WorldWideScience

Sample records for structure molecular

  1. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  2. Structural Molecular Biology 2017 | SSRL

    Science.gov (United States)

    Highlights Training Workshops & Summer Schools Summer Students Structural Molecular Biology Illuminating experimental driver for structural biology research, serving the needs of a large number of academic and — Our Mission The SSRL Structural Molecular Biology program operates as an integrated resource and has

  3. Molecular Structure of Nucleic Acids

    Indian Academy of Sciences (India)

    Molecular Structure of Nucleic Acids. A Structure for Deoxyribose Nucleic Acid. J. D. Watson and F. H. C. Crick. Medical Research Council Unit for the Study of the Molecular Structure of Biological. Systems, Cavendish Laboratory, Cambridge. April 2. We wish to suggest a structure for the salt of deoxyribose nucleic acid ...

  4. Valency and molecular structure

    CERN Document Server

    Cartmell, E

    1977-01-01

    Valency and Molecular Structure, Fourth Edition provides a comprehensive historical background and experimental foundations of theories and methods relating to valency and molecular structures. In this edition, the chapter on Bohr theory has been removed while some sections, such as structures of crystalline solids, have been expanded. Details of structures have also been revised and extended using the best available values for bond lengths and bond angles. Recent developments are mostly noted in the chapter on complex compounds, while a new chapter has been added to serve as an introduction t

  5. Photoionization and molecular structure

    International Nuclear Information System (INIS)

    Palma, A.

    1983-01-01

    A presentation is here given of the theoretical work on photoionization and molecular structure carried out by the author and coworkers. The implications of the photoionization process on the molecular geometry are emphasized. In particular, the ionization effect on deep orbitals is considered and it is shown that, contrary to traditional thinking, these orbitals have relevant effects on the molecular geometry. The problem of calculating photoionization relative intensities for the full spectrum is also considered, and the results of the present model are compared with experimental and other theoretical results. (author)

  6. Molecular Structure of Human-Liver Glycogen.

    Directory of Open Access Journals (Sweden)

    Bin Deng

    Full Text Available Glycogen is a highly branched glucose polymer which is involved in maintaining blood-sugar homeostasis. Liver glycogen contains large composite α particles made up of linked β particles. Previous studies have shown that the binding which links β particles into α particles is impaired in diabetic mice. The present study reports the first molecular structural characterization of human-liver glycogen from non-diabetic patients, using transmission electron microscopy for morphology and size-exclusion chromatography for the molecular size distribution; the latter is also studied as a function of time during acid hydrolysis in vitro, which is sensitive to certain structural features, particularly glycosidic vs. proteinaceous linkages. The results are compared with those seen in mice and pigs. The molecular structural change during acid hydrolysis is similar in each case, and indicates that the linkage of β into α particles is not glycosidic. This result, and the similar morphology in each case, together imply that human liver glycogen has similar molecular structure to those of mice and pigs. This knowledge will be useful for future diabetes drug targets.

  7. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Tsuyoshi [Joint ALMA Office, Alonso de Cordova 3107, Vitacura, Santiago 763-0355 (Chile); Hasegawa, Tetsuo [NAOJ Chile Observatory, Joaquin Montero 3000 Oficina 702, Vitacura, Santiago 763-0409 (Chile); Koda, Jin, E-mail: sawada.tsuyoshi@nao.ac.jp [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  8. Prediction of molecular crystal structures

    International Nuclear Information System (INIS)

    Beyer, Theresa

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol -1 of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  9. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  10. CSMB | Center For Structural Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Structural Molecular Biologyat ORNL is dedicated to developing instrumentation and methods for determining the 3-dimensional structures of proteins,...

  11. Exploring RNA structure by integrative molecular modelling

    DEFF Research Database (Denmark)

    Masquida, Benoît; Beckert, Bertrand; Jossinet, Fabrice

    2010-01-01

    RNA molecular modelling is adequate to rapidly tackle the structure of RNA molecules. With new structured RNAs constituting a central class of cellular regulators discovered every year, the need for swift and reliable modelling methods is more crucial than ever. The pragmatic method based...... on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded...

  12. Learning surface molecular structures via machine vision

    Science.gov (United States)

    Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.

    2017-08-01

    Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (`read out') all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds and thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. The method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.

  13. Rotational structure in molecular infrared spectra

    CERN Document Server

    di Lauro, Carlo

    2013-01-01

    Recent advances in infrared molecular spectroscopy have resulted in sophisticated theoretical and laboratory methods that are difficult to grasp without a solid understanding of the basic principles and underlying theory of vibration-rotation absorption spectroscopy. Rotational Structure in Molecular Infrared Spectra fills the gap between these recent, complex topics and the most elementary methods in the field of rotational structure in the infrared spectra of gaseous molecules. There is an increasing need for people with the skills and knowledge to interpret vibration-rotation spectra in many scientific disciplines, including applications in atmospheric and planetary research. Consequently, the basic principles of vibration-rotation absorption spectroscopy are addressed for contemporary applications. In addition to covering operational quantum mechanical methods, spherical tensor algebra, and group theoretical methods applied to molecular symmetry, attention is also given to phase conventions and their effe...

  14. Contributions to advances in blend pellet products (BPP) research on molecular structure and molecular nutrition interaction by advanced synchrotron and globar molecular (Micro)spectroscopy.

    Science.gov (United States)

    Guevara-Oquendo, Víctor H; Zhang, Huihua; Yu, Peiqiang

    2018-04-13

    To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.

  15. Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments.

    Directory of Open Access Journals (Sweden)

    Rong Shen

    2015-10-01

    Full Text Available The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels, each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good

  16. Determining the stereochemical structures of molecular ions by ''Coulomb-explosion'' techniques with fast (MeV) molecular ion beams

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1980-01-01

    Recent studies on the dissociation of fast (MeV) molecular ion beams in thin foils suggest a novel alternative approach to the determination of molecular ion structures. In this article we review some recent high-resolution studies on the interactions of fast molecular ion beams with solid and gaseous targets and indicate how such studies may be applied to the problem of determining molecular ion structures. The main features of the Coulomb explosion of fast-moving molecular ion projectiles and the manner in which Coulomb-explosion techniques may be applied to the problem (difficult to attack by more conventional means) of determining the stereochemical structures of molecular ions has been described in this paper. Examples have been given of early experiments designed to elicit structure information. The techniques are still in their infancy, and it is to be expected that as both the technology and the analysis are refined, the method will make valuable contributions to the determination of molecular ion structures

  17. The structure of molecular liquids. Neutron diffraction and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bianchi, L.

    2000-05-01

    Neutron diffraction (ND) measurements on liquid methanol (CD 3 OD, CD 3 O(H/D), CD 3 OH) under ambient conditions were performed to obtain the distinct (intra- + inter-molecular), G dist (r) and inter-molecular, G inter (r) radial distribution functions (rdfs) for the three samples. The H/D substitution on hydroxyl-hydrogen (Ho) has been used to extract the partial distribution functions, G XHo (r) (X=C, O, and H - a methyl hydrogen) and G XX (r) at both the distinct and inter-molecular levels from the difference techniques of ND. The O-Ho bond length, which has been the subject of controversy in the past, is found purely from the distinct partial distribution function, G XHo (r) to be 0.98 ± 0.01 A. The C-H distance obtained from the distinct G XX (r) partial is 1.08 ± 0.01 A. These distances determined by fitting an intra-molecular model to the total distinct structure functions are 0.961 ± 0.001 A and 1.096 ± 0.001 A, respectively. The inter-molecular G XX (r) function, dominated by contributions from the methyl groups, apart from showing broad oscillations extending up to ∼14 A is featureless, mainly because of cancellation effects from six contributing pairs. The Ho-Ho partial pair distribution function (pdf), g HoHo (r), determined from the second order difference, shows that only one other Ho atom can be found within a mean Ho-Ho separation of 2.36 A. The average position of the O-Ho hydrogen bond determined for the first time purely from experimental inter-molecular G XHo (r) partial distribution function is found to be at 1.75 ± 0.03 A. The experimental structural results at the partial distribution level are compared with those obtained from molecular dynamics (MD) simulations performed in NVE ensemble by using both 3- and 6-site force field models for the first time in this study. The MD simulations with both the models reproduce the ND rdfs rather well. However, discrepancies begin to appear between the simulated and the experimental partial

  18. Molecular Structure of Membrane Tethers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2012-01-01

    Membrane tethers are nanotubes formed by a lipid bilayer. They play important functional roles in cell biology and provide an experimental window on lipid properties. Tethers have been studied extensively in experiments and described by theoretical models, but their molecular structure remains

  19. Structures of Life: The Role of Molecular Structures in Scientists' Work

    NARCIS (Netherlands)

    Vyas, Dhaval; Kulyk, Olga Anatoliyivna; van der Vet, P.E.; Nijholt, Antinus; van der Veer, Gerrit C.; Jorge, J

    2008-01-01

    The visual and multidimensional representations like images and graphical structures related to biology provide great insights into understanding the complexities of different organisms. Especially, life scientists use different representations of molecular structures to answer biological questions

  20. Advances in Rosetta structure prediction for difficult molecular-replacement problems

    International Nuclear Information System (INIS)

    DiMaio, Frank

    2013-01-01

    Modeling advances using Rosetta structure prediction to aid in solving difficult molecular-replacement problems are discussed. Recent work has shown the effectiveness of structure-prediction methods in solving difficult molecular-replacement problems. The Rosetta protein structure modeling suite can aid in the solution of difficult molecular-replacement problems using templates from 15 to 25% sequence identity; Rosetta refinement guided by noisy density has consistently led to solved structures where other methods fail. In this paper, an overview of the use of Rosetta for these difficult molecular-replacement problems is provided and new modeling developments that further improve model quality are described. Several variations to the method are introduced that significantly reduce the time needed to generate a model and the sampling required to improve the starting template. The improvements are benchmarked on a set of nine difficult cases and it is shown that this improved method obtains consistently better models in less running time. Finally, strategies for best using Rosetta to solve difficult molecular-replacement problems are presented and future directions for the role of structure-prediction methods in crystallography are discussed

  1. Molecular structure of dextran sulphate sodium in aqueous environment

    Science.gov (United States)

    Yu, Miao; Every, Hayley A.; Jiskoot, Wim; Witkamp, Geert-Jan; Buijs, Wim

    2018-03-01

    Here we propose a 3D-molecular structural model for dextran sulphate sodium (DSS) in a neutral aqueous environment based on the results of a molecular modelling study. The DSS structure is dominated by the stereochemistry of the 1,6-linked α-glucose units and the presence of two sulphate groups on each α-glucose unit. The structure of DSS can be best described as a helix with various patterns of di-sulphate substitution on the glucose rings. The presence of a side chain does not alter the 3D-structure of the linear main chain much, but affects the overall spatial dimension of the polymer. The simulated polymers have a diameter similar to or in some cases even larger than model α-hemolysin nano-pores for macromolecule transport in many biological processes, indicating a size-limited translocation through such pores. All results of the molecular modelling study are in line with previously reported experimental data. This study establishes the three-dimensional structure of DSS and summarizes the spatial dimension of the polymer, serving as the basis for a better understanding on the molecular level of DSS-involved electrostatic interaction processes with biological components like proteins and cell pores.

  2. Molecular structure and motion in zero field magnetic resonance

    International Nuclear Information System (INIS)

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed

  3. Ab initio study of structural and mechanical property of solid molecular hydrogens

    Science.gov (United States)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  4. Nanohashtag structures based on carbon nanotubes and molecular linkers

    Science.gov (United States)

    Frye, Connor W.; Rybolt, Thomas R.

    2018-03-01

    Molecular mechanics was used to study the noncovalent interactions between single-walled carbon nanotubes and molecular linkers. Groups of nanotubes have the tendency to form tight, parallel bundles (||||). Molecular linkers were introduced into our models to stabilize nanostructures with carbon nanotubes held in perpendicular orientations. Molecular mechanics makes it possible to estimate the strength of noncovalent interactions holding these structures together and to calculate the overall binding energy of the structures. A set of linkers were designed and built around a 1,3,5,7-cyclooctatetraene tether with two corannulene containing pincers that extend in opposite directions from the central cyclooctatetraene portion. Each pincer consists of a pairs of "arms." These molecular linkers were modified so that the "hand" portions of each pair of "arms" could close together to grab and hold two carbon nanotubes in a perpendicular arrangement. To illustrate the possibility of more complicated and open perpendicular CNTs structures, our primary goal was to create a model of a nanohashtag (#) CNT conformation that is more stable than any parallel CNT arrangements with bound linker molecules forming clumps of CNTs and linkers in non-hashtag arrangements. This goal was achieved using a molecular linker (C280H96) that utilizes van der Waals interactions to two perpendicular oriented CNTs. Hydrogen bonding was then added between linker molecules to augment the stability of the hashtag structure. In the hashtag structure with hydrogen bonding, four (5,5) CNTs of length 4.46 nm (18 rings) and four linkers (C276H92N8O8) stabilized the hashtag so that the average binding energy per pincer was 118 kcal/mol.

  5. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques.

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M; Prates, Luciana L; Yu, Peiqiang

    2017-08-05

    The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HED N/OM ), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Using vibrational molecular spectroscopy to reveal association of steam-flaking induced carbohydrates molecular structural changes with grain fractionation, biodigestion and biodegradation

    Science.gov (United States)

    Xu, Ningning; Liu, Jianxin; Yu, Peiqiang

    2018-04-01

    Advanced vibrational molecular spectroscopy has been developed as a rapid and non-destructive tool to reveal intrinsic molecular structure conformation of biological tissues. However, this technique has not been used to systematically study flaking induced structure changes at a molecular level. The objective of this study was to use vibrational molecular spectroscopy to reveal association between steam flaking induced CHO molecular structural changes in relation to grain CHO fractionation, predicted CHO biodegradation and biodigestion in ruminant system. The Attenuate Total Reflectance Fourier-transform Vibrational Molecular Spectroscopy (ATR-Ft/VMS) at SRP Key Lab of Molecular Structure and Molecular Nutrition, Ministry of Agriculture Strategic Research Chair Program (SRP, University of Saskatchewan) was applied in this study. The fractionation, predicted biodegradation and biodigestion were evaluated using the Cornell Net Carbohydrate Protein System. The results show that: (1) The steam flaking induced significant changes in CHO subfractions, CHO biodegradation and biodigestion in ruminant system. There were significant differences between non-processed (raw) and steam flaked grain corn (P R2 = 0.87, RSD = 0.74, P R2 = 0.87, RSD = 0.24, P < .01). In summary, the processing induced molecular CHO structure changes in grain corn could be revealed by the ATR-Ft/VMS vibrational molecular spectroscopy. These molecular structure changes in grain were potentially associated with CHO biodegradation and biodigestion.

  7. Molecular structure descriptors in the computer-aided design of biologically active compounds

    International Nuclear Information System (INIS)

    Raevsky, Oleg A

    1999-01-01

    The current state of description of molecular structure in computer-aided molecular design of biologically active compounds by means of descriptors is analysed. The information contents of descriptors increases in the following sequence: element-level descriptors-structural formulae descriptors-electronic structure descriptors-molecular shape descriptors-intermolecular interaction descriptors. Each subsequent class of descriptors normally covers information contained in the previous-level ones. It is emphasised that it is practically impossible to describe all the features of a molecular structure in terms of any single class of descriptors. It is recommended to optimise the number of descriptors used by means of appropriate statistical procedures and characteristics of structure-property models based on these descriptors. The bibliography includes 371 references.

  8. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Science.gov (United States)

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  9. Rosetta Structure Prediction as a Tool for Solving Difficult Molecular Replacement Problems.

    Science.gov (United States)

    DiMaio, Frank

    2017-01-01

    Molecular replacement (MR), a method for solving the crystallographic phase problem using phases derived from a model of the target structure, has proven extremely valuable, accounting for the vast majority of structures solved by X-ray crystallography. However, when the resolution of data is low, or the starting model is very dissimilar to the target protein, solving structures via molecular replacement may be very challenging. In recent years, protein structure prediction methodology has emerged as a powerful tool in model building and model refinement for difficult molecular replacement problems. This chapter describes some of the tools available in Rosetta for model building and model refinement specifically geared toward difficult molecular replacement cases.

  10. Density functional study of molecular interactions in secondary structures of proteins.

    Science.gov (United States)

    Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki

    2016-01-01

    Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.

  11. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-02

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  12. Electronic structure of molecular Rydberg states of some small molecules and molecular ion

    International Nuclear Information System (INIS)

    Sun Biao; Li Jiaming

    1993-01-01

    Based on an independent-particle-approximation (i.e. the multiple scattering self-consistent-field theory), the electronic structures of Rydberg states of the small diatomic molecules H 2 , He 2 and the He 2 + molecular ion were studied. The principal quantum number of the first state of the Rydberg series is determined from a convention of the limit of the molecular electronic configuration. The dynamics of the excited molecules and molecular ion has been elucidated. The theoretical results are in fair agreement with the existing experimental measurements, thus they can serve as a reliable basis for future refined treatment such as the configuration interaction calculation

  13. Geometric and electronic structures of molecular ions from high energy collisions

    International Nuclear Information System (INIS)

    Groeneveld, K.O.

    1983-01-01

    This chapter examines the characteristics of heavy ion collision and of beam foil spectroscopy. It discusses the kinematic consequences of the high energies and presents results from ''Coulomb explosion'' and structure determination of molecular ions. It demonstrates that studies of molecular ions with accelerators can provide electronic and geometric structure information of molecules or molecular ions and points out that the understanding of the microscopic processes at such high energies is incomplete and needs further experimental and theoretical efforts

  14. Molecular dynamic analysis of the structure of dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Canetta, E.; Maino, G. E-mail: maino@bologna.enea.it

    2004-01-01

    We present main results of molecular dynamics simulations that we have carried out in order to investigate structural properties of polyamidoamine (PAMAM) dendrimers. Obtained data confirm the PAMAM dendrimer structure proposed by experiments, performed by means of X-ray scattering (SAXS) and quasi-elastic light scattering (QELS) techniques.

  15. Molecular dynamic analysis of the structure of dendrimers

    International Nuclear Information System (INIS)

    Canetta, E.; Maino, G.

    2004-01-01

    We present main results of molecular dynamics simulations that we have carried out in order to investigate structural properties of polyamidoamine (PAMAM) dendrimers. Obtained data confirm the PAMAM dendrimer structure proposed by experiments, performed by means of X-ray scattering (SAXS) and quasi-elastic light scattering (QELS) techniques

  16. Teaching Structure-Property Relationships: Investigating Molecular Structure and Boiling Point

    Science.gov (United States)

    Murphy, Peter M.

    2007-01-01

    A concise, well-organized table of the boiling points of 392 organic compounds has facilitated inquiry-based instruction in multiple scientific principles. Many individual or group learning activities can be derived from the tabulated data of molecular structure and boiling point based on the instructor's education objectives and the students'…

  17. Characteristics studies of molecular structures in drugs

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2017-05-01

    Full Text Available In theoretical medicine, topological indices are defined to test the medicine and pharmacy characteristics, such as melting point, boiling point, toxicity and other biological activities. As basic molecular structures, hexagonal jagged-rectangle and distance-regular structure are widely appeared in medicine, pharmacy and biology engineering. In this paper, we study the chemical properties of hexagonal jagged-rectangle from the mathematical point of view. Several vertex distance-based indices are determined. Furthermore, the Wiener related indices of distance-regular structure are also considered.

  18. RxnFinder: biochemical reaction search engines using molecular structures, molecular fragments and reaction similarity.

    Science.gov (United States)

    Hu, Qian-Nan; Deng, Zhe; Hu, Huanan; Cao, Dong-Sheng; Liang, Yi-Zeng

    2011-09-01

    Biochemical reactions play a key role to help sustain life and allow cells to grow. RxnFinder was developed to search biochemical reactions from KEGG reaction database using three search criteria: molecular structures, molecular fragments and reaction similarity. RxnFinder is helpful to get reference reactions for biosynthesis and xenobiotics metabolism. RxnFinder is freely available via: http://sdd.whu.edu.cn/rxnfinder. qnhu@whu.edu.cn.

  19. Relation between molecular electronic structure and nuclear spin-induced circular dichroism

    DEFF Research Database (Denmark)

    Štěpánek, Petr; Coriani, Sonia; Sundholm, Dage

    2017-01-01

    with spatially localized, high-resolution information. To survey the factors relating the molecular and electronic structure to the NSCD signal, we theoretically investigate NSCD of twenty structures of the four most common nucleic acid bases (adenine, guanine, thymine, cytosine). The NSCD signal correlates...... with the spatial distribution of the excited states and couplings between them, reflecting changes in molecular structure and conformation. This constitutes a marked difference to the nuclear magnetic resonance (NMR) chemical shift, which only reflects the local molecular structure in the ground electronic state....... The calculated NSCD spectra are rationalized by means of changes in the electronic density and by a sum-over-states approach, which allows to identify the contributions of the individual excited states. Two separate contributions to NSCD are identified and their physical origins and relative magnitudes...

  20. Detecting Molecular Features of Spectra Mainly Associated with Structural and Non-Structural Carbohydrates in Co-Products from BioEthanol Production Using DRIFT with Uni- and Multivariate Molecular Spectral Analyses

    Science.gov (United States)

    Yu, Peiqiang; Damiran, Daalkhaijav; Azarfar, Arash; Niu, Zhiyuan

    2011-01-01

    The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485–1188 cm−1), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm−1 with region and baseline: ca. 1292–1198 cm−1), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187–950 cm−1), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm−1 with region and baseline: ca. 952–910 cm−1), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm−1 with region and baseline: ca. 880–827 cm−1), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm−1 with baseline: ca. 1485–1188 cm−1), H_1370 (structural carbohydrate, peak height at ca. 1370 cm−1 with a baseline: ca. 1485–1188 cm−1). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P carbohydrate of A_928 (17.3 vs. 2.0) and A_860 (20.7 vs. 7.6) than their co-products from bioethanol processing. There were no differences (P > 0.05) in the peak area intensities of A_Cell (structural CHO) at 1292–1198 cm−1 and A_CHO (total CHO) at 1187–950 cm−1 with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05) in the peak height intensities of H_1415 and H_1370 (structural CHOs) with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS molecular spectra, but not wheat and wheat DDGS. This

  1. Molecular structure and correlations in liquid D-2-propanol through neutron diffraction

    International Nuclear Information System (INIS)

    Sahoo, A.; Sarkar, S.; Joarder, R.N.; Krishna, P.S.R.

    2003-01-01

    Like t-butanol, 2-propanol molecules are quite big with substantial amount of asymmetry in the structure and so the analysis of the neutron diffraction data is tricky. A modified method of analysis, similar to one for liquid t-butanol, enables extraction of the detailed molecular conformation and intermolecular correlations through neutron diffraction. The pre-peak in the structure function, a signature of chain molecular association together with partially identified inter-molecular correlations yield some information about the nature of possible H-bonded molecular clusters in the liquid state. (author)

  2. Advanced understanding on electronic structure of molecular semiconductors and their interfaces

    Science.gov (United States)

    Akaike, Kouki

    2018-03-01

    Understanding the electronic structure of organic semiconductors and their interfaces is critical to optimizing functionalities for electronics applications, by rational chemical design and appropriate combination of device constituents. The unique electronic structure of a molecular solid is characterized as (i) anisotropic electrostatic fields that originate from molecular quadrupoles, (ii) interfacial energy-level lineup governed by simple electrostatics, and (iii) weak intermolecular interactions that make not only structural order but also energy distributions of the frontier orbitals sensitive to atmosphere and interface growth. This article shows an overview on these features with reference to the improved understanding of the orientation-dependent electronic structure, comprehensive mechanisms of molecular doping, and energy-level alignment. Furthermore, the engineering of ionization energy by the control of the electrostatic fields and work function of practical electrodes by contact-induced doping is briefly described for the purpose of highlighting how the electronic structure impacts the performance of organic devices.

  3. Molecular dynamics of the structure and thermodynamics of dusty ...

    African Journals Online (AJOL)

    The static structure and thermodynamic properties of two-dimensional dusty plasma are analyzed for some typical values of coupling and screening parameters using classical molecular dynamics. Radial distribution function and static structure factor are computed. The radial distribution functions display the typical ...

  4. Physiochemical Characteristics and Molecular Structures for Digestible Carbohydrates of Silages.

    Science.gov (United States)

    Refat, Basim; Prates, Luciana L; Khan, Nazir A; Lei, Yaogeng; Christensen, David A; McKinnon, John J; Yu, Peiqiang

    2017-10-18

    The main objectives of this study were (1) to assess the magnitude of differences among new barley silage varieties (BS) selected for varying rates of in vitro neutral detergent fiber (NDF) digestibility (ivNDFD; Cowboy BS with higher ivNDFD, Copeland BS with intermediate ivNDFD, and Xena BS with lower ivNDFD) with regard to their carbohydrate (CHO) molecular makeup, CHO chemical fractions, and rumen degradability in dairy cows in comparison with a new corn silage hybrid (Pioneer 7213R) and (2) to quantify the strength and pattern of association between the molecular structures and digestibility of carbohydrates. The carbohydrate-related molecular structure spectral data was measured using advanced vibrational molecular spectroscopy (FT/IR). In comparison to BS, corn silage showed a significantly (P carbohydrates were significantly (P carbohydrate content of the silages. In conclusion, the univariate approach with only one-factor consideration (ivNDFD) might not be a satisfactory method for evaluating and ranking BS quality. FT/IR molecular spectroscopy can be used to evaluate silage quality rapidly, particularly the digestible fiber content.

  5. An Insight towards Conceptual Understanding: Looking into the Molecular Structures of Compounds

    Science.gov (United States)

    Uyulgan, Melis Arzu; Akkuzu, Nalan

    2016-01-01

    The subject of molecular structures is one of the most important and complex subject in chemistry which a majority of the undergraduate students have difficulties to understand its concepts and characteristics correctly. To comprehend the molecular structures and their characteristics the students need to understand related subjects such as Lewis…

  6. Energy-related atomic and molecular structure and scattering studies: Final report

    International Nuclear Information System (INIS)

    1987-01-01

    The general goals of the DOE research concerned the use of molecular beams techniques in the study of atomic and molecular polarizabilities and the study of the interactions between electrons and highly polar molecules. Both of these goals are directly relevant to the general problem of the role played by long-range forces in atomic and molecular physics. Details related to this motivation can be found in the published literature. Here we will describe in general terms the work performed under DOE sponsorship in the atomic beams laboratory at NYU. Our original intent was to exploit techniques developed at NYU, mainly in the study of simple atomic systems, to the more complex atomic and molecular systems that are related to DOE interests. These included the developing understanding of the structure of molecular systems, particularly of alkali halide molecules, and the study of the interactions of electrons with such molecules. The structure experiments would serve as critical experimental benchmarks for computational techniques on molecular properties, including both molecular wave functions and derivative properties of them, such as vibrational and rotational constants, but in particular of molecular electric dipole polarizabilities. We believe that we have at least to some extent fulfilled these goals. 16 refs., 1 fig

  7. Heat-induced changes to lipid molecular structure in Vimy flaxseed: Spectral intensity and molecular clustering

    Science.gov (United States)

    Yu, Peiqiang; Damiran, Daalkhaijav

    2011-06-01

    Autoclaving was used to manipulate nutrient utilization and availability. The objectives of this study were to characterize any changes of the functional groups mainly associated with lipid structure in flaxseed ( Linum usitatissimum, cv. Vimy), that occurred on a molecular level during the treatment process using infrared Fourier transform molecular spectroscopy. The parameters included lipid CH 3 asymmetric (ca. 2959 cm -1), CH 2 asymmetric (ca. 2928 cm -1), CH 3 symmetric (ca. 2871 cm -1) and CH 2 symmetric (ca. 2954 cm -1) functional groups, lipid carbonyl C dbnd O ester group (ca. 1745 cm -1), lipid unsaturation group (CH attached to C dbnd C) (ca. 3010 cm -1) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Flaxseed samples were kept raw for the control or autoclaved in batches at 120 °C for 20, 40 or 60 min for treatments 1, 2 and 3, respectively. Molecular spectral analysis of lipid functional group ratios showed a significant decrease ( P 0.05) on lipid carbonyl C dbnd O ester group and lipid unsaturation group (CH attached to C dbnd C) (with average spectral peak area intensities of 138.3 and 68.8 IR intensity units, respectively). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH 3 and CH 2 asymmetric and symmetric region (ca. 2988-2790 cm -1). The results indicated that autoclaving had an impact to the mid-infrared molecular spectrum of flaxseed to identify heat-induced changes in lipid conformation. A future study is needed to quantify the relationship between lipid molecular structure changes and functionality/availability.

  8. Molecular orientation and electronic structure at organic heterojunction interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Shu [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore (Singapore); Zhong, Jian Qiang; Wee, Andrew T.S. [Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Chen, Wei, E-mail: phycw@nus.edu.sg [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); National University of Singapore (Suzhou) Research Institute, Suzhou (China)

    2015-10-01

    Highlights: • Molecular orientation at the organic heterojunction interfaces. • Energy level alignments at the organic heterojunction interfaces. • Gap-states mediated interfacial energy level alignment. - Abstract: Due to the highly anisotropic nature of π-conjugated molecules, the molecular orientation in organic thin films can significantly affect light absorption, charge transport, energy level alignment (ELA) and hence device performance. Synchrotron-based near-edge X-ray absorption fine structure (NEXAFS) spectroscopy represents a powerful technique for probing molecular orientation. The aim of this review paper is to provide a balanced assessment on the investigation of molecular orientation at the organic–organic heterojunction (OOH) interface by NEXAFS, as well as the gap-states mediated orientation dependent energy level alignment at OOH interfaces. We highlight recent progress in elucidating molecular orientation at OOH interfaces dominated by various interfacial interactions, gap-states controlled orientation dependent energy level alignments at OOH interfaces, and the manipulations of molecular orientation and ELA in OOH.

  9. Effect of steam explosion pre-treatment on molecular structure of ...

    African Journals Online (AJOL)

    Purpose: To examine the effect of steam-explosion (SE) strength on the molecular ... pressure-holding time on the molecular structure of the sweet potato starch were ... overheated liquid and then their pores are filled ... expands and exerts pressure on the cell walls, ... oscillation using distilled water as the dispersing agent.

  10. Coulomb-explosion technique for determining geometrical structures of molecular ions

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1981-01-01

    Traditional experimental techniques (e.g. studies on photon absorption or emission) for determining the sterochemical structures of neutral molecules are extremeley difficult to apply to molecular ions because of problems in obtaining a sufficient spatial density of the ions to be studied. Recent high-resolution measurements on the energy and angle distributions of the fragments produced when fast (MeV) molecular-ion beams from an electrostatic accelerator dissociate (Coulomb explode) in thin foils and in gases, offer promising possibilities for deducing the sterochemical structures of the molecular ions constituting the incident beams. Bond lengths have been determined in this way for several diatomic projectiles (H 2+ , HeH + , CH + , NH + , OH + , N 2+ , O 2+ , etc.) with an accuracy of approx. 0.01 A. H 3+ has been demonstrated (for the first time) to be equilateral triangular and the interproton distance measured. Measurements on single fragments from CO 2+ , N 2 O + , C 3 H 3+ , and CH/sub n/ + have revealed the gross structures of the projectiles. An apparatus has recently been constructed at Argonne to permit precise measurements on fragments in coincidence. The apparatus has been tested on a known structure (OH 2+ ). The O-H bond length was found to be 1.0 +- 0.04 A and the H-O-H bond angle was measured as 110 --- 2 0 . These values are in excellent agreement with those found in optical experiments (0.999 A and 110.5 0 ). This Coulomb explosion technique can be expected to be refined in accuracy and to be extended to a wide range of molecular ions whose structures are inaccessible by other means

  11. Molecular Structural Transformation of 2:1 Clay Minerals by a Constant-Pressure Molecular Dynamics Simulation Method

    International Nuclear Information System (INIS)

    Wang, J.; Gutierre, M.S.

    2010-01-01

    This paper presents results of a molecular dynamics simulation study of dehydrated 2:1 clay minerals using the Parrinello-Rahman constant-pressure molecular dynamics method. The method is capable of simulating a system under the most general applied stress conditions by considering the changes of MD cell size and shape. Given the advantage of the method, it is the major goal of the paper to investigate the influence of imposed cell boundary conditions on the molecular structural transformation of 2:1 clay minerals under different normal pressures. Simulation results show that the degrees of freedom of the simulation cell (i.e., whether the cell size or shape change is allowed) determines the final equilibrated crystal structure of clay minerals. Both the MD method and the static method have successfully revealed unforeseen structural transformations of clay minerals upon relaxation under different normal pressures. It is found that large shear distortions of clay minerals occur when full allowance is given to the cell size and shape change. A complete elimination of the interlayer spacing is observed in a static simulation. However, when only the cell size change is allowed, interlayer spacing is retained, but large internal shear stresses also exist.

  12. Building bridges between cellular and molecular structural biology.

    Science.gov (United States)

    Patwardhan, Ardan; Brandt, Robert; Butcher, Sarah J; Collinson, Lucy; Gault, David; Grünewald, Kay; Hecksel, Corey; Huiskonen, Juha T; Iudin, Andrii; Jones, Martin L; Korir, Paul K; Koster, Abraham J; Lagerstedt, Ingvar; Lawson, Catherine L; Mastronarde, David; McCormick, Matthew; Parkinson, Helen; Rosenthal, Peter B; Saalfeld, Stephan; Saibil, Helen R; Sarntivijai, Sirarat; Solanes Valero, Irene; Subramaniam, Sriram; Swedlow, Jason R; Tudose, Ilinca; Winn, Martyn; Kleywegt, Gerard J

    2017-07-06

    The integration of cellular and molecular structural data is key to understanding the function of macromolecular assemblies and complexes in their in vivo context. Here we report on the outcomes of a workshop that discussed how to integrate structural data from a range of public archives. The workshop identified two main priorities: the development of tools and file formats to support segmentation (that is, the decomposition of a three-dimensional volume into regions that can be associated with defined objects), and the development of tools to support the annotation of biological structures.

  13. Molecular structure of the lecithin ripple phase

    Science.gov (United States)

    de Vries, Alex H.; Yefimov, Serge; Mark, Alan E.; Marrink, Siewert J.

    2005-04-01

    Molecular dynamics simulations of lecithin lipid bilayers in water as they are cooled from the liquid crystalline phase show the spontaneous formation of rippled bilayers. The ripple consists of two domains of different length and orientation, connected by a kink. The organization of the lipids in one domain of the ripple is found to be that of a splayed gel; in the other domain the lipids are gel-like and fully interdigitated. In the concave part of the kink region between the domains the lipids are disordered. The results are consistent with the experimental information available and provide an atomic-level model that may be tested by further experiments. molecular dynamics simulation | structural model

  14. Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations

    Energy Technology Data Exchange (ETDEWEB)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2016-07-28

    Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structure that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.

  15. Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets.

    Science.gov (United States)

    Vitali, Lucia; Fabris, Stefano; Conte, Adriano Mosca; Brink, Susan; Ruben, Mario; Baroni, Stefano; Kern, Klaus

    2008-10-01

    The electronic structure of isolated bis(phthalocyaninato) terbium(III) molecules, a novel single-molecular-magnet (SMM), supported on the Cu(111) surface has been characterized by density functional theory and scanning tunneling spectroscopy. These studies reveal that the interaction with the metal surface preserves both the molecular structure and the large spin magnetic moment of the metal center. The 4f electron states are not perturbed by the adsorption while a strong molecular/metal interaction can induce the suppression of the minor spin contribution delocalized over the molecular ligands. The calculations show that the inherent spin magnetic moment of the molecule is only weakly affected by the interaction with the surface and suggest that the SMM character might be preserved.

  16. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.

    Directory of Open Access Journals (Sweden)

    Catherine L Worth

    Full Text Available BACKGROUND: Up until recently the only available experimental (high resolution structure of a G-protein-coupled receptor (GPCR was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures. METHODOLOGY: We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s for building a comparative molecular model. CONCLUSIONS: The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying

  17. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.

    Science.gov (United States)

    Worth, Catherine L; Kleinau, Gunnar; Krause, Gerd

    2009-09-16

    Up until recently the only available experimental (high resolution) structure of a G-protein-coupled receptor (GPCR) was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s) to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures. We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s) for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s) for building a comparative molecular model. The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying suitable templates for GPCR homology modelling that will

  18. Structure of a molecular liquid GeI4

    International Nuclear Information System (INIS)

    Fuchizaki, Kazuhiro; Sakagami, Takahiro; Kohara, Shinji; Mizuno, Akitoshi; Asano, Yuta; Hamaya, Nozomu

    2016-01-01

    A molecular liquid GeI 4 is a candidate that undergoes a pressure-induced liquid-to-liquid phase transition. This study establishes the reference structure of the low-pressure liquid phase. Synchrotron x-ray diffraction measurements were carried out at several temperatures between the melting and the boiling points under ambient pressure. The molecule has regular tetrahedral symmetry, and the intramolecular Ge–I length of 2.51 Å is almost temperature-independent within the measured range. A reverse Monte Carlo (RMC) analysis is employed to find that the distribution of molecular centers remains self-similar against heating, and thus justifying the length-scaling method adopted in determining the density. The RMC analysis also reveals that the vertex-to-face orientation of the nearest molecules are not straightly aligned, but are inclined at about 20 degrees, thereby making the closest intermolecular I–I distance definitely shorter than the intramolecular one. The prepeak observed at  ∼1 Å −1 in the structural factor slightly shifts and increases in height with increasing temperature. The origin of the prepeak is clearly identified to be traces of the 111 diffraction peak in the crystalline state. The prepeak, assuming the residual spatial correlation between germanium sites in the densest direction, thus shifts toward lower wavenumbers with thermal expansion. The aspect that a relative reduction in molecular size associated with the volume expansion is responsible for the increase in the prepeak’s height is confirmed by a simulation, in which the molecular size is changed. (paper)

  19. Molecular Descriptors Family on Structure Activity Relationships 1. Review of the Methodology

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2005-01-01

    Full Text Available This review cumulates the knowledge about the use of Molecular Descriptors Family usage on Structure Activity Relationships. The methodology is augmented through the general Structure Activity Relationships methodology. The obtained models in a series of five papers are quantitatively analyzed by comparing with previous reported results by using of the correlated correlations tests. The scores for a series of 13 data sets unpublished yet results are presented. Two unrestricted online access portals to the Molecular Descriptors Family Structure Activity Relationship models results are given.

  20. Pathways to Structure-Property Relationships of Peptide-Materials Interfaces: Challenges in Predicting Molecular Structures.

    Science.gov (United States)

    Walsh, Tiffany R

    2017-07-18

    An in-depth appreciation of how to manipulate the molecular-level recognition between peptides and aqueous materials interfaces, including nanoparticles, will advance technologies based on self-organized metamaterials for photonics and plasmonics, biosensing, catalysis, energy generation and harvesting, and nanomedicine. Exploitation of the materials-selective binding of biomolecules is pivotal to success in these areas and may be particularly key to producing new hierarchically structured biobased materials. These applications could be accomplished by realizing preferential adsorption of a given biomolecule onto one materials composition over another, one surface facet over another, or one crystalline polymorph over another. Deeper knowledge of the aqueous abiotic-biotic interface, to establish clear structure-property relationships in these systems, is needed to meet this goal. In particular, a thorough structural characterization of the surface-adsorbed peptides is essential for establishing these relationships but can often be challenging to accomplish via experimental approaches alone. In addition to myriad existing challenges associated with determining the detailed molecular structure of any molecule adsorbed at an aqueous interface, experimental characterization of materials-binding peptides brings new, complex challenges because many materials-binding peptides are thought to be intrinsically disordered. This means that these peptides are not amenable to experimental techniques that rely on the presence of well-defined secondary structure in the peptide when in the adsorbed state. To address this challenge, and in partnership with experiment, molecular simulations at the atomistic level can bring complementary and critical insights into the origins of this abiotic/biotic recognition and suggest routes for manipulating this phenomenon to realize new types of hybrid materials. For the reasons outlined above, molecular simulation approaches also face

  1. VPAC receptors: structure, molecular pharmacology and interaction with accessory proteins.

    Science.gov (United States)

    Couvineau, Alain; Laburthe, Marc

    2012-05-01

    The vasoactive intestinal peptide (VIP) is a neuropeptide with wide distribution in both central and peripheral nervous systems, where it plays important regulatory role in many physiological processes. VIP displays a large biological functions including regulation of exocrine secretions, hormone release, fetal development, immune responses, etc. VIP appears to exert beneficial effect in neuro-degenerative and inflammatory diseases. The mechanism of action of VIP implicates two subtypes of receptors (VPAC1 and VPAC2), which are members of class B receptors belonging to the super-family of GPCR. This article reviews the current knowledge regarding the structure and molecular pharmacology of VPAC receptors. The structure-function relationship of VPAC1 receptor has been extensively studied, allowing to understand the molecular basis for receptor affinity, specificity, desensitization and coupling to adenylyl cyclase. Those studies have clearly demonstrated the crucial role of the N-terminal ectodomain (N-ted) of VPAC1 receptor in VIP recognition. By using different approaches including directed mutagenesis, photoaffinity labelling, NMR, molecular modelling and molecular dynamic simulation, it has been shown that the VIP molecule interacts with the N-ted of VPAC1 receptor, which is itself structured as a 'Sushi' domain. VPAC1 receptor also interacts with a few accessory proteins that play a role in cell signalling of receptors. Recent advances in the structural characterization of VPAC receptor and more generally of class B GPCRs will lead to the design of new molecules, which could have considerable interest for the treatment of inflammatory and neuro-degenerative diseases. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  2. Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size

    International Nuclear Information System (INIS)

    Ma Bin; Chen Huaihai; Xu Minmin; Hayat, Tahir; He Yan; Xu Jianming

    2010-01-01

    Rhizoremediation is a significant form of bioremediation for polycyclic aromatic hydrocarbons (PAHs). This study examined the role of molecular structure in determining the rhizosphere effect on PAHs dissipation. Effect size in meta-analysis was employed as activity dataset for building quantitative structure-activity relationship (QSAR) models and accumulative effect sizes of 16 PAHs were used for validation of these models. Based on the genetic algorithm combined with partial least square regression, models for comprehensive dataset, Poaceae dataset, and Fabaceae dataset were built. The results showed that information indices, calculated as information content of molecules based on the calculation of equivalence classes from the molecular graph, were the most important molecular structural indices for QSAR models of rhizosphere effect on PAHs dissipation. The QSAR model, based on the molecular structure indices and effect size, has potential to be used in studying and predicting the rhizosphere effect of PAHs dissipation. - Effect size based on meta-analysis was used for building PAHs dissipation quantitative structure-activity relationship (QSAR) models.

  3. Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size

    Energy Technology Data Exchange (ETDEWEB)

    Ma Bin; Chen Huaihai; Xu Minmin; Hayat, Tahir [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China); He Yan, E-mail: yhe2006@zju.edu.c [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Xu Jianming, E-mail: jmxu@zju.edu.c [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China)

    2010-08-15

    Rhizoremediation is a significant form of bioremediation for polycyclic aromatic hydrocarbons (PAHs). This study examined the role of molecular structure in determining the rhizosphere effect on PAHs dissipation. Effect size in meta-analysis was employed as activity dataset for building quantitative structure-activity relationship (QSAR) models and accumulative effect sizes of 16 PAHs were used for validation of these models. Based on the genetic algorithm combined with partial least square regression, models for comprehensive dataset, Poaceae dataset, and Fabaceae dataset were built. The results showed that information indices, calculated as information content of molecules based on the calculation of equivalence classes from the molecular graph, were the most important molecular structural indices for QSAR models of rhizosphere effect on PAHs dissipation. The QSAR model, based on the molecular structure indices and effect size, has potential to be used in studying and predicting the rhizosphere effect of PAHs dissipation. - Effect size based on meta-analysis was used for building PAHs dissipation quantitative structure-activity relationship (QSAR) models.

  4. NATO Advanced Study Institute on Electronic Structure of Polymers and Molecular Crystals

    CERN Document Server

    Ladik, János

    1975-01-01

    The NATO Advanced Study Institute on "Electronic Structure of Polymers and Molecular Crystals" was held at the Facultes Universi­ taires de Namur (F.U.N.) from September 1st till September 14th, 1974. We wish to express our appreciation to the NATO Scientific Affairs Division whose generous support made this Institute possible and to the Facultes Universitaires de Namur and the Societe Chimique de Belgique which provided fellowships and travel grants to a number of students. This volume contains the main lectures about the basic principles of the field and about different recent developments of the theory of the electronic structure of polymers and molecular crystals. The school started with the presentation of the basic SCF-LCAO theory of the electronic structure of periodic polymers and molecular crystals (contributions by Ladik, Andre & Delhalle) showing how a combination of quantum chemical and solid state physical methods can provide band structures for these systems. The numerical aspects of these ...

  5. Crystal structure and pair potentials: A molecular-dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1980-10-06

    With use of a Lagrangian which allows for the variation of the shape and size of the periodically repeating molecular-dynamics cell, it is shown that different pair potentials lead to different crystal structures.

  6. The Atom in a Molecule: Implications for Molecular Structure and Properties

    Science.gov (United States)

    2016-05-23

    Briefing Charts 3. DATES COVERED (From - To) 01 February 2016 – 23 May 2016 4. TITLE AND SUBTITLE The atom in a molecule: Implications for molecular...For presentation at American Physical Society - Division of Atomic , Molecular, and Optical Physics (May 2016) PA Case Number: #16075; Clearance Date...10 Energy (eV) R C--H (au) R C--H(au) The Atom in a Molecule: Implications for Molecular Structures and Properties P. W. Langhoff, Chemistry

  7. Molecular and vibrational structure of 2,2'-dihydroxybenzophenone

    DEFF Research Database (Denmark)

    Birklund Andersen, Kristine; Langgård, M.; Spanget-Larsen, Jens

    1999-01-01

    2,2'-dihydroxybenzophenone (DHBP) contains similar bifold intramolecular H-bonding as the psoriatic drug anthralin, but because of steric interference the phenolic rings are twisted in a propeller-like manner, resulting in a molecular structure of C2 symmetry. In contrast to the case of C2v...

  8. Molecular and vibrational structure of 2,2'-dihydroxybenzophenone

    DEFF Research Database (Denmark)

    Birklund Andersen, Kristine; Langgård, M.; Spanget-Larsen, Jens

    1999-01-01

    2,2'-dihydroxybenzophenone (DHBP) contains similar bifold intramolecular H-bonding as the psoriatic drug anthralin, but because of steric interference the phenolic rings are twisted in a propeller-like manner, resulting in a molecular structure of C2 symmetry. In contrast to the case of C2v anthr...

  9. Molecular structure and DFT investigations on new cobalt(II ...

    Indian Academy of Sciences (India)

    tion process was demonstrated.9 Late-transition metals, especially Ni, Pd ..... in table S2 (Supplementary Information). Most of the ... to molecular system because of atomic charges affect ... structure, acidity–basicity behavior and other proper-.

  10. Solving nucleic acid structures by molecular replacement: examples from group II intron studies

    International Nuclear Information System (INIS)

    Marcia, Marco; Humphris-Narayanan, Elisabeth; Keating, Kevin S.; Somarowthu, Srinivas; Rajashankar, Kanagalaghatta; Pyle, Anna Marie

    2013-01-01

    Strategies for phasing nucleic acid structures by molecular replacement, using both experimental and de novo designed models, are discussed. Structured RNA molecules are key players in ensuring cellular viability. It is now emerging that, like proteins, the functions of many nucleic acids are dictated by their tertiary folds. At the same time, the number of known crystal structures of nucleic acids is also increasing rapidly. In this context, molecular replacement will become an increasingly useful technique for phasing nucleic acid crystallographic data in the near future. Here, strategies to select, create and refine molecular-replacement search models for nucleic acids are discussed. Using examples taken primarily from research on group II introns, it is shown that nucleic acids are amenable to different and potentially more flexible and sophisticated molecular-replacement searches than proteins. These observations specifically aim to encourage future crystallographic studies on the newly discovered repertoire of noncoding transcripts

  11. Human Skin Barrier Structure and Function Analyzed by Cryo-EM and Molecular Dynamics Simulation.

    Science.gov (United States)

    Lundborg, Magnus; Narangifard, Ali; Wennberg, Christian L; Lindahl, Erik; Daneholt, Bertil; Norlén, Lars

    2018-04-24

    In the present study we have analyzed the molecular structure and function of the human skin's permeability barrier using molecular dynamics simulation validated against cryo-electron microscopy data from near native skin. The skin's barrier capacity is located to an intercellular lipid structure embedding the cells of the superficial most layer of skin - the stratum corneum. According to the splayed bilayer model (Iwai et al., 2012) the lipid structure is organized as stacked bilayers of ceramides in a splayed chain conformation with cholesterol associated with the ceramide sphingoid moiety and free fatty acids associated with the ceramide fatty acid moiety. However, knowledge about the lipid structure's detailed molecular organization, and the roles of its different lipid constituents, remains circumstantial. Starting from a molecular dynamics model based on the splayed bilayer model, we have, by stepwise structural and compositional modifications, arrived at a thermodynamically stable molecular dynamics model expressing simulated electron microscopy patterns matching original cryo-electron microscopy patterns from skin extremely closely. Strikingly, the closer the individual molecular dynamics models' lipid composition was to that reported in human stratum corneum, the better was the match between the models' simulated electron microscopy patterns and the original cryo-electron microscopy patterns. Moreover, the closest-matching model's calculated water permeability and thermotropic behaviour were found compatible with that of human skin. The new model may facilitate more advanced physics-based skin permeability predictions of drugs and toxicants. The proposed procedure for molecular dynamics based analysis of cellular cryo-electron microscopy data might be applied to other biomolecular systems. Copyright © 2018. Published by Elsevier Inc.

  12. Molecular structure determination from x-ray scattering patterns of laser-aligned symmetric-top molecules

    International Nuclear Information System (INIS)

    Ho, P. J.; Starodub, D.; Saldin, D. K.; Shneerson, V. L.; Ourmazd, A.; Santra, R.

    2009-01-01

    We investigate the molecular structure information contained in the x-ray diffraction patterns of an ensemble of rigid CF 3 Br molecules aligned by an intense laser pulse at finite rotational temperature. The diffraction patterns are calculated at an x-ray photon energy of 20 keV to probe molecular structure at angstrom-scale resolution. We find that a structural reconstruction algorithm based on iterative phase retrieval fails to extract a reliable structure. However, the high atomic number of Br compared with C or F allows each diffraction pattern to be treated as a hologram. Using this approach, the azimuthal projection of the molecular electron density about the alignment axis may be retrieved.

  13. Ambipolar carrier transport properties and molecular packing structure of octahexyl-substituted copper phthalocyanine

    Science.gov (United States)

    Watanabe, Ken; Watanabe, Koichi; Tohnai, Norimitsu; Itani, Hiromichi; Shimizu, Yo; Fujii, Akihiko; Ozaki, Masanori

    2018-04-01

    The charge carrier mobility of a solution-processable low-molecular-weight organic semiconductor material, i.e., 1,4,8,11,15,18,22,25-octahexylphthalocyanine copper complex (C6PcCu), was investigated by the time-of-flight technique. The anomalous ambipolar carrier mobility was discussed from the viewpoint of the molecular packing structure, which was clarified by single-crystal X-ray structure analysis. In the comparison between the molecular packing structures of C6PcCu and its metal-free-type homologue, it was found that the difference in carrier mobility originates from the rotation of the molecule, which is caused by the steric hindrance due to the introduction of a center metal and the interpenetration of the nonperipheral alkyl chains.

