WorldWideScience

Sample records for structure phase transformations

  1. Total energy calculations for structural phase transformations

    International Nuclear Information System (INIS)

    Ye, Y.Y.; Chan, C.T.; Ho, K.M.; Harmon, B.N.

    1990-01-01

    The structural integrity and physical properties of crystalline solids are frequently limited or enhanced by the occurrence of phase transformations. Martensitic transformations involve the collective displacement of atoms from one ordered state to another. Modern methods to determine the microscopic electronic changes as the atoms move are now accurate enough to evaluate the very small energy differences involved. Extensive first principles calculations for the prototypical martensitic transformation from body-centered cubic (bcc) to closepacked 9R structure in sodium metal are described. The minimum energy coordinate or configuration path between the bcc and 9R structures is determined as well as paths to other competing close-packed structures. The energy barriers and important anharmonic interactions are identified and general conclusions drawn. The calculational methods used to solve the Schrodinger equation include pseudopotentials, fast Fourier transforms, efficient matrix diagnonalization, and supercells with many atoms

  2. Neutron scattering studies of pretransitional phenomena in structural phase transformations

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1979-03-01

    Materials exhibiting structural phase transformations are well known to possess pretransitional phenomena. Below the transition temperature, T/sub c/, an order parameter appears and the pretransitional effects are associated with the fluctuations of the order parameter. Neutron scattering techniques have proved invaluable in studying the temporal and spatial dependence of these fluctuations. SrTiO 3 is the prototypical example of a structural phase transformation exhibiting features observable in other transformations such as martensitic and order-disorder. The experimental evolution of the understanding of the phase transformation in SrTiO 3 will be reviewed and the features observed will be shown to typify other systems

  3. Corundum-to-spinel structural phase transformation in alumina

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Shogo [Department of Materials Science and Engineering, Kyushu Institute of Technology, Fukuoka 804-8550 (Japan); Ishimaru, Manabu, E-mail: ishimaru@post.matsc.kyutech.ac.jp [Department of Materials Science and Engineering, Kyushu Institute of Technology, Fukuoka 804-8550 (Japan); Sina, Younes; McHargue, Carl J.; Sickafus, Kurt E. [Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996-2200 (United States); Alves, Eduardo [Unit of Physics and Accelerators, Ion Beam Laboratory, Instituto Superior Técnico/Instituto Tecnológico e Nuclear, EN. 10 2686-953 Sacavém (Portugal)

    2015-09-01

    Several polymorphs exist in alumina (Al{sub 2}O{sub 3}), and they transform to a stable α-phase with a hexagonal corundum structure on thermal annealing. This structural change is irreversible as a function of temperature, and transformation of corundum to another metastable crystalline phase has never been observed by heat treatments. In this study, we irradiated single crystals of Al{sub 2}O{sub 3} with Zr ions and obtained an irradiated microstructure consisting of a buried α-Al{sub 2}O{sub 3} layer surrounded on top and bottom by layers of a defect cubic spinel Al{sub 2}O{sub 3} phase. We examined the thermal stability of this microstructure using transmission electron microscopy and X-ray diffraction. We found that the corundum phase completely transforms to the spinel phase following annealing at 1173 K for 1 h: the thermodynamically stable phase transforms to the metastable phase by heat treatments. We discuss this unusual structural change within the context of our results as well as previous observations.

  4. Charge density wave instabilities and incommensurate structural phase transformations

    International Nuclear Information System (INIS)

    Axe, J.D.

    1977-10-01

    Incommensurate structural phase transformations involve the appearance of modulated atomic displacements with spatial periodicity unrelated to the fundamental periodicity of the basic lattice. In the case of some quasi one- or two-dimensional metals such transformations are the result of Fermi-surface instabilities that also produce electronic charge density waves (CDW's) and soft phonon modes due to metallic electron screening singularities. Incommensurate soft mode instabilities have been found in insulators as well. Recent neutron scattering studies of both the statics and dynamics of incommensurate structural instabilities will be reviewed

  5. Phase field theory of proper displacive phase transformations: Structural anisotropy and directional flexibility, a vector model, and the transformation kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Rao Weifeng [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States); Khachaturyan, Armen G., E-mail: khach@jove.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States)

    2011-06-15

    A phase field theory of proper displacive transformations is developed to address the microstructure evolution and its response to applied fields in decomposing and martensitic systems. The theory is based on the explicit equation for the non-equilibrium free energy function of the transformation strain obtained by a consistent separation of the total strain into transformation and elastic strains. The transformation strain is considered to be a relaxing long-range order parameter evolving in accordance with the system energetics rather than as a fixed material constant used in the conventional Eshelby theory of coherent inclusions. The elastic strain is defined as a coherency strain recovering the crystal lattice compatibility. The obtained free energy function of the transformation strain leads to the concepts of structural anisotropy and directional flexibility of low symmetry phases. The formulated vector model of displacive transformation makes apparent a similarity between proper displacive transformation and ferromagnetic/ferroelectric transformation and, in particular, a similarity between the structural anisotropy and magnetic/polar anisotropy of ferromagnetic/ferroelectric materials. It even predicts the feasibility of a glass-like structural state with unlimited directional flexibility of the transformation strain that is conceptually similar to a ferromagnetic glass. The thermodynamics of the equilibrium between low symmetry phases and the thermodynamic conditions leading to the formation of adaptive states are formulated.

  6. Nanocrystalline Fe-Pt alloys. Phase transformations, structure and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, J.V.

    2006-12-21

    This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometersized grains. Nanocrystalline Fe{sub 100-x}Pt{sub x} (x=40-60) alloys have been prepared by mechanical ball milling of elemental Fe and Pt powders at liquid nitrogen temperature. The as-milled Fe-Pt alloys consist of {proportional_to} 100 {mu}m sized particles constituted by randomly oriented grains having an average size in the range of 10-40 nm. Depending on the milling time, three major microstructure types have been obtained: samples with a multilayer-type structure of Fe and Pt with a thickness of 20-300 nm and a very thin (several nanometers) A1 layer at their interfaces (2 h milled), an intermediate structure, consisting of finer lamellae of Fe and Pt (below approximately 100 nm) with the A1 layer thickness reaching several tens of nanometers (4 h milled) and alloys containing a homogeneous A1 phase (7 h milled). Subsequent heat treatment at elevated temperatures is required for the formation of the L1{sub 0} FePt phase. The ordering develops via so-called combined solid state reactions. It is accompanied by grain growth and thermally assisted removal of defects introduced by milling and proceeds rapidly at moderate temperatures by nucleation and growth of the ordered phases with a high degree of the long-range order. In a two-particle interaction model elaborated in the present work, the existence of hysteresis in recoil loops has been shown to arise from insufficient coupling between the low- and the high-anisotropy particles. The model reveals the main features of magnetisation reversal processes observed experimentally in exchange-coupled systems. Neutron diffraction has been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. (orig.)

  7. Structural phase transformation in K2SeO4

    International Nuclear Information System (INIS)

    Iizumi, M.; Axe, J.D.; Shirane, G.; Shimaoka, K.

    1977-01-01

    Successive phase transformations in K 2 SeO 4 at T 1 = 130 K and T/sub c/ = 93 K were studied by the neutron-scattering technique. The superlattice reflections in the intermediate phase were found to be incommensurate with the lattice periodicity. The wave vector characterizing the reflections is q/sub delta/ = (1-delta) a*/3 with delta = 0.07 at 122.5 K. The deviation delta decreases with decreasing temperature with an apparently discontinuous jump to zero at T/sub c/. Below this temperature, the crystal remains commensurate and is known to be ferroelectric. The incommensurate-commensurate transition and the simultaneous occurrence of the commensurate phase and the spontaneous polarization are discussed using a Landau-type expansion of the free energy in which a term proportional to Q 3 (q/sub delta/) P/sub z/ (q 3 /sub delta/) plays an essential role in driving the incommensurate-commensurate phase transformation and in inducing the spontaneous polarization. Here, Q (q/sub delta/) is the amplitude of the primary atomic displacements with wave vector q/sub delta/ and P/sub z/(q 3 /sub delta/) is the polarization wave with wave vector q 3 /sub delta/ = 3delta (a*/3) and becomes the macroscopic polarization below T/sub c/. Above T/sub i/, a Σ 2 optic-phonon branch along (xi,0,0) shows a striking softening and ω/sub j/(q) for q approx. (1/3,0,0) tends to zero at T/sub i/. The softening results from a temperature-dependent decrease of the interlayer forces with ranges a/2 and a (a is one unit-cell length along the a axis) in the presence of strong and persisting forces with a range 3a/2. The intensities of the soft phonon were measured about different reciprocal-lattice points and were used to determine the nature of the soft-phonon mode and suggest a coupled translation of potassium ions with rotational motion of SeO 4 groups to be the origin of the lattice instability

  8. Phase transformation and diffusion

    CERN Document Server

    Kale, G B; Dey, G K

    2008-01-01

    Given that the basic purpose of all research in materials science and technology is to tailor the properties of materials to suit specific applications, phase transformations are the natural key to the fine-tuning of the structural, mechanical and corrosion properties. A basic understanding of the kinetics and mechanisms of phase transformation is therefore of vital importance. Apart from a few cases involving crystallographic martensitic transformations, all phase transformations are mediated by diffusion. Thus, proper control and understanding of the process of diffusion during nucleation, g

  9. Synchrotron radiation : characteristics and application in structural studies and phase transformations of materials

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1984-01-01

    The main characteristics of the synchrotron radiation for studying atomic structure and phase transformations in materials are presented. Some specific applications in alloys, glass and solids are described. (E.G.) [pt

  10. Structural-Phase Transformations of CuZn Alloy Under Thermal-Impact Cycling

    Science.gov (United States)

    Potekaev, A. I.; Chaplygina, A. A.; Kulagina, V. V.; Chaplygin, P. A.; Starostenkov, M. D.; Grinkevich, L. S.

    2017-02-01

    Using the Monte Carlo method, special features of structural - phase transformations in β-brass are investigated during thermal impact using thermal cycling as an example (a number of successive order - disorder and disorder - order phase transitions in the course of several heating - cooling cycles). It is shown that a unique hysteresis is observed after every heating and cooling cycle, whose presence indicates irreversibility of the processes, which suggests a difference in the structural - phase states both in the heating and cooling stages. A conclusion is drawn that the structural - phase transformations in the heating and cooling stages occur within different temperature intervals, where the thermodynamic stimuli of one or the other structural - phase state are low. This is also demonstrated both in the plots of configurational energy, long- and short-range order parameter, atomic structure variations, and structural - phase state distributions. Simultaneously, there coexist ordered and disordered phases and a certain collection of superstructure domains. This implies the presence of low - stability states in the vicinity of the order - disorder phase transition. The results of investigations demonstrate that the structural - phase transitions within two successive heating and cooling cycles at the same temperature are different in both stages. These changes, though not revolutionary, occur in every cycle and decrease with the increasing cycle number. In fact, the system undergoes training with a tendency towards a certain sequence of structural - phase states.

  11. Lattice instabilities and structural phase transformations in La2CuO4 superconductors and insulators

    International Nuclear Information System (INIS)

    Axe, J.D.

    1991-01-01

    Soft-mode structural phase transformations, common in many perovskite-based materials, are also found in La 2 CuO 4 and structurally related oxides. The resulting phase behavior is rather complex, but is a natural consequence of the degeneracy of the soft phonon order parameters. This paper reviews the structural and lattice-dynamical results and their interpretation based upon mean-field statistical mechanical models

  12. Non-isothermal kinetics of phase transformations in magnetron sputtered alumina films with metastable structure

    International Nuclear Information System (INIS)

    Zuzjaková, Š.; Zeman, P.; Kos, Š.

    2013-01-01

    Highlights: • Non-isothermal kinetics of phase transformations in alumina films was investigated. • The structure of alumina films affects kinetics of the transformation processes. • Kinetic triplets of all transformation processes were determined. • The KAS, FWO, FR and IKP methods for determination of E a and A were used. • The Málek method for determination of the kinetic model was used. - Abstract: The paper reports on non-isothermal kinetics of transformation processes in magnetron sputtered alumina thin films with an amorphous and γ-phase structure leading ultimately to the formation of the thermodynamically stable α-Al 2 O 3 phase. Phase transformation sequences in the alumina films were investigated using differential scanning calorimetry (DSC) at four different heating rates (10, 20, 30, 40 °C/min). Three isoconversional methods (Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR) method) as well as the invariant kinetic parameters (IKP) method were used to determine the activation energies for transformation processes. Moreover, the pre-exponential factors were determined using the IKP method. The kinetic models of the transformation processes were determined using the Málek method. It was found that the as-deposited structure of alumina films affects kinetics of the transformation processes. The film with the amorphous as-deposited structure heated at 40 °C/min transforms to the crystalline γ phase at a temperature of ∼930 °C (E a,IKP = 463 ± 10 kJ/mol) and subsequently to the crystalline α phase at a temperature of ∼1200 °C (E a,IKP = 589 ± 10 kJ/mol). The film with the crystalline γ-phase structure heated at 40 °C/min is thermally stable up to ∼1100 °C and transforms to the crystalline α phase (E a,IKP = 511 ± 16 kJ/mol) at a temperature of ∼1195 °C. The empirical two-parameter Šesták–Berggren kinetic model was found to be the most adequate one to describe all transformation processes

  13. Phase and structural transformations in annealed copper coatings in relation to oxide whisker growth

    Energy Technology Data Exchange (ETDEWEB)

    Dorogov, M.V.; Priezzheva, A.N. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Vlassov, S., E-mail: vlassovs@ut.ee [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Kink, I.; Shulga, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Dorogin, L.M. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Lõhmus, R. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Tyurkov, M.N.; Vikarchuk, A.A. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Romanov, A.E. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Ioffe Physical Technical Institute, RAS, Polytechnicheskaya 26, 194021 Saint Petersburg (Russian Federation)

    2015-08-15

    Highlights: • Coatings prepared by Cu microparticle electrodeposition. • Structural and phase transformation in Cu coatings annealed at 400 °C. • Annealing is accompanied by intensive growth of CuO whiskers. • Layered oxide phases (Cu{sub 2}O and CuO) in the coating are characterized. • Formation of volumetric defects in the coating is demonstrated. - Abstract: We describe structural and phase transformation in copper coatings made of microparticles during heating and annealing in air in the temperature range up to 400 °C. Such thermal treatment is accompanied by intensive CuO nanowhisker growth on the coating surface and the formation of the layered oxide phases (Cu{sub 2}O and CuO) in the coating interior. X-ray diffraction and focused ion beam (FIB) are employed to characterize the multilayer structure of annealed copper coatings. Formation of volumetric defects such as voids and cracks in the coating is demonstrated.

  14. Structural, vibrational and thermal characterization of phase transformation in L-histidinium bromide monohydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Moura, G.M. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Universidade Federal do Sul e Sudeste do Pará, ICEN, Marabá, PA 68505-080 (Brazil); Carvalho, J.O. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Instituto Federal do Tocantins, Araguaína, TO, 77.826-170 (Brazil); Silva, M.C.D.; Façanha Filho, P.F. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Santos, A.O. dos, E-mail: adenilson1@gmail.com [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil)

    2015-09-01

    L-Histidinium bromide monohydrate (LHBr) single crystal is a nonlinear optical material. In this work the high temperature phase transformation and the thermal stability of single crystals of LHBr was investigated by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry and Raman spectroscopy. The results showed the LHBr phase transformation of orthorhombic (P2{sub 1}2{sub 1}2{sub 1}) to monoclinic system (P 1 2 1) at 120 °C, with the lattice parameters a = 12.162(1) Å, b = 16.821(2) Å, c = 19.477(2) Å and β = 108.56(2)°. These techniques are complementary and confirm the structural phase transformation due to loss water of crystallization. - Highlights: • -histidinium bromide single crystal was grown by slow evaporation technique. • X-ray diffraction characterize the high-temperature phase transformation. • The structural phase transformation occur due to loss of water of crystallization. • The LHBr thermal expansion coefficients exhibit an anisotropic behavior.

  15. Pressure-induced structural phase transformation and superconducting properties of titanium mononitride

    Science.gov (United States)

    Li, Qian; Guo, Yanan; Zhang, Miao; Ge, Xinlei

    2018-03-01

    In this work, we have systematically performed the first-principles structure search on titanium mononitride (TiN) within Crystal Structure AnaLYsis by Particle Swarm Optimization (CALYPSO) methodology at high pressures. Here, we have confirmed a phase transition from cubic rock-salt (fcc) phase to CsCl (bcc) phase of TiN at ∼348 GPa. Further simulations reveal that the bcc phase is dynamically stable, and could be synthesized experimentally in principle. The calculated elastic anisotropy decreases with the phase transformation from fcc to bcc structure under high pressures, and the material changes from ductile to brittle simultaneously. Moreover, we found that both structures are superconductive with the superconducting critical temperature of 2-12 K.

  16. Electronic structure and phase stability during martensitic transformation in Al-doped ZrCu intermetallics

    International Nuclear Information System (INIS)

    Qiu Feng; Shen Ping; Liu Tao; Lin Qiaoli; Jiang Qichuan

    2010-01-01

    Martensitic transformation, phase stability and electronic structure of Al-doped ZrCu intermetallics were investigated by experiments and first-principles calculations using the pseudopotentials plane wave method. The formation energy calculations indicate that the stability of the ZrCu phase increases with the increasing Al content. Al plays a decisive role in controlling the formation and microstructures of the martensite phases in Zr-Cu-Al alloys. The total energy difference between ZrCu (B2) austenite and ZrCu martensite plays an important role in the martensitic transformation. The phase stability is dependent on its electronic structure. The densities of states (DOS) of the intermetallics were discussed in detail.

  17. Investigation of phase transformation for ferrite–austenite structure in stainless steel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Merakeb, Noureddine [Laboratory of Physical Metallurgy and Property of Materials (LM2PM), Metallurgy and Materials Engineering Department, Badji Mokhtar University, P.O. Box 12, Annaba 23000 (Algeria); Messai, Amel [Laboratoire d' Ingénierie et Sciences des Matériaux Avancés (ISMA), Institut des Sciences et Technologie, Abbès Laghrour University, Khenchela 40000 (Algeria); Ayesh, Ahmad I., E-mail: ayesh@qu.edu.qa [Department of Mathematics, Statistics and Physics, Qatar University, Doha (Qatar)

    2016-05-01

    In this work we report on phase transformation of 304 stainless steel thin films due to heat treatment. Ex-situ annealing was applied for evaporated 304 stainless steel thin films inside an ultra-high vacuum chamber with a pressure of 3 × 10{sup −7} Pa at temperatures of 500 °C and 600 °C. The structure of thin films was studied by X-ray diffraction (XRD) and conversion electron Mössbauer spectroscopy (CEMS) techniques. The results revealed a transformation from α-phase that exhibits a body-centered cubic structure (BCC) to γ-phase that exhibits a face-centered cubic (FCC) due to annealing. In addition, the percentage of γ-phase structure increased with the increase of annealing temperature. Annealing thin films increased the crystal size of both phases (α and γ), however, the increase was nonlinear. The results also showed that phase transformation was produced by recrystallization of α and γ crystals with a temporal evolution at each annealing temperature. The texture degree of thin films was investigated by XRD rocking curve method, while residual stress was evaluated using curvature method. - Highlights: • Stainless steel thin films were fabricated by thermal evaporation on quartz. • Alpha to gamma phase transformation of thin films was investigated. • Annealing of thin films reduces disruption in crystal lattice. • The stress of as-grown thin films was independent on the thin film thickness. • The stress of the thin films was reduced due to annealing.

  18. Diffusionless phase transformations

    International Nuclear Information System (INIS)

    Vejman, K.M.

    1987-01-01

    Diffusionless phase transformations in metals and alloys in the process of which atomic displacements occur at the distances lower than interatomic ones and relative correspondence of neighbour atoms is preserved, are considered. Special attention is paid to the mechanism of martensitic transformations. Phenomenologic crystallographical theory of martensitic transformations are presented. Two types of martensitic transformations different from the energy viewpoint are pointed out - thermoelastic and non-thermoelastic ones - which are characterized by transformation hysteresis and ways of martensite - initial phase reverse transformation realization. Mechanical effect in the martensitic transformations have been analyzed. The problem of diffusionless formation of ω-phases and the effect of impurities and vacancies on the process are briefly discussed. The role of charge density waves in phase transformations of the second type (transition of initial phase into noncommensurate one) and of the first type (transition of noncommensurate phase into commensurate one) is considered

  19. Solid phase transformations

    CERN Document Server

    Čermák, J

    2008-01-01

    This special-topic book, devoted to ""Solid Phase Transformations"" , covers a broad range of phenomena which are of importance in a number of technological processes. Most commercial alloys undergo thermal treatment after casting, with the aim of imparting desired compositions and/or optimal morphologies to the component phases. In spite of the fact that the topic has lain at the center of physical metallurgy for a long time, there are numerous aspects which are wide open to potential investigative breakthroughs. Materials with new structures also stimulate research in the field, as well as n

  20. Structure and Phase Transformation in the Giant Magnetostriction Laves-Phase SmFe2

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaonan; Lin, Kun; Gao, Qilong; Zhu, He; Li, Qiang; Cao, Yili; Liu, Zhanning; You, Li; Chen, Jun; Ren, Yang [Argonne National Laboratory, X-Ray Science Division, Argonne, Illinois 60439, United States; Huang, Rongjin [Key Laboratory; Lapidus, Saul H. [Argonne National Laboratory, X-Ray Science Division, Argonne, Illinois 60439, United States; Xing, Xianran

    2017-10-13

    As one class of the most important intermetallic compounds, the binary Laves-phase is well-known for their abundant magnetic properties. Samarium-iron alloy system, SmFe2, is a prototypical Laves compound that shows strong negative magnetostriction but relatively weak magnetocrystalline anisotropy. SmFe2 has been identified as a cubic Fd$ \\overline{3}\\ $m structure at room temperature, however, the cubic symmetry does not match the spontaneous magnetization along the [111]cubic direction. Here we studied the crystal structure of SmFe2 by high-resolution synchrotron X-ray powder diffraction and X-ray total scattering methods. SmFe2 is found to adopt a centrosymmetric trigonal R$ \\overline{3}\\ $m structure at room temperature, which transforms to an orthorhombic Imma structure at 200 K. This transition is in agreement with the changes of easy magnetization direction from [111]cubic to [110]cubic direction, and is further evidenced by the inflexion of thermal expansion behavior, the sharp decline of the magnetic susceptibility in the FC-ZFC curve, and the anomaly in the specific heat capacity measurement. The revised structure and phase transformation of SmFe2 could be useful to understand the magnetostriction and related physical properties of other RM2-type pseudo-cubic Laves-phase intermetallic compounds.

  1. Structure-phase transformations in 36NXTYu highly deformed alloy during aging

    International Nuclear Information System (INIS)

    Plotnikov, S.V.; Radashin, M.V.; Alontseva, D.L.

    2001-01-01

    The 36NXTYu alloy - containing 35.39% Ni, 12.43% Cr, 3.08% Ti, 1.22% Al, 0.93% Mn, 0.36% Si, 0.09% Cu , 0.03% C, 0.12% P, 0.09% S and the rest iron - has been examined. Under aging beginning in the alloy the Ni 3 (Al,Yi) type metastable γ'-phase release of with L12 structure is taking place, and then the stable η-phase (Ni 3 Ti, DO 24 ) is occurring. The thin foils structure and micro-diffraction analysis were observed with help of the electron microscope. Fractography has been watched on the scanning electron microscope. For study both phase content and samples texture the DRON-3 diffractometer was applied. The mechanical testing include one-axis static expansion with measurement of a strength limit, conventional fluidity limit, relational extension up to sample breakage. It is shown, that rolling deep levels in the 36NXTYu alloy, in the common case, do not change the structure-phase transformation morphology, but instead of γ'-phase the η-phase is discretely releasing

  2. Constitutive Model Of Graded Micro-Structure Obtained Via Strain Induced Phase Transformation

    CERN Document Server

    Ortwein, Rafał

    The literature review has been divided into three main sub-chapters. The first one is concentrated on the general information about stainless steels and their applications. It is important to perform a general overview and get an idea where the results of the present thesis could be applied. Description of all the brands of stainless steels, their microstructures and properties are important, as similar characteristics can be found in the newly created functionally graded structures. The second sub-chapter is an overview of the most important constitutive models and the experimental results for materials that undergo plastic strain induced phase transformation. Finally, the last one is devoted to functionally graded microstructures obtained via strain induced martensitic transformation – the subject of particular importance for the present thesis. As a general note, the literature review is organized mainly in a chronological order. In some cases similar publications or publications of the same Authors were...

  3. Local structure and phase transformation in Zr and Ti based bcc solutions

    International Nuclear Information System (INIS)

    Chang, A.L.J.

    1975-01-01

    High resolution direct lattice imaging and dark field electron microscopy were used to examine the omega phase transformation in Zr--Nb alloys. Direct lattice imaging demonstrates the existence of three subvariants within each omega variant. The kinematic intensity sum, which is evaluated based on the combination of certain atomic arrangements, was carried out to include both untransformed beta phase and the omega phase. An ordered sequence of subvariants was found to be responsible for the diffraction effects in high Nb content alloys. However, the existence of such an ordered sequence among omega subvariants could not be checked out because of the small size of the omega regions. Omega domains of different variant do not interweave. Isolated particles with diameters of 3 to 5 A also are present away from the domains. As the Nb content is increased the omega domains decrease in size while the isolated particles (3 to 5 A) are present over the entire range studied, from 8 to 30 wt percent Nb. It is suggested that fluctuations in structure occur between the beta and omega phases. The isolated particles, also changing with time, are believed to be images of single or small groups of displaced atoms. (Diss. Abstr. Int., B)

  4. Enhancement of security using structured phase masked in optical image encryption on Fresnel transform domain

    Science.gov (United States)

    Yadav, Poonam Lata; Singh, Hukum

    2018-05-01

    To enhance the security in optical image encryption system and to protect it from the attackers, this paper proposes new digital spiral phase mask based on Fresnel Transform. In this cryptosystem the Spiral Phase Mask (SPM) used is a hybrid of Fresnel Zone Plate (FZP) and Radial Hilbert Mask (RHM) which makes the key strong and enhances the security. The different keys used for encryption and decryption purposed make the system much more secure. Proposed scheme uses various structured phase mask which increases the key space also it increases the number of parameters which makes it difficult for the attackers to exactly find the key to recover the original image. We have also used different keys for encryption and decryption purpose to make the system much more secure. The strength of the proposed cryptosystem has been analyzed by simulating on MATLAB 7.9.0(R2008a). Mean Square Errors (MSE) and Peak Signal to Noise Ratio (PSNR) are calculated for the proposed algorithm. The experimental results are provided to highlight the effectiveness and sustainability of proposed cryptosystem and to prove that the cryptosystem is secure for usage.

  5. The effect of manganese on the kinetics of phase transformations of austenite in structural steels

    International Nuclear Information System (INIS)

    Pacyna, J.; Jedrzejewska-Strach, A.

    1995-01-01

    The aim of this work was to examine the effect of Mn on the kinetics of phase transformations of supercooled austenite. It was executed the 4 CCT diagrams for alloys of a variable Mn content. The obtained results indicate that with the increase of Mn concentrations in austenite in the range 0.73-2.94% the times to the beginning of its transformation are lengthened and the temperatures of these transformations into ferrite and the bainitic transformations are lengthened slightly whole only the time to the beginning of a pearlitic transformation is lengthened more strongly. In the range of 2.0-2.94% Mn the times to the beginnings of all transformations grow very strongly. (author)

  6. Magnetic field effect on Gd2(MoO4)3 domain structure formation in the phase transformation range

    International Nuclear Information System (INIS)

    Flerova, S.A.; Tsinman, I.L.

    1987-01-01

    The behaviour of ferroelastic-ferroelectric domain structure of gadolinium molybdate crystal (GMO)during its formation in the magnetic field in the vicinity of phase transformation is studied.It is shown that the formation of domain structure in the presence of a temperature gradient occurs in the field of mechanical stresses whose mainly stretching effect is concentrated near phase boundaries.The magnetic field intensifies summary mechanical stresses where a domain structure in a ferroelectric phase is formed due to interaction with the elements of inhomogeneous and differently oriented currents near phase boundaries

  7. Effect of grain structure on phase transformation events in Inconel 718

    International Nuclear Information System (INIS)

    Dahotre, N.B.; McCay, M.H.; McCay, T.D.; Hubbard, C.R.; Porter, W.D.; Cavin, O.B.

    1993-01-01

    Nickel base superalloys generally obtain their maximum strength from γ'[Ni 3 (Al,Ti)] and γ double-prime[Ni 3 (Al,Ti,Nb)] age hardening precipitates. During welding the γ' precipitation is very rapid and can lead to strain age cracking, which limits weldability. Thus, the weldable superalloys are limited in their Al and Ti content and hence in their ultimate strength. One method of increasing the ultimate strength of a superalloy, while avoiding strain age cracking, is the addition of Nb. This produces Ni 3 Nb(δ), and when used in conjunction with a limited amount of γ', results in an increase in strength without strain age cracking problems. The γ double-prime does not lead to strain age cracking because its transformation kinetics are too slow for formation during ordinary welding practice. This combination of γ' and γ double-prime strengthening is incorporated into the Inconel 718 alloys. The research reported herein was undertaken to determine the time-temperature response of Inconel 718 in the as-cast, wrought and wrought-grain-grown states, using differential thermal analysis (DTA). It is essential to locate the temperature regime of each phase transformation event and to study the transformation sequence in order to tailor sound laser welding techniques for Inconel 718. In the present research, a DTA technique was employed to study both the phase transformation events and the phase transformation sequence as a function of the pre-existing condition of the alloy

  8. Kinetics of phase transformations

    International Nuclear Information System (INIS)

    Thompson, M.O.; Aziz, M.J.; Stephenson, G.B.

    1992-01-01

    This volume contains papers presented at the Materials Research Society symposium on Kinetics of Phase Transformations held in Boston, Massachusetts from November 26-29, 1990. The symposium provided a forum for research results in an exceptionally broad and interdisciplinary field. Presentations covered nearly every major class of transformations including solid-solid, liquid-solid, transport phenomena and kinetics modeling. Papers involving amorphous Si, a dominant topic at the symposium, are collected in the first section followed by sections on four major areas of transformation kinetics. The symposium opened with joint sessions on ion and electron beam induced transformations in conjunction with the Surface Chemistry and Beam-Solid Interactions: symposium. Subsequent sessions focused on the areas of ordering and nonlinear diffusion kinetics, solid state reactions and amorphization, kinetics and defects of amorphous silicon, and kinetics of melting and solidification. Seven internationally recognized invited speakers reviewed many of the important problems and recent results in these areas, including defects in amorphous Si, crystal to glass transformations, ordering kinetics, solid-state amorphization, computer modeling, and liquid/solid transformations

  9. Structure and phase transformation behavior of electroless Ni-P alloys containing tin and tungsten

    International Nuclear Information System (INIS)

    Balaraju, J.N.; Jahan, S. Millath; Jain, Anjana; Rajam, K.S.

    2007-01-01

    Autocatalytic ternary Ni-Sn-P, Ni-W-P and quaternary Ni-W-Sn-P films were prepared using alkaline citrate-based baths and compared with binary Ni-P coatings. Energy dispersive analysis of X-ray (EDAX) showed that binary Ni-P deposit contained 11.3 wt.% of phosphorus. Codeposition of tungsten in Ni-P matrix resulted in ternary Ni-W-P with 5 wt.% P and 7.8 wt.% of tungsten. Incorporation of tin led to ternary Ni-Sn-P deposit containing 0.4 wt.% Sn and 10.3 wt.% P. Presence of both sodium tungstate and sodium stannate in the basic bath had resulted in quaternary coating with 6.9 wt.% W, traces of Sn and 6.4 wt.% P. X-ray diffraction patterns of all the deposits revealed a single, broad peak which showed the nanocrystalline nature of the deposits. For the first time in related literature, the presence of a metastable phase Ni 12 P 5 in ternary deposits is reported in the present study. Metallographic cross-sections of all the deposits revealed the banded/lamellar structure. Scanning electron microscopy (SEM) studies of the deposits showed smooth nodules for ternary deposits, but coarse and well-defined nodules for quaternary deposits. DSC studies of phase transformation behavior of the ternary Ni-Sn-P deposit revealed a single sharp exothermic peak at 365 o C. However, ternary Ni-W-P and quaternary Ni-W-Sn-P deposits exhibited a low temperature peak at 300 o C, a split type high temperature peak at 405 and 440 o C and a very high temperature peak at 550 o C. Higher activation energy values were obtained for W-based alloy deposits. Presence of W and Sn has helped to retain high microhardness values even at higher temperatures indicating an improved thermal stability

  10. Formation of {1 0 0} textured columnar grain structure in a non-oriented electrical steel by phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Li; Yang, Ping, E-mail: yangp@mater.ustb.edu.cn; Zhang, Ning; Zong, Cui; Xia, Dongsheng; Mao, Weimin

    2014-04-01

    This study confirms the effect of anisotropic strain energy on the formation of {1 0 0} textured columnar grain structure induced by temperature gradient during γ to α phase transformation in pure hydrogen atmosphere. Results indicate that high temperature gradient in pure hydrogen atmosphere induces a significant strain energy difference across grain boundaries during γ to α phase transformation, leading to the formation of {1 0 0} texture with columnar grains. Given its simplicity in processing and its ability to obtain good texture-related magnetic properties, the proposed approach is helpful to the development of new types of non-oriented electrical steel. - Highlights: • A strong {1 0 0} texture with columnar grains was obtained. • Good texture and magnetic properties are attributed to the anisotropic strain energy. • The anisotropy in elastic strain energy was induced by the temperature gradient. • The phase transformation rate affects columnar grain morphology.

  11. Theoretical analysis of the structural phase transformation in the ZnO under high pressure

    Science.gov (United States)

    Verma, Saligram; Jain, Arvind; Nagarch, R. K.; Shah, S.; Kaurav, Netram

    2018-05-01

    We report a phenomenological model based calculation of pressure-induced structural phase transition and elastic properties of ZnO compound. Gibb's free energy is obtained as a function of pressure by applying an effective inter ionic interaction potential, which includes the long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach. From the present study, we predict a structural phase transition from ZnS structure (B3) to NaCl structure (B1) at 8.5 GPa. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data. The variations of elastic constants with pressure follow a systematic trend identical to that observed in others compounds of ZnS type structure family.

  12. Systematic comparison of crystalline and amorphous phases: Charting the landscape of water structures and transformations

    International Nuclear Information System (INIS)

    Pietrucci, Fabio; Martoňák, Roman

    2015-01-01

    Systematically resolving different crystalline phases starting from the atomic positions, a mandatory step in algorithms for the prediction of structures or for the simulation of phase transitions, can be a non-trivial task. Extending to amorphous phases and liquids which lack the discrete symmetries, the problem becomes even more difficult, involving subtle topological differences at medium range that, however, are crucial to the physico-chemical and spectroscopic properties of the corresponding materials. Typically, system-tailored order parameters are devised, like global or local symmetry indicators, ring populations, etc. We show that a recently introduced metric provides a simple and general solution to this intricate problem. In particular, we demonstrate that a map can be traced displaying distances among water phases, including crystalline as well as amorphous states and the liquid, consistently with experimental knowledge in terms of phase diagram, structural features, and preparation routes

  13. Devil’s Vortex Phase Structure as Frequency Plane Mask for Image Encryption Using the Fractional Mellin Transform

    Directory of Open Access Journals (Sweden)

    Sunanda Vashisth

    2014-01-01

    Full Text Available A frequency plane phase mask based on Devil’s vortex structure has been used for image encryption using the fractional Mellin transform. The phase key for decryption is obtained by an iterative phase retrieval algorithm. The proposed scheme has been validated for grayscale secret target images, by numerical simulation. The efficacy of the scheme has been evaluated by computing mean-squared-error between the secret target image and the decrypted image. Sensitivity analysis of the decryption process to variations in various encryption parameters has been carried out. The proposed encryption scheme has been seen to exhibit reasonable robustness against occlusion attack.

  14. Ti α - ω phase transformation and metastable structure, revealed by the solid-state nudged elastic band method

    Science.gov (United States)

    Zarkevich, Nikolai; Johnson, Duane D.

    Titanium is on of the four most utilized structural metals, and, hence, its structural changes and potential metastable phases under stress are of considerable importance. Using DFT+U combined with the generalized solid-state nudged elastic band (SS-NEB) method, we consider the pressure-driven transformation between Ti α and ω phases, and find an intermediate metastable body-centered orthorhombic (bco) structure of lower density. We verify its stability, assess the phonons and electronic structure, and compare computational results to experiment. Interestingly, standard density functional theory (DFT) yields the ω phase as the Ti ground state, in contradiction to the observed α phase at low pressure and temperature. We correct this by proper consideration of the strongly correlated d-electrons, and utilize DFT+U method in the SS-NEB to obtain the relevant transformation pathway and structures. We use methods developed with support by the U.S. Department of Energy (DE-FG02-03ER46026 and DE-AC02-07CH11358). Ames Laboratory is operated for the DOE by Iowa State University under Contract DE-AC02-07CH11358.

  15. Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys

    Science.gov (United States)

    Hartl, D. J.; Lagoudas, D. C.

    2009-10-01

    The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation.

  16. Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys

    International Nuclear Information System (INIS)

    Hartl, D J; Lagoudas, D C

    2009-01-01

    The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation

  17. Phase transformation of Ca4[Al6O12]SO4 and its disordered crystal structure at 1073 K

    International Nuclear Information System (INIS)

    Kurokawa, Daisuke; Takeda, Seiya; Colas, Maggy; Asaka, Toru; Thomas, Philippe; Fukuda, Koichiro

    2014-01-01

    The phase transformation of Ca 4 [Al 6 O 12 ]SO 4 and the crystal structure of its high-temperature phase were investigated by differential thermal analysis, temperature-dependent Raman spectroscopy and high-temperature X-ray powder diffraction (CuKα 1 ). We determined the starting temperature of the orthorhombic-to-cubic transformation during heating (=711 K) and that of the reverse transformation during cooling (=742 K). The thermal hysteresis was negative (=−31 K), suggesting the thermoelasticity of the transformation. The space group of the high temperature phase is I4 ¯ 3m with the unit-cell dimensions of a=0.92426(2) nm and V=0.78955(2) nm 3 (Z=2) at 1073 K. The initial structural model was derived by the direct methods and further refined by the Rietveld method. The final structural model showed the orientational disordering of SO 4 tetrahedra. The maximum-entropy method-based pattern fitting method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. At around the transformation temperature during heating, the vibrational spectra, corresponding to the Raman-active SO 4 internal stretching mode, showed the continuous and gradual change in the slope of full width at half maximum versus temperature curve. This strongly suggests that the orthorhombic-to-cubic phase transformation would be principally accompanied by the statistical disordering in orientation of the SO 4 tetrahedra, without distinct dynamical reorientation. - Graphical abstract: (Left) Three-dimensional electron-density distributions of the SO 4 tetrahedron with the split-atom model, and (right) a bird's eye view of electron densities on the plane parallel to (111). - Highlights: • Crystal structure of Ca 4 [Al 6 O 12 ]SO 4 at 1073 K is determined by powder XRD. • The atom arrangements are represented by the split-atom model. • The MPF method is used to confirm the validity of the model.

  18. Computation material science of structural-phase transformation in casting aluminium alloys

    Science.gov (United States)

    Golod, V. M.; Dobosh, L. Yu

    2017-04-01

    Successive stages of computer simulation the formation of the casting microstructure under non-equilibrium conditions of crystallization of multicomponent aluminum alloys are presented. On the basis of computer thermodynamics and heat transfer during solidification of macroscale shaped castings are specified the boundary conditions of local heat exchange at mesoscale modeling of non-equilibrium formation the solid phase and of the component redistribution between phases during coalescence of secondary dendrite branches. Computer analysis of structural - phase transitions based on the principle of additive physico-chemical effect of the alloy components in the process of diffusional - capillary morphological evolution of the dendrite structure and the o of local dendrite heterogeneity which stochastic nature and extent are revealed under metallographic study and modeling by the Monte Carlo method. The integrated computational materials science tools at researches of alloys are focused and implemented on analysis the multiple-factor system of casting processes and prediction of casting microstructure.

  19. Structural and phase transformations in zinc and brass wires under heating with high-density current pulse

    Energy Technology Data Exchange (ETDEWEB)

    Pervikov, A. V. [Laboratory of Physical Chemistry of Ultrafine Materials, Institute of Strength Physics and Materials Science, 2/4, pr. Akademicheskii, 634021 Tomsk, Russia and Department of High Voltage Electrophysics and High Current Electronics, Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk (Russian Federation)

    2016-06-15

    The work is focused on revealing the mechanism of structure and phase transformations in the metal wires under heating with a high-density current pulse (the electric explosion of wires, EEWs). It has been demonstrated on the example of brass and zinc wires that the transition of a current pulse with the density of j ≈ 3.3 × 10{sup 7} A/cm{sup 2} results in homogeneous heating of the crystalline structure of the metal/alloy. It has been determined that under heating with a pulse of high-density current pulse, the electric resistance of the liquid phases of zinc and brass decreases as the temperature increases. The results obtained allow for a conclusion that the presence of the particles of the condensed phase in the expanding products of EEW is the result of overheating instabilities in the liquid metal.

  20. Structural and phase transformations in the low-temperature annealed amorphous “finemet”-type microwires

    Energy Technology Data Exchange (ETDEWEB)

    Tcherdyntsev, V.V., E-mail: vvch08@yandex.ru [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Aleev, A.A. [SSC RF Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Churyukanova, M.N.; Kaloshkin, S.D. [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Medvedeva, E.V. [Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg 620016 (Russian Federation); Korchuganova, O.A. [SSC RF Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Zhukova, V. [Dpto. de Fns. Mater., UPV/EHU, San Sebastian 20018 (Spain); Zhukov, A.P. [Dpto. de Fns. Mater., UPV/EHU, San Sebastian 20018 (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2014-02-15

    Highlights: • Structure and magnetic properties evolution at heating of amorphous microwires was studied. • Relaxation processes in the amorphous phase correlate with an increase in Curie temperature. • Curie temperature change can not be stabilized by a prolonged exposure at pre-crystallization temperatures. • Tomographic atom probe microscopy supports the formation of α-Fe phase precipitations enriched in Si. -- Abstract: Finemet-type glass-coated microwires with amorphous and nanocrystalline structure have been investigated. The relaxation and crystallization processes at heating of amorphous alloy have been studied by DSC method. We observed that the relaxation processes in the amorphous phase correlate with an increasing of the Curie temperature. Additionally a prolonged exposure of the samples below the crystallization temperatures does not stabilize the Curie temperature change. An investigation by the tomographic atom probe microscopy supports the formation of precipitations, probably α-Fe phase, as a result of low-temperature annealing (400 °C, 5 min). We found that the observed nano-sized areas were enriched in silicon.

  1. Structural and phase transformations in the low-temperature annealed amorphous “finemet”-type microwires

    International Nuclear Information System (INIS)

    Tcherdyntsev, V.V.; Aleev, A.A.; Churyukanova, M.N.; Kaloshkin, S.D.; Medvedeva, E.V.; Korchuganova, O.A.; Zhukova, V.; Zhukov, A.P.

    2014-01-01

    Highlights: • Structure and magnetic properties evolution at heating of amorphous microwires was studied. • Relaxation processes in the amorphous phase correlate with an increase in Curie temperature. • Curie temperature change can not be stabilized by a prolonged exposure at pre-crystallization temperatures. • Tomographic atom probe microscopy supports the formation of α-Fe phase precipitations enriched in Si. -- Abstract: Finemet-type glass-coated microwires with amorphous and nanocrystalline structure have been investigated. The relaxation and crystallization processes at heating of amorphous alloy have been studied by DSC method. We observed that the relaxation processes in the amorphous phase correlate with an increasing of the Curie temperature. Additionally a prolonged exposure of the samples below the crystallization temperatures does not stabilize the Curie temperature change. An investigation by the tomographic atom probe microscopy supports the formation of precipitations, probably α-Fe phase, as a result of low-temperature annealing (400 °C, 5 min). We found that the observed nano-sized areas were enriched in silicon

  2. High pressure phase transformations revisited.

    Science.gov (United States)

    Levitas, Valery I

    2018-04-25

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  3. High pressure phase transformations revisited

    Science.gov (United States)

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  4. Correlation of Bulk Dielectric and Piezoelectric Properties to the Local Scale Phase Transformations, Domain Morphology, and Crystal Structure Modified

    Energy Technology Data Exchange (ETDEWEB)

    Priya, Shashank [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Viehland, Dwight [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-12-14

    Three year program entitled “Correlation of bulk dielectric and piezoelectric properties to the local scale phase transformations, domain morphology, and crystal structure in modified lead-free grain-textured ceramics and single crystals” was supported by the Department of Energy. This was a joint research program between D. Viehland and S. Priya at Virginia Tech. Single crystal and textured ceramics have been synthesized and characterized. Our goals have been (i) to conduct investigations of lead-free piezoelectric systems to establish the local structural and domain morphologies that result in enhanced properties, and (ii) to synthesize polycrystalline and grain oriented ceramics for understanding the role of composition, microstructure, and anisotropy

  5. Image encryption based on fractal-structured phase mask in fractional Fourier transform domain

    Science.gov (United States)

    Zhao, Meng-Dan; Gao, Xu-Zhen; Pan, Yue; Zhang, Guan-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2018-04-01

    We present an optical encryption approach based on the combination of fractal Fresnel lens (FFL) and fractional Fourier transform (FrFT). Our encryption approach is in fact a four-fold encryption scheme, including the random phase encoding produced by the Gerchberg–Saxton algorithm, a FFL, and two FrFTs. A FFL is composed of a Sierpinski carpet fractal plate and a Fresnel zone plate. In our encryption approach, the security is enhanced due to the more expandable key spaces and the use of FFL overcomes the alignment problem of the optical axis in optical system. Only using the perfectly matched parameters of the FFL and the FrFT, the plaintext can be recovered well. We present an image encryption algorithm that from the ciphertext we can get two original images by the FrFT with two different phase distribution keys, obtained by performing 100 iterations between the two plaintext and ciphertext, respectively. We test the sensitivity of our approach to various parameters such as the wavelength of light, the focal length of FFL, and the fractional orders of FrFT. Our approach can resist various attacks.

  6. Crystal structures and phase transformation of deuterated lithium imide, Li2ND

    International Nuclear Information System (INIS)

    Balogh, Michael P.; Jones, Camille Y.; Herbst, J.F.; Hector, Louis G.; Kundrat, Matthew

    2006-01-01

    We have investigated the crystal structure of deuterated lithium imide, Li 2 ND, by means of neutron and X-ray diffraction. An order-disorder transition occurs near 360K. Below that temperature Li 2 ND can be described to the same level of accuracy as a disordered cubic (Fd3-bar m) structure with partially occupied Li 32e sites or as a fully occupied orthorhombic (Ima2 or Imm2) structure. The high temperature phase is best characterized as disordered cubic (Fm3-bar m) with D atoms randomized over the 192l sites. Density functional theory calculations complement and support the diffraction analyses. We compare our findings in detail with previous studies

  7. Correlated structural and electronic phase transformations in transition metal chalcogenide under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunyu, E-mail: licy@hpstar.ac.cn, E-mail: yanhao@hpstar.ac.cn; Ke, Feng; Yu, Zhenhai; Chen, Zhiqiang; Yan, Hao, E-mail: licy@hpstar.ac.cn, E-mail: yanhao@hpstar.ac.cn [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Hu, Qingyang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015 (United States); Zhao, Jinggeng [Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China)

    2016-04-07

    Here, we report comprehensive studies on the high-pressure structural and electrical transport properties of the layered transition metal chalcogenide (Cr{sub 2}S{sub 3}) up to 36.3 GPa. A structural phase transition was observed in the rhombohedral Cr{sub 2}S{sub 3} near 16.5 GPa by the synchrotron angle dispersive X-ray diffraction measurement using a diamond anvil cell. Through in situ resistance measurement, the electric resistance value was detected to decrease by an order of three over the pressure range of 7–15 GPa coincided with the structural phase transition. Measurements on the temperature dependence of resistivity indicate that it is a semiconductor-to-metal transition in nature. The results were also confirmed by the electronic energy band calculations. Above results may shed a light on optimizing the performance of Cr{sub 2}S{sub 3} based applications under extreme conditions.

  8. Phase transformations in metallic glasses

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    2003-01-01

    Recent development of grain-size effect on phase transformations induced by pressure is reported. A thermodynamic theory is presented and three components: the ratio of volume collapses, the surface energy differences, and the internal energy differences, governing the change of transition pressure...... in nanocrystals were uncovered. They can be used to explain the results reported in the literature and to identify the main factor to the change of the transition pressure in nanocrystals. We demonstrated that the grain-size effect on the structural stability in nanocrystals with respect to transition pressure...

  9. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Hung [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Haung, Chiung-Fang [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Shyu, Shih-Shiun [Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (China); Chou, Yen-Ru [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Lin, Ming-Hong [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); Peng, Pei-Wen, E-mail: apon@tmu.edu.tw [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); and others

    2015-08-15

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples. The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.

  10. Structure in the 3D Galaxy Distribution. III. Fourier Transforming the Universe: Phase and Power Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R., E-mail: Jeffrey.D.Scargle@nasa.gov, E-mail: Michael.J.Way@nasa.gov, E-mail: PGazis@sbcglobal.net [NASA Ames Research Center, Astrobiology and Space Science Division, Moffett Field, CA 94035 (United States)

    2017-04-10

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  11. Structure in the 3D Galaxy Distribution. III. Fourier Transforming the Universe: Phase and Power Spectra

    International Nuclear Information System (INIS)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  12. Theoretical analysis of the structural phase transformation from B3 to B1 in BeO under high pressure

    Science.gov (United States)

    Jain, Arvind; Verma, Saligram; Nagarch, R. K.; Shah, S.; Kaurav, Netram

    2018-05-01

    We have performed the phase transformation and elastic properties of BeO at high pressure by formulating effective interionic interaction potential. The elastic constants, including the long-range Coulomb and van der Waals (vdW) interactions and the short-range repulsive interaction of up to second-neighbor ions within the Hafemeister and Flygare approach, are derived. Assuming that both the ions are polarizable, we employed the Slater-Kirkwood variational method to estimate the vdW coefficients, a structural phase transition (Pt) from ZnS structure (B3) to NaCl structure (B1) at 108 GPa has been predicted for BeO. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the theoretical data. The variations of elastic constants with pressure follow a systematic trend identical to that observed in others compounds of ZnS type structure family.

  13. Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-Al-C Steels

    Science.gov (United States)

    Yang, Jian; Wang, Yu-Nan; Ruan, Xiao-Ming; Wang, Rui-Zhi; Zhu, Kai; Fan, Zheng-Jie; Wang, Ying-Chun; Li, Cheng-Bin; Jiang, Xiao-Fang

    2015-04-01

    To assist developments of the continuous-casting technology of Fe-Mn-Al-C steels, the solidification structures and the thermal properties of Fe-Mn-Al-C steel ingots with different manganese contents have been investigated and the phase transformation characteristics have been revealed by FactSage (CRCT-ThermFact Inc., Montréal, Canada). The results show that the thermal conductivity of the 0Mn steel is the highest, whereas the thermal conductivity of the 8Mn steel is slightly higher than that of the 17Mn steel. Increasing the manganese content promotes a columnar solidification structure and coarse grains in steel. With the increase of manganese content, the mass fraction of austenite phase is increased. Finally, a single austenite phase is formed in the 17Mn steel. The mean thermal expansion coefficients of the steels are in the range from 1.3 × 10-5 to 2.3 × 10-5 K-1, and these values increase with the increase of manganese content. The ductility of the 17Mn steel and the 8Mn steel are higher than 40 pct in the temperature range from 873 K to 1473 K (600 °C to 1200 °C), and the cracking during the straightening operation should be avoided. However, the ductility of the 0Mn steel is lower than 40 pct at 973 K and 1123 K (700 °C and 850 °C), which indicates that the temperature of the straightening operation during the continuous-casting process should be above 1173 K (900 °C). Manganese has the effect of enlarging the austenite phase region and reducing the δ-ferrite phase region and α-ferrite phase region. At the 2.1 mass pct aluminum level, the precipitate temperature of AlN is high. Thus, the formed AlN is too coarse to deteriorate the hot ductility of steel.

  14. Effect of preparation conditions on fractal structure and phase transformations in the synthesis of nanoscale M-type barium hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Pashkova, E.V. [V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142, 03680 (Ukraine); Solovyova, E.D., E-mail: solovyovak@mail.ru [V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142, 03680 (Ukraine); Kotenko, I.E., E-mail: Hab2420@yahoo.com [National Technical University of Ukraine ' KPI' , Pr. Pobedy, 37, Kyiv-57 (Ukraine); Kolodiazhnyi, T.V., E-mail: kolodiazhnyi.taras@nims.go.jp [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Belous, A.G., E-mail: belous@ionc.kar.net [V.I. Vernadskii Institute of General and Inorganic Chemistry, 32/34 Prospect Palladina, Kyiv-142, 03680 (Ukraine)

    2011-10-15

    The conditions of the synthesis of carbonate-hydroxide precursors (pH of FeOOH precipitation and heat treatment regimes) were studied in terms of their effect on the fractal structure and physical-chemical properties of precursors. Phase transformations which occur during the synthesis of nanosize M-type barium hexaferrite (BHF) were studied as well. The first structural level of precursors' aggregation for mass fractals, the correlation between fractal dimension and precursors' activity during the synthesis of BHF were determined. Synthesis parameters for the precursors with the optimal fractal structure were determined. These data permit an enhancement of the filtration coefficient of the precipitates by a factor of 4-5, obtaining substantial decrease in the temperature required for synthesis of a single-phase BHF, and monodispersed plate-like nanoparticles (60 nm diameter) with the shape anisotropy and good magnetic characteristics (saturation magnetization (M{sub s})=68,7 emu/g and coercitivity (H{sub c})=5440 Oe). - Highlights: > The nanosize M-type BHF obtained by precipitation of hydroxicarbonates technique. > Optimal fractal structure of a precursor for nanosize M-type BHF has been determined. > The precursor precipitated at pH 4.3 allows getting monodisperse particles of BHF.

  15. Thermodynamics of irreversible structural transformation in Raddlesden-Popper perovskite-like layered Li-containing phases

    International Nuclear Information System (INIS)

    Reznitskij, L.A.

    2001-01-01

    The parameters of crystal units of the perovskite-like layer La 2 La 0.833 Nb 1.5 Ti 0.5 O 7 , Li 2 La 1.78 Nb 0.66 Ti 2.34 O 10 , Li 2 Sr 1.5 Nb 3 O 10 and Li 2 La 2.25 Nb 1.25 Ti 2.75 O 13 compounds ranked among the Raddlesden-Popper phases of the general formula Li 2 La x Nb 2n-3x Ti 3x-n O 3n+1 (n = 2, 3, 4; x = 0.833, 1.78, 2.25 correspondingly) and Li 2 Sr 1.5 Nb 3-x Fe x O 10-x (n = 3, x = 0) are shown before and after investigation by means of high resolution electron microscopy. Calculated volumes of formula units, changes in volumes after transformation, evaluations of specific heat C p of the compounds are demonstrated. Changing of transformation entropies, enthalpies and Gibbs energies of monotropic structural transformation were calculated [ru

  16. Thermally induced phase transformation of pearl powder

    International Nuclear Information System (INIS)

    Zhang, Guoqing; Guo, Yili; Ao, Ju; Yang, Jing; Lv, Guanglie; Shih, Kaimin

    2013-01-01

    The polymorphic phase transformation of thermally treated pearl powder was investigated by X-ray diffraction and thermoanalytical techniques. The phase transformation was based on quantification of the calcite content at various temperatures using Rietveld refinement analysis. The results show that the phase transformation of pearl aragonite occurred within a temperature range of 360–410 °C, which is 50–100 °C lower than the range for non-biomineralized aragonite. These thermoanalytical results suggest that the phase transformation of pearl aragonite may occur immediately after the thermal decomposition of the organic matrix in the pearl powder. An important finding is that decomposition of the organic matrix may greatly facilitate such transformation by releasing additional space for an easier structural reconstruction during the phase transformation process. - Highlights: ► Providing a new method to describe the polymorphic transition of pearl powder ► The phase transition sketch was exhibited by XRD phase quantitative analysis. ► There are dozens of degrees in advance comparing to natural aragonite. ► The phase transition occurs following the thermal decomposition of organism

  17. Phase transformations in engineering materials

    International Nuclear Information System (INIS)

    Bourke, M.A.M.; Lawson, A.C.; Dunand, D.C.

    1996-01-01

    Phase transformations in engineering materials are inevitably related to mechanical behavior and are often precursors to residual stress and distortion. Neutron scattering in general is a valuable tool for studying their effects, and pulsed neutrons are of special value, because of the inherently comprehensive crystallographic coverage they provide in each measurement. At the Manuel Lujan neutron scattering center several different research programs have addressed the relationships between phase transformation/mechanical behavior and residual strains. Three disparate examples are presented; (1) stress induced transformation in a NiTi shape memory alloy, (2) cryogenically induced transformation in a quenched 5180 steel, and (3) time resolved evolution of strain induced martensite in 304 stainless steel. In each case a brief description of the principle result will be discussed in the context of using neutrons for the measurement

  18. Diagenetic Microcrystalline Opal Varieties from the Monterey Formation, CA: HRTEM Study of Structures and Phase Transformation Mechanisms

    Science.gov (United States)

    Cady, Sherry L.; Wenk, H.-R.; DeVincenzi, Don (Technical Monitor)

    1994-01-01

    Microcrystalline opal varieties form as intermediary precipitates during the diagenetic transformation of biogenically precipitated non-crystalline opal (opal-A) to microquartz. With regard to the Monterey Formation of California, X-ray powder diffraction studies have shown that a decrease in the primary d-spacing of opal-CT toward that of cristobalite occurs with increasing diagenesis. The initial timing of opal-CT/quartz formation and the value of the primary opal-CT d-spacing, are influenced by the sediment. lithology. Transmission electron microscopy methods (CTEM/HRTEM) were used to investigate the structure of the diagenetic phases and establish transformation mechanisms between the varieties of microcrystalline opals in charts and porcelanites from the Monterey Formation. HRTEM images revealed that the most common fibrous varieties of microcrystalline opals contain varying amounts of structural disorder. Finite lamellar units of cristobalite-and tridymite-type. layer sequences were found to be randomly stacked in a direction perpendicular to the fiber axis. Disordered and ordered fibers were found to have coprecipitated within the same radial fiber bundles that formed within the matrix of the Most siliceous samples. HRTEM images, which reveal that the fibers within radial and lepispheric fiber bundles branch non-crystallographically, support an earlier proposal that microspheres in chert grow via a spherulitic growth mechanism. A less common variety of opal-CT was found to be characterized by non-parallel (low-angle) stacking sequences that often contain twinned lamellae. Tabular-shaped crystals of orthorhombic tridymite (PO-2) were also identified in the porcelanite samples. A shift in the primary d-spacing of opal-CT has been interpreted as an indication of solid-state ordering g toward a predominantly cristobalite structure, (opal-C). Domains of opal-C were identified as topotactically-oriented overgrowths on discrete Sections of opal-CT fibers and as

  19. Exchange coupling transformations in Cu (II) heterospin complexes of “breathing crystals” under structural phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Vitaly A.; Petrova, Marina V.; Lukzen, Nikita N., E-mail: luk@tomo.nsc.ru [International Tomography Center SB RUS, Institutskaya Str. 3a, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090 (Russian Federation)

    2015-08-15

    Family of “breathing crystals” is the polymer-chain complexes of Cu(hfac){sub 2} with nitroxides. The polymer chains consist of one-, two- or three-spin clusters. The “breathing crystals” experience simultaneous magnetic and Jahn-Teller type structural phase transitions with change of total cluster spin and drastic change of bond lengths (ca. 10-12%). For the first time the intra-cluster magnetic couplings in ”breathing crystals” have been calculated both by band structure methods GGA + U and hybrid DFT (B3LYP and PBE0) for the isolated exchange clusters. The temperature dependence of the magnetic coupling constant was calculated for two polymer-chain compounds of the “breathing crystal” family - C{sub 21}H{sub 19}CuF{sub 12}N{sub 4}O{sub 6} with the chains containing two-spin clusters and C{sub 22}H{sub 21}CuF{sub 12}N{sub 4}O{sub 6} with the chains of alternating three-spin clusters and one-spin sites. It was found that adding a Hubbard-like parameter not only to the copper 3d electrons but also to the oxygen 2p electrons (GGA + U{sub d} + U{sub p} approach) results in an improved description of exchange coupling in the “breathing crystal” compounds. At the same time treatment of the isolated clusters by a large basis hybrid DFT with high computational cost provides a similar quality fit of the experimental magneto-chemical data as that for the GGA + U{sub d} + U{sub p} band structure calculation scheme. Our calculations also showed that in spite of the abrupt transformation of the magnetic coupling constant under the phase transition, the band gap in the “breathing crystals” remains about the same value with temperature decrease.

