated Circuits in a Network of Online Labs

    Directory of Open Access Journals (Sweden)

    A.Y. Al-Zoubi

    2009-08-01

    Full Text Available A solution to implement a remote laboratory for testing and designing analog Application-Specific Integrated Circuits of the type (ispPAC10 is presented. The application allows electrical engineering students to access and perform measurements and conduct analog electronics experiments over the internet. PAC-Designer software, running on a Citrix server, is used in the circuit design in which the signals are generated and the responses are acquired by a data acquisition board controlled by LabVIEW. Three interconnected remote labs located in three different continents will be implementing the proposed system.

  14. The Portuguese Contribution for lab2go - pt.lab2go

    Directory of Open Access Journals (Sweden)

    Maria Teresa Restivo

    2013-01-01

    Full Text Available Online experimentation provides innovative and valuable tools for use in academy, in high schools, in industry and in medical areas. It has also become a precious tool for educational and training purposes in any of those areas. Looking at online experimentation as a pure distance learning tool it represents a very efficient way of sharing hands-on capabilities, for example with developing countries. In Portugal a new consortium of online experimentation was created for fostering the national potential, using the Portuguese version of lab2go web platform, pt.lab2go. The authors pretend to demonstrate some of capabilities of the consortium in sharing online labs.

  15. Designing English for Specific Purposes Course for Computer Science Students

    Science.gov (United States)

    Irshad, Isra; Anwar, Behzad

    2018-01-01

    The aim of this study was to design English for Academic Purposes (EAP) course for University students enrolled in the Computer Science Department. For this purpose, academic English language needs of the students were analyzed by using a 5 point Likert scale questionnaire. Additionally, interviews were also conducted with four faculty members of…

  16. A Pilot Study of the Effectiveness of Augmented Reality to Enhance the Use of Remote Labs in Electrical Engineering Education

    Science.gov (United States)

    Borrero, A. Mejias; Marquez, J. M. Andujar

    2012-01-01

    Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real…

  17. Computer Vision Syndrome and Associated Factors Among Medical and Engineering Students in Chennai

    OpenAIRE

    Logaraj, M; Madhupriya, V; Hegde, SK

    2014-01-01

    Background: Almost all institutions, colleges, universities and homes today were using computer regularly. Very little research has been carried out on Indian users especially among college students the effects of computer use on the eye and vision related problems. Aim: The aim of this study was to assess the prevalence of computer vision syndrome (CVS) among medical and engineering students and the factors associated with the same. Subjects and Methods: A cross-sectional study was conducted...

  18. The Next Wave: Humans, Computers, and Redefining Reality

    Science.gov (United States)

    Little, William

    2018-01-01

    The Augmented/Virtual Reality (AVR) Lab at KSC is dedicated to " exploration into the growing computer fields of Extended Reality and the Natural User Interface (it is) a proving ground for new technologies that can be integrated into future NASA projects and programs." The topics of Human Computer Interface, Human Computer Interaction, Augmented Reality, Virtual Reality, and Mixed Reality are defined; examples of work being done in these fields in the AVR Lab are given. Current new and future work in Computer Vision, Speech Recognition, and Artificial Intelligence are also outlined.

  19. Open-Ended versus Guided Laboratory Activities: Impact on Students' Beliefs about Experimental Physics

    Science.gov (United States)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2016-01-01

    Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the…

  20. LabVIEW Support at CERN

    CERN Multimedia

    HR Department

    2010-01-01

    Since the beginning of 2009, due to the CERN restructuring, LabVIEW support moved from the IT to the EN department, joining the Industrial Controls and Electronics Group (ICE). LabVIEW support has been merged with the Measurement, Test and Analysis (MTA) section which, using LabVIEW, has developed most of the measurement systems to qualify the LHC magnets and components over the past 10 years. The post mortem analysis for the LHC hardware commissioning has also been fully implemented using LabVIEW, customised into a framework, called RADE, for CERN needs. The MTA section has started with a proactive approach sharing its tools and experience with the CERN LabVIEW community. Its framework (RADE) for CERN integrated application development has been made available to the users. Courses on RADE have been integrated into the standard National Instruments training program at CERN. RADE and LabVIEW support were merged together in 2010 on a single email address:labview.support@cern.ch For more information please...