  14. Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters using Density Functional Theory

    Science.gov (United States)

    2017-05-05

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9724 Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters...TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Equilibrium Structures and Absorption...and electronic excited-state absorption spectra for eqilibrium structures of SixOy molecular clusters using density function theory (DFT) and time

  15. A Self-Assisting Protein Folding Model for Teaching Structural Molecular Biology.

    Science.gov (United States)

    Davenport, Jodi; Pique, Michael; Getzoff, Elizabeth; Huntoon, Jon; Gardner, Adam; Olson, Arthur

    2017-04-04

    Structural molecular biology is now becoming part of high school science curriculum thus posing a challenge for teachers who need to convey three-dimensional (3D) structures with conventional text and pictures. In many cases even interactive computer graphics does not go far enough to address these challenges. We have developed a flexible model of the polypeptide backbone using 3D printing technology. With this model we have produced a polypeptide assembly kit to create an idealized model of the Triosephosphate isomerase mutase enzyme (TIM), which forms a structure known as TIM barrel. This kit has been used in a laboratory practical where students perform a step-by-step investigation into the nature of protein folding, starting with the handedness of amino acids to the formation of secondary and tertiary structure. Based on the classroom evidence we collected, we conclude that these models are valuable and inexpensive resource for teaching structural molecular biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. 16O + 16O molecular structures of superdeformed states in S isotopes

    Science.gov (United States)

    Taniguchi, Y.

    2017-06-01

    Structures of excited states in S isotopes are investigated by using the antisymmetrized molecular dynamics and generator coordinate method (GCM). The GCM basis wave functions are calculated via energy variation with a constraint on the quadrupole deformation parameter β. By applying the GCM after parity and angular momentum projections, the coexistence of positive- and negative-parity superdeformed (SD) bands are predicted in 33-36S except for negative-parity states in 36S. The SD bands have structures of 16O + 16O + valence neutron(s) in molecular orbitals around the two 16O cores in a cluster picture. The configurations of the valence neutron(s) in the SD states are δ and/or π molecular orbitals.

  17. Laser-induced blurring of molecular structure information in high harmonic spectroscopy

    DEFF Research Database (Denmark)

    Risoud, Francois; Leveque, Camille; Labeye, Marie

    2017-01-01

    High harmonic spectroscopy gives access to molecular structure with Angstrom resolution. Such information is encoded in the destructive interferences occurring between the harmonic emissions from the different parts of the molecule. By solving the time-dependent Schrodinger equation, either....... These findings have important consequences for molecular imaging and orbital tomography using high harmonic spectroscopy....

  18. Insights into structural features of HDAC1 and its selectivity inhibition elucidated by Molecular dynamic simulation and Molecular Docking.

    Science.gov (United States)

    Sixto-López, Yudibeth; Bello, Martiniano; Correa-Basurto, José

    2018-03-06

    Histone deacetylases (HDACs) are a family of proteins whose main function is the removal of acetyl groups from lysine residues located on histone and non-histone substrates, which regulates gene transcription and other activities in cells. HDAC1 dysfunction has been implicated in cancer development and progression; thus, its inhibition has emerged as a new therapeutic strategy. Two additional metal binding sites (Site 1 and Site 2) in HDACs have been described that are primarily occupied by potassium ions, suggesting a possible structural role that affects HDAC activity. In this work, we explored the structural role of potassium ions in Site 1 and Site 2 and how they affect the interactions of compounds with high affinities for HDAC1 (AC1OCG0B, Chlamydocin, Dacinostat and Quisinostat) and SAHA (a pan-inhibitor) using molecular docking and molecular dynamics (MD) simulations in concert with a Molecular-Mechanics-Generalized-Born-Surface-Area (MMGBSA) approach. Four models were generated: one with a potassium ion (K + ) in both sites (HDAC1 k ), a second with K + only at site 1 (HDAC1 ks1 ), a third with K + only at site 2 (HDAC1 ks2 ) and a fourth with no K + (HDAC1 wk ). We found that the presence or absence of K + not only impacted the structural flexibility of HDAC1, but also its molecular recognition, consistent with experimental findings. These results could therefore be useful for further structure-based drug design studies addressing new HDAC1 inhibitors.

  19. Machine learning for the structure-energy-property landscapes of molecular crystals.

    Science.gov (United States)

    Musil, Félix; De, Sandip; Yang, Jack; Campbell, Joshua E; Day, Graeme M; Ceriotti, Michele

    2018-02-07

    Molecular crystals play an important role in several fields of science and technology. They frequently crystallize in different polymorphs with substantially different physical properties. To help guide the synthesis of candidate materials, atomic-scale modelling can be used to enumerate the stable polymorphs and to predict their properties, as well as to propose heuristic rules to rationalize the correlations between crystal structure and materials properties. Here we show how a recently-developed machine-learning (ML) framework can be used to achieve inexpensive and accurate predictions of the stability and properties of polymorphs, and a data-driven classification that is less biased and more flexible than typical heuristic rules. We discuss, as examples, the lattice energy and property landscapes of pentacene and two azapentacene isomers that are of interest as organic semiconductor materials. We show that we can estimate force field or DFT lattice energies with sub-kJ mol -1 accuracy, using only a few hundred reference configurations, and reduce by a factor of ten the computational effort needed to predict charge mobility in the crystal structures. The automatic structural classification of the polymorphs reveals a more detailed picture of molecular packing than that provided by conventional heuristics, and helps disentangle the role of hydrogen bonded and π-stacking interactions in determining molecular self-assembly. This observation demonstrates that ML is not just a black-box scheme to interpolate between reference calculations, but can also be used as a tool to gain intuitive insights into structure-property relations in molecular crystal engineering.

  20. Recent research on inherent molecular structure, physiochemical properties, and bio-functions of food and feed-type Avena sativa oats and processing-induced changes revealed with molecular microspectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Prates, Luciana Louzada [Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Yu, Peiqiang [Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

    2017-05-16

    Avena sativa oat is a cereal widely used as human food and livestock feed. However, the low metabolized energy and the rapid rumen degradations of protein and starch have limited the use of A. sativa oat grains. To overcome this disadvantage, new A. sativa oat varieties have been developed. Additionally, heat-related processing has been performed to decrease the degradation rate and improve the absorption of amino acids in the small intestine. The nutritive value is reflected by both chemical composition and inherent molecular structure conformation. However, the traditional wet chemical analysis is not able to detect the inherent molecular structures within an intact tissue. The advanced synchrotron-radiation and globar-based molecular microspectroscopy have been developed recently and applied to study internal molecular structures and the processing induced structure changes in A. sativa oats and reveal how molecular structure changes in relation to nutrient availability. This review aimed to obtain the recent information regarding physiochemical properties, molecular structures, metabolic characteristics of protein, and the heat-induced changes in new A. sativa oat varieties. The use of the advanced vibrational molecular spectroscopy was emphasized, synchrotron- and globar-based (micro)spectroscopy, to reveal the inherent structure of A. sativa oats at cellular and molecular levels and to reveal the heat processing effect on the degradation characteristics and the protein molecular structure in A. sativa oats. The relationship between nutrient availability and protein molecular inherent structure was also presented. Information described in this review gives better insight in the physiochemical properties, molecular structure, and the heat-induced changes in A. sativa oat detected with advanced molecular spectroscopic techniques in combinination with conventional nutrition study techniques.

  1. Using photoelectron diffraction to determine complex molecular adsorption structures

    International Nuclear Information System (INIS)

    Woodruff, D P

    2010-01-01

    Backscattering photoelectron diffraction, particularly in the energy-scan mode, is now an established technique for determining in a quantitative fashion the local structure of adsorbates on surfaces, and has been used successfully for ∼100 adsorbate phases. The elemental and chemical-state specificity afforded by the characteristic core level photoelectron binding energies means that it has particular advantages for molecular adsorbates, as the local geometry of inequivalent atoms in the molecule can be determined in a largely independent fashion. On the other hand, polyatomic molecules present a general problem for all methods of surface structure determination in that a mismatch of intramolecular distances with interatomic distances on the substrate surface means that the atoms in the adsorbed molecule are generally in low-symmetry sites. The quantities measured experimentally then represent an incoherent sum of the properties of each structural domain that is inequivalent with respect to the substrate point group symmetry. This typically leads to greater ambiguity or precision in the structural solutions. The basic principles of the method are described and illustrated with a simple example involving molecule/substrate bonding through only one constituent atom (TiO 2 -(110)/H 2 O). This example demonstrates the importance of obtaining quantitative local structural information. Further examples illustrate both the successes and the problems of this approach when applied to somewhat more complex molecular adsorbates.

  2. Electron Scattering Studies of Gas Phase Molecular Structure at High Temperature

    Science.gov (United States)

    Mawhorter, Richard J., Jr.

    A high precision counting electron diffraction study of the structure of gaseous sulfur dioxide as a function of temperature from 300(DEGREES) to 1000(DEGREES)K is presented. The results agree well with current theory, and yield insight into the effects of anharmonicity on molecular structure. Another aspect of molecular structure is the molecular charge density distribution. The difference (DELTA)(sigma) is between the electron scattering cross sections for the actual molecule and independent atom model (IAM) are a sensitive measure of the change in this distribution due to bond formation. These difference cross sections have been calculated using ab initio methods, and the results for a wide range of simple polyatomic molecules are presented. Such calculations are routinely done for a single, fixed molecular geometry, an approach which neglects the effects of the vibrational motion of real molecules. The effect of vibrational averaging is studied in detail for the three normal vibrational modes of H(,2)O in the ground state. The effects are small, lending credence to the practice of comparing cross sections calculated at a fixed geometry with inherently averaged experimental data. The efficacy of the standard formula used to account for vibrational averaging in the IAM is also examined. Finally, the nature of the ionic bond is probed with an experimental study of the structure of alkali chlorides, NaCl, KCl, RbCl, and CsCl, in the gas phase. Temperatures from 840-960(DEGREES)K were required to achieve the necessary vapor pressures of approximately 0.01 torr. A planar rhombic structure for the dimer molecule is confirmed, with a fairly uniform decrease of the chlorine-alkali-chlorine angle as the alkalis increase in size. The experiment also yields information on the amount of dimer present in the vapor, and these results are compared with thermodynamic values.

  3. Molecular epidemiology and population structure of bovine Streptococcus uberis

    DEFF Research Database (Denmark)

    Rato, M G; Bexiga, R; Nunes, S F

    2008-01-01

    The molecular epidemiology and population structure of 30 bovine subclinical mastitis field isolates of Streptococcus uberis, collected from 6 Portuguese herds (among 12 farms screened) during 2002 and 2003, were examined by using pulsed-field gel electrophoresis (PFGE) for clustering of the isol...

  4. Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA

    International Nuclear Information System (INIS)

    Sidhu, Navdeep S.; Schreiber, Kathrin; Pröpper, Kevin; Becker, Stefan; Usón, Isabel; Sheldrick, George M.; Gärtner, Jutta; Krätzner, Ralph; Steinfeld, Robert

    2014-01-01

    Mucopolysaccharidosis IIIA is a fatal neurodegenerative disease that typically manifests itself in childhood and is caused by mutations in the gene for the lysosomal enzyme sulfamidase. The first structure of this enzyme is presented, which provides insight into the molecular basis of disease-causing mutations, and the enzymatic mechanism is proposed. Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However, the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2 Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder

  5. Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, Navdeep S. [University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen (Germany); University of Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany); Schreiber, Kathrin [University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen (Germany); Pröpper, Kevin [University of Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany); Becker, Stefan [Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen (Germany); Usón, Isabel [Instituto de Biologia Molecular de Barcelona (IBMB–CSIC), Barcelona Science Park, Baldiri Reixach 15, 08028 Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), (Spain); Sheldrick, George M. [University of Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany); Gärtner, Jutta; Krätzner, Ralph, E-mail: rkraetz@gwdg.de; Steinfeld, Robert, E-mail: rkraetz@gwdg.de [University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen (Germany)

    2014-05-01

    Mucopolysaccharidosis IIIA is a fatal neurodegenerative disease that typically manifests itself in childhood and is caused by mutations in the gene for the lysosomal enzyme sulfamidase. The first structure of this enzyme is presented, which provides insight into the molecular basis of disease-causing mutations, and the enzymatic mechanism is proposed. Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However, the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2 Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder.

  6. Tunneling and resonant conductance in one-dimensional molecular structures

    International Nuclear Information System (INIS)

    Kozhushner, M.A.; Posvyanskii, V.S.; Oleynik, I.I.

    2005-01-01

    We present a theory of tunneling and resonant transitions in one-dimensional molecular systems which is based on Green's function theory of electron sub-barrier scattering off the structural units (or functional groups) of a molecular chain. We show that the many-electron effects are of paramount importance in electron transport and they are effectively treated using a formalism of sub-barrier scattering operators. The method which calculates the total scattering amplitude of the bridge molecule not only predicts the enhancement of the amplitude of tunneling transitions in course of tunneling electron transfer through onedimensional molecular structures but also allows us to interpret conductance mechanisms by calculating the bound energy spectrum of the tunneling electron, the energies being obtained as poles of the total scattering amplitude of the bridge molecule. We found that the resonant tunneling via bound states of the tunneling electron is the major mechanism of electron conductivity in relatively long organic molecules. The sub-barrier scattering technique naturally includes a description of tunneling in applied electric fields which allows us to calculate I-V curves at finite bias. The developed theory is applied to explain experimental findings such as bridge effect due to tunneling through organic molecules, and threshold versus Ohmic behavior of the conductance due to resonant electron transfer

  7. The crystal structures of three pyrazine-2,5-dicarb-oxamides: three-dimensional supra-molecular structures.

    Science.gov (United States)

    Cati, Dilovan S; Stoeckli-Evans, Helen

    2017-05-01

    The complete mol-ecules of the title compounds, N 2 , N 5 -bis-(pyridin-2-ylmeth-yl)pyrazine-2,5-dicarboxamide, C 18 H 16 N 6 O 2 (I), 3,6-dimethyl- N 2 , N 5 -bis-(pyridin-2-yl-meth-yl)pyrazine-2,5-dicarboxamide, C 20 H 20 N 6 O 2 (II), and N 2 , N 5 -bis-(pyridin-4-ylmeth-yl)pyrazine-2,5-dicarboxamide, C 18 H 16 N 6 O 2 (III), are generated by inversion symmetry, with the pyrazine rings being located about centres of inversion. Each mol-ecule has an extended conformation with the pyridine rings inclined to the pyrazine ring by 89.17 (7)° in (I), 75.83 (8)° in (II) and by 82.71 (6)° in (III). In the crystal of (I), mol-ecules are linked by N-H⋯N hydrogen bonds, forming layers lying parallel to the bc plane. The layers are linked by C-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. In the crystal of (II), mol-ecules are also linked by N-H⋯N hydrogen bonds, forming layers lying parallel to the (10-1) plane. As in (I), the layers are linked by C-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. In the crystal of (III), mol-ecules are again linked by N-H⋯N hydrogen bonds, but here form corrugated sheets lying parallel to the bc plane. Within the sheets, neighbouring pyridine rings are linked by offset π-π inter-actions [inter-centroid distance = 3.739 (1) Å]. The sheets are linked by C-H⋯O hydrogen bonds, forming a three-dimensional supra-molecular structure. Compound (I) crystallizes in the monoclinic space group P 2 1 / c . Another monoclinic polymorph, space group C 2/ c , has been reported on by Cockriel et al. [ Inorg. Chem. Commun. (2008), 11 , 1-4]. The mol-ecular structures of the two polymorphs are compared.

  8. Molecular modeling of nucleic Acid structure: electrostatics and solvation.

    Science.gov (United States)

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E

    2014-12-19

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit. Copyright © 2014 John Wiley & Sons, Inc.

  9. Design of Carborane Molecular Architectures via Electronic Structure Computations

    International Nuclear Information System (INIS)

    Oliva, J.M.; Serrano-Andres, L.; Klein, D.J.; Schleyer, P.V.R.; Mich, J.

    2009-01-01

    Quantum-mechanical electronic structure computations were employed to explore initial steps towards a comprehensive design of poly carborane architectures through assembly of molecular units. Aspects considered were (i) the striking modification of geometrical parameters through substitution, (ii) endohedral carboranes and proposed ejection mechanisms for energy/ion/atom/energy storage/transport, (iii) the excited state character in single and dimeric molecular units, and (iv) higher architectural constructs. A goal of this work is to find optimal architectures where atom/ion/energy/spin transport within carborane superclusters is feasible in order to modernize and improve future photo energy processes.

  10. Marine Biotoxins: Laboratory Culture and Molecular Structure

    Science.gov (United States)

    1991-01-21

    ciguateric carnivorous fishes in concentrations ranging from I to 10 ppb. Its molecular structure has been elucidated. It has been isolated from toxic...American Chemical Society, Washington, DC, 1984, pp 217-329. 6. Med. J. Australia 1986, 145 (11/12), 558; 584-5M). 7. "Toxic Plants and Animals A Guide...isolated and grown in the laboratory. Lethality of crude acetone and methanol extracts were assa~ed by ip injection into mice. In vitro cytotoxicity and

  11. Application of the AMPLE cluster-and-truncate approach to NMR structures for molecular replacement

    Energy Technology Data Exchange (ETDEWEB)

    Bibby, Jaclyn [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Keegan, Ronan M. [Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Mayans, Olga [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Winn, Martyn D. [Science and Technology Facilities Council Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Rigden, Daniel J., E-mail: drigden@liv.ac.uk [University of Liverpool, Liverpool L69 7ZB (United Kingdom)

    2013-11-01

    Processing of NMR structures for molecular replacement by AMPLE works well. AMPLE is a program developed for clustering and truncating ab initio protein structure predictions into search models for molecular replacement. Here, it is shown that its core cluster-and-truncate methods also work well for processing NMR ensembles into search models. Rosetta remodelling helps to extend success to NMR structures bearing low sequence identity or high structural divergence from the target protein. Potential future routes to improved performance are considered and practical, general guidelines on using AMPLE are provided.

  12. FlaME: Flash Molecular Editor - a 2D structure input tool for the web

    Directory of Open Access Journals (Sweden)

    Dallakian Pavel

    2011-02-01

    Full Text Available Abstract Background So far, there have been no Flash-based web tools available for chemical structure input. The authors herein present a feasibility study, aiming at the development of a compact and easy-to-use 2D structure editor, using Adobe's Flash technology and its programming language, ActionScript. As a reference model application from the Java world, we selected the Java Molecular Editor (JME. In this feasibility study, we made an attempt to realize a subset of JME's functionality in the Flash Molecular Editor (FlaME utility. These basic capabilities are: structure input, editing and depiction of single molecules, data import and export in molfile format. Implementation The result of molecular diagram sketching in FlaME is accessible in V2000 molfile format. By integrating the molecular editor into a web page, its communication with the HTML elements on this page is established using the two JavaScript functions, getMol( and setMol(. In addition, structures can be copied to the system clipboard. Conclusion A first attempt was made to create a compact single-file application for 2D molecular structure input/editing on the web, based on Flash technology. With the application examples presented in this article, it could be demonstrated that the Flash methods are principally well-suited to provide the requisite communication between the Flash object (application and the HTML elements on a web page, using JavaScript functions.

  13. Two-dimensional dynamics of a free molecular chain with a secondary structure

    DEFF Research Database (Denmark)

    Zolotaryuk, Alexander; Christiansen, Peter Leth; Savin, A.V.

    1996-01-01

    A simple two-dimensional (2D) model of an isolated (free) molecular chain with primary and secondary structures has been suggested and investigated both analytically and numerically. This model can be considered as the simplest generalization of the well-known Fermi-Pasta-Ulam model of an anharmo......A simple two-dimensional (2D) model of an isolated (free) molecular chain with primary and secondary structures has been suggested and investigated both analytically and numerically. This model can be considered as the simplest generalization of the well-known Fermi-Pasta-Ulam model...

  14. Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer

    KAUST Repository

    Hayes, Sophia C.

    2016-09-27

    Resonance Raman Spectroscopy (RRS) is employed in this study to examine the influence of molecular weight on the optical response of a diketopyrrolopyrrole polymer (DPP-TT-T) in solution. The vibronic structure observed for the ground state absorption of this polymer is found to vary with molecular weight and solvent. Resonance Raman Intensity Analysis (RRIA) revealed that the absorption spectra can be described by at least two dipole-allowed transitions and the vibronic structure variation is due to differing contributions from linear and curved segments of the polymer.

  15. Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer

    KAUST Repository

    Hayes, Sophia C.; Pieridou, Galatia; Vezie, Michelle; Few, Sheridan; Bronstein, Hugo; Meager, Iain; McCulloch, Iain; Nelson, Jenny

    2016-01-01

    Resonance Raman Spectroscopy (RRS) is employed in this study to examine the influence of molecular weight on the optical response of a diketopyrrolopyrrole polymer (DPP-TT-T) in solution. The vibronic structure observed for the ground state absorption of this polymer is found to vary with molecular weight and solvent. Resonance Raman Intensity Analysis (RRIA) revealed that the absorption spectra can be described by at least two dipole-allowed transitions and the vibronic structure variation is due to differing contributions from linear and curved segments of the polymer.

  16. The effect of glycosylation on the transferrin structure: A molecular dynamic simulation analysis.

    Science.gov (United States)

    Ghanbari, Z; Housaindokht, M R; Bozorgmehr, M R; Izadyar, M

    2016-09-07

    Transferrins have been defined by the highly cooperative binding of iron and a carbonate anion to form a Fe-CO3-Tf ternary complex. As such, the layout of the binding site residues affects transferrin function significantly; In contrast to N-lobe, C-lobe binding site of the transferrin structure has been less characterized and little research which surveyed the interaction of carbonate with transferrin in the C-lobe binding site has been found. In the present work, molecular dynamic simulation was employed to gain access into the molecular level understanding of carbonate binding site and their interactions in each lobe. Residues responsible for carbonate binding of transferrin structure were pointed out. In addition, native human transferrin is a glycoprotein that two N-linked complex glycan chains located in the C-lobe. Usually, in the molecular dynamic simulation for simplifying, glycan is removed from the protein structure. Here, we explore the effect of glycosylation on the transferrin structure. Glycosylation appears to have an effect on the layout of the binding site residue and transferrin structure. On the other hand, sometimes the entire transferrin formed by separated lobes that it allows the results to be interpreted in a straightforward manner rather than more parameters required for full length protein. But, it should be noted that there are differences between the separated lobe and full length transferrin, hence, a comparative analysis by the molecular dynamic simulation was performed to investigate such structural variations. Results revealed that separation in C-lobe caused a significant structural variation in comparison to N-lobe. Consequently, the separated lobes and the full length one are different, showing the importance of the interlobe communication and the impact of the lobes on each other in the transferrin structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Learning Molecular Structures in a Tangible Augmented Reality Environment

    Science.gov (United States)

    Asai, Kikuo; Takase, Norio

    2011-01-01

    This article presents the characteristics of using a tangible table top environment produced by augmented reality (AR), aimed at improving the environment in which learners observe three-dimensional molecular structures. The authors perform two evaluation experiments. A performance test for a user interface demonstrates that learners with a…

  18. The Effects of Molecular Crowding on the Structure and Stability of G-Quadruplexes with an Abasic Site

    Science.gov (United States)

    Fujimoto, Takeshi; Nakano, Shu-ichi; Miyoshi, Daisuke; Sugimoto, Naoki

    2011-01-01

    Both cellular environmental factors and chemical modifications critically affect the properties of nucleic acids. However, the structure and stability of DNA containing abasic sites under cell-mimicking molecular crowding conditions remain unclear. Here, we investigated the molecular crowding effects on the structure and stability of the G-quadruplexes including a single abasic site. Structural analysis by circular dichroism showed that molecular crowding by PEG200 did not affect the topology of the G-quadruplex structure with or without an abasic site. Thermodynamic analysis further demonstrated that the degree of stabilization of the G-quadruplex by molecular crowding decreased with substitution of an abasic site for a single guanine. Notably, we found that the molecular crowding effects on the enthalpy change for G-quadruplex formation had a linear relationship with the abasic site effects depending on its position. These results are useful for predicting the structure and stability of G-quadruplexes with abasic sites in the cell-mimicking conditions. PMID:21949901

  19. Effects of molecular structure on microscopic heat transport in chain polymer liquids

    International Nuclear Information System (INIS)

    Matsubara, Hiroki; Kikugawa, Gota; Ohara, Taku; Bessho, Takeshi; Yamashita, Seiji

    2015-01-01

    In this paper, we discuss the molecular mechanism of the heat conduction in a liquid, based on nonequilibrium molecular dynamics simulations of a systematic series of linear- and branched alkane liquids, as a continuation of our previous study on linear alkane [T. Ohara et al., J. Chem. Phys. 135, 034507 (2011)]. The thermal conductivities for these alkanes in a saturated liquid state at the same reduced temperature (0.7T c ) obtained from the simulations are compared in relation to the structural difference of the liquids. In order to connect the thermal energy transport characteristics with molecular structures, we introduce the new concept of the interatomic path of heat transfer (atomistic heat path, AHP), which is defined for each type of inter- and intramolecular interaction. It is found that the efficiency of intermolecular AHP is sensitive to the structure of the first neighbor shell, whereas that of intramolecular AHP is similar for different alkane species. The dependence of thermal conductivity on different lengths of the main and side chain can be understood from the natures of these inter- and intramolecular AHPs

  20. Effects of molecular structure on microscopic heat transport in chain polymer liquids

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Hiroki, E-mail: matsubara@microheat.ifs.tohoku.ac.jp; Kikugawa, Gota; Ohara, Taku [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Bessho, Takeshi; Yamashita, Seiji [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan)

    2015-04-28

    In this paper, we discuss the molecular mechanism of the heat conduction in a liquid, based on nonequilibrium molecular dynamics simulations of a systematic series of linear- and branched alkane liquids, as a continuation of our previous study on linear alkane [T. Ohara et al., J. Chem. Phys. 135, 034507 (2011)]. The thermal conductivities for these alkanes in a saturated liquid state at the same reduced temperature (0.7T{sub c}) obtained from the simulations are compared in relation to the structural difference of the liquids. In order to connect the thermal energy transport characteristics with molecular structures, we introduce the new concept of the interatomic path of heat transfer (atomistic heat path, AHP), which is defined for each type of inter- and intramolecular interaction. It is found that the efficiency of intermolecular AHP is sensitive to the structure of the first neighbor shell, whereas that of intramolecular AHP is similar for different alkane species. The dependence of thermal conductivity on different lengths of the main and side chain can be understood from the natures of these inter- and intramolecular AHPs.

  1. Exponential Repulsion Improves Structural Predictability of Molecular Docking

    Czech Academy of Sciences Publication Activity Database

    Bazgier, Václav; Berka, K.; Otyepka, M.; Banáš, P.

    2016-01-01

    Roč. 37, č. 28 (2016), s. 2485-2494 ISSN 0192-8651 Institutional support: RVO:61389030 Keywords : cyclin-dependent kinases * structure-based design * scoring functions * cdk2 inhibitors * force-field * ligand interactions * drug discovery * purine * potent * protein-kinase-2 * molecular docking * dock 6.6 * drug design * cyclin-dependent kinase 2 * directory of decoys Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.229, year: 2016

  2. Splitting of α-Helical Structure as Molecular Basis for Abolishing an Amyloid Formation by Multiple Glycosylation: A Molecular Dynamics Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youngjin [Hoseo University, Asan (Korea, Republic of); Cho, Eunae; Jung, Seunho [Konkuk University, Seoul (Korea, Republic of)

    2016-07-15

    Molecular details played by glycosylation are complicated by the subtle nature of variations in the glycan structure, and this complexity is one of the research barriers to establish structure-function relationship on the protein modification. This is particularly true for understanding the exact structural consequence of the glycosylation of the biological proteins. The present MD simulation revealed molecular-level mechanism of the glycosylation effect on the peptide to understand the experimentally observed phenomenon for inhibiting amyloid formation in the model peptide. The galactose residue on the Ser17 undermined the helical integrity of main protein region by enhancing sugar–amino acid interaction and perturbing natural interactions between amino acid residues.

  3. Molecular motion and structure in plastics

    International Nuclear Information System (INIS)

    Doolan, K.R.; Baxter, M.

    2000-01-01

    Full text: When molten thermoplastics solidify, the polymeric chains form a completely amorphous structure or a mixture of crystalline and amorphous regions. Measurement of Nuclear Magnetic Resonance (NMR) relaxation times provides information about the configuration and molecular motion of polymeric chains in solid plastics. We are currently measuring the NMR relaxation times T 1 , T 2 , T 2 and T 1p as a function of temperature using a Bruker High Power pulsed NMR Spectrometer for several different classes of thermoplastics containing varying concentrations of inorganic filler materials. We present data here for T 1 , and T 2 obtained for polyethylenes, polypropylenes, polystyrenes and acrylics in the temperature range 100 K to 450 K. At temperatures below 320 K, all of the polyethylenes and polypropylenes and some of the polystyrenes and acrylics produced NMR signals after a single radio frequency (RF) pulse with rapidly and slowly decaying components corresponding to the rigid and flexible regions within the plastic. From these results we have estimated using Mathematica the amount of crystallinity within the polyethylenes and polypropylenes. For the impact modified polystyrenes and acrylics studied we have estimated the amounts of elastomeric phases present. We find that the initial rapid decay signal produced by polyethylenes and polypropylenes is Gaussian while the long tail is Lorentzian. All of the signal components from the polystyrenes and the acrylics were fitted using Lorentzian functions indicating their structures are highly amorphous. Addition of CaCO 3 filler to polypropylene resins appears to reduce the crystallinity of the material. We also present data for the activation energy of the molecular motion inducing longitudinal relaxation, from T 1 measurements

  4. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.

    Science.gov (United States)

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.

  5. Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations

    DEFF Research Database (Denmark)

    Xiang, Ye; Du, Jincheng; Smedskjær, Morten Mattrup

    2013-01-01

    the recent Corning® Gorilla® Glass. In this paper, the structures of sodium aluminosilicate glasses with a wide range of Al/Na ratios (from 1.5 to 0.6) have been studied using classical molecular dynamics simulations in a system containing around 3000 atoms, with the aim to understand the structural role...

  6. Structure-Activity Relationships on the Molecular Descriptors Family Project at the End

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2007-12-01

    Full Text Available Molecular Descriptors Family (MDF on the Structure-Activity Relationships (SAR, a promising approach in investigation and quantification of the link between 2D and 3D structural information and the activity, and its potential in the analysis of the biological active compounds is summarized. The approach, attempts to correlate molecular descriptors family generated and calculated on a set of biological active compounds with their observed activity. The estimation as well as prediction abilities of the approach are presented. The obtained MDF SAR models can be used to predict the biological activity of unknown substrates in a series of compounds.

  7. The molecular structure of the insoluble organic matter isolated from Murchison carbonaceous chondrite.

    Science.gov (United States)

    Robert, F.; Derenne, S.

    2009-04-01

    During these last 10 years, our group has characterized the various molecular moieties of the insoluble organic matter (IOM) isolated from carbonaceous meteorites with the aim of reconstructing its overall molecular structure. Indeed, a precise knowledge of the structure of an organic macromolecule contains irreplaceable information that traces its mechanisms of synthesis and its conditions of formation. Such a modelled structure will be presented. Carbonaceous chondrites contain up to 3 wt % of carbon that is under the form of soluble and insoluble fractions. The IOM, which constitutes more than 75 wt% of the bulk organic matter, was isolated from the bulk rock through successive acid dissolutions. The chemical structure of the isolated IOM has been studied by both (1) destructive and (2) non destructive methods. Methods include thermal and chemical degradations followed by GC/MS, spectroscopic techniques (nuclear magnetic resonance, Fourier transform infra red spectroscopy; X-ray absorption near-edge spectroscopy, electron paramagnetic resonance) along with high resolution transmission electron microscopy. Although each technique alone cannot provide definite information on the chemical structure of such a complex material, the combination of the results can be used to reconstruct the molecular structure of the IOM. The proposed structure accounts for all these measured parameters. The details of this structure reveal information of the conditions of its formation in space and allow to discuss the mechanisms of organo-synthesis in the cosmochemical context of the formation of the solar system.

  8. Photoionization-regulated star formation and the structure of molecular clouds

    Science.gov (United States)

    Mckee, Christopher F.

    1989-01-01

    A model for the rate of low-mass star formation in Galactic molecular clouds and for the influence of this star formation on the structure and evolution of the clouds is presented. The rate of energy injection by newly formed stars is estimated, and the effect of this energy injection on the size of the cloud is determined. It is shown that the observed rate of star formation appears adequate to support the observed clouds against gravitational collapse. The rate of photoionization-regulated star formation is estimated and it is shown to be in agreement with estimates of the observed rate of star formation if the observed molecular cloud parameters are used. The mean cloud extinction and the Galactic star formation rate per unit mass of molecular gas are predicted theoretically from the condition that photionization-regulated star formation be in equilibrium. A simple model for the evolution of isolated molecular clouds is developed.

  9. Structural changes in polytetrafluoroethylene molecular chains upon sliding against steel

    NARCIS (Netherlands)

    Shen, J.T.; Pei, Y.T.; Hosson, J.Th.M. De

    In this work, the influence of dry sliding between a steel counterpart ball and polytetrafluoroethylene (PTFE) plate sample on the transformation of PTFE molecular structure is investigated. With X-ray diffraction, differential scanning calorimetry, Fourier transform infrared (FT-IR) spectroscopy

  10. The Role of Molecular Structure and Conformation in Polymer Electronics

    NARCIS (Netherlands)

    von Hauff, Elizabeth

    2011-01-01

    ABSTRACT Conjugated polymers have unique material properties that make them promising for a wide range of applications. The potential lies in the virtually infinite possibilities for creating new materials for specific applications by simply chemically tuning the molecular structure. Conjugated

  11. Roles of water in protein structure and function studied by molecular liquid theory.

    Science.gov (United States)

    Imai, Takashi

    2009-01-01

    The roles of water in the structure and function of proteins have not been completely elucidated. Although molecular simulation has been widely used for the investigation of protein structure and function, it is not always useful for elucidating the roles of water because the effect of water ranges from atomic to thermodynamic level. The three-dimensional reference interaction site model (3D-RISM) theory, which is a statistical-mechanical theory of molecular liquids, can yield the solvation structure at the atomic level and calculate the thermodynamic quantities from the intermolecular potentials. In the last few years, the author and coworkers have succeeded in applying the 3D-RISM theory to protein aqueous solution systems and demonstrated that the theory is useful for investigating the roles of water. This article reviews some of the recent applications and findings, which are concerned with molecular recognition by protein, protein folding, and the partial molar volume of protein which is related to the pressure effect on protein.

  12. Structural and Molecular Characterization of meso-Substituted Zinc Porphyrins: A DFT Supported Study

    Directory of Open Access Journals (Sweden)

    Giuseppe Mele

    2011-12-01

    Full Text Available Structural parameters of a range of over 100 meso-substituted zinc porphyrins were reviewed and compared to show how far the nature of the functional group may affect the interatomic distances and bond angles within the porphyrin core. It was proved that even despite evident deformations of the molecular structure, involving twisting of the porphyrin's central plane, the coupled π-bonding system remains flexible and stable. DFT calculations were applied to a number of selected porphyrins representative for the reviewed compounds to emphasize the relevance of theoretical methods in structural investigations of complex macrocyclic molecular systems. Experimental and DFT-simulated IR spectral data were reported and analyzed in context of the individual molecular features introduced by the meso substituents into the porphyrin moiety base. Raw experimental spectral data, including 1H- and 13C-NMR, UV-Vis, FTIR, XRD, and other relevant physicochemical details have been provided for a specially chosen reference zinc porphyrin functionalized by tert-butylphenyl groups.

  13. Invariant molecular-dynamics approach to structural phase transitions

    International Nuclear Information System (INIS)

    Wentzcovitch, R.M.

    1991-01-01

    Two fictitious Lagrangians to be used in molecular-dynamics simulations with variable cell shape and suitable to study problems like structural phase transitions are introduced. Because they are invariant with respect to the choice of the simulation cell edges and eliminate symmetry breaking associated with the fictitious part of the dynamics, they improve the physical content of numerical simulations that up to now have been done by using Parrinello-Rahman dynamics

  14. Determination of molecular-ion structures through the use of accelerated beams

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1987-01-01

    In this talk we report on recent research on molecular-ion structures using fast molecular-ion beams provided by Argonne's 5-MV Dynamitron accelerator. The method has become known as the ''Coulomb-explosion'' technique. When molecular-ion projectiles travelling at velocities of a few percent of the velocity of light strike a foil, the electrons that bind the molecular projectiles are almost always totally stripped off within the first few Angstroms of penetration into the solid target. This leaves a cluster of bare (or nearly bare) nuclei which separate rapidly as a result of their mutual Coulomb repulsion. This violent dissociation process in which the initial electrostatic potential energy is converted into kinetic energy of relative motion in the center-of-mass, has been termed a ''Coulomb explosion.'' 4 refs., 2 figs

  15. Isotope chemistry and molecular structure. The WINIMAX weighting factor

    International Nuclear Information System (INIS)

    Lee, M.W.; Bigeleisen, J.

    1979-01-01

    The modulating coefficients for the finite polynomial expansion of the logarithm of the reduced partition function, lnb (u), of a harmonic oscillator have been obtained for the range of 0 6 . It is shown that this weighting function is near optimum to insure minimum amplitudes of oscillation in the expansion of lnb (u) as a function of the order of the expansion and to include most of the important molecular structure information contained in the moments of the eigenvalues. Beyond Σu/sub i/ 6 , there is little new structural information

  16. Study of Barley Grain Molecular Structure for Ruminants Using DRIFT, FTIR-ATR and Synchrotron Radiation Infrared Microspectroscopy (SR-IMS): A Review

    International Nuclear Information System (INIS)

    Yu Peiqiang

    2012-01-01

    Barley inherent structures are highly associated with nutrient utilization and availability in both humans and animals. Barley has different degradation kinetics compared with other cereal grains. It has a relatively higher degradation rate and extent, which often cause digestive disorder in the rumen. Therefore understanding barley inherent structure at cellular and molecular levels and processing-induced structure changes is important, because we can manipulate barley inherent structures and digestive behaviors. Several molecular spectroscopy techniques can be used to detect barley inherent structures at cellular and molecular levels. This article reviews several applications of the IR molecular spectral bioanalytical techniques - DRIFT, FT/IR-ATR and SR-IMS for barley chemistry, molecular structure and molecular nutrition research

  17. Cationic lipids: molecular structure/ transfection activity relationships and interactions with biomembranes.

    Science.gov (United States)

    Koynova, Rumiana; Tenchov, Boris

    2010-01-01

    Abstract Synthetic cationic lipids, which form complexes (lipoplexes) with polyanionic DNA, are presently the most widely used constituents of nonviral gene carriers. A large number of cationic amphiphiles have been synthesized and tested in transfection studies. However, due to the complexity of the transfection pathway, no general schemes have emerged for correlating the cationic lipid chemistry with their transfection efficacy and the approaches for optimizing their molecular structures are still largely empirical. Here we summarize data on the relationships between transfection activity and cationic lipid molecular structure and demonstrate that the transfection activity depends in a systematic way on the lipid hydrocarbon chain structure. A number of examples, including a large series of cationic phosphatidylcholine derivatives, show that optimum transfection is displayed by lipids with chain length of approximately 14 carbon atoms and that the transfection efficiency strongly increases with increase of chain unsaturation, specifically upon replacement of saturated with monounsaturated chains.

  18. Molecular structure determination of cyclootane by ab initio and electron diffraction methods in the gas phase

    OpenAIRE

    De Almeida, Wagner B.

    2000-01-01

    The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can ma...

  19. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  20. Large Molecule Structures by Broadband Fourier Transform Molecular Rotational Spectroscopy

    Science.gov (United States)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Fourier transform molecular rotational resonance spectroscopy (FT-MRR) using pulsed jet molecular beam sources is a high-resolution spectroscopy technique that can be used for chiral analysis of molecules with multiple chiral centers. The sensitivity of the molecular rotational spectrum pattern to small changes in the three dimensional structure makes it possible to identify diastereomers without prior chemical separation. For larger molecules, there is the additional challenge that different conformations of each diastereomer may be present and these need to be differentiated from the diastereomers in the spectral analysis. Broadband rotational spectra of several larger molecules have been measured using a chirped-pulse FT-MRR spectrometer. Measurements of nootkatone (C15H22O), cedrol (C15H26O), ambroxide (C16H28O) and sclareolide (C16H26O2) are presented. These spectra are measured with high sensitivity (signal-to-noise ratio near 1,000:1) and permit structure determination of the most populated isomers using isotopic analysis of the 13C and 18O isotopologues in natural abundance. The accuracy of quantum chemistry calculations to identify diastereomers and conformers and to predict the dipole moment properties needed for three wave mixing measurements is examined.

  1. Atomic-scale structure of dislocations revealed by scanning tunneling microscopy and molecular dynamics

    DEFF Research Database (Denmark)

    Christiansen, Jesper; Morgenstern, K.; Schiøtz, Jakob

    2002-01-01

    The intersection between dislocations and a Ag(111) surface has been studied using an interplay of scanning tunneling microscopy (STM) and molecular dynamics. Whereas the STM provides atomically resolved information about the surface structure and Burgers vectors of the dislocations, the simulati......The intersection between dislocations and a Ag(111) surface has been studied using an interplay of scanning tunneling microscopy (STM) and molecular dynamics. Whereas the STM provides atomically resolved information about the surface structure and Burgers vectors of the dislocations......, the simulations can be used to determine dislocation structure and orientation in the near-surface region. In a similar way, the subsurface structure of other extended defects can be studied. The simulations show dislocations to reorient the partials in the surface region leading to an increased splitting width...

  2. Model of molecular structure of the insoluble organic matter isolated from Murchison meteorite

    Science.gov (United States)

    Derenne, Sylvie; Robert, François

    2010-09-01

    The molecular structure of the insoluble organic matter (IOM) from Murchison meteorite has been investigated by our group for several years using a large set of analytical methods including various spectroscopies (Fourier transform infrared spectroscopy, nuclear magnetic resonance, electron paramagnetic resonance, X-ray absorption near-edge spectroscopy), high resolution electron microscopy, and thermal (pyrolyses in the presence or not of tetramethylammonium hydroxide) and chemical (RuO4 oxidation) degradations. Taken together, these techniques provided a wealth of qualitative and quantitative information, from which we derived 11 elemental and molecular parameters on the same IOM residue. In addition to the basic elemental composition, these parameters describe the distribution of the different types of carbon, nitrogen, and sulfur atoms as well as the size of the polyaromatic units. For this molecular structure, we therefore propose a model which fits with these 11 molecular quantitative parameters. Several cosmochemical implications are derived from this structure. Based on the fact that aromatic moieties are highly substituted and aliphatic chains highly branched, it can be anticipated that the synthesis of this IOM occurred through successive additions of single carbon units in the gas-phase ending by a spontaneous cyclization for chain length ≥7 C. As a whole, these observations favor an organosynthesis in the solar T-Tauri disk.

  3. Adsorption and double layer charging in molecular sieve carbons in relation to molecular dimensions and pore structures

    International Nuclear Information System (INIS)

    Koresh, J.

    1982-09-01

    The pore structure of a fibrous carbon molecular sieve was studied by adsorption of molecular probes. Mild activation steps enabled the graduated opening of critical pore dimensions in the range 3.1-5.0 A, which keeps adsorption selectivity between molecules differing by 0.2 A in cross section diameter, to be considerably greater than 100/1. High adsorption stereospecificity over a wide pore dimension range enabled the studied adsorbates to be ordered in a sequence of increasing critical molecular dimension. Estimation of molecular dimensions by various experimental methods was discussed and their relevance to nonspherical molecules was evaluated. Polar molecules assume different dimensions depending on whether the carbon surface was polar (oxidized) or not. Hydrogen acquires, surprisingly, large width in accordance with its high liquid molar volume. Adsorbent-adsorbate interactions play a crucial role in determining molecular dimensions. Adsorption of ions from aqueous solutions into the developed ultramicropores of fibrous carbon electrodes was also studied. The dependence of the double layer capacitance and the charging rate on the pore critical dimension and on surface oxidation was studied using linear potential sweep voltametry. (Author)

  4. C9orf72 nucleotide repeat structures initiate molecular cascades of disease.

    Science.gov (United States)

    Haeusler, Aaron R; Donnelly, Christopher J; Periz, Goran; Simko, Eric A J; Shaw, Patrick G; Kim, Min-Sik; Maragakis, Nicholas J; Troncoso, Juan C; Pandey, Akhilesh; Sattler, Rita; Rothstein, Jeffrey D; Wang, Jiou

    2014-03-13

    A hexanucleotide repeat expansion (HRE), (GGGGCC)n, in C9orf72 is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we identify a molecular mechanism by which structural polymorphism of the HRE leads to ALS/FTD pathology and defects. The HRE forms DNA and RNA G-quadruplexes with distinct structures and promotes RNA•DNA hybrids (R-loops). The structural polymorphism causes a repeat-length-dependent accumulation of transcripts aborted in the HRE region. These transcribed repeats bind to ribonucleoproteins in a conformation-dependent manner. Specifically, nucleolin, an essential nucleolar protein, preferentially binds the HRE G-quadruplex, and patient cells show evidence of nucleolar stress. Our results demonstrate that distinct C9orf72 HRE structural polymorphism at both DNA and RNA levels initiates molecular cascades leading to ALS/FTD pathologies, and provide the basis for a mechanistic model for repeat-associated neurodegenerative diseases.

  5. Using an electrostatic accelerator to determine the stereochemical structures of molecular ions

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1980-01-01

    Recent high-resolution measurements on the energy and angle distributions of the fragments produced when fast (MeV) molecular-ion beams from an electrostatic accelerator dissociate (Coulomb explode) in thin foils and in gases, offer promising possibilities for deducing the stereochemical structures of the molecular ions constituting the incident beams. Bond lengths have been determined in this way for several diatomic projectiles (H 2 + , HeH + , CH + , NH + , OH + , N 2 + , O 2 + , etc.) with an accuracy of approx. 0.01 A. H 3 + has been demonstrated (for the first time) to be equilateral triangular and the interproton distance measured. Measurements on single fragments from CO 2 + , N 2 O + , C 3 H 3 + , and CH/sub n/ + have revealed the gross structures of the projectiles. An apparatus has recently been constructed at Argonne to permit precise measurements on fragments in coincidence. The apparatus has been tested on a known structure (OH 2 + ). The O-H bond length was found to be 1.0 +- 0.04 A and the H-O-H bond angle was measured as 110 +- 2 0 . These values are in excellent agreement with those found in optical experiments (0.999 A and 110.5 0 ). This Coulomb explosion technique can be expected to be refined in accuracy and to be extended to a wide range of molecular ions whose structures are inaccessible by other means

  6. Molecular structures and metabolic characteristics of protein in brown and yellow flaxseed with altered nutrient traits.

    Science.gov (United States)

    Khan, Nazir Ahmad; Booker, Helen; Yu, Peiqiang

    2014-07-16

    The objectives of this study were to investigate the chemical profiles; crude protein (CP) subfractions; ruminal CP degradation characteristics and intestinal digestibility of rumen undegraded protein (RUP); and protein molecular structures using molecular spectroscopy of newly developed yellow-seeded flax (Linum usitatissimum L.). Seeds from two yellow flaxseed breeding lines and two brown flaxseed varieties were evaluated. The yellow-seeded lines had higher (P RUP (29.2 vs 35.1% CP) than that in the brown-seeded varieties. However, the total supply of digestible RUP was not significantly different between the two seed types. Regression equations based on protein molecular structural features gave relatively good estimation for the contents of CP (R(2) = 0.87), soluble CP (R(2) = 0.92), RUP (R(2) = 0.97), and intestinal digestibility of RUP (R(2) = 0.71). In conclusion, molecular spectroscopy can be used to rapidly characterize feed protein molecular structures and predict their nutritive value.

  7. Molecular structure determination of cyclooctane by Ab Initio and electron diffraction methods in the gas phase

    International Nuclear Information System (INIS)

    Almeida, Wagner B. de

    2000-01-01

    The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can make a significant contribution for an unambiguous determination of the geometrical parameters. In this article the determination for an unambiguous determination of the geometrical parameters. In this article the determination of the molecular structure of the cyclooctane molecule by electron diffraction in the gas phase an initio calculations will be addressed, providing an example of a comparative analysis of theoretical and experimental predictions. (author)

  8. Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data

    Science.gov (United States)

    Wang, Yongcui; Chen, Shilong; Deng, Naiyang; Wang, Yong

    2013-01-01

    Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems. PMID:24244318

  9. The interface of protein structure, protein biophysics, and molecular evolution

    Science.gov (United States)

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  10. Molecular structure input on the web

    Directory of Open Access Journals (Sweden)

    Ertl Peter

    2010-02-01

    Full Text Available Abstract A molecule editor, that is program for input and editing of molecules, is an indispensable part of every cheminformatics or molecular processing system. This review focuses on a special type of molecule editors, namely those that are used for molecule structure input on the web. Scientific computing is now moving more and more in the direction of web services and cloud computing, with servers scattered all around the Internet. Thus a web browser has become the universal scientific user interface, and a tool to edit molecules directly within the web browser is essential. The review covers a history of web-based structure input, starting with simple text entry boxes and early molecule editors based on clickable maps, before moving to the current situation dominated by Java applets. One typical example - the popular JME Molecule Editor - will be described in more detail. Modern Ajax server-side molecule editors are also presented. And finally, the possible future direction of web-based molecule editing, based on technologies like JavaScript and Flash, is discussed.

  11. ZnO: Hydroquinone superlattice structures fabricated by atomic/molecular layer deposition

    International Nuclear Information System (INIS)

    Tynell, Tommi; Karppinen, Maarit

    2014-01-01

    Here we employ atomic layer deposition in combination with molecular layer deposition to deposit crystalline thin films of ZnO interspersed with single layers of hydroquinone in an effort to create hybrid inorganic–organic superlattice structures. The ratio of the ZnO and hydroquinone deposition cycles is varied between 199:1 and 1:1, and the structure of the resultant thin films is verified with X-ray diffraction and reflectivity techniques. Clear evidence of the formation of a superlattice-type structure is observed in the X-ray reflectivity patterns and the presence of organic bonds in the films corresponding to the structure of hydroquinone is confirmed with Fourier transform infrared spectroscopy measurements. We anticipate that hybrid superlattice structures such as the ones described in this work have the potential to be of great importance for future applications where the precise control of different inorganic and organic layers in hybrid superlattice materials is required. - Highlights: • Inorganic–organic superlattices can be made by atomic/molecular layer deposition. • This is demonstrated here for ZnO and hydroquinone (HQ). • The ratio of the ZnO and HQ layers is varied between 199:1 and 14:1. • The resultant thin films are crystalline

  12. ZnO: Hydroquinone superlattice structures fabricated by atomic/molecular layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi

    2014-01-31

    Here we employ atomic layer deposition in combination with molecular layer deposition to deposit crystalline thin films of ZnO interspersed with single layers of hydroquinone in an effort to create hybrid inorganic–organic superlattice structures. The ratio of the ZnO and hydroquinone deposition cycles is varied between 199:1 and 1:1, and the structure of the resultant thin films is verified with X-ray diffraction and reflectivity techniques. Clear evidence of the formation of a superlattice-type structure is observed in the X-ray reflectivity patterns and the presence of organic bonds in the films corresponding to the structure of hydroquinone is confirmed with Fourier transform infrared spectroscopy measurements. We anticipate that hybrid superlattice structures such as the ones described in this work have the potential to be of great importance for future applications where the precise control of different inorganic and organic layers in hybrid superlattice materials is required. - Highlights: • Inorganic–organic superlattices can be made by atomic/molecular layer deposition. • This is demonstrated here for ZnO and hydroquinone (HQ). • The ratio of the ZnO and HQ layers is varied between 199:1 and 14:1. • The resultant thin films are crystalline.

  13. Structural insights of Staphylococcus aureus FtsZ inhibitors through molecular docking, 3D-QSAR and molecular dynamics simulations.