  20. Structural phase transformations in KYF4:Er3+ nanoparticles synthesized by hydrothermal method for upconversion applications

    Science.gov (United States)

    Yamini, S.; Priya, P. Sakthi; Gunaseelan, M.; Senthilselvan, J.

    2017-05-01

    KYF4:10%Er3+ upconversion nanoparticles was synthesized by hydrothermal method with potassium hydroxides (KOH) as precursor. Prepared samples were calcined at 600 °C using double crucible method. XRD patterns of as prepared KYF4 and KYF4:Er3+ samples confirm the tetragonal structure, which is well matched with the standard data. Surface morphology is recorded for 600 °C calcined samples using High resolution scanning electron microscopy (HRSEM) shows spheroidal shape with particle sizes of ˜80 nm. From UV-Visible and EDX spectroscopy presence of Er3+ in KYF4:10%Er3+ is confirmed. The prepared KYF4:10%Er3+ can be used to improve efficiency of solar cells, display devices and fiber optical telecommunication applications.

  1. Effect of Phase Transformations on Seismic Velocities

    Science.gov (United States)

    Weidner, D. J.; Li, L.; Whitaker, M.; Triplett, R.

    2017-12-01

    The radial velocity structure of the Earth consists of smooth variations of velocities with depth punctuated by abrupt changes of velocity, which are typically due to multivariant phase transformations, where high - low pressure phases can coexist. In this mixed phase region, both the effective shear and bulk moduli will be significantly reduced by the dynamic interaction of the propagating wave and the phase transition if the period of the wave is long enough relative to the kinetic time so that some of the transition can take place. In this presentation, we will give examples from both laboratory studies of phases transitions of Earth minerals and the calculated velocity profile based on our models. We focus on understanding the time limiting factor of the phase transformation in order to extrapolate laboratory results to Earth observations. Both the olivine to ringwoodite transition and KLB-1 partial melting are explored. We find that when the transformation requires diffusion, the kinetics are often slowed down considerably and as a result the diffusivity of atoms become the limiting factor of characteristic time. Specifically Fe-Mg exchange rate in the olivine-ringwoodite phase transition becomes the limiting factor that seismic waves are likely to sample. On the other hand, partial melting is an extremely fast phase transformation at seismic wave periods. We present evidence that ultrasonic waves, with a period of a few tens of nanoseconds, are slowed by the reduction of the effective elastic moduli in this case.

  2. Phase transformations im smart materials

    International Nuclear Information System (INIS)

    Newnham, R.E.

    1998-01-01

    One of the qualities that distinguishes living systems from inanimate matter is the ability to adapt to changes in the environment. Smart materials have the ability to perform both sensing and actuating functions and are, therefore, capable of imitating this rudimentary aspect of life. Four of the most widely used smart materials are piezoelectric Pb(Zr, Ti)O 3 , electrostrictive Pb(Mg, Nb)O 3 , magnetostrictive (Tb, Dy)Fe 2 and the shape-memory alloy NiTi. All four are ferroic with active domain walls and two phase transformations, which help to tune the properties of these actuator materials. Pb(Zr, Ti)O 3 is a ferroelectric ceramic which is cubic at high temperature and becomes ferroelectric on cooling through the Curie temperature. At room temperature, it is poised on a rhombohedral-tetragonal phase boundary which enhances the piezoelectric coefficients. Terfenol, (Tb, Dy)Fe 2 , is also cubic at high temperature and then becomes magnetic on cooling through its Curie temperature. At room temperature, it too is poised on a rhombohedral-tetragonal transition which enhances its magnetostriction coefficients. Pb(Mg, Nb)O 3 and nitinol (NiTi) are also cubic at high temperatures and on annealing transform to a partially ordered state. On further cooling, Pb(Mg, Nb)O 3 passes through a diffuse phase transformation at room temperature where it exhibits very large dielectric and electrostrictive coefficients. Just below room temperature, it transforms to a ferroelectric rhombohedral phase. The partially ordered shape-memory alloy NiTi undergoes an austenitic (cubic) to martensitic (mono-clinic) phase change just above room temperature. It is easily deformed in the martensitic state but recovers its original shape when reheated to austenite

  3. Phase Transformation and Lithiation Effect on Electronic Structure of LixFePO4 : An In-Depth Study by Soft X-ray and Simulations

    NARCIS (Netherlands)

    Liu, Xiaosong; Liu, Jun; Qiao, Ruimin; Yu, Yan; Li, Hong; Suo, Liumin; Hu, Yong-sheng; Chuang, Yi-De; Shu, Guojiun; Chou, Fangcheng; Weng, Tsu-Chien; Nordlund, Dennis; Sokaras, Dimosthenis; Wang, Yung Jui; Lin, Hsin; Barbiellini, Bernardo; Bansil, Arun; Song, Xiangyun; Liu, Zhi; Yan, Shishen; Liu, Gao; Qjao, Shan; Richardson, Thomas J.; Prendergast, David; Hussain, Zahid; de Groot, Frank M. F.|info:eu-repo/dai/nl/08747610X; Yang, Wanli

    2012-01-01

    Through soft X-ray absorption spectroscopy, hard X-ray Raman scattering, and theoretical simulations, we provide the most in-depth and systematic study of the phase transformation and (de)lithiation effect on electronic structure in LixFePO4 nanoparticles and single crystals. Soft X-ray reveals

  4. On cobalt effect on structural and phase transformations during tempering carbon-containing steels of Fe-Ni-Mo system

    International Nuclear Information System (INIS)

    Rakhshtadt, A.G.; Khovova, O.M.; Kan, A.V.; Perkas, M.D.; Kudryavtsev, A.N.; Rodionov, Yu.L.

    1990-01-01

    Methods of resistometry, colorimetry, X-ray diffraction chemical and electrochemical phase analyses, Moessbauer spectroscopy and field-ion mass spectrometry are used to study the nature of precipitation hardening of carbon containing Fe-Ni-Mo martensitic steels. Cobalt contribution to formation of phase composition and structural state of steels during tempering is analyzed. Realization conditions of effective combined (carbide-intermetallide) hardening of the investigated system steels are determined

  5. Phase transformation of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} and its disordered crystal structure at 1073 K

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, Daisuke [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); R and D Center, Taiheiyo Cement Corporation, Chiba 285-8655 (Japan); Takeda, Seiya [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Colas, Maggy [Science des Proce' de' s Ce' ramiques et de Traitements de Surface (SPCTS), UMR 7315 CNRS, Universite' de Limoges, Centre Europe' en de la Ce' ramique, 12 Rue Atlantis, 87068 Limoges Cedex (France); Asaka, Toru [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Thomas, Philippe [Science des Proce' de' s Ce' ramiques et de Traitements de Surface (SPCTS), UMR 7315 CNRS, Universite' de Limoges, Centre Europe' en de la Ce' ramique, 12 Rue Atlantis, 87068 Limoges Cedex (France); Fukuda, Koichiro, E-mail: fukuda.koichiro@nitech.ac.jp [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

    2014-07-01

    The phase transformation of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} and the crystal structure of its high-temperature phase were investigated by differential thermal analysis, temperature-dependent Raman spectroscopy and high-temperature X-ray powder diffraction (CuKα{sub 1}). We determined the starting temperature of the orthorhombic-to-cubic transformation during heating (=711 K) and that of the reverse transformation during cooling (=742 K). The thermal hysteresis was negative (=−31 K), suggesting the thermoelasticity of the transformation. The space group of the high temperature phase is I4{sup ¯}3m with the unit-cell dimensions of a=0.92426(2) nm and V=0.78955(2) nm{sup 3} (Z=2) at 1073 K. The initial structural model was derived by the direct methods and further refined by the Rietveld method. The final structural model showed the orientational disordering of SO{sub 4} tetrahedra. The maximum-entropy method-based pattern fitting method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. At around the transformation temperature during heating, the vibrational spectra, corresponding to the Raman-active SO{sub 4} internal stretching mode, showed the continuous and gradual change in the slope of full width at half maximum versus temperature curve. This strongly suggests that the orthorhombic-to-cubic phase transformation would be principally accompanied by the statistical disordering in orientation of the SO{sub 4} tetrahedra, without distinct dynamical reorientation. - Graphical abstract: (Left) Three-dimensional electron-density distributions of the SO{sub 4} tetrahedron with the split-atom model, and (right) a bird's eye view of electron densities on the plane parallel to (111). - Highlights: • Crystal structure of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} at 1073 K is determined by powder XRD. • The atom arrangements are represented by the split

  6. Low-temperature phase transformation in rubidium and cesium superoxides

    International Nuclear Information System (INIS)

    Alikhanov, R.A.; Toshich, B.S.; Smirnov, L.S.

    1980-01-01

    Crystal structures of rubidium and cesium superoxides which are two interpenetrating lattices of metal ions and oxygen molecule ions reveal a number of phase transformations with temperature decrease. Crystal-phase transformations in CsO 2 are 1-2, 2-3 and low temperature one 3-4 at 378, 190 and 10 K. Low temperature transition is considered as the instability of lattice quadrupoles of oxygen molecule ions to phase transformation of the order-disorder type. Calculated temperatures of low temperature phase transformations in PbO 2 and CsO 2 agree with experimental calculations satisfactory [ru

  7. Pressure Induced Phase Transformations in Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Reimanis, Ivar [Colorado School of Mines, Golden, CO (United States); Cioabanu, Cristian [Colorado School of Mines, Golden, CO (United States)

    2017-10-15

    The study of materials with unusual properties offers new insight into structure-property relations as well as promise for the design of novel composites. In this spirit, the PIs seek to (1) understand fundamental mechanical phenomena in ceramics that exhibit pressure-induced phase transitions, negative coefficient of thermal expansion (CTE), and negative compressibility, and (2) explore the effect of these phenomena on the mechanical behavior of composites designed with such ceramics. The broad and long-term goal is to learn how to utilize these unusual behaviors to obtain desired mechanical responses. While the results are expected to be widely applicable to many ceramics, most of the present focus is on silicates, as they exhibit remarkable diversity in structure and properties. Eucryptite, a lithium aluminum silicate (LiAlSiO4), is specifically targeted because it exhibits a pressure-induced phase transition at a sufficiently low pressure to be accessible during conventional materials processing. Thus, composites with eucryptite may be designed to exhibit a novel type of transformation toughening. The PIs have performed a combination of activities that encompass synthesis and processing to control structures, atomistic modeling to predict and understand structures, and characterization to study mechanical behavior. Several materials behavior discoveries were made. It was discovered that small amounts of Zn (as small as 0.1 percent by mol) reverse the sign of the coefficient of thermal expansion of beta-eucryptite from negative to slightly positive. The presence of Zn also significantly mitigates microcracking that occurs during thermal cycling of eucryptite. It is hypothesized that Zn disrupts the Li ordering in beta-eucryptite, thereby altering the thermal expansion behavior. A nanoindentation technique developed to characterize incipient plasticity was applied to examine the initial stages of the pressure induced phase transformation from beta to

  8. Phase transformations in the Cu.6 Pd.4 alloy

    International Nuclear Information System (INIS)

    Imakuma, K.

    1977-01-01

    Order-disorder and structural transformations in the Cu-Pd 60-40% (Cu. 6 Pd. 4 ) alloy by means of a temperature and time dependent treatment are studied. The structural transformations by x-rays diffraction are also studied, where the bcc, fcc and tetragonal phases were observed. A qualitative analyze of the resistivity kinetics are made [pt

  9. Modification of dielectric function and electronic structure of the alloys at the phase transformation amorphous-crystalline state

    International Nuclear Information System (INIS)

    Belij, M.U.; Poperenko, L.V.; Shajkevich, I.A.; Karpusha, V.D.; Kravets, V.G.

    1989-01-01

    The relation between the features of the optical spectrum and the electronic structure parameters for non-crystalline nickel- and iron-based alloys is not yet precisely found. Therefore the main purpose of the study consists in investigation of the basic metal band structure modification at metalloid alloying. The density of electron states N(E) and structural parameters of amorphous alloys nickel-M, iron-M, Fe-TM-M (M - metalloid B,Si,C; TM - transition metal 3d (Ti,V,Cr,Mn,Co,Ni), 4d (Nb,Mo), 5d (Hf,Ta,W) and their transformation changes from amorphous (AS) to crystalline state (CS) have been determined. The methods of ellipsometry, Auger-spectroscopy and X-ray absorption spectroscopy are used. The function N(E) of the Ni- and Fe-based alloys has shown 4 density-of-states peaks, one of them located above the Fermi level E F and the others - below it. The observed features of the absorbed spectra of Ni-M (M = B,P) are related both to the interband transition from the levels falling into the occupied peaks of N(E) to the levels at E F , and to the 1-peak-states. When B increases the distance between 1-peak and E F decreases. With introduction of the TM atoms into Fe-B the impurities states related to them are formed above E F . From the X-ray data the cluster with nonhomogeneous electronic density for FeBSi (7.0 nm) and FeNbBSi (7.0 and 4.2 nm along and transverse to foil respectively) are estimated. The frequencies of relaxation and plasma oscillations are also calculated. (author)

  10. Shear-driven phase transformation in silicon nanowires.

    Science.gov (United States)

    Vincent, L; Djomani, D; Fakfakh, M; Renard, C; Belier, B; Bouchier, D; Patriarche, G

    2018-03-23

    We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.

  11. Kinetics of first order phase transformation in metals and alloys. Isothermal evolution in martensite transformation

    International Nuclear Information System (INIS)

    Iwasaki, Hiroshi; Ohshima, Ken-ichi

    2011-01-01

    The 11th lecture about microstructures and fluctuation in solids reports on the martensitic phase transformation of alkali metals and alloys. The martensitic transformation is a diffusionless first order phase transformation. Martensitic transformations are classified into two with respect to kinetics, one is isothermal transformation and the other is athermal transformation. The former transformation depends upon both temperature and time, but the latter solely depends on temperature. The former does not have a definite transformation start temperature but occurs after some finite incubation time during isothermal holding. The isothermal martensitic transformation is changed to the athermal one under high magnetic field, and also the reverse transformation occurs under the application of hydrostatic pressure. The former phenomena were observed in Fe-Ni-Mn alloys, Fe-Ni-Cr alloys and also the reverse transformation in Fe-3.1at%Ni-0.5at%Mn alloys. The athermal transformation was observed in Li and Na metals at 73 and 36 K, respectively. A neutron diffraction study has been performed on single crystals of metallic Na. On cooling the virgin sample, the incubation time to transform from the bcc structure to the low-temperature structure (9R structure) is formed to be more than 2h at 38 K, 2 K higher than the transformation temperature of 36 K. The full width of half maximum of the Bragg reflection suddenly increased, due to some deformation introduced by the nucleation of the low-temperature structure. In relation to the deformation, strong extra-diffuse scattering (Huang scattering) was observed around the Bragg reflection in addition to thermal diffuse scattering. The kinetics of the martensitic transformation in In-Tl alloys has been studied by x-ray and neutron diffraction methods. A characteristic incubation time appeared at fixed temperature above Ms, the normal martensitic transformation start temperature. (author)

  12. Generalized phase transformations of spinor fields

    International Nuclear Information System (INIS)

    Mikhov, S.G.

    1993-09-01

    In this paper some generalized four parameter phase transformations of a Dirac spinor are considered. It is shown that a corresponding compensating transformation of the electromagnetic field which restores the invariance of the Dirac-Maxwell equation might exist, provided some consistency conditions are satisfied by the parameters of the transformations. These transformations are used further to consider the Maxwell equations under the assumption that a Bosonization takes place. Only one of the considered cases proves to have a solution (the other cases show to be trivial) which although unphysical is obtained explicitly. (author). 10 refs

  13. Soliton bubbles and phase transformations

    International Nuclear Information System (INIS)

    Masperi, L.

    1989-01-01

    It is shown that no topological classical solutions in form of bubbles of a real scalar field theory with Lagrangian of quartet and sextet self interactions in 1+1 dimensions are responsible to discontinue transitions in the quantum problem between phases with degenerated and disordered excited level. (M.C.K.)

  14. Path Dependency of High Pressure Phase Transformations

    Science.gov (United States)

    Cerreta, Ellen

    2017-06-01

    At high pressures titanium and zirconium are known to undergo a phase transformation from the hexagonal close packed (HCP), alpha-phase to the simple-hexagonal, omega-phase. Under conditions of shock loading, the high-pressure omega-phase can be retained upon release. It has been shown that temperature, peak shock stress, and texture can influence the transformation. Moreover, under these same loading conditions, plastic processes of slip and twinning are also affected by similar differences in the loading path. To understand this path dependency, in-situ velocimetry measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to qualitatively understand the kinetics of transformation, quantify volume fraction of retained omega-phase and characterize the shocked alpha and omega-phases. Together the work described here can be utilized to map the non-equilibrium phase diagram for these metals and lend insight into the partitioning of plastic processes between phases during high pressure transformation. In collaboration with: Frank Addesssio, Curt Bronkhorst, Donald Brown, David Jones, Turab Lookman, Benjamin Morrow, Carl Trujillo, Los Alamos National Lab.; Juan Pablo Escobedo-Diaz, University of New South Wales; Paulo Rigg, Washington State University.

  15. Modelling of stresses generated in steels by phase transformations

    International Nuclear Information System (INIS)

    Dudek, K.; Glowacki, M.; Pietrzyk, M.

    1999-01-01

    Numerical model describing stresses arising during phase transformations in steels products is presented. The full model consists of three components. The first component uses finite element solution of Fourier equation for an evaluation of the temperature field inside the sample. The second component predicts kinetics of phase transformation occurring during cooling of steel products. Coupling of these two components allows prediction of structure and properties of final products at room temperature. The third component uses elastic-plastic finite element model for prediction of stresses caused by non-uniform temperatures and by changes of volume during transformations. Typical results of simulations performed for cooling of rails after hot rolling are presented. (author)

  16. Spatiotemporal Signal Analysis via the Phase Velocity Transform

    International Nuclear Information System (INIS)

    Mattor, Nathan

    2000-01-01

    The phase velocity transform (PVT) is an integral transform that divides a function of space and time into components that propagate at uniform phase velocities without distortion. This paper examines the PVT as a method to analyze spatiotemporal fluctuation data. The transform is extended to systems with discretely sampled data on a periodic domain, and applied to data from eight azimuthally distributed probes on the Sustained Spheromak Physics Experiment (SSPX). This reveals features not shown by Fourier analysis, particularly regarding nonsinusoidal mode structure. (c) 2000 The American Physical Society

  17. On the akaganeite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artefacts

    DEFF Research Database (Denmark)

    Ståhl, Kenny; Nielsen, Kurt; Jiang, Jianzhong

    2003-01-01

    The crystal structure of akaganeite and the akaganeite to hematite transition has been studied by means of conventional and synchrotron X-ray and neutron powder diffraction. The chemical formula of akaganeite can be written as FeO0.833(OH)(1.167)Cl-0.167. The crystal structure does not contain fr...

  18. The effects of phase transformation on the structure and mechanical properties of TiSiCN nanocomposite coatings deposited by PECVD method

    Science.gov (United States)

    Abedi, Mohammad; Abdollah-zadeh, Amir; Bestetti, Massimiliano; Vicenzo, Antonello; Serafini, Andrea; Movassagh-Alanagh, Farid

    2018-06-01

    In the present study, the effects of phase transformations on the structure and mechanical properties of TiSiCN coatings were investigated. TiSiCN nanocomposite coatings were deposited on AISI H13 hot-work tool steel by a pulsed direct current plasma-enhanced chemical vapor deposition process at 350 or 500 °C, using TiCl4 and SiCl4 as the precursors of Ti and Si, respectively, in a CH4/N2/H2/Ar plasma as the source of carbon and nitrogen and reducing environment. Some samples deposited at 350 °C were subsequently annealed at 500 °C under Ar atmosphere. Super hard self-lubricant TiSiCN coatings, having nanocomposite structure consisting of TiCN nanocrystals and amorphous carbon particles embedded in an amorphous SiCNx matrix, formed through spinodal decomposition in the specimens deposited or annealed at 500 °C. In addition, it was revealed that either uncomplete or relatively coarse phase segregation of titanium compounds was achieved during deposition at 350 °C and 500 °C, respectively. On the contrary, by deposition at 350 °C followed by annealing at 500 °C, a finer structure was obtained with a sensible improvement of the mechanical properties of coatings. Accordingly, the main finding of this work is that significant enhancement in key properties of TiSiCN coatings, such as hardness, adhesion and friction coefficient, can be obtained by deposition at low temperature and subsequent annealing at higher temperature, thanks to the formation of a fine grained nanocomposite structure.

  19. Phase transformations in Higher Manganese Silicides

    Energy Technology Data Exchange (ETDEWEB)

    Allam, A. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France); Boulet, P. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); Nunes, C.A. [Departamento de Engenharia de Materiais (DEMAR), Escola de Engenharia de Lorena (EEL), Universidade de Sao Paulo - USP, Caixa Postal 116, 12600-970 Lorena, Sao Paulo (Brazil); Sopousek, J.; Broz, P. [Masaryk University, Faculty of Science, Department of Chemistry, Kolarska 2, 611 37 Brno (Czech Republic); Masaryk University, Central European Institute of Technology, CEITEC, Kamenice 753/5, 625 00 Brno (Czech Republic); Record, M.-C., E-mail: m-c.record@univ-cezanne.fr [IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer The phase transitions of the Higher Manganese Silicides were investigated. Black-Right-Pointing-Pointer The samples were characterised by XRD, DTA and DSC. Black-Right-Pointing-Pointer Mn{sub 27}Si{sub 47} is the stable phase at room temperature and under atmospheric pressure. Black-Right-Pointing-Pointer At around 800 Degree-Sign C, Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. Black-Right-Pointing-Pointer The phase transition is of a second order. - Abstract: This work is an investigation of the phase transformations of the Higher Manganese Silicides in the temperature range [100-1200 Degree-Sign C]. Several complementary experimental techniques were used, namely in situ X-ray Diffraction (XRD), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). The evolution of both the lattice parameters and the thermal expansion coefficients was determined from in situ XRD measurements. The stability of the samples was investigated by thermal analysis (DTA) and Cp measurements (DSC). This study shows that Mn{sub 27}Si{sub 47} which is the stable phase at room temperature and under atmospheric pressure undergoes a phase transformation at around 800 Degree-Sign C. Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. This phase transformation seems to be of a second order one. Indeed it was not evidenced by DTA and by contrast it appears on the Cp curve.

  20. Phase Transformations During Cooling of Automotive Steels

    Science.gov (United States)

    Padgett, Matthew C.

    This thesis explores the effect of cooling rate on the microstructure and phases in advanced high strength steels (AHSS). In the manufacturing of automobiles, the primary joining mechanism for steel is resistance spot welding (RSW), a process that produces a high heat input and rapid cooling in the welded metal. The effect of RSW on the microstructure of these material systems is critical to understanding their mechanical properties. A dual phase steel, DP-600, and a transformation induced plasticity bainitic-ferritic steel, TBF-1180, were studied to assess the changes to their microstructure that take place in controlled cooling environments and in uncontrolled cooling environments, i.e. resistance spot welding. Continuous cooling transformation (CCT) diagrams were developed using strip specimens of DP-600 and TBF-1180 to determine the phase transformations that occur as a function of cooling rate. The resulting phases were determined using a thermal-mechanical simulator and dilatometry, combined with light optical microscopy and hardness measurements. The resulting phases were compared with RSW specimens where cooling rate was controlled by varying the welding time for two-plate welds. Comparisons were drawn between experimental welds of DP-600 and simulations performed using a commercial welding software. The type and quantity of phases present after RSW were examined using a variety of techniques, including light optical microscopy using several etchants, hardness measurements, and x-ray diffraction (XRD).

  1. Phase Transformation in Cast Superaustenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee Phillips, Nathaniel Steven [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  2. Phase transformations, stability, and materials interactions

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.; Brewer, L.; Cost, J.R.; Shewmon, P.

    1977-07-01

    The proceedings of the Materials Sciences Workshop on Phase Transformations, Stability, and Materials Interactions are divided into sections according to the following topics: (I) workshop scope and priorities; (II) study group reports--ERDA mission needs; (III) study group reports--technical area research priorities

  3. Orbital momentum and topological phase transformation

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel; Kučera, Jan

    2015-01-01

    Roč. 92, č. 23 (2015), "235152-1"-"235152-6" ISSN 1098-0121 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68378271 Keywords : orbital momentum * anomalous Hall effect * topological phase transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  4. Phase and structural transformations in VVER-440 RPV base metal after long-term operation and recovery annealing

    Science.gov (United States)

    Kuleshova, E. A.; Gurovich, B. A.; Maltsev, D. A.; Frolov, A. S.; Bukina, Z. V.; Fedotova, S. V.; Saltykov, M. A.; Krikun, E. V.; Erak, D. Yu; Zhurko, D. A.; Safonov, D. V.; Zhuchkov, G. M.

    2018-04-01

    This study was carried out to evaluate the possibility of 1st generation VVER-440 reactors lifetime extension by recovery re-annealing with the respect to base metal (BM). Comprehensive studies of the structure and properties of BM templates (samples cut from the inner surface of the shells in beltline region) of operating VVER-440 reactor (after primary standard recovery annealing 475 °C/150 h and subsequent long-term re-irradiation within reactor pressure vessel (RPV)) were conducted. These templates were also subjected to laboratory re-annealing 475 °C/150 h. TEM, SEM and APT studies of BM after laboratory re-annealing revealed significant recovery of radiation-induced hardening elements (Cu-rich precipitates and dislocation loops). Simultaneously a process of strong phosphorus accumulation at grain boundaries occurs since annealing temperature corresponds to the maximum reversible temper brittleness development. The latter is not observed for VVER-440 weld metal (WM). Comparative assessment of the properties return level for the beltline BM templates after recovery re-annealing 475 °C/150 h showed that it does not reach the one typical for beltline WM after the same annealing.

  5. Study of effect of chromium on titanium dioxide phase transformation ...

    Indian Academy of Sciences (India)

    Administrator

    Study of effect of chromium on titanium dioxide phase transformation by A Bellifa (pp 669–677). Figure S1. Structural ... 4 × 1⋅9486; 2 × 1⋅9799. Octahedral packing. 2 × 2 shared edges. 8 free edges. 3 shared edges. 4 corners. 5 free edges. 2 parallel shared edges. 2 corners. 10 free edges. O. O. Coordination scheme.

  6. Grain nucleation and growth during phase transformations

    DEFF Research Database (Denmark)

    Offerman, S.E.; Dijk, N.H. van; Sietsma, J.

    2002-01-01

    of individual grains. Our measurements show that the activation energy for grain nucleation is at least two orders of magnitude smaller than that predicted by thermodynamic models. The observed growth curves of the newly formed grains confirm the parabolic growth model but also show three fundamentally...... different types of growth. Insight into the grain nucleation and growth mechanisms during phase transformations contributes to the development of materials with optimal mechanical properties....

  7. Plasticity induced phase transformation in molecular crystals

    OpenAIRE

    Koslowski, Marisol

    2014-01-01

    Solid state amorphization (SSA) can be achieved in crystalline materials including metal alloys, intermetallics, semiconductors, minerals and molecular crystals. Even though the mechanisms may differ in different materials, the crystalline to amorphous transformation occurs when the crystal reaches a metastable state in which its free energy is higher than that of the amorphous phase. SSA is observed in metal alloys because of interdiffusion of the crystalline elements during mechanical milli...

  8. Pressure-induced phase transformations in L-alanine crystals

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Gerward, Leif; Freire, P.T.C.

    2008-01-01

    Raman scattering and synchrotron X-ray diffraction have been used to investigate the high-pressure behavior of L-alanine. This study has confirmed a structural phase transition observed by Raman scattering at 2.3 GPa and identified it as a change from orthorhombic to tetragonal structure. Another...... phase transformation from tetragonal to monoclinic structure has been observed at about 9 GPa. From the equation of state, the zero-pressure bulk modulus and its pressure derivative have been determined as (31.5 +/- 1.4) GPa and 4.4 +/- 0.4, respectively....

  9. New transformation mechanism for a zinc-blende to rocksalt phase transformation in MgS

    International Nuclear Information System (INIS)

    Durandurdu, Murat

    2009-01-01

    The stability of the zinc-blende structured MgS is studied using a constant pressure ab initio molecular dynamics technique. A phase transition into a rocksalt structure is observed through the simulation. The zinc-blende to rocksalt phase transformation proceeds via two rhombohedral intermediate phases within R3m (No:160) and R3-barm (No:166) symmetries and does not involve any bond breaking. This mechanism is different from the previously observed mechanism in molecular dynamics simulations. (fast track communication)

  10. Simulation of phase structures

    International Nuclear Information System (INIS)

    Lawson, J.

    1995-01-01

    This memo outlines a procedure developed by the author to extract information from phase measurements and produce a simulated phase structure for use in modeling optical systems, including characteristic optics for the Beamlet and NIF laser systems. The report includes an IDL program listing

  11. Phase Transformations in Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon-Jun [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as σ and χ can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (σ + χ) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, σ was stabilized with increasing Cr addition and χ by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by

  12. The use of Fourier reverse transforms in crystallographic phase refinement

    Energy Technology Data Exchange (ETDEWEB)

    Ringrose, Sharon [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Often a crystallographer obtains an electron density map which shows only part of the structure. In such cases, the phasing of the trial model is poor enough that the electron density map may show peaks in some of the atomic positions, but other atomic positions are not visible. There may also be extraneous peaks present which are not due to atomic positions. A method for determination of crystal structures that have resisted solution through normal crystallographic methods has been developed. PHASER is a series of FORTRAN programs which aids in the structure solution of poorly phased electron density maps by refining the crystallographic phases. It facilitates the refinement of such poorly phased electron density maps for difficult structures which might otherwise not be solvable. The trial model, which serves as the starting point for the phase refinement, may be acquired by several routes such as direct methods or Patterson methods. Modifications are made to the reverse transform process based on several assumptions. First, the starting electron density map is modified based on the fact that physically the electron density map must be non-negative at all points. In practice a small positive cutoff is used. A reverse Fourier transform is computed based on the modified electron density map. Secondly, the authors assume that a better electron density map will result by using the observed magnitudes of the structure factors combined with the phases calculated in the reverse transform. After convergence has been reached, more atomic positions and less extraneous peaks are observed in the refined electron density map. The starting model need not be very large to achieve success with PHASER; successful phase refinement has been achieved with a starting model that consists of only 5% of the total scattering power of the full molecule. The second part of the thesis discusses three crystal structure determinations.

  13. Electron-beam-induced structure transformation of the quasicrystalline phases of the Al 62Cu 20Co 15Si 3 alloy

    Science.gov (United States)

    Reyes-Gasga, J.; R. Garcia, G.; Jose-Yacaman, M.

    1995-02-01

    Some details on the phase transformation experienced by the quasicrystalline phases of the Al 62Cu 20Co 15Si 3 alloy under a 400 kV electron beam are given. The transition is observed in situ with a high resolution electron microscope and recorded on video tape. The results show that the electron beam radiation produces a sequence of changes similar to the ones observed in an ion-beam-induced amorphization process. Considering electron radiation damage analysis, the results agree well with the "flip-flop" model [Coddens, Bellisent, Calvayrac and Ambroise (1991) Europhys. Lett.16, 271] where the transition from a quasicrystalline phase to a crystalline phase is produced by atomic displacements but not in a cascade way.

  14. The lattice correspondence and diffusional-displacive phase transformations

    International Nuclear Information System (INIS)

    Nie, J.F.; Muddle, B.C.

    1999-01-01

    When a coherent interface is maintained between parent and product phases in a solid state phase transformation, then it is always possible to define a lattice correspondence across this interface and describe the structural change by a homogeneous lattice deformation, S T . For certain transformations, this strain is an invariant plane strain, with the invariant plane defining the planar, coherent interface between parent and product. This group includes the familiar martensitic face-centred cubic to close-packed hexagonal transformation in, for example, cobalt-based alloys, but it is demonstrated here that it also contains transformations giving rise to a broad range of plate-shaped, diffusional precipitation products. For many such transformation products, the transformation strain has a significant shear component and the accommodation of shear strain energy is potentially an important, and often overlooked, factor in both the nucleation and growth of such products. More commonly S T is not an invariant plane strain and, if a planar interface is to be preserved between parent and product, it is necessary to combine S T with a lattice invariant strain to allow a partially-coherent interface that is macroscopically invariant. It is demonstrated that there are diffusional transformation products which also have the geometric and crystallographic features of both of the common forms of partially-coherent martensitic products

  15. Numerical simulation of heterogeneous phase transformations

    International Nuclear Information System (INIS)

    Combeau, H.; Lacaze, J.

    1993-01-01

    A numerical model is presented for the simulation of diffusion controlled phase transformations in multicomponent alloys. A closed system is considered, with simple geometric shape, either planar, cylindrical or spherical. The temperature inside this microscopic volume is homogeneous, but can vary according to any specified monoteneous law. Particular care has been given to the description of the solute profiles where the concentration gradients are the steepest, i.e. near the interface between the parent and the resultant phases. Solute redistribution at the interface is described by means of an original method which ensures that the overall solute balance is satisfied. A non linear system is obtained which includes the diffusion equations in both phases and the boundary conditions. The solution of this system makes use of a special algorithm which has been devised for a quick convergence. An example is presented which deals with microsegregation build-up during solidification of a multi-component nickel base alloy. (orig.)

  16. Phase transformations in Mo-doped FINEMETs

    Energy Technology Data Exchange (ETDEWEB)

    Silveyra, Josefina M., E-mail: jsilveyra@fi.uba.a [Lab. de Solidos Amorfos, INTECIN, FIUBA-CONICET, Paseo Colon 850, (C1063ACV) Buenos Aires (Argentina); Illekova, Emilia; Svec, Peter; Janickovic, Dusan [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Rosales-Rivera, Andres [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia); Cremaschi, Victoria J. [Lab. de Solidos Amorfos, INTECIN, FIUBA-CONICET, Paseo Colon 850, (C1063ACV) Buenos Aires (Argentina)

    2010-06-15

    In this paper, the phase transformations occurring during the crystallization process of FINEMETs in which Nb has been gradually replaced by Mo have been studied by a variety of techniques including DSC, DTA, TGA, XRD and TEM. The thermal stability of the alloy was deteriorated as a consequence of Mo's smaller atomic size. The gradual replacement of Nb by Mo reduced the onset temperature of Fe-Si and of the borides. The Curie temperature of the amorphous phase slightly decreased from 594 K for x=0 to 587 K for x=3. The borides compounds Fe{sub 2}B and Fe{sub 23}B{sub 6} as well as the (Nb,Mo){sub 5}Si{sub 3} phase were found to precipitate in the second and third crystallization.

  17. Elementary excitations and phase transformations in solids

    International Nuclear Information System (INIS)

    Cowley, R.A.

    1985-01-01

    Neutron scattering is and will continue to be a uniquely powerful tool for the study of elementary excitations and phase transformations in solids. The paper examines a few recent experiments on molecular crystals, superionic materials, paramagnetic scattering and phase transitions to see what experimental features made these experiments possible, and hence to make suggestions about future needs. It is concluded that new instruments will extend the scope of neutron scattering studies to new excitations, that there is a need for higher resolution, particularly for phase transition studies, and that it will be important to use intensity information, discrimination against unwanted inelastic processes and polarization analysis to reliably measure the excitations in new materials. (author)

  18. Crystal structure of Cs3H(SeO4)2 (T=295 K) and its changes in phase transformations

    International Nuclear Information System (INIS)

    Merinov, B.V.; Bolotina, N.B.; Baranov, A.I.; Shuvalov, L.A.

    1988-01-01

    Crystal structure of Cs 3 H(SeO 4 ) 2 3 phase at T=295 K is decoded by X-ray diffraction data. Monoclinic cell parameters are improved: a=10.903(3), b=6.390(8), c=8.452(2)A, β=112.46(1) deg, V=544 A 3 , Z=2, sp. gr. C2/m. Structural peculiarities of 3↔2↔1 phase transitions in Cs 3 H(SeO 4 ) 2 and proton conductivity mechanism in superionic phase are considered

  19. Fundamental Studies on Phase Transformations and Mechanical Properties of Fusion Welds in Advanced Naval Steels

    Science.gov (United States)

    2017-07-31

    naval and structural applications. However, prior to this research project, a fundamental understanding of the phase transformation behavior under the...prior to this research project, a fundamental understanding of the phase transformation behavior under the high heating and cooling rates associated...HAZ mechanical properties. Such a treatment is expensive, time consuming , and cannot be practically applied to large structures. However, the absence

  20. Phase transformations in TiAl based alloys

    International Nuclear Information System (INIS)

    Zghal, Slim; Thomas, Marc; Naka, Shigehisa; Finel, Alphonse; Couret, Alain

    2005-01-01

    Microstructural characteristics of a fully lamellar Ti 49 Al 47 Cr 2 Nb 2 alloy have been investigated in different annealed conditions by quantitative transmission electron microscopy. Statistical analyses have yielded clear information about the γ-γ interfaces, the respective orientation groups of the γ phase, and the distribution of orientational variants. From the results, three sequences of lamellar transformation have been identified with decreasing temperature: (1) a high-temperature heterogeneous transformation characterized by the nucleation of isolated primary γ lamellae mostly belonging to the same orientation group and having locally the same order; (2) a low-temperature homogeneous transformation in the ordered α 2 phase characterized by the formation of a fine lamellar structure with an even distribution of the orientation groups and a random ordering of γ lamellae; and (3) a coherent interfacial transformation at the α 2 /γ interfaces characterized by the nucleation of ultra-fine twin related lamellae. Finally, the driving forces for these various transformations as well as the nucleation mechanisms of γ lamellae involved in these transformations are discussed

  1. High-pressure phase transformations of fluorite-type dioxides

    International Nuclear Information System (INIS)

    Lin-Gun Liu

    1980-01-01

    Phase transformations in six fluorite-type dioxides ('TbO 2 ', PbO 2 , 'PrO 2 ', CeO 2 , UO 2 and ThO 2 in the order of increasing cation size, where the quotation marks indicate non-stoichiometric materials) have been investigated in the diamond-anvil press coupled with laser heating. Together with earlier work, the results show that the post-fluorite phase transformations of these dioxides fall into two groups. The smaller cation group (HfO 2 , ZrO 2 and 'TbO 2 ') transforms to a cotunnite or a distorted cotunnite-type structure at pressures in the vicinity of 100 kbar and at about 1000 0 C. The larger cation group (from PbO 2 to ThO 2 ) is believed to transform to a different type of orthorhombic modification at high pressures. It is plausible that this high-pressure phase may possess a Ni 2 Si-related structure, as was observed in ThO 2 and 'PrO 2 ' at pressures greater than 150 and 200 kbar, respectively. (orig./ME)

  2. Peculiarities of structural transformations in zirconia nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Vasilevskaya, A., E-mail: a.k.vasilevskaya@gmail.com [Technical University, Saint-Petersburg State Institute of Technology (Russian Federation); Almjasheva, O. V. [Saint-Petersburg Electrotechnical University “LETI” (Russian Federation); Gusarov, V. V. [Ioffe Physical-Technical Institute of the Russian Academy of Sciences (Russian Federation)

    2016-07-15

    The transitions of metastable tetragonal phase as well as high-temperature tetragonal phase into the low-temperature monoclinic phase upon heating and cooling were thoroughly studied in zirconia nanoparticles. High-temperature X-ray diffraction, thermal analysis and Raman spectroscopy were used to provide the systematic approach to the investigation of zirconia nanoparticles thermal behavior. A phase transformation sequence in the ZrO{sub 2}–H{sub 2}O system was determined, and the mechanisms of tetragonal-to-monoclinic transition upon heating and cooling were suggested. Here, the phenomenon was found and described, which was determined as “self-powdering” of nanoparticles occurring during structural transition. This phenomenon was observed by in situ investigation of the evolution of crystalline nanoparticles from amorphous zirconium hydroxide during thermal treatment in air. The tetragonal-to-monoclinic phase transition, induced by cooling from the temperature of equilibrium of tetragonal zirconia (i.e., above 1170 °C), is accompanied by a significant crystallite size decrease (with corresponding 3–4 times decrease of crystallite volume). The experimental results facilitate applications of zirconia nanoparticles to obtain high-performance nanopowders for nanoceramics.

  3. Relationships between molecular structure and kinetic and thermodynamic controls in lipid systems. Part II: Phase behavior and transformation paths of SSS, PSS and PPS saturated triacylglycerols--effect of chain length mismatch.

    Science.gov (United States)

    Bouzidi, Laziz; Narine, Suresh S

    2012-01-01

    The kinetic phase behavior and phase transformation paths of purified tristearoylglycerol (SSS), 3-palmitoyl-1,2-distearoyl-sn-glycerol (PSS) and 1,2-dipalmitoyl-3-stearoyl-sn-glycerol (PPS) were investigated in terms of polymorphism, crystallization and melting. The details of the phase transformation paths were obtained using the heating cycles of two sets of experiments: (a) cooling rate was varied and heating rate fixed and (b) cooling rate was fixed and heating rate varied. Kinetic effects were manifest in all measured properties, underscoring the complexity of the phase transformation paths for each TAG, and the intricate thermodynamics-molecular relationships. For the first time, XRD data obtained for SSS, PSS and PPS TAGs, cooled at rates higher than 0.5°C/min, suggested the formation of a transient structure similar to the so-called α(2)-phase which has been observed in mixed saturated-unsaturated TAGs quenched from the melt. The more stable phases (β' in PSS and PPS, and β in SSS) were only observed for cooling rates lower than 1.0°C/min. The kinetic and thermodynamic differences observed in the crystallization, structure and melting of SSS, PSS and PPS are proposed to be mainly due to the disturbances introduced at the "terrace" level via methyl-end group interactions, i.e., the missing of two or four CH(2) groups compared to SSS. The symmetrical SSS with a relatively flat "terrace" crystallizes preferably in the most stable β-form. Two missing CH(2) groups at the sn-1 position (PSS) introduces enough structural disturbances to promote the relative prevalence and persistence of the β'-phase, and four missing CH(2) groups at the sn-1 and sn-2 positions (PPS) is relatively too large of a disturbance and therefore favors the α-form. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Phase transformations in the B2 phase of Co-rich Co-Al binary alloys

    International Nuclear Information System (INIS)

    Niitsu, K.; Omori, T.; Nagasako, M.; Oikawa, K.; Kainuma, R.; Ishida, K.

    2011-01-01

    Research highlights: → Bainitic transformation and a martensite-like structure from B2-CoAl were observed depending on quenching rate. → The phase separation into the metastable A2 + B2 structure was found in the as-quenched B2-CoAl. → The two-phase structure of A2 and B2 was found to show some coercive force after aging under a magnetic field. - Abstract: Phase transformations in the β (B2) phase of Co-21 and -23 at.% Al alloys were examined using transmission electron microscopy, energy dispersive X-ray spectroscopy and differential scanning calorimetry. The microstructures obtained from as-quenched specimens were found to be strongly affected by the quenching condition. While relatively thick sheet-specimens with a lower quenching rate showed bainitic plate precipitates with a fcc structure, a martensite-like structure was observed by optical microscopy in relatively thin specimens with a higher quenching rate. Regardless of the quenching condition, a spinodal-like microstructure composed of A2 and B2 phases was also detected and the A2 phase changed to a metastable hcp phase during further aging.

  5. Phase transformations in nickel sulphide: Microstructures and mechanisms

    International Nuclear Information System (INIS)

    Yousfi, Oussama; Donnadieu, Patricia; Brechet, Yves; Robaut, Florence; Charlot, Frederic; Kasper, Andreas; Serruys, Francis

    2010-01-01

    Nickel sulphide inclusions are known to be responsible for delayed fracture in tempered glasses due to phase transformation within the inclusion. Microstructural identification of the phase transformation mechanisms in the Ni-S system close to the NiS composition were carried out on a series of partially transformed states. Observations allow to investigate the morphological evolution during transformation, the phase orientation relationships and the first stages of the transformation were investigated by optical microscopy, electron backscatter diffraction, and scanning and transmission electron microscopy. The transformation mechanisms change significantly with the change in sulphur content of the α-NiS phase. Massive transformation is observed for near-stoichiometric composition. For overstoichiometric composition, the transformation is controlled by a long-range diffusion mechanism. The influence of stoichiometry and impurities (Fe) on the microstructural evolution and transformation mechanisms has also been studied.

  6. Crystal structure transformation in potassium acrylate

    Science.gov (United States)

    Pai Verneker, V. R.; Vasanthakumari, R.

    1983-10-01

    Potassium acrylate undergoes a reversible phase transformation around 335°K with an activation energy of 133 kcal/mole. Differential scanning calorimetry and high temperature X-ray powder diffraction techniques have been used to probe this phenomenon.

  7. Design and Implementation of GSM Based Transformer Phase ...

    African Journals Online (AJOL)

    In this work, the design and implementation of a transformer phase monitoring system, which continuously check for blown fuses on each phases of the distribution transformer was carried out. The system promptly reports any transformer with blown J&P fuse via a preprogrammed SMS which will state the location of the ...

  8. Tunable arbitrary unitary transformer based on multiple sections of multicore fibers with phase control.

    Science.gov (United States)

    Zhou, Junhe; Wu, Jianjie; Hu, Qinsong

    2018-02-05

    In this paper, we propose a novel tunable unitary transformer, which can achieve arbitrary discrete unitary transforms. The unitary transformer is composed of multiple sections of multi-core fibers with closely aligned coupled cores. Phase shifters are inserted before and after the sections to control the phases of the waves in the cores. A simple algorithm is proposed to find the optimal phase setup for the phase shifters to realize the desired unitary transforms. The proposed device is fiber based and is particularly suitable for the mode division multiplexing systems. A tunable mode MUX/DEMUX for a three-mode fiber is designed based on the proposed structure.

  9. Phase transformations in neutron-irradiated Zircaloys

    International Nuclear Information System (INIS)

    Chung, H.M.

    1986-04-01

    Microstructural evolution in Zircaloy-2 and -4 spent-fuel cladding specimens after ∼3 years of irradiation in commercial power reactors has been investigated by TEM and HVEM. Two kinds of precipitates induced by the fast-neutron irradiation in the reactors have been identified, i.e., Zr 3 O and cubic-ZrO 2 particles approximately 2 to 10 nm in size. By means of a weak-beam dark-field ''2-1/2D-microscopy'' technique, the bulk nature of the precipitates and the surficial nature of artifact oxide and hydride phases could be discerned. The Zr(Fe/sub x/,Cr/sub 1-x/) 2 and Zr 2 (Fe/sub x/,Ni/sub 1-x/) intermetallic precipitates normally present in the as-fabricated material virtually dissolved in the spent-fuel cladding specimens after a fast-neutron fluence of ∼4 x 10 21 ncm -2 in the power reactors. The observed radiation-induced phase transformations are compared with predictions based on the currently available understanding of the alloy characteristics. 29 refs

  10. Pressure-induced phase transformation of HfO2

    International Nuclear Information System (INIS)

    Arashi, H.

    1992-01-01

    This paper reports on the pressure dependence of the Raman spectra of HfO 2 that was measured by a micro-Raman technique using a single-crystal specimen in the pressure range from 0 to 10 GPa at room temperature. The symmetry assignment of Raman bands of the monoclinic phase was experimentally accomplished from the polarization measurements for the single crystal. With increased pressure, a phase transformation for the monoclinic phase took place at 4.3 ± 0.3 GPa. Nineteen Raman bands were observed for the high-pressure phase. The spectral structure of the Raman bands for the high-pressure phase was similar with those reported previously for ZrO 2 . The space group for the high pressure phase of HfO 2 was determined as Pbcm, which was the same as that of the high-pressure phase for ZrO 2 on the basis of the number and the spectral structure of the Raman bands

  11. Phase transformations of nanostructured Zr-Y-O coatings under loading

    Science.gov (United States)

    Fedorischeva, M. V.; Kalashnikov, M. P.; Bozhko, I. A.; Mironov, Yu. P.; Sergeev, V. P.

    2017-12-01

    The deposition of nanostructured Zr-Y-O/Si-Al-N-based coatings was implemented by the pulse magnetron methods. The structural-phase state of the nanostructured coatings was studied with TEM and X-ray analysis. The phase transformation in Zr-Y-O layer was observed with the X-ray diffraction analysis in the "in-situ" mode under loading in conditions of free and constrained volumes. It was found, that there were martensitic phase transformations at certain deformation levels under the conditions of the free volume and martensitic phase transformations in the local regions of the coating layer with the structure fining in constrained volume.

  12. An optical Fourier transform coprocessor with direct phase determination.

    Science.gov (United States)

    Macfaden, Alexander J; Gordon, George S D; Wilkinson, Timothy D

    2017-10-20

    The Fourier transform is a ubiquitous mathematical operation which arises naturally in optics. We propose and demonstrate a practical method to optically evaluate a complex-to-complex discrete Fourier transform. By implementing the Fourier transform optically we can overcome the limiting O(nlogn) complexity of fast Fourier transform algorithms. Efficiently extracting the phase from the well-known optical Fourier transform is challenging. By appropriately decomposing the input and exploiting symmetries of the Fourier transform we are able to determine the phase directly from straightforward intensity measurements, creating an optical Fourier transform with O(n) apparent complexity. Performing larger optical Fourier transforms requires higher resolution spatial light modulators, but the execution time remains unchanged. This method could unlock the potential of the optical Fourier transform to permit 2D complex-to-complex discrete Fourier transforms with a performance that is currently untenable, with applications across information processing and computational physics.

  13. Mechanically induced atomic disorder and phase transformations. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Limei, D

    1992-11-30

    The study shows the possibilities of preparing alloys in various metastable configurations by the simple technique of ball milling. Firstly, chapter 2 gives the description of experimental techniques. In chapter 3, evidence of atomic anti-site disordering in A15-structure superconducting compounds Nb3Sn and Nb3Au during an early stage of milling is demonstrated. Chapter 4 represents the experimental results on the B2-structure magnetic compounds CoGa and CoAl upon mechanical impact. These compounds are well known for their particular type of atomic disorder, namely triple-defect disorder. Various examples of experimental evidence of phase transformations induced by mechanical grinding are presented in chapter 5. Section 5.2 gives an example of amorphization induced by mechanical attrition in the intermetallic compound Ni3Sn. Section 5.3 shows the milling experiment of the intermetallic compound V3 Ga. In section 5.4, for the first time, the observation of a phase transformation to a high-temperature phase with a complex structure will be demonstrated for the intermetallic compound Co3Sn2. In the last chapter, detailed studies on the intermetallic Nb-Au binary compounds for a variety of compositions are presented.

  14. Electron-irradiation-induced phase transformation in alumina

    International Nuclear Information System (INIS)

    Chen, C.L.; Arakawa, K.; Lee, J.-G.; Mori, H.

    2010-01-01

    In this study, electron-irradiation-induced phase transformations between alumina polymorphs were investigated by high-resolution transmission electron microscopy. It was found that the electron-irradiation-induced α → κ' phase transformation occurred in the alumina under 100 keV electron irradiation. It is likely that the knock-on collision between incident electrons and Al 3+ cations is responsible for the occurrence of electron-irradiation-induced phase transformation from α-alumina to κ'-alumina.

  15. Multi-channel phase-equivalent transformation and supersymmetry

    OpenAIRE

    Shirokov, A. M.; Sidorenko, V. N.

    2000-01-01

    Phase-equivalent transformation of local interaction is generalized to the multi-channel case. Generally, the transformation does not change the number of the bound states in the system and their energies. However, with a special choice of the parameters, the transformation removes one of the bound states and is equivalent to the multi-channel supersymmetry transformation recently suggested by Sparenberg and Baye. Using the transformation, it is also possible to add a bound state to the discr...

  16. Deformation-induced phase transformation in 4H–SiC nanopillars

    International Nuclear Information System (INIS)

    Chen, Bin; Wang, Jun; Zhu, Yiwei; Liao, Xiaozhou; Lu, Chunsheng; Mai, Yiu-Wing; Ringer, Simon P.; Ke, Fujiu; Shen, Yaogen

    2014-01-01

    The deformation behaviour of single-crystal SiC nanopillars was studied by a combination of in situ deformation transmission electron microscopy and molecular dynamics simulations. An unexpected deformation-induced phase transformation from the 4H hexagonal structure to the 3C face-centred cubic structure was observed in these nanopillars at room temperature. Atomistic simulations revealed that the 4H to 3C phase transformation follows a stick–slip process with initiation and end stresses of 12.1–14.0 and 7.9–9.0 GPa, respectively. The experimentally measured stress of 9–10 GPa for the phase transformation falls within the range of these theoretical upper and lower stresses. The reasons for the phase transformation are discussed. The finding sheds light on the understanding of phase transformation in polytypic materials at low temperature

  17. Phase transformations in lithium aluminates irradiated with neutrons

    International Nuclear Information System (INIS)

    Carrera, L.M.; Delfin L, A.; Urena N, F.; Basurto, R.; Bosch, P.

    2003-01-01

    The lithium aluminate like candidate to be used in the coverings producers of tritium in the fusion nuclear reactors, presents high resistance to the corrosion to the one to be stuck to structural materials as special steels. However, the crystallographic changes that take place in the cover that is continually subjected to irradiation with neutrons, can alter its resistance to the corrosion. In this work the changes of crystalline structure are shown that they present two types of nano structures of lithium aluminates, subjected to an average total dose 7.81 x 10 8 Gy in the fixed irradiation system of capsules of the one TRIGA Mark lll nuclear reactor of the Nuclear Center of Mexico. The studied nano structures presented only phase transformations without formation of amorphous material. (Author)

  18. Phase diagrams and phase transformations in 'Zirlo': Zr-1% Sn-1% Nb (0,1% Fe)

    International Nuclear Information System (INIS)

    Canay, Marcelo G.

    1996-01-01

    The transformation temperatures and the phases present in Zr-base alloys with 1% at. Nb, (0,1 and 0,8) % at. Sn, (0,2 and 0,7) % at. Fe and 600 and 6000 ppmat O were studied it the present work. α ↔ α + β and α + β ↔ β transformation temperatures were determined by means of electrical resistivity variation v. temperature measurements. Scanning Electronic Microscopy (SEM) and quantitative microanalysis techniques were used in order to study the microstructures and chemical composition of the phases appearing at three different annealing temperatures (600, 800 and 850 C degrees). Samples annealed at 600 C degrees were also analyzed by X-ray diffraction methods. Oxygen influence turned out to increase the α + β ↔ β transformation temperature, while iron produced a decrease in the α ↔ α + β one. Comparing with literature data we concluded that tin increases the α + β ↔ β and decreases the α ↔ α + β temperatures while niobium decreases both. The samples annealed at 800 and 850 C degrees, showed two different microstructures of α-phases: α-plates which correspond to the α-phases portion at the annealing temperature and α-Widmanstaetten like structure formed from the β-phase when quenching the sample. A Widmanstaetten like structure consisting in α phase plates with a supersaturated (in Nb and Fe) α phase (α s ) in between was observed at 600 C degrees. It is in this α s phase the different intermetallic phases could precipitate. We were only able to identify Zr 3 Fe in two alloys with low tin and oxygen content. (author)

  19. Physical nature of structural and phase transformations in Cu-Al α solid solutions upon low-temperature irradiation and subsequent annealing

    Science.gov (United States)

    Petrenko, P. V.; Kulish, N. P.; Mel'nikova, N. A.; Grabovskii, Yu. E.

    2013-12-01

    Methods of X-ray diffraction analysis and measurements of residual resistivity have been used to study effects of electron irradiation in the temperature range of 250-330 K on the structural and phase state of the Cu-15 at % Al solid solution. The results obtained are explained by the presence in the Cu-Al alloys of an inhomogeneous short-range order of two types, i.e., low-temperature, α2 type; and high-temperature, γ2 type.

  20. Transmission Network Expansion Planning Considering Phase-Shifter Transformers

    Directory of Open Access Journals (Sweden)

    Celso T. Miasaki

    2012-01-01

    Full Text Available This paper presents a novel mathematical model for the transmission network expansion planning problem. Main idea is to consider phase-shifter (PS transformers as a new element of the transmission system expansion together with other traditional components such as transmission lines and conventional transformers. In this way, PS are added in order to redistribute active power flows in the system and, consequently, to diminish the total investment costs due to new transmission lines. Proposed mathematical model presents the structure of a mixed-integer nonlinear programming (MINLP problem and is based on the standard DC model. In this paper, there is also applied a specialized genetic algorithm aimed at optimizing the allocation of candidate components in the network. Results obtained from computational simulations carried out with IEEE-24 bus system show an outstanding performance of the proposed methodology and model, indicating the technical viability of using these nonconventional devices during the planning process.

  1. Phase transformations and systems driven far from equilibrium

    International Nuclear Information System (INIS)

    Ma, E.; Atzmon, M.; Bellon, P.; Trivedi, R.