  1. Size effect of added LaB6 particles on optical properties of LaB6/Polymer composites

    International Nuclear Information System (INIS)

    Yuan Yifei; Zhang Lin; Hu Lijie; Wang Wei; Min Guanghui

    2011-01-01

    Modified LaB 6 particles with sizes ranging from 50 nm to 400 nm were added into polymethyl methacrylate (PMMA) matrix in order to investigate the effect of added LaB 6 particles on optical properties of LaB 6 /PMMA composites. Method of in-situ polymerization was applied to prepare PMMA from raw material—methyl methacrylate (MMA), a process during which LaB 6 particles were dispersed in MMA. Ultraviolet–visible–near infrared (UV–vis–NIR) absorption spectrum was used to study optical properties of the as-prepared materials. The difference in particle size could apparently affect the composites' absorption of visible light around wavelength of 600 nm. Added LaB 6 particles with size of about 70 nm resulted in the best optical properties among these groups of composites. - Graphical abstract: 70 nm LaB 6 particles resulted in the best performance on absorption of VIS and NIR, which could not be apparently achieved by LaB 6 particles beyond nano-scale. Highlights: ► LaB 6 /PMMA composites were prepared using the method of in-situ polymerization. ► LaB 6 particles added in MMA prolonged the time needed for its pre-polymerization. ► Nanosized LaB 6 particles could obviously absorb much NIR but little VIS.

  2. Meteorological Development Laboratory Student Career Experience Program

    Science.gov (United States)

    McCalla, C., Sr.

    2007-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) provides weather, hydrologic, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy. The NWS's Meteorological Development Laboratory (MDL) supports this mission by developing meteorological prediction methods. Given this mission, NOAA, NWS, and MDL all have a need to continually recruit talented scientists. One avenue for recruiting such talented scientist is the Student Career Experience Program (SCEP). Through SCEP, MDL offers undergraduate and graduate students majoring in meteorology, computer science, mathematics, oceanography, physics, and statistics the opportunity to alternate full-time paid employment with periods of full-time study. Using SCEP as a recruiting vehicle, MDL has employed students who possess some of the very latest technical skills and knowledge needed to make meaningful contributions to projects within the lab. MDL has recently expanded its use of SCEP and has increased the number of students (sometimes called co- ops) in its program. As a co-op, a student can expect to develop and implement computer based scientific techniques, participate in the development of statistical algorithms, assist in the analysis of meteorological data, and verify forecasts. This presentation will focus on describing recruitment, projects, and the application process related to MDL's SCEP. In addition, this presentation will also briefly explore the career paths of students who successfully completed the program.

  3. Resource allocation in grid computing

    NARCIS (Netherlands)

    Koole, Ger; Righter, Rhonda

    2007-01-01

    Grid computing, in which a network of computers is integrated to create a very fast virtual computer, is becoming ever more prevalent. Examples include the TeraGrid and Planet-lab.org, as well as applications on the existing Internet that take advantage of unused computing and storage capacity of

  4. Shared-resource computing for small research labs.

    Science.gov (United States)

    Ackerman, M J

    1982-04-01

    A real time laboratory computer network is described. This network is composed of four real-time laboratory minicomputers located in each of four division laboratories and a larger minicomputer in a centrally located computer room. Off the shelf hardware and software were used with no customization. The network is configured for resource sharing using DECnet communications software and the RSX-11-M multi-user real-time operating system. The cost effectiveness of the shared resource network and multiple real-time processing using priority scheduling is discussed. Examples of utilization within a medical research department are given.