    Science.gov (United States)

    Ballu, Srilata; Itteboina, Ramesh; Sivan, Sree Kanth; Manga, Vijjulatha

    2018-02-01

    Filamentous temperature-sensitive protein Z (FtsZ) is a protein encoded by the FtsZ gene that assembles into a Z-ring at the future site of the septum of bacterial cell division. Structurally, FtsZ is a homolog of eukaryotic tubulin but has low sequence similarity; this makes it possible to obtain FtsZ inhibitors without affecting the eukaryotic cell division. Computational studies were performed on a series of substituted 3-arylalkoxybenzamide derivatives reported as inhibitors of FtsZ activity in Staphylococcus aureus. Quantitative structure-activity relationship models (QSAR) models generated showed good statistical reliability, which is evident from r 2 ncv and r 2 loo values. The predictive ability of these models was determined and an acceptable predictive correlation (r 2 Pred ) values were obtained. Finally, we performed molecular dynamics simulations in order to examine the stability of protein-ligand interactions. This facilitated us to compare free binding energies of cocrystal ligand and newly designed molecule B1. The good concordance between the docking results and comparative molecular field analysis (CoMFA)/comparative molecular similarity indices analysis (CoMSIA) contour maps afforded obliging clues for the rational modification of molecules to design more potent FtsZ inhibitors.

  14. Theoretical study on molecular packing and electronic structure of bi-1,3,4-oxadiazole derivatives

    KAUST Repository

    Wang, Haitao; Bai, Fuquan; Jia, Xiaoshi; Cao, Di; Ravva, Mahesh Kumar; Bredas, Jean-Luc; Qu, Songnan; Bai, Binglian; Zhang, Hongxing; Li, Min

    2014-01-01

    The molecular aggregation structure of 5,5′-bis(naphthalen-2-yl)-2,2′-bi(1,3,4-oxadiazole) (BOXD-NP) was studied by computing the intermolecular interaction potential energy surface (PES) at density functional theory level based on a dimer model. All B3LYP, CAM-B3LYP and M062x functionals can yield a reliable isolated molecular geometry. The conformation of BOXD-NP obtained with all methods is perfectly planar, indicating good conjugation ability between oxadiazole and naphthalene rings. The vibrational frequencies of BOXD-NP were also calculated using the B3LYP/6-311+G∗∗ method, which showed great consistency with the experimental observations and makes the assignments of the IR spectra more solid. It was revealed that the lowest excited state of BOXD-NP should be assigned as a highly allowed π-π∗ state by TD-DFT calculation. Considering the non-covalent interactions in molecular aggregates, the M062x functional was applied in the construction of the PES. Besides the packing structure found in the crystals, PES also predicted several stable structures, indicating that PES has great ability in guiding molecular self-assembly. Symmetry Adapted Perturbation Theory (SAPT) analysis on these energy-minimum molecular stacking structures revealed that London dispersion forces are the strongest attractive component in the binding. This journal is

  15. Molecular and electronic structure of osmium complexes confined to Au(111) surfaces using a self-assembled molecular bridge

    Energy Technology Data Exchange (ETDEWEB)

    Llave, Ezequiel de la; Herrera, Santiago E.; Adam, Catherine; Méndez De Leo, Lucila P.; Calvo, Ernesto J.; Williams, Federico J., E-mail: fwilliams@qi.fcen.uba.ar [INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química-Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA (Argentina)

    2015-11-14

    The molecular and electronic structure of Os(II) complexes covalently bonded to self-assembled monolayers (SAMs) on Au(111) surfaces was studied by means of polarization modulation infrared reflection absorption spectroscopy, photoelectron spectroscopies, scanning tunneling microscopy, scanning tunneling spectroscopy, and density functional theory calculations. Attachment of the Os complex to the SAM proceeds via an amide covalent bond with the SAM alkyl chain 40° tilted with respect to the surface normal and a total thickness of 26 Å. The highest occupied molecular orbital of the Os complex is mainly based on the Os(II) center located 2.2 eV below the Fermi edge and the LUMO molecular orbital is mainly based on the bipyridine ligands located 1.5 eV above the Fermi edge.

  16. Well-ordered monolayers of alkali-doped coronene and picene: Molecular arrangements and electronic structures

    Energy Technology Data Exchange (ETDEWEB)

    Yano, M.; Endo, M.; Hasegawa, Y.; Okada, R.; Yamada, Y., E-mail: yamada@bk.tsukuba.ac.jp; Sasaki, M. [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-07-21

    Adsorptions of alkali metals (such as K and Li) on monolayers of coronene and picene realize the formation of ordered phases, which serve as well-defined model systems for metal-intercalated aromatic superconductors. Upon alkali-doping of the monolayers of coronene and picene, scanning tunneling microscopy and X-ray absorption spectroscopy revealed the rearrangement of the entire molecular layer. The K-induced reconstruction of both monolayers resulted in the formation of a structure with a herringbone-like arrangement of molecules, suggesting the intercalation of alkali metals between molecular planes. Upon reconstruction, a shift in both the vacuum level and core levels of coronene was observed as a result of a charge transfer from alkali metals to coronene. In addition, a new density of states near the Fermi level was formed in both the doped coronene and the doped picene monolayers. This characteristic electronic feature of the ordered monolayer has been also reported in the multilayer picene films, ensuring that the present monolayer can model the properties of the metal-intercalated aromatic hydrocarbons. It is suggested that the electronic structure near the Fermi level is sensitive to the molecular arrangement, and that both the strict control and determinations of the molecular structure in the doped phase should be important for the determination of the electronic structure of these materials.

  17. The diverse and expanding role of mass spectrometry in structural and molecular biology.

    Science.gov (United States)

    Lössl, Philip; van de Waterbeemd, Michiel; Heck, Albert Jr

    2016-12-15

    The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  18. Molecular Models of Genetic and Organismic Structures

    CERN Document Server

    Baianu, I C

    2004-01-01

    In recent studies we showed that the earlier relational theories of organismic sets (Rashevsky,1967), Metabolic-Replication (M,R)-systems (Rosen,1958)and molecular sets (Bartholomay,1968) share a joint foundation that can be studied within a unified categorical framework of functional organismic structures (Baianu,1980. This is possible because all relational theories have a biomolecular basis, that is, complex structures such as genomes, cells,organs and biological organisms are mathematically represented in terms of biomolecular properties and entities,(that are often implicit in their representation axioms. The definition of organismic sets, for example, requires that certain essential quantities be determined from experiment: these are specified by special sets of values of general observables that are derived from physicochemical measurements(Baianu,1970; Baianu,1980; Baianu et al, 2004a.)Such observables are context-dependent and lead directly to natural transformations in categories and Topoi, that are...

  19. Electronic structure and molecular orbital study of hole-transport material triphenylamine derivatives

    International Nuclear Information System (INIS)

    Wang, B.-C.; Liao, H.-R.; Chang, J.-C.; Chen Likey; Yeh, J.-T.

    2007-01-01

    Recently, triphenylamine (TPA), 4,4'-bis(phenyl-m-tolylamino)biphenyl (TPD), 4,4'-bis(1-naphthylphenylamino)biphenyl (NPB) and their derivatives are widely used in the organic light-emitting diode (OLED) devices as a hole-transporting material (HTM) layer. We have optimized twenty different structures of HTM materials by using density functional theory (DFT), B3LYP/6-31G method. All these different structures contain mono-amine and diamine TPA derivatives. The energies of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) along with molecular orbitals for these HTMs are also determined. We have found that the central amine nitrogen atom and the phenyl ring, which is next to the central amine nitrogen atom, show significant contribution to the HOMO and LUMO, respectively. The sum of the calculated bond angles (α+β+γ) of the central amine nitrogen atom has been applied to describe the bonding and the energy difference for HOMO and LUMO in these TPA derivatives. Electronic structure calculations have been performed for these TPA derivatives. Again, the LCAO-MO patterns of HOMO and LUMO levels of these derivatives are used to investigate their electron density. A series of electron-transporting steps are predicted for these compounds employing these calculated results

  20. Effects of surface proteins and lipids on molecular structure, thermal properties, and enzymatic hydrolysis of rice starch

    Directory of Open Access Journals (Sweden)

    Pan HU

    Full Text Available Abstract Rice starches with different amylose contents were treated with sodium dodecyl sulfate (SDS to deplete surface proteins and lipids, and the changes in molecular structure, thermal properties, and enzymatic hydrolysis were evaluated. SDS treatment did not significantly change the molecular weight distribution, crystalline structure, short-range ordered degree, and gelatinization properties of starch, but significantly altered the pasting properties and increased the swelling power of starch. The removal of surface proteins and lipids increased the enzymatic hydrolysis and in vitro digestion of starch. The influences of removing surface proteins and lipids from starch on swelling power, pasting properties, and enzymatic hydrolysis were different among the various starches because of the differences in molecular structures of different starch styles. The aforementioned results indicated that removing the surface proteins and lipids from starch did not change the molecular structure but had significant effects on some functional properties.

  1. Variational cellular model of the molecular and crystal electronic structure

    International Nuclear Information System (INIS)

    Ferreira, L.G.; Leite, J.R.

    1977-12-01

    A variational version of the cellular method is developed to calculate the electronic structure of molecules and crystals. Due to the simplicity of the secular equation, the method is easy to be implemented. Preliminary calculations on the hydrogen molecular ion suggest that it is also accurate and of fast convergence [pt

  2. Molecular structure of self-assembled chiral nanoribbons and nanotubules revealed in the hydrated state.

    Science.gov (United States)

    Oda, Reiko; Artzner, Franck; Laguerre, Michel; Huc, Ivan

    2008-11-05

    A detailed molecular organization of racemic 16-2-16 tartrate self-assembled multi-bilayer ribbons in the hydrated state is proposed where 16-2-16 amphiphiles, tartrate ions, and water molecules are all accurately positioned by comparing experimental X-ray powder diffraction and diffraction patterns derived from modeling studies. X-ray diffuse scattering studies show that molecular organization is not fundamentally altered when comparing the flat ribbons of the racemate to chirally twisted or helical ribbons of the pure tartrate enantiomer. Essential features of the three-dimensional molecular organizations of these structures include interdigitation of alkyl chains within each bilayer and well-defined networks of ionic and hydrogen bonds between cations, anions, and water molecules between bilayers. The detailed study of diffraction patterns also indicated that the gemini headgroups are oriented parallel to the long edge of the ribbons. The structure thus possesses a high cohesion and good crystallinity, and for the first time, we could relate the packing of the chiral molecules to the expression of the chirality at a mesoscopic scale. The organization of the ribbons at the molecular level sheds light on a number of their macroscopic features. Among these are the reason why enantiomerically pure 16-2-16 tartrate forms ribbons that consist of exactly two bilayers, and a plausible mechanism by which a chirally twisted or helical shape may emerge from the packing of chiral tartrate ions. Importantly, the distinction between commonly observed helical and twisted morphologies could be related to a subtle symmetry breaking. These results demonstrate that accurately solving the molecular structure of self-assembled soft materials--a process rarely achieved--is within reach, that it is a valid approach to correlate molecular parameters to macroscopic properties, and thus that it offers opportunities to modulate properties through molecular design.

  3. Molecular dynamics simulations of structural transformation of perfluorooctane sulfonate (PFOS) at water/rutile interfaces.

    Science.gov (United States)

    He, Guangzhi; Zhang, Meiyi; Zhou, Qin; Pan, Gang

    2015-09-01

    Concentration and salinity conditions are the dominant environmental factors affecting the behavior of perfluorinated compounds (PFCs) on the surfaces of a variety of solid matrices (suspended particles, sediments, and natural minerals). However, the mechanism has not yet been examined at molecular scales. Here, the structural transformation of perfluorooctane sulfonate (PFOS) at water/rutile interfaces induced by changes of the concentration level of PFOS and salt condition was investigated using molecular dynamics (MD) simulations. At low and intermediate concentrations all PFOS molecules directly interacted with the rutile (110) surface mainly by the sulfonate headgroups through electrostatic attraction, yielding a typical monolayer structure. As the concentration of PFOS increased, the molecules aggregated in a complex multi-layered structure, where an irregular assembling configuration was adsorbed on the monolayer structure by the van der Waals interactions between the perfluoroalkyl chains. When adding CaCl2 to the system, the multi-layered structure changed to a monolayer again, indicating that the addition of CaCl2 enhanced the critical concentration value to yield PFOS multilayer assemblies. The divalent Ca(2+) substituted for monovalent K(+) as the bridging counterion in PFOS adsorption. MD simulation may trigger wide applications in study of perfluorinated compounds (PFCs) from atomic/molecular scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Multiscale modeling of complex molecular structure and dynamics with MBN Explorer

    CERN Document Server

    Solov’yov, Ilia A; Solov’yov, Andrey V

    2017-01-01

    This book introduces readers to MesoBioNano (MBN) Explorer – a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface – the MBN Studio – which enables the set-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science – ranging from the nano- to the meso-scale. MBN Explorer is particularly suited to computing the system’s energy, to optimizing molecular structure, and to exploring the various facets of molecular and random walk dynamics. The package allows the use of a broad variety of interatomic potenti...

  5. Molecular Dynamic Simulation of Space and Earth-Grown Crystal Structures of Thermostable T1 Lipase Geobacillus zalihae Revealed a Better Structure.

    Science.gov (United States)

    Ishak, Siti Nor Hasmah; Aris, Sayangku Nor Ariati Mohamad; Halim, Khairul Bariyyah Abd; Ali, Mohd Shukuri Mohamad; Leow, Thean Chor; Kamarudin, Nor Hafizah Ahmad; Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd

    2017-09-25

    Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacillus zalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.

  6. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins

    Directory of Open Access Journals (Sweden)

    Natalie Heffernan

    2015-01-01

    Full Text Available Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis. Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW phlorotannins were found to have a molecular weight range equivalent to 4–12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs. These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds.

  7. Molecules and Models The molecular structures of main group element compounds

    CERN Document Server

    Haaland, Arne

    2008-01-01

    This book provides a systematic description of the molecular structures and bonding in simple compounds of the main group elements with particular emphasis on bond distances, bond energies and coordination geometries. The description includes the structures of hydrogen, halogen and methyl derivatives of the elements in each group, some of these molecules are ionic, some polar covalent. The survey of molecules whose structures conform to well-established trends is followed byrepresentative examples of molecules that do not conform. We also describe electron donor-acceptor and hydrogen bonded co

  8. Multi-scale calculation of the electric properties of organic-based devices from the molecular structure

    KAUST Repository

    Li, Haoyuan; Qiu, Yong; Duan, Lian

    2016-01-01

    A method is proposed to calculate the electric properties of organic-based devices from the molecular structure. The charge transfer rate is obtained using non-adiabatic molecular dynamics. The organic film in the device is modeled using

  9. Molecular Docking, Molecular Dynamics, and Structure-Activity Relationship Explorations of 14-Oxygenated N-Methylmorphinan-6-ones as Potent μ-Opioid Receptor Agonists.

    Science.gov (United States)

    Noha, Stefan M; Schmidhammer, Helmut; Spetea, Mariana

    2017-06-21

    Among opioids, morphinans are of major importance as the most effective analgesic drugs acting primarily via μ-opioid receptor (μ-OR) activation. Our long-standing efforts in the field of opioid analgesics from the class of morphinans led to N-methylmorphinan-6-ones differently substituted at positions 5 and 14 as μ-OR agonists inducing potent analgesia and fewer undesirable effects. Herein we present the first thorough molecular modeling study and structure-activity relationship (SAR) explorations aided by docking and molecular dynamics (MD) simulations of 14-oxygenated N-methylmorphinan-6-ones to gain insights into their mode of binding to the μ-OR and interaction mechanisms. The structure of activated μ-OR provides an essential model for how ligand/μ-OR binding is encoded within small chemical differences in otherwise structurally similar morphinans. We reveal important molecular interactions that these μ-agonists share and distinguish them. The molecular docking outcomes indicate the crucial role of the relative orientation of the ligand in the μ-OR binding site, influencing the propensity of critical non-covalent interactions that are required to facilitate ligand/μ-OR interactions and receptor activation. The MD simulations point out minor differences in the tendency to form hydrogen bonds by the 4,5α-epoxy group, along with the tendency to affect the 3-7 lock switch. The emerged SARs reveal the subtle interplay between the substituents at positions 5 and 14 in the morphinan scaffold by enabling the identification of key structural elements that determine the distinct pharmacological profiles. This study provides a significant structural basis for understanding ligand binding and μ-OR activation by the 14-oxygenated N-methylmorphinan-6-ones, which should be useful for guiding drug design.

  10. Studies of the surface structures of molecular crystals and of adsorbed molecular monolayers on the (111) crystal faces of platinum and silver by low-energy electron diffraction

    International Nuclear Information System (INIS)

    Firment, L.E.

    1977-01-01

    The structures of molecular crystal surfaces were investigated for the first time by the use of low-energy electron diffraction (LEED). The experimental results from a variety of molecular crystals were examined and compared as a first step towards understanding the properties of these surfaces on a microscopic level. The method of sample preparation employed, vapor deposition onto metal single-crystal substrates at low temperatures in ultrahigh vacuum, allowed concurrent study of the structures of adsorbed monolayers on metal surfaces and of the growth processes of molecular films on metal substrates. The systems investigated were ice, ammonia, naphthalene, benzene, the n-paraffins (C 3 to C 8 ), cyclohexane, trioxane, acetic acid, propionic acid, methanol, and methylamine adsorbed and condensed on both Pt(111) and Ag(111) surfaces. Electron-beam-induced damage of the molecular surfaces was observed after electron exposures of 10 -4 A sec cm -2 at 20 eV. Aromatic molecular crystal samples were more resistant to damage than samples of saturated molecules. The quality and orientation of the grown molecular crystal films were influenced by substrate preparation and growth conditions. Forty ordered monolayer structures were observed. 110 figures, 22 tables, 162 references

  11. The History of Molecular Structure Determination Viewed through the Nobel Prizes.

    Science.gov (United States)

    Jensen, William P.; Palenik, Gus J.; Suh, Il-Hwan

    2003-01-01

    Discusses the importance of complex molecular structures. Emphasizes their individual significance through examination of the Nobel Prizes of the 20th century. Highlights prizes awarded to Conrad Rontgen, Francis H.C. Crick, James D. Watson, Maurice H.F. Wilkins, and others. (SOE)

  12. Study of the molecular structure and dynamics of bakelite with neutron cross section measurements

    International Nuclear Information System (INIS)

    Voi, D.L.

    1990-06-01

    The molecular structure and dynamics of calcined bakelite were studied with neutron transmission and scattering cross section measurements. The total cross sections determined were correlated with data obtained with infra-red spectroscopy, elemental analysis and other techniques to get the probable molecular formulae of bakelite. The total cross section determined showed a deviation smaller than 5% from the literature values. The frequency distribution as well as overall experimental results allowed to suggest a structural model like polycyclic hydrocarbons for bakelite calcined at 800 0 C. (F.E.). 65 refs, 31 figs, 5 tabs

  13. Micro structure processing on plastics by accelerated hydrogen molecular ions

    Science.gov (United States)

    Hayashi, H.; Hayakawa, S.; Nishikawa, H.

    2017-08-01

    A proton has 1836 times the mass of an electron and is the lightest nucleus to be used for accelerator in material modification. We can setup accelerator with the lowest acceleration voltage. It is preferable characteristics of Proton Beam Writer (PBW) for industrial applications. On the contrary ;proton; has the lowest charge among all nuclei and the potential impact to material is lowest. The object of this research is to improve productivity of the PBW for industry application focusing on hydrogen molecular ions. These ions are generated in the same ion source by ionizing hydrogen molecule. There is no specific ion source requested and it is suitable for industrial use. We demonstrated three dimensional (3D) multilevel micro structures on polyester base FPC (Flexible Printed Circuits) using proton, H2+ and H3+. The reactivity of hydrogen molecular ions is much higher than that of proton and coincident with the level of expectation. We can apply this result to make micro devices of 3D multilevel structures on FPC.

  14. Structural insights into the molecular mechanisms of myasthenia gravis and their therapeutic implications

    Energy Technology Data Exchange (ETDEWEB)

    Noridomi, Kaori; Watanabe, Go; Hansen, Melissa N.; Han, Gye Won; Chen, Lin (USC)

    2017-04-25

    The nicotinic acetylcholine receptor (nAChR) is a major target of autoantibodies in myasthenia gravis (MG), an autoimmune disease that causes neuromuscular transmission dysfunction. Despite decades of research, the molecular mechanisms underlying MG have not been fully elucidated. Here, we present the crystal structure of the nAChR α1 subunit bound by the Fab fragment of mAb35, a reference monoclonal antibody that causes experimental MG and competes with ~65% of antibodies from MG patients. Our structures reveal for the first time the detailed molecular interactions between MG antibodies and a core region on nAChR α1. These structures suggest a major nAChR-binding mechanism shared by a large number of MG antibodies and the possibility to treat MG by blocking this binding mechanism. Structure-based modeling also provides insights into antibody-mediated nAChR cross-linking known to cause receptor degradation. Our studies establish a structural basis for further mechanistic studies and therapeutic development of MG.

  15. Amino Acid Molecular Units: Building Primary and Secondary Protein Structures

    Directory of Open Access Journals (Sweden)

    Aparecido R. Silva

    2008-05-01

    Full Text Available In order to guarantee the learning quality and suitable knowledge  use  about structural biology, it is fundamental to  exist, since the beginning of  students’ formation, the possibility of clear visualization of biomolecule structures. Nevertheless, the didactic books can only bring  schematic  drawings; even more elaborated figures and graphic computation  do not permit the necessary interaction.  The representation of three-dimensional molecular structures with ludic models, built with representative units, have supplied to the students and teachers a successfully experience to  visualize such structures and correlate them to the real molecules.  The design and applicability of the representative units were discussed with researchers and teachers before mould implementation.  In this stage  it  will be presented the  developed  kit  containing the  representative  plastic parts of the main amino acids.  The kit can demonstrate the interaction among the amino acids  functional groups  (represented by colors, shapes,  sizes and  the peptidic bonds between them  facilitating the assembly and visuali zation of the primary and secondary protein structure.  The models were designed for  Ca,  amino,  carboxyl groups  and  hydrogen. The  lateral chains have  well defined models that represent their geometrical shape.  The completed kit set  will be presented in this meeting (patent requested.  In the last phase of the project will be realized  an effective evaluation  of the kit  as a facilitative didactic tool of the teaching/learning process in the Structural Molecular Biology area.

  16. Synchrotron-Based Microspectroscopic Analysis of Molecular and Biopolymer Structures Using Multivariate Techniques and Advanced Multi-Components Modeling

    International Nuclear Information System (INIS)

    Yu, P.

    2008-01-01

    More recently, advanced synchrotron radiation-based bioanalytical technique (SRFTIRM) has been applied as a novel non-invasive analysis tool to study molecular, functional group and biopolymer chemistry, nutrient make-up and structural conformation in biomaterials. This novel synchrotron technique, taking advantage of bright synchrotron light (which is million times brighter than sunlight), is capable of exploring the biomaterials at molecular and cellular levels. However, with the synchrotron RFTIRM technique, a large number of molecular spectral data are usually collected. The objective of this article was to illustrate how to use two multivariate statistical techniques: (1) agglomerative hierarchical cluster analysis (AHCA) and (2) principal component analysis (PCA) and two advanced multicomponent modeling methods: (1) Gaussian and (2) Lorentzian multi-component peak modeling for molecular spectrum analysis of bio-tissues. The studies indicated that the two multivariate analyses (AHCA, PCA) are able to create molecular spectral corrections by including not just one intensity or frequency point of a molecular spectrum, but by utilizing the entire spectral information. Gaussian and Lorentzian modeling techniques are able to quantify spectral omponent peaks of molecular structure, functional group and biopolymer. By application of these four statistical methods of the multivariate techniques and Gaussian and Lorentzian modeling, inherent molecular structures, functional group and biopolymer onformation between and among biological samples can be quantified, discriminated and classified with great efficiency.

  17. Structure of hydrogenated amorphous silicon from ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buda, F. (Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, Ohio (USA)); Chiarotti, G.L. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario Nazionale di Fisica della Materia, Padriciano 99, I-34012 Trieste (Italy)); Car, R. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Institut Romard de Recherche Numerique en Physique des Materiaux, CH-1015 Lausanne, Switzerland Department of Condensed Matter Physics, University of Geneva, CH-1211 Geneva (Switzerland)); Parrinello, M. (IBM Research Division, Zurich Research Laboratory, CH-8803 Rueschlikon (Switzerland))

    1991-09-15

    We have generated a model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data and provide new insight into the microscopic structure of this material. The calculation lends support to models in which monohydride complexes are prevalent, and indicates a strong tendency of hydrogen to form small clusters.

  18. NATO Advanced Research Workshop on Vectorization of Advanced Methods for Molecular Electronic Structure

    CERN Document Server

    1984-01-01

    That there have been remarkable advances in the field of molecular electronic structure during the last decade is clear not only to those working in the field but also to anyone else who has used quantum chemical results to guide their own investiga­ tions. The progress in calculating the electronic structures of molecules has occurred through the truly ingenious theoretical and methodological developments that have made computationally tractable the underlying physics of electron distributions around a collection of nuclei. At the same time there has been consider­ able benefit from the great advances in computer technology. The growing sophistication, declining costs and increasing accessibi­ lity of computers have let theorists apply their methods to prob­ lems in virtually all areas of molecular science. Consequently, each year witnesses calculations on larger molecules than in the year before and calculations with greater accuracy and more com­ plete information on molecular properties. We can surel...

  19. 16O+16O molecular nature of the superdeformed band of 32S and the evolution of the molecular structure

    International Nuclear Information System (INIS)

    Kimura, Masaaki; Horiuchi, Hisashi

    2004-01-01

    The relation between the superdeformed band of 32 S and 16 O+ 16 O molecular bands is studied by the deformed-basis antisymmetrized molecular dynamics with the Gogny D1S force. It is found that the obtained superdeformed band members of S have a considerable amount of the 16 O+ 16 O component. Above the superdeformed band, we have obtained two excited rotational bands which have more prominent character of the 16 O+ 16 O molecular band. These three rotational bands are regarded as a series of 16 O+ 16 O molecular bands which were predicted by using the unique 16 O- 16 O optical potential. As the excitation energy and principal quantum number of the relative motion increase, the 16 O+ 16 O cluster structure becomes more prominent but at the same time, the band members are fragmented into several states

  20. Plant-based food and feed protein structure changes induced by gene-transformation, heating and bio-ethanol processing: a synchrotron-based molecular structure and nutrition research program.

    Science.gov (United States)

    Yu, Peiqiang

    2010-11-01

    Unlike traditional "wet" analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-based food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.

  1. Molecular structure and thermodynamic predictions to create highly sensitive microRNA biosensors

    International Nuclear Information System (INIS)

    Larkey, Nicholas E.; Brucks, Corinne N.; Lansing, Shan S.; Le, Sophia D.; Smith, Natasha M.; Tran, Victoria; Zhang, Lulu; Burrows, Sean M.

    2016-01-01

    Many studies have established microRNAs (miRNAs) as post-transcriptional regulators in a variety of intracellular molecular processes. Abnormal changes in miRNA have been associated with several diseases. However, these changes are sometimes subtle and occur at nanomolar levels or lower. Several biosensing hurdles for in situ cellular/tissue analysis of miRNA limit detection of small amounts of miRNA. Of these limitations the most challenging are selectivity and sensor degradation creating high background signals and false signals. Recently we developed a reporter+probe biosensor for let-7a that showed potential to mitigate false signal from sensor degradation. Here we designed reporter+probe biosensors for miR-26a-2-3p and miR-27a-5p to better understand the effect of thermodynamics and molecular structures of the biosensor constituents on the analytical performance. Signal changes from interactions between Cy3 and Cy5 on the reporters were used to understand structural aspects of the reporter designs. Theoretical thermodynamic values, single stranded conformations, hetero- and homodimerization structures, and equilibrium concentrations of the reporters and probes were used to interpret the experimental observations. Studies of the sensitivity and selectivity revealed 5–9 nM detection limits in the presence and absence of interfering off-analyte miRNAs. These studies will aid in determining how to rationally design reporter+probe biosensors to overcome hurdles associated with highly sensitive miRNA biosensing. - Highlights: • Challenges facing highly sensitive miRNA biosensor designs are addressed. • Thermodynamic and molecular structure design metrics for reporter+probe biosensors are proposed. • The influence of ideal and non-ideal reporter hairpin structures on reporter+probe formation and signal change are discussed. • 5–9 nM limits of detection were observed with no interference from off-analytes.

  2. Molecular structure and thermodynamic predictions to create highly sensitive microRNA biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Larkey, Nicholas E.; Brucks, Corinne N.; Lansing, Shan S.; Le, Sophia D.; Smith, Natasha M.; Tran, Victoria; Zhang, Lulu; Burrows, Sean M., E-mail: sean.burrows@oregonstate.edu

    2016-02-25

    Many studies have established microRNAs (miRNAs) as post-transcriptional regulators in a variety of intracellular molecular processes. Abnormal changes in miRNA have been associated with several diseases. However, these changes are sometimes subtle and occur at nanomolar levels or lower. Several biosensing hurdles for in situ cellular/tissue analysis of miRNA limit detection of small amounts of miRNA. Of these limitations the most challenging are selectivity and sensor degradation creating high background signals and false signals. Recently we developed a reporter+probe biosensor for let-7a that showed potential to mitigate false signal from sensor degradation. Here we designed reporter+probe biosensors for miR-26a-2-3p and miR-27a-5p to better understand the effect of thermodynamics and molecular structures of the biosensor constituents on the analytical performance. Signal changes from interactions between Cy3 and Cy5 on the reporters were used to understand structural aspects of the reporter designs. Theoretical thermodynamic values, single stranded conformations, hetero- and homodimerization structures, and equilibrium concentrations of the reporters and probes were used to interpret the experimental observations. Studies of the sensitivity and selectivity revealed 5–9 nM detection limits in the presence and absence of interfering off-analyte miRNAs. These studies will aid in determining how to rationally design reporter+probe biosensors to overcome hurdles associated with highly sensitive miRNA biosensing. - Highlights: • Challenges facing highly sensitive miRNA biosensor designs are addressed. • Thermodynamic and molecular structure design metrics for reporter+probe biosensors are proposed. • The influence of ideal and non-ideal reporter hairpin structures on reporter+probe formation and signal change are discussed. • 5–9 nM limits of detection were observed with no interference from off-analytes.

  3. Genarris: Random generation of molecular crystal structures and fast screening with a Harris approximation

    Science.gov (United States)

    Li, Xiayue; Curtis, Farren S.; Rose, Timothy; Schober, Christoph; Vazquez-Mayagoitia, Alvaro; Reuter, Karsten; Oberhofer, Harald; Marom, Noa

    2018-06-01

    We present Genarris, a Python package that performs configuration space screening for molecular crystals of rigid molecules by random sampling with physical constraints. For fast energy evaluations, Genarris employs a Harris approximation, whereby the total density of a molecular crystal is constructed via superposition of single molecule densities. Dispersion-inclusive density functional theory is then used for the Harris density without performing a self-consistency cycle. Genarris uses machine learning for clustering, based on a relative coordinate descriptor developed specifically for molecular crystals, which is shown to be robust in identifying packing motif similarity. In addition to random structure generation, Genarris offers three workflows based on different sequences of successive clustering and selection steps: the "Rigorous" workflow is an exhaustive exploration of the potential energy landscape, the "Energy" workflow produces a set of low energy structures, and the "Diverse" workflow produces a maximally diverse set of structures. The latter is recommended for generating initial populations for genetic algorithms. Here, the implementation of Genarris is reported and its application is demonstrated for three test cases.

  4. Molecular Dynamics Simulation of the Structure and Properties of Lithium Phosphate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liang, J-J; Cygan, R.T.; Alam, T.M.

    1999-07-09

    A new forcefield model was developed for the computer simulation of phosphate materials that have many important applications in the electronics and biomedical industries. The model provides a fundamental basis for the evaluation of phosphate glass structure and thermodynamics. Molecular dynamics simulations of a series of lithium phosphate glass compositions were performed using the forcefield model. A high concentration of three-membered rings (P{sub 3}O{sub 3}) occurs in the glass of intermediate composition (0.2 Li{sub 2}O {center_dot} 0.8P{sub 2}O{sub 5}) that corresponds to the minimum in the glass transition temperature curve for the compositional series. Molecular orbital calculations of various phosphate ring clusters indicate an increasing stabilization of the phosphate ring structure going from two- to four-membered rings.

  5. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S M

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed by a

  6. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S.M.

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed

  7. Uncertainties of Molecular Structural Parameters

    International Nuclear Information System (INIS)

    Császár, Attila G.

    2014-01-01

    performed. Simply, there are significant disagreements between the same bond lengths measured by different techniques. These disagreements are, however, systematic and can be computed via techniques of quantum chemistry which deal not only with the motions of the electrons (electronic structure theory) but also with the often large amplitude motions of the nuclei. As to the relevant quantum chemical computations, since about 1970 electronic structure theory has become able to make quantitative predictions and thus challenge (or even overrule) many experiments. Nevertheless, quantitative agreement of quantum chemical results with experiment can only be expected when the motions of the atoms are also considered. In the fourth age of quantum chemistry we are living in an era where one can bridge quantitatively the gap between ‘effective’, experimental and ‘equilibrium’, computed structures at even elevated temperatures of interest thus minimizing any real uncertainties of structural parameters. The connections mentioned are extremely important as they help to understand the true uncertainty of measured structural parameters. Traditionally it is microwave (MW) and millimeterwave (MMW) spectroscopy, as well as gas-phase electron diffraction (GED), which yielded the most accurate structural parameters of molecules. The accuracy of the MW and GED experiments approached about 0.001Å and 0.1º under ideal circumstances, worse, sometimes considerably worse, in less than ideal and much more often encountered situations. Quantum chemistry can define both highly accurate equilibrium (so-called Born-Oppenheimer, r_e"B"O, and semiexperimental, r_e"S"E) structures and, via detailed investigation of molecular motions, accurate temperature-dependent rovibrationally averaged structures. Determining structures is still a rich field for research, understanding the measured or computed uncertainties of structures and structural parameters is still a challenge but there are firm and well

  8. Molecular Cloud Structures and Massive Star Formation in N159

    Science.gov (United States)

    Nayak, O.; Meixner, M.; Fukui, Y.; Tachihara, K.; Onishi, T.; Saigo, K.; Tokuda, K.; Harada, R.

    2018-02-01

    The N159 star-forming region is one of the most massive giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC). We show the 12CO, 13CO, CS molecular gas lines observed with ALMA in N159 west (N159W) and N159 east (N159E). We relate the structure of the gas clumps to the properties of 24 massive young stellar objects (YSOs) that include 10 newly identified YSOs based on our search. We use dendrogram analysis to identify properties of the molecular clumps, such as flux, mass, linewidth, size, and virial parameter. We relate the YSO properties to the molecular gas properties. We find that the CS gas clumps have a steeper size–linewidth relation than the 12CO or 13CO gas clumps. This larger slope could potentially occur if the CS gas is tracing shocks. The virial parameters of the 13CO gas clumps in N159W and N159E are low (<1). The threshold for massive star formation in N159W is 501 M ⊙ pc‑2, and the threshold for massive star formation in N159E is 794 M ⊙ pc‑2. We find that 13CO is more photodissociated in N159E than N159W. The most massive YSO in N159E has cleared out a molecular gas hole in its vicinity. All the massive YSO candidates in N159E have a more evolved spectral energy distribution type in comparison to the YSO candidates in N159W. These differences lead us to conclude that the giant molecular cloud complex in N159E is more evolved than the giant molecular cloud complex in N159W.

  9. A circumstellar molecular gas structure associated with the massive young star Cepheus A-HW 2

    Science.gov (United States)

    Torrelles, Jose M.; Rodriguez, Luis F.; Canto, Jorge; Ho, Paul T. P.

    1993-01-01

    We report the detection via VLA-D observations of ammonia of a circumstellar high-density molecular gas structure toward the massive young star related to the object Cepheus A-HW 2, a firm candidate for the powering source of the high-velocity molecular outflow in the region. We suggest that the circumstellar molecular gas structure could be related to the circumstellar disk previously suggested from infrared, H2O, and OH maser observations. We consider as a plausible scenario that the double radio continuum source of HW 2 could represent the ionized inner part of the circumstellar disk, in the same way as proposed to explain the double radio source in L1551. The observed motions in the circumstellar molecular gas can be produced by bound motions (e.g., infall or rotation) around a central mass of about 10-20 solar masses (B0.5 V star or earlier).

  10. CRYSTAL AND MOLECULAR STRUCTURE OF 5-NITROPIRIDINE PIPERIDINE-SULFENAMIDE

    OpenAIRE

    Brito, Iván; León, Yasna; Arias, Mauricio; Vargas, Danitza; Carmona, Francisco; Ramírez, Eduardo; Restovic, Ambrosio; Cárdenas, Alejandro; Wittke, Oscar; López-Rodríguez, Matías

    2002-01-01

    The crystal and molecular structure of 5-nitropiridine piperidine-sulfenamide, C10H13N3O2 S is described and compared with other sulfenamides and with other similar compounds. This structure belongs to a type of divalent sulphur compound and crystallizes in the orthorhombic space group Pnma with a= 27.810(4), b=6.797(1), c=6.110(1)Å, and Dx =1.376 g cm-3 with Z=4. The S-N bond distance of 1.699(4) Å is shorter than a single S-N bond [1.74 Å]. The NO2-(C6H3N)-S-N(C 5H10) molecule lies on a cry...

  11. Refinement of homology-based protein structures by molecular dynamics simulation techniques

    NARCIS (Netherlands)

    Fan, H; Mark, AE

    The use of classical molecular dynamics simulations, performed in explicit water, for the refinement of structural models of proteins generated ab initio or based on homology has been investigated. The study involved a test set of 15 proteins that were previously used by Baker and coworkers to

  12. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.

    Science.gov (United States)

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-12-10

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects.

  13. Structures and physicochemical properties of molecular aggregates of lipids

    International Nuclear Information System (INIS)

    Iwahashi, Makio

    2005-01-01

    Structures and physicochemical properties of lipids such as fatty acids, alcohols, acylglycerols and steroids in their two- or three-dimensional states were studied through the measurements of surface pressure (π), surface-molecular area (A), vapor-pressure osmosis, radioactivity (R), self-diffusion coefficient (D), density, viscosity, near-infrared spectroscopy (NIR), 13 C-NMR spin-lattice relaxation time (T 1 ), ESR, SEM, DSC, X-ray diffraction and small-angle neutron scattering (SANS). Following results are obtained: (1) π-A and R-A relationships indicate that the explanation, being widely believed, of the reaction occurred in the oleic acid or the trioleylglycerol monolayer on the aqueous KMnO 4 solution is incorrect. (2) By using the LB film of 3 H-labelled fatty acid, the upper limit of the neutrino mass was determined. In addition, by using the LB film of 14 C-labelled fatty acid, a new type of crystal-transformation process was found, in which fatty-acid crystal transforms from its unstable state to its stable one by the transfer of the fatty acid molecules through the vapor phase. (3) Fatty acids always exist as their dimers in their liquid state and mostly in non-polar solvents; the dimers are the units of the molecular movements in the molten liquid and in solvents. T 1 results clearly showed the internal molecular movements of the dimers. In addition, D and SANS results indicated that two different kinds of fatty acids in their binary mixture make only each homodimers. (4) Furthermore, the study on the liquid structure of fatty acids such as cis-6-, cis-9-, cis-11-, trans-9-octadecenoic acids and stearic acid indicated that these fatty-acid dimers construct the clusters resemble to the smectic-liquid crystal in the liquid state. The clusters determine the physicochemical properties of the liquid of the fatty acid. (author)

  14. Definition of molecular structure: by choice or by appeal to observation?

    Science.gov (United States)

    Bader, Richard F W

    2010-07-22

    There are two schools of thought in chemistry: one derived from the valence bond and molecular orbital models of bonding, the other appealing directly to the measurable electron density and the quantum mechanical theorems that determine its behavior, an approach embodied in the quantum theory of atoms in molecules, QTAIM. No one questions the validity of the former approach, and indeed molecular orbital models and QTAIM play complementary roles, the models finding expression in the principles of physics. However, some orbital proponents step beyond the models to impose their personal stamp on their use in interpretive chemistry, by denying the possible existence of a physical basis for the concepts of chemistry. This places them at odds with QTAIM, whose very existence stems from the discovery in the observable topology of the electron density, the definitions of atoms, of the bonding between atoms and hence of molecular structure. Relating these concepts to the electron density provides the necessary link for their ultimate quantum definition. This paper explores in depth the possible causes of the difficulties some have in accepting the quantum basis of structure beginning with the arguments associated with the acceptance of a "bond path" as a criterion for bonding. This identification is based on the finding that all classical structures may be mapped onto molecular graphs consisting of bond paths linking neighboring atoms, a mapping that has no known exceptions and one that is further bolstered by the finding that there are no examples of "missing bond paths". Difficulties arise when the quantum concept is applied to systems that are not amenable to the classical models of bonding. Thus one is faced with the recurring dilemma of science, of having to escape the constraints of a model that requires a change in the existing paradigm, a process that has been in operation since the discovery of new and novel structures necessitated the extension of the Lewis model

  15. Structural and spectroscopic properties of the second generation phosphorus-viologen "molecular asterisk".

    Science.gov (United States)

    Furer, V L; Vandukov, A E; Katir, N; Majoral, J P; El Kadib, A; Caminade, A M; Bousmina, M; Kovalenko, V I

    2013-11-01

    The FTIR and FT Raman spectra of the second generation phosphorus-viologen "molecular asterisk" G2 built from cyclotriphosphazene core with 12 viologen units and 6 terminal phosphonate groups have been recorded and analyzed. The experimental X-ray data of 1,1-bis(4-formylbenzyl)-4,4'-bipyridinium bis(hexaflurophosphate) was used in molecular modeling studies. The optimization of isolated 1,1-bis(4-formylbenzyl)-4,4'-bipyridinium (BFBP) molecule without counter ions PF6(-) does not lead to significant changes of dihedral angles, thus the molecular conformation does not depend on interactions with the counter ions. The structural optimization and normal mode analysis were performed for G2 on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that G2 has a kind of "egg timer" structure with planar OC6H4CHNN(CH3) fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G2 were interpreted by means of potential energy distribution. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Modeling the intermolecular interactions: molecular structure of N-3-hydroxyphenyl-4-methoxybenzamide.

    Science.gov (United States)

    Karabulut, Sedat; Namli, Hilmi; Kurtaran, Raif; Yildirim, Leyla Tatar; Leszczynski, Jerzy

    2014-03-01

    The title compound, N-3-hydroxyphenyl-4-methoxybenzamide (3) was prepared by the acylation reaction of 3-aminophenol (1) and 4-metoxybenzoylchloride (2) in THF and characterized by ¹H NMR, ¹³C NMR and elemental analysis. Molecular structure of the crystal was determined by single crystal X-ray diffraction and DFT calculations. 3 crystallizes in monoclinic P2₁/c space group. The influence of intermolecular interactions (dimerization and crystal packing) on molecular geometry has been evaluated by calculations performed for three different models; monomer (3), dimer (4) and dimer with added unit cell contacts (5). Molecular structure of 3, 4 and 5 was optimized by applying B3LYP method with 6-31G+(d,p) basis set in gas phase and compared with X-ray crystallographic data including bond lengths, bond angles and selected dihedral angles. It has been concluded that although the crystal packing and dimerization have a minor effect on bond lengths and angles, however, these interactions are important for the dihedral angles and the rotational conformation of aromatic rings. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Molecular simulations of electrolyte structure and dynamics in lithium-sulfur battery solvents

    Science.gov (United States)

    Park, Chanbum; Kanduč, Matej; Chudoba, Richard; Ronneburg, Arne; Risse, Sebastian; Ballauff, Matthias; Dzubiella, Joachim

    2018-01-01

    The performance of modern lithium-sulfur (Li/S) battery systems critically depends on the electrolyte and solvent compositions. For fundamental molecular insights and rational guidance of experimental developments, efficient and sufficiently accurate molecular simulations are thus in urgent need. Here, we construct a molecular dynamics (MD) computer simulation model of representative state-of-the art electrolyte-solvent systems for Li/S batteries constituted by lithium-bis(trifluoromethane)sulfonimide (LiTFSI) and LiNO3 electrolytes in mixtures of the organic solvents 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL). We benchmark and verify our simulations by comparing structural and dynamic features with various available experimental reference systems and demonstrate their applicability for a wide range of electrolyte-solvent compositions. For the state-of-the-art battery solvent, we finally calculate and discuss the detailed composition of the first lithium solvation shell, the temperature dependence of lithium diffusion, as well as the electrolyte conductivities and lithium transference numbers. Our model will serve as a basis for efficient future predictions of electrolyte structure and transport in complex electrode confinements for the optimization of modern Li/S batteries (and related devices).

  18. The impact of chemical structure and molecular packing on the electronic polarisation of fullerene arrays.

    Science.gov (United States)

    Few, Sheridan; Chia, Cleaven; Teo, Daniel; Kirkpatrick, James; Nelson, Jenny

    2017-07-19

    Electronic polarisation contributes to the electronic landscape as seen by separating charges in organic materials. The nature of electronic polarisation depends on the polarisability, density, and arrangement of polarisable molecules. In this paper, we introduce a microscopic, coarse-grained model in which we treat each molecule as a polarisable site, and use an array of such polarisable dipoles to calculate the electric field and associated energy of any arrangement of charges in the medium. The model incorporates chemical structure via the molecular polarisability and molecular packing patterns via the structure of the array. We use this model to calculate energies of charge pairs undergoing separation in finite fullerene lattices of different chemical and crystal structures. The effective dielectric constants that we estimate from this approach are in good quantitative agreement with those measured experimentally in C 60 and phenyl-C 61 -butyric acid methyl ester (PCBM) films, but we find significant differences in dielectric constant depending on packing and on direction of separation, which we rationalise in terms of density of polarisable fullerene cages in regions of high field. In general, we find lattices containing molecules of more isotropic polarisability tensors exhibit higher dielectric constants. By exploring several model systems we conclude that differences in molecular polarisability (and therefore, chemical structure) appear to be less important than differences in molecular packing and separation direction in determining the energetic landscape for charge separation. We note that the results are relevant for finite lattices, but not necessarily for infinite systems. We propose that the model could be used to design molecular systems for effective electronic screening.

  19. Raman spectroscopy as an advanced structural nanoprobe for conjugated molecular semiconductors

    International Nuclear Information System (INIS)

    Wood, Sebastian; Hollis, Joseph Razzell; Kim, Ji-Seon

    2017-01-01

    Raman spectroscopy has emerged as a powerful and important characterisation tool for probing molecular semiconducting materials. The useful optoelectronic properties of these materials arise from the delocalised π -electron density in the conjugated core of the molecule, which also results in large Raman scattering cross-sections and a strong coupling between its electronic states and vibrational modes. For this reason, Raman spectroscopy offers a unique insight into the properties of molecular semiconductors, including: chemical structure, molecular conformation, molecular orientation, and fundamental photo- and electro-chemical processes—all of which are critically important to the performance of a wide range of optical and electronic organic semiconductor devices. Experimentally, Raman spectroscopy is non-intrusive, non-destructive, and requires no special sample preparation, and so is suitable for a wide range of in situ measurements, which are particularly relevant to issues of thermal and photochemical stability. Here we review the development of the family of Raman spectroscopic techniques, which have been applied to the study of conjugated molecular semiconductors. We consider the suitability of each technique for particular circumstances, and the unique insights it can offer, with a particular focus on the significance of these measurements for the continuing development of stable, high performance organic electronic devices. (topical review)

  20. Hsp90 molecular chaperone: structure, functions and participation in cardio-vascular pathologies

    Directory of Open Access Journals (Sweden)

    Kroupskaya I. V.

    2009-10-01

    Full Text Available The review is devoted to the analysis of structural and functional properties of molecular chaperon Hsp90. Hsp90 is a representative of highly widespread family of heat shock proteins. The protein is found in eubacteria and all branches of eukarya, but it is apparently absent in archaea. It is one of key regulators of numerous signalling pathways, cell growth and development, apoptosis, induction of autoimmunity, and progression of heart failure. The full functional activity of Hsp90 shows up in a complex with other molecular chaperones and co-chaperones. Molecular interactions between chaperones, different signalling proteins and protein-partners are highly crucial for the normal functioning of signalling pathways and their destruction causes an alteration in the cell physiology up to its death.

  1. Structural and Molecular Modeling Features of P2X Receptors

    Directory of Open Access Journals (Sweden)

    Luiz Anastacio Alves

    2014-03-01

    Full Text Available Currently, adenosine 5'-triphosphate (ATP is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors.

  2. Molecular systematics of Barbatosphaeria (Sordariomycetes): multigene phylogeny and secondary ITS structure

    Czech Academy of Sciences Publication Activity Database

    Réblová, Martina; Réblová, K.; Štěpánek, Václav

    2015-01-01

    Roč. 35, December 2015 (2015), s. 21-38 ISSN 0031-5850 R&D Projects: GA ČR GAP506/12/0038 Institutional support: RVO:67985939 ; RVO:61388971 Keywords : Barbatosphaeria * molecular systematic * ITS secondary structures Subject RIV: EF - Botanics; EE - Microbiology, Virology (MBU-M) Impact factor: 5.725, year: 2015

  3. Structure and Stability of Molecular Crystals with Many-Body Dispersion-Inclusive Density Functional Tight Binding.

    Science.gov (United States)

    Mortazavi, Majid; Brandenburg, Jan Gerit; Maurer, Reinhard J; Tkatchenko, Alexandre

    2018-01-18

    Accurate prediction of structure and stability of molecular crystals is crucial in materials science and requires reliable modeling of long-range dispersion interactions. Semiempirical electronic structure methods are computationally more efficient than their ab initio counterparts, allowing structure sampling with significant speedups. We combine the Tkatchenko-Scheffler van der Waals method (TS) and the many-body dispersion method (MBD) with third-order density functional tight-binding (DFTB3) via a charge population-based method. We find an overall good performance for the X23 benchmark database of molecular crystals, despite an underestimation of crystal volume that can be traced to the DFTB parametrization. We achieve accurate lattice energy predictions with DFT+MBD energetics on top of vdW-inclusive DFTB3 structures, resulting in a speedup of up to 3000 times compared with a full DFT treatment. This suggests that vdW-inclusive DFTB3 can serve as a viable structural prescreening tool in crystal structure prediction.

  4. Functional Annotation of Ion Channel Structures by Molecular Simulation.

    Science.gov (United States)

    Trick, Jemma L; Chelvaniththilan, Sivapalan; Klesse, Gianni; Aryal, Prafulla; Wallace, E Jayne; Tucker, Stephen J; Sansom, Mark S P

    2016-12-06

    Ion channels play key roles in cell membranes, and recent advances are yielding an increasing number of structures. However, their functional relevance is often unclear and better tools are required for their functional annotation. In sub-nanometer pores such as ion channels, hydrophobic gating has been shown to promote dewetting to produce a functionally closed (i.e., non-conductive) state. Using the serotonin receptor (5-HT 3 R) structure as an example, we demonstrate the use of molecular dynamics to aid the functional annotation of channel structures via simulation of the behavior of water within the pore. Three increasingly complex simulation analyses are described: water equilibrium densities; single-ion free-energy profiles; and computational electrophysiology. All three approaches correctly predict the 5-HT 3 R crystal structure to represent a functionally closed (i.e., non-conductive) state. We also illustrate the application of water equilibrium density simulations to annotate different conformational states of a glycine receptor. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Bailey, Nicholas; Daivis, Peter

    2015-01-01

    The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear...... rates and different temperatures. The model bitumen is shown to be a shear-thinning fluid at all temperatures. In addition, the Cooee model is able to reproduce experimental results showing the formation of nanoaggregates composed of stacks of flat aromatic molecules in bitumen. These nanoaggregates...