    1998-01-01

    This volume compiles invited and contributed papers that were presented at Symposium B of the 1997 Materials Research Society Fall Meeting, Phase Transformations and Systems Driven Far From Equilibrium, which was held December 1--5, in Boston, Massachusetts. While this symposium followed the tradition of previous MRS symposia on the fundamental topic of phase transformations, this year the emphasis was on materials systems driven far from equilibrium. The central theme of the majority of the work presented is the understanding of the thermodynamics and kinetics of phase transformations, with significant coverage of metastable materials and externally forced transformations driven, for example, by energy beams or mechanical deformation. The papers are arranged in seven sections: solidification theory and experiments; nucleation; solid state transformations and microstructural evolution; beam-induced transformations; amorphous solids; interfacial and thin film transformations; and nanophases and mechanical alloying. One hundred three papers have been processed separately for inclusion on the data base

  2. Topological defects in the second-class phase transformations

    International Nuclear Information System (INIS)

    Dobrowolski, T.

    2002-06-01

    The dynamics of systems during second-class phase transformations are presented.in a frame of quantum fields theory. It is shown that solutions of non-linear field equations generate some topological defects what result in symmetry breaking and field phase transformations

  3. Constitutive modeling of multiphase materials including phase transformations

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Khan, A.S.; Meredith, C; Farrokh, B

    2011-01-01

    A constitutive model is developed for materials involving two or more different phases in their microstructure such as DP (Dual Phase) or TRIP (TRansformation Induced Plasticity) steels. Homogenization of the response of the phases is achieved by the Mean-Field method. One of the phases in TRIP

  4. Effect of the Thermomechanical Treatment on Structural and Phase Transformations in Cu-14Al-3Ni Shape Memory Alloy Subjected to High-Pressure Torsion

    Science.gov (United States)

    Lukyanov, A. V.; Pushin, V. G.; Kuranova, N. N.; Svirid, A. E.; Uksusnikov, A. N.; Ustyugov, Yu. M.; Gunderov, D. V.

    2018-04-01

    The possibilities of controlling the structure and properties of a Cu-Al-Ni shape memory alloy due to the use of different schemes of the thermomechanical treatment, including forging, homogenizing in the austenitic state and subsequent quenching, and high-pressure torsion have been found. For the first time, an ultrafine-grain structure has been produced in this alloy via severe plastic deformation using high-pressure torsion. It has been detected that high-pressure torsion using ten revolutions of the anvils leads to the formation of a nanocrystalline structure with a grain size of less than 100 nm. The subsequent short-term heating of the alloy to 800°C (10 s) in the temperature region of the existence of the homogeneous β phase made it possible to form an ultrafine-grain structure with predominant sizes of recrystallized grains of 1 and 8 μm. The quenching after heating prevented the decomposition of the solid solution. The refinement of the grain structure changed the deformation behavior of the alloy, having provided the possibility of the significant plastic deformation upon mechanical tensile tests. The coarse-grained hot-forged quenched alloy was brittle, and fracture occurred along the boundaries of former austenite grains and martensite packets. The highstrength ultrafine-grained alloy also experienced mainly the intercrystalline fracture along the high-angle boundaries of elements of the structure, the grain size of which was less by two orders than that in the initial alloy. This determined an increase in its relative elongation upon mechanical tests.

  5. Experimental demonstration of conformal phased array antenna via transformation optics.

    Science.gov (United States)

    Lei, Juan; Yang, Juxing; Chen, Xi; Zhang, Zhiya; Fu, Guang; Hao, Yang

    2018-02-28

    Transformation Optics has been proven a versatile technique for designing novel electromagnetic devices and it has much wider applicability in many subject areas related to general wave equations. Among them, quasi-conformal transformation optics (QCTO) can be applied to minimize anisotropy of transformed media and has opened up the possibility to the design of broadband antennas with arbitrary geometries. In this work, a wide-angle scanning conformal phased array based on all-dielectric QCTO lens is designed and experimentally demonstrated. Excited by the same current distribution as such in a conventional planar array, the conformal system in presence of QCTO lens can preserve the same radiation characteristics of a planar array with wide-angle beam-scanning and low side lobe level (SLL). Laplace's equation subject to Dirichlet-Neumann boundary conditions is adopted to construct the mapping between the virtual and physical spaces. The isotropic lens with graded refractive index is realized by all-dielectric holey structure after an effective parameter approximation. The measurements of the fabricated system agree well with the simulated results, which demonstrate its excellent wide-angle beam scanning performance. Such demonstration paves the way to a robust but efficient array synthesis, as well as multi-beam and beam forming realization of conformal arrays via transformation optics.

  6. The β → α phase transformation in plutonium

    International Nuclear Information System (INIS)

    Mitchell, T.E.; Hirth, J.P.; Schwartz, D.S.; Mitchell, J.N.

    2013-01-01

    The β → α transformation in plutonium is discussed in terms of the crystallography of the two phases and the resulting topological modeling of the β/α interface. There has been little microscopy work on the transformation, but it is probably martensitic. β-Pu is monoclinic I2/m, while α-Pu is monoclinic P2 1 /m. α-Pu has been described as a hexagonal close-packed pseudostructure with AB stacking of the (0 2 0) α planes with pseudo-close-packing along [1 0 0] α and two other directions. β-Pu is less obvious, but X-ray diffraction suggests that the (1 0 3) β planes, which are selected as the terrace plane, have the highest structure factor and are therefore among the closest-packed planes. Other pseudo-close-packed planes, such as {222 ¯ } β and {321 ¯ } β , could also act as terrace planes for the transformation. The (1 0 3) β planes have a pseudo-hexagonal grid of Pu atoms with AB stacking and pseudo-close-packing along [301 ¯ ] β and two other directions. A selection of terrace planes as (0 2 0) α //(1 0 3) β with disconnections along [100] α //[301 ¯ ] β provides the basis for topological modeling. The model predicts a habit plane that is ∼6° from the terrace plane. The extra Pu atoms in the β structure (17 for every 16 in α) are accommodated by having 16 (1 0 3) β planes transform into 17 (0 2 0) α planes at steps in the interface. Short-range interstitial diffusion of Pu atoms from β to α is required for the transformation to proceed. Possible lattice invariant deformation systems are discussed

  7. Study of structural phase transformation and hysteresis behavior of inverse-spinel α-ferrite nanoparticles synthesized by co-precipitation method

    Science.gov (United States)

    Dabagh, Shadab; Chaudhary, Kashif; Haider, Zuhaib; Ali, Jalil

    2018-03-01

    Substitution of cobalt (Co2+) ions in cobalt ferrite (CoFe2O4) with copper (Cu2+) and aluminum (Al3+) ions allows variations in their electric and magnetic properties which can be optimized for specific applications. In this article, synthesis of inverse-spinel Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) nanoparticles by substituting Cu2+ and Al3+ ions in CoFe2O4 via co-precipitation method is reported. By controlling copper and aluminum (Cu-Al) substituent ratio, the magnetic moment and coercivity of synthesized cobalt ferrite nanoparticles is optimized. The role of substituents on the structure, particle size, morphology, and magnetic properties of nano-crystalline ferrite is investigated. The Co1-xCuxFe2-xAlxO4 (0.0 ≤ x≤ 0.8) nanoparticles with crystallite size in the range of 23.1-26.5 nm are observed, 26.5 nm for x = 0.0-23.1 nm for x = 0.8. The inverse-spinel structure of synthesized Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) nano-particles is confirmed by characteristic vibrational bands at tetrahedral and octahedral sites using Fourier transform infrared spectroscopy. A decreases in coercive field and magnetic moment is observed as Cu-Al contents are increased (x = 0.0-0.8). The positive anisotropy of synthesized particles Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) is obtained in the range 1.96 × 105 J/m3 for x = 0.0 to 0.29 × 105 J/m3 for x = 0.8.

  8. Growth and phase transformations of Ir on Ge(111)

    Science.gov (United States)

    Mullet, C. H.; Stenger, B. H.; Durand, A. M.; Morad, J. A.; Sato, Y.; Poppenheimer, E. C.; Chiang, S.

    2017-12-01

    The growth of Ir on Ge(111) as a function of temperature between 23 °C and 820 °C is characterized with low energy electron microscopy (LEEM), low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and x-ray photoemission spectroscopy (XPS). Deposition onto a substrate at 350 °C revealed a novel growth mode consisting of multilayer Ir islands with (√3 × √3)R30° (abbreviated as √3) structure interconnected by ;bridges; of single-layer Ir several atoms wide. For deposition onto substrates above 500 °C, the √3 Ir phase grows with dendritic morphology, and substrate step bunches act as barriers to √3 Ir growth. LEEM images showed Stranski-Krastanov growth for 650-820 °C: after the √3 phase covers the surface, corresponding to 2 monolayers (ML) Ir coverage, multilayer hexagonal-shaped Ir islands form, surrounded by regions of IrGe alloy. Hexagonal-shaped Ir islands also formed upon heating 1.2 ML of √3 Ir beyond 830 °C, which resulted in the elimination of √3 structure from the surface. The transformation from √3 to (1 × 1) structure upon heating to 830 °C was an irreversible surface phase transition. Annealing > 2.0 ML of Ir in the √3 phase above the 830 °C disorder temperature, followed by cooling, produced a (3 × 1) structure. Subsequent heating and cooling through 830 °C give evidence for a reversible (3 × 1) to (1 × 1) phase transition.

  9. Phases of the energy system transformation

    International Nuclear Information System (INIS)

    Fischedick, Manfred; Samadi, Sascha; Hoffmann, Clemens; Henning, Hans-Martin; Pregger, Thomas; Leprich, Uwe; Schmidt, Maike

    2015-01-01

    The energy transition is an ambitious and highly complex process of transformation. This article presents eight theses that can help to better understand the challenges and to identify starting points for future action and to identify research needs. [de

  10. Structural transformations of carbon chains inside nanotubes

    International Nuclear Information System (INIS)

    Warner, Jamie H.; Ruemmeli, Mark H.; Bachmatiuk, Alicja; Buechner, Bernd

    2010-01-01

    In situ aberration-corrected high-resolution transmission electron microscopy is used to examine the structural transformations of carbon chains that occur in the interior region of carbon nanotubes. We find electron-beam irradiation leads to the formation of two-dimensional carbon structures that are freely mobile inside the nanotube. The inner diameter of the nanotube influences the structural transformations of the carbon chains. As the diameter of the nanotube increases, electron-beam irradiation leads to curling of the chains and eventually the formation of closed looped structures. The closed looped structures evolve into spherical fullerenelike structures that exhibit translational motion inside the nanotubes and also coalesce to form larger nanotube structures. These results demonstrate the use of carbon nanotubes as test tubes for growing small carbon nanotubes within the interior by using only electron-beam irradiation at 80 kV.

  11. Atomic disorder, phase transformation, and phase restoration in Co3Sn2

    Science.gov (United States)

    di, L. M.; Zhou, G. F.; Bakker, H.

    1993-03-01

    The behavior of the intermetallic compound Co3Sn2 upon ball milling was studied by x-ray diffraction, high-field-magnetization measurements, and subsequently by differential scanning calorimetry. It turns out that starting from the stoichiometric-ordered compound, mechanical attrition of Co3Sn2 generates atomic disorder in the early stage of milling. The nonequilibrium phase transformation from the low-temperature phase with orthorhombic structure to the high-temperature phase with a hexagonal structure was observed in the intermediate stage of milling. It was accompanied by the creation of increasing atomic disorder. After long milling periods, the phase transformation was completed and the atomic disordering became saturated. All the physical parameters measured in the present work remained constant during this period. The above outcome was confirmed by comparison with the high-temperature phase thermally induced by quenching. The good agreement of the results obtained by different techniques proves that the ball milling generates well-defined metastable states in Co3Sn2.

  12. Metallographic Study of the Isothermal Transformation of Beta Phase in Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Oestberg, G

    1960-06-15

    Observations of the structure of commercial zircaloy-2 have been made in the microscope showing that the high temperature beta phase is transformed isothermally at lower temperatures into alpha plus secondary precipitate. The alpha occurs mainly as Widmanstaetten plates developed by a shear mechanism. The secondary precipitate is formed from the beta - alpha structure at the phase boundary between these phases. This precipitation of particles of secondary phase occurs on account of a eutectoid reaction, alpha also being formed. A time-temperature transformation diagram has been constructed from the observations.

  13. Specific features of phase transformations in germanium monotelluride

    International Nuclear Information System (INIS)

    Bigvava, A.D.; Gabedava, A.A.; Kunchuliya, Eh.D.; Shvangiradze, R.R.

    1981-01-01

    Phase transformations in germanium monotelluride are studied . using DRON-0.5 and DRON-1 plants with high-temperature chamber GPVT-1500 at Cu, Ksub(α) radiation. It is shown that in the whole homogeneity range α GeTe is a metastable phase which is formed under the conditions of fast cooling of alloy from temperatures >=Tsub(cub) (temperature of transition in cubic crystal system). An equilibrium γ-phase is obtained by annealing of dispersed powders and metal-ceramic specimens of alloys with 50.3; 50.6; 50.9 at % Te. Lattice parameters of rhombic γ-phase do not depend on tellurium content in initial α- phase. α→γ transformation is observed at any temperature less than Tsub(cub) with the change of alloy composition, namely tellurium precipitation. γ-phase transforms into β at higher temperatures than α-phase [ru

  14. Discrete Haar transform and protein structure.

    Science.gov (United States)

    Morosetti, S

    1997-12-01

    The discrete Haar transform of the sequence of the backbone dihedral angles (phi and psi) was performed over a set of X-ray protein structures of high resolution from the Brookhaven Protein Data Bank. Afterwards, the new dihedral angles were calculated by the inverse transform, using a growing number of Haar functions, from the lower to the higher degree. New structures were obtained using these dihedral angles, with standard values for bond lengths and angles, and with omega = 0 degree. The reconstructed structures were compared with the experimental ones, and analyzed by visual inspection and statistical analysis. When half of the Haar coefficients were used, all the reconstructed structures were not yet collapsed to a tertiary folding, but they showed yet realized most of the secondary motifs. These results indicate a substantial separation of structural information in the space of Haar transform, with the secondary structural information mainly present in the Haar coefficients of lower degrees, and the tertiary one present in the higher degree coefficients. Because of this separation, the representation of the folded structures in the space of Haar transform seems a promising candidate to encompass the problem of premature convergence in genetic algorithms.

  15. Mechanisms of diffusional phase transformations in metals and alloys

    CERN Document Server

    Aaronson, Hubert I; Lee, Jong K

    2010-01-01

    Developed by the late metallurgy professor and master experimentalist Hubert I. Aaronson, this collection of lecture notes details the fundamental principles of phase transformations in metals and alloys upon which steel and other metals industries are based. Mechanisms of Diffusional Phase Transformations in Metals and Alloys is devoted to solid-solid phase transformations in which elementary atomic processes are diffusional jumps, and these processes occur in a series of so-called nucleation and growth through interface migration. Instead of relying strictly on a pedagogical approach, it doc

  16. Phase transformations in an ascending adiabatic mixed-phase cloud volume

    Science.gov (United States)

    Pinsky, M.; Khain, A.; Korolev, A.

    2015-04-01

    Regimes of liquid-ice coexistence that may form in an adiabatic parcel ascending at constant velocity at freezing temperatures are investigated. Four zones with different microphysical structures succeeding one another along the vertical direction have been established. On the basis of a novel balance equation, analytical expressions are derived to determine the conditions specific for each of these zones. In particular, the necessary and sufficient conditions for formation of liquid water phase within an ascending parcel containing only ice particles are determined. The results are compared to findings reported in earlier studies. The role of the Wegener-Bergeron-Findeisen mechanism in the phase transformation is analyzed. The dependence of the phase relaxation time on height in the four zones is investigated on the basis of a novel analytical expression. The results obtained in the study can be instrumental for analysis and interpretation of observed mixed-phase clouds.

  17. Acoustic emission during low temperature phase transformations in plutonium

    International Nuclear Information System (INIS)

    Khejpl, K.; Karpenter, S.

    1988-01-01

    To study the nature of phase transformations in plutonium and plutonium-gallium alloys (0.3 and 0.57% Ga) the measurement of acoustic emission is conducted. The presence of acoustic emission testifies to martensitic character of transformation, related to sharp local changes in the volume, which cause elastic waves. It is detected that during α reversible β transformations in non-alloyed plutonium acoustic emission is absent, and that testifies to nonmartensitic nature of the transformations. σ reversible α transformation in plutonium-gallium alloys is accompanied by the appearance of acoustic emission, i.e. it is of martensitic origin

  18. Conceptual Design of a Single Phase 33 MVA HTS Transformer with a Tertiary Winding

    International Nuclear Information System (INIS)

    Lee, S. W.; Kim, W. S.; Hahn, S. Y.; Hwang, Y. I.; Choi, K. D.

    2006-01-01

    We have proposed a 3 phase, 100 MVA, 154 kV class HTS transformer substituting for a 60 MVA conventional transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The electrical characteristics of the HTS transformer such as % impedance and AC loss vary with the arrangement of the windings and gaps between windings. We analyzed the effects of the winding parameters, evaluated the cost of each design, and proposed a suitable HTS transformer model for future power distribution system.

  19. Structural transformation in monolayer materials: a 2D to 1D transformation.

    Science.gov (United States)

    Momeni, Kasra; Attariani, Hamed; LeSar, Richard A

    2016-07-20

    Reducing the dimensions of materials to atomic scales results in a large portion of atoms being at or near the surface, with lower bond order and thus higher energy. At such scales, reduction of the surface energy and surface stresses can be the driving force for the formation of new low-dimensional nanostructures, and may be exhibited through surface relaxation and/or surface reconstruction, which can be utilized for tailoring the properties and phase transformation of nanomaterials without applying any external load. Here we used atomistic simulations and revealed an intrinsic structural transformation in monolayer materials that lowers their dimension from 2D nanosheets to 1D nanostructures to reduce their surface and elastic energies. Experimental evidence of such transformation has also been revealed for one of the predicted nanostructures. Such transformation plays an important role in bi-/multi-layer 2D materials.

  20. Synthesis and characterization of JBW structure and its thermal transformation

    International Nuclear Information System (INIS)

    Hegazy, Eman Z.; Kosa, Samia A.; Abd El Maksod, Islam Hamdy

    2012-01-01

    In this paper, JBW zeolite prepared from Egyptian kaolin was investigated by means of XRD, IR, SEM, EDX and ion exchange of some heavy metals. Adsorption isotherms were used to investigate the structure and properties of the prepared zeolite. XRD analysis showed that the JBW was a pure crystalline phase with orthorhombic crystal symmetry. Thermal treatment showed that the JBW transformed into the It-Carn phase at 1000 °C through an intermediate crystalline alumino silicate phase. SEM images showed that the JBW crystallised in a cylindrical shape. However, spherical agglomerates were observed at lower magnifications. The ion exchange isotherms with Cu 2+ , Ni 2+ and Co 2+ were found to follow a Freundlich isotherm. In addition, it shows higher affinity towards Cu 2+ than other ions. - Graphical abstract: JBW zeolite structure was prepared from Egyptian kaolin and characterised. XRD analysis showed that the JBW was a pure crystalline phase with orthorhombic crystal symmetry. Thermal treatment showed that the JBW transformed into the It-Carn phase at 1000 °C through an intermediate crystalline alumino silicate phase. Highlights: ► Egyptian kaolin was successfully used to prepare pure phase of JBW Structure. ► JBW is stable till 2+ , Ni 2+ , and Co 2+ followed up Freundlich isotherm. ► Selectivity towards Cu 2+ is much higher than Co 2+ or Ni 2+ .

  1. Effects of phase transformation of steam-water relative permeabilities

    Energy Technology Data Exchange (ETDEWEB)

    Verma, A.K.

    1986-03-01

    A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.

  2. Investigation of phase transformations in ductile cast iron of differential scanning calorimetry

    International Nuclear Information System (INIS)

    Przeliorz, R; Piatkowski, J

    2011-01-01

    The effect of heating rate on phase transformations to austenite range in ductile cast iron of the EN-GJS-450-10 grade was investigated. For studies of phase transformations, the technique of differential scanning calorimetry (DSC) was used. Micro structure was examined by optical microscopy. The calorimetric examinations have proved that on heating three transformations occur in this grade of ductile iron, viz. magnetic transformation at the Curie temperature, pearlite→austenite transformation and ferrite→austenite transformation. An increase in the heating rate shifts the pearlite→austenite and ferrite→austenite transformations to higher temperature range. At the heating rate of 5 and 15 deg. C min -1 , local extrema have been observed to occur: for pearlite→austenite transformation at 784 deg. C and 795 deg. C, respectively, and for ferrite+ graphite →austenite transformation at 805 deg. C and 821 deg. C, respectively. The Curie temperature of magnetic transformation was extrapolated to a value of 740 deg. C. Each transformation is related with a specific thermal effect. The highest value of enthalpy is accompanying the ferrite→austenite transformation, the lowest occurs in the case of pearlite→austenite transformation.

  3. Phase transformations in titanium oxycarbide TiC0.545O0.08

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.; Em, V.T.; Savenko, B.N.; Batdemberel, G.

    2003-01-01

    Phase transformations in titanium oxycarbide TiC 0.545 O 0.08 have been studied by the methods of neutron diffraction and X-ray structure analysis. It was established that the ordered cubic structure δ ' (sp. gr. Fd3m) of the oxycarbide sample is the low-temperature ordered phase existing up to 990 K. The order-disorder phase transition (990 K) results in the formation of an ordered trigonal structure (sp. gr. R3-barm or P3 1 21). The α-Ti-phase is separated at the temperature 1020 K. The order-disorder phase transition was found at T = 1040 K

  4. SIMULATION OF CHARACTERISTICS OF DUAL-CORE PHASE SHIFTING TRANSFORMER

    Directory of Open Access Journals (Sweden)

    Kalinin L.P.

    2014-04-01

    Full Text Available The role and importance of phase shifting transformers are increased as a result of the further development of integrated power systems. This gives the rise to new technical solutions which entails the necessity of comparison of new developments with existing. The article consider the technical characteristics of dual-core phase shifting transformer which later will be used as a basis for comparison with other competing options and assess of their technical efficiency.

  5. A Novel Three Phase to Seven Phase Conversion Technique Using Transformer Winding Connections

    Directory of Open Access Journals (Sweden)

    M. Tabrez

    2017-10-01

    Full Text Available This paper proposes a novel multiphase transformer connection scheme which converts three phase balanced AC input to seven phase balanced AC output. Generalized theory to convert a three phase utility supply into any number of phases is presented. Based on the proposed generalized principle, a three phase to seven phase power converting transformer design is presented with connection scheme, analysis and simulation and experimental results of the proposed three phase to seven phase conversion transformer. The proposed transformer in this paper is analyzed and compared with the connection scheme for seven phase available in the literature. The connection scheme is found to have higher power density, lower core area and lower core requirement as compared to the available connection scheme of the same rating. Impedance mismatching between different phases of the transformer is observed in the three phase to seven phase transformer available in the literature. As this mismatching introduces error in study of per phase equivalent circuit diagrams as well as imbalance in voltage and currents. The present design also addresses the impedance mismatching issue and reduces mismatching in the proposed transformer design. A prototype of the proposed system is developed and waveforms are presented. The proposed design is verified using simulation and validated using experimental approach.

  6. Mixed cationic dicarbides of the lanthanides, alkali and alkaline earth metals. Crystal structures and phase transformations; Gemischtkationische Dicarbide der Lanthanoide, Alkali- und Erdalkalimetalle. Kristallstrukturen und Phasenumwandlungen

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Stefanie

    2015-01-27

    The work within presents the synthesis and characterization of two new solid solutions: Eu{sub x}Ba{sub 1-x}C{sub 2} and Yb{sub x}Ba{sub 1-x}C{sub 2}. The synthesis is based upon previously known solid solutions Ln{sub x}EA{sub 1-x}C{sub 2} such as Eu{sub x}Ca{sub 1-x}C{sub 2} prepared by Link. This solid solution was reproduced and fully characterized in this study. To investigate the structural characteristics of the solid solutions Eu{sub x}Ca{sub 1-x}C{sub 2} as well as the already known series Yb{sub x}Sr{sub 1-x}C{sub 2} and Yb{sub x}Eu{sub 1-x}C{sub 2} in more detail, selected compounds were investigated by temperature-dependent synchrotron powder diffraction, with structural characterization carried out using Rietveld refinements. All compounds crystallize in the known structure types of CaC{sub 2}: CaC{sub 2}-I (I4/mmm), CaC{sub 2}-II (ThC{sub 2} type, C2/c), CaC{sub 2}-III (C2/m) and CaC{sub 2}-IV (Fm anti 3m). The results suggest that the formation of a complete solid solution or the formation of a miscibility gap is preferred to the formation of new ternary compounds. The results were summarized and compared with literature, whilst similarities and differences were worked out and then placed in relation to each other. The occurrence of various structure types, which form a complete solid solution series as well as the occurrence of a miscibility gap are dependent on the mole fraction x, the temperature, the difference of the ionic radii, the type of cations and the difference of the lattice parameters. The investigated solid solutions were tested if Vegards law was obeyed, and the factors that result in deviations were determined. It was found that miscibility gaps as well as valence changes are the main reasons for deviations from Vegards law. Three different ways to decrease the lattice strain in the solid solutions were observed: decrease of the phase Transition temperatures, valence changes of lanthanide cations and formation of a miscibility gap

  7. Phase relations, crystal structure, and phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) in In_2O_3–Nb_2O_5–TiO_2 system

    International Nuclear Information System (INIS)

    Su, Liumei; Fan, Xing; Cai, Gemei; Liu, Huashan; Jin, Zhanpeng

    2015-01-01

    Phase relations, crystal structures, and phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) in In_2O_3–Nb_2O_5–TiO_2 ternary system were investigated for the first time. A number of samples with different compositions were prepared by a solid-state reaction method, and phase assembles were analyzed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe micro-analysis (EPMA). Five three-phase regions, ten two-phase regions, and six single-phase solid solutions were determined in this system. The solid solution of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) is composed of both ordered monoclinic wolframite-type structure (0 ≤ x < 0.35) and disordered orthorhombic α-PbO_2 type structure (0.35 < x < 0.45). Driving force for composition-driven phase transformation in In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) stems from the ordering of cations. The ever reported compound InNbTiO_6 with an orthorhombic α-PbO_2 type structure was amended to be a monoclinic wolframite-type structure. Present investigations will be useful for the whole ceramic community working with In_2O_3–Nb_2O_5–TiO_2 ternary system as well as for the development of functional materials. - Highlights: • Phase relations of In_2O_3–Nb_2O_5–TiO_2 ternary system were constructed. • Crystal structures of a novel solid solution In_1_−_xNb_1_−_xTi_2_xO_4 were determined. • Crystal structure of InNbTiO_6 was amended to be a wolframite-type structure. • Composition-driven phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 was investigated.

  8. A balance principle approach for modeling phase transformation kinetics

    International Nuclear Information System (INIS)

    Lusk, M.; Krauss, G.; Jou, H.J.

    1995-01-01

    A balance principle is offered to model volume fraction kinetics of phase transformation kinetics at a continuum level. This microbalance provides a differential equation for transformation kinetics which is coupled to the differential equations governing the mechanical and thermal aspects of the process. Application here is restricted to diffusive transformations for the sake of clarity, although the principle is discussed for martensitic phase transitions as well. Avrami-type kinetics are shown to result from a special class of energy functions. An illustrative example using a 0.5% C Chromium steel demonstrates how TTT and CCT curves can be generated using a particularly simple effective energy function. (orig.)

  9. Phase Transformation of Hydrothermally Synthesized Nanoparticle ...

    African Journals Online (AJOL)

    Mild hydrothermal hydrolysis of TiCl4 produces nanorods of the rutile phase of titanium dioxide in high yield, while in the presence of organic acids (citric, acetic, D-tartaric and benzoic acids) anatase is the only product. The effect of these organic acids on the products of the hydrolysis reaction as well as the reaction kinetics ...

  10. Z-transform Zeros in Mixed Phase Deconvolution of Speech

    DEFF Research Database (Denmark)

    Pedersen, Christian Fischer

    2013-01-01

    The present thesis addresses mixed phase deconvolution of speech by z-transform zeros. This includes investigations into stability, accuracy, and time complexity of a numerical bijection between time domain and the domain of z-transform zeros. Z-transform factorization is by no means esoteric......, but employing zeros of the z-transform (ZZT) as a signal representation, analysis, and processing domain per se, is only scarcely researched. A notable property of this domain is the translation of time domain convolution into union of sets; thus, the ZZT domain is appropriate for convolving and deconvolving...... discrimination achieves mixed phase deconvolution and equivalates complex cepstrum based deconvolution by causality, which has lower time and space complexities as demonstrated. However, deconvolution by ZZT prevents phase wrapping. Existence and persistence of ZZT domain immiscibility of the opening and closing...

  11. Chemically Induced Phase Transformation in Austenite by Focused Ion Beam

    Science.gov (United States)

    Basa, Adina; Thaulow, Christian; Barnoush, Afrooz

    2014-03-01

    A highly stable austenite phase in a super duplex stainless steel was subjected to a combination of different gallium ion doses at different acceleration voltages. It was shown that contrary to what is expected, an austenite to ferrite phase transformation occurred within the focused ion beam (FIB) milled regions. Chemical analysis of the FIB milled region proved that the gallium implantation preceded the FIB milling. High resolution electron backscatter diffraction analysis also showed that the phase transformation was not followed by the typical shear and plastic deformation expected from the martensitic transformation. On the basis of these observations, it was concluded that the change in the chemical composition of the austenite and the local increase in gallium, which is a ferrite stabilizer, results in the local selective transformation of austenite to ferrite.

  12. Phase transformation of metastable cubic γ-phase in U-Mo alloys

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Dey, G.K.; Kamath, H.S.

    2010-01-01

    Over the past decade considerable efforts have been put by many fuel designers to develop low enriched uranium (LEU 235 ) base U-Mo alloy as a potential fuel for core conversion of existing research and test reactors which are running on high enriched uranium (HEU > 85%U 235 ) fuel and also for the upcoming new reactors. U-Mo alloy with minimum 8 wt% molybdenum shows excellent metastability with cubic γ-phase in cast condition. However, it is important to characterize the decomposition behaviour of metastable cubic γ-uranium in its equilibrium products for in reactor fuel performance point of view. The present paper describes the phase transformation behaviour of cubic γ-uranium phase in U-Mo alloys with three different molybdenum compositions (i.e. 8 wt%, 9 wt% and 10 wt%). U-Mo alloys were prepared in an induction melting furnace and characterized by X-ray diffraction (XRD) method for phase determination. Microstructures were developed for samples in as cast condition. The alloys were hot rolled in cubic γ-phase to break the cast structure and then they were aged at 500 o C for 68 h and 240 h, so that metastable cubic γ-uranium will undergo eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and body centered tetragonal U 2 Mo intermetallic compound. U-Mo alloy samples with different ageing history were then characterized by XRD for phase and development of microstructure.

  13. Pressure-induced ferroelectric to antiferroelectric phase transformation in porous PZT95/5 ceramics

    International Nuclear Information System (INIS)

    Zeng, T.; Dong, X.L.; Chen, X.F.; Yao, C.H.; He, H.L.

    2007-01-01

    The hydrostatic pressure-induced ferroelectric to antiferroelectric (FE-AFE) phase transformation of PZT95/5 ceramics was investigated as a function of porosity, pore shape and pore size. FE-AFE phase transformations were more diffuse and occurred at lower hydrostatic pressures with increasing porosity. The porous PZT95/5 ceramics with spherical pores exhibited higher transformation pressures than those with irregular pores. Moreover, FE-AFE phase transformations of porous PZT95/5 ceramics with polydisperse irregular pores were more diffuse than those of porous PZT95/5 ceramics with monodisperse irregular pores. The relation between pore structure and hydrostatic pressure-induced FE-AFE transformation was established according to stress concentration theory. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Phase-field modelling and synchrotron validation of phase transformations in martensitic dual-phase steel

    International Nuclear Information System (INIS)

    Thiessen, R.G.; Sietsma, J.; Palmer, T.A.; Elmer, J.W.; Richardson, I.M.

    2007-01-01

    A thermodynamically based method to describe the phase transformations during heating and cooling of martensitic dual-phase steel has been developed, and in situ synchrotron measurements of phase transformations have been undertaken to support the model experimentally. Nucleation routines are governed by a novel implementation of the classical nucleation theory in a general phase-field code. Physically-based expressions for the temperature-dependent interface mobility and the driving forces for transformation have also been constructed. Modelling of martensite was accomplished by assuming a carbon supersaturation of the body-centred-cubic ferrite lattice. The simulations predict kinetic aspects of the austenite formation during heating and ferrite formation upon cooling. Simulations of partial austenitising thermal cycles predicted peak and retained austenite percentages of 38.2% and 6.7%, respectively, while measurements yielded peak and retained austenite percentages of 31.0% and 7.2% (±1%). Simulations of a complete austenitisation thermal cycle predicted the measured complete austenitisation and, upon cooling, a retained austenite percentage of 10.3% while 9.8% (±1%) retained austenite was measured

  15. Study of 18-Pulse Rectifier Utilizing Hexagon Connected 3-Phase to 9-Phase Transformer

    Directory of Open Access Journals (Sweden)

    Ahmad Saudi Samosir

    2008-04-01

    Full Text Available The 18-pulse converter, using Y or -connected differential autotransformer, is very interesting since it allows natural high power factor correction. The lowest input current harmonic components are the 17th and 19th. The Transformer is designed to feed three six-pulse bridge rectifiers displaced in phase by 200. This paper present a high power factor three-phase rectifier bases on 3-phase to 9-phase transformer and 18-pulse rectifier. The 9-phase polygon-connected transformer followed by 18-pulse diode rectifiers ensures the fundamental concept of natural power factor correction. Simulation results to verify the proposed concept are shown in this paper.

  16. Effect of isochronal annealing on phase transformation studies of ...

    Indian Academy of Sciences (India)

    The mixed phase sample shows higher value of magnetization because of the presence of ferromagnetic γ-Fe2O3 ... 1. Introduction. The study of particle size, phase transformation and micros- ..... The results are in qualitative agreement with ...

  17. Frame transforms, star products and quantum mechanics on phase space

    International Nuclear Information System (INIS)

    Aniello, P; Marmo, G; Man'ko, V I

    2008-01-01

    Using the notions of frame transform and of square integrable projective representation of a locally compact group G, we introduce a class of isometries (tight frame transforms) from the space of Hilbert-Schmidt operators in the carrier Hilbert space of the representation into the space of square integrable functions on the direct product group G x G. These transforms have remarkable properties. In particular, their ranges are reproducing kernel Hilbert spaces endowed with a suitable 'star product' which mimics, at the level of functions, the original product of operators. A 'phase space formulation' of quantum mechanics relying on the frame transforms introduced in the present paper, and the link of these maps with both the Wigner transform and the wavelet transform are discussed

  18. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    Science.gov (United States)

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  19. Role of Reversible Phase Transformation for Strong Piezoelectric Performance at the Morphotropic Phase Boundary

    Science.gov (United States)

    Liu, Hui; Chen, Jun; Huang, Houbing; Fan, Longlong; Ren, Yang; Pan, Zhao; Deng, Jinxia; Chen, Long-Qing; Xing, Xianran

    2018-01-01

    A functional material with coexisting energetically equivalent phases often exhibits extraordinary properties such as piezoelectricity, ferromagnetism, and ferroelasticity, which is simultaneously accompanied by field-driven reversible phase transformation. The study on the interplay between such phase transformation and the performance is of great importance. Here, we have experimentally revealed the important role of field-driven reversible phase transformation in achieving enhanced electromechanical properties using in situ high-energy synchrotron x-ray diffraction combined with 2D geometry scattering technology, which can establish a comprehensive picture of piezoelectric-related microstructural evolution. High-throughput experiments on various Pb /Bi -based perovskite piezoelectric systems suggest that reversible phase transformation can be triggered by an electric field at the morphotropic phase boundary and the piezoelectric performance is highly related to the tendency of electric-field-driven phase transformation. A strong tendency of phase transformation driven by an electric field generates peak piezoelectric response. Further, phase-field modeling reveals that the polarization alignment and the piezoelectric response can be much enhanced by the electric-field-driven phase transformation. The proposed mechanism will be helpful to design and optimize the new piezoelectrics, ferromagnetics, or other related functional materials.

  20. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    International Nuclear Information System (INIS)

    Ahn, Taehong; Lee, Sung Bo; Han, Heung Nam; Park, Kyungtae

    2013-01-01

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite

  1. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Taehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Sung Bo; Han, Heung Nam [Seoul National Univ., Seoul (Korea, Republic of); Park, Kyungtae [Hanbat National Univ., Daejeon (Korea, Republic of)

    2013-05-15

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite.

  2. Analysis and simulation of phase transformation kinetics of zeolite A from amorphous phases

    CERN Document Server

    Marui, Y; Uchida, H; Takiyama, H

    2003-01-01

    Experiments on transformation rates of zeolite A from amorphous phases at different feed rates to alter the particle size of the amorphous phases were carried out to analyze the kinetics of the transformation, and were analyzed by performing simulation of the transformation. A clear dependence of the induction time for nucleation of zeolite A crystals on the surface area of the amorphous phase was recognized, indicating that the nucleation of zeolite A was heterogeneous and the nucleation rate was almost proportional to the size of the amorphous particles. From the simulation, the mechanism of the transformation was found to be heterogeneous nucleation of zeolite A crystals on the surface of amorphous particles followed by solution mediated phase transformation, and the transformation kinetics were well reproduced at different feed rates. (author)

  3. Modelling of stresses generated in steels by phase transformations; Modelowanie naprezen wywolanych przemianami fazowymi w stalach

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, K; Glowacki, M; Pietrzyk, M [Akademia Gorniczo-Hutnicza, Cracow (Poland)

    1999-07-01

    Numerical model describing stresses arising during phase transformations in steels products is presented. The full model consists of three components. The first component uses finite element solution of Fourier equation for an evaluation of the temperature field inside the sample. The second component predicts kinetics of phase transformation occurring during cooling of steel products. Coupling of these two components allows prediction of structure and properties of final products at room temperature. The third component uses elastic-plastic finite element model for prediction of stresses caused by non-uniform temperatures and by changes of volume during transformations. Typical results of simulations performed for cooling of rails after hot rolling are presented. (author)

  4. Considerations Concerning Matrix Diagram Transformations Associated with Mathematical Model Study of a Three-phase Transformer

    Directory of Open Access Journals (Sweden)

    Mihaela Poienar

    2014-09-01

    Full Text Available The clock hour figure mathematical model of a threephase transformer can be expressed, in the most plain form, through a 3X3 square matrix, called code matrix. The lines position reflect the modification in the high voltage windings terminal and the columns position reflect the modification in the low voltage winding terminal. The main changes on the transformer winding terminal are: the circular permutation of connection between windings; terminal supply reversal; reverse direction for the phase winding wrapping; reversal the beginning with the end for a phase winding; the connection conversion from N in Z between phase winding or inverse. The analytical form of these changes actually affect the configuration of the mathematical model expressed through a transformations diagram proposed and analyzed in two ways: bipolar version and unipolar version (fanwise. In the end of the paper are presented about the practical exploitation of the transformations diagram.

  5. The correlation of local deformation and stress-assisted local phase transformations in MMC foams

    Energy Technology Data Exchange (ETDEWEB)

    Berek, H., E-mail: harry.berek@ikgb.tu-freiberg.de [TU Bergakademie Freiberg, Agricolastraße 17, D-09599 Freiberg (Germany); Ballaschk, U.; Aneziris, C.G. [TU Bergakademie Freiberg, Agricolastraße 17, D-09599 Freiberg (Germany); Losch, K.; Schladitz, K. [Fraunhofer ITWM, Fraunhoferplatz 1, D-67663 Kaiserslautern (Germany)

    2015-09-15

    Cellular structures are of growing interest for industry, and are of particular importance for lightweight applications. In this paper, a special case of metal matrix composite foams (MMCs) is investigated. The investigated foams are composed of austenitic steel exhibiting transformation induced plasticity (TRIP) and magnesia partially stabilized zirconia (Mg-PSZ). Both components exhibit martensitic phase transformation during deformation, thus generating the potential for improved mechanical properties such as strength, ductility, and energy absorption capability. The aim of these investigations was to show that stress-assisted phase transformations within the ceramic reinforcement correspond to strong local deformation, and to determine whether they can trigger martensitic phase transformations in the steel matrix. To this end, in situ interrupted compression experiments were performed in an X-ray computed tomography device (XCT). By using a recently developed registration algorithm, local deformation could be calculated and regions of interest could be defined. Corresponding cross sections were prepared and used to analyze the local phase composition by electron backscatter diffraction (EBSD). The results show a strong correlation between local deformation and phase transformation. - Graphical abstract: Display Omitted - Highlights: • In situ compressive deformation on MMC foams was performed in an XCT. • Local deformation fields and their gradient amplitudes were estimated. • Cross sections were manufactured containing defined regions of interest. • Local EBSD phase analysis was performed. • Local deformation and local phase transformation are correlated.

  6. The correlation of local deformation and stress-assisted local phase transformations in MMC foams

    International Nuclear Information System (INIS)

    Berek, H.; Ballaschk, U.; Aneziris, C.G.; Losch, K.; Schladitz, K.

    2015-01-01

    Cellular structures are of growing interest for industry, and are of particular importance for lightweight applications. In this paper, a special case of metal matrix composite foams (MMCs) is investigated. The investigated foams are composed of austenitic steel exhibiting transformation induced plasticity (TRIP) and magnesia partially stabilized zirconia (Mg-PSZ). Both components exhibit martensitic phase transformation during deformation, thus generating the potential for improved mechanical properties such as strength, ductility, and energy absorption capability. The aim of these investigations was to show that stress-assisted phase transformations within the ceramic reinforcement correspond to strong local deformation, and to determine whether they can trigger martensitic phase transformations in the steel matrix. To this end, in situ interrupted compression experiments were performed in an X-ray computed tomography device (XCT). By using a recently developed registration algorithm, local deformation could be calculated and regions of interest could be defined. Corresponding cross sections were prepared and used to analyze the local phase composition by electron backscatter diffraction (EBSD). The results show a strong correlation between local deformation and phase transformation. - Graphical abstract: Display Omitted - Highlights: • In situ compressive deformation on MMC foams was performed in an XCT. • Local deformation fields and their gradient amplitudes were estimated. • Cross sections were manufactured containing defined regions of interest. • Local EBSD phase analysis was performed. • Local deformation and local phase transformation are correlated

  7. Phase transformation in nickel during tribotesting

    Energy Technology Data Exchange (ETDEWEB)

    Hershberger, J. [Energy Technology Division, Argonne National Laboratory, Building 212 Room D204, 9700 S Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: jhersh@anl.gov; Ajayi, O.O. [Energy Technology Division, Argonne National Laboratory, Building 212 Room D204, 9700 S Cass Avenue, Argonne, IL 60439 (United States); Fenske, G.R. [Energy Technology Division, Argonne National Laboratory, Building 212 Room D204, 9700 S Cass Avenue, Argonne, IL 60439 (United States)

    2005-12-15

    Commercially pure nickel was subjected to a polyalphaolefin-lubricated reciprocating tribotest with increasing load. A friction transition was observed and X-ray diffraction was performed on low-friction and high-friction areas. Hexagonal nickel or nickel carbide was formed at high friction. Broadening of the face-centered cubic peaks did not show dislocation structures characteristic of scuffing.

  8. Phase transformation in nickel during tribotesting

    International Nuclear Information System (INIS)

    Hershberger, J.; Ajayi, O.O.; Fenske, G.R.

    2005-01-01

    Commercially pure nickel was subjected to a polyalphaolefin-lubricated reciprocating tribotest with increasing load. A friction transition was observed and X-ray diffraction was performed on low-friction and high-friction areas. Hexagonal nickel or nickel carbide was formed at high friction. Broadening of the face-centered cubic peaks did not show dislocation structures characteristic of scuffing

  9. Formation, transformation and dissolution of phases formed on surfaces

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1983-03-01

    The basic mechanisms of film growth, transformation, and dissolution of phases formed on surfaces are discussed. Film growth can occur via solid-state processes or via substrate (usally metal or alloy) dissolution, followed by local supersaturation and precipitation of an insoluble phase. The phase(s) formed may be metastable and transform to a more stable phase, via either solid-state or dissolution-reprecipitation processes. Film dissolution reactions can also occur via a variety of mechanisms, including: (i) direct chemical dissolution when no oxidation state change occurs; (ii) redox dissolution when the film dissolves via a redox reaction involving a reducing or oxidizing agent in solution; and (iii) autoreduction, where film dissolution is coupled to metal dissolution. Such film-growth and dissolution processes, which often produce complex multilayer films, are common in the nuclear industry. A number of examples are discussed

  10. Amelogenin Affects Brushite Crystal Morphology and Promotes Its Phase Transformation to Monetite

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Dongni; Ruan, Qichao; Tao, Jinhui; Lo, Jonathan; Nutt, Steven; Moradian-Oldak, Janet

    2016-09-07

    Amelogenin protein is involved in organized apatite crystallization during enamel formation. Brushite (CaHPO4·2H2O), which is one of the precursors for hydroxyapatite in in vitro mineralization, has been used for fabrication of biomaterials for hard tissue repair. In order to explore its potential application in biomimetic material synthesis, we studied the influence of amelogenin on brushite morphology and phase transformation to monetite. Our results show that amelogenin can adsorb onto surface of brushite, leading to the formation of layered structures on the (010) face. Amelogenin promoted the phase transformation of brushite into monetite (CaHPO4) in the dry state, presumably by interacting with crystalline water layers in brushite unit cell. Changes to the crystal morphology by amelogenin continued even after the phase transformation to monetite forming an organized nanotextured structure of nano-sticks resembling the bundle structure in enamel.

  11. Phase Transformations in a Uranium-Zirconium Alloy containing 2 weight per cent Zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Lagerberg, G

    1961-04-15

    The phase transformations in a uranium-zirconium alloy containing 2 weight percent zirconium have been examined metallographically after heat treatments involving isothermal transformation of y and cooling from the -y-range at different rates. Transformations on heating and cooling have also been studied in uranium-zirconium alloys with 0.5, 2 and 5 weight per cent zirconium by means of differential thermal analysis. The results are compatible with the phase diagram given by Howlett and Knapton. On quenching from the {gamma}-range the {gamma} phase transforms martensitically to supersaturated a the M{sub S} temperature being about 490 C. During isothermal transformation of {gamma} in the temperature range 735 to 700 C {beta}-phase is precipitated as Widmanstaetten plates and the equilibrium structure consists of {beta} and {gamma}{sub 1}. Below 700 C {gamma} transforms completely to Widmanstaetten plates which consist of {beta} above 660 C and of a at lower temperatures. Secondary phases, {gamma}{sub 2} above 610 C and {delta} below this temperature, are precipitated from the initially supersaturated Widmanstaetten plates during the isothermal treatments. At and slightly below 700 C the cooperative growth of |3 and {gamma}{sub 2} is observed. The results of isothermal transformation are summarized in a TTTdiagram.

  12. Displacive phase transformations and generalized stacking faults

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav; Ostapovets, Andriy; Duparc, O. H.; Khalfallah, O.

    2012-01-01

    Roč. 122, č. 3 (2012), s. 490-492 ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : ab-initio calculations * close-packed structures * generalized stacking faults * homogeneous deformation * lattice deformation * many-body potentials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.531, year: 2012

  13. A Phase Transformation with no Change in Space Group Symmetry: Octafluoronaphtalene

    DEFF Research Database (Denmark)

    Pawley, G. S.; Dietrich, O. W.

    1975-01-01

    A solid-state phase transformation in octafluoronaphthalene has been discovered at 266.5K on cooling, and at 15K higher on heating. The symmetry of both phases is found to be the same, namely monoclinic with space group P21/c. The unit cell parameters change by up to 10%, but the integrity...... of a single crystal, which shatters on cooling, is good enough for a single-crystal structure determination. This has been done in both phases to a sufficient accuracy that a mechanism for the transformation can be proposed. Molecules which lie parallel to one another shear to a new parallel position...

  14. Neutron guide geometries for homogeneous phase space volume transformation

    International Nuclear Information System (INIS)

    Stüßer, N.; Bartkowiak, M.; Hofmann, T.

    2014-01-01

    We extend geometries for recently developed optical guide systems that perform homogeneous phase space volume transformations on neutron beams. These modules allow rotating beam directions and can simultaneously compress or expand the beam cross-section. Guide systems combining these modules offer the possibility to optimize ballistic guides with and without direct view on the source and beam splitters. All systems are designed for monochromatic beams with a given divergence. The case of multispectral beams with wavelength-dependent divergence distributions is addressed as well. - Highlights: • Form invariant volume transformation in phase space. • Geometrical approach. • Ballistic guide, beam splitter, beam bender

  15. Neutron guide geometries for homogeneous phase space volume transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stüßer, N., E-mail: stuesser@helmholtz-berlin.de; Bartkowiak, M.; Hofmann, T.

    2014-06-01

    We extend geometries for recently developed optical guide systems that perform homogeneous phase space volume transformations on neutron beams. These modules allow rotating beam directions and can simultaneously compress or expand the beam cross-section. Guide systems combining these modules offer the possibility to optimize ballistic guides with and without direct view on the source and beam splitters. All systems are designed for monochromatic beams with a given divergence. The case of multispectral beams with wavelength-dependent divergence distributions is addressed as well. - Highlights: • Form invariant volume transformation in phase space. • Geometrical approach. • Ballistic guide, beam splitter, beam bender.

  16. Phase transformations in intermetallic phases in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, V. P., E-mail: vpfilippov@mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Kirichenko, V. G. [Kharkiv National Karazin University (Ukraine); Salomasov, V. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Khasanov, A. M. [University of North Carolina – Asheville, Chemistry Department (United States)

    2017-11-15

    Phase change was analyzed in intermetallic compounds of zirconium alloys (Zr – 1.03 at.% Fe; Zr – 0.51 at.% Fe; Zr – 0.51 at.% Fe – M(M = Nb, Sn). Mössbauer spectroscopy on {sup 57}Fe nuclei in backscattering geometry with the registration of the internal conversion electrons and XRD were used. Four types of iron bearing intermetallic compounds with Nb were detected. A relationship was found between the growth process of intermetallic inclusions and segregation of these phases. The growth kinetics of inclusions possibly is not controlled by bulk diffusion, and a lower value of the iron atom’s activation energy of migration can be attributed to the existence of enhanced diffusion paths and interface boundaries.

  17. Martensitic phase transformation in shape-memory alloys

    International Nuclear Information System (INIS)

    Golestaneh, A.A.

    1979-01-01

    Isothermal studies are described of the shape-recovery phenomenon, stress-strain behavior, electrical resistivity and thermo-electric power associated with the martensite-parent phase reaction in the Ni-Ti shape-memory alloys. The energy-balance equation that links the reaction kinetics with the strain energy change during the cooling-deforming and heating cycle is analyzed. The strain range in which the Clausius-Clapeyron equation satisfactorily describes this reaction is determined. A large change in the Young's modulus of the specimen is found to be associated with the M → P reaction. A hysteresis loop in the resistivity-temperature plot is found and related to the anomaly in the athermal resistivity changes during cyclic M → P → M transformation. An explanation for the resistivity anomaly is offered. The M structure is found to be electrically negative relative to the P structure. A thermal emf of greater than or equal to 0.12 mV is found at the M-P interface

  18. High-temperature phase transformation in Cr added TiAl base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Abe, E.; Niinobe, K.; Nobuki, M.; Nakamura, M.; Tsujimoto, T.

    1999-07-01

    The authors have investigated a microstructure evolution of a Ti-48Al-3.5Cr (in at.%) alloy at high-temperatures ({gt} 1,473K). In the alloy annealed at 1673K for 1.8ks, followed by air-cooling, a characteristic microstructure with a feathery fashion was uniformly formed. From a cooling-rate-controlling study, it was found that formation of the feathery structure is accomplished during continuous cooling from 1673K to 1573K, within the {alpha} + {gamma} two-phase region. Transmission electron microscopy revealed that the feathery structure is composed of lamellar colonies (5--10{micro}m) which are crystallographically tilted slightly (a few degree) with their neighbors. A surprising fact is that lamellae in each colony are mostly the {gamma} phase with few {alpha}{sub 2} phase less than 5% in volume. This suggests that the feathery structure is a metastable product and has not resulted from the {alpha} {r{underscore}arrow} {alpha} + {gamma} transformation above 1,573 K. Instead, the feathery structure formation should be attributed to the non-equilibrium {alpha} {r{underscore}arrow} {gamma} transformation which occurs at high-temperatures with a small degree of supercooling. The authors discuss this interesting phase transformation in terms of the {alpha} {r{underscore}arrow} {gamma} massive transformation, based on the continuous-cooling-transformation (CCT) diagram constructed for the present alloy.

  19. AC system stabilization via phase shift transformer with thyristor commutation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Carlos de; Guimaraes, Geraldo Caixeta; Moraes, Adelio Jose [Uberlandia Univ., MG (Brazil); Abreu, Jose Policarpo G. de [Escola Federal de Engenharia de Itajuba, MG (Brazil); Oliveira, Edimar Jose de [Juiz de Fora Univ., MG (Brazil)

    1994-12-31

    This article aims to present initially the constructive and operative forms of a phase-shift autotransformer which provides both magnitude and phase angle change through thyristor commutation, including a technic to reduce the number of thyristors. Following, it is proposed a control system to make such equipment an efficient AC system stabilizing tool. It is presented some simulation results to show the operation of this transformer in an electrical system. (author) 3 refs., 11 figs., 3 tabs.

  20. In-situ characterization of transformation plasticity during an isothermal austenite-to-bainite phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Holzweissig, M.J., E-mail: martinh@mail.upb.de [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33095 Paderborn (Germany); Canadinc, D., E-mail: dcanadinc@ku.edu.tr [Koc University, Advanced Materials Group, Department of Mechanical Engineering, 34450 Istanbul (Turkey); Maier, H.J., E-mail: hmaier@mail.upb.de [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33095 Paderborn (Germany)

    2012-03-15

    This paper elucidates the stress-induced variant selection process during the isothermal austenite-to-bainite phase transformation in a tool steel. Specifically, a thorough set of experiments combining electron backscatter diffraction and in-situ digital image correlation (DIC) was carried out to establish the role of superimposed stress level on the evolution of transformation plasticity (TP) strains. The important finding is that TP increases concomitant with the superimposed stress level, and strain localization accompanies phase transformation at all stress levels considered. Furthermore, TP strain distribution within the whole material becomes more homogeneous with increasing stress, such that fewer bainitic variants are selected to grow under higher stresses, yielding a more homogeneous strain distribution. In particular, the bainitic variants oriented along [101] and [201] directions are favored to grow parallel to the loading axis and are associated with large TP strains. Overall, this very first in-situ DIC investigation of the austenite-to-bainite phase transformation in steels evidences the clear relationship between the superimposed stress level, variant selection, and evolution of TP strains. - Highlights: Black-Right-Pointing-Pointer Local variations of strain were observed by DIC throughout the phase transformation. Black-Right-Pointing-Pointer The study clearly established the role of the stress-induced variant selection. Black-Right-Pointing-Pointer Variant selection is a key parameter that governs distortion.

  1. In-situ characterization of transformation plasticity during an isothermal austenite-to-bainite phase transformation

    International Nuclear Information System (INIS)

    Holzweissig, M.J.; Canadinc, D.; Maier, H.J.

    2012-01-01

    This paper elucidates the stress-induced variant selection process during the isothermal austenite-to-bainite phase transformation in a tool steel. Specifically, a thorough set of experiments combining electron backscatter diffraction and in-situ digital image correlation (DIC) was carried out to establish the role of superimposed stress level on the evolution of transformation plasticity (TP) strains. The important finding is that TP increases concomitant with the superimposed stress level, and strain localization accompanies phase transformation at all stress levels considered. Furthermore, TP strain distribution within the whole material becomes more homogeneous with increasing stress, such that fewer bainitic variants are selected to grow under higher stresses, yielding a more homogeneous strain distribution. In particular, the bainitic variants oriented along [101] and [201] directions are favored to grow parallel to the loading axis and are associated with large TP strains. Overall, this very first in-situ DIC investigation of the austenite-to-bainite phase transformation in steels evidences the clear relationship between the superimposed stress level, variant selection, and evolution of TP strains. - Highlights: ► Local variations of strain were observed by DIC throughout the phase transformation. ► The study clearly established the role of the stress-induced variant selection. ► Variant selection is a key parameter that governs distortion.

  2. The Phase-Space Transformer Instrument (PASTIS) and the Phase-Space Transformation on Ultra-Cold Neutrons

    International Nuclear Information System (INIS)

    Henggeler, W.; Boehm, M.

    2003-11-01

    Both reports - part I by Wolfgang Henggeler and part II by Martin Boehm - serve as a comprehensive basis for the realisation of a PST (phase-space transformation) instrument coupled either to cold or ultra-cold neutrons, respectively. This publication accidentally coincides with the 200 th birthday of the Austrian physicist C.A. Doppler who discovered the principle (i.e., the effect denoted later by his name) giving rise to the phase-space transformation described in the present work. (author)

  3. Numerical model of phase transformation of steel C80U during hardening

    Directory of Open Access Journals (Sweden)

    T. Domański

    2007-12-01

    Full Text Available The article concerns numerical modelling of the phase transformations in solid state hardening of tool steel C80U. The transformations were assumed: initial structure – austenite, austenite – perlite, bainite and austenite – martensite. Model for evaluation of fractions of phases and their kinetics based on continuous heating diagram (CHT and continuous cooling diagram (CCT. The dilatometric tests on the simulator of thermal cycles were performed. The results of dilatometric tests were compared with the results of the test numerical simulations. In this way the derived models for evaluating phase content and kinetics of transformations in heating and cooling processes were verified. The results of numerical simulations confirm correctness of the algorithm that were worked out. In the numerical example the simulated estimation of the phase fraction in the hardened axisimmetrical element was performed.

  4. Misfit dislocations and phase transformations in high-T sub c superconducting films

    CERN Document Server

    Gutkin, M Y

    2002-01-01

    A theoretical model is suggested that describes the effects of misfit stresses on defect structures, phase content and critical transition temperature T sub c in high-T sub c superconducting films. The focus is placed on the exemplary case of YBaCuO films deposited onto LaSrAlO sub 4 substrates. It is theoretically revealed here that misfit stresses are capable of inducing phase transformations controlled by the generation of misfit dislocations in growing cuprate films. These transformations, in the framework of the suggested model, account for experimental data on the influence of the film thickness on phase content and critical temperature T sub c of superconducting cuprate films, reported in the literature. The potential role of stress-assisted phase transformations in suppression of critical current density across grain boundaries in high-T sub c superconductors is briefly discussed.

  5. Structural transformations on N-acetylneuraminic acid

    International Nuclear Information System (INIS)

    Schmid, W.