  5. Spectrum of tablet computer use by medical students and residents at an academic medical center.

    Science.gov (United States)

    Robinson, Robert

    2015-01-01

    Introduction. The value of tablet computer use in medical education is an area of considerable interest, with preliminary investigations showing that the majority of medical trainees feel that tablet computers added value to the curriculum. This study investigated potential differences in tablet computer use between medical students and resident physicians. Materials & Methods. Data collection for this survey was accomplished with an anonymous online questionnaire shared with the medical students and residents at Southern Illinois University School of Medicine (SIU-SOM) in July and August of 2012. Results. There were 76 medical student responses (26% response rate) and 66 resident/fellow responses to this survey (21% response rate). Residents/fellows were more likely to use tablet computers several times daily than medical students (32% vs. 20%, p = 0.035). The most common reported uses were for accessing medical reference applications (46%), e-Books (45%), and board study (32%). Residents were more likely than students to use a tablet computer to access an electronic medical record (41% vs. 21%, p = 0.010), review radiology images (27% vs. 12%, p = 0.019), and enter patient care orders (26% vs. 3%, p e-Books, and to study for board exams. Residents were more likely to use tablet computers to complete clinical tasks. Conclusions. Tablet computer use among medical students and resident physicians was common in this survey. All learners used tablet computers for point of care references and board study. Resident physicians were more likely to use tablet computers to access the EMR, enter patient care orders, and review radiology studies. This difference is likely due to the differing educational and professional demands placed on resident physicians. Further study is needed better understand how tablet computers and other mobile devices may assist in medical education and patient care.

  6. Introductory Molecular Orbital Theory: An Honors General Chemistry Computational Lab as Implemented Using Three-Dimensional Modeling Software

    Science.gov (United States)

    Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.

    2012-01-01

    In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…

  7. A Moment of Mindfulness: Computer-Mediated Mindfulness Practice Increases State Mindfulness.

    Directory of Open Access Journals (Sweden)

    Lynsey Mahmood

    Full Text Available Three studies investigated the use of a 5-minute, computer-mediated mindfulness practice in increasing levels of state mindfulness. In Study 1, 54 high school students completed the computer-mediated mindfulness practice in a lab setting and Toronto Mindfulness Scale (TMS scores were measured before and after the practice. In Study 2 (N = 90 and Study 3 (N = 61, the mindfulness practice was tested with an entirely online sample to test the delivery of the 5-minute mindfulness practice via the internet. In Study 2 and 3, we found a significant increase in TMS scores in the mindful condition, but not in the control condition. These findings highlight the impact of a brief, mindfulness practice for single-session, computer-mediated use to increase mindfulness as a state.

  8. Students, Computers and Mathematics the Golden Trilogy in the Teaching-Learning Process

    Science.gov (United States)

    García-Santillán, Arturo; Escalera-Chávez, Milka Elena; López-Morales, José Satsumi; Córdova Rangel, Arturo

    2014-01-01

    In this paper we examine the relationships between students' attitudes towards mathematics and technology, therefore, we take a Galbraith and Hines' scale (1998, 2000) about mathematics confidence, computer confidence, computer and mathematics interaction, mathematics motivation, computer motivation, and mathematics engagement. 164 questionnaires…

  9. Experiment Based Teaching of Solar Cell Operation and Characterization Using the SolarLab Platform

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2014-01-01

    interfaces for exploring different solar cell principles and topics. The exercises presented in the current paper have been adapted from the original exercises developed for the SolarLab platform and are currently included in the Photovoltaic Power Systems courses (MSc and PhD level) taught at the Department...... which is a laboratory teaching tool developed at Transylvania University of Brasov. Using this platform, solar cells can be characterized under various illumination, temperature and angle of light incidence. Additionally, the SolarLab platform includes guided exercises and intuitive graphical user......Experiment based teaching methods are a great way to get students involved and interested in almost any topic. This paper presents such a hands-on approach for teaching solar cell operation principles along with characterization and modelling methods. This is achieved with the SolarLab platform...

  10. Online Statistics Labs in MSW Research Methods Courses: Reducing Reluctance toward Statistics

    Science.gov (United States)

    Elliott, William; Choi, Eunhee; Friedline, Terri

    2013-01-01

    This article presents results from an evaluation of an online statistics lab as part of a foundations research methods course for master's-level social work students. The article discusses factors that contribute to an environment in social work that fosters attitudes of reluctance toward learning and teaching statistics in research methods…

  11. Factors Affecting Career Choice: Comparison Between Students from Computer and Other Disciplines

    Science.gov (United States)

    Alexander, P. M.; Holmner, M.; Lotriet, H. H.; Matthee, M. C.; Pieterse, H. V.; Naidoo, S.; Twinomurinzi, H.; Jordaan, D.