  6. The general atomic and molecular electronic structure system HONDO: Version 7.0

    International Nuclear Information System (INIS)

    Dupuis, M.; Watts, J.D.; Villar, H.O.; Hurst, G.J.B.

    1989-01-01

    We describe a computer program for ab initio quantum mechanical calculations of atomic and molecular wavefunctions and energies. Capabilities for the calculation of energy gradients and second derivatives with respect to nuclear coordinates are provided for several types of wavefunctions. Calculations of many molecular properties based on the electron density are possible. The program contains automated algorithms for the determination of equilibrium structures, saddle points, reaction pathways, vibrational spectra including infrared and Raman intensities. We illustrate the capabilities of the program by highlighting research problems recently investigated with the present program. (orig.)

  7. Molecular structure of tetramethylgermane from gas electron diffraction

    Science.gov (United States)

    Csákvári, Éva; Rozsondai, Béla; Hargittai, István

    1991-05-01

    The molecular structure of Ge(CH 3) 4 has been determined from gas-phase electron diffraction augmented by a normal coordinate analysis. Assuming tetrahedral symmetry for the germanium bond configuration, the following structural parameters are found: rg(GeC) = 1.958 ± 0.004 Å, rg(CH) = 1.111 ± 0.003 Å and ∠(GeCH) = 110.7 ± 0.2° ( R=4.0%). The methyl torsional barrier V 0 is estimated to be 1.3 kJ mol -1 on the basis of an effective angle of torsion 23.0 ± 1.5°, from the staggered form, yielded directly by the analysis. The GeC bond length of Ge(CH 3) 4 is the same, within experimental error, as that of Ge(C 6H 5) 4 and is in agreement with the prediction of a modified Schomaker-Stevenson relationship.

  8. Mathematical analysis of compressive/tensile molecular and nuclear structures

    Science.gov (United States)

    Wang, Dayu

    Mathematical analysis in chemistry is a fascinating and critical tool to explain experimental observations. In this dissertation, mathematical methods to present chemical bonding and other structures for many-particle systems are discussed at different levels (molecular, atomic, and nuclear). First, the tetrahedral geometry of single, double, or triple carbon-carbon bonds gives an unsatisfying demonstration of bond lengths, compared to experimental trends. To correct this, Platonic solids and Archimedean solids were evaluated as atoms in covalent carbon or nitrogen bond systems in order to find the best solids for geometric fitting. Pentagonal solids, e.g. the dodecahedron and icosidodecahedron, give the best fit with experimental bond lengths; an ideal pyramidal solid which models covalent bonds was also generated. Second, the macroscopic compression/tension architectural approach was applied to forces at the molecular level, considering atomic interactions as compressive (repulsive) and tensile (attractive) forces. Two particle interactions were considered, followed by a model of the dihydrogen molecule (H2; two protons and two electrons). Dihydrogen was evaluated as two different types of compression/tension structures: a coaxial spring model and a ring model. Using similar methods, covalent diatomic molecules (made up of C, N, O, or F) were evaluated. Finally, the compression/tension model was extended to the nuclear level, based on the observation that nuclei with certain numbers of protons/neutrons (magic numbers) have extra stability compared to other nucleon ratios. A hollow spherical model was developed that combines elements of the classic nuclear shell model and liquid drop model. Nuclear structure and the trend of the "island of stability" for the current and extended periodic table were studied.

  9. Molecular dynamical and structural studies for the bakelite by neutron cross section measurements

    International Nuclear Information System (INIS)

    Voi, D.L.

    1992-05-01

    Neutron reaction cross sections were determined by transmission and scattering measurements, to study the dynamics and molecular structure of calcined bakelites. Total cross sections were determined, with a deviation smaller than 5%, from the literature values, by neutron transmission method and a specially devised approximation. These cross sections were then correlated with data obtained with infra-red spectroscopy, elemental analysis and other techniques to get the probable molecular formulae of bakelite. Double differential scattering cross sections, scattering law values and frequency distributions were determined with 15% error using the neutron inelastic scattering method. The frequency distributions as well as the overall results from all experimental techniques used in this work allowed to suggest a structural model like polycyclic hydrocarbons, for calcined bakelite at 800 0 C. (author)

  10. Molecular design chemical structure generation from the properties of pure organic compounds

    CERN Document Server

    Horvath, AL

    1992-01-01

    This book is a systematic presentation of the methods that have been developed for the interpretation of molecular modeling to the design of new chemicals. The main feature of the compilation is the co-ordination of the various scientific disciplines required for the generation of new compounds. The five chapters deal with such areas as structure and properties of organic compounds, relationships between structure and properties, and models for structure generation. The subject is covered in sufficient depth to provide readers with the necessary background to understand the modeling

  11. SmilesDrawer: Parsing and Drawing SMILES-Encoded Molecular Structures Using Client-Side JavaScript.

    Science.gov (United States)

    Probst, Daniel; Reymond, Jean-Louis

    2018-01-22

    Here we present SmilesDrawer, a dependency-free JavaScript component capable of both parsing and drawing SMILES-encoded molecular structures client-side, developed to be easily integrated into web projects and to display organic molecules in large numbers and fast succession. SmilesDrawer can draw structurally and stereochemically complex structures such as maitotoxin and C 60 without using templates, yet has an exceptionally small computational footprint and low memory usage without the requirement for loading images or any other form of client-server communication, making it easy to integrate even in secure (intranet, firewalled) or offline applications. These features allow the rendering of thousands of molecular structure drawings on a single web page within seconds on a wide range of hardware supporting modern browsers. The source code as well as the most recent build of SmilesDrawer is available on Github ( http://doc.gdb.tools/smilesDrawer/ ). Both yarn and npm packages are also available.

  12. Anti-symmetrized molecular dynamics: a new insight into the structure of nuclei

    International Nuclear Information System (INIS)

    Yoshiko, Kanada-En'yo; Masaaki, Kimura; Hisashi, Horiuchi

    2003-01-01

    The AMD (anti-symmetrized molecular dynamics) theory for nuclear structure is explained by showing its actual applications. First the formulation of AMD including various refined versions is briefly presented and its characteristics are discussed, putting a stress on its nature as an 'ab initio' theory. Then we demonstrate fruitful applications to various structure problems in stable nuclei, in order to explicitly verify the 'ab initio' nature of AMD, especially the ability to describe both mean-field-type structure and cluster structure. Finally, we show the results of applications of AMD to unstable nuclei, from which we see that AMD is powerful in elucidating and understanding various types of nuclear structure of unstable nuclei. (authors)

  13. Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis.

    Science.gov (United States)

    Iwata-Otsubo, Aiko; Lin, Jer-Young; Gill, Navdeep; Jackson, Scott A

    2016-05-01

    Cowpea (Vigna unguiculata (L.) Walp) is an important legume, particularly in developing countries. However, little is known about its genome or chromosome structure. We used molecular cytogenetics to characterize the structure of pachytene chromosomes to advance our knowledge of chromosome and genome organization of cowpea. Our data showed that cowpea has highly distinct chromosomal structures that are cytologically visible as brightly DAPI-stained heterochromatic regions. Analysis of the repetitive fraction of the cowpea genome present at centromeric and pericentromeric regions confirmed that two retrotransposons are major components of pericentromeric regions and that a 455-bp tandem repeat is found at seven out of 11 centromere pairs in cowpea. These repeats likely evolved after the divergence of cowpea from common bean and form chromosomal structure unique to cowpea. The integration of cowpea genetic and physical chromosome maps reveals potential regions of suppressed recombination due to condensed heterochromatin and a lack of pairing in a few chromosomal termini. This study provides fundamental knowledge on cowpea chromosome structure and molecular cytogenetics tools for further chromosome studies.

  14. Thermodynamic Stability of Structure H Hydrates Based on the Molecular Properties of Large Guest Molecules

    OpenAIRE

    Tezuka, Kyoichi; Taguchi, Tatsuhiko; Alavi, Saman; Sum, Amadeu K.; Ohmura, Ryo

    2012-01-01

    This paper report analyses of thermodynamic stability of structure-H clathrate hydrates formed with methane and large guest molecules in terms of their gas phase molecular sizes and molar masses for the selection of a large guest molecule providing better hydrate stability. We investigated the correlation among the gas phase molecular sizes, the molar masses of large molecule guest substances, and the equilibrium pressures. The results suggest that there exists a molecular-size value for the ...

  15. Electronic structure and molecular dynamics of Na2Li

    Science.gov (United States)

    Malcolm, Nathaniel O. J.; McDouall, Joseph J. W.

    Following the first report (Mile, B., Sillman, P. D., Yacob, A. R. and Howard, J. A., 1996, J. chem. Soc. Dalton Trans , 653) of the EPR spectrum of the mixed alkali-metal trimer Na2Li a detailed study has been made of the electronic structure and structural dynamics of this species. Two isomeric forms have been found: one of the type, Na-Li-Na, of C , symmetry and another, Li-Na-Na, of C symmetry. Also, there are two linear saddle points which correspond to 'inversion' transition structures, and a saddle point of C symmetry which connects the two minima. A molecular dynamics investigation of these species shows that, at the temperature of the reported experiments (170 K), the C minimum is not 'static', but undergoes quite rapid inversion. At higher temperatures the C minimum converts to the C form, but by a mechanism very different from that suggested by minimum energy path considerations. 2 2v s s 2v 2v s

  16. Towards structural models of molecular recognition in olfactory receptors.

    Science.gov (United States)

    Afshar, M; Hubbard, R E; Demaille, J

    1998-02-01

    The G protein coupled receptors (GPCR) are an important class of proteins that act as signal transducers through the cytoplasmic membrane. Understanding the structure and activation mechanism of these proteins is crucial for understanding many different aspects of cellular signalling. The olfactory receptors correspond to the largest family of GPCRs. Very little is known about how the structures of the receptors govern the specificity of interaction which enables identification of particular odorant molecules. In this paper, we review recent developments in two areas of molecular modelling: methods for modelling the configuration of trans-membrane helices and methods for automatic docking of ligands into receptor structures. We then show how a subset of these methods can be combined to construct a model of a rat odorant receptor interacting with lyral for which experimental data are available. This modelling can help us make progress towards elucidating the specificity of interactions between receptors and odorant molecules.

  17. Molecular Diagnostics of the Internal Structure of Starspots and Sunspots

    Science.gov (United States)

    Afram, N.; Berdyugina, S. V.; Fluri, D. M.; Solanki, S. K.; Lagg, A.; Petit, P.; Arnaud, J.

    2006-12-01

    We have analyzed the usefulness of molecules as a diagnostic tool for studying solar and stellar magnetism with the molecular Zeeman and Paschen-Back effects. In the first part we concentrate on molecules that are observed in sunspots such as MgH and TiO. We present calculated molecular line profiles obtained by assuming magnetic fields of 2-3 kG and compare these synthetic Stokes profiles with spectro-polarimetric observations in sunspots. The good agreement between the theory and observations allows us to turn our attention in the second part to starspots to gain insight into their internal structure. We investigate the temperature range in which the selected molecules can serve as indicators for magnetic fields on highly active cool stars and compare synthetic Stokes profiles with our recent observations.

  18. Introductory group theory and its application to molecular structure

    CERN Document Server

    Ferraro, John R

    1975-01-01

    The success of the first edition of this book has encouraged us to revise and update it. In the second edition we have attempted to further clarify por­ tions of the text in reference to point symmetry, keeping certain sections and removing others. The ever-expanding interest in solids necessitates some discussion on space symmetry. In this edition we have expanded the discus­ sion on point symmetry to include space symmetry. The selection rules in­ clude space group selection rules (for k = 0). Numerous examples are pro­ vided to acquaint the reader with the procedure necessary to accomplish this. Recent examples from the literature are given to illustrate the use of group theory in the interpretation of molecular spectra and in the determination of molecular structure. The text is intended for scientists and students with only a limited theoretical background in spectroscopy. For this reason we have presented detailed procedures for carrying out the selection rules and normal coor­ dinate treatment of ...

  19. Molecular Origin of the Vibrational Structure of Ice Ih.

    Science.gov (United States)

    Moberg, Daniel R; Straight, Shelby C; Knight, Christopher; Paesani, Francesco

    2017-06-15

    An unambiguous assignment of the vibrational spectra of ice I h remains a matter of debate. This study demonstrates that an accurate representation of many-body interactions between water molecules, combined with an explicit treatment of nuclear quantum effects through many-body molecular dynamics (MB-MD), leads to a unified interpretation of the vibrational spectra of ice I h in terms of the structure and dynamics of the underlying hydrogen-bond network. All features of the infrared and Raman spectra in the OH stretching region can be unambiguously assigned by taking into account both the symmetry and the delocalized nature of the lattice vibrations as well as the local electrostatic environment experienced by each water molecule within the crystal. The high level of agreement with experiment raises prospects for predictive MB-MD simulations that, complementing analogous measurements, will provide molecular-level insights into fundamental processes taking place in bulk ice and on ice surfaces under different thermodynamic conditions.

  20. The Scent of Roses and beyond: Molecular Structures, Analysis, and Practical Applications of Odorants

    Science.gov (United States)

    Mannschreck, Albrecht; von Angerer, Erwin

    2011-01-01

    A few odorous compounds found in roses are chosen to arouse the reader's interest in their molecular structures. This article differs from some similar reports on odorants mainly by combining the structural description with the presentation of the following types of isomers: constitutional isomers, enantiomers, and diastereomers. The preparation…

  1. Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline.

    Science.gov (United States)

    Li, Ming; Xie, Fengwei; Hasjim, Jovin; Witt, Torsten; Halley, Peter J; Gilbert, Robert G

    2015-03-06

    The effects of molecular and crystalline structures on the tensile mechanical properties of thermoplastic starch (TPS) films from waxy, normal, and high-amylose maize were investigated. Starch structural variations were obtained through extrusion and hydrothermal treatment (HTT). The molecular and crystalline structures were characterized using size-exclusion chromatography and X-ray diffractometry, respectively. TPS from high-amylose maize showed higher elongation at break and tensile strength than those from normal maize and waxy maize starches when processed with 40% plasticizer. Within the same amylose content, the mechanical properties were not affected by amylopectin molecular size or the crystallinity of TPS prior to HTT. This lack of correlation between the molecular size, crystallinity and mechanical properties may be due to the dominant effect of the plasticizer on the mechanical properties. Further crystallization of normal maize TPS by HTT increased the tensile strength and Young's modulus, while decreasing the elongation at break. The results suggest that the crystallinity from the remaining ungelatinized starch granules has less significant effect on the mechanical properties than that resulting from starch recrystallization, possibly due to a stronger network from leached-out amylose surrounding the remaining starch granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Molecular clouds and galactic spiral structure

    International Nuclear Information System (INIS)

    Dame, T.M.

    1984-02-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide

  3. The Effect of Interactive, Three Dimensional, High Speed Simulations on High School Science Students' Conceptions of the Molecular Structure of Water.

    Science.gov (United States)

    Hakerem, Gita; And Others

    The Water and Molecular Networks (WAMNet) Project uses graduate student written Reduced Instruction Set Computing (RISC) computer simulations of the molecular structure of water to assist high school students learn about the nature of water. This study examined: (1) preconceptions concerning the molecular structure of water common among high…

  4. De Novo generation of molecular structures using optimization to select graphs on a given lattice

    DEFF Research Database (Denmark)

    Bywater, R.P.; Poulsen, Thomas Agersten; Røgen, Peter

    2004-01-01

    A recurrent problem in organic chemistry is the generation of new molecular structures that conform to some predetermined set of structural constraints that are imposed in an endeavor to build certain required properties into the newly generated structure. An example of this is the pharmacophore...... model, used in medicinal chemistry to guide de novo design or selection of suitable structures from compound databases. We propose here a method that efficiently links up a selected number of required atom positions while at the same time directing the emergent molecular skeleton to avoid forbidden...... positions. The linkage process takes place on a lattice whose unit step length and overall geometry is designed to match typical architectures of organic molecules. We use an optimization method to select from the many different graphs possible. The approach is demonstrated in an example where crystal...

  5. To What Degree Does Handling Concrete Molecular Models Promote the Ability to Translate and Coordinate between 2D and 3D Molecular Structure Representations? A Case Study with Algerian Students

    Science.gov (United States)

    Mohamed-Salah, Boukhechem; Alain, Dumon

    2016-01-01

    This study aims to assess whether the handling of concrete ball-and-stick molecular models promotes translation between diagrammatic representations and a concrete model (or vice versa) and the coordination of the different types of structural representations of a given molecular structure. Forty-one Algerian undergraduate students were requested…

  6. Molecular structure and interactions of nucleic acid components in nanoparticles: ab initio calculations

    International Nuclear Information System (INIS)

    Rubin, Yu.V.; Belous, L.F.

    2012-01-01

    Self-associates of nucleic acid components (stacking trimers and tetramers of the base pairs of nucleic acids) and short fragments of nucleic acids are nanoparticles (linear sizes of these particles are more than 10 A). Modern quantum-mechanical methods and softwares allow one to perform ab initio calculations of the systems consisting of 150-200 atoms with enough large basis sets (for example, 6-31G * ). The aim of this work is to reveal the peculiarities of molecular and electronic structures, as well as the energy features of nanoparticles of nucleic acid components. We had carried out ab initio calculations of the molecular structure and interactions in the stacking dimer, trimer, and tetramer of nucleic base pairs and in the stacking (TpG)(ApC) dimer and (TpGpC) (ApCpG) trimer of nucleotides, which are small DNA fragments. The performed calculations of molecular structures of dimers and trimers of nucleotide pairs showed that the interplanar distance in the structures studied is equal to 3.2 A on average, and the helical angle in a trimer is approximately equal to 30 o : The distance between phosphor atoms in neighboring chains is 13.1 A. For dimers and trimers under study, we calculated the horizontal interaction energies. The analysis of interplanar distances and angles between nucleic bases and their pairs in the calculated short oligomers of nucleic acid base pairs (stacking dimer, trimer, and tetramer) has been carried out. Studies of interactions in the calculated short oligomers showed a considerable role of the cross interaction in the stabilization of the structures. The contribution of cross interactions to the horizontal interactions grows with the length of an oligomer. Nanoparticle components get electric charges in nanoparticles. Longwave low-intensity bands can appear in the electron spectra of nanoparticles.

  7. The structure of quasi-molecular KX-ray spectra from heavy ion collisions

    International Nuclear Information System (INIS)

    Kaun, K.-N.; Frank, W.; Manfrass, P.

    1976-01-01

    In the experiments with Ge, Nb, Kr and La ions continuum X-ray spectra having a two-component structure have been observed. Both components atr interpreted as quasi-molecular X-radiation caused by transitions to the 2psigma and 1ssigma states in the quasimolecule

  8. Molecular mechanics and quantum mechanical modeling of hexane soot structure and interactions with pyrene

    Directory of Open Access Journals (Sweden)

    Kubicki JD

    2000-09-01

    Full Text Available Molecular simulations (energy minimizations and molecular dynamics of an n-hexane soot model developed by Smith and co-workers (M. S. Akhter, A. R. Chughtai and D. M. Smith, Appl. Spectrosc., 1985, 39, 143; ref. 1 were performed. The MM+ (N. L. Allinger, J. Am. Chem. Soc., 1977, 395, 157; ref. 2 and COMPASS (H. Sun, J. Phys. Chem., 1998, 102, 7338; ref. 3 force fields were tested for their ability to produce realistic soot nanoparticle structure. The interaction of pyrene with the model soot was simulated. Quantum mechanical calculations on smaller soot fragments were carried out. Starting from an initial 2D structure, energy minimizations are not able to produce the observed layering within soot with either force field. Results of molecular dynamics simulations indicate that the COMPASS force field does a reasonably accurate job of reproducing observations of soot structure. Increasing the system size from a 683 to a 2732 atom soot model does not have a significant effect on predicted structures. Neither does the addition of water molecules surrounding the soot model. Pyrene fits within the soot structure without disrupting the interlayer spacing. Polycyclic aromatic hydrocarbons (PAH, such as pyrene, may strongly partition into soot and have slow desorption kinetics because the PAH-soot bonding is similar to soot–soot interactions. Diffusion of PAH into soot micropores may allow the PAH to be irreversibly adsorbed and sequestered so that they partition slowly back into an aqueous phase causing dis-equilibrium between soil organic matter and porewater.

  9. Structure and properties of simple molecular systems at very high density

    International Nuclear Information System (INIS)

    LeSar, R.

    1989-01-01

    The use of computer simulations in the study of molecular systems at very high density is reviewed. Applications to the thermodynamics of dense fluid nitrogen and phase transitions in solid oxygen are presented. The effects of changes in the atomic electronic structure on the equation of state of very dense helium are discussed. 19 refs., 2 figs

  10. CurlySMILES: a chemical language to customize and annotate encodings of molecular and nanodevice structures

    Directory of Open Access Journals (Sweden)

    Drefahl Axel

    2011-01-01

    Full Text Available Abstract CurlySMILES is a chemical line notation which extends SMILES with annotations for storage, retrieval and modeling of interlinked, coordinated, assembled and adsorbed molecules in supramolecular structures and nanodevices. Annotations are enclosed in curly braces and anchored to an atomic node or at the end of the molecular graph depending on the annotation type. CurlySMILES includes predefined annotations for stereogenicity, electron delocalization charges, extra-molecular interactions and connectivity, surface attachment, solutions, and crystal structures and allows extensions for domain-specific annotations. CurlySMILES provides a shorthand format to encode molecules with repetitive substructural parts or motifs such as monomer units in macromolecules and amino acids in peptide chains. CurlySMILES further accommodates special formats for non-molecular materials that are commonly denoted by composition of atoms or substructures rather than complete atom connectivity.

  11. Absolute Molecular Orientation of Isopropanol at Ceria (100) Surfaces: Insight into Catalytic Selectivity from the Interfacial Structure

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, Benjamin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goverapet Srinivasan, Sriram [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Indian Inst. of Technology (IIT), Rajasthan (India); Bryantsev, Vyacheslav S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Dongkyu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Ho Nyung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ma, Ying-Zhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lutterman, Daniel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-12

    The initial mechanistic steps underlying heterogeneous chemical catalysis can be described in a framework where the composition, structure, and orientation of molecules adsorbed to reactive interfaces are known. However, extracting this vital information is the limiting step in most cases due in part to challenges in probing the interfacial monolayer with enough chemical specificity to characterize the surface molecular constituents. These challenges are exacerbated at complex or spatially heterogeneous interfaces where competing processes and a distribution of local environments can uniquely drive chemistry. To address these limitations, this work presents a distinctive combination of materials synthesis, surface specific optical experiments, and theory to probe and understand molecular structure at catalytic interfaces. Specifically, isopropanol was adsorbed to surfaces of the model CeO2 catalyst that were synthesized with only the (100) facet exposed. Vibrational sum-frequency generation was used to probe the molecular monolayer, and with the guidance of density functional theory calculations, was used to extract the structure and absolute molecular orientation of isopropanol at the CeO2 (100) surface. Our results show that isopropanol is readily deprotonated at the surface, and through the measured absolute molecular orientation of isopropanol, we obtain new insight into the selectivity of the (100) surface to form propylene. Our findings reveal key insight into the chemical and physical phenomena taking place at pristine interfaces thereby pointing to intuitive structural arguments to describe catalytic selectivity in more complex systems.

  12. Medicinal Chemistry and Molecular Modeling: An Integration to Teach Drug Structure-Activity Relationship and the Molecular Basis of Drug Action

    Science.gov (United States)

    Carvalho, Ivone; Borges, Aurea D. L.; Bernardes, Lilian S. C.

    2005-01-01

    The use of computational chemistry and the protein data bank (PDB) to understand and predict the chemical and molecular basis involved in the drug-receptor interactions is discussed. A geometrical and chemical overview of the great structural similarity in the substrate and inhibitor is provided.

  13. Molecular structures from density functional calculations with simulated annealing

    International Nuclear Information System (INIS)

    Jones, R.O.

    1991-01-01

    The geometrical structure of any aggregate of atoms is one of its basic properties and, in principle, straightforward to predict. One chooses a structure, determines the total energy E of the system of electrons and ions, and repeats the calculation for all possible geometries. The ground state structure is that with the lowest energy. A quantum mechanical calculation of the exact wave function Ψ would lead to the total energy, but this is practicable only in very small molecules. Furthermore, the number of local minima in the energy surface increases dramatically with increasing molecular size. While traditional ab initio methods have had many impressive successes, the difficulties have meant that they have focused on systems with relatively few local minima, or have used experiments or experience to limit the range of geometries studied. On the other hand, calculations for much larger molecules and extended systems are often forced to use simplifying assumptions about the interatomic forces that limit their predictive capability. The approach described here avoids both of these extremes: Total energies of predictive value are calculated without using semi-empirical force laws, and the problem of multiple minima in the energy surface is addressed. The density functional formalism, with a local density approximation for the exchange-correlation energy, allows one to calculate the total energy for a given geometry in an efficient, if approximate, manner. Calculations for heavier elements are not significantly more difficult than for those in the first row and provide an ideal way to study bonding trends. When coupled with finite-temperature molecular dynamics, this formalism can avoid many of the energetically unfavorable minima in the energy surface. We show here that the method leads to surprising and exciting results. (orig.)

  14. Free radicals. High-resolution spectroscopy and molecular structure

    International Nuclear Information System (INIS)

    Hirota, E.

    1983-01-01

    High-resolution, high-sensitivity spectroscopy using CW laser and microwave sources has been applied to free radicals and transient molecules to establish their existence and to explore their properties in detail. The radicals studied were mainly generated by discharge-induced reactions. A few molecules are used as typical examples to illustrate the results so far obtained. The molecular and electronic structures of free radicals, intramolecular motions of large amplitudes in some labile molecules, and metastable electronic states of carbenes are given special emphasis. The significance of the present spectroscopic results in other related fields such as astronomy and atmospheric chemistry is stressed. 4 figures, 3 tables

  15. Molecular simulations of hydrated proton exchange membranes. The structure

    Energy Technology Data Exchange (ETDEWEB)

    Marcharnd, Gabriel [Duisburg-Essen Univ., Essen (Germany). Lehrstuhl fuer Theoretische Chemie; Bordeaux Univ., Talence (France). Dept. of Chemistry; Bopp, Philippe A. [Bordeaux Univ., Talence (France). Dept. of Chemistry; Spohr, Eckhard [Duisburg-Essen Univ., Essen (Germany). Lehrstuhl fuer Theoretische Chemie

    2013-01-15

    The structure of two hydrated proton exchange membranes for fuel cells (PEMFC), Nafion {sup registered} (Dupont) and Hyflon {sup registered} (Solvay), is studied by all-atom molecular dynamics (MD) computer simulations. Since the characteristic times of these systems are long compared to the times for which they can be simulated, several different, but equivalent, initial configurations with a large degree of randomness are generated for different water contents and then equilibrated and simulated in parallel. A more constrained structure, analog to the newest model proposed in the literature based on scattering experiments, is investigated in the same way. One might speculate that a limited degree of entanglement of the polymer chains is a key feature of the structures showing the best agreement with experiment. Nevertheless, the overall conclusion remains that the scattering experiments cannot distinguish between the several, in our view equally plausible, structural models. We thus find that the characteristic features of experimental scattering curves are, after equilibration, fairly well reproduced by all systems prepared with our method. We thus study in more detail some structural details. We attempt to characterize the spatial and size distribution of the water rich domains, which is where the proton diffusion mostly takes place, using several clustering algorithms. (orig.)

  16. Dynamic molecular structure of plant biomass-derived black carbon (biochar)

    Energy Technology Data Exchange (ETDEWEB)

    Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M.

    2009-11-15

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ('biochar'). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. BET-N{sub 2} surface area, X-ray diffraction (XRD), synchrotron-based Near-edge X-ray Absorption Fine Structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous, but quantitatively different physical-chemical transitions as charring temperature increases from 100 to 700 C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars the crystalline character of the precursor materials is preserved, (ii) in amorphous chars the heat-altered molecules and incipient aromatic polycondensates are randomly mixed, (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases, and (iv) turbostratic chars are dominated by disordered graphitic crystallites. The molecular variations among the different char categories translate into differences in their ability to persist in the environment and function as environmental sorbents.

  17. A Quantitative Structure-Property Relationship (QSPR Study of Aliphatic Alcohols by the Method of Dividing the Molecular Structure into Substructure

    Directory of Open Access Journals (Sweden)

    Bin Cheng

    2011-04-01

    Full Text Available A quantitative structure–property relationship (QSPR analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP, n-octanol–water partition coefficient (lg POW, water solubility (lg W and the chromatographic retention indices (RI on different polar stationary phases. In order to investigate the quantitative structure–property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI, previously developed by Cao, the novel molecular polarizability effect index (MPEI combined with odd-even index (OEI, the sum eigenvalues of bond-connecting matrix (SX1CH previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99 and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable.

  18. Calculation on uranium carbon oxygen system molecular structure by DFT

    International Nuclear Information System (INIS)

    Zhang Guangfeng; Wang Xiaolin; Zou Lexi; Sun Ying; Xue Weidong; Zhu Zhenghe; Wang Hongyan

    2001-01-01

    The authors study on the possible molecular structures U-C-O, U-O-C, C-U-O (angular structure C a nd linear structure C ∞υ ) of carbon monoxide interacting on uranium metal surface by Density functional theory (DFT). The uranium atom is used RECP (Relativistic Effective Core Potential) and contracted valence basis sets (6s5p2d4f)/[3s3p2d2f], and for carbon and oxygen atoms all are 6-311G basis sets. The author presents the results of energy optimum which shows that triple and quintuple state are more stable. The authors get the electronic state, geometry structure, energy, harmonic frequency, mechanical property, etc. of these twelve triple and quintuple state relative stable structures. The normal vibrational analytical figure of angular structure (C s ) and linear structure (C ∞υ ) is given at the same time. It is indicated that angular structure has lower energy than linear structure, moreover the angular structure of U-C-O( 3 A ) has the lowest energy. The bond strength between uranium atom and carbon monoxide is weak and between uranium atom and oxygen atom is slightly stronger than between uranium atom and carbon atom which the authors can know by superposition population and bond energy analysis among atoms

  19. Discovery of novel inhibitors of Mycobacterium tuberculosis MurG: homology modelling, structure based pharmacophore, molecular docking, and molecular dynamics simulations.

    Science.gov (United States)

    Saxena, Shalini; Abdullah, Maaged; Sriram, Dharmarajan; Guruprasad, Lalitha

    2017-10-17

    MurG (Rv2153c) is a key player in the biosynthesis of the peptidoglycan layer in Mycobacterium tuberculosis (Mtb). This work is an attempt to highlight the structural and functional relationship of Mtb MurG, the three-dimensional (3D) structure of protein was constructed by homology modelling using Discovery Studio 3.5 software. The quality and consistency of generated model was assessed by PROCHECK, ProSA and ERRAT. Later, the model was optimized by molecular dynamics (MD) simulations and the optimized model complex with substrate Uridine-diphosphate-N-acetylglucosamine (UD1) facilitated us to employ structure-based virtual screening approach to obtain new hits from Asinex database using energy-optimized pharmacophore modelling (e-pharmacophore). The pharmacophore model was validated using enrichment calculations, and finally, validated model was employed for high-throughput virtual screening and molecular docking to identify novel Mtb MurG inhibitors. This study led to the identification of 10 potential compounds with good fitness, docking score, which make important interactions with the protein active site. The 25 ns MD simulations of three potential lead compounds with protein confirmed that the structure was stable and make several non-bonding interactions with amino acids, such as Leu290, Met310 and Asn167. Hence, we concluded that the identified compounds may act as new leads for the design of Mtb MurG inhibitors.

  20. Structure determination of an 11-subunit exosome in complex with RNA by molecular replacement

    International Nuclear Information System (INIS)

    Makino, Debora Lika; Conti, Elena

    2013-01-01

    The crystallographic steps towards the structure determination of a complete eukaryotic exosome complex bound to RNA are presented. Phasing of this 11-protein subunit complex was carried out via molecular replacement. The RNA exosome is an evolutionarily conserved multi-protein complex involved in the 3′ degradation of a variety of RNA transcripts. In the nucleus, the exosome participates in the maturation of structured RNAs, in the surveillance of pre-mRNAs and in the decay of a variety of noncoding transcripts. In the cytoplasm, the exosome degrades mRNAs in constitutive and regulated turnover pathways. Several structures of subcomplexes of eukaryotic exosomes or related prokaryotic exosome-like complexes are known, but how the complete assembly is organized to fulfil processive RNA degradation has been unclear. An atomic snapshot of a Saccharomyces cerevisiae 420 kDa exosome complex bound to an RNA substrate in the pre-cleavage state of a hydrolytic reaction has been determined. Here, the crystallographic steps towards the structural elucidation, which was carried out by molecular replacement, are presented

  1. Probing the Structure and Dynamics of Proteins by Combining Molecular Dynamics Simulations and Experimental NMR Data.

    Science.gov (United States)

    Allison, Jane R; Hertig, Samuel; Missimer, John H; Smith, Lorna J; Steinmetz, Michel O; Dolenc, Jožica

    2012-10-09

    NMR experiments provide detailed structural information about biological macromolecules in solution. However, the amount of information obtained is usually much less than the number of degrees of freedom of the macromolecule. Moreover, the relationships between experimental observables and structural information, such as interatomic distances or dihedral angle values, may be multiple-valued and may rely on empirical parameters and approximations. The extraction of structural information from experimental data is further complicated by the time- and ensemble-averaged nature of NMR observables. Combining NMR data with molecular dynamics simulations can elucidate and alleviate some of these problems, as well as allow inconsistencies in the NMR data to be identified. Here, we use a number of examples from our work to highlight the power of molecular dynamics simulations in providing a structural interpretation of solution NMR data.

  2. Molecular basis of processing-induced changes in protein structure in relation to intestinal digestion in yellow and green type pea (Pisum sativum L.): A molecular spectroscopic analysis.

    Science.gov (United States)

    Yu, Gloria Qingyu; Warkentin, Tom; Niu, Zhiyuan; Khan, Nazir A; Yu, Peiqiang

    2015-12-05

    The objectives of this study were (1) to quantify the protein inherent molecular structural features of green cotyledon (CDC Striker) and yellow cotyledon (CDC Meadow) pea (Pisum sativum L.) seeds using molecular spectroscopic technique (FT/IR-ATR); (2) measure the denaturation of protein molecular makeup in the two types of pea during dry roasting (120°C for 60 min), autoclaving (120°C for 60 min) or microwaving (for 5 min); and (3) correlate the heat-induced changes in protein molecular makeup to the corresponding changes in protein digestibility determined using modified three-step in vitro procedure. Compared with yellow-type, the green-type peas had higher (Pprotein content. Compared with yellow-type, the green-type peas had lower (Pprotein secondary structure makeup. All processing applications increased α-helix:β-sheet ratio, with the largest (Pprotein within the green (r=-0. 86) and yellow (r=0.81) pea-types. However, across the pea types the correlation was not significant. Principal component and hierarchical cluster analyses on the entire spectral data from the amide region (ca. 1727-1480 cm(-1)) were able to visualize and discriminate the structural difference between pea varieties and processing treatments. This study shows that the molecular spectroscopy can be used as a rapid tool to screen the protein value of raw and heat-treated peas. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Molecular basis of structural make-up of feeds in relation to nutrient absorption in ruminants, revealed with advanced molecular spectroscopy: A review on techniques and models

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md. Mostafizar [Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Yu, Peiqiang [Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

    2017-01-31

    Progress in ruminant feed research is no more feasible only based on wet chemical analysis, which is merely able to provide information on chemical composition of feeds regardless of their digestive features and nutritive value in ruminants. Studying internal structural make-up of functional groups/feed nutrients is often vital for understanding the digestive behaviors and nutritive values of feeds in ruminant because the intrinsic structure of feed nutrients is more related to its overall absorption. In this article, the detail information on the recent developments in molecular spectroscopic techniques to reveal microstructural information of feed nutrients and the use of nutrition models in regards to ruminant feed research was reviewed. The emphasis of this review was on (1) the technological progress in the use of molecular spectroscopic techniques in ruminant feed research; (2) revealing spectral analysis of functional groups of biomolecules/feed nutrients; (3) the use of advanced nutrition models for better prediction of nutrient availability in ruminant systems; and (4) the application of these molecular techniques and combination of nutrient models in cereals, co-products and pulse crop research. The information described in this article will promote better insight in the progress of research on molecular structural make-up of feed nutrients in ruminants.

  4. Angular correlations of photons from solution diffraction at a free-electron laser encode molecular structure

    International Nuclear Information System (INIS)

    Mendez, Derek; Watkins, Herschel; Qiao, Shenglan; Raines, Kevin S.; Lane, Thomas J.

    2016-01-01

    During X-ray exposure of a molecular solution, photons scattered from the same molecule are correlated. If molecular motion is insignificant during exposure, then differences in momentum transfer between correlated photons are direct measurements of the molecular structure. In conventional small- and wide-angle solution scattering, photon correlations are ignored. This report presents advances in a new biomolecular structural analysis technique, correlated X-ray scattering (CXS), which uses angular intensity correlations to recover hidden structural details from molecules in solution. Due to its intense rapid pulses, an X-ray free electron laser (XFEL) is an excellent tool for CXS experiments. A protocol is outlined for analysis of a CXS data set comprising a total of half a million X-ray exposures of solutions of small gold nanoparticles recorded at the Spring-8 Ångström Compact XFEL facility (SACLA). From the scattered intensities and their correlations, two populations of nanoparticle domains within the solution are distinguished: small twinned, and large probably non-twinned domains. Finally, it is shown analytically how, in a solution measurement, twinning information is only accessible via intensity correlations, demonstrating how CXS reveals atomic-level information from a disordered solution of like molecules.

  5. On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination

    International Nuclear Information System (INIS)

    Panjikar, Santosh; Parthasarathy, Venkataraman; Lamzin, Victor S.; Weiss, Manfred S.; Tucker, Paul A.

    2009-01-01

    The combination of molecular replacement and single-wavelength anomalous diffraction improves the performance of automated structure determination with Auto-Rickshaw. A combination of molecular replacement and single-wavelength anomalous diffraction phasing has been incorporated into the automated structure-determination platform Auto-Rickshaw. The complete MRSAD procedure includes molecular replacement, model refinement, experimental phasing, phase improvement and automated model building. The improvement over the standard SAD or MR approaches is illustrated by ten test cases taken from the JCSG diffraction data-set database. Poor MR or SAD phases with phase errors larger than 70° can be improved using the described procedure and a large fraction of the model can be determined in a purely automatic manner from X-ray data extending to better than 2.6 Å resolution

  6. Structural Origins of Conductance Fluctuations in Gold–Thiolate Molecular Transport Junctions

    KAUST Repository

    French, William R.

    2013-03-21

    We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior. © 2013 American Chemical Society.

  7. Structural Origins of Conductance Fluctuations in Gold–Thiolate Molecular Transport Junctions

    KAUST Repository

    French, William R.; Iacovella, Christopher R.; Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano; Cummings, Peter T.

    2013-01-01

    We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior. © 2013 American Chemical Society.

  8. Structure and dynamics of a [1:1] drug-DNA complex: Analysis of 2D NMR data using molecular mechanics and molecular dynamics calculations

    International Nuclear Information System (INIS)

    Sarma, R.H.; Sarma, M.H.; Umemoto, K.

    1990-01-01

    1D/2D NMR studies are reported for a [1:1] complex of d(GA 4 T 4 C) 2 and Dst2 (an analogue of distamycin A). Full- Matrix NOESY Simulations, Molecular Mechanics and Molecular Dynamics Calculations are performed to analyze the NMR data. Results show that drug-DNA complex formation is driven by static features like H-bonding and steric interactions in the minor-groove of DNA. As a consequence of drug binding, a non-linear oscillatory mode is activated. In this mode the molecule samples equilibrium structural states of difference degrees of bending. It is noted that these structures belong to three distinctly different energy wells that satisfy the same NMR data. 14 refs., 4 figs., 2 tabs

  9. [Motivation and Emotional States: Structural Systemic, Neurochemical, Molecular and Cellular Mechanisms].

    Science.gov (United States)

    Bazyan, A S

    2016-01-01

    The structural, systemic, neurochemical, molecular and cellular mechanisms of organization and coding motivation and emotional states are describe. The GABA and glutamatergic synaptic systems of basal ganglia form a neural network and participate in the implementation of voluntary behavior. Neuropeptides, neurohormones and paracrine neuromodulators involved in the organization of motivation and emotional states, integrated with synaptic systems, controlled by neural networks and organizing goal-directed behavior. Structural centers for united and integrated of information in voluntary and goal-directed behavior are globus pallidus. Substantia nigra pars reticulata switches the information from corticobasal networks to thalamocortical networks, induces global dopaminergic (DA) signal and organize interaction of mesolimbic and nigostriatnoy DA systems controlled by prefrontal and motor cortex. Together with the motor cortex, substantia nigra displays information in the brainstem and spinal cord to implementation of behavior. Motivation states are formed in the interaction of neurohormonal and neuropeptide systems by monoaminergic systems of brain. Emotional states are formed by monoaminergic systems of the mid-brain, where the leading role belongs to the mesolimbic DA system. The emotional and motivation state of the encoded specific epigenetic molecular and chemical pattern of neuron.

  10. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures

    International Nuclear Information System (INIS)

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-01-01

    A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve refinement with minimal manual intervention. An explanation of the method is provided, augmented by results from the refinement of both synthetic and experimental low-resolution data, including an independent electrophysiological verification of the xMDFF-refined crystal structure of a voltage-sensor protein. X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP

  11. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures

    Energy Technology Data Exchange (ETDEWEB)

    McGreevy, Ryan; Singharoy, Abhishek [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Li, Qufei [The University of Chicago, Chicago, IL 60637 (United States); Zhang, Jingfen; Xu, Dong [University of Missouri, Columbia, MO 65211 (United States); Perozo, Eduardo [The University of Chicago, Chicago, IL 60637 (United States); Schulten, Klaus, E-mail: kschulte@ks.uiuc.edu [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2014-09-01

    A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve refinement with minimal manual intervention. An explanation of the method is provided, augmented by results from the refinement of both synthetic and experimental low-resolution data, including an independent electrophysiological verification of the xMDFF-refined crystal structure of a voltage-sensor protein. X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  12. PREFMD: a web server for protein structure refinement via molecular dynamics simulations.

    Science.gov (United States)

    Heo, Lim; Feig, Michael

    2018-03-15

    Refinement of protein structure models is a long-standing problem in structural bioinformatics. Molecular dynamics-based methods have emerged as an avenue to achieve consistent refinement. The PREFMD web server implements an optimized protocol based on the method successfully tested in CASP11. Validation with recent CASP refinement targets shows consistent and more significant improvement in global structure accuracy over other state-of-the-art servers. PREFMD is freely available as a web server at http://feiglab.org/prefmd. Scripts for running PREFMD as a stand-alone package are available at https://github.com/feiglab/prefmd.git. feig@msu.edu. Supplementary data are available at Bioinformatics online.

  13. Projected quasiparticle theory for molecular electronic structure

    Science.gov (United States)

    Scuseria, Gustavo E.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Samanta, Kousik; Ellis, Jason K.

    2011-09-01

    We derive and implement symmetry-projected Hartree-Fock-Bogoliubov (HFB) equations and apply them to the molecular electronic structure problem. All symmetries (particle number, spin, spatial, and complex conjugation) are deliberately broken and restored in a self-consistent variation-after-projection approach. We show that the resulting method yields a comprehensive black-box treatment of static correlations with effective one-electron (mean-field) computational cost. The ensuing wave function is of multireference character and permeates the entire Hilbert space of the problem. The energy expression is different from regular HFB theory but remains a functional of an independent quasiparticle density matrix. All reduced density matrices are expressible as an integration of transition density matrices over a gauge grid. We present several proof-of-principle examples demonstrating the compelling power of projected quasiparticle theory for quantum chemistry.

  14. SGC method for predicting the standard enthalpy of formation of pure compounds from their molecular structures

    International Nuclear Information System (INIS)

    Albahri, Tareq A.; Aljasmi, Abdulla F.

    2013-01-01

    Highlights: • ΔH° f is predicted from the molecular structure of the compounds alone. • ANN-SGC model predicts ΔH° f with a correlation coefficient of 0.99. • ANN-MNLR model predicts ΔH° f with a correlation coefficient of 0.90. • Better definition of the atom-type molecular groups is presented. • The method is better than others in terms of combined simplicity, accuracy and generality. - Abstract: A theoretical method for predicting the standard enthalpy of formation of pure compounds from various chemical families is presented. Back propagation artificial neural networks were used to investigate several structural group contribution (SGC) methods available in literature. The networks were used to probe the structural groups that have significant contribution to the overall enthalpy of formation property of pure compounds and arrive at the set of groups that can best represent the enthalpy of formation for about 584 substances. The 51 atom-type structural groups listed provide better definitions of group contributions than others in the literature. The proposed method can predict the standard enthalpy of formation of pure compounds with an AAD of 11.38 kJ/mol and a correlation coefficient of 0.9934 from only their molecular structure. The results are further compared with those of the traditional SGC method based on MNLR as well as other methods in the literature

  15. Predictive Mechanical Characterization of Macro-Molecular Material Chemistry Structures of Cement Paste at Nano Scale - Two-phase Macro-Molecular Structures of Calcium Silicate Hydrate, Tri-Calcium Silicate, Di-Calcium Silicate and Calcium Hydroxide

    Science.gov (United States)

    Padilla Espinosa, Ingrid Marcela

    Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also

  16. Molecular structure and vibrational spectroscopy of isoproturon

    Science.gov (United States)

    Vrielynck, L.; Dupuy, N.; Kister, J.; Nowogrocki, G.

    2006-05-01

    The crystal structure of isoproturon [ N-(4-isopropylphenyl)- N', N'-dimethylurea] has been determined: the compound crystallizes in the space group Pbca with unit cell parameters a=10.186(2) Å, b=11.030(2) Å, c=20.981(4) Å. The structure was solved and refined down to R1=0.0508 and ωR2=0.12470 for 3056 reflections. The crystalline molecular network of this pesticide is stabilized, as for many molecules of the same family, by π-π interactions but especially by a medium-strong N-H⋯C dbnd6 O intermolecular hydrogen bond (2.14 Å). The X-ray parameters were then compared with the results of DFT quantum chemical calculation computed with the GAUSSIAN 94 package. A tentative assignment of the ATR-FT-IR and Raman spectra was proposed supported by vibrational mode calculation and spectroscopic data on benzenic and urea derivatives available in the literature. The presence of a tight band around 3300 cm -1, which can be assigned to the NH bond stretching mode as well as the low frequency position of the amide I band at 1640 cm -1, sensitive to solvent polarity, confirms the existence of a quite strong intermolecular hydrogen bond between neighboring molecules in the crystal of isoproturon.

  17. Molecular basis of structural makeup of hulless barley in relation to rumen degradation kinetics and intestinal availability in dairy cattle: A novel approach.

    Science.gov (United States)

    Damiran, D; Yu, P

    2011-10-01

    To date, no study has been done of molecular structures in relation to nutrient degradation kinetics and intestinal availability in dairy cattle. The objectives of this study were to (1) reveal molecular structures of hulless barley affected by structural alteration using molecular spectroscopy (diffuse reflectance infrared Fourier transform) as a novel approach, and (2) quantify structure features on a molecular basis in relation to digestive kinetics and nutritive value in the rumen and intestine in cattle. The modeled feeds in this study were 4 types of hulless barley (HB) cultivars modified in starch traits: (a) normal starch cultivar, (b) zero-amylose waxy, (c) waxy, and (d) high-amylose. The molecular structural features were determined using diffuse reflectance infrared Fourier transform spectroscopy in the mid-infrared region (ca. 4,000-800 cm(-1)) of the electromagnetic spectrum. The items assessed included infrared intensity attributed to protein amide I (ca. 1,715-1,575 cm(-1)), amide II (ca. 1,575-1,490 cm(-1)), α-helix (ca. 1,648-1,660 cm(-1)), β-sheet (ca. 1,625-1,640 cm(-1)), and their ratio, β-glucan (ca. 1,445-1,400 cm(-1)), total carbohydrates (CHO; ca. 1,188-820 cm(-1)) and their 3 major peaks, structural carbohydrates (ca. 1,277-1,190 cm(-1)), and ratios of amide I to II and amide I to CHO. The results show that (1) the zero-amylose waxy was the greatest in amide I and II peak areas, as well as in the ratio of protein amide I to CHO among HB; (2) α-helix-to-β-sheet ratio differed among HB: the high-amylose was the greatest, the zero-amylose waxy and waxy were the intermediate, and the normal starch was the lowest; (3) HB were similar in β-glucan and CHO molecular structural makeup; (4) altered starch HB cultivars were similar to each other, but were different from the normal starch cultivar in protein molecular makeup; and (5) the rate and extent of rumen degradation of starch and protein were highly related to the molecular structural

  18. Studies on molecular structure, vibrational spectra and molecular docking analysis of 3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl 4-aminobenzoate

    Science.gov (United States)

    Suresh, D. M.; Amalanathan, M.; Hubert Joe, I.; Bena Jothy, V.; Diao, Yun-Peng

    2014-09-01

    The molecular structure, vibrational analysis and molecular docking analysis of the 3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl 4-aminobenzoate (MDDNAB) molecule have been carried out using FT-IR and FT-Raman spectroscopic techniques and DFT method. The equilibrium geometry, harmonic vibrational wave numbers, various bonding features have been computed using density functional method. The calculated molecular geometry has been compared with experimental data. The detailed interpretation of the vibrational spectra has been carried out by using VEDA program. The hyper-conjugative interactions and charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The simulated FT-IR and FT-Raman spectra satisfactorily coincide with the experimental spectra. The PES and charge analysis have been made. The molecular docking was done to identify the binding energy and the Hydrogen bonding with the cancer protein molecule.

  19. Chemical structure and properties of low-molecular furin inhibitors

    Directory of Open Access Journals (Sweden)

    T. V. Osadchuk

    2016-12-01

    Full Text Available The review is devoted to the analysis of the relationship between a chemical structure and properties of low-molecular weight inhibitors of furin, the most studied proprotein convertase, which is involved in the development of some pathologies, such as oncologic diseases, viral and bacterial infections, etc. The latest data concerning the influence of peptides, pseudo-peptides, aromatic and heterocyclic compounds, some natural ones such as flavonoids, coumarins, and others on enzyme inactivation are considered. The power of furin inhibition is shown to rise with the increasing number of positively charged groups in the structure of these compounds. Peptidomimetics (Ki = 5-8 pM are shown to be the most effective furin inhibitors. The synthesized substances, however, have not been used in practical application yet. Nowadays it is very important to find more selective inhibitors, improve their stability, bioavailability and safety for the human organism.

  20. Methodology for studying molecular and supramolecular structures of coals and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    G.B. Skripchenko [Russian Academy of Sciences, Moscow (Russian Federation). Russia Institute for Fossil Fuels - Science and Technology Center for Complex Processing of Solid Fossil Fuels

    2009-07-01

    Those studying coals have to account for petrographic nonuniformity (the optical structural level), different types of chemical bonding between structural fragments, the existence of aromatic clusters in the organic matter, the appearance of a supramolecular order between aromatic clusters, and further orientation ordering of crystallites under the action of the geological pressure. Combinations of conventional chemical strategies with advanced physicochemical methods, such as IR, NMR, EPR, and X-ray spectroscopy; X-ray diffraction; electronic and scanning microscopy; and some others, are pertinent for structure determination. The appearance of supramolecular structures is a manifestation of molecular-level structural rearrangements, which are characteristic of coals, cokes, pitches, and various pyrolytic carbons. This necessitates the use of optical, electronic, and scanning microscopy along with other chemical methods. The occurrence of mineral components in coals can appreciably limit the resolution of IR spectroscopy and X-ray crystallography.