    1986-01-01

    Structural transformations on N-Acetylneuraminic acid are of special interest because of the biological importance of this compound. Although many stereo- and regioselective variations (especially for pyranoid derivatives) have been reported, no detailed studies of the furanoid derivatives from N-Acetylneuramino-1, 4-lactone diethyl dithioacetal have been described hitherto. Therefore a series of derivatives of the Neu5Ac-lactone diethyl dithioacetal has been investigated by n.m.r. spectroscopic techniques. The complete assignment of the 1 H and 13 C resonances was achieved by relaxation time measurements, decoupling experiments and 2-D - shiftcorrelation spectroscopy. The influence of different substituents on the conformational behavior is also discussed. For the Tetra-O-Acetyl-N-acetylneuraminic acid-γ-lactone diethyl dithioacetal the conformation in solution could be determined. The observed data were explained by a zigzag conformation of the backbone as described for the acetylated mannose diethyl dithioacetal. The synthesis of the tetrazole-analogue of N-Acetylneuraminic acid is also described. This compound is of special biological interest because there is a similarity in acidity between the carboxyl-group and the tetrazole-function and the metabolic stability of the tetrazole function is enhanced in comparison with the carboxyl-group. Many of the biological functions of N-Acetylneuraminic acid are connected with the presence of the carboxyl-group. It was therefore interesting to transform this group to the bioisostere tetrazole-function to investigate the influence of the tetrazole-group of this compound on biological activity in the future. During the application of protective groups in the field of Neuraminic acid chemistry a new compound, an ortholactone-derivative of Neu5Ac, was discovered. It's structure is similar to an adamantanecage and the chemistry of such an orthoester function opens new possibilities for structural transformations on N

  6. Berry's Phase and Fine Structure

    CERN Document Server

    Binder, B

    2002-01-01

    Irrational numbers can be assigned to physical entities based on iterative processes of geometric objects. It is likely that iterative round trips of vector signals include a geometric phase component. If so, this component will couple back to the round trip frequency or path length generating an non-linear feedback loop (i.e. induced by precession). In this paper such a quantum feedback mechanism is defined including generalized fine structure constants in accordance with the fundamental gravitomagnetic relation of spin-orbit coupling. Supported by measurements, the general relativistic and topological background allows to propose, that the deviation of the fine structure constant from 1/137 could be assigned to Berry's phase. The interpretation is straightforward: spacetime curvature effects can be greatly amplified by non-linear phase-locked feedback-loops adjusted to single-valued phase relationships in the quantum regime.

  7. Understanding Strain-Induced Phase Transformations in BiFeO3 Thin Films.

    Science.gov (United States)

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M; Cooper, Valentino R

    2015-08-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO 3 thin films, which comprises a tetragonal-like ( T ') and an intermediate S ' polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T ' phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S ' phase is energetically very close to the T ' phase, but is structurally similar to the bulk rhombohedral ( R ) phase. By fully characterizing the intermediate S ' polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T ' and S ' phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S ' and T ' polymorphs, which have very different octahedral rotation patterns and c / a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO 3 films. Additionally, a blueshift in the band gap when moving from R to S ' to T ' is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.

  8. Deconstructing the BRICs : Structural transformation and aggregate productivity growth

    NARCIS (Netherlands)

    de Vries, G.J.; Erumban, Abdul Azeez; Timmer, M.P.; Voskoboynikov, I.; Wu, H.X.

    de Vries, Gaaitzen J., Erumban, Abdul A., Timmer, Marcel P., Voskoboynikov, Ilya-Deconstructing the BRICs: Structural transformation and aggregate productivity growth This paper studies structural transformation and its implications for productivity growth in the BRIC countries (Brazil, Russia,

  9. A Transformer-less Single Phase Inverter For photovoltaic Systems

    DEFF Research Database (Denmark)

    Mostaan, Ali; Alizadeh, Ebrahim; Qu, Ying

    2017-01-01

    A single phase transformer-less inverter is introduced in this paper. The negative polarities of the input voltage and output terminal have common ground. Therefore, the leakage current problem that is common in PV systems is eliminated naturally. In addition, the proposed inverter has fewer comp...

  10. The Phase Transformations in Hypoeutectoid Steels Mn-Cr-Ni

    Directory of Open Access Journals (Sweden)

    RoŻniata E.

    2015-04-01

    Full Text Available The results of a microstructure and hardness investigations of the hypoeutectoid steels Mn-Cr-Ni, imitating by its chemical composition toughening steels, are presented in the paper. The analysis of the kinetics of phase transformations of undercooled austenite of steels containing different amounts of alloying elements in their chemical composition, constitutes the aim of investigations.

  11. Phase transformation kinetics and microstructure of NiTi shape

    Indian Academy of Sciences (India)

    Phase transformation kinetics and microstructure of NiTi shape memory alloy: ... by 1.4687 J. In addition, entropy of the alloys decreases by 0.2335 J (g ∘ C) − 1 ... is an obvious difference in the grain sizes of the unpressured sample and the ...

  12. Phase transformation changes in thermocycled nickel-titanium orthodontic wires.

    Science.gov (United States)

    Berzins, David W; Roberts, Howard W

    2010-07-01

    In the oral environment, orthodontic wires will be subject to thermal fluctuations. The purpose of this study was to investigate the effect of thermocycling on nickel-titanium (NiTi) wire phase transformations. Straight segments from single 27 and 35 degrees C copper NiTi (Ormco), Sentalloy (GAC), and Nitinol Heat Activated (3M Unitek) archwires were sectioned into 5mm segments (n=20). A control group consisted of five randomly selected non-thermocycled segments. The remaining segments were thermocycled between 5 and 55 degrees C with five randomly selected segments analyzed with differential scanning calorimetry (DSC; -100150 degrees C at 10 degrees C/min) after 1000, 5000, and 10,000 cycles. Thermal peaks were evaluated with results analyzed via ANOVA (alpha=0.05). Nitinol HA and Sentalloy did not demonstrate qualitative or quantitative phase transformation behavior differences. Significant differences were observed in some of the copper NiTi transformation temperatures, as well as the heating enthalpy with the 27 degrees C copper NiTi wires (p<0.05). Qualitatively, with increased thermocycling the extent of R-phase in the heating peaks decreased in the 35 degrees C copper NiTi, and an austenite to martensite peak shoulder developed during cooling in the 27 degrees C copper NiTi. Repeated temperature fluctuations may contribute to qualitative and quantitative phase transformation changes in some NiTi wires. Copyright 2010 Academy of Dental Materials. All rights reserved.

  13. Neutron powder investigation of the tetragonal to monoclinic phase transformation in undoped zirconia

    International Nuclear Information System (INIS)

    Boysen, H.; Frey, F.

    1991-01-01

    The tetragonal (t) to monoclinic (m) transformation in pure ZrO 2 was investigated by neutron powder diffraction at temperatures between 1900 K and room temperature. The results of a Rietveld analysis are compared with a previous investigation of the m → t transformation. The t → m transformation takes place near 1200 K (implaying a hysteresis of 300 K) and in a much smaller interval (about 150 K compared with about 600 K in the m → t case). There are no indications of a two-stage process as found for the m → t transformation. The structural parameters of the m phase depend only on temperature while those of the t phase differ at the same temperatures for the forward and reverse transformation. The temperature dependence of the lattice constants suggests an orientational relationship a t parallela m * and c t parallelb m . There are no macrostrains whereas the overall microstrain behaviour is similar in both cases, viz. the large microstrains present in both phases are released within the transformation regime. An analysis of temperature factors and diffuse background suggest dynamical disorder in the t phase and static disorder in the m phase. (orig.)

  14. Phase transformation order-disorder in nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Vlasov, V.A.; Karmo, Yu.S.; Kustova, L.V.

    1986-01-01

    Titanium carbide delta-phase is studied using the methods of electric conductivity and differential thermal analysis (DTA). It is shown on the Ti-C system phase diagram that two regions of TiCsub(0.46-0.60) and TiCsub(0.65-1.00) compositions, different in their properties, correspond to delta-phase. Both ordered and disordered phases exist within the TiCsub(0.046-0.60) concentration range, and in equilibrium heating or cooling one phase converts to another at 590 deg C (the first order phase transformation). Samples of the TiCsub(0.65-1.00) composition are characterized by low electric conductivity stability, that is explained by strong titanium carbide electric conductivity sensitivity to defects and impurities

  15. Age-hardening and related phase transformation in an experimental Ag-Cu-Pd-Au alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Lee, Doung-Hun; Lee, Hee-Kyung; Takada, Yukyo; Okuno, Osamu; Kwon, Yong Hoon; Kim, Hyung-Il

    2006-01-01

    The age-hardening behaviour, phase transformation and related microstructural changes of an experimental Ag-Cu-Pd-Au alloy were examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The specimen alloy showed apparent age-hardenability at the aging temperatures of 350 deg. C and 400 deg. C. By aging the solution-treated specimen at 400 deg. C, two phases of the Ag-rich α 1 phase and the Pd-containing Cu-rich α 2 phase were transformed into four phases of the Ag-rich α 1 ' phase, the Cu-rich α 2 ' phase, the CsCl-type CuPd phase and the AuCu(I) ordered phase. Microstructure of the solution-treated specimen consisted of the Ag-rich α 1 matrix, Cu-rich α 2 particle-like structures of various sizes and the lamellar structure of the α 1 and α 2 phases. When the peak hardness was obtained, the very fine lamellar structure consisting of the Ag-rich α 1 ' and Cu-rich α 2 ' phases was newly formed in the matrix. By further aging, the very fine lamellar structure grew and coarsened apparently, and the matrix was covered with the coarsened lamellar structure. The hardness increase was considered to be caused mainly by the diffusion and precipitation of Cu from the Ag-rich α 1 matrix, and the hardness decrease in the latter stage of age-hardening process was caused by the coarsening of the very fine lamellar structure. The CsCl-type CuPd phase and the AuCu(I) ordered phase did not contribute to the hardness increase

  16. Age-hardening and related phase transformation in an experimental Ag-Cu-Pd-Au alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Hyo-Joung [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Lee, Doung-Hun [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Lee, Hee-Kyung [Department of Dental Technology, Daegu Health College, San 7 Taejeon-dong, Buk-gu, Daegu 702-722 (Korea, Republic of); Takada, Yukyo [Division of Dental Biomaterials, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Okuno, Osamu [Division of Dental Biomaterials, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kwon, Yong Hoon [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)]. E-mail: hilkim@pusan.ac.kr

    2006-01-05

    The age-hardening behaviour, phase transformation and related microstructural changes of an experimental Ag-Cu-Pd-Au alloy were examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The specimen alloy showed apparent age-hardenability at the aging temperatures of 350 deg. C and 400 deg. C. By aging the solution-treated specimen at 400 deg. C, two phases of the Ag-rich {alpha}{sub 1} phase and the Pd-containing Cu-rich {alpha}{sub 2} phase were transformed into four phases of the Ag-rich {alpha}{sub 1}{sup '} phase, the Cu-rich {alpha}{sub 2}{sup '} phase, the CsCl-type CuPd phase and the AuCu(I) ordered phase. Microstructure of the solution-treated specimen consisted of the Ag-rich {alpha}{sub 1} matrix, Cu-rich {alpha}{sub 2} particle-like structures of various sizes and the lamellar structure of the {alpha}{sub 1} and {alpha}{sub 2} phases. When the peak hardness was obtained, the very fine lamellar structure consisting of the Ag-rich {alpha}{sub 1}{sup '} and Cu-rich {alpha}{sub 2}{sup '} phases was newly formed in the matrix. By further aging, the very fine lamellar structure grew and coarsened apparently, and the matrix was covered with the coarsened lamellar structure. The hardness increase was considered to be caused mainly by the diffusion and precipitation of Cu from the Ag-rich {alpha}{sub 1} matrix, and the hardness decrease in the latter stage of age-hardening process was caused by the coarsening of the very fine lamellar structure. The CsCl-type CuPd phase and the AuCu(I) ordered phase did not contribute to the hardness increase.

  17. Iterative-Transform Phase Retrieval Using Adaptive Diversity

    Science.gov (United States)

    Dean, Bruce H.

    2007-01-01

    A phase-diverse iterative-transform phase-retrieval algorithm enables high spatial-frequency, high-dynamic-range, image-based wavefront sensing. [The terms phase-diverse, phase retrieval, image-based, and wavefront sensing are defined in the first of the two immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] As described below, no prior phase-retrieval algorithm has offered both high dynamic range and the capability to recover high spatial-frequency components. Each of the previously developed image-based phase-retrieval techniques can be classified into one of two categories: iterative transform or parametric. Among the modifications of the original iterative-transform approach has been the introduction of a defocus diversity function (also defined in the cited companion article). Modifications of the original parametric approach have included minimizing alternative objective functions as well as implementing a variety of nonlinear optimization methods. The iterative-transform approach offers the advantage of ability to recover low, middle, and high spatial frequencies, but has disadvantage of having a limited dynamic range to one wavelength or less. In contrast, parametric phase retrieval offers the advantage of high dynamic range, but is poorly suited for recovering higher spatial frequency aberrations. The present phase-diverse iterative transform phase-retrieval algorithm offers both the high-spatial-frequency capability of the iterative-transform approach and the high dynamic range of parametric phase-recovery techniques. In implementation, this is a focus-diverse iterative-transform phaseretrieval algorithm that incorporates an adaptive diversity function, which makes it possible to avoid phase unwrapping while preserving high-spatial-frequency recovery. The algorithm includes an inner and an outer loop (see figure). An initial estimate of phase is used to start the algorithm on the inner loop, wherein

  18. Aliasless fresnel transform image reconstruction in phase scrambling fourier transform technique by data interpolation

    International Nuclear Information System (INIS)

    Yamada, Yoshifumi; Liu, Na; Ito, Satoshi

    2006-01-01

    The signal in the Fresnel transform technique corresponds to a blurred one of the spin density image. Because the amplitudes of adjacent sampled signals have a high interrelation, the signal amplitude at a point between sampled points can be estimated with a high degree of accuracy even if the sampling is so coarse as to generate aliasing in the reconstructed images. In this report, we describe a new aliasless image reconstruction technique in the phase scrambling Fourier transform (PSFT) imaging technique in which the PSFT signals are converted to Fresnel transform signals by multiplying them by a quadratic phase term and are then interpolated using polynomial expressions to generate fully encoded signals. Numerical simulation using MR images showed that almost completely aliasless images are reconstructed by this technique. Experiments using ultra-low-field PSFT MRI were conducted, and aliasless images were reconstructed from coarsely sampled PSFT signals. (author)

  19. Pressure-induced structural transformations in the molybdate Sc-2(MoO4)(3)

    DEFF Research Database (Denmark)

    Paraguassu, W.; Maczka, M.; Filho, A. G. Sonza

    2004-01-01

    High pressure Raman scattering and x-ray diffraction studies of the molybdate Sc-2(MoO4)(3) are presented. A sequence of changing symmetry effects is observed through two structural phase transitions ending up with an amorphous state. The observed two structural phase transformations are reversible...

  20. Color image cryptosystem using Fresnel diffraction and phase modulation in an expanded fractional Fourier transform domain

    Science.gov (United States)

    Chen, Hang; Liu, Zhengjun; Chen, Qi; Blondel, Walter; Varis, Pierre

    2018-05-01

    In this letter, what we believe is a new technique for optical color image encryption by using Fresnel diffraction and a phase modulation in an extended fractional Fourier transform domain is proposed. Different from the RGB component separation based method, the color image is converted into one component by improved Chirikov mapping. The encryption system is addressed with Fresnel diffraction and phase modulation. A pair of lenses is placed into the fractional Fourier transform system for the modulation of beam propagation. The structure parameters of the optical system and parameters in Chirikov mapping serve as extra keys. Some numerical simulations are given to test the validity of the proposed cryptosystem.

  1. Analytical electron microscope study of the omega phase transformation in a zirconium-niobium alloy

    International Nuclear Information System (INIS)

    Zaluzec, N.J.

    1979-01-01

    The study of the as-quenched omega phase morphology shows that the domain size of Zr-15% Nb is on the order of 30 A. No alignment of omega domains along β directions was observed and samples having undergone thermal cycling in thin foil form, did not develop a long-period structure of alternating β and ω phases below the omega transformation temperature

  2. Improving the efficiency of molecular replacement by utilizing a new iterative transform phasing algorithm

    Energy Technology Data Exchange (ETDEWEB)

    He, Hongxing; Fang, Hengrui [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204 (United States); Miller, Mitchell D. [Department of BioSciences, Rice University, Houston, Texas 77005 (United States); Phillips, George N. Jr [Department of BioSciences, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Su, Wu-Pei, E-mail: wpsu@uh.edu [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204 (United States)

    2016-07-15

    An iterative transform algorithm is proposed to improve the conventional molecular-replacement method for solving the phase problem in X-ray crystallography. Several examples of successful trial calculations carried out with real diffraction data are presented. An iterative transform method proposed previously for direct phasing of high-solvent-content protein crystals is employed for enhancing the molecular-replacement (MR) algorithm in protein crystallography. Target structures that are resistant to conventional MR due to insufficient similarity between the template and target structures might be tractable with this modified phasing method. Trial calculations involving three different structures are described to test and illustrate the methodology. The relationship of the approach to PHENIX Phaser-MR and MR-Rosetta is discussed.

  3. QR code-based non-linear image encryption using Shearlet transform and spiral phase transform

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta; Hennelly, Bryan

    2018-02-01

    In this paper, we propose a new quick response (QR) code-based non-linear technique for image encryption using Shearlet transform (ST) and spiral phase transform. The input image is first converted into a QR code and then scrambled using the Arnold transform. The scrambled image is then decomposed into five coefficients using the ST and the first Shearlet coefficient, C1 is interchanged with a security key before performing the inverse ST. The output after inverse ST is then modulated with a random phase mask and further spiral phase transformed to get the final encrypted image. The first coefficient, C1 is used as a private key for decryption. The sensitivity of the security keys is analysed in terms of correlation coefficient and peak signal-to noise ratio. The robustness of the scheme is also checked against various attacks such as noise, occlusion and special attacks. Numerical simulation results are shown in support of the proposed technique and an optoelectronic set-up for encryption is also proposed.

  4. Phase gradients in acceleration structures

    International Nuclear Information System (INIS)

    Decker, F.J.; Jobe, R.K.

    1990-05-01

    In linear accelerators with two or more bunches the beam loading of one bunch will influence the energy and energy spread the following bunches. This can be corrected by quickly changing the phase of a travelling wave structure, so that each bunch recieves a slightly different net phase. At the SLAC Linear Collider (SLC) three bunches, two (e + ,e - ) for the high energy collisions and one (e - -scavenger) for producing positrons should sit at different phases, due to their different tasks. The two e - -bunches are extracted from the damping ring at the same cycle time about 60 ns apart. Fast phase switching of the RF to the bunch length compressor in the Ring-To-Linac (RTL) section can produce the necessary advance of the scavenger bunch (about 6 degree in phase). This allows a low energy spread of this third bunch at the e + -production region at 2/3 of the linac length, while the other bunches are not influenced. The principles and possible other applications of this fast phase switching as using it for multi-bunches, as well as the experimental layout for the actual RTL compressor are presented

  5. Weighted least squares phase unwrapping based on the wavelet transform

    Science.gov (United States)

    Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia

    2007-01-01

    The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.

  6. Isometric and unitary phase operators: explaining the Villain transform

    International Nuclear Information System (INIS)

    Hemmen, J L van; Wreszinski, Walter F

    2007-01-01

    The Villain transform plays a key role in spin-wave theory, a bosonization of elementary excitations in a system of extensively many Heisenberg spins. Intuitively, it is a representation of the spin operators in terms of an angle and its canonically conjugate angular momentum operator and, as such, has a few nasty boundary-condition twists. We construct an isometric phase representation of spin operators that conveys a precise mathematical meaning to the Villain transform and is related to both classical mechanics and the Pegg-Barnett-Bialynicki-Birula boson (photon) phase operators by means of suitable limits. In contrast to the photon case, unitary extensions are inadequate because they describe the wrong physics. We also discuss in some detail the application to spin-wave theory, pointing out some examples in which the isometric representation is indispensable

  7. Phase transformation in a Ni-Mo-Cr alloy

    International Nuclear Information System (INIS)

    Dymek, S.; Wrobel, M.; Blicharski, M.; Dollar, M.

    2001-01-01

    The paper gives a characteristic of a nickel-based superalloy containing 25 wt.% Mo and 8 wt.% Cr with particular attention to the influence of a thermochemical and heat treatment on phase transformations. The applied heat treatments are comprised of soaking temperature 1100 o C followed by aging at 650 o C at three conditions: conventional aging for 72 hours, prolonged aging for 4000 hours and prolonged aging for 4000 hours followed by cold working and subsequent aging for 1000 hours. The conventional aging led to the formation of lenticular precipitates of the dispersed metastable Ni 2 (Mo,Cr) phase. The aging for 4000 hours brought about coarsening of the ordered domains without changing their crystallographic and ordering characteristics. The plastic deformation preceded the further aging for 1000 hours accelerated the decomposition of the Ni 2 (Mo,Cr) phase on the mixture of the Ni 3 Mo and Ni 4 Mo-based phases. (author)

  8. Plasticity induced by phase transformation in steel: experiment vs modeling

    International Nuclear Information System (INIS)

    Tahimi, Abdeladhim

    2011-01-01

    The objectives of this work are: (i) understand the mechanisms and phenomena involved in the plasticity of steels in the presence of a diffusive or martensitic phase transformation. (ii) develop tools for predicting TRIP, which are able to correctly reproduce the macroscopic deformation for cases of complex loading and could also provide information about local elasto-visco-plastic interactions between product and parent phases. To this purpose, new experimental tests are conducted on 35NCD16 steel for austenite to martensite transformation and on 100C6 steel for austenite to pearlite transformation. The elasto viscoplastic properties of austenite and pearlite of the 100C6 steel are characterized through tension compression and relaxation tests. The parameters of macro-homogeneous and crystal-based constitutive laws could then be identified such as to analyse different models with respect to the experimental TRIP: the analytical models of Leblond (1989) and Taleb and Sidoroff (2003) but also, above all, different numerical models which can be distinguished by the prevailing assumptions concerning the local kinetics and the constitutive laws. An extension of the single-grain model dedicated to martensitic transformations developed during the thesis of S. Meftah (2007) is proposed. It consists in introducing the polycrystalline character of the austenite through a process of homogenization based on a self-consistent scheme by calculating the properties of an Equivalent Homogeneous Medium environment (EHM). (author)

  9. Lectures notes on phase transformations in nuclear matter

    CERN Document Server

    López, Jorge A

    2000-01-01

    The atomic nucleus, despite of being one of the smallest objects found in nature, appears to be large enough to experience phase transitions. The book deals with the liquid and gaseous phases of nuclear matter, as well as with the experimental routes to achieve transformation between them.Theoretical models are introduced from the ground up and with increasing complexity to describe nuclear matter from a statistical and thermodynamical point of view. Modern critical phenomena, heavy ion collisions and computational techniques are presented while establishing a linkage to experimental data.The

  10. Microstructures and phase transformations in interstitial alloys of tantalum

    International Nuclear Information System (INIS)

    Dahmen, U.

    1979-01-01

    The analysis of microstructures, phases, and possible ordering of interstitial solute atoms is fundamental to an understanding of the properties of metal-interstitial alloys in general. As evidenced by the controversies on phase transformations in the particular system tantalum--carbon, our understanding of this class of alloys is inferior to our knowledge of substitutional metal alloys. An experimental clarification of these controversies in tantalum was made. Using advanced techniques of electron microscopy and ultrahigh vacuum techology, an understanding of the microstructures and phase transformations in dilute interstitial tantalum--carbon alloys is developed. Through a number of control experiments, the role and sources of interstitial contamination in the alloy preparation (and under operating conditions) are revealed. It is demonstrated that all previously published work on the dilute interstitially ordered phase Ta 64 C can be explained consistently in terms of ordering of the interstitial contaminants oxygen and hydrogen, leading to the formation of the phases Ta 12 O and Ta 2 H

  11. Phase Transformation of Hot Dipped Aluminium during High Temperature Oxidation

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Hishamuddin Husain; Mohd Saari Ripin; Rusni Rejab; Zaiton Selamat; Mohd Shariff Sattar

    2014-01-01

    Low alloy carbon steel was coated by hot-dipping into a molten aluminum bath. Isothermal oxidations were carried out at 750 degree Celsius in static air to study the oxidation behaviour of the hot-dipped aluminide steel. The phase transformation in the aluminide layer during diffusion at 750 degree Celsius in static air was analyzed by SEM-EDX and XRD. After hot-dip treatment, the coating layers consisted of three phases, where Al, thinner layer of FeAl 3 , and thicker layer of Fe 2 Al 5 were detected from external topcoat to the aluminide/ steel substrate. After oxidation, the Fe 2 Al 5 formed during the immersion process completely transformed to Fe 2 Al 5 , FeAl 2 , FeAl and Al-Fe(Al) phases because of the composition gradient and the chemical diffusion by oxidation. After oxidation, there are some voids were found at the coating/ substrate interface due to the rapid inter-diffusion of iron and aluminium during oxidation. The FeAl phase kept growing with increasing exposure time at 750 degree Celsius, while the Fe 2 Al 5 was consumed during oxidation. After 168 hrs oxidation, the Fe 2 Al 5 phase was going disappeared as the aluminum layer was consumed. (author)

  12. Application of phase coherent transform to cloud clutter suppression

    Energy Technology Data Exchange (ETDEWEB)

    Ng, L.C. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    This paper describes a tracking algorithm using frame-to-frame correlation with frequency domain clutter suppression. Clutter suppression was mechanized via a `Phase Coherent Transform` (PCT) approach. This approach was applied to explore the feasibility of tracking a post-boost rocket from a low earth orbit satellite with real cloud background data. Simulation results show that the PCT/correlation tracking algorithm can perform satisfactorily at signal-to-clutter ratio (SCR) as low as 5 or 7 dB.

  13. Energy Barriers and Hysteresis in Martensitic Phase Transformations

    Science.gov (United States)

    2008-08-01

    glacial acetic acid (CH3COOH) and 10-15% perchloric acid (HCLO4) by volume, the cathode was stainless steel , the anode was stainless steel or Ti, the...Submitted to Acta Materialia Energy barriers and hysteresis in martensitic phase transformations Zhiyong Zhang, Richard D. James and Stefan Müller...hysteresis based on the growth from a small scale of fully developed austenite martensite needles. In this theory the energy of the transition layer plays a

  14. Braiding transformation, entanglement swapping, and Berry phase in entanglement space

    International Nuclear Information System (INIS)

    Chen Jingling; Ge Molin; Xue Kang

    2007-01-01

    We show that braiding transformation is a natural approach to describe quantum entanglement by using the unitary braiding operators to realize entanglement swapping and generate the Greenberger-Horne-Zeilinger states as well as the linear cluster states. A Hamiltonian is constructed from the unitary R i,i+1 (θ,φ) matrix, where φ=ωt is time-dependent while θ is time-independent. This in turn allows us to investigate the Berry phase in the entanglement space

  15. Kinetics of the polymorphic phase transformation of Cu6Sn5

    International Nuclear Information System (INIS)

    Zeng, Guang; McDonald, Stuart D.; Read, Jonathan J.; Gu, Qinfen; Nogita, Kazuhiro

    2014-01-01

    Cu 6 Sn 5 is a critical intermetallic compound in soldering and three-dimensional integrated circuit packaging technology and exists in at least five different crystal structures in the solid state, with a polymorphic phase transformation from hexagonal to monoclinic structures occurring on cooling. The kinetics of polymorphic transformations in Sn-rich Cu 6 Sn 5 and Cu-rich Cu 6 Sn 5 is systematically investigated in this study. This includes the generation of continuous cooling transformation diagrams as well as time–temperature transformation diagrams. Techniques used include variable temperature synchrotron powder X-ray diffraction and differential scanning calorimetry. The findings have important implications for the manufacture of solder joints and their in-service performance

  16. A TECHNIQUE OF IDENTIFICATION OF THE PHASE-DISPLACEMENT GROUP OF THREE-PHASE TRANSFORMER

    International Nuclear Information System (INIS)

    Aburjania, A.; Begiashvili, V.; Rezan Turan

    2007-01-01

    It is demonstrated that the arbitrary choice of arbitrarily pisitive direction of induced currents and voltages contradicts the energy conservation law and leads to equilibrium equations and standards making no sense from the physical standpoint. Of 12 recognized standard phase-displacement groups of three-phase transformer, only three have real physical bases. The rest are based on a wrong assumption about mutual biasing of primary and secondary currents. They does not rule out the occurrence of emergency situations and, thus, must be eliminated from use. A new method of identification of the phase-displacement of three-phase transformer is proposed. The method is based on well-known physical laws with consideration for the dual character of the inertia of mutual inductance and exhausts for all possible versions of connection of transformer windings. (author)

  17. Structural formation of aluminide phases on titanium alloy during annealing

    International Nuclear Information System (INIS)

    Mamaeva, A.A.; Romankov, S.E.; Sagdoldina, Zh.

    2006-01-01

    Full text: The aluminum layer on the surface of titanium alloy has been formed by thermal deposition. The structural formation of aluminide phases on the surface has been studied. The sequence of structural transformations at the Ti/Al interface is limited by the reaction temperature and time. The sequence of aluminide phase formation is occurred in compliance with Ti-Al equilibrium phase diagram. At the initial stages at the Ti/Al interface the Al3Ti alloy starts forming as a result of interdiffusion, and gradually the whole aluminum films is spent on the formation of this layer. The Al3Ti layer decomposes with the increase of temperature (>600C). At 800C the two-phase (Ti3Al+TiAl) layer is formed on the titanium surface. The TiAl compound is unstable and later on with the increase of the exposure time at 800C gradually transforms into the Ti3Al. The chain of these successive transformations leads to the formation of the continuous homogeneous layer consisting of the Ti3Al compound on the surface. At temperatures exceeding the allotropic transformation temperature (>900C) the Ti3Al compound starts decomposing. All structural changes taking place at the Ti/Al interface are accompanied by considerable changes in micro hardness. The structure of initial substrate influences on kinetics of phase transformation and microstructure development. (author)

  18. Nuclear resonant scattering evidence of the phase co-existence during structural phase transformation in [Fe(H{sub 2}O){sub 6}](ClO{sub 4}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vanko, Gy. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble (France); Research Group for Nuclear Techniques in Structural Chemistry, Hungarian Academy of Sciences at Eoetvoes L. University, P.O. Box 32, H-1518 Budapest (Hungary); Bottyan, L. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Deak, L. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Fetzer, Cs. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Juhasz, G. [Department of Nuclear Chemistry, Eoetvoes L. University, P.O. Box 32, H-1518 Budapest (Hungary); Leupold, O. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble (France); Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Molnar, B. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Rueter, H.D. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Nagy, D.L. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)]. E-mail: nagy@rmki.kfki.hu

    2005-09-29

    The phase transition associated with orbital-ground-state inversion of high-spin Fe{sup 2+} in [Fe(H{sub 2}O){sub 6}](ClO{sub 4}){sub 2} was studied with nuclear resonant forward scattering of synchrotron radiation (SR). The sudden change in the {sup 57}Fe{sup 2+} quadrupole interaction results in a change of the quantum-beat frequencies. Quantum-beat patterns taken at the phase transition of [Fe(H{sub 2}O){sub 6}](ClO{sub 4}){sub 2} are in accordance with mainly coherent rather than with incoherent sums of the scattering amplitudes of the high- and low-quadrupole-interaction phases, a fact supporting the real co-existence of the two phases.

  19. Structural phase transitions in niobium oxide nanocrystals

    Science.gov (United States)

    Yuvakkumar, R.; Hong, Sun Ig

    2015-09-01

    Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition.

  20. Application of the theory of martensite crystallography to displacive phase transformations in substitutional nonferrous alloys

    International Nuclear Information System (INIS)

    Muddle, B.C.; Nie, J.F.; Hugo, G.R.

    1994-01-01

    It has been demonstrated that the theory of martensite crystallography is capable of accounting successfully for the form and crystallography of a range of plate- or lath-shaped transformation products, even when the formation of the product phase involves significant substitutional diffusion. These transformations include the precipitation of metastable hexagonal γ' (Ag 2 Al) plates in disordered face-centered cubic (fcc) solid-solution Al-Ag alloys, the formation of ordered AuCu II plates from disordered fcc solid solution in equiatomic Au-Cu alloys, and the formation of metastable 9R α 1 plates in ordered (B2) Cu-Zn and Ag-Cd alloys. The application of the theory to these transformations is reviewed critically and the features common to them identified. It is confirmed that, in all three transformations, the product phase produces relief at a free surface consistent with an invariant plane-strain shape change and that the transformations are thus properly described as displacive. The agreement between experimental observations and theoretical predictions of the transformation crystallography is in all cases excellent. It is proposed that successful application of the theory implies a growth mechanism in which the coherent or semicoherent, planar interface between parent and product phases maintains its structural identity during migration and that growth proceeds atom by atom in a manner consistent with the maintenance of a correspondence of lattice sites

  1. Structural and kinetic steps of β→α transformation in titanium

    International Nuclear Information System (INIS)

    Mirzaev, D.A.; Ul'yanov, V.G.; Shtejnberg, M.M.; Protopopov, V.A.

    1981-01-01

    α-Ti structure and temperature of β→α transformation within the range of cooling rates from 100 to 5x10 5 deg/sec, is studied. Stepwise temperature decrease of β→α transformation temperature in titanium with the increase of cooling rate is stated. Jump-like drops of transformation temperature observed in the case of increasing critical cooling rates, are followed by change of α-phase morphology [ru

  2. Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification

    Science.gov (United States)

    Isasti, Nerea; Jorge-Badiola, Denis; Taheri, Mitra L.; Uranga, Pello

    2013-08-01

    A complete microstructural characterization and phase transformation analysis has been performed for several Nb and Nb-Mo microalloyed low-carbon steels using electron backscattered diffraction (EBSD) and dilatometry tests. Compression thermomechanical schedules were designed resulting in the undeformed and deformed austenite structures before final transformation. The effects of microalloying additions and accumulated deformation were analyzed after CCT diagram development and microstructural quantification. The resulting microstructures ranged from polygonal ferrite and pearlite at slow cooling ranges, to a combination of quasipolygonal ferrite and granular ferrite for intermediate cooling rates, and finally, to bainitic ferrite with martensite for fast cooling rates. The addition of Mo promotes a shift in the CCT diagrams to lower transformation start temperatures. When the amount of Nb is increased, CCT diagrams show little variations for transformations from the undeformed austenite and higher initial transformation temperatures in the transformations from the deformed austenite. This different behavior is due to the effect of niobium on strain accumulation in austenite and its subsequent acceleration of transformation kinetics. This article shows the complex interactions between chemical composition, deformation, and the phases formed, as well as their effect on microstructural unit sizes and homogeneity.

  3. The Pegg–Barnett phase operator and the discrete Fourier transform

    International Nuclear Information System (INIS)

    Perez-Leija, Armando; Szameit, Alexander; Andrade-Morales, Luis A; Soto-Eguibar, Francisco; Moya-Cessa, Héctor M

    2016-01-01

    In quantum mechanics the position and momentum operators are related to each other via the Fourier transform. In the same way, here we show that the so-called Pegg–Barnett phase operator can be obtained by the application of the discrete Fourier transform to the number operators defined in a finite-dimensional Hilbert space. Furthermore, we show that the structure of the London–Susskind–Glogower phase operator, whose natural logarithm gives rise to the Pegg–Barnett phase operator, is contained in the Hamiltonian of circular waveguide arrays. Our results may find applications in the development of new finite-dimensional photonic systems with interesting phase-dependent properties. (invited comment)

  4. Surface mechanical attrition treatment induced phase transformation behavior in NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Hu, T.; Wen, C.S.; Lu, J.; Wu, S.L.; Xin, Y.C.; Zhang, W.J.; Chu, C.L.; Chung, J.C.Y.; Yeung, K.W.K.; Kwok, D.T.K.; Chu, Paul K.

    2009-01-01

    The phase constituents and transformation behavior of the martensite B19' NiTi shape memory alloy after undergoing surface mechanical attrition treatment (SMAT) are investigated. SMAT is found to induce the formation of a parent B2 phase from the martensite B19' in the top surface layer. By removing the surface layer-by-layer, X-ray diffraction reveals that the amount of the B2 phase decreases with depth. Differential scanning calorimetry (DSC) further indicates that the deformed martensite in the sub-surface layer up to 300 μm deep exhibits the martensite stabilization effect. The graded phase structure and transformation behavior in the SMATed NiTi specimen can be attributed to the gradient change in strain with depth.

  5. PVA assisted low temperature anatase to rutile phase transformation (ART) and properties of titania nanoparticles

    International Nuclear Information System (INIS)

    Mondal, Shrabani; Madhuri, Rashmi; Sharma, Prashant K.

    2015-01-01

    Anatase to rutile phase transformation (ART) of titania nanoparticles is observed at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. The detailed investigations pertaining to the structural, optical and electrochemical properties of the nanosized titania and titania/PVA nanohybrid has been carried out. The crystallite size and crystal structure is confirmed using X-ray diffraction (XRD). Transmission electron microscopic (TEM) image reveals formation of spherical NPs in both the cases. Identification of functional groups is done using Fourier transform infrared spectroscopy (FTIR). The photoluminescence studies showed that emission slightly shifts towards higher wavelength side with remarkable decrease in intensity for TiO 2 /PVA nanocomposite (rutile samples). The remarkable decrease in PL intensity in TiO 2 /PVA nanocomposite (rutile samples) is explained considering the surface passivation during growth process. Ion transportation is monitored via Cyclic voltammetric (CV) and Electrochemical Impedance Spectroscopy (EIS) measurements. A significant enhancement of peak cathodic current in case of nanocomposite modified electrode is observed. It is assumed that TiO 2 /PVA (rutile) nanoparticles provided the conducting path for the electrons and hence enhanced the electrochemical reaction. - Graphical abstract: Present work reports anatase to rutile phase transformation (ART) of titania nanoparticles at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. - Highlights: • Low temperature phase transformation of TiO 2 nanoparticles from anatase to rutile. • Role of PVA in phase transformation. • Synthesis of spherical shaped uniformly distributed PVA capped TiO 2 NPs. • Explained the charge transfer process among anatase to rutile phase transformation via luminescence studies. • Enhanced

  6. Transformers: the changing phases of low-dimensional vanadium oxide bronzes.

    Science.gov (United States)

    Marley, Peter M; Horrocks, Gregory A; Pelcher, Kate E; Banerjee, Sarbajit

    2015-03-28

    In this feature article, we explore the electronic and structural phase transformations of ternary vanadium oxides with the composition MxV2O5 where M is an intercalated cation. The periodic arrays of intercalated cations ordered along quasi-1D tunnels or layered between 2D sheets of the V2O5 framework induce partial reduction of the framework vanadium atoms giving rise to charge ordering patterns that are specific to the metal M and stoichiometry x. This periodic charge ordering makes these materials remarkably versatile platforms for studying electron correlation and underpins the manifestation of phenomena such as colossal metal-insulator transitions, quantized charge corrals, and superconductivity. We describe current mechanistic understanding of these emergent phenomena with a particular emphasis on the benefits derived from scaling these materials to nanostructured dimensions wherein precise ordering of cations can be obtained and phase relationships can be derived that are entirely inaccessible in the bulk. In particular, structural transformations induced by intercalation are dramatically accelerated due to the shorter diffusion path lengths at nanometer-sized dimensions, which cause a dramatic reduction of kinetic barriers to phase transformations and facilitate interconversion between the different frameworks. We conclude by summarizing numerous technological applications that have become feasible due to recent advances in controlling the structural chemistry and both electronic and structural phase transitions in these versatile frameworks.

  7. Phase transformation during silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Chen Ruling; Luo Jianbin; Guo Dan; Lu Xinchun

    2008-01-01

    The process of a silica cluster impact on a crystal silicon substrate is studied by molecular dynamics simulation. At the impact loading stage, crystal silicon of the impact zone transforms to a locally ordered molten with increasing the local temperature and pressure of the impact zone. And then the transient molten forms amorphous silicon directly as the local temperature and pressure decrease at the impact unloading stage. Moreover, the phase behavior between the locally ordered molten and amorphous silicon exhibits the reversible structural transition. The transient molten contains not only lots of four-fold atom but also many three- and five-fold atoms. And the five-fold atom is similar to the mixture structure of semi-Si-II and semi-bct5-Si. The structure transformation between five- and four-fold atoms is affected by both pressure and temperature. The structure transformation between three- and four-fold atoms is affected mostly by temperature. The direct structure transformation between five- and three-fold atoms is not observed. Finally, these five- and three-fold atoms are also different from the usual five- and three-fold deficient atoms of amorphous silicon. In addition, according to the change of coordination number of atoms the impact process is divided into six stages: elastic, plastic, hysteresis, phase regressive, adhesion and cooling stages

  8. Phase transformations and thermodynamics of aluminum-based metallic glasses

    Science.gov (United States)

    Gao, Changhua (Michael)

    This thesis examines the thermodynamics and associated kinetics and phase transformations of the glass forming Al-Ni-Gd and Al-Fe-Gd systems. In order to fully understand the unique glass forming ability (GFA) of Al-based metallic glasses, the ternary Al-Fe-Gd and Al-Ni-Gd systems in their Al-rich corners were examined experimentally to assist in a thermodynamic assessment. The solid-state phase equilibria are determined using XRD and TEM-EDS techniques. While this work basically confirms the solid-state equilibria in Al-Fe-Gd reported previously, the ternary phase in Al-Ni-Gd system has been identified to be Al15Ni3Gd2 rather than Al16Ni 3Gd reported in the literature. DTA analysis of 24 alloys in the Al-Fe-Gd system and 42 alloys in the Al-Ni-Gd system have yielded critical temperatures pertaining to the solid-liquid transition. Based on these data and information from the literature, a self-consistent thermodynamic database for these systems has been developed using the CALPHAD technique. Parameters describing the Gibbs free energy for various phases of the Al-Gd, Al-Fe-Gd and Al-Ni-Gd systems are manually optimized in this study. Once constructed, the database is used to calculate driving forces for nucleation of crystalline phases which can qualitatively explain the phase formation sequence during crystallization at low temperatures. It was also confirmed that alloy compositions with the lowest Gibbs free energy difference between the equilibrium state and undercooled liquid state exhibit better GFA than other chemistries. Based on 250°C isothermal devitrification phase transformations of 17 Al-Ni-Gd alloys, a phase formation sequence map is constructed. Fcc-Al nanocrystals are formed first in most of the alloys studied, but eutectic crystallization of a metastable phase and fcc-Al is also observed. Addition of Al or Ni promotes fcc-Al phase formation, while increasing Gd suppresses it. The continuous heating DSC scans revealed that crystallization in Al

  9. Structural transformation and multiferroic properties of single-phase Bi{sub 0.89}Tb{sub 0.11}Fe{sub 1−x}Mn{sub x}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guohua; Tan, Guoqiang, E-mail: tan3114@163.com; Luo, Yangyang; Liu, Wenlong; Ren, Huijun; Xia, Ao

    2014-01-30

    Pure BiFeO{sub 3} (BFO) and Tb, Mn co-doped BiFeO{sub 3} (BTFMO) thin films were deposited on SnO{sub 2}: F (FTO)/glass substrates using a chemical solution deposition method. Detailed investigations were made on the influence of (Tb, Mn) co-doping on the structure change and the electric properties of the BFO films. With the co-doping of Tb and Mn, the structural transformation from rhombohedral R3c to triclinic P1 is confirmed through XRD, Rietveld refinement and Raman analysis. XPS analysis clarifies that (Tb, Mn) co-doping avails to decrease oxygen vacancy concentration, showing less Fe{sup 2+} ions in the co-doped BTFMO thin films than that of the pure BFO thin film. Among the co-doped thin films, the BTFM{sub 1}O film shows the highly enhanced ferroelectric properties with a giant remnant polarization value (2P{sub r} = 180.3 μC/cm{sup 2}). The structural transformation, the well-distributed fine grains and the reduction of leakage current favor enhanced ferroelectric property of (Tb, Mn) co-doped BFO films. It is also found that the BTFM{sub 1}O film shows the enhanced ferromagnetism with the saturated magnetization (M{sub s} = 2.5 emu/cm{sup 3}) as a result of the collapse of space modulated spin structure by the structure transformation.

  10. Phase transformations in the titanium-niobium binary alloy system

    International Nuclear Information System (INIS)

    Moffat, D.L.

    1985-01-01

    A fundamental study of the phase transformations in the Ti-Nb binary alloy system was completed. Eight alloys in the range 20 to 70 at% Nb were investigated using transmission electron microscopy, light metallography, and x-ray diffraction. Measurements of electric resistivity and Vicker's microhardness also were performed. Emphasis was placed on the minimization of interstitial contamination in all steps of alloy fabrication and specimen preparation. In order to eliminate the effects of prior cold working, the alloys studied were recrystallized at 1000 0 C. Phase transformations were studied in alloys quenched to room temperature after recrystallization and then isothermally aged, and in those isothermally aged without a prior room temperature quench. It was found that the microstructures of the quenched 20 and 25% Nb alloys were extremely sensitive to quench rate - with a fast quench producing martensite, a slow quench, the omega phase. Microstructures of the higher niobium content alloys were much less sensitive to quench rate. The microstructures of the isothermally aged 20 and 25% Nb alloys were found to be sensitive to prior thermal history. Alloys quenched to room temperature and then aged at 400 0 C contained large omega precipitates, while those aged without an intermediate room temperature quench contained alpha precipitates

  11. Phase transformations of siderite ore by the thermomagnetic analysis data

    Energy Technology Data Exchange (ETDEWEB)

    Ponomar, V.P., E-mail: vitaliyponomar.vp@gmail.com; Dudchenko, N.O.; Brik, A.B.

    2017-02-01

    Thermal decomposition of Bakal siderite ore (that consists of magnesium siderite and ankerite traces) was investigated by thermomagnetic analysis. Thermomagnetic analysis was carried-out using laboratory-built facility that allows automatic registration of sample magnetization with the temperature (heating/cooling rate was 65°/min, maximum temperature 650 °C) at low- and high-oxygen content. Curie temperature gradually decreases with each next cycles of heating/cooling at low-oxygen content. Curie temperature decrease after 2nd cycle of heating/cooling at high-oxygen content and do not change with next cycles. Final Curie temperature for both modes was ~320 °C. Saturation magnetization of obtained samples increases up to 20 Am{sup 2}/kg. The final product of phase transformation at both modes was magnesioferrite. It was shown that intermediate phase of thermal decomposition of Bakal siderite ore was magnesiowustite. - Highlights: • Mg-siderite decomposition was investigated by thermomagnetic analysis. • Magnetization and Curie temperature change with each next cycle of heating/cooling. • Magnesioferrite is the final phase of Mg-siderite thermal decomposition. • Transformation exclude the hematite formation.

  12. Electronic basis of hardness and phase transformations (covalent crystals)

    International Nuclear Information System (INIS)

    Gilman, J J

    2008-01-01

    Several electronic parameters measure the stabilities of covalent crystals, including minimum energy band-gap densities, inverse polarizabilities, plasma frequencies, transverse vibrational frequencies and elastic shear moduli. Convenient is the band-gap density (energy/volume; called the 'bond modulus'). For a given bonding type, the indentation hardness is proportional to the bond modulus. Examples are the group IV elements, III-V compounds; and II-VI compounds. The motion of dislocation kinks requires the excitation of bonding electrons into anti-bonding states. The bond modulus measures this together with the work done by the applied stress when a kink moves. In addition to hardness, the bond modulus measures the compressive strain (pressure) needed to transform an ambient structure into a more dense structure. Activation of such transformations also requires the excitation of bonding electrons into anti-bonding states together with the work done by the compressive stress

  13. Phase transformation and microstructural changes during ageing process of an Ag-Pd-Cu-Au alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chin-Ho; Park, Mi-Gyoung; Kwon, Yong Hoon; Seol, Hyo-Joung [Department of Dental Materials, School of Dentistry and Medical Research Institute, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, School of Dentistry and Medical Research Institute, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)], E-mail: hilkim@pusan.ac.kr

    2008-07-28

    Age-hardening behaviour and the related phase transformation and microstructural changes during isothermal ageing process were studied to elucidate the age-hardening mechanism of an Ag-based dental casting alloy composed of Ag-Pd-Cu-Au-Zn, Ir and In by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and energy dispersive spectroscopic microanalysis (EDS). In the hardness test at 350 and 400 deg. C, the hardness of the solution-treated specimen began to increase and reached a maximum value with increasing ageing time, and subsequently the hardness decreased gradually. By considering XRD results and SEM observations together, the solution-treated specimen consisted of three phases, the Ag-rich {alpha}{sub 1} phase as a matrix, the Cu-Pd {alpha}{sub 2} phase and the CuPd {beta} phase with a CsCl-type as particle-like structures. By ageing the solution-treated specimen, the Ag-rich {alpha}{sub 1} and Cu-Pd {alpha}{sub 2} phases were transformed into the Ag-rich {alpha}{sup '}{sub 1} and Cu{sub 3}Pd {alpha}{sup '}{sub 2} phases, respectively. The CuPd {beta} phase with a CsCl-type was not changed apparently during the ageing process. From the results of the hardness test, XRD study, SEM observations and EDS analysis, it could be derived that the hardness increased by the diffusion and precipitation of the Cu-rich phase from the Ag-rich matrix during the early stage of phase transformation of {alpha}{sub 1} into {alpha}{sup '}{sub 1} and that the progress of coarsening of the Cu-rich precipitates with an entanglement structure caused the hardness decrease during the later stage of phase transformation of {alpha}{sub 1} into {alpha}{sup '}{sub 1}. The particle-like structures composed of the Cu-Pd {alpha}{sub 2} and the CuPd {beta} phase with a CsCl-type contributed little to the hardness increase which occurred in the early stage of aging process.

  14. Uniform sparse bounds for discrete quadratic phase Hilbert transforms

    Science.gov (United States)

    Kesler, Robert; Arias, Darío Mena

    2017-09-01

    For each α \\in T consider the discrete quadratic phase Hilbert transform acting on finitely supported functions f : Z → C according to H^{α }f(n):= \\sum _{m ≠ 0} e^{iα m^2} f(n - m)/m. We prove that, uniformly in α \\in T , there is a sparse bound for the bilinear form for every pair of finitely supported functions f,g : Z→ C . The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse Hölder classes.

  15. Towards an improved continuum theory for phase transformations

    International Nuclear Information System (INIS)

    Tijssens, M.G.A.; James, R.D.

    2003-01-01

    We develop a continuum theory for martensitic phase transformations in which explicit use is made of atomistic calculations based on density functional theory. Following the work of Rabe and coworkers, branches of the phonon-dispersion relation with imaginary frequencies are selected to construct a localized basis tailored to the symmetry of the crystal lattice. This so-called Wannier basis helps to construct an effective Hamiltonian of a particularly simple form. We extend the methodology by incorporating finite deformations and passing the effective Hamiltonian fully to continuum level. The developments so far are implemented on the shape memory material NiTi

  16. Sintering prevention and phase transformation of FePt nanoparticles

    International Nuclear Information System (INIS)

    Ding, Y.; Majetich, S.A.; Kim, J.; Barmak, K.; Rollins, H.; Sides, P.

    2004-01-01

    Two approaches attempted to overcome FePt nanoparticle sintering during the transformation to the high coercivity L1 0 phase, which currently limits the use of these nanoparticles in data storage media. High-pressure treatment of dilute nanoparticle solutions failed to prevent sintering due to surfactant decomposition above 360 deg. C. By pre-annealing nanoparticle monolayers to decompose the surfactant, and then coating with an immiscible SiO 2 matrix, sintering was prevented with annealing temperatures up to 700 deg. C

  17. Phase transformations in the reaction cell of TiNi-based sintered systems

    Science.gov (United States)

    Artyukhova, Nadezhda; Anikeev, Sergey; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kaftaranova, Maria; Kang, Ji-Hoon; Kim, Ji-Soon

    2018-05-01

    The present work addresses the structural-phase state changes of porous TiNi-based compounds fabricated by reaction sintering (RS) of Ti and Ni powders with Co, Mo, and no additives introduced. The study also emphasizes the features of a reaction cell (RC) during the transition from the solid- to liquid-phase sintering. Mechanisms of phase transformations occurring in the solid phase, involving the low-melting Ti2Ni phase within the RC, have been highlighted. Also, the intermediate Ti2Ni phase had a crucial role to provide both the required RS behavior and modified phase composition of RS samples, and besides, it is found to be responsible for the near-equiatomic TiNi saturation of the melt. Both cobalt and molybdenum additives are shown to cause additional structuring of the transition zone (TZ) at the Ti2Ni‑TiNi interface and broadening of this zone. The impact of Co and Mo on the Ti2Ni phase is evident through fissuring of this phase layer, which is referred to solidified stresses increased in the layer due to post-alloying defects in the structure.

  18. Structural transformations of heat-treated bacterial iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideki, E-mail: hideki-h@cc.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan); Fujii, Tatsuo [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Nakanishi, Koji [Office of Society-Academia Collaboration for Innovation, Kyoto University, Uji 611-0011 (Japan); Yogi, Chihiro [SR Center, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Peterlik, Herwig [Faculty of Physics, University of Vienna, A-1090 Vienna (Austria); Nakanishi, Makoto [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Takada, Jun [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan)

    2015-04-01

    A bacterial siliceous iron oxide microtubule (diameter: ca. 1 μm, 15Fe{sub 2}O{sub 3}·8SiO{sub 2}·P{sub 2}O{sub 5}·30H{sub 2}O) produced by Leptothrix ochracea was heat treated in air and its structural transformation was investigated in detail by microscopy, diffractometry, and spectroscopy. Although the heat-treated bacterial iron oxide retained its original microtubular structure, its nanoscopic, middle-range, and local structures changed drastically. Upon heat treatment, nanosized pores were formed and their size changed depending on temperature. The Fe–O–Si linkages were gradually cleaved with increasing temperature, causing the progressive separation of Fe and Si ions into iron oxide and amorphous silicate phases, respectively. Concomitantly, global connectivity and local structure of FeO{sub 6} octahedra in the iron oxide nanoparticles systematically changed depending on temperature. These comprehensive investigations clearly revealed various structural changes of the bacterial iron oxide which is an important guideline for the future exploration of novel bio-inspired materials. - Highlights: • Structural transformation of a bacterial iron oxide microtubule was investigated. • Si–O–Fe was cleaved with increasing temperature to form α-Fe{sub 2}O{sub 3}/silicate composite. • Crystallization to 2Fh started at 500 °C to give α-Fe{sub 2}O{sub 3} >700 °C. • FeO{sub 6} octahedra were highly distorted <500 °C. • Formation of face-sharing FeO{sub 6} was promoted >500 °C, releasing the local strain of FeO{sub 6}.

  19. Change in generally accepted regularity of phase transformations of quartzite

    Science.gov (United States)

    Kukartsev, V. A.; Kukartsev, V. V.; Chzhan, E. A.; Tynchenko, V. S.; Stupina, A. A.

    2018-05-01

    The subject of this research is phasic transformations of quartzites that are under temperature treatment to remove moisture. This technology is used in enterprises operating melting furnaces. The studies have shown that using a temperature regime consisting in heating to 800° C and holding for 2 hours, after cooling, quartzite changes its color and appears a shift in the angle of the interplanar distances of the crystal lattice by 6.6% in it. The use of a temperature treatment regime consisting in heating to 200° C and holding for 4 hours does not reveal such changes. With subsequent exposure to these samples of the temperature regime corresponding to the sintering process of the liner, the following is established. In a sample pretreated with a temperature of 800° C, at a temperature of 1550° C, a tridymite phase appears. In the sample of a 200° C pretreated with temperature, a phase of cristobalite appears without tridymite.

  20. Image security based on iterative random phase encoding in expanded fractional Fourier transform domains

    Science.gov (United States)

    Liu, Zhengjun; Chen, Hang; Blondel, Walter; Shen, Zhenmin; Liu, Shutian

    2018-06-01

    A novel image encryption method is proposed by using the expanded fractional Fourier transform, which is implemented with a pair of lenses. Here the centers of two lenses are separated at the cross section of axis in optical system. The encryption system is addressed with Fresnel diffraction and phase modulation for the calculation of information transmission. The iterative process with the transform unit is utilized for hiding secret image. The structure parameters of a battery of lenses can be used for additional keys. The performance of encryption method is analyzed theoretically and digitally. The results show that the security of this algorithm is enhanced markedly by the added keys.

  1. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets

    KAUST Repository

    Fan, Zhanxi

    2015-03-13

    Conventionally, the phase transformation of inorganic nanocrystals is realized under extreme conditions (for example, high temperature or high pressure). Here we report the complete phase transformation of Au square sheets (AuSSs) from hexagonal close-packed (hcp) to face-centered cubic (fcc) structures at ambient conditions via surface ligand exchange, resulting in the formation of (100)f-oriented fcc AuSSs. Importantly, the phase transformation can also be realized through the coating of a thin metal film (for example, Ag) on hcp AuSSs. Depending on the surfactants used during the metal coating process, two transformation pathways are observed, leading to the formation of (100)f-oriented fcc Au@Ag core-shell square sheets and (110)h/(101)f-oriented hcp/fcc mixed Au@Ag nanosheets. Furthermore, monochromated electron energy loss spectroscopy reveals the strong surface plasmon resonance absorption of fcc AuSS and Au@Ag square sheet in the infrared region. Our findings may offer a new route for the crystal-phase and shape-controlled synthesis of inorganic nanocrystals. © 2015 Macmillan Publishers Limited. All rights reserved.

  2. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets

    KAUST Repository

    Fan, Zhanxi; Huang, Xiao; Han, Yu; Bosman, Michel; Wang, Qingxiao; Zhu, Yihan; Liu, Qing; Li, Bing; Zeng, Zhiyuan; Wu, Jumiati; Shi, Wenxiong; Li, Shuzhou; Gan, Chee Lip; Zhang, Hua

    2015-01-01

    Conventionally, the phase transformation of inorganic nanocrystals is realized under extreme conditions (for example, high temperature or high pressure). Here we report the complete phase transformation of Au square sheets (AuSSs) from hexagonal close-packed (hcp) to face-centered cubic (fcc) structures at ambient conditions via surface ligand exchange, resulting in the formation of (100)f-oriented fcc AuSSs. Importantly, the phase transformation can also be realized through the coating of a thin metal film (for example, Ag) on hcp AuSSs. Depending on the surfactants used during the metal coating process, two transformation pathways are observed, leading to the formation of (100)f-oriented fcc Au@Ag core-shell square sheets and (110)h/(101)f-oriented hcp/fcc mixed Au@Ag nanosheets. Furthermore, monochromated electron energy loss spectroscopy reveals the strong surface plasmon resonance absorption of fcc AuSS and Au@Ag square sheet in the infrared region. Our findings may offer a new route for the crystal-phase and shape-controlled synthesis of inorganic nanocrystals. © 2015 Macmillan Publishers Limited. All rights reserved.

  3. Phase Transformations and Phase Equilibria in the Fe-N System at Temperatures below 573 K

    DEFF Research Database (Denmark)

    Malinov, S.; Böttger, A.J.; Mittemeijer, E.J.

    2001-01-01

    The phase transformations of homogeneous Fe-N alloys of nitrogen contents from 10 to 26 at. pct were investigated by means of X-ray diffraction analysis upon aging in the temperature range from 373 to 473 K. It was found that precipitation of alpha double prime-Fe16N2 below 443 K does not only oc...