    2011-06-01

    The number of student enrolments in computer-related courses remains a serious concern worldwide with far reaching consequences. This paper reports on an extensive survey about career choice and associated motivational factors amongst new students, only some of whom intend to major in computer-related courses, at two South African universities. The data were analyzed using some components of Social Cognitive Career Theory, namely external influences, self-efficacy beliefs and outcome expectations. The research suggests the need for new strategies for marketing computer-related courses and the avenues through which they are marketed. This can to some extent be achieved by studying strategies used by other (non-computer) university courses, and their professional bodies. However, there are also distinct differences, related to self-efficacy and career outcomes, between the computer majors and the `other' group and these need to be explored further in order to find strategies that work well for this group. It is not entirely clear what the underlying reasons are for these differences but it is noteworthy that the perceived importance of "Interest in the career field" when choosing a career remains very high for both groups of students.

  12. A flexible LabVIEWTM-based data acquisition and analysis system for scanning microscopy

    International Nuclear Information System (INIS)

    Morse, Daniel H.; Antolak, Arlyn J.; Bench, Graham S.; Roberts, Mark L.

    1999-01-01

    A new data analysis system has been developed with computer-controlled beam and sample positioning, video sample imaging, multiple large solid angle detectors for X-rays and gamma-rays, and surface barrier detectors for charged particles. The system uses the LabVIEW TM programming language allowing it to be easily ported between different computer operating systems. In the present configuration, digital signal processors are directly interfaced to a SCSI CAMAC controller. However, the modular software design permits the substitution of other hardware with LabVIEW-supported drivers. On-line displays of histogram and two-dimensional elemental map images provide a user-friendly data acquisition interface. Subregions of the two-dimensional maps may be selected interactively for detailed analysis or for subsequent scanning. Off-line data processing of archived data currently yields elemental maps, analyzed spectra and reconstructions of tomographic data

  13. Students' Mathematics Word Problem-Solving Achievement in a Computer-Based Story

    Science.gov (United States)

    Gunbas, N.

    2015-01-01

    The purpose of this study was to investigate the effect of a computer-based story, which was designed in anchored instruction framework, on sixth-grade students' mathematics word problem-solving achievement. Problems were embedded in a story presented on a computer as computer story, and then compared with the paper-based version of the same story…

  14. Improving self-regulated learning junior high school students through computer-based learning

    Science.gov (United States)

    Nurjanah; Dahlan, J. A.

    2018-05-01

    This study is back grounded by the importance of self-regulated learning as an affective aspect that determines the success of students in learning mathematics. The purpose of this research is to see how the improvement of junior high school students' self-regulated learning through computer based learning is reviewed in whole and school level. This research used a quasi-experimental research method. This is because individual sample subjects are not randomly selected. The research design used is Pretest-and-Posttest Control Group Design. Subjects in this study were students of grade VIII junior high school in Bandung taken from high school (A) and middle school (B). The results of this study showed that the increase of the students' self-regulated learning who obtain learning with computer-based learning is higher than students who obtain conventional learning. School-level factors have a significant effect on increasing of the students' self-regulated learning.

  15. Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments.

    NARCIS (Netherlands)

    Dewiyanti, Silvia; Brand-Gruwel, Saskia; Jochems, Wim; Broers, Nick

    2008-01-01

    Dewiyanti, S., Brand-Gruwel, S., Jochems, W., & Broers, N. (2007). Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments. Computers in Human Behavior, 23, 496-514.