  1. Chemical composition and molecular structure of polysaccharide-protein biopolymer from Durio zibethinus seed: extraction and purification process

    Directory of Open Access Journals (Sweden)

    Amid Bahareh

    2012-10-01

    Full Text Available Abstract Background The biological functions of natural biopolymers from plant sources depend on their chemical composition and molecular structure. In addition, the extraction and further processing conditions significantly influence the chemical and molecular structure of the plant biopolymer. The main objective of the present study was to characterize the chemical and molecular structure of a natural biopolymer from Durio zibethinus seed. A size-exclusion chromatography coupled to multi angle laser light-scattering (SEC-MALS was applied to analyze the molecular weight (Mw, number average molecular weight (Mn, and polydispersity index (Mw/Mn. Results The most abundant monosaccharide in the carbohydrate composition of durian seed gum were galactose (48.6-59.9%, glucose (37.1-45.1%, arabinose (0.58-3.41%, and xylose (0.3-3.21%. The predominant fatty acid of the lipid fraction from the durian seed gum were palmitic acid (C16:0, palmitoleic acid (C16:1, stearic acid (C18:0, oleic acid (C18:1, linoleic acid (C18:2, and linolenic acid (C18:2. The most abundant amino acids of durian seed gum were: leucine (30.9-37.3%, lysine (6.04-8.36%, aspartic acid (6.10-7.19%, glycine (6.07-7.42%, alanine (5.24-6.14%, glutamic acid (5.57-7.09%, valine (4.5-5.50%, proline (3.87-4.81%, serine (4.39-5.18%, threonine (3.44-6.50%, isoleucine (3.30-4.07%, and phenylalanine (3.11-9.04%. Conclusion The presence of essential amino acids in the chemical structure of durian seed gum reinforces its nutritional value.

  2. Molecular dynamics simulations of H2 adsorption in tetramethyl ammonium lithium phthalocyanine crystalline structures.

    Science.gov (United States)

    Lamonte, Kevin; Gómez Gualdrón, Diego A; Cabrales-Navarro, Fredy A; Scanlon, Lawrence G; Sandi, Giselle; Feld, William; Balbuena, Perla B

    2008-12-11

    Tetramethyl ammonium lithium phthalocyanine is explored as a potential material for storage of molecular hydrogen. Density functional theory calculations are used to investigate the molecular structure and the dimer conformation. Additional scans performed to determine the interactions of a H2 molecule located at various distances from the molecular sites are used to generate a simple force field including dipole-induced-dipole interactions. This force field is employed in molecular dynamics simulations to calculate adsorption isotherms at various pressures. The regions of strongest adsorption are quantified as functions of temperature, pressure, and separation between molecules in the adsorbent phase, and compared to the regions of strongest binding energy as given by the proposed force field. It is found that the total adsorption could not be predicted only from the spatial distribution of the strongest binding energies; the available volume is the other contributing factor even if the volume includes regions of much lower binding energy. The results suggest that the complex anion is primarily involved in the adsorption process with molecular hydrogen, whereas the cation serves to provide access for hydrogen adsorption in both sides of the anion molecular plane, and spacing between the planes.

  3. Molecular structure determination of cyclooctane by Ab Initio and electron diffraction methods in the gas phase; Determinacao da estrutura molecular do ciclooctano por metodos Ab Initio e difracao de eletrons na fase gasosa

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Wagner B. de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Quimica

    2000-10-01

    The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can make a significant contribution for an unambiguous determination of the geometrical parameters. In this article the determination for an unambiguous determination of the geometrical parameters. In this article the determination of the molecular structure of the cyclooctane molecule by electron diffraction in the gas phase an initio calculations will be addressed, providing an example of a comparative analysis of theoretical and experimental predictions. (author)

  4. PASBio: predicate-argument structures for event extraction in molecular biology

    Science.gov (United States)

    Wattarujeekrit, Tuangthong; Shah, Parantu K; Collier, Nigel

    2004-01-01

    Background The exploitation of information extraction (IE), a technology aiming to provide instances of structured representations from free-form text, has been rapidly growing within the molecular biology (MB) research community to keep track of the latest results reported in literature. IE systems have traditionally used shallow syntactic patterns for matching facts in sentences but such approaches appear inadequate to achieve high accuracy in MB event extraction due to complex sentence structure. A consensus in the IE community is emerging on the necessity for exploiting deeper knowledge structures such as through the relations between a verb and its arguments shown by predicate-argument structure (PAS). PAS is of interest as structures typically correspond to events of interest and their participating entities. For this to be realized within IE a key knowledge component is the definition of PAS frames. PAS frames for non-technical domains such as newswire are already being constructed in several projects such as PropBank, VerbNet, and FrameNet. Knowledge from PAS should enable more accurate applications in several areas where sentence understanding is required like machine translation and text summarization. In this article, we explore the need to adapt PAS for the MB domain and specify PAS frames to support IE, as well as outlining the major issues that require consideration in their construction. Results We introduce PASBio by extending a model based on PropBank to the MB domain. The hypothesis we explore is that PAS holds the key for understanding relationships describing the roles of genes and gene products in mediating their biological functions. We chose predicates describing gene expression, molecular interactions and signal transduction events with the aim of covering a number of research areas in MB. Analysis was performed on sentences containing a set of verbal predicates from MEDLINE and full text journals. Results confirm the necessity to analyze

  5. Surfaces of Microparticles in Colloids: Structure and Molecular Adsorption Kinetics

    Science.gov (United States)

    Dai, Hai-Lung

    2002-03-01

    Surfaces of micron and sub-micron size particles in liquid solution are probed by second harmonic generation (SHG) facilitated with femtosecond laser pulses. The particles probed include inorganic objects such as carbon black and color pigments, polymeric species like polystyrene beads, and biological systems such as blood cells and ecoli. In the experiments, dye molecules are first adsorbed onto the particle surface to allow generation of second harmonics upon light irradiation. Competition for adsorption between these surface dye molecules and the molecules of interest in the solution is then monitored by the SHG signal to reveal the molecular adsorption kinetics and surface structure. Specifically, surfactant adsorption on polymer surfaces, the structure of carbon black surface, and protein adsorption on biological surfaces, monitored by this technique, will be discussed.

  6. Molecular tailoring approach for exploring structures, energetics and ...

    Indian Academy of Sciences (India)

    Administrator

    Keywords. Molecular clusters; linear scaling methods; molecular tailoring approach (MTA); Hartree– ..... energy decomposition analysis also performed and which clearly ... through molecular dynamics simulation furnished by. Takeguchi,. 46.

  7. Ab initio electronic structure and correlations in pristine and potassium-doped molecular crystals of copper phthalocyanine

    NARCIS (Netherlands)

    Giovannetti, G.; Brocks, G.; van den Brink, J.

    2008-01-01

    We investigate the effect that potassium intercalation has on the electronic structure of copper phthalocyanine (CuPc) molecular crystals by means of ab initio density functional calculations. Pristine CuPc (in its alpha and beta structures) is found to be an insulator containing local magnetic

  8. Light-operated machines based on threaded molecular structures.

    Science.gov (United States)

    Credi, Alberto; Silvi, Serena; Venturi, Margherita

    2014-01-01

    Rotaxanes and related species represent the most common implementation of the concept of artificial molecular machines, because the supramolecular nature of the interactions between the components and their interlocked architecture allow a precise control on the position and movement of the molecular units. The use of light to power artificial molecular machines is particularly valuable because it can play the dual role of "writing" and "reading" the system. Moreover, light-driven machines can operate without accumulation of waste products, and photons are the ideal inputs to enable autonomous operation mechanisms. In appropriately designed molecular machines, light can be used to control not only the stability of the system, which affects the relative position of the molecular components but also the kinetics of the mechanical processes, thereby enabling control on the direction of the movements. This step forward is necessary in order to make a leap from molecular machines to molecular motors.

  9. Catecholaminergic systems in stress: structural and molecular genetic approaches.

    Science.gov (United States)

    Kvetnansky, Richard; Sabban, Esther L; Palkovits, Miklos

    2009-04-01

    Stressful stimuli evoke complex endocrine, autonomic, and behavioral responses that are extremely variable and specific depending on the type and nature of the stressors. We first provide a short overview of physiology, biochemistry, and molecular genetics of sympatho-adrenomedullary, sympatho-neural, and brain catecholaminergic systems. Important processes of catecholamine biosynthesis, storage, release, secretion, uptake, reuptake, degradation, and transporters in acutely or chronically stressed organisms are described. We emphasize the structural variability of catecholamine systems and the molecular genetics of enzymes involved in biosynthesis and degradation of catecholamines and transporters. Characterization of enzyme gene promoters, transcriptional and posttranscriptional mechanisms, transcription factors, gene expression and protein translation, as well as different phases of stress-activated transcription and quantitative determination of mRNA levels in stressed organisms are discussed. Data from catecholamine enzyme gene knockout mice are shown. Interaction of catecholaminergic systems with other neurotransmitter and hormonal systems are discussed. We describe the effects of homotypic and heterotypic stressors, adaptation and maladaptation of the organism, and the specificity of stressors (physical, emotional, metabolic, etc.) on activation of catecholaminergic systems at all levels from plasma catecholamines to gene expression of catecholamine enzymes. We also discuss cross-adaptation and the effect of novel heterotypic stressors on organisms adapted to long-term monotypic stressors. The extra-adrenal nonneuronal adrenergic system is described. Stress-related central neuronal regulatory circuits and central organization of responses to various stressors are presented with selected examples of regulatory molecular mechanisms. Data summarized here indicate that catecholaminergic systems are activated in different ways following exposure to distinct

  10. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-Spatially Resolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    Barley protein structure affects the barley quality, fermentation, and degradation behavior in both humans and animals among other factors such as protein matrix. Publications show various biological differences among barley varieties such as Valier and Harrington, which have significantly different degradation behaviors. The objectives of this study were to reveal the molecular structure of barley protein, comparing various varieties (Dolly, Valier, Harrington, LP955, AC Metcalfe, and Sisler), and quantify protein structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling by using the ultra-spatially resolved synchrotron light sourced Fourier transform infrared microspectroscopy (SFTIRM). The items of the protein molecular structure revealed included protein structure α-helices, β-sheets, and others such as β-turns and random coils. The experiment was performed at the National Synchrotron Light Source in Brookhaven National Laboratory (BNL, US Department of Energy, NY). The results showed that with the SFTIRM, the molecular structure of barley protein could be revealed. Barley protein structures exhibited significant differences among the varieties in terms of proportion and ratio of model-fitted α-helices, β-sheets, and others. By using multi-component peaks modeling at protein amide I region of 1710-1576 cm -1 , the results show that barley protein consisted of approximately 18-34% of α-helices, 14-25% of β-sheets, and 44-69% others. AC Metcalfe, Sisler, and LP955 consisted of higher (P 0.05). The ratio of α-helices to others (0.3 to 1.0, P < 0.05) and that of β-sheets to others (0.2 to 0.8, P < 0.05) were different among the barley varieties. It needs to be pointed out that using a multi-peak modeling for protein structure analysis is only for making relative estimates and not exact determinations and only for the comparison purpose between varieties. The principal component analysis showed that protein amide I Fourier

  11. Epigenetics and Shared Molecular Processes in the Regeneration of Complex Structures

    Directory of Open Access Journals (Sweden)

    Labib Rouhana

    2016-01-01

    Full Text Available The ability to regenerate complex structures is broadly represented in both plant and animal kingdoms. Although regenerative abilities vary significantly amongst metazoans, cumulative studies have identified cellular events that are broadly observed during regenerative events. For example, structural damage is recognized and wound healing initiated upon injury, which is followed by programmed cell death in the vicinity of damaged tissue and a burst in proliferation of progenitor cells. Sustained proliferation and localization of progenitor cells to site of injury give rise to an assembly of differentiating cells known as the regeneration blastema, which fosters the development of new tissue. Finally, preexisting tissue rearranges and integrates with newly differentiated cells to restore proportionality and function. While heterogeneity exists in the basic processes displayed during regenerative events in different species—most notably the cellular source contributing to formation of new tissue—activation of conserved molecular pathways is imperative for proper regulation of cells during regeneration. Perhaps the most fundamental of such molecular processes entails chromatin rearrangements, which prime large changes in gene expression required for differentiation and/or dedifferentiation of progenitor cells. This review provides an overview of known contributions to regenerative processes by noncoding RNAs and chromatin-modifying enzymes involved in epigenetic regulation.

  12. [Structure of crambin in solution, crystal and in the trajectories of molecular dynamics simulations].

    Science.gov (United States)

    Abaturov, L V; Nosova, N G

    2013-01-01

    The mechanisms of the three-dimensional crambin structure alterations in the crystalline environments and in the trajectories of the molecular dynamics simulations in the vacuum and crystal surroundings have been analyzed. In the crystalline state and in the solution the partial regrouping of remote intramolecular packing contacts, involved in the formation and stabilization of the tertiary structure of the crambin molecule, occurs in NMR structures. In the crystalline state it is initiated by the formation of the intermolecular contacts, the conformational influence of its appearance is distributed over the structure. The changes of the conformations and positions of the residues of the loop segments, where the intermolecular contacts of the crystal surroundings are preferably concentrated, are most observable. Under the influence of these contacts the principal change of the regular secondary structure of crambin is taking place: extension of the two-strand beta structure to the three-strand structure with the participation of the single last residue N46 of the C-terminal loop. In comparison with the C-terminal loop the more profound changes are observed in the conformation and the atomic positions of the backbone atoms and in the solvent accessibility of the residues of the interhelical loop. In the solution of the ensemble of the 8 NMR structures relative accessibility to the solvent differs more noticeably also in the region of the loop segments and rather markedly in the interhelical loop. In the crambin cryogenic crystal structures the positions of the atoms of the backbone and/or side chain of 14-18 of 46 residues are discretely disordered. The disorganizations of at least 8 of 14 residues occur directly in the regions of the intermolecular contacts and another 5 residues are disordered indirectly through the intramolecular contacts with the residues of the intermolecular contacts. Upon the molecular dynamics simulation in the vacuum surrounding as in the

  13. Bonding and structure in dense multi-component molecular mixtures.

    Science.gov (United States)

    Meyer, Edmund R; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D; Collins, Lee A

    2015-10-28

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10,000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. A basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.

  14. Structure and Interface Properties of Nanophase Ceramics: Multimillion Particle Molecular-Dynamics Simulations on Parallel Computer

    National Research Council Canada - National Science Library

    Kalia, Rajiv

    1997-01-01

    Large-scale molecular-dynamics (MD) simulations were performed to investigate: (1) sintering process, structural correlations, and mechanical behavior including dynamic fracture in microporous and nanophase Si3N4...

  15. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.

    Science.gov (United States)

    Schlundt, Andreas; Tants, Jan-Niklas; Sattler, Michael

    2017-04-15

    Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain

  16. Noncanonical structures and their thermodynamics of DNA and RNA under molecular crowding: beyond the Watson-Crick double helix.

    Science.gov (United States)

    Sugimoto, Naoki

    2014-01-01

    How does molecular crowding affect the stability of nucleic acid structures inside cells? Water is the major solvent component in living cells, and the properties of water in the highly crowded media inside cells differ from that in buffered solution. As it is difficult to measure the thermodynamic behavior of nucleic acids in cells directly and quantitatively, we recently developed a cell-mimicking system using cosolutes as crowding reagents. The influences of molecular crowding on the structures and thermodynamics of various nucleic acid sequences have been reported. In this chapter, we discuss how the structures and thermodynamic properties of nucleic acids differ under various conditions such as highly crowded environments, compartment environments, and in the presence of ionic liquids, and the major determinants of the crowding effects on nucleic acids are discussed. The effects of molecular crowding on the activities of ribozymes and riboswitches on noncanonical structures of DNA- and RNA-like quadruplexes that play important roles in transcription and translation are also described. © 2014 Elsevier Inc. All rights reserved.

  17. Structural, dynamical, and electronic properties of amorphous silicon: An ab initio molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Car, R.; Parrinello, M.

    1988-01-18

    An amorphous silicon structure is obtained with a computer simulation based on a new molecular-dynamics technique in which the interatomic potential is derived from a parameter-free quantum mechanical method. Our results for the atomic structure, the phonon spectrum, and the electronic properties are in excellent agreement with experiment. In addition we study details of the microscopic dynamics which are not directly accessible to experiment. We find in particular that structural defects are associated with weak bonds. These may give rise to low-frequency vibrational modes.

  18. Structural flexibility of the sulfur mustard molecule at finite temperature from Car-Parrinello molecular dynamics simulations.

    Science.gov (United States)

    Lach, Joanna; Goclon, Jakub; Rodziewicz, Pawel

    2016-04-05

    Sulfur mustard (SM) is one of the most dangerous chemical compounds used against humans, mostly at war conditions but also in terrorist attacks. Even though the sulfur mustard has been synthesized over a hundred years ago, some of its molecular properties are not yet resolved. We investigate the structural flexibility of the SM molecule in the gas phase by Car-Parrinello molecular dynamics simulations. Thorough conformation analysis of 81 different SM configurations using density functional theory is performed to analyze the behavior of the system at finite temperature. The conformational diversity is analyzed with respect to the formation of intramolecular blue-shifting CH⋯S and CH⋯Cl hydrogen bonds. Molecular dynamics simulations indicate that all structural rearrangements between SM local minima are realized either in direct or non-direct way, including the intermediate structure in the last case. We study the lifetime of the SM conformers and perform the population analysis. Additionally, we provide the anharmonic dynamical finite temperature IR spectrum from the Fourier Transform of the dipole moment autocorrelation function to mimic the missing experimental IR spectrum. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Structural analysis of graphene and h-BN: A molecular dynamics approach

    International Nuclear Information System (INIS)

    Thomas, Siby; Ajith, K. M.; Valsakumar, M. C.

    2016-01-01

    Classical molecular dynamics simulation is employed to analyze pair correlations in graphene and h-BN at various temperatures to explore the integrity of their respective structures. As the temperature increases, the height fluctuations in the out-of-plane direction of both graphene and h-BN are found to increase. The positional spread of atoms also increases with temperature. Thus the amplitude of the peak positions in the radial distribution function (RDF) decreases with temperature. It is found that FWHM of peaks in the RDF of h-BN is smaller as compared to those of graphene which implies that the structure of h-BN is more robust as compared to that of graphene with respect to their respective empirical potential.

  20. Relationship between the electrostatic sensitivity of nitramines and their molecular structure

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Keshavarz, Mohammad [Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr (Iran); Moghadas, Mohammad Hassan [Department of Mechanical Engineering, Malek-ashtar University of Technology, Shahin-shahr (Iran); Kavosh Tehrani, Masoud [Department of Physics, Malek-ashtar University of Technology, Shahin-shahr (Iran)

    2009-04-15

    In this paper, a new approach is introduced to predict the electrostatic sensitivity of nitramines on the basis of their molecular structure. The ratio of carbon to oxygen and the existence of two specific structural parameters can be used for the prediction of the electrostatic sensitivity of nitramines. The results are also compared with quantum mechanical computations from [9] so that the new method gives better predictions with respect to the measured data. Electrostatic sensitivities calculated by the new method for two new nitramines CL-20 [2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane] and TNAZ [1,3,3-trinitroazatidine] are also close to the experimental data. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  1. Coalescence of silver unidimensional structures by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Perez A, M.; Gutierrez W, C.E.; Mondragon, G.; Arenas, J.

    2007-01-01

    The study of nanoparticles coalescence and silver nano rods phenomena by means of molecular dynamics simulation under the thermodynamic laws is reported. In this work we focus ourselves to see the conditions under which the one can be given one dimension growth of silver nano rods for the coalescence phenomenon among two nano rods or one nano rod and one particle; what allows us to study those structural, dynamic and morphological properties of the silver nano rods to different thermodynamic conditions. The simulations are carried out using the Sutton-Chen potentials of interaction of many bodies that allow to obtain appropriate results with the real physical systems. (Author)

  2. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth

    1995-01-01

    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... of the impurity. Transforming the equation to the noninertial frame of reference coupled with the center of mass we investigate the soliton behavior in the close vicinity of the impurity. With the help of the lens transformation we show that the soliton width is governed by an Ermakov-Pinney equation. We also...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....

  3. Molecular structure of human aortic valve by μSR- FTIR microscopy

    Science.gov (United States)

    Borkowska, Anna M.; Nowakowski, Michał; Lis, Grzegorz J.; Wehbe, Katia; Cinque, Gianfelice; Kwiatek, Wojciech M.

    2017-11-01

    Aortic valve is a part of the heart most frequently affected by pathological processes in humans what constitute a very serious health problem. Therefore, studies of morphology and molecular microstructure of the AV are needed. μSR- FTIR spectroscopy and microscopy represent unique tools to study chemical composition of the tissue and to identify spectroscopic markers characteristic for structural and functional features. Normal AV reveals a multi-layered structure and the compositional and structural changes within particular layers may trigger degenerative processes within the valve. Thus, deep insight into the structure of the valve to understand pathological processes occurring in AV is needed. In order to identify differences between three layers of human AV, tissue sections of macroscopically normal AV were studied using μSR- FTIR spectroscopy in combination with histological and histochemical stainings. Tissue sections deposited onto CaF2 substrates were mapped and representative set of IR spectra collected from fibrosa, spongiosa and ventricularis were analysed by Principal Component Analysis (PCA) in the spectral range between 1850-1000 cm-1 and 3050-2750 cm-1. PCA revealed a layered molecular structure of the valve and it was possible to identify IR bands associated to different tissue parts. Spongiosa layer was well differentiated from other two layers mainly based on IR bands characteristic for the distribution of glycosaminoglycans (GAGs) in the tissue - like 1170 cm-1 (υas(C-O-S)) and 1380 cm-1 (acetyl amino group). Additionally, it was distinguished from fibrosa and ventricularis based on 1085 cm-1 and 1240 cm-1 bands characteristic for GAGs and for carbohydrates- ν(C-O) and ν(C-O-C) respectively and nucleic acids -νsym(PO2-) and νasym(PO2-) respectively, which were less specific for this layer. The use of μSR- FTIR spectroscopy demonstrated co-localization of GAGs and lipids in spongiosa layer what may indicate their contribution in the very

  4. More Than Filaments and Cores: Statistical Study of Structure Formation and Dynamics in Nearby Molecular Clouds

    Science.gov (United States)

    Chen, How-Huan; Goodman, Alyssa

    2018-01-01

    In the past decade, multiple attempts at understanding the connection between filaments and star forming cores have been made using observations across the entire epectrum. However, the filaments and the cores are usually treated as predefined--and well-defined--entities, instead of structures that often come at different sizes, shapes, with substantially different dynamics, and inter-connected at different scales. In my dissertation, I present an array of studies using different statistical methods, including the dendrogram and the probability distribution function (PDF), of structures at different size scales within nearby molecular clouds. These structures are identified using observations of different density tracers, and where possible, in the multi-dimensional parameter space of key dynamic properties--the LSR velocity, the velocity dispersion, and the column density. The goal is to give an overview of structure formation in nearby star-forming clouds, as well as of the dynamics in these structures. I find that the overall statistical properties of a larger structure is often the summation/superposition of sub-structures within, and that there could be significant variations due to local physical processes. I also find that the star formation process within molecular clouds could in fact take place in a non-monolithic manner, connecting potentially merging and/or transient structures, at different scales.

  5. Introducing NMR to a General Chemistry Audience: A Structural-Based Instrumental Laboratory Relating Lewis Structures, Molecular Models, and [superscript 13]C NMR Data

    Science.gov (United States)

    Pulliam, Curtis R.; Pfeiffer, William F.; Thomas, Alyssa C.

    2015-01-01

    This paper describes a first-year general chemistry laboratory that uses NMR spectroscopy and model building to emphasize molecular shape and structure. It is appropriate for either a traditional or an atoms-first curriculum. Students learn the basis of structure and the use of NMR data through a cooperative learning hands-on laboratory…

  6. Effect of shampoo, conditioner and permanent waving on the molecular structure of human hair.

    Science.gov (United States)

    Zhang, Yuchen; Alsop, Richard J; Soomro, Asfia; Yang, Fei-Chi; Rheinstädter, Maikel C

    2015-01-01

    The hair is a filamentous biomaterial consisting of the cuticle, the cortex and the medulla, all held together by the cell membrane complex. The cortex mostly consists of helical keratin proteins that spiral together to form coiled-coil dimers, intermediate filaments, micro-fibrils and macro-fibrils. We used X-ray diffraction to study hair structure on the molecular level, at length scales between ∼3-90 Å, in hopes of developing a diagnostic method for diseases affecting hair structure allowing for fast and noninvasive screening. However, such an approach can only be successful if common hair treatments do not affect molecular hair structure. We found that a single use of shampoo and conditioner has no effect on packing of keratin molecules, structure of the intermediate filaments or internal lipid composition of the membrane complex. Permanent waving treatments are known to break and reform disulfide linkages in the hair. Single application of a perming product was found to deeply penetrate the hair and reduce the number of keratin coiled-coils and change the structure of the intermediate filaments. Signals related to the coiled-coil structure of the α-keratin molecules at 5 and 9.5 Å were found to be decreased while a signal associated with the organization of the intermediate filaments at 47 Å was significantly elevated in permed hair. Both these observations are related to breaking of the bonds between two coiled-coil keratin dimers.

  7. Effect of shampoo, conditioner and permanent waving on the molecular structure of human hair

    Directory of Open Access Journals (Sweden)

    Yuchen Zhang

    2015-10-01

    Full Text Available The hair is a filamentous biomaterial consisting of the cuticle, the cortex and the medulla, all held together by the cell membrane complex. The cortex mostly consists of helical keratin proteins that spiral together to form coiled-coil dimers, intermediate filaments, micro-fibrils and macro-fibrils. We used X-ray diffraction to study hair structure on the molecular level, at length scales between ∼3–90 Å, in hopes of developing a diagnostic method for diseases affecting hair structure allowing for fast and noninvasive screening. However, such an approach can only be successful if common hair treatments do not affect molecular hair structure. We found that a single use of shampoo and conditioner has no effect on packing of keratin molecules, structure of the intermediate filaments or internal lipid composition of the membrane complex. Permanent waving treatments are known to break and reform disulfide linkages in the hair. Single application of a perming product was found to deeply penetrate the hair and reduce the number of keratin coiled-coils and change the structure of the intermediate filaments. Signals related to the coiled-coil structure of the α-keratin molecules at 5 and 9.5 Å were found to be decreased while a signal associated with the organization of the intermediate filaments at 47 Å was significantly elevated in permed hair. Both these observations are related to breaking of the bonds between two coiled-coil keratin dimers.

  8. Molecular structure and vibrational spectra of Bis(melaminium) terephthalate dihydrate: A DFT computational study

    Science.gov (United States)

    Tanak, Hasan; Marchewka, Mariusz K.; Drozd, Marek

    2013-03-01

    The experimental and theoretical vibrational spectra of Bis(melaminium) terephthalate dihydrate were studied. The Fourier transform infrared (FT-IR) spectra of the Bis(melaminium) terephthalate dihydrate and its deuterated analogue were recorded in the solid phase. The molecular geometry and vibrational frequencies of Bis(melaminium) terephthalate dihydrate in the ground state have been calculated by using the density functional method (B3LYP) with 6-31++G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The molecule contains the weak hydrogen bonds of Nsbnd H⋯O, Nsbnd H⋯N and Osbnd H⋯O types, and those bonds are calculated with DFT method. In addition, molecular electrostatic potential, frontier molecular orbitals and natural bond orbital analysis of the title compound were investigated by theoretical calculations. The lack of the second harmonic generation (SHG) confirms the presence of macroscopic center of inversion.

  9. Molecular structure-adsorption study on current textile dyes.

    Science.gov (United States)

    Örücü, E; Tugcu, G; Saçan, M T

    2014-01-01

    This study was performed to investigate the adsorption of a diverse set of textile dyes onto granulated activated carbon (GAC). The adsorption experiments were carried out in a batch system. The Langmuir and Freundlich isotherm models were applied to experimental data and the isotherm constants were calculated for 33 anthraquinone and azo dyes. The adsorption equilibrium data fitted more adequately to the Langmuir isotherm model than the Freundlich isotherm model. Added to a qualitative analysis of experimental results, multiple linear regression (MLR), support vector regression (SVR) and back propagation neural network (BPNN) methods were used to develop quantitative structure-property relationship (QSPR) models with the novel adsorption data. The data were divided randomly into training and test sets. The predictive ability of all models was evaluated using the test set. Descriptors were selected with a genetic algorithm (GA) using QSARINS software. Results related to QSPR models on the adsorption capacity of GAC showed that molecular structure of dyes was represented by ionization potential based on two-dimensional topological distances, chromophoric features and a property filter index. Comparison of the performance of the models demonstrated the superiority of the BPNN over GA-MLR and SVR models.

  10. Graph theoretical ordering of structures as a basis for systematic searches for regularities in molecular data

    International Nuclear Information System (INIS)

    Randic, M.; Wilkins, C.L.

    1979-01-01

    Selected molecular data on alkanes have been reexamined in a search for general regularities in isomeric variations. In contrast to the prevailing approaches concerned with fitting data by searching for optimal parameterization, the present work is primarily aimed at established trends, i.e., searching for relative magnitudes and their regularities among the isomers. Such an approach is complementary to curve fitting or correlation seeking procedures. It is particularly useful when there are incomplete data which allow trends to be recognized but no quantitative correlation to be established. One proceeds by first ordering structures. One way is to consider molecular graphs and enumerate paths of different length as the basic graph invariant. It can be shown that, for several thermodynamic molecular properties, the number of paths of length two (p 2 ) and length three (p 3 ) are critical. Hence, an ordering based on p 2 and p 3 indicates possible trends and behavior for many molecular properties, some of which relate to others, some which do not. By considering a grid graph derived by attributing to each isomer coordinates (p 2 ,p 3 ) and connecting points along the coordinate axis, one obtains a simple presentation useful for isomer structural interrelations. This skeletal frame is one upon which possible trends for different molecular properties may be conveniently represented. The significance of the results and their conceptual value is discussed. 16 figures, 3 tables

  11. Molecular dynamics simulation of structural changes during the collision of copper nanoparticles

    International Nuclear Information System (INIS)

    Rojas T, Justo; Instituto Peruano de Energia Nuclear, Lima; Copa, Betty

    2009-01-01

    Molecular dynamics simulations with embedded-atom potential (EAM) have been performed to study the energetic and structural changes during the collision and coalescence of two Cu n nanoparticles. We simulated collision of nanoparticles at several temperatures below the melting point and with different impact energy. Analyzing the potential energy change during the collision we identify three clearly defined stages. The pair correlation function and the pair analysis technique are used to reveal the structural changes in the collision process. The variation in the time of the population of different pairs has been quantified, being observed diverse structural transformations. During the collision of two equal icosahedral nanoparticles ( Cu 55 ) has been observed different behavior of 1551 pairs depending on the impact velocity. (author).

  12. Atomic spectral-product representations of molecular electronic structure: metric matrices and atomic-product composition of molecular eigenfunctions.

    Science.gov (United States)

    Ben-Nun, M; Mills, J D; Hinde, R J; Winstead, C L; Boatz, J A; Gallup, G A; Langhoff, P W

    2009-07-02

    Recent progress is reported in development of ab initio computational methods for the electronic structures of molecules employing the many-electron eigenstates of constituent atoms in spectral-product forms. The approach provides a universal atomic-product description of the electronic structure of matter as an alternative to more commonly employed valence-bond- or molecular-orbital-based representations. The Hamiltonian matrix in this representation is seen to comprise a sum over atomic energies and a pairwise sum over Coulombic interaction terms that depend only on the separations of the individual atomic pairs. Overall electron antisymmetry can be enforced by unitary transformation when appropriate, rather than as a possibly encumbering or unnecessary global constraint. The matrix representative of the antisymmetrizer in the spectral-product basis, which is equivalent to the metric matrix of the corresponding explicitly antisymmetric basis, provides the required transformation to antisymmetric or linearly independent states after Hamiltonian evaluation. Particular attention is focused in the present report on properties of the metric matrix and on the atomic-product compositions of molecular eigenstates as described in the spectral-product representations. Illustrative calculations are reported for simple but prototypically important diatomic (H(2), CH) and triatomic (H(3), CH(2)) molecules employing algorithms and computer codes devised recently for this purpose. This particular implementation of the approach combines Slater-orbital-based one- and two-electron integral evaluations, valence-bond constructions of standard tableau functions and matrices, and transformations to atomic eigenstate-product representations. The calculated metric matrices and corresponding potential energy surfaces obtained in this way elucidate a number of aspects of the spectral-product development, including the nature of closure in the representation, the general redundancy or

  13. Skin hydration: interplay between molecular dynamics, structure and water uptake in the stratum corneum.

    Science.gov (United States)

    Mojumdar, Enamul Haque; Pham, Quoc Dat; Topgaard, Daniel; Sparr, Emma

    2017-11-16

    Hydration is a key aspect of the skin that influences its physical and mechanical properties. Here, we investigate the interplay between molecular and macroscopic properties of the outer skin layer - the stratum corneum (SC) and how this varies with hydration. It is shown that hydration leads to changes in the molecular arrangement of the peptides in the keratin filaments as well as dynamics of C-H bond reorientation of amino acids in the protruding terminals of keratin protein within the SC. The changes in molecular structure and dynamics occur at a threshold hydration corresponding to ca. 85% relative humidity (RH). The abrupt changes in SC molecular properties coincide with changes in SC macroscopic swelling properties as well as mechanical properties in the SC. The flexible terminals at the solid keratin filaments can be compared to flexible polymer brushes in colloidal systems, creating long-range repulsion and extensive swelling in water. We further show that the addition of urea to the SC at reduced RH leads to similar molecular and macroscopic responses as the increase in RH for SC without urea. The findings provide new molecular insights to deepen the understanding of how intermediate filament organization responds to changes in the surrounding environment.

  14. Structural and Conformational Chemistry from Electrochemical Molecular Machines. Replicating Biological Functions. A Review.

    Science.gov (United States)

    Otero, Toribio F

    2017-12-14

    Each constitutive chain of a conducting polymer electrode acts as a reversible multi-step electrochemical molecular motor: reversible reactions drive reversible conformational movements of the chain. The reaction-driven cooperative actuation of those molecular machines generates, or destroys, inside the film the free volume required to lodge/expel balancing counterions and solvent: reactions drive reversible film volume variations, which basic structural components are here identified and quantified from electrochemical responses. The content of the reactive dense gel (chemical molecular machines, ions and water) mimics that of the intracellular matrix in living functional cells. Reaction-driven properties (composition-dependent properties) and devices replicate biological functions and organs. An emerging technological world of soft, wet, reaction-driven, multifunctional and biomimetic devices and the concomitant zoomorphic or anthropomorphic robots is presented. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Computer aided molecular design with combined molecular modeling and group contribution

    DEFF Research Database (Denmark)

    Harper, Peter Mathias; Gani, Rafiqul; Kolar, Petr

    1999-01-01

    Computer-aided molecular design (CAMD) provides a means for determining molecules or mixtures of molecules (CAMMD) having a desirable set of physicochemical properties. The application range of CAMD is restricted due to limitations on the complexity of the generated molecular structures and on th......Computer-aided molecular design (CAMD) provides a means for determining molecules or mixtures of molecules (CAMMD) having a desirable set of physicochemical properties. The application range of CAMD is restricted due to limitations on the complexity of the generated molecular structures...

  16. Interfacial self-organization of bolaamphiphiles bearing mesogenic groups: relationships between the molecular structures and their self-organized morphologies.

    Science.gov (United States)

    Song, Bo; Liu, Guanqing; Xu, Rui; Yin, Shouchun; Wang, Zhiqiang; Zhang, Xi

    2008-04-15

    This article discusses the relationship between the molecular structure of bolaamphiphiles bearing mesogenic groups and their interfacial self-organized morphology. On the basis of the molecular structures of bolaamphiphiles, we designed and synthesized a series of molecules with different hydrophobic alkyl chain lengths, hydrophilic headgroups, mesogenic groups, and connectors between the alkyl chains and the mesogenic group. Through investigating their interfacial self-organization behavior, some experiential rules are summarized: (1) An appropriate alkyl chain length is necessary to form stable surface micelles; (2) different categories of headgroups have a great effect on the interfacial self-organized morphology; (3) different types of mesogenic groups have little effect on the structure of the interfacial assembly when it is changed from biphenyl to azobenzene or stilbene; (4) the orientation of the ester linker between the mesogenic group and alkyl chain can greatly influence the interfacial self-organization behavior. It is anticipated that this line of research may be helpful for the molecular engineering of bolaamphiphiles to form tailor-made morphologies.

  17. The molecular clock of neutral evolution can be accelerated or slowed by asymmetric spatial structure.

    Science.gov (United States)

    Allen, Benjamin; Sample, Christine; Dementieva, Yulia; Medeiros, Ruben C; Paoletti, Christopher; Nowak, Martin A

    2015-02-01

    Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a "molecular clock" to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution.

  18. The molecular clock of neutral evolution can be accelerated or slowed by asymmetric spatial structure.

    Directory of Open Access Journals (Sweden)

    Benjamin Allen

    2015-02-01

    Full Text Available Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a "molecular clock" to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution.

  19. 3D-QSAR (CoMFA, CoMSIA), molecular docking and molecular dynamics simulations study of 6-aryl-5-cyano-pyrimidine derivatives to explore the structure requirements of LSD1 inhibitors.

    Science.gov (United States)

    Ding, Lina; Wang, Zhi-Zheng; Sun, Xu-Dong; Yang, Jing; Ma, Chao-Ya; Li, Wen; Liu, Hong-Min

    2017-08-01

    Recently, Histone Lysine Specific Demethylase 1 (LSD1) was regarded as a promising anticancer target for the novel drug discovery. And several small molecules as LSD1 inhibitors in different structures have been reported. In this work, we carried out a molecular modeling study on the 6-aryl-5-cyano-pyrimidine fragment LSD1 inhibitors using three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to generate 3D-QSAR models. The results show that the best CoMFA model has q 2 =0.802, r 2 ncv =0.979, and the best CoMSIA model has q 2 =0.799, r 2 ncv =0.982. The electrostatic, hydrophobic and H-bond donor fields play important roles in the models. Molecular docking studies predict the binding mode and the interactions between the ligand and the receptor protein. Molecular dynamics simulations results reveal that the complex of the ligand and the receptor protein are stable at 300K. All the results can provide us more useful information for our further drug design. Copyright © 2017. Published by Elsevier Ltd.

  20. Molecular modeling and structural analysis of two-pore domain potassium channels TASK1 interactions with the blocker A1899

    Directory of Open Access Journals (Sweden)

    David Mauricio Ramirez

    2015-03-01

    Full Text Available A1899 is a potent and highly selective blocker of the Two-pore domain potassium (K2P channel TASK-1, it acts as an antagonist blocking the K+ flux and binds to TASK-1 in the inner cavity and shows an activity in nanomolar order. This drug travels through the central cavity and finally binds in the bottom of the selectivity filter with some threonines and waters molecules forming a H-bond network and several hydrophobic interactions. Using alanine mutagenesis screens the binding site was identify involving residues in the P1 and P2 pore loops, the M2 and M4 transmembrane segments, and the halothane response element; mutations were introduced in the human TASK-1 (KCNK3, NM_002246 expressed in Oocytes from anesthetized Xenopus laevis frogs. Based in molecular modeling and structural analysis as such as molecular docking and binding free energy calculations a pose was suggested using a TASK-1 homology models. Recently, various K2P crystal structures have been obtained. We want redefined – from a structural point of view – the binding mode of A1899 in TASK-1 homology models using as a template the K2P crystal structures. By computational structural analysis we describe the molecular basis of the A1899 binding mode, how A1899 travel to its binding site and suggest an interacting pose (Figure 1. after 100 ns of molecular dynamics simulation (MDs we found an intra H-Bond (80% of the total MDs, a H-Bond whit Thr93 (42% of the total MDs, a pi-pi stacking interaction between a ring and Phe125 (88% of the total MDs and several water bridges. Our experimental and computational results allow the molecular understanding of the structural binding mechanism of the selective blocker A1899 to TASK-1 channels. We identified the structural common and divergent features of TASK-1 channel through our theoretical and experimental studies of A1899 drug action.

  1. Effects of Electrode Distances on Geometric Structure and Electronic Transport Properties of Molecular 4,4'-Bipyridine Junction

    International Nuclear Information System (INIS)

    Li Zongliang; Zou Bin; Wang Chuankui; Luo Yi

    2006-01-01

    Influences of electrode distances on geometric structure of molecule and on electronic transport properties of molecular junctions have been investigated by means of a generalized quantum chemical approach based on the elastic scattering Green's function method. Numerical results show that, for organic molecule 4,4'-bipyridine, the geometric structure of the molecule especially the dihedral angle between the two pyridine rings is sensitive to the distances between the two electrodes. The currents of the molecular junction are taken nonlinearly increase with the increase of the bias. Shortening the distance of the metallic electrodes will result in stronger coupling and larger conductance

  2. Origami: A Versatile Modeling System for Visualising Chemical Structure and Exploring Molecular Function

    Science.gov (United States)

    Davis, James; Leslie, Ray; Billington, Susan; Slater, Peter R.

    2010-01-01

    The use of "Origami" is presented as an accessible and transferable modeling system through which to convey the intricacies of molecular shape and highlight structure-function relationships. The implementation of origami has been found to be a versatile alternative to conventional ball-and-stick models, possessing the key advantages of being both…

  3. Theoretical molecular biophysics

    CERN Document Server

    Scherer, Philipp O J

    2017-01-01

    This book gives an introduction to molecular biophysics. It starts from material properties at equilibrium related to polymers, dielectrics and membranes. Electronic spectra are developed for the understanding of elementary dynamic processes in photosynthesis including proton transfer and dynamics of molecular motors. Since the molecular structures of functional groups of bio-systems were resolved, it has become feasible to develop a theory based on the quantum theory and statistical physics with emphasis on the specifics of the high complexity of bio-systems. This introduction to molecular aspects of the field focuses on solvable models. Elementary biological processes provide as special challenge the presence of partial disorder in the structure which does not destroy the basic reproducibility of the processes. Apparently the elementary molecular processes are organized in a way to optimize the efficiency. Learning from nature by means exploring the relation between structure and function may even help to b...

  4. Determination of structure and properties of molecular crystals from first principles.

    Science.gov (United States)

    Szalewicz, Krzysztof

    2014-11-18

    CONSPECTUS: Until recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be

  5. Molecular Basis of Clay Mineral Structure and Dynamics in Subsurface Engineering Applications

    Science.gov (United States)

    Cygan, R. T.

    2015-12-01

    Clay minerals and their interfaces play an essential role in many geochemical, environmental, and subsurface engineering applications. Adsorption, dissolution, precipitation, nucleation, and growth mechanisms, in particular, are controlled by the interplay of structure, thermodynamics, kinetics, and transport at clay mineral-water interfaces. Molecular details of these processes are typically beyond the sensitivity of experimental and analytical methods, and therefore require accurate models and simulations. Also, basal surfaces and interlayers of clay minerals provide constrained interfacial environments to facilitate the evaluation of these complex processes. We have developed and used classical molecular and quantum methods to examine the complex behavior of clay mineral-water interfaces and dynamics of interlayer species. Bulk structures, swelling behavior, diffusion, and adsorption processes are evaluated and compared to experimental and spectroscopic findings. Analysis of adsorption mechanisms of radionuclides on clay minerals provides a scientific basis for predicting the suitability of engineered barriers associated with nuclear waste repositories and the fate of contaminants in the environment. Similarly, the injection of supercritical carbon dioxide into geological reservoirs—to mitigate the impact of climate change—is evaluated by molecular models of multi-fluid interactions with clay minerals. Molecular dynamics simulations provide insights into the wettability of different fluids—water, electrolyte solutions, and supercritical carbon dioxide—on clay surfaces, and which ultimately affects capillary fluid flow and the integrity of shale caprocks. This work is supported as part of Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program

  6. Synthesis, properties, and molecular structure of a trivalent organouranium diphosphine hydride

    International Nuclear Information System (INIS)

    Duttera, M.R.; Fagan, P.J.; Marks, T.J.; Day, V.W.

    1982-01-01

    Hydrogenolysis of U[(CH 3 ) 5 C 5 ] 2 R 2 , [R = CH 3 Ch 2 Si(CH 3 ) 3 ], proceeds at -20 0 C in the presence of excess bis(2 dimethylphosphino)ethane(dmpe) according to this reaction: U[(CH 3 ) 3 C 5 ] 2 R 2 + 1.5H 2 + dmpe → (toluene, 18h) U[(CH 3 ) 5 C 5 ] 2 (dmpe) H + 2RH. Black microcrystals can be purified by vacuum Soxhlet extraction with toluene. All processes involving this compound must be performed under argon or helium atmospheres, since it reacts with nitrogen. The structure was studied by NMR, ir spectra. The molar magnetic suceptibility was measured at 295 K, 5120 x 10 -4 emu and is consistent with a U (III) formulation. Crystals are orthorhombic. X-ray diffraction data were collected. Structural parameters were refined to convergence. X-ray structural analysis reveals monocrystals of discrete mononuclear U[eta 5 -(CH 3 ) 5 C 5 ] 2 (dmpe)H molecules. The molecular structure is evaluated. 1 figure

  7. Molecular catalysts structure and functional design

    CERN Document Server

    Gade, Lutz H

    2014-01-01

    Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers wil

  8. Analysis of sulfates on low molecular weight heparin using mass spectrometry: structural characterization of enoxaparin.

    Science.gov (United States)

    Gupta, Rohitesh; Ponnusamy, Moorthy P

    2018-05-21

    Structural characterization of Low Molecular Weight Heparin (LMWH) is critical to meet biosimilarity standards. In this context, the review focuses on structural analysis of labile sulfates attached to the side-groups of LMWH using mass spectrometry. A comprehensive review of this topic will help readers to identify key strategies for tackling the problem related to sulfate loss. At the same time, various mass spectrometry techniques are presented to facilitate compositional analysis of LMWH, mainly Enoxaparin. Areas covered: This review summarizes findings on mass spectrometry application for LMWH, including modulation of sulfates, using enzymology and sample preparation approaches. Furthermore, popular open-source software packages for automated spectral data interpretation are also discussed. Successful use of LC/MS can decipher structural composition for LMWH and help evaluate their sameness or biosimilarity with the innovator molecule. Overall, the literature has been searched using PubMed by typing various search queries such as "enoxaparin", "mass spectrometry", "low molecular weight heparin", "structural characterization", etc. Expert commentary: This section highlights clinically relevant areas that need improvement to achieve satisfactory commercialization of LMWHs. It also primarily emphasizes the advancements in instrumentation related to mass spectrometry, and discusses building automated software for data interpretation and analysis.

  9. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    Science.gov (United States)

    Xiao, Xueliang; Hu, Jinlian

    2016-05-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.

  10. On a Molecular Basis, Investigate Association of Molecular Structure with Bioactive Compounds, Anti-Nutritional Factors and Chemical and Nutrient Profiles of Canola Seeds and Co-Products from Canola Processing: Comparison Crusher Plants within Canada and within China as well as between Canada and China.

    Science.gov (United States)

    Gomaa, Walaa M S; Mosaad, Gamal M; Yu, Peiqiang

    2018-04-21

    The objectives of this study were to: (1) Use molecular spectroscopy as a novel technique to quantify protein molecular structures in relation to its chemical profiles and bioenergy values in oil-seeds and co-products from bio-oil processing. (2) Determine and compare: (a) protein molecular structure using Fourier transform infrared (FT/IR-ATR) molecular spectroscopy technique; (b) bioactive compounds, anti-nutritional factors, and chemical composition; and (c) bioenergy values in oil seeds (canola seeds), co-products (meal or pellets) from bio-oil processing plants in Canada in comparison with China. (3) Determine the relationship between protein molecular structural features and nutrient profiles in oil-seeds and co-products from bio-oil processing. Our results showed the possibility to characterize protein molecular structure using FT/IR molecular spectroscopy. Processing induced changes between oil seeds and co-products were found in the chemical, bioenergy profiles and protein molecular structure. However, no strong correlation was found between the chemical and nutrient profiles of oil seeds (canola seeds) and their protein molecular structure. On the other hand, co-products were strongly correlated with protein molecular structure in the chemical profile and bioenergy values. Generally, comparisons of oil seeds (canola seeds) and co-products (meal or pellets) in Canada, in China, and between Canada and China indicated the presence of variations among different crusher plants and bio-oil processing products.

  11. Structural Molecular Biology-A Personal Reflection on the Occasion of John Kendrew's 100th Birthday.

    Science.gov (United States)

    Cramer, Patrick

    2017-08-18

    Here, I discuss the development and future of structural molecular biology, concentrating on the eukaryotic transcription machinery and reflecting on John Kendrew's legacy from a personal perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Structural investigation of bistrifluron using x-ray crystallography, NMR spectroscopy, and molecular modeling

    CERN Document Server

    Moon, J K; Rhee, S K; Kim, G B; Yun, H S; Chung, B J; Lee, S S; Lim, Y H

    2002-01-01

    A new insecticide, bistrifluron acts as an inhibitor of insect development and interferes with the cuticle formation of insects. Since it shows low acute oral and dermal toxicities, it can be one of potent insecticides. Based on X-ray crystallography, NMR spectroscopy and molecular modeling, the structural studies of bistrifluron have been carried out.

  13. Quantum chemistry the development of ab initio methods in molecular electronic structure theory

    CERN Document Server

    Schaefer III, Henry F

    2004-01-01

    This guide is guaranteed to prove of keen interest to the broad spectrum of experimental chemists who use electronic structure theory to assist in the interpretation of their laboratory findings. A list of 150 landmark papers in ab initio molecular electronic structure methods, it features the first page of each paper (which usually encompasses the abstract and introduction). Its primary focus is methodology, rather than the examination of particular chemical problems, and the selected papers either present new and important methods or illustrate the effectiveness of existing methods in predi

  14. Effect of thermal processing on estimated metabolizable protein supply to dairy cattle from camelina seeds: relationship with protein molecular structural changes.

    Science.gov (United States)

    Peng, Quanhui; Khan, Nazir A; Wang, Zhisheng; Zhang, Xuewei; Yu, Peiqiang

    2014-08-20

    This study evaluated the effect of thermal processing on the estimated metabolizable protein (MP) supply to dairy cattle from camelina seeds (Camelina sativa L. Crantz) and determined the relationship between heat-induced changes in protein molecular structural characteristics and the MP supply. Seeds from two camelina varieties were sampled in two consecutive years and were either kept raw or were heated in an autoclave (moist heating) or in an air-draft oven (dry heating) at 120 °C for 1 h. The MP supply to dairy cattle was modeled by three commonly used protein evaluation systems. The protein molecular structures were analyzed by Fourier transform/infrared-attenuated total reflectance molecular spectroscopy. The results showed that both the dry and moist heating increased the contents of truly absorbable rumen-undegraded protein (ARUP) and total MP and decreased the degraded protein balance (DPB). However, the moist-heated camelina seeds had a significantly higher (P seeds. The regression equations showed that intensities of the protein molecular structural bands can be used to estimate the contents of ARUP, MP, and DPB with high accuracy (R(2) > 0.70). These results show that protein molecular structural characteristics can be used to rapidly assess the MP supply to dairy cattle from raw and heat-treated camelina seeds.