  4. Modeling of diffusional phase transformation in multi-component systems with stoichiometric phases

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.; Abart, R.

    2010-01-01

    Roč. 58, č. 8 (2010), s. 2905-2911 ISSN 1359-6454 R&D Projects: GA MŠk(CZ) OC10029 Institutional research plan: CEZ:AV0Z20410507 Keywords : Interdiffusion * Intermetallics * Phase transformation kinetics Subject RIV: BJ - Thermodynamics Impact factor: 3.781, year: 2010

  5. Modelling a single phase voltage controlled rectifier using Laplace transforms

    Science.gov (United States)

    Kraft, L. Alan; Kankam, M. David

    1992-01-01

    The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.

  6. Extension of love wave transformation theory to laterally heterogeneous structures

    International Nuclear Information System (INIS)

    Romanelli, F.; Panza, G.F.

    1993-08-01

    By means of the spherical-to-flat transformations for torsional waves, all the flat-transformed components of motion (two for displacement and five for stress) have been derived. This provides the formal basis necessary to treat the propagation of torsional waves in spherical 3-D structures, by using the existing flat-structure computational techniques. (author). 8 refs, 1 fig., 1 tab

  7. Two-phase transformation of lepidocrocite to maghemite

    Science.gov (United States)

    Dekkers, M. J.; Gapeev, A. K.; Gendler, T. S.; Gribov, S. K.; Shcherbakov, V. P.

    2003-04-01

    A detailed investigation of CRM acquired at different stages of the transformation lepidocrocite -> maghemite -> hematite is carried out. Apparently, at least two-stage lepidocrocite maghemite transformation was revealed from: a) the two-peak Ms(T) curve; b) the observation of constricted hysteresis loops appearing after annealing fresh lepidocrocite samples at elevated temperatures; c) continuous monitoring (for 500 hrs) of CRM acquisition at elevated temperatures. For the latter two sets of CRM acquisition experiments at 12 temperatures from 175C to 550C in the presence of 0.1 mT magnetic field were performed: 1) with fine dispersed natural lepidocrocite grains in a kaolin matrix (about 1 volume % of lepidocrocite), 2) for lepidocrocite peaces 3x3x3 mm in size. In both cases the CRM was detected already at 175C after 1 day of annealing. Note that this temperature is lower than the temperature of the TGA peak of the lepidocrocite -> maghemite transformation. Mossbauer spectra obtained from the peaces after annealing at 225C during 6 and 14 hours, respectively, revealed significantly different patterns. Unexpectadly, fine dispersed maghemite grains formed due the lepidocrocite dehydration in the first peace (6 hrs of annealing) occurred to be more ordered than those of from the second peace. The samples are subjected to the X-ray analysis in an attempt to clarify the observed difference. The observed phenomena can be explained by the two-phase conception of the transformation lepidocrocite -> maghemite. First the precipitation of small superparamagnetic particles of maghemite takes place growing with time. Second, these grains coalesce with each other resulting in appearance of the antiphase boundaries decreasing the susceptibility, slowing down the process of CRM acquisition and generating the constricted hysteresis loops. The work is supported by INTAS 99-1273.

  8. Phase transformations in nickel-aluminum alloys during ion beam mixing

    International Nuclear Information System (INIS)

    Eridon, J.; Rehn, L.; Was, G.

    1986-01-01

    The effect of ion beam mixing of nickel-aluminum alloys with 500 keV krypton ions has been investigated over a range of temperature, composition, ion dose, and post-irradiation thermal treatments. Samples were formed by alternate evaporation of layers of aluminum and nickel. A portion of these samples was subsequently annealed to form intermetallic compounds. Irradiations were performed at both room temperature and 80 0 K using the 2MV ion accelerator at Argonne National Laboratory. Phase transformations were observed during both in situ irradiations in the High Voltage Electron Microscope (HVEM) at Argonne, and also in subsequent analysis of an array of irradiated samples. Electron diffraction indicates the presence of metastable crystalline structures not present in the conventional nickel-aluminum phase diagram. Transformations occur at doses as low as 5 x 10 14 cm -2 and continue to develop as the irradiation progresses up to 2 x 10 16 cm -2 . Layer mixing is followed through Rutherford Backscattering analysis. Samples are also checked with x-rays and Electron Energy Loss Spectroscopy (EELS). A thermodynamic argument is presented to explain the phase transformations in terms of movements on a free energy diagram. This analysis explains the interesting paradox concerning the radiation hardness of the NiAl phase and the amorphous structure of mixed Ni-50% Al layers

  9. Investigation of the {Fe}/{Si} interface and its phase transformations

    Science.gov (United States)

    Fanciulli, M.; Degroote, S.; Weyer, G.; Langouche, G.

    1997-04-01

    Thin 57Fe films (3-10 Å) have been grown by molecular beam epitaxy (MBE) on (7 × 7) reconstructed Si(111) and (2 × 1) reconstructed Si(001) surfaces and by e-gun evaporation on an H-terminated Si(111) surface. Conversion electron Mössbauer spectroscopy (CEMS) with high statistical accuracy and resolution allowed a detailed microscopic investigation of the silicide formation mechanism and of the structural phase transformations upon annealing.

  10. A theoretical study of the omega-phase transformation in metals

    Science.gov (United States)

    Sanati, Mahdi

    I have studied the formation of o-phase from electronic and mesoscopic (domain wall) points of view. To study the formation of domain walls, I have extended the Landau model of Cook for the o-phase transition by including a spatial gradient (Ginzburg) term of the scalar order parameter. In general, the Landau free energy is an asymmetric double-well potential. From the variational derivative of the total free energy I obtained a static equilibrium condition. By solving this equation for different physical parameters and boundary conditions, I obtained different quasi-one-dimensional soliton-like solutions. These solutions correspond to three different types of domain walls between the o-phase and the beta-matrix. These results are used to model the formation of the o-phase in bcc Ti. Canonical band model and first principles calculations confirmed the instability of the bcc-phase of group III and IV transition metals with respect to the o-phase transformation. I showed that the d-electron density is the controlling parameter for this type of the transformation. Also the possibility of formation of the o-phase for rare earth metals is discussed. First-principles full-potential linear muffin-tin orbital method (FPLMTO) calculations are performed for o-type displacement of the atoms to study the formation of the o-phase in TiAl and Ti 3Al2Nb alloys. The results of my calculations showed an instability in ordered B2 TiAl structure with respect to the o-phase when one third of the Al atoms are replaced by Nb atoms. These phenomena are explained, first by symmetry arguments; then a pair potential model is used to illustrate this instability based on interactions between different pair of atoms derived from the electronic structure. In addition, importance of the atomic arrangements on the structural stability of the Ti3Al2 Nb system is discussed.

  11. The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles

    KAUST Repository

    Ha, Don-Hyung; Moreau, Liane M.; Bealing, Clive R.; Zhang, Haitao; Hennig, Richard G.; Robinson, Richard D.

    2011-01-01

    We report the structural evolution and the diffusion processes which occur during the phase transformation of nanoparticles (NPs), ε-Co to Co 2P to CoP, from a reaction with tri-n-octylphosphine (TOP). Extended X-ray absorption fine structure (EXAFS

  12. Study of phase transformations in Fe-Mn-Cr Alloys

    International Nuclear Information System (INIS)

    Schule, W.; Panzarasa, A.; Lang, E.

    1988-01-01

    Nickel free alloys for fusion reactor applications are examined. Phase changes in fifteen, mainly austenitic iron-manganese-chromium-alloys of different compositions were investigated in the temperature range between -196 0 C and 1000 0 C after different thermo-mechanical treatments. A range of different physical measuring techniques was employed to investigate the structural changes occurring during heating and cooling and after cold-work: electrical resistivity techniques, differential thermal analysis, magnetic response, Vickers hardness and XRD measurement. The phase boundary between the α Fe-phase and the γ-phase of the iron manganese alloy is approximately maintained if chromium is added to the two component materials. Consequently all the alloy materials for contents of manganese smaller than about 30% Mn are not stable below 500 0 C. This concerns also the AMCR alloys. However the α Fe-phase is not formed during slow cooling from 1000 0 C to ambient temperature and is only obtained if nucleation sites are provided and after very long anneals. A cubic α Mn-type-phase is found for alloys with 18% Cr and 15% Mn, with 13% Cr and 25% Mn, with 10% Cr and 30% Mn, and with 10% Cr and 40% Mn. For these reasons the γ-phase field of the iron-chromium-manganese alloys is very small below 600 0 C and much narrower than reported in the literature. 95 figs. 22 refs

  13. Study on linear canonical transformation in a framework of a phase space representation of quantum mechanics

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Ranaivoson, R.T.R.; Rakotoson, H.; Solofoarisina, W.C.

    2015-04-01

    We present a study on linear canonical transformation in the framework of a phase space representation of quantum mechanics that we have introduced in our previous work. We begin with a brief recall about the so called phase space representation. We give the definition of linear canonical transformation with the transformation law of coordinate and momentum operators. We establish successively the transformation laws of mean values, dispersions, basis state and wave functions.Then we introduce the concept of isodispersion linear canonical transformation.

  14. Influence of preliminary deformation and phase strengthening on γ reversible α transformation kinetics in cerium under pressure

    International Nuclear Information System (INIS)

    Larionov, L.V.; Livshits, L.D.; Peresada, G.I.; AN SSSR, Moscow. Inst. Fiziki Zemli)

    1985-01-01

    Using the methods of piezo- and resistometry the influence of preliminary plastic deformation, phase transformation induced strengthening and heat treatment on kinetics of γ reversible α transformation in cerium is studied. It is shown, that the used methods of preliminary treatment of sample material do not change pressure value of γ → α and α →γ transformation initiation and do not affect hysteresis value, but affect considerably its kinetics. Preliminary plastic deformation and structural strengthening increase the average formation rate of a new phase. According to the data of tensile tests, structural strengthening, apprearing as a result of one cycle of γ → α → γ transformation, increases cerium strength characteristics 6y 30-50% with simultaneous decrease in plasticity. Metallographic studies confirm martensitic character of γ → α → γ transformations in cerium

  15. Single beam Fourier transform digital holographic quantitative phase microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  16. Transforming the structure of a health system.

    Science.gov (United States)

    Reilly, Patrick

    2012-06-01

    In starting the planning process for an organization's transformation or restructuring, healthcare finance leaders should: Identify strategic imperatives for the organization and physicians, Remember the organization's core area of business, Define the starting point and create clear objectives, Develop a strategy that engages front-line employees to change the culture of the organization.

  17. On Inclusion-Matrix Interfacial Stresses in Composites Containing Phase-Transforming Phases

    International Nuclear Information System (INIS)

    Wang, Y.-C.; Ko, C.-C.

    2010-01-01

    Recent development in composites containing phase-transforming particles, such as vanadium dioxide or barium titanate, reveals the overall stiffness and viscoelastic damping of the composites may be unbounded. Negative stiffness is induced from phase transformation predicted by the Landau phase transformation theory. Although this unbounded phenomenon is theoretically supported with the composite homogenization theory, detailed stress analyses of the composites are still lacking. In this work, we analyze the two-dimensional plane stress elasticity problem of a square plate containing a circular inclusion, under the assumption that the Young's modulus of the inclusion is negative. Assumption of negative stiffness is a priori in the present analysis. A static loading condition is adopted to estimate the effective modulus of the composites by the ratio of applied stress to averaged strain on the loading edges. It is found that the interfacial stresses between the circular inclusion and matrix increase dramatically when the negative stiffness is so tuned that overall stiffness is unbounded. Furthermore, it is found that stress distributions in the inclusion are not uniform, contrary to Eshelby's theorem, which states, for two-phase, infinite composites, the inclusion's stress distribution is uniform when the shape of the inclusion has higher symmetry than an ellipse. The rationale for this nonuniform stress distributions is due to nonlocal effects induced from negative stiffness.

  18. Thermal analysis of high temperature phase transformations of steel

    Directory of Open Access Journals (Sweden)

    K. Gryc

    2013-10-01

    Full Text Available The series of thermal analysis measurements of high temperature phase transformations of real grain oriented electrical steel grade under conditions of two analytical devices (Netzsch STA 449 F3 Jupiter; Setaram SETSYS 18TM were carried out. Two thermo analytical methods were used (DTA and Direct thermal analysis. The different weight of samples was used (200 mg, 23 g. The stability/reproducibility of results obtained by used methodologies was verified. The liquidus and solidus temperatures for close to equilibrium conditions and during cooling (20 °C/min; 80 °C/min were determined. It has been shown that the higher cooling rate lead to lower temperatures for start and end of solidification process of studied steel grade.

  19. Thermodynamics and phase transformations: the selected works of Mats Hillert

    International Nuclear Information System (INIS)

    Agren, J.; Brechet, Y.; Hutchinson, Ch.; Purdy, G.

    2006-01-01

    For over half a century, Mats Hillert has contributed greatly to the science of materials. He is widely known and respected as an innovator and an educator, a scientist with an enormous breadth of interest and depth of insight. In acknowledgment of his many contributions, a conference was held in Stockholm in December 2004 to mark his eightieth birthday. This volume was conceived prior to, and publicly announced during the conference. The difficult choice of twenty-four papers from a publication list of more than three hundred was carried out in consultation with Mats. He also suggested or approved the scientists who would be invited to write a brief introduction to each paper. A brief reading of the topics of the selected papers and their introductions reveals something of their range and depth. Several early selections (for example, those on 'The Role of Interfacial Energy during Solid State Phase Transformations', and 'A Solid-Solution Model for Inhomogeneous Systems') contained seminal material that established Mats as a leading figure in the study of phase transformations in solids. Others established his presence in the areas of solidification and computational thermodynamics. A review of his full publication list shows that he has consistently built upon those early foundational papers, and maintained a dominant position in those fields. Although many of his contributions have been of a theoretical nature, he has always maintained a close contact with experiment, and indeed, he has designed numerous critical experiments. This volume represents a judicious sampling of Mats Hillert's extensive body of work; it is necessarily incomplete, but it is hoped and expected that it will prove useful to students of materials science and engineering at all levels, and that it will inspire the further study and appreciation of his many contributions. (authors)

  20. Structural transformation of nanocrystalline titania by sol-gel and the growth kinetics of crystallites

    International Nuclear Information System (INIS)

    Hu Linhua; Dai Songyuan; Wang Kongjia

    2002-05-01

    Structural transformation of nanocrystalline titania prepared by sol-gel with hydrolysis precursor titanium isopropoxide was investigated. At the same time, the growth kinetics of titania powders was also studied here. It was found that the grain size of the powders increased slowly with autoclave heating temperature up to 230 degree C, when hydrolysis pH was 0.9, but grew rapidly when heating temperature was higher that 230 degree C. The activation energies for growth of anatase crystallites in two temperature regions were calculated to be 18.5 kJ/mol and 59.7 kJ/mol respectively. The X-ray diffraction results show that the transformation from anatase phase to rutile phase starts at 230 degree C and structural transformation finished when temperature raises to 270 degree C, which is a temperature much more lower than that of the transformation by conventional literature reports

  1. Phase equilibria and phase structures of polymer blends

    International Nuclear Information System (INIS)

    Chalykh, Anatolii E; Gerasimov, Vladimir K

    2004-01-01

    Experimental, methodical and theoretical studies dealing with phase equilibria and phase structures of polymer blends are generalised. The general and specific features of the change in solubility of polymers with changes in the molecular mass and copolymer composition and upon the formation of three-dimensional cross-linked networks are described. The results of the effect of the prehistory on the phase structure and the non-equilibrium state of polymer blends are considered in detail.

  2. Influence of pressure on the solid state phase transformation of Cu–Al–Bi alloy

    International Nuclear Information System (INIS)

    Gong, Li; Jian-Hua, Liu; Wen-Kui, Wang; Ri-Ping, Liu

    2010-01-01

    The solid state phase transformation of Cu-Al-Bi alloy under high pressure was investigated by x-ray diffraction, energy dispersive spectroscopy and transmission electron microscopy. Experimental results show that the initial crystalline phase in the Cu-Al-Bi alloy annealed at 750 °C under the pressures in the range of 0–6 GPa is α-Cu solid solution (named as α-Cu phase below), and high pressure has a great influence on the crystallisation process of the Cu-Al-Bi alloy. The grain size of the α-Cu phase decreases with increasing pressure as the pressure is below about 3 GPa, and then increases (P > 3 GPa). The mechanism for the effects of high pressure on the crystallisation process of the alloy has been discussed. (condensed matter: structure, thermal and mechanical properties)

  3. Atomistic modelling of diffusional phase transformations with elastic strain

    International Nuclear Information System (INIS)

    Mason, D R; Rudd, R E; Sutton, A P

    2004-01-01

    Phase transformations in 2xxx series aluminium alloys (Al-Cu-Mg) are investigated with an off-lattice atomistic kinetic Monte Carlo simulation incorporating the effects of strain around misfitting atoms and vacancies. Atomic interactions are modelled by Finnis-Sinclair potentials constructed for these simulations. Vacancy diffusion is modelled by comparing the energies of trial states, where the system is partially relaxed for each trial state. No special requirements are made about the description of atomic interactions, making our approach suitable for more fundamentally based models such as tight binding if sufficient computational resources are available. Only a limited precision is required for the energy of each trial state, determined by the value of k B T. Since the change in the relaxation displacement field caused by a vacancy hop decays as 1/r 3 , it is sufficient to determine the next move by relaxing only those atoms in a sphere of finite radius centred on the moving vacancy. However, once the next move has been selected, the entire system is relaxed. Simulations of the early stages of phase separation in Al-Cu with elastic relaxation show an enhanced rate of clustering compared to those performed on the same system with a rigid lattice

  4. On a phase field approach for martensitic transformations in a crystal plastic material at a loaded surface

    Science.gov (United States)

    Schmitt, Regina; Kuhn, Charlotte; Müller, Ralf

    2017-07-01

    A continuum phase field model for martensitic transformations is introduced, including crystal plasticity with different slip systems for the different phases. In a 2D setting, the transformation-induced eigenstrain is taken into account for two martensitic orientation variants. With aid of the model, the phase transition and its dependence on the volume change, crystal plastic material behavior, and the inheritance of plastic deformations from austenite to martensite are studied in detail. The numerical setup is motivated by the process of cryogenic turning. The resulting microstructure qualitatively coincides with an experimentally obtained martensite structure. For the numerical calculations, finite elements together with global and local implicit time integration scheme are employed.

  5. Magnetic properties and phase transformations of iron sulfides synthesized under the hydrothermal method

    Science.gov (United States)

    Li, S. H.; Chen, Y. H.

    2016-12-01

    The iron sulfide nano-minerals possess advantages of high abundance, low cost, and low toxicity. These advantages make them be competitive in the magnetic, electronic, and photoelectric applications. Mackinawite can be used in soil or water remediations. Greigite is very important for paleomagnetic and geochemical environment studies and the anode materials for lithium ion batteries. Besides, greigite is also utilized for hyperthermia and biomedicine. Pyrrhotite can be applied as geothermometry. Due to the above-mentioned reasons, iron sulfide minerals have specific significances and they must be further investigated, like their phase transformations, magnetic properties, and etc. In this study, the iron sulfide minerals were synthesized by using a hydrothermal method. The ex-situ and in-situ X-ray diffraction (XRD) was used to examine the crystal structure and phase transformation of iron sulfide minerals. The Transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) were carried out to investigate their morphology and magnetic properties, respectively. The results suggested that the phase transformation sequence was followed the order: mackinawite → greigite → (smythite) → pyrrhotite. Two pure mineral phases of greigite and pyrrhotite were obtained under the hydrothermal conditions. The morphology of the pure greigite is granular aggregates with a particle size of approximately 30 nm and pyrrhotite presented a hexagonal sheet stacking with a particle size of thousands nanometers. The greigite had a ferri-magnetic behavior and pyrrhotite was weak ferro-magnetic. Both of them had a pseudo-single magnetic domain (PSD) based on the Day's plot from SQUID data. The complete phase-transformation pathways and high magnetization of iron sulfide minerals are observed in this study and these kind of iron sulfide minerals are worthy to further study.

  6. Modelling of Strains During SAW Surfacing Taking into Heat of the Weld in Temperature Field Description and Phase Transformations

    Science.gov (United States)

    Winczek, J.; Makles, K.; Gucwa, M.; Gnatowska, R.; Hatala, M.

    2017-08-01

    In the paper, the model of the thermal and structural strain calculation in a steel element during single-pass SAW surfacing is presented. The temperature field is described analytically assuming a bimodal volumetric model of heat source and a semi-infinite body model of the surfaced (rebuilt) workpiece. The electric arc is treated physically as one heat source. Part of the heat is transferred by the direct impact of the electric arc, while another part of the heat is transferred to the weld by the melted material of the electrode. Kinetics of phase transformations during heating is limited by temperature values at the beginning and at the end of austenitic transformation, while the progress of phase transformations during cooling is determined on the basis of TTT-welding diagramand JMA-K law for diffusive transformations, and K-M law for martensitic transformation. Totalstrains equal to the sum ofthermaland structuralstrainsinduced by phasetransformationsin weldingcycle.

  7. Probing peptide fragment ion structures by combining sustained off-resonance collision-induced dissociation and gas-phase H/D exchange (SORI-HDX) in Fourier transform ion-cyclotron resonance (FT-ICR) instruments.

    Science.gov (United States)

    Somogyi, Arpád

    2008-12-01

    The usefulness of gas-phase H/D exchange is demonstrated to probe heterogeneous fragment and parent ion populations. Singly and multiply protonated peptides/proteins were fragmented by using sustained off-resonance irradiation collision-induced dissociation (SORI-CID). The fragments and the surviving precursor ions then all undergo H/D exchange in the gas-phase with either D(2)O or CD(3)OD under the same experimental conditions. Usually, 10 to 60 s of reaction time is adequate to monitor characteristic differences in the H/D exchange kinetic rates. These differences are then correlated to isomeric ion structures. The SORI-HDX method can be used to rapidly test fragment ion structures and provides useful insights into peptide fragmentation mechanisms.

  8. Promoting structural transformation: Strategic diversification vs laissez-faire approach

    NARCIS (Netherlands)

    Freire Junior, Clovis

    2017-01-01

    Economic development is associated with structural transformation and the increase of complexity of production and exports. This paper examines whether strategic diversification is required to increase economic complexity or whether market incentives would be sufficient to drive this process of

  9. Comparative Study of Phase Transformation in Single-Crystal Germanium during Single and Cyclic Nanoindentation

    Directory of Open Access Journals (Sweden)

    Koji Kosai

    2017-11-01

    Full Text Available Single-crystal germanium is a semiconductor material which shows complicated phase transformation under high pressure. In this study, new insight into the phase transformation of diamond-cubic germanium (dc-Ge was attempted by controlled cyclic nanoindentation combined with Raman spectroscopic analysis. Phase transformation from dc-Ge to rhombohedral phase (r8-Ge was experimentally confirmed for both single and cyclic nanoindentation under high loading/unloading rates. However, compared to single indentation, double cyclic indentation with a low holding load between the cycles caused more frequent phase transformation events. Double cyclic indentation caused more stress in Ge than single indentation and increased the possibility of phase transformation. With increase in the holding load, the number of phase transformation events decreased and finally became less than that under single indentation. This phenomenon was possibly caused by defect nucleation and shear accumulation during the holding process, which were promoted by a high holding load. The defect nucleation suppressed the phase transformation from dc-Ge to r8-Ge, and shear accumulation led to another phase transformation pathway, respectively. A high holding load promoted these two phenomena, and thus decreased the possibility of phase transformation from dc-Ge to r8-Ge.

  10. Nanoalloying and phase transformations during thermal treatment of physical mixtures of Pd and Cu nanoparticles

    Directory of Open Access Journals (Sweden)

    Vineetha Mukundan

    2014-03-01

    Full Text Available Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles are investigated in real time with in situ synchrotron-based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. The combination of metal–support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. At 300 °C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2 alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (> 450 °C. The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals segregated at 300 °C to produce almost pure fcc Cu and Pd phases. Upon further annealing of the mixture on alumina above 600 °C, the two metals interdiffused, forming two distinct disordered alloys of compositions 30% and 90% Pd. The annealing atmosphere also plays a major role in the structural evolution of these bimetallic nanoparticles. The nanoparticles annealed in forming gas are larger than the nanoparticles annealing in helium due to reduction of the surface oxides that promotes coalescence and sintering.

  11. Peculiarities of phase transformations in molybdenum-silicon system under ion bombardment

    International Nuclear Information System (INIS)

    Gurskij, L.I.; Zelenin, V.A.; Bobchenok, Yu.L.

    1984-01-01

    The problems of effect of ion bombardment and thermal treatment on the mechanisms of formation of transition layers and structural transformations in the molybdenum-silicon system, where the interface is subjected to ion bombardment through a film of molybdenum, are considered. The method of electron diffraction analysis has been applied to establish that at the molybdenum-silicon interface a transitional region appears during irradiation which has a semiamorphous structure at the doses up to 8x10 14 ion/cm 2 , while at higher doses it transforms into polycrystalline intermediate layer which consists of MoB and the compound close in composition to MoSisub(0.65). Due to thermal treatment for 60873 K a large-grain phase (Mo 3 Si+MoSi 2 ) appears in the transition layer below which a large-grain silicon layer is placed

  12. An eigenstrain approach to predict phase transformation and self-accommodation in partially stabilized zirconia

    International Nuclear Information System (INIS)

    Hensl, Th.; Mühlich, U.; Budnitzki, M.; Kuna, M.

    2015-01-01

    Highlights: • Analytical model to predict phase transformation in PSZ is developed. • Analytical model to predict number of twins in monoclinic inclusions in PSZ. • Models consider inclusions size, shape, temperature, remote loading and surface energy. - Abstract: This work focuses on micromechanical modeling of the tetragonal to monoclinic phase transformation (t–m transformation) in partially stabilized zirconia (PSZ). Tetragonal particles dispersed in a cubic matrix may transform into the monoclinic phase under sufficiently high mechanical loading or if the material is cooled down below a critical temperature. This phase transformation is supposed to be responsible for the so called transformation toughening effect of PSZ. The transformation is usually accompanied by a self-accommodation process, which reduces the occurring eigenstresses in the surrounding matrix. The influences of particle size and geometry, chemical driving force, temperature, surface energy and remote loading on the t–m transformation are estimated by a thermostatic approach. We assume, that transformations occur, once the Gibbs free energy of the transformed equilibrium state is lower than that of the untransformed reference state. To obtain an analytical solution, the microstructure is modeled as an inclusion of rectangular cross section, restrained by an infinite elastic matrix, under plane strain conditions. The developed model for phase transformation captures the well-known size and temperature dependencies. Furthermore, it indicates a significant influence of the particle geometry, that large aspect ratios of the inclusion’s cross section lower the trigger stress for phase transformation

  13. Phase transformation of 316L stainless steel from wire to fiber

    International Nuclear Information System (INIS)

    Shyr, Tien-Wei; Shie, Jing-Wen; Huang, Shih-Ju; Yang, Shun-Tung; Hwang, Weng-Sing

    2010-01-01

    In this work, quantitative crystalline phase analysis of 316L stainless steel from wire to fiber using a multi-pass cold drawing process was studied using the Rietveld whole XRD profile fitting technique. The different diameters of the fibers: 179, 112, 75, 50, 34, 20, and 8 μm, were produced from an as-received wire with a diameter of 190 μm. The crystalline phases were identified using MDI Jade 5.0 software. The volume fractions of crystalline phases were estimated using a Materials Analysis Using Diffraction software. XRD analysis revealed that the crystal structure of as-received wire is essentially a γ-austenite crystalline phase. The phase transformation occurred during the 316L stainless steel from wire to fiber. Three crystalline phases such as γ-austenite, α'-martensite, and sigma phase of the fine fiber were observed. A cold drawing accelerates the sigma phase precipitates, particularly during the heat treatment of the fiber.

  14. Synthesizing lattice structures in phase space

    International Nuclear Information System (INIS)

    Guo, Lingzhen; Marthaler, Michael

    2016-01-01

    In one dimensional systems, it is possible to create periodic structures in phase space through driving, which is called phase space crystals (Guo et al 2013 Phys. Rev. Lett. 111 205303). This is possible even if for particles trapped in a potential without periodicity. In this paper we discuss ultracold atoms in a driven optical lattice, which is a realization of such a phase space crystals. The corresponding lattice structure in phase space is complex and contains rich physics. A phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry, which naturally provides an artificial gauge (magnetic) field. We study the behavior of the quasienergy band structure and investigate the dissipative dynamics. Synthesizing lattice structures in phase space provides a new platform to simulate the condensed matter phenomena and study the intriguing phenomena of driven systems far away from equilibrium. (paper)

  15. Temperature induced reversible polymorphic phase transformations in a bis-hydrazone compound

    Science.gov (United States)

    Jayant, Vikrant; Das, Dinabandhu

    2018-03-01

    Two reversible polymorphic phase transformation of 2,3-butanedione, 2,3- bis[4,4‧-bis(diethylamino)benzophenone hydrazone] (DEBH) have been identified in DSC experiment. Topotactic phase transformation of three polymorphs has been observed in variable temperature Single Crystal X-ray Diffraction experiment. The reversible phase transformation of bulk material has been confirmed by Powder X-ray diffraction study.

  16. Phase transformation in Mg—Sb3Te thin films

    International Nuclear Information System (INIS)

    Li Jun-Jian; Chen Yi-Min; Nie Qiu-Hua; Lü Ye-Gang; Wang Guo-Xiang; Shen Xiang; Dai Shi-Xun; Xu Tie-Feng

    2014-01-01

    Mg-doped Sb 3 Te films are proposed to improve the performance of phase-change memory (PCM). We prepare Mg-doped Sb 3 Te films and investigate their crystallization behaviors, structural, optical and electrical properties. We find that Mg-doping can increase the crystallization temperature, enhance the activation energy, and improve the 10-year data retention of Sb 3 Te. Especially Mg 25.19 (Sb 3 Te)74.81 shows higher T c (∼ 190 °C) and larger E a (∼ 3.49 eV), which results in a better data retention maintaining for 10 yr at ∼ 112 °C. Moreover R a /R c value is also improved. These excellent properties make Mg—Sb—Te material a promising candidate for the phase-change memory (PCM). (special topic — international conference on nanoscience and technology, china 2013)

  17. Synthesis and phase transformation mechanism of Nb{sub 2}C carbide phases

    Energy Technology Data Exchange (ETDEWEB)

    Vishwanadh, B., E-mail: visubathula@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 094 (India); Murthy, T.S.R.Ch. [Materials Processing Division, Bhabha Atomic Research Centre, Mumbai 400 094 (India); Arya, A.; Tewari, R.; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 094 (India)

    2016-06-25

    In the present work, Niobium carbide samples were prepared through powder metallurgy route using spark plasma sintering technique. Some of these samples were heat treated at 900 °C up to 7 days. In order to investigate the phase transformation in Nb{sub 2}C carbide, the as-prepared and heat treated samples were characterized by X-ray diffraction, scanning electron microscopy and electron back scattered diffraction (EBSD) and transmission electron microscopy techniques. EBSD could index the same area of the sample in terms of any of the three allotropes of Nb{sub 2}C carbide phases (γ-Nb{sub 2}C, β-Nb{sub 2}C and α-Nb{sub 2}C) with good confidence index. From the EBSD patterns orientation relationships (OR) among γ, β and α-Nb{sub 2}C have been determined. Based on this OR when crystals of the three allotropes were superimposed, it has revealed that the basic Nb metal atom lattice (hcp lattice) in all the Nb{sub 2}C phases is same. The only difference exists in the carbides is the ordering of carbon atoms and vacancies in the octahedral positions of the hcp Nb metal atom lattice. Crystallographic analysis showed that for the transformation of γ-Nb{sub 2}C → β-Nb{sub 2}C → α-Nb{sub 2}C, large movement of Nb atoms is not required; but only by ordering of carbon atoms ensues the phase transformation. Literature shows that in the Nb–C system formation of the α-Nb{sub 2}C is not well established. Therefore, first principle calculations were carried out on these carbides. It revealed that the formation energy for α-Nb{sub 2}C is lower than the β and γ-Nb{sub 2}C carbides which indicate that the formation of α-Nb{sub 2}C is thermodynamically feasible. - Highlights: • Nb{sub 2}C carbide was produced by Spark Plasma Sintering in a single process. • Phase transformation mechanism of different Nb{sub 2}C carbide phases is studied. • In all the three Nb{sub 2}C carbides (γ, β, α), the base Nb lattice remains same. • Among γ, β and α-Nb{sub 2}C

  18. Effect of lattice mismatch-induced strains on coupled diffusive and displacive phase transformations

    OpenAIRE

    Bouville, Mathieu; Ahluwalia, Rajeev

    2006-01-01

    Materials which can undergo slow diffusive transformations as well as fast displacive transformations are studied using the phase-field method. The model captures the essential features of the time-temperature-transformation (TTT) diagrams, continuous cooling transformation (CCT) diagrams, and microstructure formation of these alloys. In some materials systems there can exist an intrinsic volume change associated with these transformations. We show that these coherency strains can stabilize m...

  19. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process

    International Nuclear Information System (INIS)

    Hai-Yan, Wang; Jian-Hua, Liu; Gui-Rong, Peng; Yan, Chen; Yu-Wen, Liu; Fei, Li; Wen-Kui, Wang

    2009-01-01

    Effects of high pressure (6 GPa) on the solid state phase transformation kinetic parameters of aluminum bronze during the cooling process are investigated, based on the measurement and calculation of its solid state phase transformation temperature, duration and activation energy and the observation of its microstructures. The results show that high pressure treatment can reduce the solid phase transformation temperature and activation energy in the cooling process and can shorten the phase transformation duration, which is favorable when forming fine-grained aluminum bronze

  20. Computing optimal interfacial structure of modulated phases

    OpenAIRE

    Xu, Jie; Wang, Chu; Shi, An-Chang; Zhang, Pingwen

    2016-01-01

    We propose a general framework of computing interfacial structures between two modulated phases. Specifically we propose to use a computational box consisting of two half spaces, each occupied by a modulated phase with given position and orientation. The boundary conditions and basis functions are chosen to be commensurate with the bulk structures. It is observed that the ordered nature of modulated structures stabilizes the interface, which enables us to obtain optimal interfacial structures...

  1. Optimisation of Transmission Systems by use of Phase Shifting Transformers

    Energy Technology Data Exchange (ETDEWEB)

    Verboomen, J

    2008-10-13

    In this thesis, transmission grids with PSTs (Phase Shifting Transformers) are investigated. In particular, the following goals are put forward: (a) The analysis and quantification of the impact of a PST on a meshed grid. This includes the development of models for the device; (b) The development of methods to obtain optimal coordination of several PSTs in a meshed grid. An objective function should be formulated, and an optimisation method must be adopted to solve the problem; and (c) The investigation of different strategies to use a PST. Chapter 2 gives a short overview of active power flow controlling devices. In chapter 3, a first step towards optimal PST coordination is taken. In chapter 4, metaheuristic optimisation methods are discussed. Chapter 5 introduces DC load flow approximations, leading to analytically closed equations that describe the relation between PST settings and active power flows. In chapter 6, some applications of the methods that are developed in earlier chapters are presented. Chapter 7 contains the conclusions of this thesis, as well as recommendations for future work.

  2. Structural transformation of compressed solid Ar: An x-ray diffraction study to 114 GPa

    International Nuclear Information System (INIS)

    Errandonea, D.; Boehler, R.; Japel, S.; Mezouar, M.; Benedetti, L. R.

    2006-01-01

    Room temperature angle-dispersive x-ray diffraction measurements on solid Ar up to 114 GPa reveal evidence of a structural phase transformation after stress relaxation by laser heating. Beyond 49.6 GPa, Ar exhibits the coexistence of fcc and hcp phases with an increasing hcp/fcc ratio, similar to the observation made recently on krypton and xenon. From the present results, we estimate the fcc-to-hcp transition to be completed at 300 GPa

  3. Ion transport and phase transformation in thin film intercalation electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wunde, Fabian; Nowak, Susann; Muerter, Juliane; Hadjixenophontos, Efi; Berkemeier, Frank; Schmitz, Guido [Stuttgart Univ. (Germany). Inst. fuer Materialwissenschaft

    2017-11-15

    Thin film battery electrodes of the olivine structure LiFePO{sub 4} and the spinel phase LiMn{sub 2}O{sub 4} are deposited through ion-beam sputtering. The intercalation kinetics is studied by cyclo-voltammetry using variation of the cycling rate over 4 to 5 orders of magnitude. The well-defined layer geometry allows a detailed quantitative analysis. It is shown that LiFePO{sub 4} clearly undergoes phase separation during intercalation, although the material is nano-confined and very high charging rates are applied. We present a modified Randles-Sevcik evaluation adapted to phase-separating systems. Both the charging current and the overpotential depend on the film thickness in a systematic way. The analysis yields evidence that the grain boundaries are important short circuit paths for fast transport. They increase the electrochemical active area with increasing layer thickness. Evidence is obtained that the grain boundaries in LiFePO{sub 4} have the character of an ion-conductor of vanishing electronic conductivity.

  4. Negative pressure driven phase transformation in Sr doped SmCoO₃.

    Science.gov (United States)

    Arshad Farhan, M; Javed Akhtar, M

    2010-02-24

    Atomistic computer simulation techniques based on energy minimization procedures are utilized for the structural investigation of perovskite-type SmCoO(3). A reliable potential model is derived which reproduces both cubic as well as orthorhombic phases of SmCoO(3). We observe a negative chemical pressure induced structural phase transformation from distorted perovskite (orthorhombic) to perfect perovskite (cubic) due to the substitution of Sr(2 + ) at the Sm(3 + ) sites. However, external hydrostatic pressure shows isotropic compression and no pressure-induced structural transformation is observed up to 100 GPa. To maintain the electroneutrality of the system, charge compensation is through oxygen vacancies which results in the brownmillerite-type structure. A defect model is proposed, which is consistent with experimental results. The solution energies for divalent and trivalent cations are also calculated. These results show that the cations having ionic radii less than 0.75 Å will occupy the Co sites and those with ionic radii larger than 0.75 Å will substitute at the Sm sites.

  5. Investigating the phase transformations in starch during gelatinisation

    International Nuclear Information System (INIS)

    Tan, I.; Sopade, P.A.; Halley, P.J.

    2003-01-01

    Full text: Starch, a natural polymer of amylose and amylopectin, continues to be a prime material for biodegradable plastic applications as well as many food and non-food uses. Raw starch exists as semicrystalline granules with complex internal supramolecular packing and can be hierarchically organised on four length scales: molecular scale (∼ Angstroms), lamellar structure (∼90 Angstroms); growth rings (∼ 0.1 μm) and the whole granule morphology (∼μm). Starch can be converted into thermoplastic material (TPS) through destructurisation in the presence of plasticisers under specific extrusion conditions. During the transformation of granular starch into TPS, the complex granular supramolecular structure gives rise to the characteristic endothermic first order transition known as gelatinization. Despite advances in research on starch gelatinisation, the precise structural change and transitions involved are still a matter of debate. Moreover, structural variables such as botanical origins, amylose/amylopectin ratio, macromolecular sizes, etc, have been known to influence the physicochemical properties of starch and the transitions it undergoes.While understanding the linkage between structural characteristics and gelatinisation behaviour will provide fundamental knowledge that is critical for the development of next-generation starch biodegradable plastics, this has proved difficult mainly due to poor knowledge of the exact mechanism involved in gelatinisation. This is further complicated by the sketchy idea on the role of structure and organisation of the starch granule. Studies in our laboratory on four types of maize starches with different amylose/amylopectin ratio revealed that although there is a general trend on the variation of gelatinisation parameters with plasticisers concentration, the extent of the variation are different for different types of starch. It was also found that these differences are not a directly related to the variation in

  6. Structural Nervous System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — GTL's SNS technology aids in the operation of new or existing structural health monitoring (SHM) systems by integrating data and power pathways into the structure....

  7. Structural transformations in austenitic stainless steel induced by deuterium implantation: irradiation at 100 K.

    Science.gov (United States)

    Morozov, Oleksandr; Zhurba, Volodymyr; Neklyudov, Ivan; Mats, Oleksandr; Rud, Aleksandr; Chernyak, Nikolay; Progolaieva, Viktoria

    2015-01-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic stainless steel 18Cr10NiTi preimplanted at 100 K with deuterium ions in the dose range from 3 × 10(15) to 5 × 10(18) D/cm(2). The kinetics of structural transformation development in the implantation steel layer was traced from deuterium thermodesorption spectra as a function of implanted deuterium concentration. At saturation of austenitic stainless steel 18Cr10NiTi with deuterium by means of ion implantation, structural-phase changes take place, depending on the dose of implanted deuterium. The maximum attainable concentration of deuterium in steel is C = 1 (at.D/at.met. = 1/1). The increase in the implanted dose of deuterium is accompanied by the increase in the retained deuterium content, and as soon as the deuterium concentration attains C ≈ 0.5 the process of shear martensitic structural transformation in steel takes place. It includes the formation of bands, body-centered cubic (bcc) crystal structure, and the ferromagnetic phase. Upon reaching the deuterium concentration C > 0.5, the presence of these molecules causes shear martensitic structural transformations in the steel, which include the formation of characteristic bands, bcc crystal structure, and the ferromagnetic phase. At C ≥ 0.5, two hydride phases are formed in the steel, the decay temperatures of which are 240 and 275 K. The hydride phases are formed in the bcc structure resulting from the martensitic structural transformation in steel.

  8. Analysis of reconstructed interference fields in digital holographic interferometry using the polynomial phase transform

    International Nuclear Information System (INIS)

    Gorthi, Sai Siva; Rastogi, Pramod

    2009-01-01

    A noisy wrapped phase map is the end-output of commonly employed phase estimation methods in digital holographic interferometry. Hence filtering and unwrapping are necessary to obtain continuous phase distributions. This paper introduces a new approach for phase estimation in digital holographic interferometry using the polynomial phase transform. The proposed approach directly provides an accurate estimation of the unwrapped phase distribution from a noisy reconstructed interference field, thereby bypassing cumbersome and error-prone filtering and 2D phase unwrapping procedures

  9. Phase transformation of dental zirconia following artificial aging.

    Science.gov (United States)

    Lucas, Thomas J; Lawson, Nathaniel C; Janowski, Gregg M; Burgess, John O

    2015-10-01

    Low-temperature degradation (LTD) of yttria-stabilized zirconia can produce increased surface roughness with a concomitant decrease in strength. This study determined the effectiveness of artificial aging (prolonged boiling/autoclaving) to induce LTD of Y-TZP (yttria-tetragonal zirconia-polycrystals) and used artificial aging for transformation depth progression analyses. The null hypothesis is aging techniques tested produce the same amount of transformation, transformation is not time/temperature dependent and LTD causes a constant transformation throughout the Y-TZP samples. Dental-grade Y-TZP samples were randomly divided into nine subgroups (n = 5): as received, 3.5 and 7 day boiling, 1 bar autoclave (1, 3, 5 h), and 2 bar autoclave (1, 3, 5 h). A 4-h boil treatment (n = 2) was performed post-experiment for completion of data. Transformation was measured using traditional X-ray diffraction and low-angle X-ray diffraction. The fraction of t → m transformation increased with aging time. The 3.5 day boil and 2 bar 5 h autoclave produced similar transformation results, while the 7 day boiling treatment revealed the greatest transformation. The surface layer of the aged specimen underwent the most transformation while all samples displayed decreasing transformation with depth. Surface transformation was evident, which can lead to rougher surfaces and increased wear of opposing dentition/materials. Therefore, wear studies addressing LTD of Y-TZP are needed utilizing accelerated aging. © 2014 Wiley Periodicals, Inc.

  10. Structural phase transitions and Huang scattering

    International Nuclear Information System (INIS)

    Yamada, Yasusada

    1980-01-01

    The usefulness of the application of the concept of Huang scattering to the understandings of the origin of diffuse scatterings near structural phase transitions are discussed. It is pointed out that in several phase transitions, the observed diffuse scatterings can not be interpreted in terms of critical fluctuations of the order parameters associated with the structural phase transitions, and that they are rather interpreted as Huang scattering due to random distribution of individual order parameter which is 'dressed' by strain fields. Examples to show effective applications of this concept to analyze the experimental X-ray data and whence to understand microscopic mechanisms of structural phase transitions are presented. (author)

  11. Unraveling the nature of electric field- and stress- induced structural transformations in soft PZT by a new powder poling technique.

    Science.gov (United States)

    Kalyani, Ajay Kumar; V, Lalitha K; James, Ajit R; Fitch, Andy; Ranjan, Rajeev

    2015-02-25

    A 'powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) ∼ 650 pC N(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.

  12. Phase transformations in cerium and thorium metals at ultra high pressures

    International Nuclear Information System (INIS)

    Vohra, Y.K.

    1991-01-01

    This paper reports on the role of pressure variable in phase transformation which has not been fully exploited in metallic elements and their alloys. The static compression of over 50% in volume can readily be obtained in most metals and this tremendous change in inter-atomic distances can lead to the formation of new exotic crystal structures. The pressure-induced electron transfer amongst existing electronic energy bands and the occupation of new bands are the driving forces in a rich variety of phase transformations. The modern high pressure diamond anvil cell techniques can produce calibrated static pressures of over 300 to 400 GPa range and this technology, when interfaced with the synchrotron radiation sources, can yield rapid structural information (1-3). These capabilities have given new impetus for investigation of phase transformations in metallic systems at extreme conditions of temperatures and pressures and in establishing phase boundaries at high pressures and high temperatures. Cerium (Ce) and thorium (Th) metals occupy special positions in the periodic table at the beginning of the 4-f lanthanide and 5-f, actinide series, respectively. Ce has one electron in the localized 4-f shell, apart from the three valence electrons. Th metal, on the other hand, has four valence electrons and an unoccupied 5-f band above the Fermi-energy at ambient conditions. In view of the unoccupied 5-f band, Th metal is normally regarded as a tetravalent transition metal like Ti, Zr, and Hf and its bonding and other electronic properties can be explained within the tetravalent transition metal framework. However, the application of ultra-high pressures causes the delocalization of the 4-f shell in Ce and it is believed that Ce above 0.8 GPa pressure is a 4-f band metal

  13. Structural transformations in MoOx thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Camacho-Lopez, M.A.; Haro-Poniatowski, E.; Escobar-Alarcon, L.

    2004-01-01

    In this work, laser-induced crystallization in MoO x thin films (1.8≤x≤2.1) is reported. This transformation involves a MoO x oxidation and subsequently a crystallization process from amorphous MoO 3 to crystalline αMoO 3 . For comparison purposes crystallization is induced thermally, in an oven, as well. The crystallization kinetics is monitored by Raman spectroscopy; a threshold in the energy density necessary to induce the phase transformation is determined in the case of photo-crystallization. This threshold depends on the type of substrate on which the film is deposited. For the thin films deposited on glass substrates, the structural transformation is from amorphous MoO x to the thermodynamically stable αMoO 3 crystalline phase. For the thin films deposited on Si(100) the structural transformation is from amorphous MoO x to a mixture of αMoO 3 and the thermodynamically unstable βMoO 3 crystalline phases. The structural transformations are also characterized by scanning electron microscopy and light-transmission experiments. (orig.)

  14. Structural transformations in MoO{sub x} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Lopez, M.A.; Haro-Poniatowski, E. [Departamento de Fisica, Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, 09340, Mexico D. F. (Mexico); Escobar-Alarcon, L. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, 11801, Mexico D. F. (Mexico)

    2004-01-01

    In this work, laser-induced crystallization in MoO{sub x} thin films (1.8{<=}x{<=}2.1) is reported. This transformation involves a MoO{sub x} oxidation and subsequently a crystallization process from amorphous MoO{sub 3} to crystalline {alpha}MoO{sub 3}. For comparison purposes crystallization is induced thermally, in an oven, as well. The crystallization kinetics is monitored by Raman spectroscopy; a threshold in the energy density necessary to induce the phase transformation is determined in the case of photo-crystallization. This threshold depends on the type of substrate on which the film is deposited. For the thin films deposited on glass substrates, the structural transformation is from amorphous MoO{sub x} to the thermodynamically stable {alpha}MoO{sub 3} crystalline phase. For the thin films deposited on Si(100) the structural transformation is from amorphous MoO{sub x} to a mixture of {alpha}MoO{sub 3} and the thermodynamically unstable {beta}MoO{sub 3} crystalline phases. The structural transformations are also characterized by scanning electron microscopy and light-transmission experiments. (orig.)

  15. Relationship between hydrogen-induced phase transformations and pitting nucleation sites in duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Liqiu; Yang, Binjie; Qin, Sixiao [University of Science and Technology Beijing (China). Corrosion and Protection Center

    2016-02-15

    This paper demonstrates the hydrogen-induced phase transformation and the associated pitting nucleation sites of 2507 duplex stainless steel using scanning Kelvin probe force microscopy and magnetic force microscopy. The low potential sites in Volta potential images, which are considered as the pitting nucleation sites, are strongly dependent on the hydrogen-induced phase transformation. They firstly initiate on the magnetic martensite laths in the austenite phase or at the ferrite/austenite boundaries, and then appear near the needle-shaped microtwins in the ferrite phase, because of the difference in physicochemical properties of hydrogen-induced phase transformation microstructures.

  16. The influence of peak shock stress on the high pressure phase transformation in Zr

    International Nuclear Information System (INIS)

    Cerreta, E K; Addessio, F L; Bronkhorst, C A; Brown, D W; Escobedo, J P; Fensin, S J; Gray, G T III; Lookman, T; Rigg, P A; Trujillo, C P

    2014-01-01

    At high pressures zirconium is known to undergo a phase transformation from the hexagonal close packed (HCP) alpha phase to the simple hexagonal omega phase. Under conditions of shock loading, a significant volume fraction of high-pressure omega phase is retained upon release. However, the hysteresis in this transformation is not well represented by equilibrium phase diagrams and the multi-phase plasticity under shock conditions is not well understood. For these reasons, the influence of peak shock stress and temperature on the retention of omega phase in Zr has been explored. VISAR and PDV measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to quantify the volume fraction of retained omega phase and qualitatively understand the kinetics of this transformation. In turn, soft recovered specimens with varying volume fractions of retained omega phase have been utilized to understand the contribution of omega and alpha phases to strength in shock loaded Zr.

  17. Uncovering the Connection Between Low-Frequency Dynamics and Phase Transformation Phenomena in Molecular Solids

    Science.gov (United States)

    Ruggiero, Michael T.; Zhang, Wei; Bond, Andrew D.; Mittleman, Daniel M.; Zeitler, J. Axel

    2018-05-01

    The low-frequency motions of molecules in the condensed phase have been shown to be vital to a large number of physical properties and processes. However, in the case of disordered systems, it is often difficult to elucidate the atomic-level details surrounding these phenomena. In this work, we have performed an extensive experimental and computational study on the molecular solid camphor, which exhibits a rich and complex structure-dynamics relationship, and undergoes an order-disorder transition near ambient conditions. The combination of x-ray diffraction, variable temperature and pressure terahertz time-domain spectroscopy, ab initio molecular dynamics, and periodic density functional theory calculations enables a complete picture of the phase transition to be obtained, inclusive of mechanistic, structural, and thermodynamic phenomena. Additionally, the low-frequency vibrations of a disordered solid are characterized for the first time with atomic-level precision, uncovering a clear link between such motions and the phase transformation. Overall, this combination of methods allows for significant details to be obtained for disordered solids and the associated transformations, providing a framework that can be directly applied for a wide range of similar systems.

  18. Regularities of texture formation in alloys undergoing phase transformations during heat treatment and plastic working

    International Nuclear Information System (INIS)

    Ageev, N.V.; Babarehko, A.A.

    1983-01-01

    Peculiarities of texture formation in metals undergoing phase transformations in the temperature range of heat treatment and hot working are investigated theoretically and experimentally. A low-temperature phase after hot working is shown to inherite a high-temperature phase texture due to definite orientation conformity during phase transformation. Strengthened heat and thermomechanical treatments, as a rule, do not destroy material texture but change it

  19. In-situ characterization of highly reversible phase transformation by synchrotron X-ray Laue microdiffraction

    International Nuclear Information System (INIS)

    Chen, Xian; Tamura, Nobumichi; MacDowell, Alastair; James, Richard D.

    2016-01-01

    The alloy Cu_2_5Au_3_0Zn_4_5 undergoes a huge first-order phase transformation (6% strain) and shows a high reversibility under thermal cycling and an unusual martensitc microstructure in sharp contrast to its nearby compositions. This alloy was discovered by systematically tuning the composition so that its lattice parameters satisfy the cofactor conditions (i.e., the kinematic conditions of compatibility between phases). It was conjectured that satisfaction of these conditions is responsible for the enhanced reversibility as well as the observed unusual fluid-like microstructure during transformation, but so far, there has been no direct evidence confirming that these observed microstructures are those predicted by the cofactor conditions. To verify this hypothesis, we use synchrotron X-ray Laue microdiffraction to measure the orientations and structural parameters of variants and phases near the austenite/martensite interface. The areas consisting of both austenite and multi-variants of martensite are scanned by microLaue diffraction. The cofactor conditions have been examined from the kinematic relation of lattice vectors across the interface. The continuity condition of the interface is precisely verified from the correspondent lattice vectors between two phases.

  20. Course transformation: Content, structure and effectiveness analysis

    Science.gov (United States)

    DuHadway, Linda P.

    The organization of learning materials is often limited by the systems available for delivery of such material. Currently, the learning management system (LMS) is widely used to distribute course materials. These systems deliver the material in a text-based, linear way. As online education continues to expand and educators seek to increase their effectiveness by adding more effective active learning strategies, these delivery methods become a limitation. This work demonstrates the possibility of presenting course materials in a graphical way that expresses important relations and provides support for manipulating the order of those materials. The ENABLE system gathers data from an existing course, uses text analysis techniques, graph theory, graph transformation, and a user interface to create and present graphical course maps. These course maps are able to express information not currently available in the LMS. Student agents have been developed to traverse these course maps to identify the variety of possible paths through the material. The temporal relations imposed by the current course delivery methods have been replaced by prerequisite relations that express ordering that provides educational value. Reducing the connections to these more meaningful relations allows more possibilities for change. Technical methods are used to explore and calibrate linear and nonlinear models of learning. These methods are used to track mastery of learning material and identify relative difficulty values. Several probability models are developed and used to demonstrate that data from existing, temporally based courses can be used to make predictions about student success in courses using the same material but organized without the temporal limitations. Combined, these demonstrate the possibility of tools and techniques that can support the implementation of a graphical course map that allows varied paths and provides an enriched, more informative interface between the educator

  1. Features of order-disorder phase transformation in nonstoichiometric transition metals carbides

    International Nuclear Information System (INIS)

    Emel'yanov, A.N.

    1996-01-01

    Measurements of temperature and electric conductivity of nonstoichiometric transition metals carbides TiC χ and NbC χ in the area of order-disorder phase transformation are carried out. There are certain peculiarities on the temperature and electric conductivity curves of the carbides, connected with the carbon sublattice disordering. On the basis of the anomalies observed on the curves of the temperature conductivity of nonstoichiometric carbides of transition metals above the temperature of the order-disorder transition the existence of the second structural transition is supposed

  2. Microstructure and phase transformation on milled and unmilled Ti induced by water quenching

    CSIR Research Space (South Africa)

    Bolokang, AS

    2014-10-01

    Full Text Available Materials Letters Vol. 132 Microstructure and phase transformation on milled and unmilled Ti induced by water quenching A.S.Bolokang a,b,n, M.J.Phasha c, D.E.Motaung b, F.R.Cummings a,d, T.F.G.Muller a, C.J.Arendse a a Department of...Physics,UniversityoftheWesternCape,PrivateBagx17,Bellville7535,SouthAfrica bDST/CSIR Nanotechnology InnovationCentre ,National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P.O.Box395, Pretoria 0001, SouthAfrica c Transnet Engineering, Product...

  3. A kinetic-phase transformation near 250 K in potassium tetrachlorozincate

    International Nuclear Information System (INIS)

    Noiret, I.; Hedoux, A.; Guinet, Y.; Foulon, M.

    1993-01-01

    Raman-scattering experiments have been performed to study the successive phase transitions of K 2 ZnCl 4 over the temperature range (100/600) K. The spectra provide the temperature dependence of the mode frequencies and linewidths for two different spatial configurations: a(bb) c and c(aa) b. Special emphasis is put upon a new phenomenon observed in the spectra around 250 K in the c * /3 superstructure. Its kinetic character is revealed by complementary DSC measurements carried out over the range (120/300) K. This phenomenon is interpreted as a progressive structural transformation which corresponds to a slow modification of the tetrahedron distortions. (orig.)

  4. Relationships of quenching stresses to structural transformations in steel

    International Nuclear Information System (INIS)

    Loshkarev, V.E.

    1985-01-01

    Technique for accountancy of the effect of stresses on structural transformations in steel when solving problems of thermoplasticity is suggested. It is revealed on the basis of the conducted calculations that accountancy of interrelation of stressed and structural states of 20Kh2MF steel essentially affects forecasting of results of quenching

  5. Transformation of Indonesian Natural Zeolite into Analcime Phase under Hydrothermal Condition

    Science.gov (United States)

    Lestari, W. W.; Hasanah, D. N.; Putra, R.; Mukti, R. R.; Nugrahaningtyas, K. D.

    2018-04-01

    Natural zeolite is abundantly available in Indonesia and well distributed especially in the volcano area like Java, Sumatera, and Sulawesi. So far, natural zeolite from Klaten, Central Java is one of the most interesting zeolites has been widely studied. This research aims to know the effect of seed-assisted synthesis under a hydrothermal condition at 120 °C for 24 hours of Klaten’s zeolite toward the structural change and phase transformation of the original structure. According to XRD and XRF analysis, seed-assisted synthesis through the addition of aluminosilicate mother solution has transformed Klaten’s zeolite which contains (mordenite and clinoptilolite) into analcime type with decreasing Si/Al ratio from 4.51 into 1.38. Morphological analysis using SEM showed the shape changes from irregular into spherical looks like takraw ball in the range of 0.3 to 0.7 micrometer. Based on FTIR data, structure of TO4 site (T = Si or Al) was observed in the range of 300-1300 cm-1 and the occupancy of Brønsted acid site as OH stretching band from silanol groups was detected at 3440-3650 cm-1. Nitrogen adsorption-desorption analysis confirmed that transformation Klaten’s zeolite into analcime type has decreased the surface area from 55.41 to 22.89 m2/g and showed inhomogeneous pore distribution which can be classified as micro-mesoporous aluminosilicate materials.