  16. A New Two-Step Approach for Hands-On Teaching of Gene Technology: Effects on Students' Activities During Experimentation in an Outreach Gene Technology Lab

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2011-08-01

    Emphasis on improving higher level biology education continues. A new two-step approach to the experimental phases within an outreach gene technology lab, derived from cognitive load theory, is presented. We compared our approach using a quasi-experimental design with the conventional one-step mode. The difference consisted of additional focused discussions combined with students writing down their ideas (step one) prior to starting any experimental procedure (step two). We monitored students' activities during the experimental phases by continuously videotaping 20 work groups within each approach ( N = 131). Subsequent classification of students' activities yielded 10 categories (with well-fitting intra- and inter-observer scores with respect to reliability). Based on the students' individual time budgets, we evaluated students' roles during experimentation from their prevalent activities (by independently using two cluster analysis methods). Independently of the approach, two common clusters emerged, which we labeled as `all-rounders' and as `passive students', and two clusters specific to each approach: `observers' as well as `high-experimenters' were identified only within the one-step approach whereas under the two-step conditions `managers' and `scribes' were identified. Potential changes in group-leadership style during experimentation are discussed, and conclusions for optimizing science teaching are drawn.

  17. Recent skyshine calculations at Jefferson Lab

    International Nuclear Information System (INIS)

    Degtyarenko, P.

    1997-01-01

    New calculations of the skyshine dose distribution of neutrons and secondary photons have been performed at Jefferson Lab using the Monte Carlo method. The dose dependence on neutron energy, distance to the neutron source, polar angle of a source neutron, and azimuthal angle between the observation point and the momentum direction of a source neutron have been studied. The azimuthally asymmetric term in the skyshine dose distribution is shown to be important in the dose calculations around high-energy accelerator facilities. A parameterization formula and corresponding computer code have been developed which can be used for detailed calculations of the skyshine dose maps

  18. Brewing for Students: An Inquiry-Based Microbiology Lab

    Directory of Open Access Journals (Sweden)

    Brian K. Sato

    2015-08-01

    Full Text Available In an effort to improve and assess student learning, there has been a push to increase the incorporation of discovery-driven modules and those that contain real-world relevance into laboratory curricula. To further this effort, we have developed, implemented, and assessed an undergraduate microbiology laboratory experiment that requires students to use the scientific method while brewing beer. The experiment allows students to brew their own beer and characterize it based on taste, alcohol content, calorie content, pH, and standard reference method. In addition, we assessed whether students were capable of achieving the module learning objectives through a pre-/posttest, student self-evaluation, exam-embedded questions, and an associated worksheet. These objectives included describing the role of the brewing ingredients and predicting how altering the ingredients would affect the characteristics of the beer, amongst others. By completing this experimental module, students accomplished the module objectives, had greater interest in brewing, and were more likely to view beer in scientific terms. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory safety section of the ASM Curriculum Recommendations: Introductory Course in Microbiology and the Guidelines for Biosafety in Teaching Laboratories, available at www.asm.org. The Editors of JMBE recommend that adopters of the protocols included in this article follow a minimum of Biosafety Level 1 practices.

  19. Supporting students' learning in the domain of computer science

    Science.gov (United States)

    Gasparinatou, Alexandra; Grigoriadou, Maria

    2011-03-01

    Previous studies have shown that students with low knowledge understand and learn better from more cohesive texts, whereas high-knowledge students have been shown to learn better from texts of lower cohesion. This study examines whether high-knowledge readers in computer science benefit from a text of low cohesion. Undergraduate students (n = 65) read one of four versions of a text concerning Local Network Topologies, orthogonally varying local and global cohesion. Participants' comprehension was examined through free-recall measure, text-based, bridging-inference, elaborative-inference, problem-solving questions and a sorting task. The results indicated that high-knowledge readers benefited from the low-cohesion text. The interaction of text cohesion and knowledge was reliable for the sorting activity, for elaborative-inference and for problem-solving questions. Although high-knowledge readers performed better in text-based and in bridging-inference questions with the low-cohesion text, the interaction of text cohesion and knowledge was not reliable. The results suggest a more complex view of when and for whom textual cohesion affects comprehension and consequently learning in computer science.

  20. The Effectiveness of Computer-Assisted Instruction for Teaching Mathematics to Students with Specific Learning Disability

    Science.gov (United States)

    Stultz, Sherry L.

    2013-01-01

    Using computers to teach students is not a new idea. Computers have been utilized for educational purposes for over 80 years. However, the effectiveness of these programs for teaching mathematics to students with specific learning disability is unclear. This study was undertaken to determine if computer-assisted instruction was as effective as…