  15. Molecular docking.

    Science.gov (United States)

    Morris, Garrett M; Lim-Wilby, Marguerita

    2008-01-01

    Molecular docking is a key tool in structural molecular biology and computer-assisted drug design. The goal of ligand-protein docking is to predict the predominant binding mode(s) of a ligand with a protein of known three-dimensional structure. Successful docking methods search high-dimensional spaces effectively and use a scoring function that correctly ranks candidate dockings. Docking can be used to perform virtual screening on large libraries of compounds, rank the results, and propose structural hypotheses of how the ligands inhibit the target, which is invaluable in lead optimization. The setting up of the input structures for the docking is just as important as the docking itself, and analyzing the results of stochastic search methods can sometimes be unclear. This chapter discusses the background and theory of molecular docking software, and covers the usage of some of the most-cited docking software.

  16. Investigation of Molecular Structure and Thermal Properties of Thermo-Oxidative Aged SBS in Blends and Their Relations.

    Science.gov (United States)

    Xu, Xiong; Yu, Jianying; Xue, Lihui; Zhang, Canlin; Zha, Yagang; Gu, Yi

    2017-07-07

    Tri-block copolymer styrene-butadiene (SBS) is extensively applied in bituminous highway construction due to its high elasticity and excellent weather resistance. With the extension of time, tri-block structural SBS automatically degrades into bi-block structural SB- with some terminal oxygen-containing groups under the comprehensive effects of light, heat, oxygen, etc. In this paper, the effects of aging temperature, aging time and oxygen concentration on the molecular structure of thermo-oxidative aged SBS were mainly investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and the correlation between oxygen-containing groups and thermal properties (TG-DTG) was further discussed. The FTIR and XPS results show that rapid decomposition of SBS will occur with increments of aging temperature, aging time and oxygen concentration, and a large number of oxygen-containing groups such as -OH, C=O, -COOH, etc. will be formed during thermo-oxidative aging. In short-term aging, changes in aging temperature and oxygen concentration have a significant impact on the structural damage of SBS. However, in long-term aging, it has no further effect on the molecular structure of SBS or on increasing oxygen concentration. The TG and DTG results indicate that the concentration of substances with low molecular weight gradually increases with the improvement of the degree of aging of the SBS, while the initial decomposition rate increases at the beginning of thermal weightlessness and the decomposition rate slows down in comparison with neat SBS. From the relation between the XPS and TG results, it can be seen that the initial thermal stability of SBS rapidly reduces as the relative concentration of the oxygen-containing groups accumulates around 3%, while the maximum decomposition temperature slowly decreases when the relative concentration of the oxygen-containing groups is more than 3%, due to the difficult damage to strong bonds

  17. Synthesis, molecular modeling and structural characterization of vanillin derivatives as antimicrobial agents

    Science.gov (United States)

    Sun, Juan; Yin, Yong; Sheng, Gui-Hua; Yang, Zhi-Bo; Zhu, Hai-Liang

    2013-05-01

    Two vanillin derivatives have been designed and synthesized and their biological activities were also evaluated for antimicrobial activity. Their chemical structures are characterized by single crystal X-ray diffraction studies, 1H NMR, MS, and elemental analysis. Structural stabilization of them followed by intramolecular as well as intermolecular H-bonds makes these molecules as perfect examples in molecular recognition with self-complementary donor and acceptor units within a single molecule. Docking simulations have been performed to position compounds into the FtsZ active site to determine their probable binding model. Compound 3a shows the most potent biological activity, which may be a promising antimicrobial leading compound for the further research.

  18. Molecular structure based property modeling: Development/ improvement of property models through a systematic property-data-model analysis

    DEFF Research Database (Denmark)

    Hukkerikar, Amol Shivajirao; Sarup, Bent; Sin, Gürkan

    2013-01-01

    models. To make the property-data-model analysis fast and efficient, an approach based on the “molecular structure similarity criteria” to identify molecules (mono-functional, bi-functional, etc.) containing specified set of structural parameters (that is, groups) is employed. The method has been applied...

  19. Shining Light on the Differences in Molecular Structural Chemical Makeup and the Cause of Distinct Degradation Behavior Between Malting- and Feed- Type Barley Using Synchrotorn FTIR Microspectroscopy: A Novel Approach

    International Nuclear Information System (INIS)

    Yu, P.; Doiron, K.; Liu, D.

    2008-01-01

    The objective of this study was to use advanced synchrotron-sourced FTIR microspectroscopy (SFTIRM) as a novel approach to identify the differences in protein and carbohydrate molecular structure (chemical makeup) between these two varieties of barley and illustrate the exact causes for their significantly different degradation kinetics. Items assessed included (1) molecular structural differences in protein amide I to amide II intensities and their ratio within cellular dimensions, (2) molecular structural differences in protein secondary structure profile and their ratios, and (3) molecular structural differences in carbohydrate component peak profile. Our hypothesis was that molecular structure (chemical makeup) affects barley quality, fermentation, and degradation behavior in both humans and animals. Using SFTIRM, the protein and carbohydrate molecular structural chemical makeup of barley was revealed and identified. The protein molecular structural chemical makeup differed significantly between the two varieties of barleys. No difference in carbohydrate molecular structural chemical makeup was detected. Harrington was lower than Valier in protein amide I, amide II, and protein amide I to amide II ratio, while Harrington was relatively higher in model-fitted protein a-helix and β-sheet, but lower in the others (β-turn and random coil). These results indicated that it is the molecular structure of protein (chemical makeup) that may play a major role in the different degradation kinetics between the two varieties of barleys (not the molecular structure of carbohydrate). It is believed that use of the advanced synchrotron technology will make a significant step and an important contribution to research in examining the molecular structure (chemical makeup) of plant, feed, and seeds.

  20. Molecular similarity measures.

    Science.gov (United States)

    Maggiora, Gerald M; Shanmugasundaram, Veerabahu

    2011-01-01

    Molecular similarity is a pervasive concept in chemistry. It is essential to many aspects of chemical reasoning and analysis and is perhaps the fundamental assumption underlying medicinal chemistry. Dissimilarity, the complement of similarity, also plays a major role in a growing number of applications of molecular diversity in combinatorial chemistry, high-throughput screening, and related fields. How molecular information is represented, called the representation problem, is important to the type of molecular similarity analysis (MSA) that can be carried out in any given situation. In this work, four types of mathematical structure are used to represent molecular information: sets, graphs, vectors, and functions. Molecular similarity is a pairwise relationship that induces structure into sets of molecules, giving rise to the concept of chemical space. Although all three concepts - molecular similarity, molecular representation, and chemical space - are treated in this chapter, the emphasis is on molecular similarity measures. Similarity measures, also called similarity coefficients or indices, are functions that map pairs of compatible molecular representations that are of the same mathematical form into real numbers usually, but not always, lying on the unit interval. This chapter presents a somewhat pedagogical discussion of many types of molecular similarity measures, their strengths and limitations, and their relationship to one another. An expanded account of the material on chemical spaces presented in the first edition of this book is also provided. It includes a discussion of the topography of activity landscapes and the role that activity cliffs in these landscapes play in structure-activity studies.

  1. Fast electronic structure methods for strongly correlated molecular systems

    International Nuclear Information System (INIS)

    Head-Gordon, Martin; Beran, Gregory J O; Sodt, Alex; Jung, Yousung

    2005-01-01

    A short review is given of newly developed fast electronic structure methods that are designed to treat molecular systems with strong electron correlations, such as diradicaloid molecules, for which standard electronic structure methods such as density functional theory are inadequate. These new local correlation methods are based on coupled cluster theory within a perfect pairing active space, containing either a linear or quadratic number of pair correlation amplitudes, to yield the perfect pairing (PP) and imperfect pairing (IP) models. This reduces the scaling of the coupled cluster iterations to no worse than cubic, relative to the sixth power dependence of the usual (untruncated) coupled cluster doubles model. A second order perturbation correction, PP(2), to treat the neglected (weaker) correlations is formulated for the PP model. To ensure minimal prefactors, in addition to favorable size-scaling, highly efficient implementations of PP, IP and PP(2) have been completed, using auxiliary basis expansions. This yields speedups of almost an order of magnitude over the best alternatives using 4-center 2-electron integrals. A short discussion of the scope of accessible chemical applications is given

  2. Structural characterization of a recombinant fusion protein by instrumental analysis and molecular modeling.

    Directory of Open Access Journals (Sweden)

    Zhigang Wu

    Full Text Available Conbercept is a genetically engineered homodimeric protein for the treatment of wet age-related macular degeneration (wet AMD that functions by blocking VEGF-family proteins. Its huge, highly variable architecture makes characterization and development of a functional assay difficult. In this study, the primary structure, number of disulfide linkages and glycosylation state of conbercept were characterized by high-performance liquid chromatography, mass spectrometry, and capillary electrophoresis. Molecular modeling was then applied to obtain the spatial structural model of the conbercept-VEGF-A complex, and to study its inter-atomic interactions and dynamic behavior. This work was incorporated into a platform useful for studying the structure of conbercept and its ligand binding functions.

  3. New Diethyl Ammonium Salt of Thiobarbituric Acid Derivative: Synthesis, Molecular Structure Investigations and Docking Studies

    Directory of Open Access Journals (Sweden)

    Assem Barakat

    2015-11-01

    Full Text Available The synthesis of the new diethyl ammonium salt of diethylammonium(E-5-(1,5-bis(4-fluorophenyl-3-oxopent-4-en-1-yl-1,3-diethyl-4,6-dioxo-2-thioxohexaydropyrimidin-5-ide 3 via a regioselective Michael addition of N,N-diethylthiobarbituric acid 1 to dienone 2 is described. In 3, the carboanion of the thiobarbituric moiety is stabilized by the strong intramolecular electron delocalization with the adjacent carbonyl groups and so the reaction proceeds without any cyclization. The molecular structure investigations of 3 were determined by single-crystal X-ray diffraction as well as DFT computations. The theoretically calculated (DFT/B3LYP geometry agrees well with the crystallographic data. The effect of fluorine replacement by chlorine atoms on the molecular structure aspects were investigated using DFT methods. Calculated electronic spectra showed a bathochromic shift of the π-π* transition when fluorine is replaced by chlorine. Charge decomposition analyses were performed to study possible interaction between the different fragments in the studied systems. Molecular docking simulations examining the inhibitory nature of the compound show an anti-diabetic activity with Pa (probability of activity value of 0.229.

  4. Synthesis and molecular structure of (monoaqua) oxovanadium (IV) thiosemicarbazide-diacetate monohydrate

    International Nuclear Information System (INIS)

    Gerbeleu, N.V.; Bologa, A.O.; Burshtein, I.F.; Filippova, I.G.; Kiosse, G.A.

    1986-01-01

    This paper describes the structure for a new complex of oxovanadium (IV) with H 2 L. This compound was obtained by mixing warm aqueous solutions containing 1.0 g VOSO 4 .2H 2 O and H 2 L at room temperature. The coordinates and the individual temperature factors of the basis atoms in the structure VOLH 2 O .H 2 O are presented. It is shown that the vanadium atom in both complexes has a distorted octahedral environment. The geometrical isomerism is accompanied by differences in the conformations of the molecular ligand. Two geometrical isomers of a previously unknown type are concurrently present in the VOLH 2 O structure. The formation of these isomers is made possible by the different arrangement of inequivalent branches of the organic ligand. This type of isomerism should be expected in the complexes of other metals with H 2 L and in the coordination compounds of metals with other B-type tripod ligands

  5. The Static and Molecular Structure of Barium Dibromide: A Theoretical Study

    International Nuclear Information System (INIS)

    Guerbuez, H.

    2004-01-01

    The geometry of barium dibromide was first determined by electron diffraction by Akishin and Spiridov. That study concluded that the molecule is linear, but recent modern electron diffraction and quantum chemical studies of BaBr 2 indicated that its equilibrium geometry is bent. The geometrical parameters, namely, bond lengths and bond angles of barium dibromide were calculated from different levels of computation and experimentally. In this work we have calculated the molecular structure of the BaCl 2 using the Interionic Force model. On the other hand, we have calculated the interionic potentials with two different rigid ion model potentials (RIM) which one is the Vashista-Rahman (VR) semi-empirical potential and second one is the RIM potential with parametrization of Tatlipinar. These two model potential are compared with each other by reproducing the experimental static structure. The structure calculations have been performed by solving numerically the hypernetted chain approximate of liquids

  6. Relationship between Molecular Structure Characteristics of Feed Proteins and Protein Digestibility and Solubility

    Directory of Open Access Journals (Sweden)

    Mingmei Bai

    2016-08-01

    Full Text Available The nutritional value of feed proteins and their utilization by livestock are related not only to the chemical composition but also to the structure of feed proteins, but few studies thus far have investigated the relationship between the structure of feed proteins and their solubility as well as digestibility in monogastric animals. To address this question we analyzed soybean meal, fish meal, corn distiller’s dried grains with solubles, corn gluten meal, and feather meal by Fourier transform infrared (FTIR spectroscopy to determine the protein molecular spectral band characteristics for amides I and II as well as α-helices and β-sheets and their ratios. Protein solubility and in vitro digestibility were measured with the Kjeldahl method using 0.2% KOH solution and the pepsin-pancreatin two-step enzymatic method, respectively. We found that all measured spectral band intensities (height and area of feed proteins were correlated with their the in vitro digestibility and solubility (p≤0.003; moreover, the relatively quantitative amounts of α-helices, random coils, and α-helix to β-sheet ratio in protein secondary structures were positively correlated with protein in vitro digestibility and solubility (p≤0.004. On the other hand, the percentage of β-sheet structures was negatively correlated with protein in vitro digestibility (p<0.001 and solubility (p = 0.002. These results demonstrate that the molecular structure characteristics of feed proteins are closely related to their in vitro digestibility at 28 h and solubility. Furthermore, the α-helix-to-β-sheet ratio can be used to predict the nutritional value of feed proteins.

  7. Calculations of optical rotation: Influence of molecular structure

    Directory of Open Access Journals (Sweden)

    Yu Jia

    2012-01-01

    Full Text Available Ab initio Hartree-Fock (HF method and Density Functional Theory (DFT were used to calculate the optical rotation of 26 chiral compounds. The effects of theory and basis sets used for calculation, solvents influence on the geometry and values of calculated optical rotation were all discussed. The polarizable continuum model, included in the calculation, did not improve the accuracy effectively, but it was superior to γs. Optical rotation of five or sixmembered of cyclic compound has been calculated and 17 pyrrolidine or piperidine derivatives which were calculated by HF and DFT methods gave acceptable predictions. The nitrogen atom affects the calculation results dramatically, and it is necessary in the molecular structure in order to get an accurate computation result. Namely, when the nitrogen atom was substituted by oxygen atom in the ring, the calculation result deteriorated.

  8. Effect of structure and molecular weight on properties of pressure sensitive adhesives (PSA) formulated from palm oil based urethane acrylate (POBUA)

    International Nuclear Information System (INIS)

    Mohd Hilmi Mahmood; Shahrol Najmin Baharom; Rida Tajau; Mek Zah Salleh; Khairul Zaman Mohd Dahlan; Rosley Che Ismail

    2004-01-01

    Various palm oil (RBD Palm Olein) based urethane acrylate prepolymers (UPs) having different structures and molecular weight were synthesized from palm oil based polyols, diisocyanate compounds and hydroxyl terminated acrylate monomers by following established synthesis procedures described elsewhere. The products (UPs) were compared with each other in term of their molecular weight (MW), viscosities and UV curing performances of pressure sensitive adhesives (PSA) UP based formulations. The molecular structure of diisocyanate compounds and hydroxyl acrylate monomers tend to determine the molecular weight and hence viscosities of the final products of urethane acrylate prepolymers (UP), whereas, the MW of the UP has no direct effects on the coatings and adhesive properties of UV curable UP based PSA. (Author)

  9. Prediction of retention in micellar electrokinetic chromatography based on molecular structural descriptors by using the heuristic method

    International Nuclear Information System (INIS)

    Liu Huanxiang; Yao Xiaojun; Liu Mancang; Hu Zhide; Fan Botao

    2006-01-01

    Based on calculated molecular descriptors from the solutes' structure alone, the micelle-water partition coefficients of 103 solutes in micellar electrokinetic chromatography (MEKC) were predicted using the heuristic method (HM). At the same time, in order to show the influence of different molecular descriptors on the micelle-water partition of solute and to well understand the retention mechanism in MEKC, HM was used to build several multivariable linear models using different numbers of molecular descriptors. The best 6-parameter model gave the following results: the square of correlation coefficient R 2 was 0.958 and the mean relative error was 3.98%, which proved that the predictive values were in good agreement with the experimental results. From the built model, it can be concluded that the hydrophobic, H-bond, polar interactions of solutes with the micellar and aqueous phases are the main factors that determine their partitioning behavior. In addition, this paper provided a simple, fast and effective method for predicting the retention of the solutes in MEKC from their structures and gave some insight into structural features related to the retention of the solutes

  10. Fletcher-Reeves based Particle Swarm Optimization for prediction of molecular structure.

    Science.gov (United States)

    Agrawal, Shikha; Silakari, Sanjay

    2014-04-01

    The determination of the most stable conformers of a molecule can be formulated as a global optimization problem. Knowing the stable conformers of a molecule is important because it allows us to understand its properties and behavior based on its structure. The most stable conformation is that involving the global minimum of potential energy. The problem of finding this global minimum is highly complex, and is computationally difficult because of the number of local minima, which grows exponentially with molecular size. In this paper, we propose a hybrid approach combining Particle Swarm Optimization (PSO) and the Fletcher-Reeves algorithm to minimize the potential energy function. The proposed hybrid algorithm is applied to a simplified molecular potential energy function in problems with up to 100 degrees of freedom and also to a realistic potential energy function modeling a pseudoethane molecule. The computational results for both the cases show that the proposed method performs significantly better than the other algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy

    Science.gov (United States)

    Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.

    2017-02-01

    We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

  12. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage.

    Science.gov (United States)

    Lei, Yaogeng; Hannoufa, Abdelali; Yu, Peiqiang

    2017-01-29

    Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO) in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved in important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfa quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding.

  13. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yaogeng; Hannoufa, Abdelali; Yu, Peiqiang

    2017-01-29

    Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO) in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved in important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfa quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding.

  14. Quantum chemical studies on molecular structural conformations and hydrated forms of salicylamide and O-hydroxybenzoyl cyanide

    Science.gov (United States)

    Anandan, K.; Kolandaivel, P.; Kumaresan, R.

    Ab initio and density functional theory (DFT) methods have been employed to study the molecular structural conformations and hydrated forms of both salicylamide (SAM) and O-hydroxybenzoyl cyanide (OHBC). Molecular geometries and energetics have been obtained in the gaseous phase by employing the Møller-Plesset type 2 MP2/6-311G(2d,2p) and B3LYP/6-311G(2d,2p) levels of theory. The presence of an electron-releasing group (SAM) leads to an increase in the energy of the molecular system, while the presence of an electron-withdrawing group (OHBC) drastically decreases the energy. Chemical reactivity parameters (η and μ) have been calculated using the energy values of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) obtained at the Hartree-Fock (HF)/6-311G(2d,2p) level of theory for all the conformers and the principle of maximum hardness (MHP) has been tested. The condensed Fukui functions have been calculated using the atomic charges obtained through the natural bond orbital (NBO) analysis scheme for all the optimized structures at the B3LYP/6-311G(2d,2p) level of theory, and the most reactive sites of the molecules have been identified. Nuclear magnetic resonance (NMR) studies have been carried out at the B3LYP/6-311G(2d,2p) level of theory for all the conformers in the gaseous phase on the basis of the method of Cheeseman and coworkers. The calculated chemical shift values have been used to discuss the delocalization activity of the electron clouds. The dimeric structures of the most stable conformers of both SAM and OHBC in the gaseous phase have been optimized at the B3LYP/6-311G(2d,2p) level of theory, and the interaction energies have been calculated. The most stable conformers of both compounds bear an intramolecular hydrogen bond, which gives rise to the formation of a pseudo-aromatic ring. These conformers have been allowed to interact with the water molecule. Special emphasis has been given to analysis of the

  15. Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure.

    Science.gov (United States)

    Cobb, Nathan J; Sönnichsen, Frank D; McHaourab, Hassane; Surewicz, Witold K

    2007-11-27

    Transmissible spongiform encephalopathies (TSEs) represent a group of fatal neurodegenerative diseases that are associated with conformational conversion of the normally monomeric and alpha-helical prion protein, PrP(C), to the beta-sheet-rich PrP(Sc). This latter conformer is believed to constitute the main component of the infectious TSE agent. In contrast to high-resolution data for the PrP(C) monomer, structures of the pathogenic PrP(Sc) or synthetic PrP(Sc)-like aggregates remain elusive. Here we have used site-directed spin labeling and EPR spectroscopy to probe the molecular architecture of the recombinant PrP amyloid, a misfolded form recently reported to induce transmissible disease in mice overexpressing an N-terminally truncated form of PrP(C). Our data show that, in contrast to earlier, largely theoretical models, the con formational conversion of PrP(C) involves major refolding of the C-terminal alpha-helical region. The core of the amyloid maps to C-terminal residues from approximately 160-220, and these residues form single-molecule layers that stack on top of one another with parallel, in-register alignment of beta-strands. This structural insight has important implications for understanding the molecular basis of prion propagation, as well as hereditary prion diseases, most of which are associated with point mutations in the region found to undergo a refolding to beta-structure.

  16. Molecular structure, vibrational, HOMO-LUMO, MEP and NBO analysis of hafnium selenite

    Science.gov (United States)

    Yankova, Rumyana; Genieva, Svetlana; Dimitrova, Ginka

    2017-08-01

    In hydrothermal condition hafnium selenite with estimated chemical composition Hf(SeO3)2·n(H2O) was obtained and characterized by powder X-Ray diffraction, IR spectroscopy and thermogravimetrical analysis. The composition of the obtained crystalline phase was established as dihydrate of tetraaqua complex of the hafnium selenite [Hf(SeO3)2(H2O)4]·2H2O. The results of the thermogravimetrical analysis are shown that the two hydrated water molecules are released in the temperature interval 80-110°C, while the four coordinated water molecules - at 210-300°C. By DFT method, with Becke's three parameter exchange-functional combined with gradient-corrected correlation functional of Lee, Yang and Parr and 6-31G(d), 6-311 + G(d,p) basis sets and LANL2DZ for Hf atom were calculated the molecular structure, vibrational frequencies and thermodynamic properties of the structure. The UV-Vis spectra and electronic properties are presented. The energy and oscillator strength calculated by time-dependent density functional theory corresponds well with the experimental ones. Molecular electrostatic potential (MEP) was performed. Mulliken population analysis on atomic charges was also calculated. The stability and intramolecular interactions are interpreted by NBO analysis.

  17. Molecular-orbital and structural descriptors in theoretical investigation of electroreduction of nitrodiazoles

    Directory of Open Access Journals (Sweden)

    BRANKO KOLARIC

    2005-07-01

    Full Text Available It is shown how a simple theoretical approach can be used for the investigation of electro-organic reactions.Mononitroimidazoles and mononitropyrazoles were studied by the semiempirical MNDO-PM3 molecular orbital method. The electrochemical reduction potentials of diazoles have been correlated with the energy of the lowest unoccupied molecular orbital (LUMO. It was found that an admirable correlation could be obtained by the introduction of simple structural descriptors as a correction to the energy of the LUMO. The interaction of a molecule with its surrounding depends on electrostatic potential and on steric hindrance. Most of these steric effects are taken into account using two parameters having a very limited set of integer values. The first (b is the position of a ring substituent regarding ring nitrogens, which accounts for the different orientations of dipole moments and for the different shape of the electrostatic potential. The second (structural parameter (t is the type of the ring, which accounts mostly for different modes of electrode approach, and for different charge polarization patterns in two diazole rings. The extended correlation with ELUMO, b and t, is very good, having a regression coefficient r = 0.991. The intrinsic importance of b and t is exemplified by their high statistical weight.

  18. structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments.

    Science.gov (United States)

    Dodonova, Svetlana O; Aderhold, Patrick; Kopp, Juergen; Ganeva, Iva; Röhling, Simone; Hagen, Wim J H; Sinning, Irmgard; Wieland, Felix; Briggs, John A G

    2017-06-16

    COPI coated vesicles mediate trafficking within the Golgi apparatus and between the Golgi and the endoplasmic reticulum. Assembly of a COPI coated vesicle is initiated by the small GTPase Arf1 that recruits the coatomer complex to the membrane, triggering polymerization and budding. The vesicle uncoats before fusion with a target membrane. Coat components are structurally conserved between COPI and clathrin/adaptor proteins. Using cryo-electron tomography and subtomogram averaging, we determined the structure of the COPI coat assembled on membranes in vitro at 9 Å resolution. We also obtained a 2.57 Å resolution crystal structure of βδ-COP. By combining these structures we built a molecular model of the coat. We additionally determined the coat structure in the presence of ArfGAP proteins that regulate coat dissociation. We found that Arf1 occupies contrasting molecular environments within the coat, leading us to hypothesize that some Arf1 molecules may regulate vesicle assembly while others regulate coat disassembly.

  19. Molecular structures and intramolecular dynamics of pentahalides

    Science.gov (United States)

    Ischenko, A. A.

    2017-03-01

    This paper reviews advances of modern gas electron diffraction (GED) method combined with high-resolution spectroscopy and quantum chemical calculations in studies of the impact of intramolecular dynamics in free molecules of pentahalides. Some recently developed approaches to the electron diffraction data interpretation, based on direct incorporation of the adiabatic potential energy surface parameters to the diffraction intensity are described. In this way, complementary data of different experimental and computational methods can be directly combined for solving problems of the molecular structure and its dynamics. The possibility to evaluate some important parameters of the adiabatic potential energy surface - barriers to pseudorotation and saddle point of intermediate configuration from diffraction intensities in solving the inverse GED problem is demonstrated on several examples. With increasing accuracy of the electron diffraction intensities and the development of the theoretical background of electron scattering and data interpretation, it has become possible to investigate complex nuclear dynamics in fluxional systems by the GED method. Results of other research groups are also included in the discussion.

  20. Transmission electron microscopy in molecular structural biology: A historical survey.

    Science.gov (United States)

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Structural elucidation of dendritic host-guest complexes by X-ray crystallography and molecular dynamics simulations

    NARCIS (Netherlands)

    Chang, T.; Pieterse, K.; Broeren, M.A.C.; Kooijman, H.; Spek, A.L.; Hilbers, P.A.J.; Meijer, E.W.

    2007-01-01

    The multiple monovalent binding of adamantyl-urea poly(propyleneimine) dendrimers with carboxylic acid-urea guests was investigated using molecular dynamics simulations and X-ray crystallography to better understand the structure and behavior of the dynamic multivalent complex in solution. The

  2. Chronic ethanol intake leads to structural and molecular alterations in the rat endometrium.

    Science.gov (United States)

    Martinez, Marcelo; Milton, Flora A; Pinheiro, Patricia Fernanda F; Almeida-Francia, Camila C D; Cagnon-Quitete, Valeria H A; Tirapelli, Luiz F; Padovani, Carlos Roberto; Chuffa, Luiz Gustavo A; Martinez, Francisco Eduardo

    2016-05-01

    We described the effects of low- and high-dose ethanol intake on the structure and apoptosis signaling of the uterine endometrium of UChA and UChB rats (animals with voluntary ethanol consumption). Thirty adult female rats, 90 days old, were divided into three groups (n = 10/group): UChA rats fed with 10% (v/v) ethanol ad libitum (free choice for water or ethanol) drinking Chronic ethanol intake leads to structural and molecular alterations in the uterine endometrium of UCh rats, regardless of low- or high-dose consumption, promoting reproductive disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Tailored Surfaces/Assemblies for Molecular Plasmonics and Plasmonic Molecular Electronics.

    Science.gov (United States)

    Lacroix, Jean-Christophe; Martin, Pascal; Lacaze, Pierre-Camille

    2017-06-12

    Molecular plasmonics uses and explores molecule-plasmon interactions on metal nanostructures for spectroscopic, nanophotonic, and nanoelectronic devices. This review focuses on tailored surfaces/assemblies for molecular plasmonics and describes active molecular plasmonic devices in which functional molecules and polymers change their structural, electrical, and/or optical properties in response to external stimuli and that can dynamically tune the plasmonic properties. We also explore an emerging research field combining molecular plasmonics and molecular electronics.

  4. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds

    International Nuclear Information System (INIS)

    Jungwirth, T.; Novak, V.; Cukr, M.; Zemek, J.; Marti, X.; Horodyska, P.; Nemec, P.; Holy, V.; Maca, F.; Shick, A. B.; Masek, J.; Kuzel, P.; Nemec, I.; Gallagher, B. L.; Campion, R. P.; Foxon, C. T.; Wunderlich, J.

    2011-01-01

    Our ab initio theory calculations predict a semiconducting band structure of I-Mn-V compounds. We demonstrate on LiMnAs that high-quality materials with group-I alkali metals in the crystal structure can be grown by molecular beam epitaxy. Optical measurements on the LiMnAs epilayers are consistent with the theoretical electronic structure. Our calculations also reproduce earlier reports of high antiferromagnetic ordering temperature and predict large, spin-orbit-coupling-induced magnetic anisotropy effects. We propose a strategy for employing antiferromagnetic semiconductors in high-temperature semiconductor spintronics.

  5. Coumarin structure as a lead scaffold for antibacterial agents - molecular docking

    Directory of Open Access Journals (Sweden)

    Veselinović, J.B.

    2016-12-01

    Full Text Available Coumarins owe their class name to “Coumarou”, the vernacular name of the tonka bean (Dipteryx odorata Willd, Fabaceae, from which coumarin was isolated in 1820. Many molecules based on the coumarin structure have been synthesized utilizing innovative synthetic techniques. Various synthetic routes have led to interesting derivatives including the furanocoumarins, pyranocoumarins and coumarinsulfamates which have been found to be useful in photochemotherapy, antitumor and anti-HIV therapy, as stimulants for central nervous system, antiinflammatory therapy, as anti-coagulants, etc. One of important pharmacological activity of coumarin molecules is their potential as antibacterial agents since they show inhibitory activity toward isoleucyl-transfer RNA (tRNA synthetase. In the presented research molecular docking studies of selected coumarin compounds inside isoleucyltransfer RNA (tRNA synthetase active site were performed. Molecular docking scores of all studied compounds were obtained through score functions. Presented results indicate that from all studied coumarin compounds the strongest interactions with studied enzyme has 7,8-dihydroxy-4-phenyl coumarin followed by 5,7-dihydroxy-4-phenyl coumarin. Presented results are in accordance with in vitro obtained results for their antibacterial activity. Presented findings suggest that 4-phenyl hydroxycoumarins may be considered as good molecular templates for potential antibacterial agents and can be used for further chemical modifications for improving their antibacterial activity.

  6. Dielectric relaxation spectra of liquid crystals in relation to molecular structure

    International Nuclear Information System (INIS)

    Wrobel, S.

    1986-07-01

    The dielectric spectra obtained for some members of two homologous series, i.e. for di-alkoxyazoxybenzenes and penthyl-alkoxythiobenzoates, are discussed qualitatively on the basis of the Nordio-Rigatti-Segre diffusion model. It is additionally assumed that the molecular reorientations take place about the principal axes of the inertia tensor. The distribution of correlation times, which is strongly temperature dependent in the vicinity of the clearing point, is interpreted as being caused by fluctuations of the principal axes frame which are due to conformation changes inside the end chains. The Bauer equation is used to describe both principal molecular reorientations, i.e. the reorientations about the long and short axis, observed in liquid crystalline structure by means of dielectric relaxation methods. The energies and entropies of activation have been computed for both principal reorientations. The differences between the high frequency limit of the dielectric permittivity and the refractive index squared of liquid crystals are explained in terms of two librational motions of the molecules observed by other experimental techniques, viz. far infra-red, Raman and inelastic neutron scattering spectroscopies, and found in this work on the basis of dielectrically measured energy barriers. It has been shown qualitatively that intramolecular libratory motions greatly effect the high frequency dielectric spectrum. Finally, molecular motions in liquid crystals are divided into two types: coherent and incoherent. 127 refs., 56 figs., 17 tabs. (author)

  7. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation.

    Science.gov (United States)

    Joo, Seongjoon; Cho, In Jin; Seo, Hogyun; Son, Hyeoncheol Francis; Sagong, Hye-Young; Shin, Tae Joo; Choi, So Young; Lee, Sang Yup; Kim, Kyung-Jin

    2018-01-26

    Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal structure of I. sakaiensis PETase (IsPETase) at 1.5 Å resolution. IsPETase has a Ser-His-Asp catalytic triad at its active site and contains an optimal substrate binding site to accommodate four monohydroxyethyl terephthalate (MHET) moieties of PET. Based on structural and site-directed mutagenesis experiments, the detailed process of PET degradation into MHET, terephthalic acid, and ethylene glycol is suggested. Moreover, other PETase candidates potentially having high PET-degrading activities are suggested based on phylogenetic tree analysis of 69 PETase-like proteins.

  8. Effect of the molecular structure of phenolic novolac precursor resins on the properties of phenolic fibers

    International Nuclear Information System (INIS)

    Ying, Yong-Gang; Pan, Yan-Ping; Ren, Rui; Dang, Jiang-Min; Liu, Chun-Ling

    2013-01-01

    A series of phenolic resins with different weight-average molecular weights (M w ) and ortho/para (O/P) ratios were prepared. The effect of the phenolic precursor resin structure on the structure and properties of the resulting phenolic fibers was investigated. The structures of the resins and fibers were characterized by nuclear magnetic resonance spectroscopy, gel permeation chromatography, melt rheometry, dynamic mechanical analysis, and thermogravimetric analysis. The results show that the O/P ratio, unsubstituted ortho and para carbon ratio (O u /P u ), and M w of the phenolic resins play an important role in determining the properties of the phenolic fibers. The tensile strength of the phenolic fibers increases with increasing novolac precursor O u /P u ratios, corresponding to low O/P ratios, at comparable resin M w values. Also, the tensile strength of the phenolic fibers increases with increasing novolac M w values at comparable O/P ratios. Phenolic fibers with high tensile strength and good flame resistance characteristics were generated from a phenolic precursor resin, possessing a high weight-average molecular weight and a low O/P value. - Highlights: • Phenolic resins with different weight-average molecular weights and ortho/para ratios have been prepared. • The tensile strength of the phenolic fibers increases with reducing novolac O/P ratio. • The tensile strength of the phenolic fibers increases with increasing novolac M w

  9. Microwave measurements of the spectra and molecular structure for phthalic anhydride

    Science.gov (United States)

    Pejlovas, Aaron M.; Sun, Ming; Kukolich, Stephen G.

    2014-05-01

    The microwave rotational spectrum for phthalic anhydride (PhA) has been measured in the 4-14 GHz microwave region using a pulsed-beam Fourier transform (PBFT) Flygare-Balle type microwave spectrometer. Initially, the molecular structure was calculated using Gaussian 09 suite with mp2/6-311++G** basis and the calculations were used in predicting spectra for the measured isotopologues. The experimental rotational transition frequencies were measured and used to calculate the rotational and centrifugal distortion constants. The rotational constants for the normal isotopologue, four unique 13C substituted isotopologues and two 18O isotologues, were used in a least squares fit to determine nearly all structural parameters for this molecule. Since no substitutions were made at hydrogen sites, the calculated positions of the hydrogen atoms relative to the bonded carbon atoms were used in the structure determination. The rotational constants for the parent isotopologue were determined to be A = 1801.7622(9) MHz, B = 1191.71816(26) MHz, C = 717.44614(28) MHz. Small values for the centrifugal distortion constants were obtained; DJ = 0.0127 kHz, DJK = 0.0652 kHz, and DK = -0.099 kHz, indicating a fairly rigid structure. The structure of PhA is planar with a negative inertial defect of Δ = -0.154 amu Å2. Structural parameters from the mp2 and DFT calculations are in quite good agreement with measured parameters.

  10. Theoretical Study of Copper Complexes: Molecular Structure, Properties, and Its Application to Solar Cells

    Directory of Open Access Journals (Sweden)

    Jesus Baldenebro-Lopez

    2013-01-01

    Full Text Available We present a theoretical investigation of copper complexes with potential applications as sensitizers for solar cells. The density functional theory (DFT and time-dependent DFT were utilized, using the M06 hybrid meta-GGA functional with the LANL2DZ (D95V on first row and DZVP basis sets. This level of calculation was used to find the optimized molecular structure, the absorption spectra, the molecular orbitals energies, and the chemical reactivity parameters that arise from conceptual DFT. Solvent effects have been taken into account by an implicit approach, namely, the polarizable continuum model (PCM, using the nonequilibrium version of the IEF-PCM model.

  11. Structural and functional analysis of glycoprotein butyrylcholinesterase using atomistic molecular dynamics

    Science.gov (United States)

    Bernardi, Austen; Faller, Roland

    Atomistic molecular dynamics (MD) has proven to be a powerful tool for studying the structure and dynamics of biological systems on nanosecond to microsecond time scales and nanometer length scales. In this work we study the effects of modifying the glycan distribution on the structure and function of full length monomeric butyrylcholinesterase (BChE). BChE exists as a monomer, dimer, or tetramer, and is a therapeutic glycoprotein with nine asparagine glycosylation sites per monomer. Each monomer acts as a stoichiometric scavenger for organophosphorus (OP) nerve agents (e.g. sarin, soman). Glycan distributions are highly heterogeneous and have been shown experimentally to affect certain glycoproteins' stability and reactivity. We performed structural analysis of various biologically relevant glycoforms of BChE using classical atomistic MD. Functional analysis was performed through binding energy simulations using umbrella sampling with BChE and OP cofactors. Additionally, we assess the quality of the glycans' conformational sampling. We found that the glycan distribution has a significant effect on the structure and function of BChE on timescales available to atomistic MD. This project is funded by the DTRA Grant HDTRA1-15-1-0054.

  12. Are the program packages for molecular structure calculations really black boxes?

    Directory of Open Access Journals (Sweden)

    ANA MRAKOVIC

    2007-12-01

    Full Text Available In this communication it is shown that the widely held opinion that compact program packages for quantum–mechanical calculations of molecular structure can safely be used as black boxes is completely wrong. In order to illustrate this, the results of computations of equilibrium bond lengths, vibrational frequencies and dissociation energies for all homonuclear diatomic molecules involving the atoms from the first two rows of the Periodic Table, performed using the Gaussian program package are presented. It is demonstrated that the sensible use of the program requires a solid knowledge of quantum chemistry.

  13. Molecular Consortia—Various Structural and Synthetic Concepts for More Effective Therapeutics Synthesis

    Directory of Open Access Journals (Sweden)

    Anna Pawełczyk

    2018-04-01

    Full Text Available The design and discovery of novel drug candidates are the initial and most probably the crucial steps in the drug development process. One of the tasks of medicinal chemistry is to produce new molecules that have a desired biological effect. However, even today the search for new pharmaceuticals is a very complicated process that is hard to rationalize. Literature provides many scientific reports on future prospects of design of potentially useful drugs. Many trends have been proposed for the design of new drugs containing different structures (dimers, heterodimers, heteromers, adducts, associates, complexes, biooligomers, dendrimers, dual-, bivalent-, multifunction drugs and codrugs, identical or non-identical twin drugs, mixed or combo drugs, supramolecular particles and various nanoindividuals. Recently much attention has been paid to different strategies of molecular hybridization. In this paper, various molecular combinations were described e.g., drug–drug or drug-non-drug combinations which are expressed in a schematic multi-factor form called a molecular matrix, consisting of four factors: association mode, connection method, and the number of elements and linkers. One of the most popular trends is to create small–small molecule combinations such as different hybrids, codrugs, drug–drug conjugates (DDCs and small-large molecule combinations such as antibody-drug conjugates (ADCs, polymer-drug conjugates (PDCs or different prodrugs and macromolecular therapeutics. A review of the structural possibilities of active framework combinations indicates that a wide range of potentially effective novel-type compounds can be formed. What is particularly important is that new therapeutics can be obtained in fast, efficient, and selective methods using current trends in chemical synthesis and the design of drugs such as the “Lego” concept or rational green approach.

  14. Chemistry and structure of giant molecular clouds in energetic environments

    Science.gov (United States)

    Anderson, Crystal Nicole

    2016-09-01

    Throughout the years many studies on Galactic star formation have been conducted. This resulted in the idea that giant molecular clouds (GMCs) are hierarchical in nature with substructures spanning a large range of sizes. The physical processes that determine how molecular clouds fragment, form clumps/cores and then stars depends strongly on both recent radiative and mechanical feed- back from massive stars and, on longer term, from enhanced cooling due to the buildup of metals. Radiative and mechanical energy input from stellar populations can alter subsequent star formation over a large part of a galaxy and hence is relevant to the evolution of galaxies. Much of our knowledge of star formation on galaxy wide scales is based on scaling laws and other parametric descriptions. But to understand the overall evolution of star formation in galaxies we need to watch the feedback processes at work on giant molecular cloud (GMC) scales. By doing this we can begin to answer how strong feedback environments change the properties of the substructure in GMCs. Tests of Galactic star formation theory to other galaxies has been a challenging process due to the lack of resolution with current instruments. Thus, only the nearest galaxies allow us to resolve GMCs and their substructures. The Large Magellanic Cloud (LMC), is one of the closest low metallicity dwarf galaxies (D˜ 50 kpc) and is close enough that current instruments can resolve the sub- structure of its GMCs to molecular gas tracers (e.g. HCO+, HCN, HNC, CS, C2H, N2H+) detected in the LMC at 1.5-40 pc scales and in NGC 5253 at 40 pc scales. I then compare the molecular gas detections to the Central Molecular Zone in our Galaxy. Dense molecular gas was detected in all of the sources. For the regions in the LMC, molecular lines of CS, N2H+, C 2H, HNC, HCO+ and HCN were all detected in N159W and N113 while only HCN, HCO+, HNC, and C2H were detected in 30Dor-10. Toward NGC 5253 only HCO+, HCN, C2H and CS were detected. I

  15. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage

    Directory of Open Access Journals (Sweden)

    Yaogeng Lei

    2017-01-01

    Full Text Available Abstract: Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved in important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfa quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding.

  16. Structure of solvent-free grafted nanoparticles: Molecular dynamics and density-functional theory

    KAUST Repository

    Chremos, Alexandros

    2011-01-01

    The structure of solvent-free oligomer-grafted nanoparticles has been investigated using molecular dynamics simulations and density-functional theory. At low temperatures and moderate to high oligomer lengths, the qualitative features of the core particle pair probability, structure factor, and the oligomer brush configuration obtained from the simulations can be explained by a density-functional theory that incorporates the configurational entropy of the space-filling oligomers. In particular, the structure factor at small wave numbers attains a value much smaller than the corresponding hard-sphere suspension, the first peak of the pair distribution function is enhanced due to entropic attractions among the particles, and the oligomer brush expands with decreasing particle volume fraction to fill the interstitial space. At higher temperatures, the simulations reveal effects that differ from the theory and are likely caused by steric repulsions of the expanded corona chains. © 2011 American Institute of Physics.

  17. The contribution of solid-state NMR spectroscopy to understanding biomineralization: Atomic and molecular structure of bone

    Science.gov (United States)

    Duer, Melinda J.

    2015-04-01

    Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.

  18. SFG analysis of the molecular structures at the surfaces and buried interfaces of PECVD ultralow-dielectric constant pSiCOH

    Science.gov (United States)

    Zhang, Xiaoxian; Myers, John N.; Huang, Huai; Shobha, Hosadurga; Chen, Zhan; Grill, Alfred

    2016-02-01

    PECVD deposited porous SiCOH with ultralow dielectric constant has been successfully integrated as the insulator in advanced interconnects to decrease the RC delay. The effects of NH3 plasma treatment and the effectiveness of the dielectric repair on molecular structures at the surface and buried interface of a pSiCOH film deposited on top of a SiCNH film on a Si wafer were fully characterized using sum frequency generation vibrational spectroscopy (SFG), supplemented by X-ray photoelectron spectroscopy. After exposure to NH3 plasma for 18 s, about 40% of the methyl groups were removed from the pSiCOH surface, and the average orientation of surface methyl groups tilted more towards the surface. The repair method used here effectively repaired the molecular structures at the pSiCOH surface but did not totally recover the entire plasma-damaged layer. Additionally, simulated SFG spectra with various average orientations of methyl groups at the SiCNH/pSiCOH buried interface were compared with the experimental SFG spectra collected using three different laser input angles to determine the molecular structural information at the SiCNH/pSiCOH buried interface after NH3 plasma treatment and repair. The molecular structures including the coverage and the average orientation of methyl groups at the buried interface were found to be unchanged by NH3 plasma treatment and repair.

  19. Bringing molecules back into molecular evolution.

    Directory of Open Access Journals (Sweden)

    Claus O Wilke

    Full Text Available Much molecular-evolution research is concerned with sequence analysis. Yet these sequences represent real, three-dimensional molecules with complex structure and function. Here I highlight a growing trend in the field to incorporate molecular structure and function into computational molecular-evolution work. I consider three focus areas: reconstruction and analysis of past evolutionary events, such as phylogenetic inference or methods to infer selection pressures; development of toy models and simulations to identify fundamental principles of molecular evolution; and atom-level, highly realistic computational modeling of molecular structure and function aimed at making predictions about possible future evolutionary events.

  20. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare).

    Science.gov (United States)

    Pandey, Bharati; Grover, Abhinav; Sharma, Pradeep

    2018-02-12

    The WRKY transcription factors are a class of DNA-binding proteins involved in diverse plant processes play critical roles in response to abiotic and biotic stresses. Genome-wide divergence analysis of WRKY gene family in Hordeum vulgare provided a framework for molecular evolution and functional roles. So far, the crystal structure of WRKY from barley has not been resolved; moreover, knowledge of the three-dimensional structure of WRKY domain is pre-requisites for exploring the protein-DNA recognition mechanisms. Homology modelling based approach was used to generate structures for WRKY DNA binding domain (DBD) and its variants using AtWRKY1 as a template. Finally, the stability and conformational changes of the generated model in unbound and bound form was examined through atomistic molecular dynamics (MD) simulations for 100 ns time period. In this study, we investigated the comparative binding pattern of WRKY domain and its variants with W-box cis-regulatory element using molecular docking and dynamics (MD) simulations assays. The atomic insight into WRKY domain exhibited significant variation in the intermolecular hydrogen bonding pattern, leading to the structural anomalies in the variant type and differences in the DNA-binding specificities. Based on the MD analysis, residual contribution and interaction contour, wild-type WRKY (HvWRKY46) were found to interact with DNA through highly conserved heptapeptide in the pre- and post-MD simulated complexes, whereas heptapeptide interaction with DNA was missing in variants (I and II) in post-MD complexes. Consequently, through principal component analysis, wild-type WRKY was also found to be more stable by obscuring a reduced conformational space than the variant I (HvWRKY34). Lastly, high binding free energy for wild-type and variant II allowed us to conclude that wild-type WRKY-DNA complex was more stable relative to variants I. The results of our study revealed complete dynamic and structural information

  1. Structural Biology and Molecular Modeling in the Design of Novel DPP-4 Inhibitors

    Science.gov (United States)

    Scapin, Giovanna

    Inhibition of dipeptidyl peptidase IV (DPP-4) is a promising new approach for the treatment of type 2 diabetes. DPP-4 is the enzyme responsible for inactivating the incretin hormones glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP), two hormones that play important roles in glucose homeostasis. The potent, orally bioavailable and highly selective small molecule DPP-4 inhibitor sitagliptin has been approved by the FDA as novel drug for the treatment of type 2 diabetes. The comparison between the binding mode of sitagliptin (a β-amino acid) and that of a second class of inhibitors (α-amino acid-based) initially led to the successful identification and design of structurally diverse and highly potent DPP-4 inhibitors. Further analysis of the crystal structure of sitagliptin bound to DPP-4 suggested that the central β-amino butanoyl moiety could be replaced by a rigid group. This was confirmed by molecular modeling, and the resulting cyclohexylamine analogs were synthesized and found to be potent DPP-4 inhibitors. However, the triazolopyrazine was predicted to be distorted in order to fit in the binding pocket, and the crystal structure showed that multiple conformations exist for this moiety. Additional molecular modeling studies were then used to improve potency of the cyclohexylamine series. In addition, a 3-D QSAR method was used to gain insight for reducing off-target DPP-8/9 activities. Novel compounds were thus synthesized and found to be potent DPP-4 inhibitors. Two compounds in particular were designed to be highly selective against off-target "DPP-4 Activity- and/or Structure Homologues" (DASH) enzymes while maintaining potency against DPP-4.

  2. Gastric emptying of hexose sugars: role of osmolality, molecular structure and the CCK₁ receptor.

    Science.gov (United States)

    Little, T J; Gopinath, A; Patel, E; McGlone, A; Lassman, D J; D'Amato, M; McLaughlin, J T; Thompson, D G

    2010-11-01

    It is widely reported that hexose sugars slow gastric emptying (GE) via osmoreceptor stimulation but this remains uncertain. We evaluated the effects of a panel of hexoses of differing molecular structure, assessing the effects of osmolality, intra-individual reproducibility and the role of the CCK(1) receptor, in the regulation of GE by hexoses. Thirty one healthy non-obese male and female subjects were studied in a series of protocols, using a (13) C-acetate breath test to evaluate GE of varying concentrations of glucose, galactose, fructose and tagatose, with water, NaCl and lactulose as controls. GE was further evaluated following the administration of a CCK(1) receptor antagonist. Three subjects underwent repeated studies to evaluate intra-individual reproducibility. At 250 mOsmol, a hexose-specific effect was apparent: tagatose slowed GE more potently than water, glucose and fructose (P effects of hexose sugars on GE appear related to their molecular structure rather than osmolality per se, and are, at least in part, CCK(1) receptor-dependent. © 2010 Blackwell Publishing Ltd.

  3. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures.

    Science.gov (United States)

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-09-01

    X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of D-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  4. Population structure of Aggarwals of north India as revealed by molecular markers.

    Science.gov (United States)

    Gupta, Vipin; Khadgawat, Rajesh; Ng, Hon Keung Tony; Kumar, Satish; Rao, Vadlamudi Raghavendra; Sachdeva, Mohinder Pal

    2010-12-01

    Using molecular genetic data on Aggarwals (Vaish/Vysya), an endogamous population group of north India, we provide evidence of its homogeneous unstratified population structure. We found the mean average heterozygosity value of 0.33 for 14 single nucleotide polymorphisms belonging to four genes (TCF7L2-, HHEX-, KCNJ11-, and ADIPOQ-) in the Aggarwal population (sample of 184 individuals) and tried to evaluate the genomic efficiency of endogamy in this population with the help of clan-based stratified analysis. We concluded that the sociocultural identity of the endogamous population groups could act as a robust proxy maker for inferring their homogeneity and population structure in India, which is ideal also for population selection for future genome-wide association studies in the country.

  5. A qualitative inquiry into the effects of visualization on high school chemistry students' learning process of molecular structure

    Science.gov (United States)

    Deratzou, Susan

    This research studies the process of high school chemistry students visualizing chemical structures and its role in learning chemical bonding and molecular structure. Minimal research exists with high school chemistry students and more research is necessary (Gabel & Sherwood, 1980; Seddon & Moore, 1986; Seddon, Tariq, & Dos Santos Veiga, 1984). Using visualization tests (Ekstrom, French, Harman, & Dermen, 1990a), a learning style inventory (Brown & Cooper, 1999), and observations through a case study design, this study found visual learners performed better, but needed more practice and training. Statistically, all five pre- and post-test visualization test comparisons were highly significant in the two-tailed t-test (p > .01). The research findings are: (1) Students who tested high in the Visual (Language and/or Numerical) and Tactile Learning Styles (and Social Learning) had an advantage. Students who learned the chemistry concepts more effectively were better at visualizing structures and using molecular models to enhance their knowledge. (2) Students showed improvement in learning after visualization practice. Training in visualization would improve students' visualization abilities and provide them with a way to think about these concepts. (3) Conceptualization of concepts indicated that visualizing ability was critical and that it could be acquired. Support for this finding was provided by pre- and post-Visualization Test data with a highly significant t-test. (4) Various molecular animation programs and websites were found to be effective. (5) Visualization and modeling of structures encompassed both two- and three-dimensional space. The Visualization Test findings suggested that the students performed better with basic rotation of structures as compared to two- and three-dimensional objects. (6) Data from observations suggest that teaching style was an important factor in student learning of molecular structure. (7) Students did learn the chemistry concepts

  6. Cooperativity in Molecular Dynamics Structural Models and the Dielectric Spectra of 1,2-Ethanediol

    Science.gov (United States)

    Usacheva, T. M.