  6. THREE-PHASE TRANSFORMER PARAMETERS CALCULATION CONSIDERING THE CORE SATURATION FOR THE MATLAB-SIMULINK TRANSFORMER MODEL

    Directory of Open Access Journals (Sweden)

    I. V. Novash

    2015-01-01

    Full Text Available This article describes the parameters calculation for the three-phase two-winding power transformer model taken from the SimPowerSystems library, which is the part of the MatLab- Simulink environment. Presented methodology is based on the power transformer nameplate data usage. Particular attention is paid to the power transformer magnetization curve para- meters  calculation.  The  methodology  of  the  three-phase  two-winding  power  transformer model parameters calculation considering the magnetization curve nonlinearity isn’t presented in Russian-and English-language sources. Power transformers demo models described in the SimPowerSystems user’s guide have already calculated parameters, but without reference to the sources of their determination. A power transformer is a nonlinear element of the power system, that’s why for its performance analysis in different modes of operation is necessary to have the magnetization curve parameters.The process analysis during no-load energizing of the power transformer is of special interest. This regime is accompanied by the inrush current on the supply side of the power transformer, which is several times larger than the transformer rated current. Sharp rising of the magnetizing current is explained by the magnetic core saturation. Therefore, magnetiza- tion characteristic accounting during transformer no-load energizing modeling is a mandatory requirement. Article authors attempt to put all calculating formulas in a more convenient form and validate the power transformer nonlinear magnetization characteristics parameters calcu- lation. Inrush current oscillograms obtained during the simulation experiment confirmed the adequacy of the calculated model parameters.

  7. Simulation of Structural Transformations in Heating of Alloy Steel

    Science.gov (United States)

    Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.

    2017-07-01

    Amathematical model for computer simulation of structural transformations in an alloy steel under the conditions of the thermal cycle of multipass welding is presented. The austenitic transformation under the heating and the processes of decomposition of bainite and martensite under repeated heating are considered. Amethod for determining the necessary temperature-time parameters of the model from the chemical composition of the steel is described. Published data are processed and the results used to derive regression models of the temperature ranges and parameters of transformation kinetics of alloy steels. The method developed is used in computer simulation of the process of multipass welding of pipes by the finite-element method.

  8. A flow-through hydrothermal cell for in situ neutron diffraction studies of phase transformations

    International Nuclear Information System (INIS)

    O'Neill, Brian; Tenailleau, Christophe; Nogthai, Yung; Studer, Andrew; Brugger, Joel; Pring, Allan

    2006-01-01

    A flow-through hydrothermal cell for the in situ neutron diffraction study of crystallisation and phase transitions has been developed. It can be used for kinetic studies on materials that exhibit structural transformations under hydrothermal conditions. It is specifically designed for use on the medium-resolution powder diffractometer (MRPD) at ANSTO, Lucas Heights, Sydney. But it is planned to adapt the design for the Polaris beamline at ISIS and the new high-intensity powder diffractometer (Wombat) at the new Australian reactor Opal. The cell will operate in a flow-through mode over the temperature range from 25-300 deg. C and up to pressures of 100 bar. The first results of a successful transformation of pentlandite (Fe,Ni) 9 S 8 to violarite (Fe,Ni) 3 S 4 under mild conditions (pH∼4) at 120 deg. C and 3 bar using in situ neutron diffraction measurements are presented

  9. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Kalkan, B. [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 20015 (United States); Edwards, T. G.; Sen, S. [Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616 (United States); Raoux, S. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2013-08-28

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  10. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Science.gov (United States)

    Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.

    2013-08-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  11. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    International Nuclear Information System (INIS)

    Kalkan, B.; Edwards, T. G.; Sen, S.; Raoux, S.

    2013-01-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression

  12. Acoustic emission characterization of the tetragonal-monoclinic phase transformation in zirconia

    International Nuclear Information System (INIS)

    Clarke, D.R.; Arora, A.

    1983-01-01

    The processes accompanying the tetragonal-monoclinic phase transformation in zirconia (ZrO 2 ) have been studied using acoustic emission and electron microscopy in an attempt to characterize the different mechanisms by which the transformation can be accommodated in bulk materials. Experiments in which the acoustic emission is detected as specimens are cooled through the transformation, following densification by sintering, are described. For comparison, the acoustic emission from free, nominally unconstrained powders similarly cooled through the transformation is reported. The existence of distinct processes accompanying the phase transformation is established on the basis of postexperiment multiparametric correlation analysis of the acoustic emission

  13. Effect of different factors on phase transformations in Fe-Mn alloys

    International Nuclear Information System (INIS)

    Balychev, Yu.M.; Tkachenko, F.K.

    1983-01-01

    Phase transformations proceeding under Fe-Mn alloy heating are studied and the effect of previous working conditions, particularly, cooling rate on these transformations is investigated. Investigations have been conducted on pure Fe-Mn alloys with 2-15% Mn. Phase transformations are shown to proceed according to α → #betta# and epsilon → #betta# reaction in Fe-Mn alloys containing 2-15% Mn under heating. Cooling rate in the range of approximately 5-1000 deg/min in preliminary working essentially affects phase transformations under subsequent heating

  14. Structural transformations in amorphous electrical steels

    International Nuclear Information System (INIS)

    D'yakonova, N.B.; Molotilov, B.V.; Vlasova, E.N.; Lyasotskij, I.V.

    2000-01-01

    The sequence of structural reactions at initial sages of crystallization of Fe-B-Si and Fe-B-Si-P amorphous ribbons is studied in the bulk and near the surface. It is shown that partial substitution of boron with phosphorus in Fe-Si-B-P alloys retards the surface crystallization a rising on annealing at temperatures typical for heat treatments applied to enhance magnetic properties. In spite of lower temperature of a bulk crystallization onset in phosphorus bearing alloys the beginning of surface crystallization shifts to high temperatures or to more long-term holding at given temperatures. This fact alloys varying annealing temperature and time in a wide range to attain needed magnetic properties as well as using retarded heating and cooling. It is of special importance when massive magnetic cores are heat treated [ru

  15. Insight into the Effects of Reinforcement Shape on Achieving Continuous Martensite Transformation in Phase Transforming Matrix Composites

    Science.gov (United States)

    Zhang, Xudong; Ren, Junqiang; Wang, Xiaofei; Zong, Hongxiang; Cui, Lishan; Ding, Xiangdong

    2017-12-01

    A continuous martensite transformation is indispensable for achieving large linear superelasticity and low modulus in phase transforming metal-based composites. However, determining how to accurately condition the residual martensite in a shape memory alloy matrix though the reinforcement shape to achieve continuous martensite transformation has been a challenge. Here, we take the finite element method to perform a comparative study of the effects of nanoinclusion shape on the interaction and martensite phase transformation in this new composite. Two typical samples are compared: one reinforced by metallic nanowires and the other by nanoparticles. We find that the residual martensite within the shape memory alloy matrix after a pretreatment can be tailored by the reinforcement shape. In particular, our results show that the shape memory alloy matrix can retain enough residual martensite phases to achieve continuous martensite transformation in the subsequent loading when the aspect ratio of nanoreinforcement is larger than 20. In contrast, the composites reinforced with spherical or low aspect ratio reinforcement show a typical nonlinear superelasticity as a result of a low stress transfer-induced discontinuous martensite transformation within the shape memory alloy matrix.

  16. Vibration mode and vibration shape under excitation of a three phase model transformer core

    Science.gov (United States)

    Okabe, Seiji; Ishigaki, Yusuke; Omura, Takeshi

    2018-04-01

    Structural vibration characteristics and vibration shapes under three-phase excitation of a archetype transformer core were investigated to consider their influences on transformer noise. Acoustic noise and vibration behavior were measured in a three-limb model transformer core. Experimental modal analysis by impact test was performed. The vibration shapes were measured by a laser scanning vibrometer at different exciting frequencies. Vibration amplitude of the core in out-of-plane direction were relatively larger than those in other two in-plane directions. It was consistent with the result that the frequency response function of the core in out-of-plane direction was larger by about 20 dB or more than those in in-plane directions. There were many vibration modes having bending deformation of limbs in out-of-plane direction. The vibration shapes of the core when excited at 50 Hz and 60 Hz were almost the same because the fundamental frequencies of the vibration were not close to the resonance frequencies. When excitation frequency was 69 Hz which was half of one of the resonance frequencies, the vibration shape changed to the one similar to the resonance vibration mode. Existence of many vibration modes in out-of-plane direction of the core was presumed to be a reason why frequency characteristics of magnetostriction and transformer noise do not coincide.

  17. Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H., E-mail: wanghm@lanl.gov [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Jeong, Y. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD (United States); Clausen, B.; Liu, Y.; McCabe, R.J. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Barlat, F. [Graduate Institute of Ferrous Technology, POSTECH (Korea, Republic of); Tomé, C.N. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-01-01

    The present work integrates in-situ neutron diffraction, electron backscatter diffraction and crystal plasticity modeling to investigate the effect of martensitic phase transformation on the behavior of 304 stainless steel under uniaxial tension. The macroscopic stress strain response, evolution of the martensitic phase fraction, texture evolution of each individual phase, and internal elastic strains were measured at room temperature and at 75 °C. Because no martensitic transformation was observed at 75 °C, the experimental results at 75 °C were used as a reference to quantify the effect of formed martensitic phase on the behavior of 304 stainless steel at room temperature. A crystallographic phase transformation model was implemented into an elastic–viscoplastic self-consistent framework. The phase transformation model captured the macroscopic stress strain response, plus the texture and volume fraction evolution of austenite and martensite. The model also predicts the internal elastic strain evolution with loading in the austenite, but not in the martensite. The results of this work highlight the mechanisms that control phase transformation and the sensitivity of modeling results to them, and point out to critical elements that still need to be incorporated into crystallographic phase transformation models to accurately describe the internal strain evolution during phase transformation.

  18. Peculiarities of phase transformation in Ni3Fe powder alloy

    International Nuclear Information System (INIS)

    Nuzhdin, A.A.

    1990-01-01

    Ordering process in sintered powder alloy Ni 3 Fe by normal and high temperatures was studied. Thermal stresses connected with porosity level of material effect on transformation peculiarities. The changes of electric conductivity, thermal expansion coefficient, bulk modulus during transformation were studied. The analysis of this changes was made

  19. Thermal stability and phase transformation of metastable phases in Zr-Nb

    International Nuclear Information System (INIS)

    Aurelio, G.; Fernandez Guillermet, Armando

    2003-01-01

    The lattice parameters of the bcc (β) and (Ω) phases occurring metastability in a series of Zr-rich Zr-Nb alloys have been determined at and above room temperature (TR) using neutron diffraction techniques. In the first place, the effect of temperature changes upon the lattice parameters of the β and Ω phases in alloys with 10 and 18 at. % Nb was monitored using neutron thermo-diffraction. A method of analysis is applied to the data, which involve a confrontation between the observed structural properties and an idealized -or 'reference'- behavior (RB) which admits a simple mathematical description. A generalized form of the law of Vegard is adopted as RB for the β phase, whereas a specific RB is proposed for the Ω structure. The experimental data are well accounted for by this interpretation scheme, leading to a picture of the isothermal reactions occurring at high temperature, which involves the transfer of Nb from the Ω to the β phase. Finally, the neutron diffraction data on the Ω phase is combined with an electron microscopy study for the alloy with 10 at. % Nb aged at 773 K, which provides information on the composition of this phase and its evolution towards thermodynamic equilibrium. (author)

  20. Structural phase transitions in Zn(CN)2 under high pressures

    International Nuclear Information System (INIS)

    Poswal, H.K.; Tyagi, A.K.; Lausi, Andrea; Deb, S.K.; Sharma, Surinder M.

    2009-01-01

    High pressure behavior of zinc cyanide (Zn(CN) 2 ) has been investigated with the help of synchrotron-based X-ray diffraction measurements. Our studies reveal that under pressure this compound undergoes phase transformations and the structures of the new phases depend on whether the pressure is hydrostatic or not. Under hydrostatic conditions, Zn(CN) 2 transforms from cubic to orthorhombic to cubic-II to amorphous phases. In contrast, the non-hydrostatic pressure conditions drive the ambient cubic phase to a partially disordered crystalline phase, which eventually evolves to a substantially disordered phase. The final disordered phase in the latter case is distinct from the amorphous phase observed under the hydrostatic pressures. - Graphical abstract: High pressure X-ray diffraction investigations on Zn(CN) 2 show three phase transformations i.e., cubic→orthorhombic→cubic-II→amorphous. However, the results strongly depend upon the nature of stress

  1. Structure preserving transformations for Newtonian Lie-admissible equations

    International Nuclear Information System (INIS)

    Cantrijn, F.

    1979-01-01

    Recently, a new formulation of non-conservative mechanics has been presented in terms of Hamilton-admissible equations which constitute a generalization of the conventional Hamilton equations. The algebraic structure entering the Hamilton-admissible description of a non-conservative system is that of a Lie-admissible algebra. The corresponding geometrical treatment is related to the existence of a so-called symplectic-admissible form. The transformation theory for Hamilton-admissible systems is currently investigated. The purpose of this paper is to describe one aspect of this theory by identifying the class of transformations which preserve the structure of Hamilton-admissible equations. Necessary and sufficient conditions are established for a transformation to be structure preserving. Some particular cases are discussed and an example is worked out

  2. The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles

    KAUST Repository

    Ha, Don-Hyung

    2011-01-01

    We report the structural evolution and the diffusion processes which occur during the phase transformation of nanoparticles (NPs), ε-Co to Co 2P to CoP, from a reaction with tri-n-octylphosphine (TOP). Extended X-ray absorption fine structure (EXAFS) investigations were used to elucidate the changes in the local structure of cobalt atoms which occur as the chemical transformation progresses. The lack of long-range order, spread in interatomic distances, and overall increase in mean-square disorder compared with bulk structure reveal the decrease in the NP\\'s structural order compared with bulk structure, which contributes to their deviation from bulk-like behavior. Results from EXAFS show both the Co2P and CoP phases contain excess Co. Results from EXAFS, transmission electron microscopy, X-ray diffraction, and density functional theory calculations reveal that the inward diffusion of phosphorus is more favorable at the beginning of the transformation from ε-Co to Co2P by forming an amorphous Co-P shell, while retaining a crystalline cobalt core. When the major phase of the sample turns to Co 2P, the diffusion processes reverse and cobalt atom out-diffusion is favored, leaving a hollow void, characteristic of the nanoscale Kirkendall effect. For the transformation from Co2P to CoP theory predicts an outward diffusion of cobalt while the anion lattice remains intact. In real samples, however, the Co-rich nanoparticles continue Kirkendall hollowing. Knowledge about the transformation method and structural properties provides a means to tailor the synthesis and composition of the NPs to facilitate their use in applications. © 2011 The Royal Society of Chemistry.

  3. Simulation Kinetics of Austenitic Phase Transformation in Ti+Nb Stabilized IF and Microalloyed Steels

    Science.gov (United States)

    Ghosh, Sumit; Dasharath, S. M.; Mula, Suhrit

    2018-05-01

    In the present study, the influence of cooling rates (low to ultrafast) on diffusion controlled and displacive transformation of Ti-Nb IF and microalloyed steels has been thoroughly investigated. Mechanisms of nucleation and formation of non-equiaxed ferrite morphologies (i.e., acicular ferrite and bainitic ferrite) have been analyzed in details. The continuous cooling transformation behavior has been studied in a thermomechanical simulator (Gleeble 3800) using the cooling rates of 1-150 °C/s. On the basis of the dilatometric analysis of each cooling rate, continuous cooling transformation (CCT) diagrams have been constructed for both the steels to correlate the microstructural features at each cooling rate in different critical zones. In the case of the IF steel, massive ferrite grains along with granular bainite structures have been developed at cooling rates > 120 °C/s. On the other hand, a mixture of lath bainitic and lath martensite structures has been formed at a cooling rate of 80 °C/s in the microalloyed steel. A strong dependence of the cooling rates and C content on the microstructures and mechanical properties has been established. The steel samples that were fast cooled to a mixture of bainite ferrite and martensite showed a significant improvement of impact toughness and hardness (157 J, for IF steel and 174 J for microalloyed steel) as compared to that of the as-received specimens (133 J for IF steel and 116 J for microalloyed steel). Thus, it can be concluded that the hardness and impact toughness properties are correlated well with the microstructural constituents as indicated by the CCT diagram. Transformation mechanisms and kinetics of austenitic transformation to different phase morphologies at various cooling rates have been discussed in details to correlate microstructural evolution and mechanical properties.

  4. Thermal induced structural transformation of bimetallic AuPd nanoparticles

    International Nuclear Information System (INIS)

    Bruma, A; Li, Z Y

    2014-01-01

    High Angle Annular Dark Field Scanning Transmission Electron Microscope (HAADF-STEM) has been employed for the study of thermal effects of structural transformation of AuPd nanoparticles produced by physical vapour deposition. Depending on the duration of annealing at a temperature of 500 K, atomic resolved imaging analysis reveals the formation of various structure morphologies from the ordered L1 2 superlattice to the core-shell structure. The effects of Pd-oxides are also discussed

  5. A Study of Phase Composition and Structure of Alloys of the Al - Mg - Si - Fe System

    Science.gov (United States)

    Mailybaeva, A. D.; Zolotorevskii, V. S.; Smagulov, D. U.; Islamkulov, K. M.

    2017-03-01

    The Thermo-Calc software is used to compute the phase transformations occurring during cooling of alloys. Polythermal and isothermal sections of the phase diagram of the Al - Mg - Si - Fe system are plotted. The phase composition and the structure of aluminum alloys in cast condition and after a heat treatment are studied experimentally.

  6. Structure properties and relaxor characteristics of the phases transformation in BaTi{sub 0.5}(Fe{sub 0.33}Mo{sub 0.17})O{sub 3} perovskite ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Bourguiba, Fayçal, E-mail: fayssalbourguiba@gmail.com [Laboratoire de la Matière Condensée et des Nanosciences, Département de Physique, Faculté des Sciences de Monastir, Monastir, 5019 (Tunisia); Dhahri, Ah.; Tahri, Tarek [Laboratoire de Physique appliqué, Département de physique, Faculté des sciences de, Sfax, 3018 (Tunisia); Dhahri, J. [Laboratoire de la Matière Condensée et des Nanosciences, Département de Physique, Faculté des Sciences de Monastir, Monastir, 5019 (Tunisia); Abdelmoula, N. [Laboratoire des Matériaux Ferroélectriques (LMF), LR-Physique-Mathématiques et Applications, Université de Sfax, Faculté des Sciences (FSS), Route de Soukra km 3.5 B.P 1171, 3000, Sfax (Tunisia); Taibi, K. [Laboratoire de Science et Génie des Matériaux, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Hlil, E.K. [Institut Néel, CNRS-Université J. Fourier, B.P. 166, 38042, Grenoble (France)

    2016-08-05

    The effect of replacing titanium by iron and molybdenum in the B site on the structural and physical properties of BaTi{sub 0.5}(Fe{sub 0.33}Mo{sub 0.17})O{sub 3} polycrystalline sample was investigated by X-ray diffraction, scanning electron microscopy (SEM) as well as dielectric characterizations. Crystal phase, microstructure, and dielectric property of the ceramic were examined. A single hexagonal perovskite structure with space group P6{sub 3}/mmc was obtained at 1400 °C and stabilized at room temperature. The microstructural study of the sintered pellets revealed that the plate-like grains are the typical grain morphologies in this ceramic. The temperature dependence of the dielectric properties was investigated in the frequency range 1 kHz to 1 MHz. Three dielectric relaxations were observed in the present ceramic at the temperature ranges of 330–473 K, 473–550 K and 650–800 K with a maximum in the dielectric permittivity (ε{sup ’}{sub r} ∼ 3518 at 443 K at 1 KHz, ε{sup ’}{sub r} ∼4335 at 502 K at 1 KHz and ε{sup ’}{sub r} ∼11,331 at 749 K at 1 KHz) that shifted to a higher temperature with increasing frequency. Temperature dependent variation of the dielectric constant showed a diffused phase transition which can be well described by fitting the modified Curie–Weiss relation, (1/ε{sup ‘}{sub r}–1/ε{sup ‘}{sub r,max})=(T–T{sub m}){sup γ}/C. - Highlights: • The BaTi{sub 0.5}(Fe{sub 0.33}Mo{sub 0.17})O{sub 3} ceramic was prepared by solid state reaction. • The sample crystallizes in the hexagonal P6{sub 3}/mmc structure. • Temperature dependency dielectric study showed relaxor kind phase transition for different temperature Regions.

  7. On mechanism of substructure formation in SmS during isomorphic phase transformations

    International Nuclear Information System (INIS)

    Aptekar', I.L.; Ivanov, V.I.; Tonkov, E.Yu.; Shmyt'ko, I.M.

    1986-01-01

    X-ray diffraction study of substructure characteristics of SmS samples subjected to treatment at different temrerature and pressure in media with different viscosity ( graphite, silicon oil) for realization of P-M-P transformations ( p-semiconductor phase, M - high pressure phase) is performed. It is assumed that with M - phase formation P - matrix volume relaxation delays, therefore the new phase particles occupy smaller volume than the initial matrix which causes the M - phase disorientation. The difference between the phase transformation rate and deformation rate under the pressure in media with various viscosity results in arising different substructural characteristics

  8. All-optical WDM Regeneration of DPSK Signals using Optical Fourier Transformation and Phase Sensitive Amplification

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Kjøller, Niels-Kristian

    2015-01-01

    We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time.......We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time....

  9. Industrial structural transformation and carbon dioxide emissions in China

    International Nuclear Information System (INIS)

    Zhou, Xiaoyan; Zhang, Jie; Li, Junpeng

    2013-01-01

    Using provincial panel data from the period 1995–2009 to analyze the relationship between the industrial structural transformation and carbon dioxide emissions in China, we find that the first-order lag of industrial structural adjustment effectively reduced the emissions; technical progress itself did not reduce the emissions, but indirectly led to decreasing emissions through the upgrading and optimization of industrial structure. Foreign direct investment and intervention by local governments reduced carbon dioxide emissions, but urbanization significantly increased the emissions. Thus, industrial structural adjustment is an important component of the development of a low-carbon economy. In the context of industrial structural transformation, an effective way to reduce a region’s carbon dioxide emissions is to promote the upgrading and optimization of industrial structure through technical progress. Tighter environmental access policies, selective utilization of foreign direct investment, and improvements in energy efficiency can help to reduce carbon dioxide emissions. - Highlights: ► Relationship between the transformation of industrial structure and CO 2 emissions in China. ► Dynamic panel data model. ► Industrial structural adjustments can effectively reduce current CO 2 emissions. ► Technical progress leads to decreasing CO 2 emissions through upgrading of industrial structure

  10. An absorbing phase transition from a structured active particle phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)

    2007-02-14

    In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.

  11. Anatase-rutile phase transformation of titanium dioxide bulk material: a DFT + U approach

    International Nuclear Information System (INIS)

    Vu, Nam H; Le, Hieu V; Cao, Thi M; Pham, Viet V; Le, Hung M; Nguyen-Manh, Duc

    2012-01-01

    The anatase-rutile phase transformation of TiO 2 bulk material is investigated using a density functional theory (DFT) approach in this study. According to the calculations employing the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional with the Vanderbilt ultrasoft pseudopotential, it is suggested that the anatase phase is more energetically stable than rutile, which is in variance with the experimental observations. Consequently, the DFT + U method is employed in order to predict the correct structural stability in titania from electronic-structure-based total energy calculations. The Hubbard U term is determined by examining the band structure of rutile with various values of U from 3 to 10 eV. At U = 5 eV, a theoretical bandgap for rutile is obtained as 3.12 eV, which is in very good agreement with the reported experimental bandgap. Hence, we choose the DFT + U method (with U = 5 eV) to investigate the transformation pathway using the newly-developed solid-state nudged elastic band (ss-NEB) method, and consequently obtain an intermediate transition structure that is 9.794 eV per four-TiO 2 above the anatase phase. When the Ti-O bonds in the transition state are examined using charge density analysis, seven Ti-O bonds (out of 24 bonds in the anatase unit cell) are broken, and this result is in excellent agreement with a previous experimental study (Penn and Banfield 1999 Am. Miner. 84 871-6).

  12. For progress in natural science: Materials international investigations of structural phase transformation and THz properties across metal–insulator transition in VO2/Al2O3 epitaxial films

    Directory of Open Access Journals (Sweden)

    Mengmeng Yang

    2015-10-01

    Full Text Available Vanadium dioxide (VO2 epitaxial thin films on (0001-oriented Al2O3 substrates were prepared using radio frequency (RF magnetron sputtering techniques. To study the metal-insulator-transition (MIT mechanism and extend the applications of VO2 epitaxial films at terahertz (THz band, temperature-dependent X-ray diffraction (XRD and THz time domain spectroscopy of the VO2 epitaxial films were performed. Both the lattice constants and THz transmission exhibited a similar and sharp transition that was similar to that observed for the electrical resistance. Consequently, the MIT of the VO2/Al2O3 epitaxial films should be co-triggered by the structural phase transition and electronic transition. Moreover, the very large resistance change (on the order of ~103 and THz response (with a transmission modulation ratio of ~87% in the VO2/Al2O3 epitaxial heterostructures are promising for electrical switch and electro-optical device applications.

  13. Phase difference estimation method based on data extension and Hilbert transform

    International Nuclear Information System (INIS)

    Shen, Yan-lin; Tu, Ya-qing; Chen, Lin-jun; Shen, Ting-ao

    2015-01-01

    To improve the precision and anti-interference performance of phase difference estimation for non-integer periods of sampling signals, a phase difference estimation method based on data extension and Hilbert transform is proposed. Estimated phase difference is obtained by means of data extension, Hilbert transform, cross-correlation, auto-correlation, and weighted phase average. Theoretical analysis shows that the proposed method suppresses the end effects of Hilbert transform effectively. The results of simulations and field experiments demonstrate that the proposed method improves the anti-interference performance of phase difference estimation and has better performance of phase difference estimation than the correlation, Hilbert transform, and data extension-based correlation methods, which contribute to improving the measurement precision of the Coriolis mass flowmeter. (paper)

  14. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    KAUST Repository

    Song, Zhibo

    2018-04-04

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  15. Orientational relationships between phases in the γ→α transformations for uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Brun, G.

    1966-04-01

    A crystallographic study has been made of the γ → α + γ transformation in the alloy containing 3 per cent by weight of molybdenum using electronic micro-diffraction; it has been possible to establish the orientational relationships governing the germination of the α phase in the γ phase. One finds: (111)γ // (100) α, (112-bar)γ // (010) α, (11-bar 0)γ // (001)α. By choosing a monoclinic lattice containing the same number of atoms as the orthorhombic lattice for defining the γ mother phase, the change in structure has been explained by adding a homogeneous (112-bar)γ [111]γ shearing deformation to a heterogeneous deformation brought about by slipping of the atoms which are not situated at the nodes of this lattice. The identity of the orientation relationships γ/α and γ/α''b and the loss of coherence γ /α as a function of temperature or of time lead to the conclusion that, in the range studied, the γ → α transformation begins with a martensitic process and continues by germination and growth. (author) [fr

  16. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    Science.gov (United States)

    Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew

    2018-04-01

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  17. The effect of zinc on the microstructure and phase transformations of casting Al-Cu alloys

    Directory of Open Access Journals (Sweden)

    Manasijević Ivana I.

    2016-01-01

    Full Text Available Copper is one of the main alloying elements for aluminum casting alloys. As an alloying element, copper significantly increases the tensile strength and toughness of alloys based on aluminum. The copper content in the industrial casting aluminum alloys ranges from 3,5 to 11 wt.%. However, despite the positive effect on the mechanical properties, copper has a negative influence on the corrosion resistance of aluminum and its alloys. In order to further improve the properties of Al-Cu alloys they are additional alloyed with elements such as zinc, magnesium and others. In this work experimental and analytical examination of the impact of zinc on the microstructure and phase transformations of Al-Cu alloys was carried out. In order to determine the effect of the addition of zinc to the structure and phase transformations of Al-Cu alloys two alloys of Al-Cu-Zn system with selected compositions were prepared and then examined using scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDX. The experimental results were compared with the results of thermodynamic calculations of phase equilibria.

  18. Crystal and morphological phase transformation of Pb(II) to Pb(IV) in chlorinated water

    International Nuclear Information System (INIS)

    Lytle, Darren A.; White, Colin; Nadagouda, Mallikarjuna N.; Worrall, Adam

    2009-01-01

    Herein, we show an important transformation of Pb(II) to Pb(IV) in chlorinated water under laboratory conditions. The study results will give an insight toward understanding how corrosion by-products on lead materials found in drinking water distribution systems develop and breakdown with time. The experiments were conducted to elucidate the morphology of lead (IV) oxide mineral transformation from hydrocerussite and its relationship to color change over a period of time. Scanning electron microscopy and transmission electron microscopy were used to describe the surface morphology, shape and size of lead solids. X-ray diffraction (XRD) analysis was performed to determine the mineral structure of lead solids. Solids analysis results were compared over a 14-day period of time to define changes in the crystal structure and morphology of lead solids. XRD analysis results of freshly synthesized lead solids showed that hydrocerussite, [Pb 3 (CO 3 ) 2 (OH) 2 ], was the only lead mineral present. After 14 days, a mixture of cerussite (PbCO 3 ) and α-PbO 2 and β-PbO 2 was present. Lead precipitates, i.e. hydrocerussite changed color from white to reddish brown confirming a transformation of the lead phase with time. This was correlated to a change in morphology from flower shaped crystals to hexagonal bars and submicron particles.

  19. Initial transformer sizing for single-phase residential load

    International Nuclear Information System (INIS)

    Schneider, K.C.; Hoad, R.F.

    1992-01-01

    The purchase of distribution transformers represents a significant capital investment per year for an electric utility. Choosing the correct thermal and economic size transformer can help control this investment. This paper describes a method for determining the correct economic size of distribution transformers using end-use appliance load profiles and the ANSI/IEEE Standard C57.91-1981 thermal model. Although applied only to single family and multifamily residential load in this paper, the method can be extended to other types of load such as commercial or industrial

  20. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    International Nuclear Information System (INIS)

    Gao, Lei; Ding, Xiangdong; Sun, Jun; Lookman, Turab; Salje, E. K. H.

    2016-01-01

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.

  1. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lei; Ding, Xiangdong, E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk; Sun, Jun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Salje, E. K. H., E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ (United Kingdom)

    2016-07-18

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.

  2. In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation

    Science.gov (United States)

    Zheng, Jun; Zhou, Wei

    2018-04-01

    Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.

  3. Application of Differential Scanning Calorimetry (DSC in study of phase transformations in ductile iron

    Directory of Open Access Journals (Sweden)

    R. Przeliorz

    2010-04-01

    Full Text Available The effect of heating rate on phase transformations to austenite range in ductile iron of the EN-GJS-450-10 grade was investigated. For studies of phase transformations, the technique of differential scanning calorimetry (DSC was used. Microstructure was examined by optical microscopy. The calorimetric examinations have proved that on heating three transformations occur in this grade of ductile iron, viz. magnetic transformation at the Curie temperature, pearlite→austenite transformation and ferrite→austenite transformation. An increase in the heating rate shifts the pearlite→austenite and ferrite→austenite transformations to higher temperature range. At the heating rate of 5 and 15°C/min, local extrema have been observed to occur: for pearlite→austenite transformation at 784°C and 795°C, respectively, and for ferrite→austenite transformation at 805°C and 821°C, respectively. The Curie temperature of magnetic transformation was extrapolated to a value of 740°C. Each transformation is related with a specific thermal effect. The highest value of enthalpy is accompanying the ferrite→austenite transformation, the lowest occurs in the case of pearlite→austenite transformation.

  4. The Structural Phase Transition in Solid DCN

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.

    1975-01-01

    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energies...

  5. Modelling and Analysis of Phase Transformations and Stresses in Laser Welding Process / Modelowanie I Analiza Przemian Fazowych I Naprężeń W Procesie Spawania Laserowego

    Directory of Open Access Journals (Sweden)

    Piekarska W.

    2015-12-01

    Full Text Available The work concerns the numerical modelling of structural composition and stress state in steel elements welded by a laser beam. The temperature field in butt welded joint is obtained from the solution of heat transfer equation with convective term. The heat source model is developed. Latent heat of solid-liquid and liquid-gas transformations as well as latent heats of phase transformations in solid state are taken into account in the algorithm of thermal phenomena. The kinetics of phase transformations in the solid state and volume fractions of formed structures are determined using classical formulas as well as Continuous-Heating-Transformation (CHT diagram and Continuous-Cooling-Transformation (CCT diagram during welding. Models of phase transformations take into account the influence of thermal cycle parameters on the kinetics of phase transformations during welding. Temporary and residual stress is obtained on the basis of the solution of mechanical equilibrium equations in a rate form. Plastic strain is determined using non-isothermal plastic flow with isotropic reinforcement, obeying Huber-Misses plasticity condition. In addition to thermal and plastic strains, the model takes into account structural strain and transformation plasticity. Changing with temperature and structural composition thermophysical parameters are included into constitutive relations. Results of the prediction of structural composition and stress state in laser butt weld joint are presented.

  6. Mathematical model of phase transformations in thermo-chemical cathodes with zirconium insertion

    International Nuclear Information System (INIS)

    Kavokin, A.A.; Kazmi, I.H.

    2007-01-01

    The mathematical model of thermo-chemical processes in the cathode of plasmatron working in the gas environment is investigated. The model describes electromagnetic, temperature and concentration fields taking into account kinetic of phase transformation and chemical reaction in accordance with a state diagram. The offered approach is simpler than the Stefan's approach of describing an analogical phase transformation. As an example the case of copper cathodes with the zirconium insertion in the environment of oxygen is considered. The influence of separate parts of process on distribution of temperature inside of the insertion is estimated. On the basis of this analysis the opportunity of use of stationary approach for electric and temperature fields is shown and analytical formulas for temperature are received. After that a numerical solution for gas concentration distribution is obtained. The calculations on the specified model show that the size of area of a phase zirconium oxides depends mainly upon coefficient of diffusion of oxygen. The calculations for various types of dependencies of gas diffusion coefficient from temperature are concluded. The results of calculations develop understanding of some features of oxidation process of a zirconium insertion. Typical example of multi phase process model is the mathematical description of a heat and mass transfer occurring in metal which is being heated by an electric arch in the gas medium (1, 2, 4). The macroscopic model of physical and chemical transformations can be described as follows (3). As a metal is heated on the surface of an electrode as a function of rising results in the border dividing solid and liquid phases moves ahead deep into the electrode. At the same time there is a diffusion of gas in electrode and formation of new chemical compounds which can noticeably differ in the physical and chemical properties from each other and metal of the electrode. Moreover we shall name a phase of substance not

  7. Composition dependence of phase transformation behavior and shape memory effect of Ti(Pt, Ir)

    International Nuclear Information System (INIS)

    Yamabe-Mitarai, Y.; Hara, T.; Kitashima, T.; Miura, S.; Hosoda, H.

    2013-01-01

    Highlights: ► The partial isothemal section at 1523 K was determined in Ti–Pt–Ir. ► The high-temperature shape memory effect of Ti(Pt, Ir) was investigated. ► The shape recovery ratio was 72% in Ti–10Pt–32Ir after deformation at 1123 K. ► Ir addition to TiPt is effective to improve shape memory effect of TiPt. -- Abstract: The phase transformation and high-temperature shape memory effect of Ti(Pt, Ir) were investigated. First, the Ti-rich phase boundary of Ti(Pt, Ir) was investigated by phase composition analysis by secondary electron microscopy (SEM) using an electron probe X-ray micro analyzer (EPMA), X-ray diffraction analysis and transmission electron microscopy (TEM). Then, the three alloys Ti–35Pt–10Ir, Ti–22Pt–22Ir, and Ti–10Pt–32Ir (at%) close to the phase boundary but in the single phase of Ti(Pt, Ir) were prepared by the arc melting method. The shape memory effect and crystal structure were investigated by compression loading–unloading tests and high-temperature X-ray diffraction analysis, respectively

  8. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    Science.gov (United States)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  9. Study of the phase transformations in Ni2MnGa by capacitance dilatometry

    International Nuclear Information System (INIS)

    Wu, X D; Finlayson, T R

    2007-01-01

    High precision capacitance dilatometry has been used to study the phase transformations in a Ni 2 MnGa single crystal. The results show that capacitance dilatometry is an effective method to study the phase transformations. The thermal strain accompanying the martensitic transformation was not reproducible, but became more reproducible with the application of external stress. The first-order character of the martensitic transformation was enhanced by external stress. The intermediate transformation temperature decreased with increasing external stress with a temperature coefficient of -2.40 K MPa -1 . The coefficient of thermal expansion was 1.7 x 10 -5 K -1 for the parent phase and 1.4 x 10 -5 K -1 for the intermediate phase

  10. Stainless austenitic steels strengthened due to reversible phase transformations and by ageing

    International Nuclear Information System (INIS)

    Sagaradze, V.V.; Kositsyna, I.I.; Ozhiganov, A.V.

    1981-01-01

    The effect of the reversible phase transformations, consisting in the conduction of the direct and reverse martensite transformations and aging, during which the intermetallide γ'-phase of the composition Ni 3 Ti is formed, on the streng-thening of alloys in the Fe-Cr-Ni-Ti system is considered. Stainless austenitic steels Kh12N12T3 and Kh12N14T3, which acquire high mechanical properties: σsub(0.2)=685-785 MPa, σsub(B)=1275 MPa, delta >= 20%, as a result of reversible phase transformations and aging, are suggested. After the reversible phase transformations and ageing the steels possess a high resistance to γ-α-transformation during cold treatment [ru

  11. Pressure-induced phase transformation in ZrW2O8 - Compressibility and thermal expansion of the orthorhombic phase

    International Nuclear Information System (INIS)

    Hu, Z.; Jorgensen, J.D.; Teslic, S.; Short, S.; Argyriou, D.N.

    1997-01-01

    In situ neutron powder diffraction has been used to show that the application of hydrostatic pressure at room temperature produces a transformation of ZrW 2 O 8 from the cubic to an orthorhombic phase beginning at 2.1 kbar and completed by 3.1 kbar, with a 5% reduction in volume. After release of pressure, the orthorhombic phase is retained at room temperature. Its thermal expansion is negative below room temperature, but is positive above room temperature with a transformation back to the cubic phase at about 390 K. The WO 4 groups are found to play the dominant role in both phase transformations. The volume compressibilities of the cubic and orthorhombic phases are 1.38 x 10 -3 and 1.53 x 10 -3 kbar -1 , respectively. (orig.)

  12. Heterophase fluctuation of omega phase and X-ray diffuse scattering from dual phase structure

    International Nuclear Information System (INIS)

    Farjami, Susan; Kubo, Hiroshi

    2003-01-01

    Heterophase fluctuation of athermal omega embryos has been analyzed by assuming a dual phase structure of omega embryos composed of omega and bcc matrix phase. The two-dimensional modulation of dual phase was suggested from the quantitative estimation of coherent free energy of omega embryos using microscopic theory of elasticity and the Landau anharmonic theory for phase transformation. The X-ray diffraction theory was developed in connection to the formation of omega embryos having the dual phase structure. The offset of the diffuse peak position from the ideal omega point in the X-ray diffraction pattern is attributed to the dual phase (incommensurate phase) of omega embryos. It was also shown that the ellipsoidal shape of the diffuse intensity tailing toward the fundamental spot of the matrix phase is originated from the equilibrium shape of the omega embryo. The quantitative estimation of elastic energy modulus (EEM) in the disordered bcc matrix and in the ordered bcc matrix indicates a difference in the deviation amount of the minimum point k(q m ) from the ideal omega point k(q ω ) and a difference in the elliptical shape of embryos

  13. Phase Transformation and Shape Memory Effect of Ti-Pd-Pt-Zr High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Yamabe-Mitarai, Yoko; Takebe, Wataru; Shimojo, Masayuki

    2017-12-01

    To understand the potential of high-temperature shape memory alloys, we have investigated the phase transformation and shape memory effect of Ti-(50 - x)Pt- xPd-5Zr alloys ( x = 0, 5, and 15 at.%), which present the B2 structure in the austenite phase and B19 structure in the martensite phase. Their phase transformation temperatures are very high; A f and M f of Ti-50Pt are 1066 and 1012 °C, respectively. By adding Zr and Pd, the phase transition temperatures decrease, ranging between 804 and 994 °C for A f and 590 and 865 °C for M f. Even at the high phase transformation temperature, a maximum recovery ratio of 70% was obtained for one cycle in a thermal cyclic test. A work output of 1.2 J/cm3 was also obtained. The recovery ratio obtained by the thermal cyclic test was less than 70% because the recovery strain was training effect was also investigated.

  14. Low-pH-induced transformation of bilayer membrane into bicontinuous cubic phase in dioleoylphosphatidylserine/monoolein membranes.

    Science.gov (United States)

    Okamoto, Yoshihide; Masum, Shah Md; Miyazawa, Haruna; Yamazaki, Masahito

    2008-04-01

    Cubic biomembranes, nonbilayer membranes with connections in three-dimensional space that have a cubic symmetry, have been observed in various cells. Interconversion between the bilayer liquid-crystalline (L(alpha)) phase and cubic phases attracted much attention in terms of both biological and physicochemical aspects. Herein we report the pH effect on the phase and structure of dioleoylphosphatidylserine (DOPS)/monoolein (MO) membranes under a physiological ion concentration condition, which was revealed by small-angle X-ray scattering (SAXS) measurement. At neutral pH, DOPS/MO membranes containing high concentrations of DOPS were in the L(alpha) phase. First, the pH effect on the phase and structure of the multilamellar vesicles (MLVs) of the DOPS/MO membranes preformed at neutral pH was investigated by adding various low-pH buffers into the MLV suspension. For 20%-DOPS/80%-MO MLVs, at and below pH 2.9, a transition from the L(alpha) to cubic (Q(224)) phase occurred within 1 h. This phase transition was reversible; a subsequent increase in pH to a neutral one in the membrane suspension transformed the cubic phase into the original L(alpha) phase. Second, we found that a decrease in pH transformed large unilamellar vesicles of DOPS/MO membranes into the cubic phase under similar conditions. We have proposed the mechanism of the low-pH-induced phase transition and also made a quantitative analysis on the critical pH of the phase transition. This finding is the first demonstration that a change in pH can induce a reversible phase transition between the L(alpha) and cubic phases of lipid membranes within 1 h.

  15. Elucidating the vacuum structure of the Aoki phase

    International Nuclear Information System (INIS)

    Azcoiti, Vicente; Di Carlo, Giuseppe; Follana, Eduardo; Vaquero, Alejandro

    2013-01-01

    In this paper, we discuss the vacuum structure of QCD with two flavors of Wilson fermions, inside the Aoki phase. We provide numerical evidence, coming from HMC simulations in 4 4 , 6 4 and 8 4 lattices, supporting a vacuum structure for this model at strong coupling more complex than the one assumed in the standard wisdom, with new vacua where the expectation value of iψ ¯ γ 5 ψ can take non-zero values, and which can not be connected with the Aoki vacua by parity–flavor symmetry transformations

  16. Coproduction as a structural transformation of the public sector

    NARCIS (Netherlands)

    Meijer, Albert

    2016-01-01

    Purpose: Coproduction fundamentally changes the roles of citizens and governments. The purpose of this paper is to enhance the theoretical understanding of the transformative changes in the structural order of the public domain that result from the coproduction of public services.

  17. Structural Transformation, Biased Technological Change, and Employment in Vietnam

    DEFF Research Database (Denmark)

    Abbott, Philip; Tarp, Finn; Wu, Ce

    2015-01-01

    Employment in Vietnam and elsewhere in Asia has grown more slowly than GDP over the last several decades. This means GDP per capita is rising. Vietnamese policymakers, however, are concerned that ongoing structural transformation is creating too few jobs. We use data for seven aggregated sectors ...

  18. Structural transformation, biased technological change, and employment in Vietnam

    DEFF Research Database (Denmark)

    Abbott, Philip; Tarp, Finn; Wu, Ce

    Employment in Vietnam and elsewhere in Asia has grown more slowly than GDP over the last several decades. This means GDP per capita is rising. Vietnamese policymakers, however, are concerned that ongoing structural transformation is creating too few jobs. We use data for seven aggregated sectors ...

  19. Deconstructing the BRICs : Structural Transformation and Aggregate Productivity Growth

    NARCIS (Netherlands)

    de Vries, Gaaitzen; Erumban, A. A.; Timmer, M.P.; Voskoboynikov, I.; Wu H.X., [No Value

    2011-01-01

    This paper studies structural transformation and its implications for productivity growth in the BRIC countries based on a new database that provides trends in value added and employment at a detailed 35-sector level. We find that for China, India and Russia reallocation of labour across sectors is

  20. The Structural Phase Transition in Octaflournaphtalene

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Arthur, J. W.; Pawley, G. S.

    1977-01-01

    The phase transition in octafluoronaphthalene has been investigated by Raman scattering and neutron powder diffraction. The weight of the experimental evidence points to a unit cell doubling in the a direction, but with no change in space group symmetry. Lattice dynamics calculations support...... this evidence and indicate that the mechanism of the phase transition may well be the instability of a zone boundary acoustic mode of librational character. The structure of the low-temperature phase has been refined and the Raman spectra of the upper and lower phases are reported....

  1. From Virtual Organization to E-Business: Transformational Structuration

    OpenAIRE

    James J. Lee; Bandula Jayatilaka; Ben B. Kim; Ted E. Lee; Pairin Katerattanakul; Soongoo Hong

    2010-01-01

    This article shows how the technical hype of 1990s has been transformed into the e-business organizations at the beginning of the 21st century. The authors took an interpretive stance in this study, grounded theory, and investigated the ontology of virtual organization by the metaphorical analysis. The metaphorical analysis adopted in this study provides the analytical power to conceptualize the social structure of virtual organization in the context of structuration theory with the process o...

  2. Investigation of the martensitic phase transformations in CoFe single crystals using high-resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Waitz, T.

    1999-06-01

    In CoFe crystals containing 0.85, 1.5, 5.75 and 6.0at.% Fe the thermally induced martensitic phase transformations between the close packed lattices face centered cubic (fcc), double hexagonal close packed (dhcp) and hexagonal close packed (hcp) were studied. Transmission electron microscopy methods were applied including in-situ experiments; both high-resolution transmission electron microscopy (HRTEM) images and lattice fringe images were used to analyze the transformations at an atomic scale. Based on the results of both the transformations in the bulk and the in-situ transformations it is concluded that the phase transitions occur by the formation of lamellae on the close packed habit planes. The lamellae have a minimum thickness of 10 to 15 close packed planes; therefore transformation models that are based on random overlap of stacking faults can be excluded. The glissile transformation fronts of the lamellae contain transformation dislocations (partials) that are correlated on an atomic scale. In the HRTEM images partials that are only about 0.2 nm apart were resolved and analyzed in detail by circuits that are similar to Burgers circuits. Two attracting partials on adjacent close packed planes are the structural units of the transformation fronts; they are dipoles and paired partials (with a total Burgers vector of a single partial) in the case of the transformations hcp dhcp and fcc dhcp, respectively. Different arrangements of the partials at the transformation fronts lead to two different modes A and B of the phase transition. These two modes seem to be competitive processes that can be favored by different parameters of the material (as chemical composition and microstructure). Partials of mode A transformations have the same Burgers vectors; therefore the partials repel each other causing long range internal stresses and large transformation shear strains that can lead to a surface relief. Whereas, partials of mode B transformations have different

  3. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  4. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  5. Transformation Paths from Cubic to Low-Symmetry Structures in Heusler Ni2MnGa Compound.

    Science.gov (United States)

    Zelený, Martin; Straka, Ladislav; Sozinov, Alexei; Heczko, Oleg

    2018-05-08

    In order to explain the formation of low-temperature phases in stoichiometric Ni 2 MnGa magnetic shape memory alloy, we investigate the phase transformation paths from cubic austenite with Heusler structure to low-symmetry martensitic structures. We used ab initio calculations combined with the generalized solid state nudged elastic band method to determine the minimum energy path and corresponding changes in crystal lattice. The four-, five-, and seven-layered modulated phases of martensite (4O, 10M, and 14M) are built as the relaxed nanotwinned non-modulated (NM) phase. Despite having a total energy larger than the other martensitic phases, the 10M phase will spontaneously form at 0 K, because there is no energy barrier on the path and the energy decreases with a large negative slope. Moreover, a similar negative slope in the beginning of path is found also for the transformation to the 6M premartensite, which appears as a local minimum on the path leading further to 10M martensite. Transformation paths to other structures exhibit more or less significant barriers in the beginning hindering such a transformation from austenite. These findings correspond to experiment and demonstrates that the kinetics of the transformation is decisive for the selection of the particular low-symmetry structure.

  6. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    Science.gov (United States)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.

  7. Nanoscale multiphase phase field approach for stress- and temperature-induced martensitic phase transformations with interfacial stresses at finite strains

    Science.gov (United States)

    Basak, Anup; Levitas, Valery I.

    2018-04-01

    A thermodynamically consistent, novel multiphase phase field approach for stress- and temperature-induced martensitic phase transformations at finite strains and with interfacial stresses has been developed. The model considers a single order parameter to describe the austenite↔martensitic transformations, and another N order parameters describing N variants and constrained to a plane in an N-dimensional order parameter space. In the free energy model coexistence of three or more phases at a single material point (multiphase junction), and deviation of each variant-variant transformation path from a straight line have been penalized. Some shortcomings of the existing models are resolved. Three different kinematic models (KMs) for the transformation deformation gradient tensors are assumed: (i) In KM-I the transformation deformation gradient tensor is a linear function of the Bain tensors for the variants. (ii) In KM-II the natural logarithms of the transformation deformation gradient is taken as a linear combination of the natural logarithm of the Bain tensors multiplied with the interpolation functions. (iii) In KM-III it is derived using the twinning equation from the crystallographic theory. The instability criteria for all the phase transformations have been derived for all the kinematic models, and their comparative study is presented. A large strain finite element procedure has been developed and used for studying the evolution of some complex microstructures in nanoscale samples under various loading conditions. Also, the stresses within variant-variant boundaries, the sample size effect, effect of penalizing the triple junctions, and twinned microstructures have been studied. The present approach can be extended for studying grain growth, solidifications, para↔ferro electric transformations, and diffusive phase transformations.

  8. Microstructure and structural phase transitions in iron-based superconductors

    International Nuclear Information System (INIS)

    Wang Zhen; Cai Yao; Yang Huai-Xin; Tian Huan-Fang; Wang Zhi-Wei; Ma Chao; Chen Zhen; Li Jian-Qi

    2013-01-01

    Crystal structures and microstructural features, such as structural phase transitions, defect structures, and chemical and structural inhomogeneities, are known to have profound effects on the physical properties of superconducting materials. Recently, many studies on the structural properties of Fe-based high-T c superconductors have been published. This review article will mainly focus on the typical microstructural features in samples that have been well characterized by physical measurements. (i) Certain common structural features are discussed, in particular, the crystal structural features for different superconducting families, the local structural distortions in the Fe 2 Pn 2 (Pn = P As, Sb) or Fe 2 Ch 2 (Ch = S, Se, Te) blocks, and the structural transformations in the 122 system. (ii) In FeTe(Se) (11 family), the superconductivity, chemical and structural inhomogeneities are investigated and discussed in correlation with superconductivity. (iii) In the K 0.8 Fe 1.6+x Se 2 system, we focus on the typical compounds with emphasis on the Fe-vacancy order and phase separations. The microstructural features in other superconducting materials are also briefly discussed. (topical review - iron-based high temperature superconductors)

  9. Structural analysis and martensitic transformation in equiatomic HfPd alloy

    Science.gov (United States)

    Hisada, S.; Matsuda, M.; Takashima, K.; Yamabe-Mitarai, Y.

    2018-02-01

    We investigated the crystal structure and the martensitic transformation in equiatomic HfPd alloy. The analysis of the crystal structure by electron diffraction and Rietveld refinement using X-ray diffraction data indicates that the space group of the martensitic phase is Cmcm, and the lattice parameters are a = 0.329 nm, b = 1.021 nm, and c = 0.438 nm. Martensitic variants are composed of the plate-like morphology of several hundred nm, and the boundaries between the variants have (021)Cmcm twin relations. This (021)Cmcm twin boundary seems to be sharp without ledge and steps. Differential scanning calorimetry measurement indicates that each martensitic transformation temperature is determined to be Ms = 819 K, Mf = 794 K, As = 928 K, and Af = 954 K. Based on the dimension change using a thermo-mechanical analyzer, the expansion and shrinkage of the sample occurred with the forward and reverse martensitic transformation, respectively.

  10. First-principles screening of structural properties of intermetallic compounds on martensitic transformation

    Science.gov (United States)

    Lee, Joohwi; Ikeda, Yuji; Tanaka, Isao

    2017-11-01

    Martensitic transformation with good structural compatibility between parent and martensitic phases are required for shape memory alloys (SMAs) in terms of functional stability. In this study, first-principles-based materials screening is systematically performed to investigate the intermetallic compounds with the martensitic phases by focusing on energetic and dynamical stabilities as well as structural compatibility with the parent phase. The B2, D03, and L21 crystal structures are considered as the parent phases, and the 2H and 6M structures are considered as the martensitic phases. In total, 3384 binary and 3243 ternary alloys with stoichiometric composition ratios are investigated. It is found that 187 alloys survive after the screening. Some of the surviving alloys are constituted by the chemical elements already widely used in SMAs, but other various metallic elements are also found in the surviving alloys. The energetic stability of the surviving alloys is further analyzed by comparison with the data in Materials Project Database (MPD) to examine the alloys whose martensitic structures may cause further phase separation or transition to the other structures.

  11. Reconstructive structural phase transitions in dense Mg

    International Nuclear Information System (INIS)

    Yao Yansun; Klug, Dennis D

    2012-01-01

    The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied. (paper)

  12. Salt-occluded zeolite waste forms: Crystal structures and transformability

    International Nuclear Information System (INIS)

    Richardson, J.W. Jr.

    1996-01-01

    Neutron diffraction studies of salt-occluded zeolite and zeolite/glass composite samples, simulating nuclear waste forms loaded with fission products, have revealed complex structures, with cations assuming the dual roles of charge compensation and occlusion (cluster formation). These clusters roughly fill the 6--8 angstrom diameter pores of the zeolites. Samples are prepared by equilibrating zeolite-A with complex molten Li, K, Cs, Sr, Ba, Y chloride salts, with compositions representative of anticipated waste systems. Samples prepared using zeolite 4A (which contains exclusively sodium cations) as starting material are observed to transform to sodalite, a denser aluminosilicate framework structure, while those prepared using zeolite 5A (sodium and calcium ions) more readily retain the zeolite-A structure. Because the sodalite framework pores are much smaller than those of zeolite-A, clusters are smaller and more rigorously confined, with a correspondingly lower capacity for waste containment. Details of the sodalite structures resulting from transformation of zeolite-A depend upon the precise composition of the original mixture. The enhanced resistance of salt-occluded zeolites prepared from zeolite 5A to sodalite transformation is thought to be related to differences in the complex chloride clusters present in these zeolite mixtures. Data relating processing conditions to resulting zeolite composition and structure can be used in the selection of processing parameters which lead to optimal waste forms

  13. Study of effect of chromium on titanium dioxide phase transformation

    Indian Academy of Sciences (India)

    Administrator

    the other hand, the effect of solution pH in phase stability .... pore size of anatase phase decreases with increase of ... range of 0–200 °C, corresponding to desorption of water .... The correlation revealed a straight line with a slope equal to 1 for ...

  14. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    Science.gov (United States)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  15. On the study of the solid-solid phase transformation of TlBiTe2

    International Nuclear Information System (INIS)

    Chrissafis, K.; Vinga, E.S.; Paraskevopoulos, K.M.; Polychroniadis, E.K.

    2003-01-01

    The narrow gap semiconductor TlBiTe 2 undergoes a solid-solid phase transformation from the rhombohedral (D 3d ) to the cubic (O h ) phase. The present paper deals with the study of this phase transformation combining the results of Differential Scanning Calorimetry (DSC) and Transmission Electron Microscopy (TEM). It has been found that during heating the transformation is an athermal activated process, which can be described only by a combination of more than one processes while during cooling it exhibits an expectable thermal hysteresis due to the volume difference. The results of the kinetic analysis combined with the electron microscopy findings, supported also by the Fourier Transform Infrared (FTIR) spectroscopy ones, lead to the conclusion that TlBiTe 2 undergoes a multiple-step, displacive, martensitic type transformation. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  16. Thermal stability and phase transformations of martensitic Ti–Nb alloys

    Directory of Open Access Journals (Sweden)

    Matthias Bönisch, Mariana Calin, Thomas Waitz, Ajit Panigrahi, Michael Zehetbauer, Annett Gebert, Werner Skrotzki and Jürgen Eckert

    2013-01-01

    Full Text Available Aiming at understanding the governing microstructural phenomena during heat treatments of Ni-free Ti-based shape memory materials for biomedical applications, a series of Ti–Nb alloys with Nb concentrations up to 29 wt% was produced by cold-crucible casting, followed by homogenization treatment and water quenching. Despite the large amount of literature available concerning the thermal stability and ageing behavior of Ti–Nb alloys, only few studies were performed dealing with the isochronal transformation behavior of initially martensitic Ti–Nb alloys. In this work, the formation of martensites (α' and α'' and their stability under different thermal processing conditions were investigated by a combination of x-ray diffraction, differential scanning calorimetry, dilatometry and electron microscopy. The effect of Nb additions on the structural competition in correlation with stable and metastable phase diagrams was also studied. Alloys with 24 wt% Nb or less undergo a transformation sequence on heating from room temperature to 1155 K. In alloys containing >24 wt% Nb α'' martensitically reverts back to β0, which is highly unstable against chemical demixing by formation of isothermal ωiso. During slow cooling from the single phase β domain α precipitates and only very limited amounts of α'' martensite form.

  17. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals.

    Science.gov (United States)

    Bardhan, Rizia; Hedges, Lester O; Pint, Cary L; Javey, Ali; Whitelam, Stephen; Urban, Jeffrey J

    2013-10-01

    A quantitative understanding of nanocrystal phase transformations would enable more efficient energy conversion and catalysis, but has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments. We present a new in situ luminescence-based probe enabling direct quantification of nanocrystal phase transformations, applied here to the hydriding transformation of palladium nanocrystals. Our approach reveals the intrinsic kinetics and thermodynamics of nanocrystal phase transformations, eliminating complications of substrate strain, ligand effects and external signal transducers. Clear size-dependent trends emerge in nanocrystals long accepted to be bulk-like in behaviour. Statistical mechanical simulations show these trends to be a consequence of nanoconfinement of a thermally driven, first-order phase transition: near the phase boundary, critical nuclei of the new phase are comparable in size to the nanocrystal itself. Transformation rates are then unavoidably governed by nanocrystal dimensions. Our results provide a general framework for understanding how nanoconfinement fundamentally impacts broad classes of thermally driven solid-state phase transformations relevant to hydrogen storage, catalysis, batteries and fuel cells.

  18. Nonlocal transformation of the internal quantum particle structure

    Directory of Open Access Journals (Sweden)

    Alexey Yu. Samarin

    2016-09-01

    Full Text Available The analysis of the integral wave equation, having path integral kernel, has resulted, that collapse phenomenon is based on the nonlocal transformation of the internal structure of a quantum particle, considering in the form of the matter fields collection. This nonlocality allows to escape the contradiction between the reduction quantum mechanics postulate and special relativity. It is shown, that the wave function transformation, corresponding to von Neumann's reduction, has the deterministic nature and the quantum mechanics stochasticity is a consequence of a macroscopic measurer presence in the measuring process. Besides it is demonstrated, that the decogerence phenomenon has the same mechanism of the wave function transformation. EPR-type experiment is described in detail and the possibility of the faster-then light communication is proved, as well the possible rules of thumb of this communication are proposed.

  19. In situ measurement of solvent-mediated phase transformations during dissolution testing

    DEFF Research Database (Denmark)

    Aaltonen, Jaakko; Heinänen, Paula; Peltonen, Leena

    2006-01-01

    In this study, solvent-mediated phase transformations of theophylline (TP) and nitrofurantoin (NF) were measured in a channel flow intrinsic dissolution test system. The test set-up comprised simultaneous measurement of drug concentration in the dissolution medium (with UV-Vis spectrophotometry......) and measurement of the solid-state form of the dissolving solid (in situ with Raman spectroscopy). The solid phase transformations were also investigated off-line with scanning electron microscopy. TP anhydrate underwent a transformation to TP monohydrate, and NF anhydrate (form beta) to NF monohydrate (form II......). Transformation of TP anhydrate to TP monohydrate resulted in a clear decrease in the dissolution rate, while the transformation of NF anhydrate (form beta) to NF monohydrate (form II) could not be linked as clearly to changes in the dissolution rate. The transformation of TP was an order of magnitude faster than...

  20. Extensively Reversible Thermal Transformations of a Bistable, Fluorescence-Switchable Molecular Solid: Entry into Functional Molecular Phase-Change Materials.

    Science.gov (United States)

    Srujana, P; Radhakrishnan, T P

    2015-06-15

    Functional phase-change materials (PCMs) are conspicuously absent among molecular materials in which the various attributes of inorganic solids have been realized. While organic PCMs are primarily limited to thermal storage systems, the amorphous-crystalline transformation of materials like Ge-Sb-Te find use in advanced applications such as information storage. Reversible amorphous-crystalline transformations in molecular solids require a subtle balance between robust supramolecular assembly and flexible structural elements. We report novel diaminodicyanoquinodimethanes that achieve this transformation by interlinked helical assemblies coupled with conformationally flexible alkoxyalkyl chains. They exhibit highly reversible thermal transformations between bistable (crystalline/amorphous) forms, along with a prominent switching of the fluorescence emission energy and intensity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Transformation of the Surface Structure of Marble under the Action of a Shock Wave

    Science.gov (United States)

    Shcherbakov, I. P.; Vettegren, V. I.; Bashkarev, A. Ya.; Mamalimov, R. I.

    2018-01-01

    The structure of marble fracture fragments formed after the destruction under the action of a shock wave have been analyzed by Raman, infrared, and luminescence spectroscopic techniques. It has been found that calcite I in the surface layer of fragments with thicknesses of about 2 μm is transformed into high-pressure phase calcite III. At the same time, concentrations of Mn2+, Eu3+, and other ions decrease to about onefourth of their initial values.

  2. Size and temperature dependent stability and phase transformation in single-crystal zirconium nanowire

    International Nuclear Information System (INIS)

    Sutrakar, Vijay Kumar; Roy Mahapatra, D.

    2011-01-01

    A novel size dependent FCC (face-centered-cubic) → HCP (hexagonally-closed-pack) phase transformation and stability of an initial FCC zirconium nanowire are studied. FCC zirconium nanowires with cross-sectional dimensions 20 Å, in which surface stresses are not enough to drive the phase transformation, show meta-stability. In such a case, an external kinetic energy in the form of thermal heating is required to overcome the energy barrier and achieve FCC → HCP phase transformation. The FCC-HCP transition pathway is also studied using Nudged Elastic Band (NEB) method, to further confirm the size dependent stability/metastability of Zr nanowires. We also show size dependent critical temperature, which is required for complete phase transformation of a metastable-FCC nanowire.

  3. Power Electronic Transformer based Three-Phase PWM AC Drives

    Science.gov (United States)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  4. Structural transformation in mechanosynthesized bcc Fe-Al-Si(Ge) solid solutions during heating

    International Nuclear Information System (INIS)

    Kubalova, L.M.; Sviridov, I.A.; Vasilyeva, O.Ya.; Fadeeva, V.I.

    2007-01-01

    X-ray diffractometry and Moessbauer spectroscopy study of Fe 50 Al 25 Si 25 and Fe 50 Al 25 Ge 25 alloys obtained by mechanical alloying (MA) of elementary powders was carried out. Phase transformation during heating of synthesized products was studied using differential scanning calorimetry (DSC). After 2.5 h of MA monophase alloys containing bcc Fe(Al, Ge) solid solutions Fe(Al, Si) are formed. Fe(Al, Si) is partially ordered B2 type and Fe(Al, Ge) is completely disordered. DSC curves of synthesized alloys displayed the presence of exothermal peaks caused by phase transformation. The metastable Fe(Al, Si) solid solution transformed into FeAl 1-x Si x (B2) and FeSi 1-x Al x (B20) equilibrium phases. The Fe(Al, Ge) solid solution transformed into equilibrium phases through intermediate stage of Fe 6 Ge 3 Al 2 metastable phase formation. The Fe 6 Ge 3 Al 2 phase dissociated into three equilibrium phases: FeAl 1-x Ge x (B2), χ-Fe 6 Ge 5 and η-Fe 13 (Ge, Al) 8 (B8 2 ). The structure of Fe 6 Ge 3 Al 2 was calculated by Rietveld method, the distribution of Al and Ge in the elementary cell and its parameters were calculated. Moessbauer study showed that Fe(Al, Si) and Fe(Al, Ge) solid solutions are paramagnetic. In the equilibrium state the alloy containing Si is also paramagnetic while the alloy with Ge showed ferromagnetic properties

  5. Structural and magnetic transformations in NdMn2Hx hydrides

    International Nuclear Information System (INIS)

    Budziak, A.; Zachariasz, P.; Pełka, R.; Figiel, H.; Żukrowski, J.; Woch, M.W.

    2012-01-01

    Highlights: ► Full structural phase diagram is presented for the NdMn 2 H x (2.0 ≤ x ≤ 4.0) hydrides in the temperature range of 70–385 K. ► For samples x = 2.0, 2.5, and 4.0 a splitting into two phases with different hydrogen concentrations are observed. ► Only for samples with x = 3.0 and 3.5 no spinodal decompositions are detected. ► The effects of hydrogen absorption on structural properties are shown to be reflected in magnetic behavior. ► A huge jump of magnetic ordering temperatures from ∼104 K for host NdMn 2 to above 200 K for its hydrides is observed or anticipated. - Abstract: X-ray powder diffraction and bulk magnetization measurements were used to study structural and magnetic properties of hydrides NdMn 2 H x (2.0 ≤ x ≤ 4.0). The X-ray investigations performed in the temperature range 70–385 K have revealed many structural transformations at low temperatures. In particular, a transformation from the hexagonal to the monoclinic phase and spinodal decompositions were observed. The magnetic behavior of the hydrides is correlated with the structural transitions. A tentative structural diagram is presented. The obtained results are compared with the properties of other cubic and hexagonal RMn 2 H x hydrides.

  6. Martensitic phase transformations in Ni–Ti-based shape memory alloys: The Landau theory

    International Nuclear Information System (INIS)

    Shchyglo, Oleg; Salman, Umut; Finel, Alphonse

    2012-01-01

    We present a simple Landau free energy functional for cubic-to-orthorhombic and cubic-to-monoclinic martensitic phase transformations. The functional is derived following group–subgroup relations between different martensitic phases – tetragonal, trigonal, orthorhombic and monoclinic – in order to fully capture the symmetry properties of the free energy of the austenite and martensite phases. The derived free energy functional is fitted to the elastic and thermodynamic properties of NiTi and NiTiCu shape memory alloys which exhibit cubic-to-monoclinic and cubic-to-orthorhombic martensitic phase transformations, respectively.

  7. The Physics of Structural Phase Transitions

    CERN Document Server

    Fujimoto, Minoru

    2005-01-01

    Phase transitions in which crystalline solids undergo structural changes present an interesting problem in the interplay between the crystal structure and the ordering process that is typically nonlinear. Intended for readers with prior knowledge of basic condensed-matter physics, this book emphasizes the physics behind spontaneous structural changes in crystals. Starting with the relevant thermodynamic principles, the text discusses the nature of order variables in collective motion in structural phase transitions, where a singularity in such a collective mode is responsible for lattice instability as revealed by soft phonons. In this book, critical anomalies at second-order structural transitions are first analyzed with the condensate model. Discussions on the nonlinear ordering mechanism are followed with the soliton theory, thereby interpreting the role of long-range order. Relevant details for nonlinear mathematics are therefore given for minimum necessity. The text also discusses experimental methods fo...

  8. Effect of phase transformations on laser forming of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Fan, Y.; Cheng, P.; Yao, Y.L.; Yang, Z.; Egland, K.

    2005-01-01

    In laser forming, phase transformations in the heat-affected zone take place under steep thermal cycles, and have a significant effect on the flow behavior of Ti-6Al-4V alloy and the laser-forming process. The flow-stress data of a material are generally provided as only dependent on strain, strain rate, and temperature, while phase transformations are determined by both temperature and temperature history. Therefore, effect of phase transformations on the flow behavior of materials in thermomechanical processing is not given necessary considerations. In the present work, both the α→β transformation during heating and the decomposition of β phase, producing martensite α ' or lamellae α dependent on cooling rate, are numerically investigated. The spatial distribution of volume fractions of phases is obtained by coupling thermal and phase transformation kinetic modeling. Consequently, the flow stress of Ti-6Al-4V alloy is calculated by the rule of mixtures based on the phase ratio and the flow stress of each single phase, which is also a function of temperature, strain, and strain rate. According to the obtained flow-stress data, the laser-forming process of Ti-6Al-4V alloy is modeled by finite element method, and the deformation is predicted. A series of carefully controlled experiments are conducted to validate the theoretically predicted results

  9. Electron backscatter diffraction studies of focused ion beam induced phase transformation in cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.G., E-mail: helen.jones@npl.co.uk [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Day, A.P. [Aunt Daisy Scientific Ltd, Claremont House, High St, Lydney GL15 5DX (United Kingdom); Cox, D.C. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2016-10-15

    A focused ion beam microscope was used to induce cubic to hexagonal phase transformation in a cobalt alloy, of similar composition to that of the binder phase in a hardmetal, in a controlled manner at 0°, 45° and 80° ion incident angles. The cobalt had an average grain size of ~ 20 μm, allowing multiple orientations to be studied, exposed to a range of doses between 6 × 10{sup 7} and 2 × 10{sup 10} ions/μm{sup 2}. Electron backscatter diffraction (EBSD) was used to determine the original and induced phase orientations, and area fractions, before and after the ion beam exposure. On average, less phase transformation was observed at higher incident angles and after lower ion doses. However there was an orientation effect where grains with an orientation close to (111) planes were most susceptible to phase transformation, and (101) the least, where grains partially and fully transformed at varying ion doses. - Highlights: •Ion-induced phase change in FCC cobalt was observed at multiple incidence angles. •EBSD was used to study the relationship between grain orientation and transformation. •Custom software analysed ion dose and phase change with respect to grain orientation. •A predictive capability of ion-induced phase change in cobalt was enabled.

  10. [Study of the phase transformation of TiO2 with in-situ XRD in different gas].

    Science.gov (United States)

    Ma, Li-Jing; Guo, Lie-Jin

    2011-04-01

    TiO2 sample was prepared by sol-gel method from chloride titanium. The phase transformation of the prepared TiO2 sample was studied by in-situ XRD and normal XRD in different gas. The experimental results showed that the phase transformation temperatures of TiO2 were different under in-situ or normal XRD in different kinds of gas. The transformation of amorphous TiO2 to anatase was controlled by kinetics before 500 degrees C. In-situ XRD showed that the growth of anatase was inhibited, but the transformation of anatase to rutile was accelerated under inactive nitrogen in contrast to air. Also better crystal was obtained under hydrogen than in argon. These all showed that external oxygen might accelerate the growth of TiO2, but reduced gas might partly counteract the negative influence of lack of external oxygen. The mechanism of phase transformation of TiO2 was studied by in-situ XRD in order to control the structure in situ.

  11. The transformation behaviour of the beta phase in Zr-2.5 wt% Nb pressure tubes

    International Nuclear Information System (INIS)

    Griffiths, M.; Winegar, J.E.

    1994-12-01

    A temperature-time-transformation (TTT) diagram has been developed for the β-phase in Zr-2.5 wt% Nb pressure tubes. The results show that the morphology and/or physical state of the β-phase in pressure tubes has a significant effect on the transformation behaviour compared with a bulk Zr-19 wt%Nb alloy. (author). 14 refs., 1 tab., 15 figs

  12. Multi-stage phase retrieval algorithm based upon the gyrator transform.

    Science.gov (United States)

    Rodrigo, José A; Duadi, Hamootal; Alieva, Tatiana; Zalevsky, Zeev

    2010-01-18

    The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and experimental results.

  13. Multi-stage phase retrieval algorithm based upon the gyrator transform

    OpenAIRE

    Rodrigo Martín-Romo, José Augusto; Duadi, Hamootal; Alieva, Tatiana Krasheninnikova; Zalevsky, Zeev

    2010-01-01

    The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and exp...

  14. Critical indices for reversible gamma-alpha phase transformation in metallic cerium

    Science.gov (United States)

    Soldatova, E. D.; Tkachenko, T. B.

    1980-08-01

    Critical indices for cerium have been determined within the framework of the pseudobinary solution theory along the phase equilibrium curve, the critical isotherm, and the critical isobar. The results obtained verify the validity of relationships proposed by Rushbrook (1963), Griffiths (1965), and Coopersmith (1968). It is concluded that reversible gamma-alpha transformation in metallic cerium is a critical-type transformation, and cerium has a critical point on the phase diagram similar to the critical point of the liquid-vapor system.

  15. Thermodynamics and phase transformations the selected works of Mats Hillert

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    This book is a compendium of Mat Hillert's publications. Mat Hillert is a world specialist in metal alloy at the origin of a universal computing code used to calculate the diagrams of phase. This work is in English.

  16. Phase transformations behavior in a Cu-8.0Ni-1.8Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Q. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Li, Z., E-mail: lizhou6931@163.com [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China) and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Wang, M.P. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Zhang, L.; Gong, S. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Xiao, Z. [Department of Engineering, University of Liverpool, Liverpool, L693 GH (United Kingdom); Pan, Z.Y. [Hunan Nonferrous Metals Holding Group Co., Ltd., Changsha, 410015 (China)

    2011-02-24

    Research highlights: > High solute concentrations Cu-Ni-Si alloy with super high strength and high conductivity has a good prospect for replacing Cu-Be alloys. At least four different kinds of precipitation products (DO{sub 22} ordered structure, {beta}-Ni{sub 3}Si precipitate, {delta}-Ni{sub 2}Si precipitate and {gamma}-Ni{sub 5}Si{sub 2} precipitate) have been observed in previous investigation. Therefore, the overall phase transformation behavior of Cu-Ni-Si alloy appears to be very complex. And most previous studies on the phase transformation usually investigated the precipitation process at only one temperature or at most a few temperatures, which is far away to establish a time-temperature-transformation (TTT) diagram for Cu-Ni-Si alloy. > The phase transformation behavior of Cu-8.0Ni-1.8Si alloy has been studied systematically at wide temperature range in this paper. The results we have gained are that: after solution treatment, followed by different conditions of isothermal treatment, DO{sub 22} ordering, discontinuous precipitation and continuous precipitation were observed in the alloy; discontinuous precipitates of {beta}-Ni{sub 3}Si phase appeared when the alloy isothermal treated at 550 deg. C for short time, which had not been reported by the previous Cu-Ni-Si system alloy's researchers in their papers; two kinds of precipitates of {beta}-Ni{sub 3}Si and {delta}-Ni{sub 2}Si were determined by the TEM characterization; the orientation relationship between the two kinds of precipitates and Cu-matrix is that: (1 1 0){sub Cu}//(1 1 0){sub {beta}}//(211-bar){sub {delta}}, [112-bar]{sub Cu}//[11-bar 2]{sub {beta}}//[3 2 4]{sub {delta}}; during overaging treatment, Cu-matrix, {beta}-Ni{sub 3}Si, {delta}-Ni{sub 2}Si and {delta}'-Ni{sub 2}Si were distinguished in the samples and the orientation relationship between the precipitates and Cu-matrix can be expressed as that: (0 2 2){sub Cu}//(0 2 2){sub {beta}}//(1 0 0){sub {delta}}, (02-bar 2){sub Cu

  17. Phase transformations in lead zirconate-titanate doped with lanthanum

    Energy Technology Data Exchange (ETDEWEB)

    Ishchuk, V M; Morozov, E M

    1979-07-01

    Presented are the results of studies on the character of phase transitions of the lead-lanthanum zirconate-titanate (LLZT) system. The replacement of lead by lanthanum leads to the expansion of the region of antisegnetoelectric (ASE) states of solid solutions of lead zirconate-titanate (LZT) in the direction of PbTiO/sub 3/ concentration growth. An intermediate region is revealed between segnetoelectric (SE) and ASE states, material properties in which depend on their prehistory: annealed samples are in the ASE state, whereas the application of electric field exceeding some critical value induces the SE state. A family of phase diagrams obtained at consequent replacement of lead by lanthanum permits to identify phase states in any series of LLZT with a constant ratio of Zr:Ti, in the x/65/35 series in particular. Thermally depolarized state of materials of this series at x<6.5 is shown to be antisegnetoelectric at all the temperatures below the Curie point Tsub(c), and heating causes phase transition of ASE..-->..PE (paraelectric state) at Tsub(c). Polarized samples being heated, a successiveness of phase transitions of SE..-->..ASE takes place at T/sub 0/, and that of ASE reversible PE at Tsub(C) (Tsub(0)..ASE phase transition in the LZT system.

  18. Equation of state, phase stability, and phase transformations of uranium-6 wt. % niobium under high pressure and temperature

    Science.gov (United States)

    Zhang, Jianzhong; Vogel, Sven; Brown, Donald; Clausen, Bjorn; Hackenberg, Robert

    2018-05-01

    In-situ time-of-flight neutron diffraction experiments were conducted on the uranium-niobium alloy with 6 wt. % Nb (U-6Nb) at pressures up to 4.7 GPa and temperatures up to 1073 K. Upon static compression at room temperature, the monoclinic structure of U-6Nb (α″ U-6Nb) remains stable up to the highest experimental pressure. Based on the pressure-volume measurements at room temperature, the least-squares fit using the finite-strain equation of state (EOS) yields an isothermal bulk modulus of B0 = 127 ± 2 GPa for the α″-phase of U-6Nb. The calculated zero-pressure bulk sound speed from this EOS is 2.706 ± 0.022 km/s, which is in good agreement with the linear extrapolation of the previous Hugoniot data above 12 GPa for α″ U-6Nb, indicating that the dynamic response under those shock-loading conditions is consistent with the stabilization of the initial monoclinic phase of U-6Nb. Upon heating at ambient and high pressures, the metastable α″ U-6Nb exhibits complex transformation paths leading to the diffusional phase decomposition, which are sensitive to applied pressure, stress state, and temperature-time path. These findings provide new insight into the behavior of atypical systems such as U-Nb and suggest that the different U-Nb phases are separated by rather small energies and hence highly sensitive to compositional, thermal, and mechanical perturbations.

  19. Application of thermo-electromotive force and electric resistance measuring methods to researching phase transformations in Zr1Nb alloy

    International Nuclear Information System (INIS)

    Klimenko, S.P.; Gritsina, V.M.; Petel'guzov, I.A.; Chernyaeva, T.P.

    2007-01-01

    The paper determines the applicability areas of different methods for the study of structural phase transformations in a Zr+1Nb alloy, which is extensively used in reactor construction; production and fabrication of products from Zr+1Nb is currently developed in Ukraine. Electromotive force and electric resistance were measured to study structural phase transformations of Zr+1Nb fuel rod tubes based on calciumthermal zirconium (Zr1Nb). It was established that changes in electric resistance clearly show the beginning of a massive α → β transition at ∼ 750 degree C and the end of α → β transition at ∼ 950 degree C, whereas measurement of thermo-e.m.f. in the samples subjected to successive 3-hour step annealing in the temperature range from 300 to 700 degree C allows the temperature of monotectoid transformation to be found. For sample Zr1Nb batches the temperature of monotectoid transformation is (620±7) degree C. The measurement results are consistent with the similar studies carried out on Zr+1Nb fuel rod tubes based on electrolytic zirconium (E110), for which the temperature of monotectoid transformation is equal to ∼ 610 degree C

  20. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Robert W. [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 - 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  1. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  2. In situ investigation of ordering phase transformations in FePt magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, James E., E-mail: j.wittig@vanderbilt.edu [Interdisciplinary Materials Science, Vanderbilt University, PMB 351683, 2301 Vanderbilt Place, Nashville, TN 37232 (United States); Bentley, James, E-mail: bentleyj48@gmail.com [Materials Science and Technology Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6376 (United States); Allard, Lawrence F., E-mail: allardlfjr@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6376 (United States)

    2017-05-15

    In situ high-resolution electron microscopy was used to reveal information at the atomic level for the disordered-to-ordered phase transformation of equiatomic FePt nanoparticles that can exhibit outstanding magnetic properties after transforming from disordered face-centered-cubic into the tetragonal L1{sub 0} ordered structure. High-angle annular dark-field imaging in the scanning transmission electron microscope provided sufficient contrast between the Fe and Pt atoms to readily monitor the ordering of the atoms during in situ heating experiments. However, during continuous high-magnification imaging the electron beam influenced the kinetics of the transformation so annealing had to be performed with the electron beam blanked. At 500 °C where the reaction rate was relatively slow, observation of the transformation mechanisms using this sequential imaging protocol revealed that ordering proceeded from (002) surface facets but was incomplete and multiple-domain particles were formed that contained anti-phase domain boundaries and anti-site defects. At 600 and 700 °C, the limitations of sequential imaging were revealed as a consequence of increased transformation kinetics. Annealing for only 5 min at 700 °C produced complete single-domain L1{sub 0} order; such single-domain particles were more spherical in shape with (002) facets. The in situ experiments also provided information concerning nanoparticle sintering, coalescence, and consolidation. Although there was resistance to complete sintering due to the crystallography of L1{sub 0} order, the driving force from the large surface-area-to-volume ratio resulted in considerable nanoparticle coalescence, which would render such FePt nanoparticles unsuitable for use as magnetic recording media. Comparison of the in situ data acquired using the protocol described above with parallel ex situ annealing experiments showed that identical behavior resulted in all cases. - Highlights: • HAADF STEM imaging reveals the

  3. Laser induced structural transformation in chalcogenide based superlattices

    International Nuclear Information System (INIS)

    Zallo, Eugenio; Wang, Ruining; Bragaglia, Valeria; Calarco, Raffaella

    2016-01-01

    Superlattices made of alternating layers of nominal GeTe and Sb 2 Te 3 have been studied by micro-Raman spectroscopy. A structural irreversible transformation into ordered GeSbTe alloy is induced by high power laser light exposure. The intensity ratio of anti-Stokes and Stokes scattering under laser illumination gives a maximum average temperature in the sample of 177 °C. The latter is lower than the growth temperature and of 400 °C necessary by annealing to transform the structure in a GeSbTe alloy. The absence of this configuration after in situ annealing even up to 300 °C evidences an electronic excitation induced-transition which brings the system into a different and stable crystalline state.

  4. Laser induced structural transformation in chalcogenide based superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Zallo, Eugenio, E-mail: zallo@pdi-berlin.de; Wang, Ruining; Bragaglia, Valeria; Calarco, Raffaella [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2016-05-30

    Superlattices made of alternating layers of nominal GeTe and Sb{sub 2}Te{sub 3} have been studied by micro-Raman spectroscopy. A structural irreversible transformation into ordered GeSbTe alloy is induced by high power laser light exposure. The intensity ratio of anti-Stokes and Stokes scattering under laser illumination gives a maximum average temperature in the sample of 177 °C. The latter is lower than the growth temperature and of 400 °C necessary by annealing to transform the structure in a GeSbTe alloy. The absence of this configuration after in situ annealing even up to 300 °C evidences an electronic excitation induced-transition which brings the system into a different and stable crystalline state.

  5. Evolution of the structure and the phase composition of a bainitic structural steel during plastic deformation

    Science.gov (United States)

    Nikitina, E. N.; Glezer, A. M.; Ivanov, Yu. F.; Aksenova, K. V.; Gromov, V. E.; Kazimirov, S. A.

    2017-10-01

    The evolution of the phase composition and the imperfect substructure of the 30Kh2N2MFA bainitic structural steel subjected to compressive deformation by 36% is quantitatively analyzed. It is shown that deformation is accompanied by an increase in the scalar dislocation density, a decrease in the longitudinal fragment sizes, an increase in the number of stress concentrators, the dissolution of cementite particles, and the transformation of retained austenite.

  6. Thermal and magnetic hysteresis associated with martensitic and magnetic phase transformations in Ni52Mn25In16Co7 Heusler alloy

    Science.gov (United States)

    Madiligama, A. S. B.; Ari-Gur, P.; Ren, Y.; Koledov, V. V.; Dilmieva, E. T.; Kamantsev, A. P.; Mashirov, A. V.; Shavrov, V. G.; Gonzalez-Legarreta, L.; Grande, B. H.

    2017-11-01

    Ni-Mn-In-Co Heusler alloys demonstrate promising magnetocaloric performance for use as refrigerants in magnetic cooling systems with the goal of replacing the lower efficiency, eco-adverse fluid-compression technology. The largest change in entropy occurs when the applied magnetic field causes a merged structural and magnetic transformation and the associated entropy changes of the two transformations works constructively. In this study, magnetic and crystalline phase transformations were each treated separately and the effects of the application of magnetic field on thermal hystereses associated with both structural and magnetic transformations of the Ni52Mn25In16Co7 were studied. From the analysis of synchrotron diffraction data and thermomagnetic measurements, it was revealed that the alloy undergoes both structural (from cubic austenite to a mixture of 7M &5M modulated martensite) and magnetic (ferromagnetic to a low-magnetization phase) phase transformations. Thermal hysteresis is associated with both transformations, and the variation of the thermal hystereses of the magnetic and structural transformations with applied magnetic field is significantly different. Because of the differences between the hystereses loops of the two transformations, they merge only upon heating under a certain magnetic field.

  7. The transformation of amorphous calcium carbonate, ACC, to crystalline phases as function of time and temperature.

    Science.gov (United States)

    Gies, Hermann; Happel, Marian; Niedermayr, Andrea; Immenhauser, Adrian

    2017-04-01

    We present results from a structural study of the transformation of freeze dried amorphous calcium carbonate, ACC, in crystalline material using pair distribution function analysis, PDF analysis, of X-ray powder diffraction data, XPD data. PDF analysis allows for the analysis of local order of structural subunit in the range between molecular unit (1. and 2. coordination sphere) and long range periodicity as in crystalline materials. ACC was precipitated from aqueous solutions at 298 K and 278 K using different amounts of Mg cations as stabilizer. The samples were immediately separated from the solution and freeze dried. For the transformation study, the samples were heated and analysed using XPD until they were crystallized. The radial distribution obtained from the XPD data were compared to simulated radial distributions of the calcium carbonate polymorphs and their hydrated phases. An ACC precipitated from a solution with Ca:Mg:CO3 = 1:5:4 at 298 K (ration in mmol, pH = 8.2) and freeze dried right after isolation from the solution revealed a close resemblance with ikaite in its local order. Another ACC with Ca:Mg:CO3 = 1:10:1.4 (T = 298, pH = 8.7) showed distinctly different local order resembling monohydrocalcite. Both ACC, however, still had considerable amounts of water dominating the Ca-coordination sphere. During the transformation to calcite, the structural changes in the sample concerned the hydrate water coordinating Ca which was removed and replaced by the carbonate oxygens. The study shows that ACC obtained from different starting solutions show specific local order. Freeze drying leads to solid ACC powder which still contain considerable amounts of hydrate water. Structural subunits are distinct in ACC and different from the crystalline phase. The study supplements recent reports presented by Konrad et al., Purgstaller et al., and Tobler et al.. F. Konrad et al., Cryst. Growth Des. 16, 6310-6317(2016) B. Purgstaller et al., Geochimica et Cosmochimica

  8. Preparation of 147Pm metal and the determination of the melting point and phase transformation temperatures

    International Nuclear Information System (INIS)

    Angelini, P.; Adair, H.L.

    1976-07-01

    The promethium metal used in the determination of the melting point and phase transformation temperatures was prepared by reduction of promethium oxide with thorium metal at 1600 0 C and distilling the promethium metal into a quartz dome. The melting point and phase transformation temperatures of promethium metal were found to be 1042 +- 5 0 C and 890 +- 5 0 C, respectively. The ratio for the heat of the high-temperature transformation to the heat of fusion was determined to be 0.415

  9. Amphiphilic phase-transforming catalysts for transesterification of triglycerides

    Science.gov (United States)

    Nawaratna, Gayan Ivantha

    Heterogeneous catalytic reactions that involve immiscible liquid-phase reactants are challenging to conduct due to limitations associated with mass transport. Nevertheless, there are numerous reactions such as esterification, transesterification, etherification, and hydrolysis where two immiscible liquid reactants (such as polar and non-polar liquids) need to be brought into contact with a catalyst. With the intention of alleviating mass transport issues associated with such systems but affording the ability to separate the catalyst once the reaction is complete, the overall goal of this study is geared toward developing a catalyst that has emulsification properties as well as the ability to phase-transfer (from liquid-phase to solid-phase) while the reaction is ongoing and evaluating the effectiveness of such a catalytic process in a practical reaction. To elucidate this concept, the transesterification reaction was selected. Metal-alkoxides that possess acidic and basic properties (to catalyze the reaction), amphiphilic properties (to stabilize the alcohol/oil emulsion) and that can undergo condensation polymerization when heated (to separate as a solid subsequent to the completion of the reaction) were used to test the concept. Studies included elucidating the effect of metal sites and alkoxide sites and their concentration effects on transesterification reaction, effect of various metal alkoxide groups on the phase stability of the reactant system, and kinetic effects of the reaction system. The studies revealed that several transition-metal alkoxides, especially, titanium and yttrium based, responded positively to this reaction system. These alkoxides were able to be added to the reaction medium in liquid phase and were able to stabilize the alcohol/oil system. The alkoxides were selective to the transesterification reaction giving a range of ester yields (depending on the catalyst used). It was also observed that transition-metal alkoxides were able to be

  10. Understanding metastable phase transformation during crystallization of RDX, HMX and CL-20: experimental and DFT studies.

    Science.gov (United States)

    Ghosh, Mrinal; Banerjee, Shaibal; Shafeeuulla Khan, Md Abdul; Sikder, Nirmala; Sikder, Arun Kanti

    2016-09-14

    Multiphase growth during crystallization severely affects deliverable output of explosive materials. Appearance and incomplete transformation of metastable phases are a major source of polymorphic impurities. This article presents a methodical and molecular level understanding of the metastable phase transformation mechanism during crystallization of cyclic nitramine explosives, viz. RDX, HMX and CL-20. Instantaneous reverse precipitation yielded metastable γ-HMX and β-CL-20 which undergo solution mediated transformation to the respective thermodynamic forms, β-HMX and ε-CL-20, following 'Ostwald's rule of stages'. However, no metastable phase, anticipated as β-RDX, was evidenced during precipitation of RDX, which rather directly yielded the thermodynamically stable α-phase. The γ→β-HMX and β→ε-CL-20 transformations took 20 and 60 minutes respectively, whereas formation of α-RDX was instantaneous. Density functional calculations were employed to identify the possible transition state conformations and to obtain activation barriers for transformations at wB97XD/6-311++G(d,p)(IEFPCM)//B3LYP/6-311G(d,p) level of theory. The computed activation barriers and lattice energies responsible for transformation of RDX, HMX and CL-20 metastable phases to thermodynamic ones conspicuously supported the experimentally observed order of phase stability. This precise result facilitated an understanding of the occurrence of a relatively more sensitive and less dense β-CL-20 phase in TNT based melt-cast explosive compositions, a persistent and critical problem unanswered in the literature. The crystalline material recovered from such compositions revealed a mixture of β- and ε-CL-20. However, similar compositions of RDX and HMX never showed any metastable phase. The relatively long stability with the highest activation barrier is believed to restrict complete β→ε-CL-20 transformation during processing. Therefore a method is suggested to overcome this issue.

  11. Effects of deep cryogenic treatment on the solid-state phase transformation of Cu-Al alloy in cooling process

    Science.gov (United States)

    Wang, Yuhui; Liao, Bo; Liu, Jianhua; Chen, Shuqing; Feng, Yu; Zhang, Yanyan; Zhang, Ruijun

    2012-07-01

    The solid-state phase transformation temperature and duration of deep cryogenic treated and untreated Cu-Al alloys in cooling process were measured by differential scanning calorimetry measurement. The solid-state phase transformation activation energy and Avrami exponent were calculated according to these measurements. The effects of deep cryogenic treatment on the solid-state phase transformation were investigated based on the measurement and calculation as well as the observation of alloy's microstructure. The results show that deep cryogenic treatment can increase the solid-phase transformation activation energy and shorten the phase transformation duration, which is helpful to the formation of fine grains in Cu-Al alloy.

  12. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes.

    Science.gov (United States)

    Albetran, Hani; Vega, Victor; Prida, Victor M; Low, It-Meng

    2018-02-23

    The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10) kJ/mol for the titanium-to-anatase transformation, and 207 (17) kJ/mol for the anatase-to-rutile transformation were estimated.

  13. Micromechanics of transformation fields in ageing linear viscoelastic composites: effects of phase dissolution or precipitation

    Science.gov (United States)

    Honorio, Tulio

    2017-11-01

    Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.

  14. Symmetry-induced deformation and reconstructive phase transformation in metal-oxide interface: the Fe (001) example

    International Nuclear Information System (INIS)

    Lahoche, L.; Universite de Technologie de Compiegne; Lorman, V.; Roelandt, J.M.; Rochal, S.B.

    1996-01-01

    A model is proposed for the structural transformation and corresponding induced deformation in physical three-dimensional interface of the metal-oxide system. The thermodynamical and elastic state of the system is described by the Landau-Ginzbourg free energy. Calculated theoretical phase diagram shows several different types of isothermal growth processes. The model is applied to the case of the oxidation of the (001) Fe surface. (orig.)

  15. Analytical electron microscope study of the omega phase transformation in a zirconium--niobium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zaluzec, N.J.

    1979-06-01

    An in-situ study of the as-quenched omega phase transformation in Zr--15% Nb was conducted between the temperatures of 77 and 300/sup 0/K using analytical electron microscopy. The domain size of the omega regions observed in this investigation was on the order of 30 A, consistent with previous observations in this system. No alignment of omega domains along <222> directions of the bcc lattice was observed and in-situ thermal cycling experiments failed to produce a long period structure of alternating ..beta.. and ..omega.. phase regions as predicted by one theory of this transformation. Several techniques of microstructural analysis were developed, refined, and standardized. Grouped under the general classification of Analytical Electron Microscopy (AEM) they provide the experimentalist with a unique tool for the microcharacterization of solids, allowing semiquantitative to quantitative analysis of the morphology, crystallography, elemental composition, and electronic structure of regions as small as 20 A in diameter. These techniques have complications, and it was necessary to study the AEM system used in this work so that instrumental artifacts which invalidate the information produced in the microscope environment might be eliminated. Once these factors had been corrected, it was possible to obtain a wealth of information about the microvolume of material under investigation. The microanalytical techniques employed during this research include: energy dispersive x-ray spectroscopy (EDS) using both conventional and scanning transmission electron microscopy (CTEM, STEM), transmission scanning electron diffraction (TSED), the stationary diffraction pattern technique, and electron energy loss spectroscopy (ELS) using a dedicated scanning transmission electron microscope (DSTEM).

  16. Analytical electron microscope study of the omega phase transformation in a zirconium--niobium alloy

    International Nuclear Information System (INIS)

    Zaluzec, N.J.

    1979-06-01

    An in-situ study of the as-quenched omega phase transformation in Zr--15% Nb was conducted between the temperatures of 77 and 300 0 K using analytical electron microscopy. The domain size of the omega regions observed in this investigation was on the order of 30 A, consistent with previous observations in this system. No alignment of omega domains along directions of the bcc lattice was observed and in-situ thermal cycling experiments failed to produce a long period structure of alternating β and ω phase regions as predicted by one theory of this transformation. Several techniques of microstructural analysis were developed, refined, and standardized. Grouped under the general classification of Analytical Electron Microscopy (AEM) they provide the experimentalist with a unique tool for the microcharacterization of solids, allowing semiquantitative to quantitative analysis of the morphology, crystallography, elemental composition, and electronic structure of regions as small as 20 A in diameter. These techniques have complications, and it was necessary to study the AEM system used in this work so that instrumental artifacts which invalidate the information produced in the microscope environment might be eliminated. Once these factors had been corrected, it was possible to obtain a wealth of information about the microvolume of material under investigation. The microanalytical techniques employed during this research include: energy dispersive x-ray spectroscopy (EDS) using both conventional and scanning transmission electron microscopy (CTEM, STEM), transmission scanning electron diffraction (TSED), the stationary diffraction pattern technique, and electron energy loss spectroscopy (ELS) using a dedicated scanning transmission electron microscope

  17. Effect of alloying elements on martensitic transformation in the binary NiAl(β) phase alloys

    International Nuclear Information System (INIS)

    Kainuma, R.; Ohtani, H.; Ishida, K.

    1996-01-01

    The characteristics of the B2(β) to L1 0 (β') martensitic transformation in NiAl base alloys containing a small amount of third elements have been investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It is found that in addition to the normal L1 0 (3R) martensite, the 7R martensite is also present in the ternary alloys containing Ti, Mo, Ag, Ta, or Zr. While the addition of third elements X (X: Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ta, W, and Si) to the binary Ni 64 Al 36 alloy stabilizes the parent β phase, thereby lowering the M s temperature, addition of third elements such as Co, Cu, or Ag destabilizes the β phase, increasing the M s temperature. The occurrence of the 7R martensite structure is attributed to solid solution hardening arising from the difference in atomic size between Ni and Al and the third elements added. The variation in M s temperature with third element additions is primarily ascribed to the difference in lattice stabilities of the bcc and fcc phases of the alloying elements

  18. Non-isothermal kinetic analysis on the phase transformations of Fe–Co–V alloy

    International Nuclear Information System (INIS)

    Hasani, S.; Shamanian, M.; Shafyei, A.; Behjati, P.; Szpunar, J.A.

    2014-01-01

    Highlights: • We investigated, occurrence of different phase transformations in a FeCo- 7.15%wt V alloy upon heating to 1200 °C. • We investigated, the determination of the activation energy for these phase transformations by using five isoconversional methods. • We investigated, the calculation of the empirical kinetic triplets by using the invariant kinetic parameters method and fitting model. - Abstract: In this study, occurrence of different phase transformations was investigated in a FeCo-7 wt% V alloy upon heating to 1200 °C by the dilatometry method at different heating rates (5, 10, and 15 °C min −1 ). It was found that four phase transformations (including B2-type atomic ordering in α phase, first stage of polymorphic transformation (α → α r + γ), ordering to disordering, and second stage of polymorphic transformation (α r → γ) occur in this alloy up to 1200 °C. Two isoconversional methods, as Starink and Friedman, were used to determine variation of the activation energy with temperature, E(T). Moreover, the empirical kinetic triplets (E, A, and g(α)) were calculated by the invariant kinetic parameters (IKP) method and fitting model

  19. Phase transformation system of austenitic stainless steels obtained by permanent compressive strain

    Energy Technology Data Exchange (ETDEWEB)

    Okayasu, Mitsuhiro, E-mail: mitsuhiro.okayasu@utoronto.ca; Tomida, Sai

    2017-01-27

    In order to understand more completely the formation of strain-induced martensite, phase structures were investigated both before and after plastic deformation, using austenitic stainless steels of various chemical compositions (carbon C=0.007–0.04 mass% and molybdenum Mo=0–2.10 mass%) and varying pre-strain levels (0–30%). Although the stainless steels consisted mainly of γ austenite, two martensite structures were generated following plastic deformation, comprising ε and α′ martensite. The martensitic structures were obtained in the twin deformation and slip bands. The severity of martensite formation (ε and α′) increased with increasing C content. It was found that α′ martensite was formed mainly in austenitic stainless steel lacking Mo, whereas a high Mo content led to a strong ε martensite structure, i.e. a weak α′ martensite. The formation of α′ martensite occurred from γ austenite via ε martensite, and was related to the slip deformation. Molybdenum in austenitic stainless steel had high slip resistance (or weak stress-induced martensite transformation), because of the stacking fault energy of the stainless steel affecting the austenite stability. This resulted in the creation of weak α′ martensite. Models of the martensitic transformations γ (fcc)→ε (hcp)→α′ (bcc) were proposed on both the microscopic and nanoscopic scales. The α′ martensite content of austenitic stainless steel led to high tensile strength; conversely, ε martensite had a weak effect on the mechanical strength. The influence of martensitic formation on the mechanical properties was evaluated quantitatively by statistical analysis.

  20. Finite size effects in phase transformation kinetics in thin films and surface layers

    International Nuclear Information System (INIS)

    Trofimov, Vladimir I.; Trofimov, Ilya V.; Kim, Jong-Il

    2004-01-01

    In studies of phase transformation kinetics in thin films, e.g. crystallization of amorphous films, until recent time is widely used familiar Kolmogorov-Johnson-Mehl-Avrami (KJMA) statistical model of crystallization despite it is applicable only to an infinite medium. In this paper a model of transformation kinetics in thin films based on a concept of the survival probability for randomly chosen point during transformation process is presented. Two model versions: volume induced transformation (VIT) when the second-phase grains nucleate over a whole film volume and surface induced transformation (SIT) when they form on an interface with two nucleation mode: instantaneous nucleation at transformation onset and continuous one during all the process are studied. At VIT-process due to the finite film thickness effects the transformation profile has a maximum in a film middle, whereas that of the grains population reaches a minimum inhere, the grains density is always higher than in a volume material, and the thinner film the slower it transforms. The transformation kinetics in a thin film obeys a generalized KJMA equation with parameters depending on a film thickness and in limiting cases of extremely thin and thick film it reduces to classical KJMA equation for 2D- and 3D-system, respectively

  1. Building Structural Complexity in Semiconductor Nanocrystals through Chemical Transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sadtler, Bryce F [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-05-01

    Methods are presented for synthesizing nanocrystal heterostructures comprised of two semiconductor materials epitaxially attached within individual nanostructures. The chemical transformation of cation exchange, where the cations within the lattice of an ionic nanocrystal are replaced with a different metal ion species, is used to alter the chemical composition at specific regions ofa nanocrystal. Partial cation exchange was performed in cadmium sulfide (CdS) nanorods of well-defined size and shape to examine the spatial organization of materials within the resulting nanocrystal heterostructures. The selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. The exchange of copper (I) (Cu+) cations in CdS nanorods occurs preferentially at the ends of the nanorods. Theoretical modeling of epitaxial attachments between different facets of CdS and Cu2S indicate that the selectivity for cation exchange at the ends of the nanorods is a result of the low formation energy of the interfaces produced. During silver (I) (Ag+) cation exchange in CdS nanorods, non-selective nucleation of silver sulfide (Ag2S), followed by partial phase segregation leads to significant changes in the spatial arrangement of CdS and Ag2S regions at the exchange reaction proceeds through the nanocrystal. A well-ordered striped pattern of alternating CdS and Ag2S segments is found at intermediate fractions of exchange. The forces mediating this spontaneous process are a combination of Ostwald ripening to reduce the interfacial area along with a strain-induced repulsive interaction between Ag2S segments. To elucidate why Cu+ and Ag+ cation exchange with CdS nanorods produce different morphologies, models for epitaxial attachments between various facets of CdS with Cu2S or

  2. Ab initio molecular dynamics simulation of structural transformation in zinc blende GaN under high pressure

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Gao, Fei; Zu, X.T.; Weber, W.J.

    2010-01-01

    High-pressure induced zinc blende to rocksalt phase transition in GaN has been investigated by ab initio molecular dynamics method to characterize the transformation mechanism at the atomic level. It was shown that at 100 GPa GaN passes through tetragonal and monoclinic states before rocksalt structure is formed. The transformation mechanism is consistent with that for other zinc blende semiconductors obtained from the same method. Detailed structural analysis showed that there is no bond breaking involved in the phase transition.

  3. Phase transformation in δ-Pu alloys at low temperature: An in situ microstructural characterization using X-ray diffraction

    International Nuclear Information System (INIS)

    Ravat, B.; Platteau, C.; Texier, G.; Oudot, B.; Delaunay, F.

    2009-01-01

    In order to investigate the martensitic transformation, an isothermal hold at -130 deg. C for 48 h was performed on a highly homogenized PuGa alloy. The modifications of the microstructure were characterized in situ thanks to a specific tool. This device was developed at the CEA-Valduc to analyze the crystalline structure of plutonium alloys as a function of temperature and more especially at low temperature using X-ray diffraction. The analysis of the recorded diffraction patterns highlighted that the martensitic transformation for this alloy is the result of a direct δ → α' + δ phase transformation. Moreover, a significant Bragg's peaks broadening corresponding to the δ-phase was observed. A microstructural analysis was made to characterize anisotropic microstrain resulting from the stress induced by the unit cell volume difference between the δ and α' phases. The amount of α'-phase evolved was analyzed within the framework of the Avrami theory in order to characterize the nucleation process. The results suggested that the growth mechanism corresponded to a general mechanism where the nucleation sites were in the δ-grain edges and the α'-phase had a plate-like morphology.

  4. Phase transformation in δ-Pu alloys at low temperature: An in situ microstructural characterization using X-ray diffraction

    Science.gov (United States)

    Ravat, B.; Platteau, C.; Texier, G.; Oudot, B.; Delaunay, F.

    2009-09-01

    In order to investigate the martensitic transformation, an isothermal hold at -130 °C for 48 h was performed on a highly homogenized PuGa alloy. The modifications of the microstructure were characterized in situ thanks to a specific tool. This device was developed at the CEA-Valduc to analyze the crystalline structure of plutonium alloys as a function of temperature and more especially at low temperature using X-ray diffraction. The analysis of the recorded diffraction patterns highlighted that the martensitic transformation for this alloy is the result of a direct δ → α' + δ phase transformation. Moreover, a significant Bragg's peaks broadening corresponding to the δ-phase was observed. A microstructural analysis was made to characterize anisotropic microstrain resulting from the stress induced by the unit cell volume difference between the δ and α' phases. The amount of α'-phase evolved was analyzed within the framework of the Avrami theory in order to characterize the nucleation process. The results suggested that the growth mechanism corresponded to a general mechanism where the nucleation sites were in the δ-grain edges and the α'-phase had a plate-like morphology.

  5. Phase transformation in delta-Pu alloys at low temperature: An in situ microstructural characterization using X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ravat, B., E-mail: brice.ravat@cea.f [CEA, Valduc, F-21120 Is-sur-Tille (France); Platteau, C.; Texier, G.; Oudot, B.; Delaunay, F. [CEA, Valduc, F-21120 Is-sur-Tille (France)

    2009-09-15

    In order to investigate the martensitic transformation, an isothermal hold at -130 deg. C for 48 h was performed on a highly homogenized PuGa alloy. The modifications of the microstructure were characterized in situ thanks to a specific tool. This device was developed at the CEA-Valduc to analyze the crystalline structure of plutonium alloys as a function of temperature and more especially at low temperature using X-ray diffraction. The analysis of the recorded diffraction patterns highlighted that the martensitic transformation for this alloy is the result of a direct delta -> alpha' + delta phase transformation. Moreover, a significant Bragg's peaks broadening corresponding to the delta-phase was observed. A microstructural analysis was made to characterize anisotropic microstrain resulting from the stress induced by the unit cell volume difference between the delta and alpha' phases. The amount of alpha'-phase evolved was analyzed within the framework of the Avrami theory in order to characterize the nucleation process. The results suggested that the growth mechanism corresponded to a general mechanism where the nucleation sites were in the delta-grain edges and the alpha'-phase had a plate-like morphology.

  6. Understanding the role of carbon atoms on microstructure and phase transformation of high Nb containing TiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zeen; Hu, Rui; Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Zhang, Fan; Kou, Hongchao; Li, Jinshan

    2017-02-15

    The microstructure and solidification behavior of high Nb containing TiAl alloys with the composition of Ti-46Al-8Nb-xC (x = 0.1, 0.7, 1.4, 2.5 at.%) prepared by arc-melting method have been investigated in this work. The results give evidence that the addition of carbon changes the solidification behavior from solidification via the β phase to the peritectic solidification. And carbon in solid solution enriches in the α{sub 2} phase and increases the microhardness. As the carbon content increases to 1.4 at.%, plate-shape morphology carbides Ti{sub 2}AlC (H phase) precipitate from the TiAl matrix which leads to the refinement microstructure. By aging at 1173 K for 24 h after quenching treatment, fine needle-like and granular shape Ti{sub 3}AlC (P phase) carbides are observed in the matrix of Ti-46Al-8Nb-2.5C alloy, which distribute along the lamellar structure or around the plate-shape Ti{sub 2}AlC. Transmission electron microscope observation shows that the Ti{sub 3}AlC carbides precipitate at dislocations. The phase transformation in-situ observations indicate that the Ti{sub 2}AlC carbides partly precipitate during the solid state phase transformation process. - Highlights: •Carbon changes the solidification behavior from β phase to peritectic solidification. •Dislocations in solution treated γ phase act as nucleation sites of Ti{sub 3}AlC precipitations. •Ti{sub 3}AlC precipitates as fine needle-like or granular shape in the solution treated matrix. •Ti{sub 2}AlC carbides precipitate during the solid state phase transformation process.

  7. On the regularities of structural transformations in copper-beryllium alloys during aging

    International Nuclear Information System (INIS)

    Tkhagapsoev, Kh.G.

    1983-01-01

    Peculiarities of elastic oscillations damping and those of the change of specific electric resistance taking place in the process of isothermal aging of the BrB2 bronze have been studied to determine the mechanism and kinetics of mutual transformations of precipitating phases in Cu-Be alloys. It is found out that isothermal aging of beryllium bronze BrB2 at 260... 400 deg C is accompanied by structural transitions connected with the decomposition of oversaturated α-solid solution. Formation of α phase nuclei (or transformation of Guinier-Preston zones) as well as their growth occur at the expense of cooperative-shift processes characterized by low activation energy (19.7...26.3 J/mol) and by considerable time of relaxation (tau approximately equal to 10 -1 -10 2 s)

  8. Radiation-induced phase transformation in ferromagnetic perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Podsekin, A K; Dem' yanov, V V; Ivanova, V V; Venevtsev, Yu N [Nauchno-Issledovatel' skij Fiziko-Khimicheskij Inst., Moscow (USSR)

    1976-12-01

    An effect of neutron irradiation inducing a phase transition in ferromagnetic perovskite, Sr/sub 0.3/La/sub 0.7/MnO/sub 3/, has been discovered and studied. It is shown that a change in the Curie temperature is proportional to the dose of reactor irradiation. A decrease in the temperature of the phase transition with the concentration of radiation defects is accompanied by an increase in the electrical specific resistance and a change in the initial lattice parameters. It is shown that the radiation shift is due to at least two causes, viz. to an increase in the parameters of the elementary cell and the growth of the electrical specific resistance as a result of bounded electron states' forming on the radiation defects.

  9. Theory of phase transformation and reorientation in single crystalline shape memory alloys

    International Nuclear Information System (INIS)

    Zhu, J J; Liang, N G; Cai, M; Liew, K M; Huang, W M

    2008-01-01

    A constitutive model, based on an (n+1)-phase mixture of the Mori–Tanaka average theory, has been developed for stress-induced martensitic transformation and reorientation in single crystalline shape memory alloys. Volume fractions of different martensite lattice correspondence variants are chosen as internal variables to describe microstructural evolution. Macroscopic Gibbs free energy for the phase transformation is derived with thermodynamics principles and the ensemble average method of micro-mechanics. The critical condition and the evolution equation are proposed for both the phase transition and reorientation. This model can also simulate interior hysteresis loops during loading/unloading by switching the critical driving forces when an opposite transition takes place

  10. On the form invariant volume transformation in phase space by focusing neutron guides: An analytic treatment

    International Nuclear Information System (INIS)

    Stüßer, N.; Hofmann, T.

    2013-01-01

    Tapered guides with supermirror coating are frequently used to focus neutron beams on specimens. The divergence distribution in the focused beam is of a great importance for the quality of neutron instrumentation. Using an analytic approach we derive the tapering which is needed to achieve a form invariant phase space transformation of a rectangular phase volume. In addition we consider the effect of beam attenuation by the finite reflectivity of supermirrors. -- Highlights: • Form invariant volume transformation in phase space. • Focusing modules for neutron beams. • Analytical approach. • Attenuation effects in linearly and nonlinearly tapered guides

  11. Periodic orbits and TDHF phase space structure

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Yukio; Iwasawa, Kazuo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics; Tsukuma, Hidehiko; Sakata, Fumihiko

    1998-03-01

    The collective motion of atomic nuclei is closely coupled with the motion of nucleons, therefore, it is nonlinear, and the contents of the motion change largely with the increase of its amplitude. As the framework which describes the collective motion accompanied by the change of internal structure, time-dependent Hurtley Fock (TDHF) method is suitable. At present, the authors try to make the method for studying the large region structure in quantum system by utilizing the features of the TDHF phase space. The studies made so far are briefed. In this report, the correspondence of the large region patterns appearing in the band structure chart of three-level model with the periodic orbit group in the TDHF phase space is described. The Husimi function is made, and it possesses the information on the form of respective corresponding intrinsic state. The method of making the band structure chart is explained. There are three kinds of the tendency in the intrinsic state group. The E-T charts are made for the band structure charts to quantitatively express the large region tendency. The E-T chart and the T{sub r}-T chart are drawn for a selected characteristic orbit group. It became to be known that the large region properties of the quantum intrinsic state group of three-level model can be forecast by examining the properties of the periodic orbit group in the TDHF phase space. (K.I.)

  12. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    Science.gov (United States)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  13. The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schroedinger equation

    International Nuclear Information System (INIS)

    Leung Shingyu; Qian Jianliang

    2010-01-01

    We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.

  14. Raman studies of pressure and temperature induced phase transformations in calcite

    International Nuclear Information System (INIS)

    Exarhos, G.J.; Hess, N.J.

    1992-01-01

    This patent describes phase stability in the calcium carbonate system investigated as a simultaneous function of pressure and temperature up to 40 kbar and several hundred degrees Kelvin. Micro-Raman techniques were used to interrogate samples constrained within a resistively heated diamond anvil cell. Measured spectra allow unequivocal identification of crystalline phases and are used to refine the P,T phase diagram. Calcium carbonate was found to exhibit both reversible and irreversible transformation phenomena among the four known phases which exist under these conditions. Time-dependent Raman intensity variations as the material is perturbed from its equilibrium state allow real-time kinetics measurements to be performed. Evidence suggests that the order of certain observed transformations may be pressure dependent. The utility of Raman spectroscopy to follow transformation phenomena and to estimate fundamental thermophysical properties from the stress dependence of vibrational mode frequencies is demonstrated

  15. Effect of grinding and polishing on near-surface phase transformations in zirconia

    International Nuclear Information System (INIS)

    Reed, J.S.; Lejus, A.M.

    1977-01-01

    The transformation of near-surface material on grinding and polishing has been investigated in sintered zirconia of 1 μm grain size and 99 percent density containing 4.5 and 7.0 mole percent Y 2 O 3 . Rough wet and dry grinding transformed about 20 percent cubic phase into 18 percent tetragonal and 2 percent monoclinic in material initially 47 percent cubic and 53 percent tetragonal (4.5 mole percent Y 2 O 3 ) but no change of phase in material that was fully cubic (7.0 mole percent Y 2 O 3 ). Annealing and polishing reduced lattice strain but only polishing reduced the concentration of monoclinic and tetragonal phases. Microhardness studies indicated that lattice strain and the phase transformations increased the penetration hardness to a depth of about 4 μm

  16. A Fuzzy Logic Based Three phase Inverter with Single DC Source for Grid Connected PV System Employing Three Phase Transformer

    OpenAIRE

    Mani, venkatesan; Ramachandran, Rajeswari; N, Deverajan

    2016-01-01

    A fuzzy based three phase inverter with single DC source for grid connected photo voltaic (PV) system employing three phase transformer is presented in this paper. Space Vector Pulse Width Modulation (SVPWM) control scheme is effectively used to generate the appropriate switching sequences to the inverter switches. The intend of the fuzzy logic approach is to meet high quality output, fast response and high robustness. Finally Total Harmonics Distortion (THD) generated by the inverter is comp...

  17. Features of the kinetics of heterogeneous reactions with phase transformations on catalyst surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berman, A D; Krylov, O V

    1978-01-01

    This paper presents a review of 41 bibliographic references to experiments on the adsorption of various gases (e.g., carbon monoxide, formic acid, ammonia, and oxygen) on metals (e.g., nickel, molybdenum, and platinum) and oxides covers observations of two-dimensional phases during adsorption; the kinetics of adsorption and catalysis associated with two-dimensional phase transitions; and several approximate models for describing the kinetics of heterogeneous catalysis which account for two-dimensional phase transformations on catalyst surfaces.

  18. Synthesis of Li-Mn-O mesocrystals with controlled crystal phases through topotactic transformation of MnCO₃.

    Science.gov (United States)

    Dang, Feng; Hoshino, Tatsuhiko; Oaki, Yuya; Hosono, Eiji; Zhou, Haoshen; Imai, Hiroaki

    2013-03-21

    Mesocrystals of Li-Mn-O compounds, such as LiMn2O4, Li2MnO3, and LiMnO2-Li2MnO3, consisting of oriented nanoscale units were selectively produced under hydrothermal conditions from biomimetically prepared MnCO3 mesocrystals. Topotactic transformation through the intermediate phase of Mn5O8 inheriting a hierarchical structure of the MnCO3 precursor was essential for the formation of the mesocrystal compounds. The crystal phases were successfully controlled by varying the conditions for the hydrothermal reactions. The Li-Mn-O mesocrystals have considerable potential as cathodes of Li-ion batteries.