    2018-05-01

    Linear relationships are established between the experimental equilibrium correlation factor and the molecular dynamics (MD) mean value of the O-H···O bond angle and the longitudinal component of the unit vector of the mean statistical dipole moment of the cluster in liquid 1,2-ethanediol (12ED). The achievements of modern MD models in describing the experimental dispersion of the permittivity of 12ED by both continuous and discrete relaxation time spectra are analyzed. The advantage computer MD experiments have over dielectric spectroscopy for calculating relaxation time and determining the molecular diffusion mechanisms of the rearrangement of the network 12ED structure, which is more complex than water, is demonstrated.

  7. (TMTSF)2X materials and structural implications for low-dimensional polymeric and disordered molecular semiconductors

    DEFF Research Database (Denmark)

    Bechgaard, Klaus; Nielsen, Martin Meedom; Krebs, Frederik C

    2000-01-01

    The structural characteristics and the relation to the electronic properties of three types of molecular materials are discussed. In TMTSF2X salts a triclinic unit cell it suggested to be important in avoiding a 2k(F) Peierls distortion. In polythiophenes appropriate ordering of microcrystallites...

  8. Representation of molecular structure using quantum topology with inductive logic programming in structure-activity relationships.

    Science.gov (United States)

    Buttingsrud, Bård; Ryeng, Einar; King, Ross D; Alsberg, Bjørn K

    2006-06-01

    The requirement of aligning each individual molecule in a data set severely limits the type of molecules which can be analysed with traditional structure activity relationship (SAR) methods. A method which solves this problem by using relations between objects is inductive logic programming (ILP). Another advantage of this methodology is its ability to include background knowledge as 1st-order logic. However, previous molecular ILP representations have not been effective in describing the electronic structure of molecules. We present a more unified and comprehensive representation based on Richard Bader's quantum topological atoms in molecules (AIM) theory where critical points in the electron density are connected through a network. AIM theory provides a wealth of chemical information about individual atoms and their bond connections enabling a more flexible and chemically relevant representation. To obtain even more relevant rules with higher coverage, we apply manual postprocessing and interpretation of ILP rules. We have tested the usefulness of the new representation in SAR modelling on classifying compounds of low/high mutagenicity and on a set of factor Xa inhibitors of high and low affinity.

  9. Integrated structural biology and molecular ecology of N-cycling enzymes from ammonia-oxidizing archaea.

    Science.gov (United States)

    Tolar, Bradley B; Herrmann, Jonathan; Bargar, John R; van den Bedem, Henry; Wakatsuki, Soichi; Francis, Christopher A

    2017-10-01

    Knowledge of the molecular ecology and environmental determinants of ammonia-oxidizing organisms is critical to understanding and predicting the global nitrogen (N) and carbon cycles, but an incomplete biochemical picture hinders in vitro studies of N-cycling enzymes. Although an integrative structural and dynamic characterization at the atomic scale would advance our understanding of function tremendously, structural knowledge of key N-cycling enzymes from ecologically relevant ammonia oxidizers is unfortunately extremely limited. Here, we discuss the challenges and opportunities for examining the ecology of ammonia-oxidizing organisms, particularly uncultivated Thaumarchaeota, through (meta)genome-driven structural biology of the enzymes ammonia monooxygenase (AMO) and nitrite reductase (NirK). © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Structural Probing and Molecular Modeling of the A₃ Adenosine Receptor: A Focus on Agonist Binding.

    Science.gov (United States)

    Ciancetta, Antonella; Jacobson, Kenneth A

    2017-03-11

    Adenosine is an endogenous modulator exerting its functions through the activation of four adenosine receptor (AR) subtypes, termed A₁, A 2A , A 2B and A₃, which belong to the G protein-coupled receptor (GPCR) superfamily. The human A₃AR (hA₃AR) subtype is implicated in several cytoprotective functions. Therefore, hA₃AR modulators, and in particular agonists, are sought for their potential application as anti-inflammatory, anticancer, and cardioprotective agents. Structure-based molecular modeling techniques have been applied over the years to rationalize the structure-activity relationships (SARs) of newly emerged A₃AR ligands, guide the subsequent lead optimization, and interpret site-directed mutagenesis (SDM) data from a molecular perspective. In this review, we showcase selected modeling-based and guided strategies that were applied to elucidate the binding of agonists to the A₃AR and discuss the challenges associated with an accurate prediction of the receptor extracellular vestibule through homology modeling from the available X-ray templates.

  11. Molecular, crystal, and electronic structure of the cobalt(II) complex with 10-(2-benzothiazolylazo)-9-phenanthrol

    Energy Technology Data Exchange (ETDEWEB)

    Linko, R. V., E-mail: rlinko@mail.ru [Peoples' Friendship University of Russia (Russian Federation); Sokol, V. I. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation); Polyanskaya, N. A.; Ryabov, M. A.; Strashnov, P. V.; Davydov, V. V. [Peoples' Friendship University of Russia (Russian Federation); Sergienko, V. S. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation)

    2013-05-15

    The reaction of 10-(2-benzothiazolylazo)-9-phenanthrol (HL) with cobalt(II) acetate gives the coordination compound [CoL{sub 2}] {center_dot} CHCl{sub 3} (I). The molecular and crystal structure of I is determined by X-ray diffraction. The coordination polyhedron of the Co atom in complex I is an octahedron. The anion L acts as a tridentate chelating ligand and is coordinated to the Co atom through the phenanthrenequinone O1 atom and the benzothiazole N1 atom of the moieties L and the N3 atom of the azo group to form two five-membered metallocycles. The molecular and electronic structures of the compounds HL, L, and CoL{sub 2} are studied at the density functional theory level. The results of the quantum-chemical calculations are in good agreement with the values determined by X-ray diffraction.

  12. Molecular, crystal, and electronic structure of the cobalt(II) complex with 10-(2-benzothiazolylazo)-9-phenanthrol

    International Nuclear Information System (INIS)

    Linko, R. V.; Sokol, V. I.; Polyanskaya, N. A.; Ryabov, M. A.; Strashnov, P. V.; Davydov, V. V.; Sergienko, V. S.

    2013-01-01

    The reaction of 10-(2-benzothiazolylazo)-9-phenanthrol (HL) with cobalt(II) acetate gives the coordination compound [CoL 2 ] · CHCl 3 (I). The molecular and crystal structure of I is determined by X-ray diffraction. The coordination polyhedron of the Co atom in complex I is an octahedron. The anion L acts as a tridentate chelating ligand and is coordinated to the Co atom through the phenanthrenequinone O1 atom and the benzothiazole N1 atom of the moieties L and the N3 atom of the azo group to form two five-membered metallocycles. The molecular and electronic structures of the compounds HL, L, and CoL 2 are studied at the density functional theory level. The results of the quantum-chemical calculations are in good agreement with the values determined by X-ray diffraction.

  13. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview

    Science.gov (United States)

    2018-01-01

    With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA–ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field. PMID:29297679

  14. C-Ni-Pd and CNT-Ni-Pd film's molecular and crystalline structure investigations by FTIR spectroscopy and XRD diffraction

    Science.gov (United States)

    Stepińska, Izabela; Czerwosz, ElŻbieta; Diduszko, Ryszard; Kozłowski, Mirosław; Wronka, Halina

    2017-08-01

    In this work molecular and crystalline structure of new type of nanocomposite films were investigated. These films compose of CNT decorated with palladium nanograins. They were prepared on a base of C-Ni films modified in CVD process. C-Ni nanocomposite films were obtained by PVD process and their modification by CVD leads to a growth of CNT film. CNTs-Ni or C-Ni films were treated with additional PVD process with palladium. Nickel and palladium acetate and fulleren C60 are precursors of films in PVD process. FTIR spectroscopy was used to studied the molecular structure of film in every stage of preparation . The crystalline structure of these films was studied by X-ray diffraction. SEM (scanning electron microscopy) was applied to investigate film's surface topography.

  15. Synthesis, three-dimensional structure, conformation and correct chemical shift assignment determination of pharmaceutical molecules by NMR and molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Azeredo, Sirlene O.F. de; Sales, Edijane M.; Figueroa-Villar, José D., E-mail: jdfv2009@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Grupo de Ressonância Magnética Nuclear e Química Medicinal

    2017-07-01

    This work includes the synthesis of phenanthrenequinone guanylhydrazone and phenanthro[9,10-e][1,2,4]triazin-3-amine to be tested as intercalate with DNA for treatment of cancer. The other synthesized product, 2-[(4-chlorophenylamino)methylene]malononitrile, was designed for future determination of its activity against leishmaniasis. A common problem about some articles on the literature is that some previously published compounds display error of their molecular structures. In this article it is shown the application of several procedures of nuclear magnetic resonance (NMR) to determine the complete molecular structure and the non questionable chemical shift assignment of the synthesized compounds, and also their analysis by molecular modeling to confirm the NMR results. To determine the capacity of pharmacological compounds to interact with biological targets is determined by docking. This work is to motivate the application of NMR and molecular modeling on organic synthesis, being a process that is very important for the study of the prepared compounds as interactions with biological targets by NMR. (author)

  16. Synthesis, three-dimensional structure, conformation and correct chemical shift assignment determination of pharmaceutical molecules by NMR and molecular modeling

    International Nuclear Information System (INIS)

    Azeredo, Sirlene O.F. de; Sales, Edijane M.; Figueroa-Villar, José D.

    2017-01-01

    This work includes the synthesis of phenanthrenequinone guanylhydrazone and phenanthro[9,10-e][1,2,4]triazin-3-amine to be tested as intercalate with DNA for treatment of cancer. The other synthesized product, 2-[(4-chlorophenylamino)methylene]malononitrile, was designed for future determination of its activity against leishmaniasis. A common problem about some articles on the literature is that some previously published compounds display error of their molecular structures. In this article it is shown the application of several procedures of nuclear magnetic resonance (NMR) to determine the complete molecular structure and the non questionable chemical shift assignment of the synthesized compounds, and also their analysis by molecular modeling to confirm the NMR results. To determine the capacity of pharmacological compounds to interact with biological targets is determined by docking. This work is to motivate the application of NMR and molecular modeling on organic synthesis, being a process that is very important for the study of the prepared compounds as interactions with biological targets by NMR. (author)

  17. Recent research in flaxseed (oil seed) on molecular structure and metabolic characteristics of protein, heat processing-induced effect and nutrition with advanced synchrotron-based molecular techniques.

    Science.gov (United States)

    Doiron, Kevin J; Yu, Peiqiang

    2017-01-02

    Advanced synchrotron radiation-based infrared microspectroscopy is able to reveal feed and food structure feature at cellular and molecular levels and simultaneously provides composition, structure, environment, and chemistry within intact tissue. However, to date, this advanced synchrotron-based technique is still seldom known to food and feed scientists. This article aims to provide detailed background for flaxseed (oil seed) protein research and then review recent progress and development in flaxseed research in ruminant nutrition in the areas of (1) dietary inclusion of flaxseed in rations; (2) heat processing effect; (3) assessing dietary protein; (4) synchrotron-based Fourier transform infrared microspectroscopy as a tool of nutritive evaluation within cellular and subcellular dimensions; (5) recent synchrotron applications in flaxseed research on a molecular basis. The information described in this paper gives better insight in flaxseed research progress and update.

  18. Structural studies on Mycobacterium tuberculosis RecA: Molecular ...

    Indian Academy of Sciences (India)

    2015-01-11

    Jan 11, 2015 ... The molecular geometry of RecA and the location of the nucleotide binding site ...... the residue in all the glycerol complexes clusters together along with the two ..... an X-ray and molecular dynamics investigation on banana.

  19. Shear response of grain boundaries with metastable structures by molecular dynamics simulations

    Science.gov (United States)

    Zhang, Liang; Lu, Cheng; Shibuta, Yasushi

    2018-04-01

    Grain boundaries (GBs) can play a role as the favored locations to annihilate point defects, such as interstitial atoms and vacancies. It is thus highly probable that different boundary structures can be simultaneously present in equilibrium with each other in the same GB, and thus the GB achieves a metastable state. However, the structural transition and deformation mechanism of such GBs are currently not well understood. In this work, molecular dynamics simulations were carried out to study the multiple structures of a Σ5(310)/[001] GB in bicrystal Al and to investigate the effect of structural multiplicity on the mechanical and kinetic properties of such a GB. Different GB structures were obtained by changing the starting atomic configuration of the bicrystal model, and the GB structures had significantly different atomic density. For the Σ5(310) GB with metastable structures, GB sliding was the dominant mechanism at a low temperature (T = 10 K) under shear stress. The sliding mechanism resulted from the uncoordinated transformation of the inhomogeneous structural units. The nucleation of voids was observed during GB sliding at the low temperature, and the voids subsequently evolved to a nanocrack at the boundary plane. Increasing the temperature can induce the structural transition of local GB structures and can change their overall kinetic properties. GB migration with occasional GB sliding dominated the deformation mechanism at elevated temperatures (T = 300 and 600 K), and the migration process of the metastable GB structures is closely related to the thermally assisted diffusion mechanism.

  20. Structural Molecular Components of Septate Junctions in Cnidarians Point to the Origin of Epithelial Junctions in Eukaryotes

    KAUST Repository

    Ganot, P.

    2014-09-21

    Septate junctions (SJs) insure barrier properties and control paracellular diffusion of solutes across epithelia in invertebrates. However, the origin and evolution of their molecular constituents in Metazoa have not been firmly established. Here, we investigated the genomes of early branching metazoan representatives to reconstruct the phylogeny of the molecular components of SJs. Although Claudins and SJ cytoplasmic adaptor components appeared successively throughout metazoan evolution, the structural components of SJs arose at the time of Placozoa/Cnidaria/Bilateria radiation. We also show that in the scleractinian coral Stylophora pistillata, the structural SJ component Neurexin IV colocalizes with the cortical actin network at the apical border of the cells, at the place of SJs. We propose a model for SJ components in Cnidaria. Moreover, our study reveals an unanticipated diversity of SJ structural component variants in cnidarians. This diversity correlates with gene-specific expression in calcifying and noncalcifying tissues, suggesting specific paracellular pathways across the cell layers of these diploblastic animals.

  1. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Pengfei; Zhang, Yuwen, E-mail: zhangyu@missouri.edu [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Yang, Mo [College of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2013-12-21

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.

  2. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    International Nuclear Information System (INIS)

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2013-01-01

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective

  3. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    Science.gov (United States)

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2013-12-01

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.

  4. Effect of processing on carbon molecular sieve structure and performance

    KAUST Repository

    Das, Mita; Perry, John D.; Koros, William J.

    2010-01-01

    Sub-micron sized carbon molecular sieve (CMS) materials were produced via ball milling for subsequent use in hybrid material formation. A detailed analysis of the effects of the milling process in the presence of different milling environments is reported. The milling process apparently alters the molecular scale structure and properties of the carbon material. Three cases: unmilled, air milled and nitrogen milled, were analyzed in this work. The property changes were probed using equilibrium sorption experiments with different gases. Furthermore, WAXD and BET results also showed differences between milling processes. Finally in order to improve the interfacial polymer-sieve region of hybrid membranes, the CMS surface was chemically modified with a linkage unit capable of covalently bonding the polymer to the sieve. A published single-wall carbon nanotube (SWCNTs) modification method was adopted to attach a primary aromatic amine to the surface. Several aspects including rigidity, chemical composition, bulky groups and length were considered in selecting the preferred linkage unit. Fortunately kinetic and equilibrium sorption properties of the modified sieves showed very little difference from unmodified samples, suggesting that the linkage unit is not excessively filling or obstructing access to the pores of the CMSs during the modification process. © 2010 Elsevier Ltd. All rights reserved.

  5. Effect of processing on carbon molecular sieve structure and performance

    KAUST Repository

    Das, Mita

    2010-11-01

    Sub-micron sized carbon molecular sieve (CMS) materials were produced via ball milling for subsequent use in hybrid material formation. A detailed analysis of the effects of the milling process in the presence of different milling environments is reported. The milling process apparently alters the molecular scale structure and properties of the carbon material. Three cases: unmilled, air milled and nitrogen milled, were analyzed in this work. The property changes were probed using equilibrium sorption experiments with different gases. Furthermore, WAXD and BET results also showed differences between milling processes. Finally in order to improve the interfacial polymer-sieve region of hybrid membranes, the CMS surface was chemically modified with a linkage unit capable of covalently bonding the polymer to the sieve. A published single-wall carbon nanotube (SWCNTs) modification method was adopted to attach a primary aromatic amine to the surface. Several aspects including rigidity, chemical composition, bulky groups and length were considered in selecting the preferred linkage unit. Fortunately kinetic and equilibrium sorption properties of the modified sieves showed very little difference from unmodified samples, suggesting that the linkage unit is not excessively filling or obstructing access to the pores of the CMSs during the modification process. © 2010 Elsevier Ltd. All rights reserved.

  6. Molecular clouds in the North American and Pelican Nebulae: structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaobo; Xu, Ye; Yang, Ji, E-mail: shbzhang@pmo.ac.cn [Purple Mountain Observatory, and Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, Nanjing 210008 (China)

    2014-03-01

    We present observations of a 4.25 deg{sup 2} area toward the North American and Pelican Nebulae in the J = 1-0 transitions of {sup 12}CO, {sup 13}CO, and C{sup 18}O. Three molecules show different emission areas with their own distinct structures. These different density tracers reveal several dense clouds with a surface density of over 500 M {sub ☉} pc{sup –2} and a mean H{sub 2} column density of 5.8, 3.4, and 11.9 × 10{sup 21} cm{sup –2} for {sup 12}CO, {sup 13}CO, and C{sup 18}O, respectively. We obtain a total mass of 5.4 × 10{sup 4} M {sub ☉} ({sup 12}CO), 2.0 × 10{sup 4} M {sub ☉} ({sup 13}CO), and 6.1 × 10{sup 3} M {sub ☉} (C{sup 18}O) in the complex. The distribution of excitation temperature shows two phases of gas: cold gas (∼10 K) spreads across the whole cloud; warm gas (>20 K) outlines the edge of the cloud heated by the W80 H II region. The kinetic structure of the cloud indicates an expanding shell surrounding the ionized gas produced by the H II region. There are six discernible regions in the cloud: the Gulf of Mexico, Caribbean Islands and Sea, and Pelican's Beak, Hat, and Neck. The areas of {sup 13}CO emission range within 2-10 pc{sup 2} with mass of (1-5) × 10{sup 3} M {sub ☉} and line width of a few km s{sup –1}. The different line properties and signs of star-forming activity indicate they are in different evolutionary stages. Four filamentary structures with complicated velocity features are detected along the dark lane in LDN 935. Furthermore, a total of 611 molecular clumps within the {sup 13}CO tracing cloud are identified using the ClumpFind algorithm. The properties of the clumps suggest that most of the clumps are gravitationally bound and at an early stage of evolution with cold and dense molecular gas.

  7. Structure and molecular motion in three modifications of a binary C23H48-C24H50 paraffin

    International Nuclear Information System (INIS)

    Craievich, A.F.; Denicolo, I.; Doucet, J.

    1983-01-01

    The temperature dependence of the intensities of the (00l) X-ray reflections from a binary paraffin (C 23 H 48 -25% C 24 H 50 ) was determined, in order to obtain structure parameters related to the molecular motion and intramolecular defects. The long lattice spacing was also determined as a function of the temperature. All of these results are compared with the temperature dependence of the ratio of the two short lattice parameters. The clear correlation of all of these experimental results provides a close characterization of the molecular structures and their changes at the several solid state phase transitions. (Author) [pt

  8. Multiparticle 3D imaging technique to study the structure of molecular ions

    International Nuclear Information System (INIS)

    Koenig, W.; Faibis, A.; Kanter, E.P.; Vager, Z.; Zabransky, B.J.

    1984-01-01

    When energetic molecular ions (E/sub ion/ = 0.1 to 0.5 MeV/amu) pass through thin solid targets a Coulomb explosion ensues due to the rapid (approx. 10 -17 s) stripping of the valence electrons. This process has been successfully used to derive stereochemical information on diatomic and on selected triatomic ions. In order to investigate more complex molecular ions as well as to obtain more accurate and detailed structure information, a large area, multiparticle, position- and time-sensitive detector has been developed to detect all atomic fragments in coincidence. The requirement of multiparticle detection independent of the relative particle positions leads to a rather complex data-readout and -reduction system containing approx. 650 analog-to-digital conversions per event. The system relies heavily on techniques developed for high energy physics experiments during recent years. The single event resolution of the apparatus with respect to bond-lengths and -angles has been studied by Monte Carlo simulations and is typically a few percent

  9. Chemical/molecular structure of the dentin-enamel junction is dependent on the intratooth location.

    Science.gov (United States)

    Xu, Changqi; Yao, Xiaomei; Walker, Mary P; Wang, Yong

    2009-03-01

    The dentin-enamel junction (DEJ) plays an important role in preventing crack propagation from enamel into dentin. This function stems from its complex structure and materials properties that are different from either dentin or enamel. The molecular structural differences in both mineral and organic matrix across the DEJ zone were investigated by two-dimensional confocal Raman microspectroscopic mapping/imaging technique. The intensity ratios of 1450 (CH, matrix)/960 (P-O, mineral) decreased gradually to nearly zero across the DEJ. The width of this transition zone was dependent on the intratooth location, with 12.9 +/- 3.2 microm width at occlusal positions and 6.2 +/- 1.3 microm at cervical positions. The difference in width was significant (P < 0.001). Concurrently, spectral differences in both organic and inorganic matrices across the DEJ were also noted. For example, the ratios of 1243 (amide III)/1450 (CH) within the DEJ were lower than the values in dentin; however, the ratios of 1665 (amide I)/1450 (CH) within the DEJ were higher than those values in dentin. In addition, the ratios of 1070 (carbonate)/960 (phosphate) within the dentin were lower than the values in the DEJ. Raman images indicated that the distribution of the above ratios across the DEJ zone were also different at occlusal and cervical positions. The results suggest that the intratooth-location-dependent structure of the DEJ may be related to its function. Micro-Raman spectroscopic/imaging analysis of the DEJ provides a powerful means of identifying the functional width and molecular structural differences across the DEJ.

  10. The emission of α,ω-diphenylpolyenes: A model involving several molecular structures

    International Nuclear Information System (INIS)

    Catalan, Javier

    2007-01-01

    Available photophysical evidence for the emission of α,ω-diphenylpolyenes is shown to be consistent with a previously reported model [J. Catalan, J.L.G. de Paz, J. Chem. Phys. 124 (2006) 034306] involving two electronically excited molecular structures of 1B u and C s symmetry, respectively. The 1B u structure is produced by direct light absorption from the all-trans form of the α,ω-diphenylpolyene in the ground state and its emission exhibits mirror symmetry with respect to the absorption of the compound. On the other hand, the C s structure is generated from the 1B u structure of the α,ω-diphenylpolyene by rotation about a C-C single bond in the polyene chain, its emission being red-shifted with respect to the previous one and exhibiting markedly decreased vibrational structure. At room temperature, both emissions give the excitation spectrum, which are ascribed to the first absorption band for the compound. It is shown that some polyenes may exist in more than one structure of C s symmetry in the excited electronic state with lower energy than that of the 1B u state, from which the C s structures are produced. Hence, more than one electronic structure may be involved in the deactivation processes of the 1B u state, which is initially populated upon photo-excitation of the polyene molecule in the ground electronic state

  11. Molecular and electronic structure of thin films of protoporphyrin(IX)Fe(III)Cl

    Science.gov (United States)

    Snyder, Shelly R.; White, Henry S.

    1991-11-01

    Electrochemical, scanning tunneling microscopy (STM), and tunneling spectroscopy studies of the molecular and electronic properties of thin films of protoporphyrin(IX)Fe(III)Cl (abbreviated as PP(IX)Fe(III)Cl) on highly oriented pyrolytic graphite (HOPG) electrodes are reported. PP(IX)Fe(III)Cl films are prepared by two different methods: (1) adsorption, yielding an electrochemically-active film, and (2) irreversible electrooxidative polymerization, yielding an electrochemically-inactive film. STM images, in conjunction with electro-chemical results, indicate that adsorption of PP(IX)Fe(III)Cl from aqueous solutions onto freshly cleaved HOPG results in a film comprised of molecular aggregates. In contrast, films prepared by irreversible electrooxidative polymerization of PP(IX)Fe(III)Cl have a denser, highly structured morphology, including what appear to be small pinholes (approx. 50A diameter) in an otherwise continuous film.

  12. Study of the molecular structure and dynamics of bakelite with neutron cross section measurements; Estudo da estrutura e da dinamica moleculares da baquelite atraves de medidas de secoes de choque para neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Voi, D L

    1990-06-01

    The molecular structure and dynamics of calcined bakelite were studied with neutron transmission and scattering cross section measurements. The total cross sections determined were correlated with data obtained with infra-red spectroscopy, elemental analysis and other techniques to get the probable molecular formulae of bakelite. The total cross section determined showed a deviation smaller than 5% from the literature values. The frequency distribution as well as overall experimental results allowed to suggest a structural model like polycyclic hydrocarbons for bakelite calcined at 800{sup 0} C. (F.E.). 65 refs, 31 figs, 5 tabs.

  13. Nanocylindrical confinement imparts highest structural order in molecular self-assembly of organophosphonates on aluminum oxide.

    Science.gov (United States)

    Pathak, Anshuma; Bora, Achyut; Braunschweig, Björn; Meltzer, Christian; Yan, Hongdan; Lemmens, Peter; Daum, Winfried; Schwartz, Jeffrey; Tornow, Marc

    2017-05-18

    We report the impact of geometrical constraint on intramolecular interactions in self-assembled monolayers (SAMs) of alkylphosphonates grown on anodically oxidized aluminum (AAO). Molecular order in these films was determined by sum frequency generation (SFG) spectroscopy, a more sensitive measure of order than infrared absorption spectroscopy. Using SFG we show that films grown on AAO are, within detection limits, nearly perfectly ordered in an all-trans alkyl chain configuration. In marked contrast, films formed on planar, plasma-oxidized aluminum oxide or α-Al 2 O 3 (0001) are replete with gauche defects. We attribute these differences to the nanocylindrical structure of AAO, which enforces molecular confinement.

  14. Molecular and crystal structure of 3,4-dihydroxy-2-oxo-1-methyl-4-phenylpiperidine

    International Nuclear Information System (INIS)

    Kuleshova, L.N.; Khrustalev, V.N.; Struchkov, Yu.T.; Soldatenkov, A.T.; Bekro, I.A.; Mamyrbekova, Zh.A.; Soldatova, S.A.

    1996-01-01

    The molecular and crystal structure of 3,4-dihydroxy-2-oxo-1-methyl-4-phenylpiperidine was determined. The crystal is orthorhombic: sp. gr. Pca21; a=15.764, b=5.635, and c=25.536 A; and Z=8. The structure was solved by direct methods; R1=0.051, for 2643 unique refections. Symmetry-independent molecules are related by a pseudocenter of symmetry. The piperidine cycle has an asymmetric half-chair conformation. The orientation of substituents is determined. In the crystal, intermolecular OH...O hydrogen bonds link the molecules into chains parallel to the Y-axis

  15. The effect of molecular structure on emissions and performance of a heavy-duty compression-ignition engine

    NARCIS (Netherlands)

    Zhou, L.; Boot, M.D.; Goey, de L.P.H.

    2013-01-01

    Numerous previous studies have reported that the reduction of emissions by adapting oxygenated bio-fuels chiefly depend on the overall oxygen percentage of the blended oxygenates. However, the effect of molecular structures of the fuels has sometimes only been attributed to differences in

  16. Supramolecular Structure and Mechanical Characteristics of Ultrahigh-Molecular-Weight Polyethylene-Inorganic Nanoparticle Nanocomposites

    International Nuclear Information System (INIS)

    Okhlopkova, T. A.; Borisova, R. V.; Nikiforov, L. A.; Spiridonov, A. M.; Okhlopkova, A. A.; Cho, Jin-Ho; Jeong, Dae-Yong

    2016-01-01

    We investigated the mechanical properties and structure of polymeric nanocomposites (PNCs) with anultrahigh-molecular-weight polyethylene (UHMWPE) matrix and aluminum and silicon oxide and nitride nanoparticle (NP) fillers. Mixing with a paddle mixer or by joint mechanical activation in a planetary mill was used for the PNC preparation. Joint mechanical activation afforded PNCs with better mechanical properties than paddle mixing. Scanning electron microscopy suggested that the poorer mechanical properties can be attributed to the disordered regions and imperfect spherulites in the PNC supramolecular structure arising from paddle mixing. The better mechanical properties observed with joint mechanical activation may derive from the uniform NP distribution in the polymer matrix and absence of disordered regions.

  17. Black Carbon (Biochar) In Water/Soil Environments: Molecular Structure, Sorption, Stability, and Potential Risk.

    Science.gov (United States)

    Lian, Fei; Xing, Baoshan

    2017-12-05

    Black carbon (BC) is ubiquitous in the environments and participates in various biogeochemical processes. Both positive and negative effects of BC (especially biochar) on the ecosystem have been identified, which are mainly derived from its diverse physicochemical properties. Nevertheless, few studies systematically examined the linkage between the evolution of BC molecular structure with the resulted BC properties, environmental functions as well as potential risk, which is critical for understanding the BC environmental behavior and utilization as a multifunctional product. Thus, this review highlights the molecular structure evolution of BC during pyrolysis and the impact of BC physicochemical properties on its sorption behavior, stability, and potential risk in terrestrial and aqueous ecosystems. Given the wide application of BC and its important role in biogeochemical processes, future research should focus on the following: (1) establishing methodology to more precisely predict and design BC properties on the basis of pyrolysis and phase transformation of biomass; (2) developing an assessment system to evaluate the long-term effect of BC on stabilization and bioavailability of contaminants, agrochemicals, and nutrient elements in soils; and (3) elucidating the interaction mechanisms of BC with plant roots, microorganisms, and soil components.

  18. Molecular Level Structure and Dynamics of Electrolytes Using 17O Nuclear Magnetic Resonance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, Vijayakumar; Han, Kee Sung; Hu, Jianzhi; Mueller, Karl T.

    2017-03-19

    Electrolytes help harness the energy from electrochemical processes by serving as solvents and transport media for redox-active ions. Molecular-level interactions between ionic solutes and solvent molecules – commonly referred to as solvation phenomena – give rise to many functional properties of electrolytes such as ionic conductivity, viscosity, and stability. It is critical to understand the evolution of solvation phenomena as a function of competing counterions and solvent mixtures to predict and design the optimal electrolyte for a target application. Probing oxygen environments is of great interest as oxygens are located at strategic molecular sites in battery solvents and are directly involved in inter- and intramolecular solvation interactions. NMR signals from 17O nuclei in battery electrolytes offer nondestructive bulk measurements of isotropic shielding, electric field gradient tensors, and transverse and longitudinal relaxation rates, which are excellent means for probing structure, bonding, and dynamics of both solute and solvent molecules. This article describes the use of 17O NMR spectroscopy in probing the solvation structures of various electrolyte systems ranging from transition metal ions in aqueous solution to lithium cations in organic solvent mixtures.

  19. Collagenolytic Matrix Metalloproteinase Structure-Function Relationships: Insights From Molecular Dynamics Studies.

    Science.gov (United States)

    Karabencheva-Christova, Tatyana G; Christov, Christo Z; Fields, Gregg B

    2017-01-01

    Several members of the zinc-dependent matrix metalloproteinase (MMP) family catalyze collagen degradation. Experimental data reveal a collaboration between different MMP domains in order to achieve efficient collagenolysis. Molecular dynamics (MD) simulations have been utilized to provide atomistic details of the collagenolytic process. The triple-helical structure of collagen exhibits local regions of flexibility, with modulation of interchain salt bridges and water bridges contributing to accessibility of individual chains by the enzyme. In turn, the hemopexin-like (HPX) domain of the MMP initially binds the triple helix and facilitates the presentation of individual strands to active site in the catalytic (CAT) domain. Extensive positive and negative correlated motions are observed between the CAT and HPX domains when collagen is bound. Ultimately, the MD simulation studies have complemented structural (NMR spectroscopy, X-ray crystallography) and kinetic analyses to provide a more detailed mechanistic view of MMP-catalyzed collagenolysis. © 2017 Elsevier Inc. All rights reserved.

  20. Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations.

    Directory of Open Access Journals (Sweden)

    Kecheng Yang

    Full Text Available Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE, is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD-Monte Carlo (MC approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation.

  1. Studying the molecular determinants of potassium channel structure and function in membranes by solid-state NMR

    NARCIS (Netherlands)

    van der Cruijsen, Elwin

    2014-01-01

    Solid-state Nuclear Magnetic Resonance (ssNMR) has made remarkable progress in the structural characterization of membrane proteins systems at atomic resolution. Such studies can be further aided by the use of molecular dynamic simulations. Moreover, ssNMR data can be directly compared to functional

  2. Quantum-chemical calculations and electron diffraction study of the equilibrium molecular structure of vitamin K3

    Science.gov (United States)

    Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.

    2014-05-01

    The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.

  3. Combining an Elastic Network With a Coarse-Grained Molecular Force Field : Structure, Dynamics, and Intermolecular Recognition

    NARCIS (Netherlands)

    Periole, Xavier; Cavalli, Marco; Marrink, Siewert-Jan; Ceruso, Marco A.

    Structure-based and physics-based coarse-grained molecular force fields have become attractive approaches to gain mechanistic insight into the function of large biomolecular assemblies. Here, we study how both approaches can be combined into a single representation, that we term ELNEDIN. In this

  4. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    NARCIS (Netherlands)

    Knoers, N.V.A.M.; Monnens, L.A.H.

    2006-01-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide

  5. Hamiltonian flow over saddles for exploring molecular phase space structures

    Science.gov (United States)

    Farantos, Stavros C.

    2018-03-01

    Despite using potential energy surfaces, multivariable functions on molecular configuration space, to comprehend chemical dynamics for decades, the real happenings in molecules occur in phase space, in which the states of a classical dynamical system are completely determined by the coordinates and their conjugate momenta. Theoretical and numerical results are presented, employing alanine dipeptide as a model system, to support the view that geometrical structures in phase space dictate the dynamics of molecules, the fingerprints of which are traced by following the Hamiltonian flow above saddles. By properly selecting initial conditions in alanine dipeptide, we have found internally free rotor trajectories the existence of which can only be justified in a phase space perspective. This article is part of the theme issue `Modern theoretical chemistry'.

  6. Conductive Hearing Loss Has Long-Lasting Structural and Molecular Effects on Presynaptic and Postsynaptic Structures of Auditory Nerve Synapses in the Cochlear Nucleus.

    Science.gov (United States)

    Clarkson, Cheryl; Antunes, Flora M; Rubio, Maria E

    2016-09-28

    Sound deprivation by conductive hearing loss increases hearing thresholds, but little is known about the response of the auditory brainstem during and after conductive hearing loss. Here, we show in young adult rats that 10 d of monaural conductive hearing loss (i.e., earplugging) leads to hearing deficits that persist after sound levels are restored. Hearing thresholds in response to clicks and frequencies higher than 8 kHz remain increased after a 10 d recovery period. Neural output from the cochlear nucleus measured at 10 dB above threshold is reduced and followed by an overcompensation at the level of the lateral lemniscus. We assessed whether structural and molecular substrates at auditory nerve (endbulb of Held) synapses in the cochlear nucleus could explain these long-lasting changes in hearing processing. During earplugging, vGluT1 expression in the presynaptic terminal decreased and synaptic vesicles were smaller. Together, there was an increase in postsynaptic density (PSD) thickness and an upregulation of GluA3 AMPA receptor subunits on bushy cells. After earplug removal and a 10 d recovery period, the density of synaptic vesicles increased, vesicles were also larger, and the PSD of endbulb synapses was larger and thicker. The upregulation of the GluA3 AMPAR subunit observed during earplugging was maintained after the recovery period. This suggests that GluA3 plays a role in plasticity in the cochlear nucleus. Our study demonstrates that sound deprivation has long-lasting alterations on structural and molecular presynaptic and postsynaptic components at the level of the first auditory nerve synapse in the auditory brainstem. Despite being the second most prevalent form of hearing loss, conductive hearing loss and its effects on central synapses have received relatively little attention. Here, we show that 10 d of monaural conductive hearing loss leads to an increase in hearing thresholds, to an increased central gain upstream of the cochlear nucleus at

  7. The Design, Synthesis, and Study of Solid-State Molecular Rotors: Structure/Function Relationships for Condensed-Phase Anisotropic Dynamics

    Science.gov (United States)

    Vogelsberg, Cortnie Sue

    Amphidynamic crystals are an extremely promising platform for the development of artificial molecular machines and stimuli-responsive materials. In analogy to skeletal muscle, their function will rely upon the collective operation of many densely packed molecular machines (i.e. actin-bound myosin) that are self-assembled in a highly organized anisotropic medium. By choosing lattice-forming elements and moving "parts" with specific functionalities, individual molecular machines may be synthesized and self-assembled in order to carry out desirable functions. In recent years, efforts in the design of amphidynamic materials based on molecular gyroscopes and compasses have shown that a certain amount of free volume is essential to facilitate internal rotation and reorientation within a crystal. In order to further establish structure/function relationships to advance the development of increasingly complex molecular machinery, molecular rotors and a molecular "spinning" top were synthesized and incorporated into a variety of solid-state architectures with different degrees of periodicity, dimensionality, and free volume. Specifically, lamellar molecular crystals, hierarchically ordered periodic mesoporous organosilicas, and metal-organic frameworks were targeted for the development of solid-state molecular machines. Using an array of solid-state nuclear magnetic resonance spectroscopy techniques, the dynamic properties of these novel molecular machine assemblies were determined and correlated with their corresponding structural features. It was found that architecture type has a profound influence on functional dynamics. The study of layered molecular crystals, composed of either molecular rotors or "spinning" tops, probed functional dynamics within dense, highly organized environments. From their study, it was discovered that: 1) crystallographically distinct sites may be utilized to differentiate machine function, 2) halogen bonding interactions are sufficiently

  8. Structural investigation of water-acetonitrile mixtures: An ab initio, molecular dynamics and X-ray diffraction study

    International Nuclear Information System (INIS)

    Bako, Imre; Megyes, Tuende; Palinkas, Gabor

    2005-01-01

    In this work, we present a study on water-acetonitrile (AN) mixtures by molecular dynamics ab initio and X-ray diffraction techniques. Comparison of the experimental total G(r) functions of the mixtures with the results of molecular dynamics simulation shows an overall good agreement. The properties of hydrogen bonded clusters (water clusters, and water-AN clusters) in these mixtures have been determined. Two different types of AN-water dimers were identified by ab initio quantum chemical calculation. One of these structures proved to be a true H-bonded dimer and the other a dipole bound dimer

  9. Congruence between morphological and molecular markers inferred from the analysis of the intra-morphotype genetic diversity and the spatial structure of Oxalis tuberosa Mol.

    Science.gov (United States)

    Pissard, Audrey; Arbizu, Carlos; Ghislain, Marc; Faux, Anne-Michèle; Paulet, Sébastien; Bertin, Pierre

    2008-01-01

    Oxalis tuberosa is an important crop cultivated in the highest Andean zones. A germplasm collection is maintained ex situ by CIP, which has developed a morphological markers system to classify the accessions into morphotypes, i.e. groups of morphologically identical accessions. However, their genetic uniformity is currently unknown. The ISSR technique was used in two experiments to determine the relationships between both morphological and molecular markers systems. The intra-morphotype genetic diversity, the spatial structures of the diversity and the congruence between both markers systems were determined. In the first experience, 44 accessions representing five morphotypes, clearly distinct from each other, were analyzed. At the molecular level, the accessions exactly clustered according to their morphotypes. However, a genetic variability was observed inside each morphotype. In the second experiment, 34 accessions gradually differing from each other on morphological base were analyzed. The morphological clustering showed no geographical structure. On the opposite, the molecular analysis showed that the genetic structure was slightly related to the collection site. The correlation between both markers systems was weak but significant. The lack of perfect congruence between morphological and molecular data suggests that the morphological system may be useful for the morphotypes management but is not appropriate to study the genetic structure of the oca. The spatial structure of the genetic diversity can be related to the evolution of the species and the discordance between the morphological and molecular structures may result from similar selection pressures at different places leading to similar forms with a different genetic background.

  10. Multi-scale calculation of the electric properties of organic-based devices from the molecular structure

    KAUST Repository

    Li, Haoyuan

    2016-03-24

    A method is proposed to calculate the electric properties of organic-based devices from the molecular structure. The charge transfer rate is obtained using non-adiabatic molecular dynamics. The organic film in the device is modeled using the snapshots from the dynamic trajectory of the simulated molecular system. Kinetic Monte Carlo simulations are carried out to calculate the current characteristics. A widely used hole-transporting material, N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB) is studied as an application of this method, and the properties of its hole-only device are investigated. The calculated current densities and dependence on the applied voltage without an injection barrier are close to those obtained by the Mott-Gurney equation. The results with injection barriers are also in good agreement with experiment. This method can be used to aid the design of molecules and guide the optimization of devices. © 2016 Elsevier B.V. All rights reserved.

  11. Influence of the molecular structure on indentation size effect in polymers

    International Nuclear Information System (INIS)

    Han, Chung-Souk

    2010-01-01

    Size dependent deformation of polymers has been observed by various researchers in various experimental settings including micro beam bending, foams and indentation testing. Here in this article the indentation size effect in polymers is examined which manifests itself in increased hardness at decreasing indentation depths. Based on previously suggested rationale of size dependent deformation and depth dependent hardness model the depth dependent hardness of various polymers are analyzed. It is found that polymers containing aromatic rings in their molecular structure exhibit depth dependent hardness above the micron length scale. For polymers not containing aromatic rings polymers the indentation size effect starts at smaller indentation depths if they are present at all.

  12. Structural elucidation, molecular representation and solvent interactions of vitrinite-rich and inertinite-rich South African coals

    Science.gov (United States)

    van Niekerk, Daniel

    The structural differences and similarities of two Permian-aged South African coals, vitrinite-rich Waterberg and inertinite-rich Highveld coals (similar rank, carbon content and Permian age), were evaluated. With South African coals the opportunity presented itself to study not only Permian-aged Gondwana vitrinite but also inertinite. It was expected that these coals would differ from Northern hemisphere Carboniferous coals. It was concluded from various structural data that both coals, although different in maceral composition and depositional basins, are similar in their base structural composition. The main differences were that the inertinite-rich Highveld coal was more ordered, more aromatic, and had less hydrogen than the vitrinite-rich Waterberg coal. Analytical data were used to construct large-scale advanced molecular representations for vitrinite-rich Waterberg and inertinite-rich Highveld coals. The three-dimensional models were structurally diverse with a molecular weight range of 78 to 1900 amu. The vitrinite-rich coal model consisted of 18,572 atoms and 191 individual molecules and the inertinite-rich coal model consisted of 14,242 atoms and 158 individual molecules. This largescale modeling effort was enabled by the development of various PERL scripts to automate various visualization and analytical aspects. Coal swelling studies were conducted using the traditional pack-bed swelling method and a new novel single-particle stop-motion videography swelling method with NMP and CS2/NMP solvents. The pack-bed swelling showed that vitrinite-rich coal had a greater swelling extent and that swelling extent for both coals was greater in CS2/NMP binary solvent than for NMP. Single-particle swelling experiments showed that both coals, for both solvents, exhibit overshoot-type and climbing-type swelling behaviors. Inertinite-coal had a faster swelling rate, in both solvents, than the vitrinite-rich coal. The single-particle swelling data was used to calculate

  13. Development of self-assembled molecular structures on polymeric surfaces and their applications as ultrasonically responsive barrier coatings for on-demand, pulsatile drug delivery

    Science.gov (United States)

    Kwok, Connie Sau-Kuen

    Nature in the form of DNA, proteins, and cells has the remarkable ability to interact with its environment by processing biological information through specific molecular recognition at the interface. As such, materials that are capable of triggering an appropriate biological response need to be engineered at the biomaterial surface. Chemically and structurally well-defined self-assembled monolayers (SAMs), biomimetics of the lipid bilayer in cell membranes, have been created and studied mostly on rigid metallic surfaces. This dissertation is motivated by the lack of methods to generate a molecularly designed surface for biomedical polymers and thus provides an enabling technology to engineer a polymeric surface precisely at a molecular and cellular level. To take this innovation one step further, we demonstrated that such self-assembled molecular structure coated on drug-containing polymeric devices could act as a stimulus-responsive barrier for controlled drug delivery. A simple, one-step procedure for generating ordered, crystalline methylene chains on polymeric surfaces via urethane linkages was successfully developed. The self-assemblies and molecular structures of these crystalline methylene chains are comparable to the SAM model surfaces, as evidenced by various surface characterization techniques (XPS, TOF-SIMS, and FTIR-ATR). For the first time, these self-assembled molecular structures are shown to function collectively as an ultrasound-responsive barrier membrane for pulsatile drug delivery, including delivery of low-molecular-weight ciprofloxacin and high-molecular-weight insulin. Encouraging results, based on the insulin-activated deoxyglucose uptakes in adipocytes, indicate that the released insulin remained biologically active. Both chemical and acoustic analyses suggest that the ultrasound-assisted release mechanism is primarily induced by transient cavitation, which causes temporary disruption of the self-assembled overlayer, and thus allows

  14. Detailed intermolecular structure of molecular liquids containing slightly distorted tetrahedral molecules with C(3v) symmetry: chloroform, bromoform, and methyl-iodide.

    Science.gov (United States)

    Pothoczki, Szilvia; Temleitner, László; Pusztai, László

    2011-01-28

    Analyses of the intermolecular structure of molecular liquids containing slightly distorted tetrahedral molecules of the CXY(3)-type are described. The process is composed of the determination of several different distance-dependent orientational correlation functions, including ones that are introduced here. As a result, a complete structure classification could be provided for CXY(3) molecular liquids, namely for liquid chloroform, bromoform, and methyl-iodide. In the present work, the calculations have been conducted on particle configurations resulting from reverse Monte Carlo computer modeling: these particle arrangements have the advantage that they are fully consistent with structure factors from neutron and x-ray diffraction measurements. It has been established that as the separation between neighboring molecules increases, the dominant mutual orientations change from face-to-face to edge-to-edge, via the edge-to-face arrangements. Depending on the actual liquid, these geometrical elements (edges and faces of the distorted tetrahedra) were found to contain different atoms. From the set of liquids studied here, the structure of methyl-iodide was found to be easiest to describe on the basis of pure steric effects (molecular shape, size, and density) and the structure of liquid chloroform seems to be the furthest away from the corresponding "flexible fused hard spheres" like reference system.

  15. Molecular dynamics simulations of the structure evolutions of Cu-Zr metallic glasses under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Lin [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Tian, Zean; Xiao, Shifang [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Deng, Huiqiu, E-mail: hqdeng@hnu.edu.cn [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Ao, Bingyun [Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907 (China); Chen, Piheng, E-mail: chenpiheng@caep.cn [Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907 (China); Hu, Wangyu [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2017-02-15

    Highlights: • The structural evolution of Cu{sub 64.5}Zr{sub 35.5} MG under irradiation was studied. • The structure clusters were analyzed using the LSCA method. • Most of these radiation damages have been self-recovered quickly. - Abstract: Molecular dynamics simulations have been performed to investigate the structural evolution of Cu{sub 64.5}Zr{sub 35.5} metallic glasses under irradiation. The largest standard cluster analysis (LSCA) method was used to quantify the microstructure within the collision cascade regions. It is found that the majority of clusters within the collision cascade regions are full and defective icosahedrons. Not only the smaller structures (common neighbor subcluster) but also primary clusters greatly changed during the collision cascades; while most of these radiation damages self-recover quickly in the following quench states. These findings indicate the Cu-Zr metallic glasses have excellent irradiation-resistance properties.

  16. Solving structures of protein complexes by molecular replacement with Phaser

    International Nuclear Information System (INIS)

    McCoy, Airlie J.

    2006-01-01

    Four case studies in using maximum-likelihood molecular replacement, as implemented in the program Phaser, to solve structures of protein complexes are described. Molecular replacement (MR) generally becomes more difficult as the number of components in the asymmetric unit requiring separate MR models (i.e. the dimensionality of the search) increases. When the proportion of the total scattering contributed by each search component is small, the signal in the search for each component in isolation is weak or non-existent. Maximum-likelihood MR functions enable complex asymmetric units to be built up from individual components with a ‘tree search with pruning’ approach. This method, as implemented in the automated search procedure of the program Phaser, has been very successful in solving many previously intractable MR problems. However, there are a number of cases in which the automated search procedure of Phaser is suboptimal or encounters difficulties. These include cases where there are a large number of copies of the same component in the asymmetric unit or where the components of the asymmetric unit have greatly varying B factors. Two case studies are presented to illustrate how Phaser can be used to best advantage in the standard ‘automated MR’ mode and two case studies are used to show how to modify the automated search strategy for problematic cases

  17. Analysis of Decomposition for Structure I Methane Hydrate by Molecular Dynamics Simulation

    Science.gov (United States)

    Wei, Na; Sun, Wan-Tong; Meng, Ying-Feng; Liu, An-Qi; Zhou, Shou-Wei; Guo, Ping; Fu, Qiang; Lv, Xin

    2018-05-01

    Under multi-nodes of temperatures and pressures, microscopic decomposition mechanisms of structure I methane hydrate in contact with bulk water molecules have been studied through LAMMPS software by molecular dynamics simulation. Simulation system consists of 482 methane molecules in hydrate and 3027 randomly distributed bulk water molecules. Through analyses of simulation results, decomposition number of hydrate cages, density of methane molecules, radial distribution function for oxygen atoms, mean square displacement and coefficient of diffusion of methane molecules have been studied. A significant result shows that structure I methane hydrate decomposes from hydrate-bulk water interface to hydrate interior. As temperature rises and pressure drops, the stabilization of hydrate will weaken, decomposition extent will go deep, and mean square displacement and coefficient of diffusion of methane molecules will increase. The studies can provide important meanings for the microscopic decomposition mechanisms analyses of methane hydrate.

  18. Molecular determinants of enzyme cold adaptation: comparative structural and computational studies of cold- and warm-adapted enzymes.

    Science.gov (United States)

    Papaleo, Elena; Tiberti, Matteo; Invernizzi, Gaetano; Pasi, Marco; Ranzani, Valeria

    2011-11-01

    The identification of molecular mechanisms underlying enzyme cold adaptation is a hot-topic both for fundamental research and industrial applications. In the present contribution, we review the last decades of structural computational investigations on cold-adapted enzymes in comparison to their warm-adapted counterparts. Comparative sequence and structural studies allow the definition of a multitude of adaptation strategies. Different enzymes carried out diverse mechanisms to adapt to low temperatures, so that a general theory for enzyme cold adaptation cannot be formulated. However, some common features can be traced in dynamic and flexibility properties of these enzymes, as well as in their intra- and inter-molecular interaction networks. Interestingly, the current data suggest that a family-centered point of view is necessary in the comparative analyses of cold- and warm-adapted enzymes. In fact, enzymes belonging to the same family or superfamily, thus sharing at least the three-dimensional fold and common features of the functional sites, have evolved similar structural and dynamic patterns to overcome the detrimental effects of low temperatures.