  19. Impact of concentration and Si doping on the properties and phase transformation behavior of nanocrystalline alumina prepared via solvothermal synthesis

    International Nuclear Information System (INIS)

    Mekasuwandumrong, Okorn; Tantichuwet, Panutin; Chaisuk, Choowong; Praserthdam, Piyasan

    2008-01-01

    Solvothermal reaction of 20 g aluminum isopropoxide (AIP) in mineral oil at 300 deg. C for 2 h gave χ-alumina showing high thermal stability while the reaction with higher amounts of starting AIP (30 and 40 g) contributed contamination of pseudoboehmite. The χ-alumina thus obtained directly transformed into α-alumina completely at approximately 1400 deg. C bypassing the other transition alumina phases whereas some part of the contaminated product transformed to γ-alumina through θ-alumina and finally α-alumina. When silicon was doped in the alumina matrix (5, 10, 20 and 50 at.%) using tetraethylorthosilicate as the silicon (Si) precursor, χ-alumina was still observed without any contaminations at low concentration doping (5-20 at.%). Amorphous structure was obtained by doping 50 at.% Si. The phase transformation temperature was shifted to the high temperature after loading the Si. The α-phase transformation did not go to completion even after calcinations at 1500 deg. C. This could be due to the incorporation of Si atom in alumina lattice forming SiO 2 -Al 2 O 3 solid solution

  20. Phase transformations in interstitial Fe-N alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liapina, T.

    2005-04-15

    Nitriding is a prominent thermochemical heat-treatment procedure leading to various types of surface property improvements of the treated iron and steel. Many questions regarding even very basic properties of these compound layers and the relevant nitride phases are still open. Some of these open questions related with the behaviour of iron nitrides and, in particular, of iron nitride compound layers occurring below the usual process temperatures are addressed to in this thesis, as relevant e.g. for the cooling procedure after nitriding. The most important iron nitrides occurring in iron-nitride compound layers are the {gamma}'- and {epsilon}-phases in the Fe-N system. It is shown that for relatively low nitrogen contents of epsilon-iron nitrides (around Fe{sub 3}N) the cooling rate upon going down from an elevated annealing temperature to room temperature has a significant effect on the lattice parameters. X-ray and neutron diffraction analysis revealed that the lattice parameter values observed after fast cooling are affected by the higher degree of nitrogen disorder at elevated temperature, thus changing the c/a ratio. New relations between the lattice parameters of {epsilon}-iron nitrides and the nitrogen content are suggested for different types of cooling. The investigation by TEM of the decomposition upon annealing (633 K, 673 K) of initially homogeneous {epsilon}-Fe{sub 3}N powders revealed that the {gamma}'-formation occurs in only a few powder particles in a grain-like form. Moreover, diffraction line-profile analysis revealed N transport occurring from particle to particle, leading to inhomogeneities of N content in the epsilon-phase. It was shown that {gamma}'-iron nitride formation can occur by backwards growth of the existing {gamma}'-sublayer at the cost of the {epsilon}-sublayer increasing N concentration in the {epsilon}-layer. Another process, which may additionally occur in the compound layer upon annealing, is diffusion of N

  1. Phases of crown-gall transformation susceptible to hydroxyurea

    Directory of Open Access Journals (Sweden)

    Aldona Rennert

    2014-01-01

    Full Text Available With the use of bacterial strains, both sensitive and resistant to hydroxyurea the action of this inhibitor on tumour formation on the leaves of Kalanchoe daigremontiana infected with Agrobacterium tumefaciens was tested for five days after inoculation. The results are in agreement with the opinion that the anti-tumour effect of hydroxyurea applied in the induction phase (between 18 and 60 h after inoculation is the result of its direct action on plant cells, whereas inhibition of tumour formation by the inhibitor in the inoculation period depends on its action on the pathogenic bacteria.

  2. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    Science.gov (United States)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-11-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  3. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    International Nuclear Information System (INIS)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-01-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal–oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations

  4. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Platt, P., E-mail: Philip.Platt@manchester.ac.uk [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Frankel, P. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Gass, M.; Howells, R. [AMEC, Walton House, Faraday Street, Birchwood Park, Risley, Warrington WA3 6GA (United Kingdom); Preuss, M. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom)

    2014-11-15

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal–oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  5. Phase transformations of pyrophyllite clay mineral after heat treatment

    International Nuclear Information System (INIS)

    Salvadori, M.C.

    1988-01-01

    The termal transformation of the Pyrophyllite clay mineral, given by the equations: AL sub(2) O sub(3).4SiO sub(2).H sub(2) O → Al sub(2) O sub(3).4SiO sub(2) + H sub(2) O Pyrophyllite Anhydride Water vapour. 3 (Al sub(2) O sub(3).4SiO sub(2)) → 3 Al sub(2) O sub(3). 2SiO sub(2) + 10 (SiO sub(2)) Pyrophyllite Anhydride Mullite Cristobalite, were studied by Transmission Electron Microscopy (TEM) associated to Selected Area Electron Diffraction (SAD), applied to a very pure sample, colected at Diamantina, M.G. Some other tgechniques were also used, as X-ray Diffraction (XRD), Differential Thermal Analysis (DTA) and Thermogravimetric Analysis (TGA), applied to other different Pyrophyllite samples. A thermodynamical theoretical study was undertaken to estimate the values for the entropyu of formation, enthalpy and molar thermal capacity for the Pyrophyllite Anhydride. (author)

  6. Completion of a high efficiency ultralarge capacity three-phase transformer

    International Nuclear Information System (INIS)

    Maejima, Masaaki; Maruyama, Katsuya; Fukuda, Teruo.

    1986-01-01

    As for the boosting transformers for thermal and nuclear power stations, at present the ultralarge capacity transformers of 1000 - 1200 MVA class are the main, and particularly in nuclear power, accompanying the development of improved type BWRs and the rise of system stability, there is the tendency toward further large capacity and large size. Consequently, reflecting the recent rise of energy cost, the demand of energy conservation and the reduction of required sites heightened largely as well as the high reliability. In order to meet these demands, Hitachi Ltd. has established the technology of changing to iron machines such as ultralarge iron cores and ultralarge capacity undivided disk windings using the latest design and manufacture techniques were applied to the 525 kV, 1200 MVA transformer for No.4 plant in Fukushima No.2 Nuclear Power Station, Tokyo Electric Power Co., Inc., thus a three-phase transformer of the highest level, high efficiency and ultralarge capacity was completed. In this paper, the outline of this transformer and the test for verifying its reliability are described. The technical change of large capacity three-phase transformers, the specifications, construction, manufacture, reliability test and the effect of modification of this transformer, and the expansion of application to the next generation ultralarge capacity transformers are reported. (Kako, I.)

  7. Kinetic modeling of solid-state partitioning phase transformation with simultaneous misfit accommodation

    International Nuclear Information System (INIS)

    Song, Shaojie; Liu, Feng

    2016-01-01

    Considering a spherical misfitting precipitate growing into a finite elastic-perfectly plastic supersaturated matrix, a kinetic modeling for such solid-state partitioning phase transformation is presented, where the interactions of interface migration, solute diffusion and misfit accommodation are analyzed. The linkage between interface migration and solute diffusion proceeds through interfacial composition and interface velocity; their effects on misfit accommodation are mainly manifested in an effective transformation strain, which depends on instantaneous composition field and precipitate size. Taking γ to α transformation of a binary Fe-0.5 at.% C alloy under both isothermal and continuous cooling conditions as examples, the effects of misfit accommodation on the coupling interface migration and solute diffusion are well evaluated and discussed. For the isothermal transformation, a counterbalancing influence between mechanical and chemical driving forces is found so that the mixed-mode transformation kinetics is not sensitive with respect to the elastic–plastic accommodation of the effective misfit strain. Different from the isothermal process, during the continuous cooling condition, the effects of misfit accommodation on the kinetics of solid-state partitioning phase transformation are mainly manifested in the great decrease of the transformation starting temperature and the thermodynamic equilibrium composition. The present kinetic modeling was applied to predict the experimentally measured γ/α transformation of Fe-0.47 at.% C alloy conducted with a cooling rate of 10 K min −1 and a good agreement was achieved.

  8. Nature of gallium focused ion beam induced phase transformation in 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Babu, R. Prasath; Irukuvarghula, S.; Harte, A.; Preuss, M.

    2016-01-01

    The microstructural evolution and chemistry of the ferrite phase (α), which transforms from the parent austenite phase (γ) of 316L stainless steel during gallium (Ga) ion beam implantation in Focused Ion Beam (FIB) instrument was systematically studied as a function of Ga"+ ion dose and γ grain orientations. The propensity for initiation of γ → α phase transformation was observed to be strongly dependent on the orientation of the γ grain with respect to the ion beam direction and correlates well with the ion channelling differences in the γ orientations studied. Several α variants formed within a single γ orientation and the sputtering rate of the material, after the γ → α transformation, is governed by the orientation of α variants. With increased ion dose, there is an evolution of orientation of the α variants towards a variant of higher Ga"+ channelling. Unique topographical features were observed within each specific γ orientation that can be attributed to the orientation of defects formed during the ion implantation. In most cases, γ and α were related by either Kurdjumov-Sachs (KS) or Nishiyama-Wassermann (NW) orientation relationship (OR) while in few, no known OR's were identified. While our results are consistent with gallium enrichment being the cause for the γ → α phase transformation, some observations also suggest that the strain associated with the presence of gallium atoms in the lattice has a far field stress effect that promotes the phase transformation ahead of gallium penetration.

  9. Morphology and phase transformations of tin oxide nanostructures synthesized by the hydrothermal method in the presence of dicarboxylic acids

    International Nuclear Information System (INIS)

    Zima, Tatyana; Bataev, Ivan

    2016-01-01

    A new approach to the synthesis of non-stoichiometric tin oxide structures with different morphologies and the phase compositions has been evaluated. The nanostructures were synthesized by hydrothermal treatment of the mixtures of dicarboxylic acids ― aminoterephthalic or oxalic ― with nanocrystalline SnO 2 powder, which was obtained via the sol-gel technology. The products were characterized by Raman and IR spectroscopy, SEM, HRTEM, and XRD analysis. It was shown that the controlled addition of a dicarboxylic acid leads not only to a change in the morphology of the nanostructures, but also to SnO 2 –SnO 2 /Sn 3 O 4 –Sn 3 O 4 –SnO phase transformations. A single-phase Sn 3 O 4 in the form of the well-separated hexagonal nanoplates and mixed SnO 2 /Sn 3 O 4 phases in the form of hierarchical flower-like structures were obtained in the presence of organic additives. The effects of concentration, redox activity of the acids and heat treatment on the basic characteristics of the synthesized tin oxide nanostructures and phase transformations in the synthesized materials are discussed. - Graphical abstract: The controlled addition of aminoterephthalic or oxalic acid leads not only to a change in the morphology of the nanostructures, but also to SnO 2 –SnO 2 /Sn 3 O 4 –Sn 3 O 4 –SnO phase transformations. - Highlights: • A new approach to the synthesis of non-stoichiometric tin oxide structures is studied. • Tin oxide structures are synthesized via hydrothermal method with dicarboxylic acids. • Morphology and phase composition are changed with redox activity and dosage of acid. • The redox activity of acid has an effect on ratio of SnO and SnO 2 in crystal structure. • A pure phase Sn 3 O 4 nanoplates and SnO 2 /Sn 3 O 4 hierarchical structures are formed.

  10. Spatio-temporal phase retrieval in speckle interferometry with Hilbert transform and two-dimensional phase unwrapping

    Science.gov (United States)

    Li, Xiangyu; Huang, Zhanhua; Zhu, Meng; He, Jin; Zhang, Hao

    2014-12-01

    Hilbert transform (HT) is widely used in temporal speckle pattern interferometry, but errors from low modulations might propagate and corrupt the calculated phase. A spatio-temporal method for phase retrieval using temporal HT and spatial phase unwrapping is presented. In time domain, the wrapped phase difference between the initial and current states is directly determined by using HT. To avoid the influence of the low modulation intensity, the phase information between the two states is ignored. As a result, the phase unwrapping is shifted from time domain to space domain. A phase unwrapping algorithm based on discrete cosine transform is adopted by taking advantage of the information in adjacent pixels. An experiment is carried out with a Michelson-type interferometer to study the out-of-plane deformation field. High quality whole-field phase distribution maps with different fringe densities are obtained. Under the experimental conditions, the maximum number of fringes resolvable in a 416×416 frame is 30, which indicates a 15λ deformation along the direction of loading.

  11. Transformations to and from the gyroid phase in a diblock copolymer

    DEFF Research Database (Denmark)

    Vigild, Martin Etchells; Almdal, Kristoffer; Mortensen, K

    1998-01-01

    the ordered phases and the order-order transitions exhibited by a poly(ethylene-alt-propylene)-poly-(dimethylsiloxane) diblock copolymer. An intermediate structure-very similar to the hexagonal perforated layer (HPL) phase reported in other diblock systems-proves to be metastable, and we study the kinetics...... and epitaxy of its relaxation to the "gyroid" phase of Ia (3) over bar d symmetry. Likewise we study the relaxation of a supercooled hexagonal phase to the gyroid structure and also observe that the gyroid phase is bypassed in a slow cool from the hexagonal phase to the HPL-like structure. The origin...

  12. Conflict transformation, stigma, and HIV-preventive structural change.

    Science.gov (United States)

    Miller, Robin Lin; Reed, Sarah J; Francisco, Vincent T; Ellen, Jonathan M

    2012-06-01

    Over the prior decade, structural change efforts have become an important component of community-based HIV prevention initiatives. However, these efforts may not succeed when structural change initiatives encounter political resistance or invoke conflicting values, which may be likely when changes are intended to benefit a stigmatized population. The current study sought to examine the impact of target population stigma on the ability of 13 community coalitions to achieve structural change objectives. Results indicated that coalitions working on behalf of highly stigmatized populations had to abandon objectives more often than did coalitions working for less stigmatized populations because of external opposition to coalition objectives and resultant internal conflict over goals. Those coalitions that were most successful in meeting external challenges used opposition and conflict as transformative occasions by targeting conflicts directly and attempting to neutralize oppositional groups or turn them into strategic allies; less successful coalitions working on behalf of stigmatized groups struggled to determine an appropriate response to opposition. The role of conflict transformation as a success strategy for working on behalf of stigmatized groups is discussed.

  13. Nondeterministic noiseless amplification via non-symplectic phase space transformations

    International Nuclear Information System (INIS)

    Walk, Nathan; Lund, Austin P; Ralph, Timothy C

    2013-01-01

    We analyse the action of an ideal noiseless linear amplifier operator, g a-hat † a-hat, using the Wigner function phase space representation. In this setting we are able to clarify the gain g for which a physical output is produced when this operator is acted upon inputs other than coherent states. We derive compact closed form expressions for the action of N local amplifiers, with potentially different gains, on arbitrary N-mode Gaussian states and provide several examples of the utility of this formalism for determining important quantities including amplification and the strength and purity of the distilled entanglement, and for optimizing the use of the amplification in quantum information protocols. (paper)

  14. Swift heavy ion induced phase transformation and thermoluminescence properties of zirconium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lokesha, H.S. [Physics R & D Centre, PES Institute of Technology, BSK 3rd Stage, Bangalore 560085 (India); Nagabhushana, K.R., E-mail: bhushankr@gmail.com [Physics R & D Centre, PES Institute of Technology, BSK 3rd Stage, Bangalore 560085 (India); Department of Physics, PES University, BSK 3rd Stage, Bangalore 560085 (India); Singh, Fouran [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2016-07-15

    Zirconium oxide (ZrO{sub 2}) powder is synthesized by combustion technique. XRD pattern of ZrO{sub 2} shows monoclinic phase with average crystallite size 35 nm. Pellets of ZrO{sub 2} are irradiated with 100 MeV swift Si{sup 7+}, Ni{sup 7+} and 120 MeV swift Ag{sup 9+} ions in the fluence range 3 × 10{sup 10}–3 × 10{sup 13} ions cm{sup −2}. XRD pattern show the main diffraction peak correspond to monoclinic and tetragonal phase of ZrO{sub 2} in 2θ range 27–33°. Structural phase transformation is observed for Ni{sup 7+} and Ag{sup 9+} ion irradiated samples at a fluence 1 × 10{sup 13} ions cm{sup −2} and 3 × 10{sup 12} ions cm{sup −2} respectively, since the deposited electronic energy loss exceeds an effective threshold (>12 keV nm{sup −1}). Phase transition induced by Ag{sup 9+} ion is nearly 2.9 times faster than Ni{sup 7+} ion at 1 × 10{sup 13} ions cm{sup −2}. Ag{sup 9+} ion irradiation leads two ion impact processes. Thermoluminescence (TL) glow curves exhibit two glows, a well resolved peak at ∼424 K and unresolved peak at 550 K for all SHI irradiated samples. TL response is decreased with increase of ion fluence. Beyond 3 × 10{sup 12} ions cm{sup −2}, samples don’t exhibit TL due to annihilation of defects.

  15. Parameters of Models of Structural Transformations in Alloy Steel Under Welding Thermal Cycle

    Science.gov (United States)

    Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.

    2017-05-01

    A mathematical model of structural transformations in an alloy steel under the thermal cycle of multipass welding is suggested for computer implementation. The minimum necessary set of parameters for describing the transformations under heating and cooling is determined. Ferritic-pearlitic, bainitic and martensitic transformations under cooling of a steel are considered. A method for deriving the necessary temperature and time parameters of the model from the chemical composition of the steel is described. Published data are used to derive regression models of the temperature ranges and parameters of transformation kinetics in alloy steels. It is shown that the disadvantages of the active visual methods of analysis of the final phase composition of steels are responsible for inaccuracy and mismatch of published data. The hardness of a specimen, which correlates with some other mechanical properties of the material, is chosen as the most objective and reproducible criterion of the final phase composition. The models developed are checked by a comparative analysis of computational results and experimental data on the hardness of 140 alloy steels after cooling at various rates.

  16. Phase structure of three- and four-dimensional φ4 field theory

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1991-01-01

    Strong coupling regime of gφ theory in space-time R d for d=3,4 is investigated by the methods of canonical transformations and renormalization group. Comparison with the case d=2 shows a crucial influence of the renormalization structure of the theory of its phase structure. 19 refs.; 7 figs.; 1 tab

  17. Neutron scattering study of the phase transformation of LaNi3 induced by hydriding

    International Nuclear Information System (INIS)

    Ruan Jinghui; Zeng Xiangxin; Niu Shiwen

    1994-01-01

    The phase transformation of LaNi 3 induced by hydriding and de-hydriding is investigated using the neutron diffraction and the neutron inelastic scattering. The results show that the hydriding sample, LaNi 3 H x , is transformed from crystalline state of the LaNi 3 into amorphous state with a microcrystalline characteristic of LaNi 5 , and the de-hydriding sample produced by LaNi 3 H x dehydrated at 600 degree C is decomposed into new crystalline states composed by LaNi 5 -and La-hydrides. The procedure of phase transformation is that the result of the transformation of LaNi 3 induced by hydriding shows the properties of LaNi 5 -H 2 system

  18. Phase transitions and structures of methylammonium compounds

    International Nuclear Information System (INIS)

    Yamamuro, Osamu; Onoda-Yamamuro, Noriko; Matsuo, Takasuke; Suga, Hiroshi; Kamiyama, Takashi; Asano, Hajime; Ibberson, R.M.; David, W.I.F.

    1993-01-01

    The structures of CD 3 ND 3 Cl, CD 3 ND 3 I, CD 3 ND 3 BF 4 , (CD 3 ND 3 ) 2 SnCl 6 , and CD 3 ND 3 SnBr 3 crystals were studied with time-of-flight type high-resolution powder diffractometers using spallation pulsed neutron sources. The orientations of the CD 3 ND 3 cations, including the positions of the D atoms, were determined at all the room temperature phases and at the low temperature phases of CD 3 ND 3 I and (CD 3N D 3 ) 2 SnCl 6 . The heat capacity experiments were also performed for both protonated and deuterated analogs of these compounds. From both structural and thermodynamic points of view, it was found that the transitions are mainly associated with the order-disorder change of the orientations of the CD 3 ND 3 cations. (author)

  19. The Application of ATD and DSC Methods to Study of the EN AC-48000 Alloy Phase Transformations

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2017-06-01

    Full Text Available Tests concerning EN AC 48000 (AlSi12CuNiMg alloy phase transition covered (ATD thermal analysis and (DSC differential scanning calorimetry specifying characteristic temperatures and enthalpy of transformations. ATD thermal analysis shows that during cooling there exist: pre-eutectic crystallization effect of Al9Fe2Si phase, double eutectic and crystallization α(Al+β(Si and multi-component eutectic crystallization. During heating, DSC curve showed endothermic effect connected with melting of the eutectic α(Al+β(Si and phases: Al2Cu, Al3Ni, Mg2Si and Al9Fe2Si being its components. The enthalpy of this transformation constitutes approx. +392 J g-1. During freezing of the alloy, DSC curve showed two exothermal reactions. One is most likely connected with crystallization of Al9Fe2Si phase and the second one comes from freezing of the eutectic α(Al+β(Si. The enthalpy of this transformation constitutes approx. -340 J g-1. Calorimetric test was accompanied by structural test (SEM conducted with the use of optical microscope Reichert and scanning microscope Hitachi S-4200. There occurred solution’s dendrites α(Al, eutectic silicon crystal (β and two types of eutectic solution: double eutectic α(Al+β(Si and multi-component eutectic α+AlSiCuNiMg+β.

  20. Effect of Nb on phase transformations and microstructure in high Nb titanium aluminides

    International Nuclear Information System (INIS)

    Bean, Glenn E.; Kesler, Michael S.; Manuel, Michele V.

    2014-01-01

    Highlights: • Thermodynamically-guided design of heat treatment schedules. • Linking chemistry and heat treatment to phase morphology. • Strong dependence of phase transformation behavior on Nb concentration. - Abstract: Titanium aluminides are of interest due to their high specific strength and performance up to 750 °C. Research into high-Nb γ-TiAl based titanium aluminides has shown promising improvements in performance by introduction of the σ-Nb 2 Al phase. However, one current challenge is improving mechanical properties at room and elevated temperatures in order to enable their further implementation. These properties are closely tied with microstructural refinement, and thus phase evolution and microstructural development is the focus of this work. Phase transformation temperatures and stability ranges were determined experimentally through DSC analysis of arc melted alloys, then compared with predictions based upon computational models, and investigated through heat treatment of experimental alloys to develop an ultrafine γ + σ microstructure

  1. Effect of Nb on phase transformations and microstructure in high Nb titanium aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Glenn E.; Kesler, Michael S.; Manuel, Michele V., E-mail: mmanuel@mse.ufl.edu

    2014-11-15

    Highlights: • Thermodynamically-guided design of heat treatment schedules. • Linking chemistry and heat treatment to phase morphology. • Strong dependence of phase transformation behavior on Nb concentration. - Abstract: Titanium aluminides are of interest due to their high specific strength and performance up to 750 °C. Research into high-Nb γ-TiAl based titanium aluminides has shown promising improvements in performance by introduction of the σ-Nb{sub 2}Al phase. However, one current challenge is improving mechanical properties at room and elevated temperatures in order to enable their further implementation. These properties are closely tied with microstructural refinement, and thus phase evolution and microstructural development is the focus of this work. Phase transformation temperatures and stability ranges were determined experimentally through DSC analysis of arc melted alloys, then compared with predictions based upon computational models, and investigated through heat treatment of experimental alloys to develop an ultrafine γ + σ microstructure.

  2. Phase transformation, magnetic property and microstructure of Ni-Mn-Fe-Co-Ga ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Tsuchiya, K.; Sho, Y.; Kushima, T.; Todaka, Y.; Umemoto, M.

    2007-01-01

    Effects of addition of Fe and Co on the phase stability, magnetic property and microstructures were investigated for Ni-Mn-Ga. In Ni-Mn 21- x -Fe x -Ga 27 alloys, martensitic transformation temperatures decreased with increasing amount of Fe (x) up to 15 mol%, then slightly increased by the further addition. The crystal structure of martensite phase was 10 M for x 15 mol%. Relatively high martensite stability was obtained for Ni 52 -Mn 16- x -Fe x -Co 5 -Ga 27 alloys. The highest stability of the ferromagnetic martensite phase was achieved in Ni 52 -Mn 6 -Fe 10 -Co 5 -Ga 27 after aging at 773 K for 3.6 ks. Martensite structure was non-modulated 2 M in this series of alloys

  3. Phase transformations in chalkogenides of germanium subgroup elements and in alloys on their base at high pressures

    International Nuclear Information System (INIS)

    Skums, V.F.; Skoropanov, A.S.; Vecher, A.A.

    1990-01-01

    An attempt was made to systematize and analyze the available data on behaviour of chalkogenides of germanium subgroup elements and their alloys at high pressures, as applied to the problem of their use as reference materials for pressure determination. It is shown that phase transformations, accompanied by sharp change of electric resistance, are observed in chalkogenides of cubic and rhombohedral structures (lead, tin (SnTe) and germanium (GeTe)) under the effect of high pressures. It was established that electric resistance in the region of phase transformation (electric signal) depended on the type and concentration of current carriers: electric sigual grew with decrease of current carrier concentration; substances with p-type of conductivity were characterized by lower electric signal, as compared to substances with n-conductivety

  4. Kinetic boundaries and phase transformations of ice i at high pressure

    Science.gov (United States)

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F.

    2018-01-01

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  5. Methods of Weyl representation of the phase space and canonical transformations. 1

    International Nuclear Information System (INIS)

    Budanov, V.G.

    1984-01-01

    The kernel structure of canonical transformation and differential equation for the intertwining operator is found. The Weyl symbol of operators producing linear canonical transformations is associated with the Cayley transformation of classical canonical transformation. Due to the invariance of the Weyl formalism a complete study of singularity and factorization of these symbols is manageable. In particular, one can study the symbols of Green functions and elements of Lie groups and find the spectra of arbitrary stationary quadratic Hamiltonians with the help of the known classification of the spectra of classical systems

  6. Influence of processing-induced phase transformations on the dissolution of theophylline tablets

    OpenAIRE

    Debnath, Smita; Suryanarayanan, Raj

    2004-01-01

    The object of this investigation was to evaluate the influence of (1) processing-induced decrease in drug crystallinity and (2) phase transformations during dissolution, on the per-formance of theophylline tablet formulations. Anhydrous theophylline underwent multiple transformations (anhydrate »hydrate»anhydrate) during processing. Although the crystallinity of the anhydrate obtained finally was lower than that of the unprocessed drug, it dissolved at a slower rate. This decrease in dissolut...

  7. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  8. Phase transformations in a human tooth tissue at the initial stage of caries.

    Directory of Open Access Journals (Sweden)

    Pavel Seredin

    Full Text Available The aim of the paper is to study phase transformations in solid tissues of the human teeth during the development of fissure caries by Raman and fluorescence microspectroscopy. The study of the areas with fissure caries confirmed the assumption of the formation of a weak interaction between phosphate apatite enamel and organic acids (products of microorganisms. The experimental results obtained with by Raman microspectroscopy showed the formation of dicalcium phosphate dihydrate - CaHPO4-2H2O in the area of mural demineralization of carious fissure. A comparative analysis of structural and spectroscopic data for the intact and carious enamel shows that emergence of a more soluble phase - carbonate-substituted hydroxyapatite - is typical for the initial stage of caries. It is shown that microareas of dental hard tissues in the carious fissure due to an emerging misorientation of apatite crystals have a higher fluorescence yield than the area of the intact enamel. These areas can be easily detected even prior to a deep demineralization (white spot stage for the case of irreversibly changed organomineral complex and intensive removal of the mineral component.

  9. Phase Transformations in a Human Tooth Tissue at the Initial Stage of Caries

    Science.gov (United States)

    Prutskij, Tatiana; Ippolitov, Yury

    2015-01-01

    The aim of the paper is to study phase transformations in solid tissues of the human teeth during the development of fissure caries by Raman and fluorescence microspectroscopy. The study of the areas with fissure caries confirmed the assumption of the formation of a weak interaction between phosphate apatite enamel and organic acids (products of microorganisms). The experimental results obtained with by Raman microspectroscopy showed the formation of dicalcium phosphate dihydrate - CaHPO4-2H2O in the area of mural demineralization of carious fissure. A comparative analysis of structural and spectroscopic data for the intact and carious enamel shows that emergence of a more soluble phase - carbonate-substituted hydroxyapatite - is typical for the initial stage of caries. It is shown that microareas of dental hard tissues in the carious fissure due to an emerging misorientation of apatite crystals have a higher fluorescence yield than the area of the intact enamel. These areas can be easily detected even prior to a deep demineralization (white spot stage) for the case of irreversibly changed organomineral complex and intensive removal of the mineral component. PMID:25901743

  10. Resistance spot welding of AISI 430 ferritic stainless steel: Phase transformations and mechanical properties

    International Nuclear Information System (INIS)

    Alizadeh-Sh, M.; Marashi, S.P.H.; Pouranvari, M.

    2014-01-01

    Highlights: • Phase transformations during RSW of AISI430 are detailed. • Grain growth, martensite formation and carbide precipitation are dominant phase transformations. • Failure mode of AISI430 resistance spot welded joints are analyzed. • Larger FZ size provided improved load bearing capacity and energy absorption capability. - Abstract: The paper aims at investigating the process–microstructure–performance relationship in resistance spot welding of AISI 430 ferritic stainless steel. The phase transformations which occur during weld thermal cycle were analyzed in details, based on the physical metallurgy of welding of the ferritic stainless steels. It was found that the microstructure of the fusion zone and the heat affected zone is influenced by different phenomena including grain growth, martensite formation and carbide precipitation. The effects of welding cycle on the mechanical properties of the spot welds in terms of peak load, energy absorption and failure mode are discussed

  11. Ion irradiation-induced diffusion in bixbyite-fluorite related oxides: Dislocations and phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Rolly, Gaboriaud, E-mail: Rolly.gaboriaud@univ-poitiers.fr [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Fabien, Paumier [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Bertrand, Lacroix [CSIC – University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)

    2014-05-01

    Ion-irradiation induced diffusion and the phase transformation of a bixbyite-fluorite related rare earth oxide thin films are studied. This work is focused on yttrium sesquioxide, Y{sub 2}O{sub 3}, thin films deposited on Si (1 0 0) substrates using the ion beam sputtering technique (IBS). As-deposited samples were annealed ant then irradiated at cryogenic temperature (80 K) with 260 keV Xe{sup 2+} at different fluences. The irradiated thin oxide films are characterized by X-ray diffraction. A cubic to monoclinic phase transformation was observed. Analysis of this phenomenon is done in terms of residual stresses. Stress measurements as a function of irradiation fluences were realised using the XRD-sin{sup 2}ψ method. Stress evolution and kinetic of the phase transformation are compared and leads to the role-played by the nucleation of point and extended defects.

  12. Moessbauer study of the magnetic phase transformations in SnMn3N

    International Nuclear Information System (INIS)

    Nagy, D.L.; Zimmer, G.J.; Lohner, T.; Senateur, J.P.

    1975-01-01

    Moessbauer measurements were performed on SnMn 3 N with the aim of verifying the magnetic phase transformations at 175 and 230 K and the Neel transition at 475 K as well as of seeking an explanation for the anomalous peak in magnetic susceptibility about 380 K. Moessbauer spectra were taken at several temperatures between 83 and 475 K and evaluated by a least square fitting program. Abrupt changes in the hyperfine field were found at 175, 230 and 350 K indicating first-order magnetic phase transformations at these temperatures; the 350 K transformation is certainly related to the anomaly in susceptibility. About 475 only a smooth change in the hyperfine field was found suggesting the Neel transition to be of the second order. An attempt is made to explain the relatively high hyperfine field in the cubic antiferromagnetic phase. (A.K.)

  13. Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi

    International Nuclear Information System (INIS)

    Katanchi, B.; Choupani, N.; Khalil-Allafi, J.; Baghani, M.

    2017-01-01

    Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.

  14. Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Katanchi, B. [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Choupani, N., E-mail: choupani@sut.ac.ir [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Khalil-Allafi, J. [Research Center for Advance Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Baghani, M. [School of Mechanical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of)

    2017-03-14

    Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.

  15. Management of the Structural Transformation of Regional Economy

    Directory of Open Access Journals (Sweden)

    Khamid Nurislamovich Gizatullin

    2018-03-01

    Full Text Available The article presents the research of the structural transformation of the economy. The authors have formulated the theoretical concept and the basic reasons for structural transformation of the economy in regions. According to the authors’ approach, the economy should function as a whole system. This defining principle is aimed at the systemic effect. The loss of regions’ control, and, in some cases, deviation from the national goals are the main reasons for the reduction in the Russian economic efficiency. As a result of the liberalization of the economy, the principle of selective investments has become the dominant one as a result of the liberalization of the economy. It broke the synergetic principle used for the formulation of economic strategy. The authors recommend to structure an efficient economy on the basis of the specificity of the economic situation due to its internal state and international realities. We also advise to achieve the balance between regional development and the development of country’s economic competitiveness. The article substantiates the need to overcome the growth of negative trends. These trends are due to the deformation of the most important economic principles and relationships as a result of weakness in the structural and investment policy. Thus, the high-priority task is the orientation of economic development to ensure the technical and technological independence of the economic system. This strategy contains the determining directions for the next development stages. We propose to focus the modernization of the structure of regional economy on the combination of the conceptual foundations of the federal structural policy and regional conditions for its implementation. Regional economy should balance economic initiative and independence in terms of the methods and means for its implementation. We recommend to combine the economic growth with the regional environmental management and the regulation of

  16. Phase-transformation and subgrain-deformation characteristics in a cobalt-based superalloy

    International Nuclear Information System (INIS)

    Benson, M.L.; Reetz, B.; Liaw, P.K.; Reimers, W.; Choo, H.; Brown, D.W.; Saleh, T.A.; Klarstrom, D.L.

    2011-01-01

    Research highlights: → The mechanical behavior of a cobalt-based superalloy was investigated. → Two diffraction techniques were used to study deformation mechanisms of materials. → In-situ neutron diffraction provides the volume-averaged information. → The peak-profile analysis reveals the information on a subgrain level. → The material exhibited a transformation texture for the HCP phase under loading. - Abstract: A complimentary set of experiments, in situ neutron diffraction and ex situ synchrotron X-ray diffraction, were used to study the phase-transformation and subgrain-deformation characteristics of a cobalt-based superalloy. The neutron diffraction indicated a strain-induced phase transformation in the cobalt-based superalloy under uniaxial tension and compression. The synchrotron X-ray diffraction revealed stacking-fault accumulation and twinning under the same loading conditions. The extent of transformation was found to be greater under tension than under compression. Tensile plastic strains below 2% were accommodated by the stacking-fault creation, while those greater than 2% were accommodated by the phase transformation. Twinning was found to be more active under compressive loading than under tensile loading.

  17. Phase transformations and resulting microstructures in Ti - 47 Al -2 Cr alloy

    International Nuclear Information System (INIS)

    Ghasemi-Armaki, H.; Heshmati-Manesh, S.; Jafarian, H. R.; Nili-Ahmadabadi, M.

    2008-01-01

    During the last three decades, intermetallic alloys have focused attention because of their high strength to weight ratio and good creep resistance. Titanium aluminide alloys based on γ-Ti Al are potential candidates to replace Ni-based super alloys currently used in jet engine components at high temperatures because of their low density, high melting temperature, good elevated-temperature strength and modulus retention, high resistance to oxidation and hydrogen absorption, and excellent creep properties. One of the major concerns in these alloys is their poor ductility at room and intermediate temperatures which has been improved slightly by microstructure modifications through heat treatment. Thus, modification of microstructure during cooling and CCT diagram in these alloys is of vital importance. In this study, Ti - 47 Al - 2 Cr intermetallic alloy has been prepared by remelting 4 times with a vacuum arc remelting furnace. Homogenizing treatment was done at 1125 d eg C for 72 h in a sealed vacuum quartz tube. All heat treatments on the samples were carried out in a vacuum heat treatment furnace under a pressure of 10 -1 bar. The atmosphere inside the furnace was changed to that of high purity argon for each heat treatment as an added precaution against oxidation. In this paper, phase transformations in a γ-Ti Al based intermetallic alloy containing chromium were investigated. Heat treatments on samples of this alloy at temperatures above Tα and subsequent cooling with various cooling rates resulted in variety of microstructures. The schematic CCT diagram for this alloy was drawn from microstructural studies using microscopy routs and X-ray diffraction. Then, cyclic heat treatment with grain refining purpose was conducted on a sample of this alloy having massive gamma microstructure. During cyclic heat treatment, gradual dissociation of the gamma phase resulted in the formation of a Widmanstaetten type structure. Trend of microstructure evolution and

  18. Stability of a laser cavity with non-parabolic phase transformation elements

    CSIR Research Space (South Africa)

    Litvin, IA

    2013-05-01

    Full Text Available aberration in high–power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006). 14. A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961). 15. O. Svelto, Principles of Lasers, 3rd edition.... Consequently the intra-cavity implementation of any non-conventional phase transformation elements or taking into account the thermal lensing which in general has a non-parabolic phase transformation [13], leads to a solution of the complicated Fox...

  19. Effect of extrapolation length on the phase transformation of epitaxial ferroelectric thin films

    International Nuclear Information System (INIS)

    Hu, Z.S.; Tang, M.H.; Wang, J.B.; Zheng, X.J.; Zhou, Y.C.

    2008-01-01

    Effects of extrapolation length on the phase transformation of epitaxial ferroelectric thin films on dissimilar cubic substrates have been studied on the basis of the mean-field Landau-Ginzburg-Devonshire (LGD) thermodynamic theory by taking an uneven distribution of the interior stress with thickness into account. It was found that the polarization of epitaxial ferroelectric thin films is strongly dependent on the extrapolation length of films. The physical origin of the extrapolation length during the phase transformation from paraelectric to ferroelectric was revealed in the case of ferroelectric thin films

  20. Phase-based motion magnification video for monitoring of vital signals using the Hermite transform

    Science.gov (United States)

    Brieva, Jorge; Moya-Albor, Ernesto

    2017-11-01

    In this paper we present a new Eulerian phase-based motion magnification technique using the Hermite Transform (HT) decomposition that is inspired in the Human Vision System (HVS). We test our method in one sequence of the breathing of a newborn baby and on a video sequence that shows the heartbeat on the wrist. We detect and magnify the heart pulse applying our technique. Our motion magnification approach is compared to the Laplacian phase based approach by means of quantitative metrics (based on the RMS error and the Fourier transform) to measure the quality of both reconstruction and magnification. In addition a noise robustness analysis is performed for the two methods.

  1. Atomic bonding of precipitate and phase transformation of Al-Cu-Mg alloy

    International Nuclear Information System (INIS)

    Gao Yingjun; Hou Xianhua; Mo Qifeng; Wei Chengyang; Qin Xiaobing

    2007-01-01

    Atomic bonding of the GPB zone and S'' phase of Al-Cu-Mg alloys in early aging stage are calculated using the empirical electron theory (EET) in solid. The results show that not only the covalence bond-network is very strong in GPB zone, but the whole covalence bond energy of S'' phase is also very large, and all the primary bond-net framework of these precipitates can consolidate the matrix of alloy. Phase transformation from GPB zone to S'' phase is explained reasonably based on atomic bonding and total binding capacity of Al and Cu atoms in these precipitates

  2. Numerically Based Phase Transformation Maps for Dissimilar Aluminum Alloys Joined by Friction Stir-Welding

    Directory of Open Access Journals (Sweden)

    Carter Hamilton

    2018-05-01

    Full Text Available Sheets of aluminum 2017A-T451 and 7075-T651 were friction stir-welded in a butt-weld configuration. An existing computational model of the welding process for temperature distribution and material flow was adapted to estimate the phase transformations that occur across the weld zone. Near the weld center, process temperatures are sufficient to fully dissolve the equilibrium η phase in 7075 and partially dissolve the equilibrium S phase in 2017A. Upon cooling, Guinier–Preston (GP and Guinier–Preston–Bagaryatsky (GPB zones re-precipitate, and hardness recovers. Due to the more complete dissolution of the equilibrium phase in 7075, the hardness recovery skews toward whichever side of the weld, i.e., the advancing or retreating side, represents the 7075 workpiece. Phase transformation maps generated by the numerical simulation align not only with the hardness profiles taken across the weld zone, but also with positron lifetimes obtained through positron annihilation lifetime spectroscopy (PALS. Boundaries between the aluminum matrix and the secondary phases provide open volumes to trap positrons; therefore, positron lifetimes across the weld correspond with the phase transformations that occur in 7075 and 2017A during processing.

  3. Phase Transformation of Adefovir Dipivoxil/Succinic Acid Cocrystals Regulated by Polymeric Additives

    Directory of Open Access Journals (Sweden)

    Sungyup Jung

    2013-12-01

    Full Text Available The polymorphic phase transformation in the cocrystallization of adefovir dipivoxil (AD and succinic acid (SUC was investigated. Inspired by biological and biomimetic crystallization, polymeric additives were utilized to control the phase transformation. With addition of poly(acrylic acid, the metastable phase newly identified through the analysis of X-ray diffraction was clearly isolated from the previously reported stable form. Without additives, mixed phases were obtained even at the early stage of cocrystallization. Also, infrared spectroscopy analysis verified the alteration of the hydrogen bonding that was mainly responsible for the cocrystal formation between AD and SUC. The hydrogen bonding in the metastable phase was relatively stronger than that in the stable form, which indicated the locally strong AD/SUC coupling in the initial stage of cocrystallization followed by the overall stabilization during the phase transformation. The stronger hydrogen bonding could be responsible for the faster nucleation of the initially observed metastable phase. The present study demonstrated that the polymeric additives could function as effective regulators for the polymorph-selective cocrystallization.

  4. Phase transformation induced by swift heavy ion irradiation of pure metals

    International Nuclear Information System (INIS)

    Dammak, H.; Dunlop, A.; Lesueur, D.

    1996-01-01

    It is now unambiguously established that high electronic energy deposition (HEED), obtained by swift heavy ion irradiation, plays an important role in the damage processes of pure metallic targets: (i) annealing of the defects created by elastic collisions in Fe, Nb, Ni and Pt, and (ii) creation of additional defects in Co, Fe, Ti and Zr. For Ti, we have recently evidenced by transmission electron microscopy observations that the damage creation by HEED is very important and leads to a phase transformation. Titanium evolves from the equilibrium hcp alpha-phase to the high pressure omega-phase. We studied the influence of three parameters on this phase transformation: ion fluence, electronic stopping power and irradiation temperature. The study of Ti and the results concerning other metals (Fe, Zr, etc.) and the semi-metal Bi allow us to propose criteria to predict in which metals HEED could induce damage: those which undergo a phase transformation under high pressure. As a matter of fact, beryllium is strongly damaged when submitted to HEED and seems to behave very similarly to titanium. The fact that such phase changes from a crystalline form to another form were only observed in those metals in which high pressure phases exist in the pressure-temperature diagram, strongly supports the Coulomb explosion model in which the generation of (i) a shock wave and (ii) collective atomic movements are invoked to account for the observed damage creation. (orig.)

  5. Investigation of structural transformations in surface layer of phosphate glasses incorporating radiactive wastes

    International Nuclear Information System (INIS)

    Aloj, A.S.; Kolycheva, T.I.; Trofimenko, A.V.; Shashukov, E.A.

    1985-01-01

    The objective of the paper was to clarify possibilities of detection of structural transformations initial stages on the surface of phosphate glasses using the method of infrared reflection spectroscopy. Phase composition of crystalline compounds formed in surface glass layer is determined by the method of X-ray diffraction. All experiments were performed using sodium alumophosphate glass comprising the model mixture of fission product of the following compostion (mass%): Na 2 O-22.0, Al 2 O 3 -14.0, P 2 O 5 -50.0, Fe 2 O 3 -3.5, Cs 2 O-3.5, SrO-3.0, Ln 2 O 3 -4.0, where Ln 2 O 3 is a mixture of cerium, lanthanum and europium oxides. Sample preparation were carried out by molten glass deposition on platinum forms 15mm in diameter and 4mm thick. Glasses were treated within the 600-400deg.C temperature range. Fixing of processes accompanied by structural transformations was accomplished the method of rapid cooling. It has been shown that phase transformations, taking place in investigated phosphate glasses under the action of heat, result in deterioration of chemical properties. Analysis of IR spectra has revealed that emergence of structural transformations in surface layer of investigated glasses results in variation of a ratio of 1060 and 1140cm - 1 reflection band intensities. Experimental dependences of the time of beginning of variation of 1060 and 1140cm - 1 bands relative intensity on temperature are presented. Insemilogarithmic coordinates this dependence has a straight line form within the 600-400 deg C temperature range and is desc ribed by the following formular: lg r=-7.41+5.70x10 3 x1/T, where r is the time of process beginning, h. Extrapolation of established to the region of low temperature is shown. Competence of such extrapolation may be confirmed in the course of further experiments

  6. Phase structure of (φ4)3 field theory at finite temperature

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1992-01-01

    Phase structure of φ 4 field theory in the space-time R 3 is investigated at arbitrary coupling constant and temperature. The critical values of the coupling constant and temperature, corresponding to the phase transitions in the system, are calculated by the canonical transformation method within formalism of thermo field dynamics. The Hamiltonians describing the system in each phase are obtained straightforwardly. Comparison with the two-dimensional case shows a crucial influence of higher order renormalization on the phase structure of the model. 13 refs.; 5 figs

  7. A multi-scale model for structure-property relations of materials exhibiting martensite transformation plasticity

    NARCIS (Netherlands)

    Kouznetsova, V.; Balmachnov, A.; Geers, M.G.D.

    2009-01-01

    The remarkable mechanical properties of many advanced steels, e.g. metastable austenitic stainless steels, are related to their complex microstructural behaviour, resulting from the interaction between plastic deformation of the phases and the austenite to martensite phase transformation during

  8. Synthesis of Li-Mn-O mesocrystals with controlled crystal phases through topotactic transformation of MnCO3

    Science.gov (United States)

    Dang, Feng; Hoshino, Tatsuhiko; Oaki, Yuya; Hosono, Eiji; Zhou, Haoshen; Imai, Hiroaki

    2013-02-01

    Mesocrystals of Li-Mn-O compounds, such as LiMn2O4, Li2MnO3, and LiMnO2-Li2MnO3, consisting of oriented nanoscale units were selectively produced under hydrothermal conditions from biomimetically prepared MnCO3 mesocrystals. Topotactic transformation through the intermediate phase of Mn5O8 inheriting a hierarchical structure of the MnCO3 precursor was essential for the formation of the mesocrystal compounds. The crystal phases were successfully controlled by varying the conditions for the hydrothermal reactions. The Li-Mn-O mesocrystals have considerable potential as cathodes of Li-ion batteries.Mesocrystals of Li-Mn-O compounds, such as LiMn2O4, Li2MnO3, and LiMnO2-Li2MnO3, consisting of oriented nanoscale units were selectively produced under hydrothermal conditions from biomimetically prepared MnCO3 mesocrystals. Topotactic transformation through the intermediate phase of Mn5O8 inheriting a hierarchical structure of the MnCO3 precursor was essential for the formation of the mesocrystal compounds. The crystal phases were successfully controlled by varying the conditions for the hydrothermal reactions. The Li-Mn-O mesocrystals have considerable potential as cathodes of Li-ion batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33767g

  9. Shielding behavior of multi-transformation phase change materials (MTPCM) against nuclear radiations

    International Nuclear Information System (INIS)

    Kumar, Ravindra; Goplani, Deepak; Kumar, Rohitash; Das, Mrinal Kumar; Kumar, Pramod; Jodha, Ajay Singh; Misra, Manoj; Khatri, P.K.

    2008-01-01

    In nuclear hardened structures and AFV's, special shielding materials are being used to provide protection from radiations generated in nuclear blast. However, in blast an intense heat pulse is also generated along with radiation. Currently used shield does not take care of this heat pulse. Defence Laboratory, Jodhpur has developed multi transformation phase change materials (MTPCM) based cool panels for passive moderation of temperature in severe desert heat. The MTPCM contains light nuclei of hydrogen, carbon and oxygen, and thus can absorb good amount of neutrons. MTPCM can also absorb intense heat pulse along with heat generated by secondary fires during blast as its latent heat (160-170 J/g) without significant rise in temperature (melting point 36-38 deg. C). Thus MTPCM can provide protection against both radiation as well as heat pulse generated in a nuclear blast along with its designed regular function of passively moderating temperature below 40 deg C during severe desert summer. A study has been undertaken to explore multiple applications of MTPCM panel. Protection factor provided by standard MTPCM panels against neutron and gamma radiations (both initial and fall out) were measured and results compared with PF provided by special lining pad currently being used in AFV's and field structures for nuclear protection. It is observed that MTPCM provides good PF (2.17) against neutron which is better than currently used shield pads (PFP%1.8). Present paper discusses results of this study. (author)

  10. Inherited textures in the bcc phase furnish information about the type of transformation from the fcc phase

    International Nuclear Information System (INIS)

    Jung, V.

    1982-07-01

    Drawing annealed cylindric 18/8 Cr Ni steels, which are originally free of textures, produces the transformed phases - hcp and bcc - both showing major texture contributions with increasing stretching of the cylindric specimens. After stretching the original fcc-phase shows two orientations: [100]fcc vertical stroke vertical stroke cylinder axis and [111]fcc vertical stroke vertical stroke cylinder axis, i.e. direction of stress. In both cases the martensitic phase is produced by gliding and shear in the sequence fcc → hcp → bcc by Nishiyama-Wasserman (N-W) or Kurdjumov-Sachs (K-S) transformation in the (111)fcc planes, which enclose a small angle with direction of stress, i.e. cylinder axis. The calculated orientation distributions of the (110)bcc reflex are compared with the distribution measured by neutron diffraction to get information on the bulk material. The special K-S transformation with only 6 (110)bcc orientations shows relatively good agreement with the measured distribution, except at small angles ω between the cylinder axis and the scattering vector. This might be caused by the isotropic fraction of the fcc phase producing an anisotropic (110)bcc orientation distribution. (orig.) [de

  11. Effect of grain boundaries on shock-induced phase transformation in iron bicrystals

    Science.gov (United States)

    Zhang, Xueyang; Wang, Kun; Zhu, Wenjun; Chen, Jun; Cai, Mengqiu; Xiao, Shifang; Deng, Huiqiu; Hu, Wangyu

    2018-01-01

    Non-equilibrium molecular-dynamic simulations with a modified analytic embedded-atom model potential have been performed to investigate the effect of three kinds of grain boundaries (GBs) on the martensitic transformation in iron bicrystals with three different GBs under shock loadings. Our results show that the phase transition was influenced by the GBs. All three GBs provide a nucleation site for the α → ɛ transformation in samples shock-loaded with up = 0.5 km/s, and in particular, the elastic wave can induce the phase transformation at Σ3 ⟨110⟩ twist GB, which indicates that the phase transformation can occur at Σ3 ⟨110⟩ twist GB with a much lower pressure. The effect of GBs on the stress assisted transformation (SAT) mechanisms is discussed. All variants nucleating at the vicinity of these GBs meet the maximum strain work (MSW) criterion. Moreover, all of the variants with the MSW nucleate at Σ5 ⟨001⟩ twist GB and Σ3 ⟨110⟩ tilt GB, but only part of them nucleate at Σ3 ⟨110⟩ twist GB. This is because the coincident planes between both sides of the GB would affect the slip process, which is the second stage of the martensitic transformation and influences the selection of variant. We also find that the martensitic transformation at the front end of the bicrystals would give rise to stress attenuation in samples shock-loaded with up = 0.6 km/s, which makes the GBs seem to be unfavorable to the martensitic transformation. Our findings have the potential to affect the interface engineering and material design under high pressure conditions.

  12. Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification

    Energy Technology Data Exchange (ETDEWEB)

    Lamouri, S.; Hamidouche, M.; Bouaouadja, N.; Belhouchet, H.; Garnier, V.; Fantozzi, G.; Trelkat, J.F.

    2017-07-01

    In this work, we studied the aptitude to sintering green bodies using γ-Al2O3 transition alumina as raw powder. We focused on the influence of the heating rate on densification and microstructural evolution. Phase transformations from transition alumina γ→δ→θ→α-Al2O3 were studied by in situ X-rays diffraction from the ambient to 1200°C. XRD patterns revealed coexistence of various phase transformations during the heating cycle. DTA and dilatometry results showed that low heating rate leads to a significant reduction of the temperature of the α-Al2O3 alumina formation. Around 1190, 1217 and 1240°C were found when using 5, 10 and 20°C/min of heating rate, respectively. The activation energy for θ-Al2O3→α-Al2O3 transformation calculated by Kissinger and JMA equations using dilatometry method were 464.29 and 488.79kJ/mol, respectively and by DTA method were 450.72 and 475.49kJ/mol, respectively. In addition, the sintering of the green bodies with low heating rate promotes the rearrangement of the grains during θ-Al2O3→α-Al2O3 transformation, enhancing the relative density to 95% and preventing the development of a vermicular structure. (Author)

  13. REVIEWS OF TOPICAL PROBLEMS: Order-disorder transformations and phase equilibria in strongly nonstoichiometric compounds

    Science.gov (United States)

    Gusev, Aleksandr I.

    2000-01-01

    Data on order-disorder phase transformations in strongly nonstoichiometric carbides and nitrides MXy (X=C, N) of Group IV and V transition metals at temperatures below 1300-1400 K are reviewed. The order-parameter functional method as applied to atomic and vacancy ordering in strongly nonstoichiometric MXy compounds and to phase equilibrium calculations for M-X systems is discussed. Phase diagram calculations for the Ti-C, Zr-C, Hf-C, V-C, Nb-C, Ta-C, Ti-N, and Ti-B-C systems (with the inclusion of the ordering of nonstoichiometric carbides and nitrides) and those for pseudobinary carbide M(1)C-M(2)C systems are presented. Heat capacity, electrical resistivity and magnetic susceptibility changes at reversible order-disorder phase transformations in nonstoichiometric carbides are considered.

  14. Gyrator transform of Gaussian beams with phase difference and generation of hollow beam

    Science.gov (United States)

    Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke

    2018-03-01

    The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.

  15. Phase retrieval from a single fringe pattern by using empirical wavelet transform

    International Nuclear Information System (INIS)

    Guo, Xiaopeng; Zhao, Hong; Wang, Xin

    2015-01-01

    Phase retrieval from a single fringe pattern is one of the key tasks in optical metrology. In this paper, we present a new method for phase retrieval from a single fringe pattern based on empirical wavelet transform. In the proposed method, a fringe pattern can be effectively divided into three components: nonuniform background, fringes and random noise, which are described in different sub-pass. So the phase distribution information can be robustly extracted from fringes representing a fundamental frequency component. In simulation and a practical projection fringes test, the performance of the present method is successfully verified by comparing with the conventional wavelet transform method in terms of both image quality and phase estimation errors. (paper)

  16. Phase unwrapping in digital holography based on non-subsampled contourlet transform

    Science.gov (United States)

    Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-01-01

    In the digital holographic measurement of complex surfaces, phase unwrapping is a critical step for accurate reconstruction. The phases of the complex amplitudes calculated from interferometric holograms are disturbed by speckle noise, thus reliable unwrapping results are difficult to be obtained. Most of existing unwrapping algorithms implement denoising operations first to obtain noise-free phases and then conduct phase unwrapping pixel by pixel. This approach is sensitive to spikes and prone to unreliable results in practice. In this paper, a robust unwrapping algorithm based on the non-subsampled contourlet transform (NSCT) is developed. The multiscale and directional decomposition of NSCT enhances the boundary between adjacent phase levels and henceforth the influence of local noise can be eliminated in the transform domain. The wrapped phase map is segmented into several regions corresponding to different phase levels. Finally, an unwrapped phase map is obtained by elevating the phases of a whole segment instead of individual pixels to avoid unwrapping errors caused by local spikes. This algorithm is suitable for dealing with complex and noisy wavefronts. Its universality and superiority in the digital holographic interferometry have been demonstrated by both numerical analysis and practical experiments.

  17. Phase transformation in {delta} Pu alloys at low temperature: In situ dilatometric study

    Energy Technology Data Exchange (ETDEWEB)

    Texier, G; Oudot, B; Platteau, C; Ravat, B; Delaunay, F, E-mail: gwenael.texier@cea.fr, E-mail: benoit.oudot@cea.fr [CEA, DAM, Valduc, Is sur Tille 21120 (France)

    2010-03-15

    The purpose of this work is to precisely study the martensitic transformation in a plutonium-gallium alloy. Thus, the thermodynamics and kinetics of the {delta}{yields}{alpha}'+{delta} phase transformation in a Pu-Ga alloy were studied under isochronal and isothermal conditions. The activation energy of the {delta}{yields}{alpha}'+{delta} phase transformation at a constant cooling rate (0.5 K.min{sup -1}) was determined by using Kissinger and Ozawa models. The average value of the activation energy was found to be at -56 kJ.mol{sup -1}. Dilatometry measurement was also used to trace 'in situ' the entire transformation for several temperatures. The kinetics of the {delta}{yields}{alpha}'+{delta} transformation were modelled under isothermal conditions in the theoretical frame of the Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory. It is proposed that the transformation consists of three stages. The {alpha}' transformation begins with a nucleation of pre-existing embryos. Then, both nucleation and rapid growth of {alpha}' occurs simultaneously and finally, the plates width expend. Apparent activation energies for nucleation and growth transformation were determined from the temperature dependence of the constant K at respectively -34 kJ.mol{sup -1} and -60 kJ.mol{sup -1}. Adler et al. [1] investigated also the thermodynamics and the kinetics of the martensitic transformation in Pu alloys. These nucleation energies were found by modelling of heterogeneous martensitic nucleation via strain interaction with observed superdislocation-like nucleation sites in PuGa alloys. The values obtain by this model was very close to those we find. Investigations in steels alloys indicate that these energies are of the same order for nucleation near dislocation. Then, it could be indicating a strong relationship between these dislocations and martensitic nucleation sites.

  18. Structural Transformations in Two-Dimensional Transition-Metal Dichalcogenide MoS2 under an Electron Beam

    DEFF Research Database (Denmark)

    Kretschmer, Silvan; Komsa, Hannu-Pekka; Bøggild, Peter

    2017-01-01

    prismatic H phase to the metallic octahedral T phase in 2D MoS2 have been induced by electron irradiation [Nat. Nanotech. 2014, 9, 391], but the mechanism of the transformations remains elusive. Using density functional theory calculations, we study the energetics of the stable and metastable phases of 2D...... MoS2 when additional charge, mechanical strain, and vacancies are present. We also investigate the role of finite temperatures, which appear to be critical for the transformations. On the basis of the results of our calculations, we propose an explanation for the beam-induced transformations, which...... development and optimization of electron-beam-mediated engineering of the atomic structure and electronic properties of 2D TMDs with subnanometer resolution....

  19. Gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance mass spectrometry

    International Nuclear Information System (INIS)

    Joergensen, S.I.

    1985-01-01

    The subject of this thesis is gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry (chapter 2 contains a short description of this method). Three chapters are mainly concerned with mechanistic aspects of gas phase ion/molecule reactions. An equally important aspect of the thesis is the stability and reactivity of α-thio carbanions, dipole stabilized carbanions and homoenolate anions, dealt with in the other four chapters. (Auth.)

  20. Phase transformation and conductivity in nanocrystal PbS under pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gerward, Leif; Secco, R.

    2000-01-01

    The grain-size effect on the phase transition induced by pressure in PbS was studied by in situ high-pressure electrical resistance and synchrotron radiation x-ray powder diffraction measurements. The mean transition pressure of the B1-to-B16 phase transformation was found to be 6.3±1.3 GPa in 8...... in terms of a decrease of energy band gap with increasing pressure. ©2000 American Institute of Physics....