  19. Nuclear molecular halo: the ubiquitous occurrence of van der Waals molecular states near threshold in molecular, nuclear and particle physics

    International Nuclear Information System (INIS)

    Gai, Moshe

    1999-01-01

    The observation of large E1 strength near threshold in the electromagnetic dissociation of 11 Li poses a fundamental question: Is the large E1 strength due to the threshold or is it due to a low lying E1 state? Such molecular cluster states were observed in 18 O and in several nuclei near the drip line. We discuss the nature of the threshold effect as well as review the situation in Molecular (and Particle Physics) where such Molecular States are observed near the dissociation limit. We suggest that the situation in 11 Li is reminiscent of the argon-benzene molecule where the argon atom is loosely bound by a polarization (van der Waals) mechanism and thus leads to a very extended object lying near the dissociation limit. Such states are also suggested to dominate the structure of mesons [α 0 (980), f 0 (975)] and baryons [λ(1405)] with proposed Kaon molecular structure (Dalitz) near threshold. The inspection of such states throughout Physics allows us to gain insight into this phenomenon and suggest that a new collective Molecular Dipole Degree of Freedom plays a major role in the structure of hadrons (halo nuclei, mesons and baryons), and that quantitative tools such as the E1 Molecular Sum Rule are useful for elucidating the nature of the observed low lying E1 strength in halo nuclei. (author)

  20. An approach towards understanding the structure of complex molecular systems: the case of lower aliphatic alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Vrhovsek, Aleksander; Gereben, Orsolya; Pothoczki, Szilvia; Pusztai, Laszlo [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, H-1525 Budapest, PO Box 49 (Hungary); Tomsic, Matija; Jamnik, Andrej [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, SI-1001 Ljubljana (Slovenia); Kohara, Shinji, E-mail: aleksander.vrhovsek@gmail.co [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2010-10-13

    An extensive study of liquid aliphatic alcohols methanol, ethanol, and propanol, applying reverse Monte Carlo modelling as a method of interpretation of diffraction data, is presented. The emphasis is on the evaluation of several computational strategies in view of their suitability to obtain high quality molecular models via the reverse Monte Carlo procedure. A consistent set of distances of closest approach and fixed neighbour constraints applicable to all three investigated systems was developed. An all-atom description is compared with a united-atom approach. The potentialities of employment of neutron diffraction data of completely deuterated and isotopically substituted samples, x-ray diffraction data, and results of either molecular dynamics or Monte Carlo calculations were investigated. Results show that parallel application of x-ray and neutron diffraction data, the latter being from completely deuterated samples, within an all-atom reverse Monte Carlo procedure is the most successful strategy towards attaining reliable, detailed, and well-structured molecular models, especially if the models are subsequently refined with the results of molecular dynamics simulations.

  1. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    Science.gov (United States)

    Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-01-01

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method. PMID:27025410

  2. The fundamentals behind solving for unknown molecular structures using computer-assisted structure elucidation: a free software package at the undergraduate and graduate levels.

    Science.gov (United States)

    Moser, Arvin; Pautler, Brent G

    2016-05-15

    The successful elucidation of an unknown compound's molecular structure often requires an analyst with profound knowledge and experience of advanced spectroscopic techniques, such as Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry. The implementation of Computer-Assisted Structure Elucidation (CASE) software in solving for unknown structures, such as isolated natural products and/or reaction impurities, can serve both as elucidation and teaching tools. As such, the introduction of CASE software with 112 exercises to train students in conjunction with the traditional pen and paper approach will strengthen their overall understanding of solving unknowns and explore of various structural end points to determine the validity of the results quickly. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. The structure of Lactococcus lactis thioredoxin reductase reveals molecular features of photo-oxidative damage

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas; Bang, Maria Blanner; Rykær, Martin

    2017-01-01

    The NADPH-dependent homodimeric flavoenzyme thioredoxin reductase (TrxR) provides reducing equivalents to thioredoxin, a key regulator of various cellular redox processes. Crystal structures of photo-inactivated thioredoxin reductase (TrxR) from the Gram-positive bacterium Lactococcus lactis have...... been determined. These structures reveal novel molecular features that provide further insight into the mechanisms behind the sensitivity of this enzyme toward visible light. We propose that a pocket on the si-face of the isoalloxazine ring accommodates oxygen that reacts with photo-excited FAD...... thus be a widespread feature among bacterial TrxR with the described characteristics, which affords applications in clinical photo-therapy of drug-resistant bacteria....

  4. Sensing signatures mediated by chemical structure of molecular solids in laser-induced plasmas.

    Science.gov (United States)

    Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2015-03-03

    Laser ablation of organic compounds has been investigated for almost 30 years now, either in the framework of pulse laser deposition for the assembling of new materials or in the context of chemical sensing. Various monitoring techniques such as atomic and molecular fluorescence, time-of-flight mass spectrometry, and optical emission spectroscopy have been used for plasma diagnostics in an attempt to understand the spectral signature and potential origin of gas-phase ions and fragments from organic plasmas. Photochemical and photophysical processes occurring within these systems are generally much more complex than those suggested by observation of optical emission features. Together with laser ablation parameters, the structural and chemical-physical properties of molecules seem to be closely tied to the observed phenomena. The present manuscript, for the first time, discusses the role of molecular structure in the optical emission of organic plasmas. Factors altering the electronic distribution within the organic molecule have been found to have a direct impact on its ensuing optical emissions. The electron structure of an organic molecule, resulting from the presence, nature, and position of its atoms, governs the breakage of the molecule and, as a result, determines the extent of atomization and fragmentation that has proved to directly impact the emissions of CN radicals and C2 dimers. Particular properties of the molecule respond more positively depending on the laser irradiation wavelength, thereby redirecting the ablation process through photochemical or photothermal decomposition pathways. It is of paramount significance for chemical identification purposes how, despite the large energy stored and dissipated by the plasma and the considerable number of transient species formed, the emissions observed never lose sight of the original molecule.

  5. Relation between photochromic properties and molecular structures in salicylideneaniline crystals.

    Science.gov (United States)

    Johmoto, Kohei; Ishida, Takashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2012-06-01

    The crystal structures of the salicylideneaniline derivatives N-salicylidene-4-tert-butyl-aniline (1), N-3,5-di-tert-butyl-salicylidene-3-methoxyaniline (2), N-3,5-di-tert-butyl-salicylidene-3-bromoaniline (3), N-3,5-di-tert-butyl-salicylidene-3-chloroaniline (4), N-3,5-di-tert-butyl-salicylidene-4-bromoaniline (5), N-3,5-di-tert-butyl-salicylidene-aniline (6), N-3,5-di-tert-butyl-salicylidene-4-carboxyaniline (7) and N-salicylidene-2-chloroaniline (8) were analyzed by X-ray diffraction analysis at ambient temperature to investigate the relationship between their photochromic properties and molecular structures. A clear correlation between photochromism and the dihedral angle of the two benzene rings in the salicylideneaniline derivatives was observed. Crystals with dihedral angles less than 20° were non-photochromic, whereas those with dihedral angles greater than 30° were photochromic. Crystals with dihedral angles between 20 and 30° could be either photochromic or non-photochromic. Inhibition of the pedal motion by intra- or intermolecular steric hindrance, however, can result in non-photochromic behaviour even if the dihedral angle is larger than 30°.

  6. Site-discrimination by molecular imposters at dissymmetric molecular crystal surfaces

    Science.gov (United States)

    Poloni, Laura N.

    The organization of atoms and molecules into crystalline forms is ubiquitous in nature and has been critical to the development of many technologies on which modern society relies. Classical crystal growth theory can describe atomic crystal growth, however, a description of molecular crystal growth is lacking. Molecular crystals are often characterized by anisotropic intermolecular interactions and dissymmetric crystal surfaces with anisotropic growth rates along different crystallographic directions. This thesis describes combination of experimental and computational techniques to relate crystal structure to surface structure and observed growth rates. Molecular imposters, also known as tailor-made impurities, can be used to control crystal growth for practical applications such as inhibition of pathological crystals, but can also be used to understand site specificity at crystal growth surfaces. The first part of this thesis builds on previous real-time in situ atomic force microscopy (AFM) observations of dislocation-actuated growth on the morphologically significant face of hexagonal L-cystine crystals, which aggregate in vivo to form kidney stones in patients suffering from cystinuria. The inhibitory effect of various L-cystine structural mimics (a.k.a. molecular imposters) was investigated through experimental and computational methods to identify the key structural factors responsible for molecular recognition between molecular imposters and L-cystine crystal surface sites. The investigation of L-cystine crystal growth in the presence of molecular imposters through a combination of kinetic analysis using in situ AFM, morphology analysis and birefringence measurements of bulk crystals, and molecular modeling of imposter binding to energetically inequivalent surface sites revealed that different molecular imposters inhibited crystal growth by a Cabrera-Vermilyea pinning mechanism and that imposters bind to a single binding site on the dissymmetric {1000} L

  7. Validation of Molecular Dynamics Simulations for Prediction of Three-Dimensional Structures of Small Proteins.

    Science.gov (United States)

    Kato, Koichi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Oda, Akifumi

    2017-10-12

    Although various higher-order protein structure prediction methods have been developed, almost all of them were developed based on the three-dimensional (3D) structure information of known proteins. Here we predicted the short protein structures by molecular dynamics (MD) simulations in which only Newton's equations of motion were used and 3D structural information of known proteins was not required. To evaluate the ability of MD simulationto predict protein structures, we calculated seven short test protein (10-46 residues) in the denatured state and compared their predicted and experimental structures. The predicted structure for Trp-cage (20 residues) was close to the experimental structure by 200-ns MD simulation. For proteins shorter or longer than Trp-cage, root-mean square deviation values were larger than those for Trp-cage. However, secondary structures could be reproduced by MD simulations for proteins with 10-34 residues. Simulations by replica exchange MD were performed, but the results were similar to those from normal MD simulations. These results suggest that normal MD simulations can roughly predict short protein structures and 200-ns simulations are frequently sufficient for estimating the secondary structures of protein (approximately 20 residues). Structural prediction method using only fundamental physical laws are useful for investigating non-natural proteins, such as primitive proteins and artificial proteins for peptide-based drug delivery systems.

  8. Synergetics of molecular systems

    CERN Document Server

    Lupichev, Lev N; Kadantsev, Vasiliy N

    2014-01-01

    Synergetics is the quantitative study of multicomponent systems that exhibit nonlinear dynamics and cooperativity. This book specifically considers basic models of the nonlinear dynamics of molecular systems and discusses relevant applications in biological physics and the polymer sciences.Emphasis is placed on specific solutions to the dynamical equations that correspond to the coherent formation of spatial-temporal structures, such as solitons, kinks and breathers, in particular. The emergence of these patterns in molecular structures provides a variety of information on their structural pro

  9. The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties.

    Science.gov (United States)

    Di Lorenzo, Flaviana; Silipo, Alba; Molinaro, Antonio; Parrilli, Michelangelo; Schiraldi, Chiara; D'Agostino, Antonella; Izzo, Elisabetta; Rizza, Luisa; Bonina, Andrea; Bonina, Francesco; Lanzetta, Rosa

    2017-02-10

    The Opuntia ficus-indica multiple properties are reflected in the increasing interest of chemists in the identification of its natural components having pharmaceutical and/or cosmetical applications. Here we report the structural elucidation of Opuntia ficus-indica mucilage that highlighted the presence of components differing for their chemical nature and the molecular weight distribution. The high molecular weight components were identified as a linear galactan polymer and a highly branched xyloarabinan. The low molecular weight components were identified as lactic acid, D-mannitol, piscidic, eucomic and 2-hydroxy-4-(4'-hydroxyphenyl)-butanoic acids. A wound healing assay was performed in order to test the cicatrizing properties of the various components, highlighting the ability of these latter to fasten dermal regeneration using a simplified in vitro cellular model based on a scratched keratinocytes monolayer. The results showed that the whole Opuntia mucilage and the low molecular weight components are active in the wound repair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Early structural development in melt-quenched polymer PTT from atomistic molecular dynamic simulations

    Science.gov (United States)

    Hsieh, Min-Kang; Lin, Shiang-Tai

    2009-12-01

    Molecular dynamics simulations are performed to study the initial structural development in poly(trimethylene terephthalate) (PTT) when quenched below its melting point. The development of local ordering has been observed in our simulations. The thermal properties, such as the glass transition temperature (Tg) and the melting temperature (Tm), determined from our simulations are in reasonable agreement with experimental values. It is found that, between these two temperatures, the number of local structures quickly increases during the thermal relaxation period soon after the system is quenched and starts to fluctuate afterwards. The formation and development of local structures is found to be driven mainly by the torsional and van der Waals forces and follows the classical nucleation-growth mechanism. The variation of local structures' fraction with temperature exhibits a maximum between Tg and Tm, resembling the temperature dependence of the crystallization rate for most polymers. In addition, the backbone torsion distribution for segments within the local structures preferentially reorganizes to the trans-gauche-gauche-trans (t-g-g-t) conformation, the same as that in the crystalline state. As a consequence, we believe that such local structural ordering could be the baby nuclei that have been suggested to form in the early stage of polymer crystallization.

  11. Computational and Experimental Investigations of the Molecular Scale Structure and Dynamics of Gologically Important Fluids and Mineral-Fluid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Geoffrey [Alfred Univ., NY (United States)

    2017-04-05

    United States Department of Energy grant DE-FG02-10ER16128, “Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces” (Geoffrey M. Bowers, P.I.) focused on developing a molecular-scale understanding of processes that occur in fluids and at solid-fluid interfaces using the combination of spectroscopic, microscopic, and diffraction studies with molecular dynamics computer modeling. The work is intimately tied to the twin proposal at Michigan State University (DOE DE-FG02-08ER15929; same title: R. James Kirkpatrick, P.I. and A. Ozgur Yazaydin, co-P.I.).

  12. Ab initio molecular dynamics simulation of structural transformation in zinc blende GaN under high pressure

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Gao, Fei; Zu, X.T.; Weber, W.J.

    2010-01-01

    High-pressure induced zinc blende to rocksalt phase transition in GaN has been investigated by ab initio molecular dynamics method to characterize the transformation mechanism at the atomic level. It was shown that at 100 GPa GaN passes through tetragonal and monoclinic states before rocksalt structure is formed. The transformation mechanism is consistent with that for other zinc blende semiconductors obtained from the same method. Detailed structural analysis showed that there is no bond breaking involved in the phase transition.

  13. Using polarized Raman spectroscopy and the pseudospectral method to characterize molecular structure and function

    Science.gov (United States)

    Weisman, Andrew L.

    Electronic structure calculation is an essential approach for determining the structure and function of molecules and is therefore of critical interest to physics, chemistry, and materials science. Of the various algorithms for calculating electronic structure, the pseudospectral method is among the fastest. However, the trade-off for its speed is more up-front programming and testing, and as a result, applications using the pseudospectral method currently lag behind those using other methods. In Part I of this dissertation, we first advance the pseudospectral method by optimizing it for an important application, polarized Raman spectroscopy, which is a well-established tool used to characterize molecular properties. This is an application of particular importance because often the easiest and most economical way to obtain the polarized Raman spectrum of a material is to simulate it; thus, utilization of the pseudospectral method for this purpose will accelerate progress in the determination of molecular properties. We demonstrate that our implementation of Raman spectroscopy using the pseudospectral method results in spectra that are just as accurate as those calculated using the traditional analytic method, and in the process, we derive the most comprehensive formulation to date of polarized Raman intensity formulas, applicable to both crystalline and isotropic systems. Next, we apply our implementation to determine the orientations of crystalline oligothiophenes -- a class of materials important in the field of organic electronics -- achieving excellent agreement with experiment and demonstrating the general utility of polarized Raman spectroscopy for the determination of crystal orientation. In addition, we derive from first-principles a method for using polarized Raman spectra to establish unambiguously whether a uniform region of a material is crystalline or isotropic. Finally, we introduce free, open-source software that allows a user to determine any of a

  14. Anti-symmetrized molecular dynamics: a new insight into the structure of nuclei; La dynamique moleculaire antisymetrisee, une nouvelle facon de comprendre la structure des noyaux

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiko, Kanada-En' yo [High Energy Accelerator Research Organization - KEK, Institute of Particle and Nuclear Studies, Ibaraki (Japan); Masaaki, Kimura [Institute of Physical and Chemical Research - RIKEN, Saitama (Japan); Hisashi, Horiuchi [Kyoto Univ., Dept. of Physics, Graduate School of Science (Japan)

    2003-06-01

    The AMD (anti-symmetrized molecular dynamics) theory for nuclear structure is explained by showing its actual applications. First the formulation of AMD including various refined versions is briefly presented and its characteristics are discussed, putting a stress on its nature as an 'ab initio' theory. Then we demonstrate fruitful applications to various structure problems in stable nuclei, in order to explicitly verify the 'ab initio' nature of AMD, especially the ability to describe both mean-field-type structure and cluster structure. Finally, we show the results of applications of AMD to unstable nuclei, from which we see that AMD is powerful in elucidating and understanding various types of nuclear structure of unstable nuclei. (authors)

  15. Influence of the molecular structure on hydrolyzability of epoxy resins

    International Nuclear Information System (INIS)

    Pays, M.F.

    1996-01-01

    EDF has decided to use glass reinforced composites for certain pipework in Pressurized Water Reactors (service water, emergency-supplied service water, fine pipe works, etc...) as a replacement for traditional materials. In practice, steel is prone to rapid corrosion in these circuits; introducing composites could prove economically viable if their long term behaviour can be demonstrated. However, composite materials can undergo deterioration in service through hydrolysis of the resin or the fibre-matrix interface. Different resins can be chosen depending on the programmed use. A first study has covered the hydrolyzability of polyester and vinyl ester resins. The present document undertakes the resistance to hydrolysis of epoxy resins, concentrating on those reputed to withstand high temperatures. This research uses model monomer, linking the molecular structure of the materials to their resistance to hydrolysis. (author)

  16. Coding considerations for standalone molecular dynamics simulations of atomistic structures

    Science.gov (United States)

    Ocaya, R. O.; Terblans, J. J.

    2017-10-01

    The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.

  17. Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation

    KAUST Repository

    Briceño, Kelly

    2012-10-01

    A high molecular weight polyimide (Matrimid) was used as a precursor for fabricating supported carbon molecular sieve membranes without crack formation at 550-700°C pyrolysis temperature. A one-step polymer (polyimide) coating method as precursor of carbon layer was used without needing a prior modification of a TiO 2 macroporous support. The following fabrication variables were optimized and studied to determine their effect on the carbon structure: polymeric solution concentration, solvent extraction, heating rate and pyrolysis temperature. Two techniques (Thermogravimetric analysis and Raman spectroscopy) were used to determine these effects on final carbon structure. Likewise, the effect of the support was also reported as an additional and important variable in the design of supported carbon membranes. Atomic force microscopy and differential scanning calorimetry quantified the degree of influence. Pure gas permeation tests were performed using CH 4, CO, CO 2 and H 2. The presence of a molecular sieving mechanism was confirmed after defects were plugged with PDMS solution at 12wt%. Gas selectivities higher than Knudsen theoretical values were reached with membranes obtained over 650°C, showing as best values 4.46, 4.70 and 10.62 for H 2/N 2, H 2/CO and H 2/CH 4 ratio, respectively. Permeance values were over 9.82×10 -9mol/(m 2Pas)during pure hydrogen permeation tests. © 2012 Elsevier B.V.

  18. Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation

    KAUST Repository

    Briceñ o, Kelly; Montané , Daniel; Garcia-Valls, Ricard; Iulianelli, Adolfo; Basile, Angelo

    2012-01-01

    A high molecular weight polyimide (Matrimid) was used as a precursor for fabricating supported carbon molecular sieve membranes without crack formation at 550-700°C pyrolysis temperature. A one-step polymer (polyimide) coating method as precursor of carbon layer was used without needing a prior modification of a TiO 2 macroporous support. The following fabrication variables were optimized and studied to determine their effect on the carbon structure: polymeric solution concentration, solvent extraction, heating rate and pyrolysis temperature. Two techniques (Thermogravimetric analysis and Raman spectroscopy) were used to determine these effects on final carbon structure. Likewise, the effect of the support was also reported as an additional and important variable in the design of supported carbon membranes. Atomic force microscopy and differential scanning calorimetry quantified the degree of influence. Pure gas permeation tests were performed using CH 4, CO, CO 2 and H 2. The presence of a molecular sieving mechanism was confirmed after defects were plugged with PDMS solution at 12wt%. Gas selectivities higher than Knudsen theoretical values were reached with membranes obtained over 650°C, showing as best values 4.46, 4.70 and 10.62 for H 2/N 2, H 2/CO and H 2/CH 4 ratio, respectively. Permeance values were over 9.82×10 -9mol/(m 2Pas)during pure hydrogen permeation tests. © 2012 Elsevier B.V.

  19. Structure and binding of molecular clusters of trivalent metal halides in an ionic model

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Pastore, G.; Tosi, M.P.

    1997-10-01

    A model of ionic interactions first proposed for the molecular monomers of alkaline earth dihalides (G. Galli and M. P. Tosi, N. Ciemento D 4,413 (1984)) is used in a systematic study of the structure and binding of monomeric and dimeric units of Al, Fe ad Ga chlorides, bromides and iodides. Ionized states obtained by stripping or adding a halogen ion are considered in addition to neutral states. The main motivation for this work comes from recent studies of liquid structure in several of these systems by neutron and X-ray diffraction and Raman scattering. Main attention is consequently given in the present calculations to (i) bond lengths and bond angles in isolated clusters as precursors of local structures in melts, and (ii) stability of local structures against fluctuations into ionized states. The results are discussed in comparison with the available experimental data as well as with the results from Hartree-Fock and density functional calculations. (author)

  20. The au-scale structure in diffuse molecular gas towards ζ Persei

    Science.gov (United States)

    Boissé, P.; Federman, S. R.; Pineau des Forêts, G.; Ritchey, A. M.

    2013-11-01

    Context. Spatial structure in molecular material has a strong impact on its physical and chemical evolution and is still poorly known, especially on very small scales. Aims: To better characterize the small-scale structure in diffuse molecular gas and in particular to investigate the CH+ production mechanism, we study the spatial distribution of CH+, CH, and CN towards the bright star ζ Per on scales in the range 1-20 AU. Methods: We use ζ Per's proper motion and the implied drift of the line of sight through the foreground gas at a rate of about 2 AU yr-1 to probe absorption line variations between adjacent lines of sight. The good S/N, high or intermediate resolution spectra of ζ Per, obtained in the interval 2003-2011, allow us to search for low column-density and line width variations for CH+, CH, and CN. Results: CH and CN lines appear remarkably stable in time, implying an upper limit δN/N ≤ 6% for CH and CN (3σ limit). The weak CH+λ4232 line shows a possible increase of 11% during the interval 2004-2007, which appears to be correlated with a comparable increase in the CH+ velocity dispersion over the same period. Conclusions: The excellent stability of CH and CN lines implies that these species are distributed uniformly to good accuracy within the cloud. The small size implied for the regions associated with the CH+ excess is consistent with scenarios in which this species is produced in very small (a few AU) localized active regions, possibly weakly magnetized shocks or turbulent vortices. Based on observations made at McDonald Observatory (USA) and Observatoire de Haute-Provence (France).

  1. Molecular structure, vibrational, UV, NMR, HOMO-LUMO, MEP, NLO, NBO analysis of 3,5 di tert butyl 4 hydroxy benzoic acid

    Science.gov (United States)

    Mathammal, R.; Sangeetha, K.; Sangeetha, M.; Mekala, R.; Gadheeja, S.

    2016-09-01

    In this study, we report a combined experimental and theoretical study on molecular structure and vibrational spectra of 3,5 di tert butyl 4 hydroxy benzoic acid. The properties of title compound have been evaluated by quantum chemical calculation (DFT) using B3LYP functional and 6-31 + G (d, p) as basis set. IR Spectra has been recorded using Fourier transform infrared spectroscopy (FT-IR) in the region 4000-400 cm-1. The vibrational assignment of the calculated normal modes has been made on the basis set. The isotropic chemical shifts computed by 13C and 1H NMR (Nuclear Magnetic Resonance) analyses also show good agreement with experimental observations. The theoretical UV-Vis spectrum of the compound are used to study the visible absorption maxima (λ max). The structure activity relationship have been interpreted by mapping electrostatic potential surface (MEP), which is valuable information for the quality control of medicines and drug receptor interactions. The Mullikan charges, HOMO (Highest Occupied Molecular Orbital) - LUMO (Lowest Unoccupied Molecular Orbital) energy are analyzed. HOMO-LUMO energy gap and other related molecular properties are also calculated. The Natural Bond Orbital (NBO) analysis is carried out to investigate the various intra and inter molecular interactions of molecular system. The Non-linear optical properties such as dipole moment (μ), polarizability (αtot) and molecular first order hyperpolarizability (β) of the title compound are computed with B3LYP/6-31 + G (d,p) level of theory.

  2. Coalescence of silver unidimensional structures by molecular dynamics simulation; Coalescencia de estructuras unidimensionales de plata por simulacion dinamica molecular

    Energy Technology Data Exchange (ETDEWEB)

    Perez A, M.; Gutierrez W, C.E.; Mondragon, G. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Arenas, J. [IFUNAM, 04510 Mexico D.F. (Mexico)

    2007-07-01

    The study of nanoparticles coalescence and silver nano rods phenomena by means of molecular dynamics simulation under the thermodynamic laws is reported. In this work we focus ourselves to see the conditions under which the one can be given one dimension growth of silver nano rods for the coalescence phenomenon among two nano rods or one nano rod and one particle; what allows us to study those structural, dynamic and morphological properties of the silver nano rods to different thermodynamic conditions. The simulations are carried out using the Sutton-Chen potentials of interaction of many bodies that allow to obtain appropriate results with the real physical systems. (Author)

  3. Molecular- and nm-scale Investigation of the Structure and Compositional Heterogeneity of Naturally Occurring Ferrihydrite

    Science.gov (United States)

    Cismasu, C.; Michel, F. M.; Stebbins, J. F.; Tcaciuc, A. P.; Brown, G. E.

    2008-12-01

    Ferrihydrite is a hydrated Fe(III) nano-oxide that forms in vast quantities in contaminated acid mine drainage environments. As a result of its high surface area, ferrihydrite is an important environmental sorbent, and plays an essential role in the geochemical cycling of pollutant metal(loid)s in these settings. Despite its environmental relevance, this nanomineral remains one of the least understood environmental solids in terms of its structure (bulk and surface), compositional variations, and the factors affecting its reactivity. Under natural aqueous conditions, ferrihydrite often precipitates in the presence of several inorganic compounds such as aluminum, silica, arsenic, etc., or in the presence of organic matter. These impurities can affect the molecular-level structure of naturally occurring ferrihydrite, thus modifying fundamental properties that are directly correlated with solid-phase stability and surface reactivity. Currently there exists a significant gap in our understanding of the structure of synthetic vs. natural ferrihydrites, due to the inherent difficulties associated to the investigation of these poorly crystalline nanophases. In this study, we combined synchrotron- and laboratory-based techniques to characterize naturally occurring ferrihydrite from an acid mine drainage system situated at the New Idria mercury mine in California. We used high-energy X-ray total scattering and pair distribution function analysis to elucidate quantitative structural details of these samples. We have additionally used scanning transmission X-ray microscopy high resolution imaging (30 nm) to evaluate the spatial relationship of major elements Si, Al, and C within ferrihydrite. Al, Si and C K-edge near- edge X-ray absorption fine structure spectroscopy and 27Al nuclear magnetic resonance spectroscopy were used to obtain short-range structural information. By combining these techniques we attain the highest level of resolution permitted by current analytical

  4. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi [Department of Chemistry, Aalto University, FI-00076 Aalto (Finland)

    2014-01-15

    A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigated through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.

  5. Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia.

    Science.gov (United States)

    Sanderson, R D; Bernfield, M

    1988-12-01

    Epithelial cells are organized into either a single layer (simple epithelia) or multiple layers (stratified epithelia). Maintenance of these cellular organizations requires distinct adhesive mechanisms involving many cell surface molecules. One such molecule is a cell surface proteoglycan, named syndecan, that contains both heparan sulfate and chondroitin sulfate chains. This proteoglycan binds cells to fibrillar collagens and fibronectin and thus acts as a receptor for interstitial matrix. The proteoglycan is restricted to the basolateral surface of simple epithelial cells, but is located over the entire surface of stratified epithelial cells, even those surfaces not contacting matrix. We now show that the distinct localization in simple and stratified epithelia correlates with a distinct proteoglycan structure. The proteoglycan from simple epithelia (modal molecular size, 160 kDa) is larger than that from stratified epithelia (modal molecular size, 92 kDa), but their core proteins are identical in size and immunoreactivity. The proteoglycan from simple epithelia has more and larger heparan sulfate and chondroitin sulfate chains than the proteoglycan from stratified epithelia. Thus, the cell surface proteoglycan shows a tissue-specific structural polymorphism due to distinct posttranslational modifications. This polymorphism likely reflects distinct proteoglycan functions in simple and stratified epithelia, potentially meeting the different adhesive requirements of the cells in these different organizations.

  6. Structure-activity relationships and molecular docking of thirteen synthesized flavonoids as horseradish peroxidase inhibitors.

    Science.gov (United States)

    Mahfoudi, Reguia; Djeridane, Amar; Benarous, Khedidja; Gaydou, Emile M; Yousfi, Mohamed

    2017-10-01

    For the first time, the structure-activity relationships of thirteen synthesized flavonoids have been investigated by evaluating their ability to modulate horseradish peroxidase (HRP) catalytic activity. Indeed, a modified spectrophotometrically method was carried out and optimized using 4-methylcatechol (4-MC) as peroxidase co-substrate. The results show that these flavonoids exhibit a great capacity to inhibit peroxidase with Ki values ranged from 0.14±0.01 to 65±0.04mM. Molecular docking has been achieved using Auto Dock Vina program to discuss the nature of interactions and the mechanism of inhibition. According to the docking results, all the flavonoids have shown great binding affinity to peroxidase. These molecular modeling studies suggested that pyran-4-one cycle acts as an inhibition key for peroxidase. Therefore, potent peroxidase inhibitors are flavonoids with these structural requirements: the presence of the hydroxyl (OH) group in 7, 5 and 4' positions and the absence of the methoxy (O-CH 3 ) group. Apigenin contributed better in HRP inhibitory activity. The present study has shown that the studied flavonoids could be promising HRP inhibitors, which can help in developing new molecules to control thyroid diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A study of the molecular structure in CR-39

    International Nuclear Information System (INIS)

    Stejny, J.; Portwood, T.

    1986-01-01

    A technique is presented for examining the molecular structure of CR-39 by analysis of the etch products from hydrolysis of the polymer network. The CR-39 network consists of polyallyl chains jointed by diethyleneglycol dicarbonate links. The etching cuts the carbonate links and liberates the polyallyl chains which makes them amenable to common analytical methods. Gel Permeation Chromatography was used to characterize the chain lengths and their distribution. It was found that the average length is rather short and that it decreases with increasing concentration of the initiator. This technique has been also used to identify the radiation sensitive link in the CR-39 network. It was found that the length of polyallyl chain is not changed in 60 Co γ-irradiated plastic while the etch rate significantly increases. This shows that the polyallyl chains are relatively inert and not responsible for the radiation sensitivity of CR-39 and that it is the diethyleneglycol dicarbonate links which are damaged by radiation. (author)

  8. The Binding of Four Licorice Flavonoids to Bovine Serum Albumin by Multi-Spectroscopic and Molecular Docking Methods: Structure-Affinity Relationship

    Science.gov (United States)

    Hou, J.; Liang, Q.; Shao, S.

    2017-03-01

    Flavanones are the main compound of licorice, and the C'-4 position substitution is a significant structural feature for their biological activity. The ability of three selected flavanones (liquiritigenin, liquiritin, and liquiritin apioside) bearing different substituents (hydroxyl groups, glucose, and glucose-apiose sugar moiety) at the C'-4 position and a chalcone ( isoliquiritigenin, an isomer of liquiritigenin) to bind bovine serum albumin (BSA) was studied by multispectroscopic and molecular docking methods under physiological conditions. The binding mechanism of fl avonoids to BSA can be explained by the formation of a flavonoids-BSA complex, and the binding affinity is the strongest for isoliquiritigenin, followed by liquiritin apioside, liquiritin, and liquiritigenin. The thermodynamic analysis and the molecular docking indicated that the interaction between flavonoids and BSA was dominated by the hydrophobic force and hydrogen bonds. The competitive experiments as well as the molecular docking results suggested the most possible binding site of licorice flavonoids on BSA at subdomain IIA. These results revealed that the basic skeleton structure and the substituents at the C'-4 position of flavanones significantly affect the structure-affinity relationships of the licorice flavonoid binding to BSA.

  9. Molecular and crystal structure of 2-((E)-[(4-Methylphenyl)imino]methyl)-4-nitrophenol: A redetermination

    International Nuclear Information System (INIS)

    Kaynar, Nihal Kan; Tanak, Hasan; Şahin, Songul; Dege, Necmi; Ağar, Erbil; Yavuz, Metin

    2016-01-01

    The crystal structure of the title compound, C_1_4H_1_2N_2O_3, was recently determined as a mixture of its neutral (OH containing) and zwitterionic (NH containing) forms, in a 0.60 (4): 0.40 (4) ratio using the X-ray determination. In this study, the title compound has been characterized by FT-IR and X-ray diffraction. The redetermination showed that the title compound has only enol (OH) form because of lack of the NH stretching vibration in FT-IR spectrum. In addition, the molecular structure and tautomerism of the title compound have been discussed.

  10. Molecular and crystal structure of 2-((E)-[(4-Methylphenyl)imino]methyl)-4-nitrophenol: A redetermination

    Energy Technology Data Exchange (ETDEWEB)

    Kaynar, Nihal Kan, E-mail: nihal-kan84@windowslive.com [Ondokuz Mayıs University, Department of Physics, Faculty of Arts and Sciences (Turkey); Tanak, Hasan [Amasya University, Department of Physics, Faculty of Arts and Sciences (Turkey); Şahin, Songul [Ondokuz Mayıs University, Department of Chemistry, Faculty of Arts and Sciences (Turkey); Dege, Necmi [Ondokuz Mayıs University, Department of Physics, Faculty of Arts and Sciences (Turkey); Ağar, Erbil [Ondokuz Mayıs University, Department of Chemistry, Faculty of Arts and Sciences (Turkey); Yavuz, Metin [Ondokuz Mayıs University, Department of Physics, Faculty of Arts and Sciences (Turkey)

    2016-03-15

    The crystal structure of the title compound, C{sub 14}H{sub 12}N{sub 2}O{sub 3}, was recently determined as a mixture of its neutral (OH containing) and zwitterionic (NH containing) forms, in a 0.60 (4): 0.40 (4) ratio using the X-ray determination. In this study, the title compound has been characterized by FT-IR and X-ray diffraction. The redetermination showed that the title compound has only enol (OH) form because of lack of the NH stretching vibration in FT-IR spectrum. In addition, the molecular structure and tautomerism of the title compound have been discussed.

  11. Uncovering molecular structural mechanisms of signaling mediated by the prion protein

    International Nuclear Information System (INIS)

    Romano, Sebastian A.; Linden, Rafael; Silva, Jerson L.; Foguel, Debora

    2009-01-01

    The glycosyl phosphatidylinositol (GPI) - anchored prion protein (PrP c ), usually associated with neurodegenerative diseases, modulates various cellular responses and may scaffold multiprotein cell surface signaling complexes. Engagement of PrP c with the secretable cochaperone hop/STI 1 induces neurotrophic transmembrane signals through unknown molecular mechanisms. We addressed whether interaction of Pr P c and hop STI 1 entails structural rearrangements relevant for signaling. Circular dichroism and fluorescence spectroscopy showed that PrP c :hop/STI 1 interaction triggers loss of PrP helical structures, involving at least a perturbation of the Pr P c 143-153 beta-helix. Novel SAXS models revealed a significant C-terminal compaction of hop/STI 1 when bound to PrP c . Differing from a recent dimeric model of human hop/STI 1, both size exclusion chromatography and SAXS data support a monomeric form of free murine hop/STI 1. Changes in the Pr P c 143-153 beta-helix may engage the transmembrane signaling protein laminin receptor precursor and neural cell adhesion molecule, both of which bind that domain of Pr P c , and further ligands may be engaged by the tertiary structural changes of hop/STI 1. These reciprocal structural modifications indicate a versatile mechanism for signaling mediated by Pr P c :hop/STI 1 interaction, consistent with the hypothesis that Pr P c scaffolds multiprotein signaling complexes at the cell surface. (author)

  12. Uncovering molecular structural mechanisms of signaling mediated by the prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Sebastian A.; Linden, Rafael [Universidade Federal do Rio de Janeiro (IBCCF/UFRl), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho; Cordeiro, Yraima; Rocha e Lima, Luis M.T. da [Universidade Federal do Rio de Janeiro (FF/UFRl), RJ (Brazil). Fac. de Farmacia; Lopes, Marilene H. [Instituto Ludwig de Pesquisa de Cancer, Sao Paulo, SP (Brazil); Silva, Jerson L.; Foguel, Debora [Universidade Federal do Rio de Janeiro (IBqM/UFRl), RJ (Brazil). Inst. de Bioquimica Medica

    2009-07-01

    The glycosyl phosphatidylinositol (GPI) - anchored prion protein (PrP{sup c}), usually associated with neurodegenerative diseases, modulates various cellular responses and may scaffold multiprotein cell surface signaling complexes. Engagement of PrP{sup c} with the secretable cochaperone hop/STI 1 induces neurotrophic transmembrane signals through unknown molecular mechanisms. We addressed whether interaction of Pr P{sup c} and hop STI 1 entails structural rearrangements relevant for signaling. Circular dichroism and fluorescence spectroscopy showed that PrP{sup c}:hop/STI 1 interaction triggers loss of PrP helical structures, involving at least a perturbation of the Pr P{sup c}{sub 143-153} beta-helix. Novel SAXS models revealed a significant C-terminal compaction of hop/STI 1 when bound to PrP{sup c}. Differing from a recent dimeric model of human hop/STI 1, both size exclusion chromatography and SAXS data support a monomeric form of free murine hop/STI 1. Changes in the Pr P{sup c}{sub 143-153} beta-helix may engage the transmembrane signaling protein laminin receptor precursor and neural cell adhesion molecule, both of which bind that domain of Pr P{sup c}, and further ligands may be engaged by the tertiary structural changes of hop/STI 1. These reciprocal structural modifications indicate a versatile mechanism for signaling mediated by Pr P{sup c}:hop/STI 1 interaction, consistent with the hypothesis that Pr P{sup c} scaffolds multiprotein signaling complexes at the cell surface. (author)

  13. Transitional grain boundary structures and the influence on thermal, mechanical and energy properties from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Burbery, N.J.; Das, R.; Ferguson, W.G.

    2016-01-01

    The thermo-kinetic characteristics that dictate the activation of atomistic crystal defects significantly influence the mechanical properties of crystalline materials. Grain boundaries (GBs) primarily influence the plastic deformation of FCC metals through their interaction with mobile dislocation defects. The activation thresholds and atomic mechanisms that dictate the thermo-kinetic properties of grain boundaries have been difficult to study due to complex and highly variable GB structure. This paper presents a new approach for modelling GBs which is based on a systematic structural analysis of metastable and stable GBs. GB structural transformation accommodates defect interactions at the interface. The activation energy for such structural transformations was evaluated with nudged elastic band analysis of bi-crystals with several metastable 0 K grain boundary structures in pure FCC Aluminium (Al). The resultant activation energy was used to evaluate the thermal stability of the metastable grain boundary structures, with predictions of transition time based on transition state theory. The predictions are in very good agreement with the minimum time for irreversible structure transformation at 300 K obtained with molecular dynamics simulations. Analytical methods were used to evaluate the activation volume, which in turn was used to predict and explain the influence of stress and strain rate on the thermal and mechanical properties. Results of molecular dynamics simulations show that the GB structure is more closely related to the elastic strength at 0 K than the GB energy. Furthermore, the thermal instability of the GB structure directly influences the relationship between bi-crystal strength, temperature and strain rate. Hence, theoretically consistent models are established on the basis of activation criteria, and used to make predictions of temperature-dependent yield stress at a low strain rate, in agreement with experimental results.

  14. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology.

    Science.gov (United States)

    Wagai, Rota; Kishimoto-Mo, Ayaka W; Yonemura, Seiichiro; Shirato, Yasuhito; Hiradate, Syuntaro; Yagasaki, Yasumi

    2013-04-01

    Temperature sensitivity of soil organic matter (SOM) decomposition may have a significant impact on global warming. Enzyme-kinetic hypothesis suggests that decomposition of low-quality substrate (recalcitrant molecular structure) requires higher activation energy and thus has greater temperature sensitivity than that of high-quality, labile substrate. Supporting evidence, however, relies largely on indirect indices of substrate quality. Furthermore, the enzyme-substrate reactions that drive decomposition may be regulated by microbial physiology and/or constrained by protective effects of soil mineral matrix. We thus tested the kinetic hypothesis by directly assessing the carbon molecular structure of low-density fraction (LF) which represents readily accessible, mineral-free SOM pool. Using five mineral soil samples of contrasting SOM concentrations, we conducted 30-days incubations (15, 25, and 35 °C) to measure microbial respiration and quantified easily soluble C as well as microbial biomass C pools before and after the incubations. Carbon structure of LFs (soil was measured by solid-state (13) C-NMR. Decomposition Q10 was significantly correlated with the abundance of aromatic plus alkyl-C relative to O-alkyl-C groups in LFs but not in bulk soil fraction or with the indirect C quality indices based on microbial respiration or biomass. The warming did not significantly change the concentration of biomass C or the three types of soluble C despite two- to three-fold increase in respiration. Thus, enhanced microbial maintenance respiration (reduced C-use efficiency) especially in the soils rich in recalcitrant LF might lead to the apparent equilibrium between SOM solubilization and microbial C uptake. Our results showed physical fractionation coupled with direct assessment of molecular structure as an effective approach and supported the enzyme-kinetic interpretation of widely observed C quality-temperature relationship for short-term decomposition. Factors

  15. Syntheses, spectroscopic properties and molecular structure of silver phytate complexes - IR, UV-VIS studies and DFT calculations

    Science.gov (United States)

    Zając, A.; Dymińska, L.; Lorenc, J.; Ptak, M.; Hanuza, J.

    2018-03-01

    Silver phytate IP6, IP6Ag, IP6Ag2 and IP6Ag3 complexes in the solid state have been synthesized changing the phosphate to metal mole ratio. The obtained products have been characterized by means of chemical and spectroscopic studies. Attenuated total reflection Fourier transform infrared technique and Raman microscope were used in the measurements. These results were discussed in terms of DFT (Density Functional Theory) quantum chemical calculations using the B3LYP/6-31G(d,p) approach. The molecular structures of these compounds have been proposed on the basis of group theory and geometry optimization taking into account the shape and the number of the observed bands corresponding to the stretching and bending vibrations of the phosphate group and metal-oxygen polyhedron. The role of inter- and intra-hydrogen bonds in stabilization of the structure has been discussed. It was found that three types of hydrogen bonds appear in the studied compounds: terminal, and those engaged in the inter- and intra-molecular interactions. The Fermi resonance as a result of the strong intra-molecular Osbnd H⋯O hydrogen bonds was discovered. Electron absorption spectra have been measured to characterize the electron properties of the studied complexes and their local symmetry.

  16. DFT approach to (benzylthio)acetic acid: Conformational search, molecular (monomer and dimer) structure, vibrational spectroscopy and some electronic properties

    Science.gov (United States)

    Sienkiewicz-Gromiuk, Justyna

    2018-01-01

    The DFT studies were carried out with the B3LYP method utilizing the 6-31G and 6-311++G(d,p) basis sets depending on whether the aim of calculations was to gain the geometry at equilibrium, or to calculate the optimized molecular structure of (benzylthio)acetic acid (Hbta) in the forms of monomer and dimer. The minimum conformational energy search was followed by the potential energy surface (PES) scan of all rotary bonds existing in the acid molecule. The optimized geometrical monomeric and dimeric structures of the title compound were compared with the experimental structural data in the solid state. The detailed vibrational interpretation of experimental infrared and Raman bands was performed on the basis of theoretically simulated ESFF-scaled wavenumbers calculated for the monomer and dimer structures of Hbta. The electronic characteristics of Hbta is also presented in terms of Mulliken atomic charges, frontier molecular orbitals and global reactivity descriptors. Additionally, the MEP and ESP surfaces were computed to predict coordination sites for potential metal complex formation.

  17. Molecular dynamics re-refinement of two different small RNA loop structures using the original NMR data suggest a common structure

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, Niel M.; Davis, Darrell R.; Cheatham, Thomas E. III, E-mail: tec3@utah.edu [College of Pharmacy, University of Utah, Department of Medicinal Chemistry (United States)

    2012-08-15

    Restrained molecular dynamics simulations are a robust, though perhaps underused, tool for the end-stage refinement of biomolecular structures. We demonstrate their utility-using modern simulation protocols, optimized force fields, and inclusion of explicit solvent and mobile counterions-by re-investigating the solution structures of two RNA hairpins that had previously been refined using conventional techniques. The structures, both domain 5 group II intron ribozymes from yeast ai5{gamma} and Pylaiella littoralis, share a nearly identical primary sequence yet the published 3D structures appear quite different. Relatively long restrained MD simulations using the original NMR restraint data identified the presence of a small set of violated distance restraints in one structure and a possibly incorrect trapped bulge nucleotide conformation in the other structure. The removal of problematic distance restraints and the addition of a heating step yielded representative ensembles with very similar 3D structures and much lower pairwise RMSD values. Analysis of ion density during the restrained simulations helped to explain chemical shift perturbation data published previously. These results suggest that restrained MD simulations, with proper caution, can be used to 'update' older structures or aid in the refinement of new structures that lack sufficient experimental data to produce a high quality result. Notable cautions include the need for sufficient sampling, awareness of potential force field bias (such as small angle deviations with the current AMBER force fields), and a proper balance between the various restraint weights.

  18. Molecular dynamics re-refinement of two different small RNA loop structures using the original NMR data suggest a common structure

    International Nuclear Information System (INIS)

    Henriksen, Niel M.; Davis, Darrell R.; Cheatham, Thomas E. III

    2012-01-01

    Restrained molecular dynamics simulations are a robust, though perhaps underused, tool for the end-stage refinement of biomolecular structures. We demonstrate their utility—using modern simulation protocols, optimized force fields, and inclusion of explicit solvent and mobile counterions—by re-investigating the solution structures of two RNA hairpins that had previously been refined using conventional techniques. The structures, both domain 5 group II intron ribozymes from yeast ai5γ and Pylaiella littoralis, share a nearly identical primary sequence yet the published 3D structures appear quite different. Relatively long restrained MD simulations using the original NMR restraint data identified the presence of a small set of violated distance restraints in one structure and a possibly incorrect trapped bulge nucleotide conformation in the other structure. The removal of problematic distance restraints and the addition of a heating step yielded representative ensembles with very similar 3D structures and much lower pairwise RMSD values. Analysis of ion density during the restrained simulations helped to explain chemical shift perturbation data published previously. These results suggest that restrained MD simulations, with proper caution, can be used to “update” older structures or aid in the refinement of new structures that lack sufficient experimental data to produce a high quality result. Notable cautions include the need for sufficient sampling, awareness of potential force field bias (such as small angle deviations with the current AMBER force fields), and a proper balance between the various restraint weights.

  19. Application potential of ATR-FT/IR molecular spectroscopy in animal nutrition: revelation of protein molecular structures of canola meal and presscake, as affected by heat-processing methods, in relationship with their protein digestive behavior and utilization for dairy cattle.

    Science.gov (United States)

    Theodoridou, Katerina; Yu, Peiqiang

    2013-06-12

    Protein quality relies not only on total protein but also on protein inherent structures. The most commonly occurring protein secondary structures (α-helix and β-sheet) may influence protein quality, nutrient utilization, and digestive behavior. The objectives of this study were to reveal the protein molecular structures of canola meal (yellow and brown) and presscake as affected by the heat-processing methods and to investigate the relationship between structure changes and protein rumen degradations kinetics, estimated protein intestinal digestibility, degraded protein balance, and metabolizable protein. Heat-processing conditions resulted in a higher value for α-helix and β-sheet for brown canola presscake compared to brown canola meal. The multivariate molecular spectral analyses (PCA, CLA) showed that there were significant molecular structural differences in the protein amide I and II fingerprint region (ca. 1700-1480 cm(-1)) between the brown canola meal and presscake. The in situ degradation parameters, amide I and II, and α-helix to β-sheet ratio (R_a_β) were positively correlated with the degradable fraction and the degradation rate. Modeling results showed that α-helix was positively correlated with the truly absorbed rumen synthesized microbial protein in the small intestine when using both the Dutch DVE/OEB system and the NRC-2001 model. Concerning the protein profiles, R_a_β was a better predictor for crude protein (79%) and for neutral detergent insoluble crude protein (68%). In conclusion, ATR-FT/IR molecular spectroscopy may be used to rapidly characterize feed structures at the molecular level and also as a potential predictor of feed functionality, digestive behavior, and nutrient utilization of canola feed.

  20. Molecular crowding of collagen: a pathway to produce highly-organized collagenous structures.

    Science.gov (United States)

    Saeidi, Nima; Karmelek, Kathryn P; Paten, Jeffrey A; Zareian, Ramin; DiMasi, Elaine; Ruberti, Jeffrey W

    2012-10-01

    Collagen in vertebrate animals is often arranged in alternating lamellae or in bundles of aligned fibrils which are designed to withstand in vivo mechanical loads. The formation of these organized structures is thought to result from a complex, large-area integration of individual cell motion and locally-controlled synthesis of fibrillar arrays via cell-surface fibripositors (direct matrix printing). The difficulty of reproducing such a process in vitro has prevented tissue engineers from constructing clinically useful load-bearing connective tissue directly from collagen. However, we and others have taken the view that long-range organizational information is potentially encoded into the structure of the collagen molecule itself, allowing the control of fibril organization to extend far from cell (or bounding) surfaces. We here demonstrate a simple, fast, cell-free method capable of producing highly-organized, anistropic collagen fibrillar lamellae de novo which persist over relatively long-distances (tens to hundreds of microns). Our approach to nanoscale organizational control takes advantage of the intrinsic physiochemical properties of collagen molecules by inducing collagen association through molecular crowding and geometric confinement. To mimic biological tissues which comprise planar, aligned collagen lamellae (e.g. cornea, lamellar bone or annulus fibrosus), type I collagen was confined to a thin, planar geometry, concentrated through molecular crowding and polymerized. The resulting fibrillar lamellae show a striking resemblance to native load-bearing lamellae in that the fibrils are small, generally aligned in the plane of the confining space and change direction en masse throughout the thickness of the construct. The process of organizational control is consistent with embryonic development where the bounded planar cell sheets produced by fibroblasts suggest a similar confinement/concentration strategy. Such a simple approach to nanoscale

  1. Solvation Structure and Thermodynamic Mapping (SSTMap): An Open-Source, Flexible Package for the Analysis of Water in Molecular Dynamics Trajectories.

    Science.gov (United States)

    Haider, Kamran; Cruz, Anthony; Ramsey, Steven; Gilson, Michael K; Kurtzman, Tom

    2018-01-09

    We have developed SSTMap, a software package for mapping structural and thermodynamic water properties in molecular dynamics trajectories. The package introduces automated analysis and mapping of local measures of frustration and enhancement of water structure. The thermodynamic calculations are based on Inhomogeneous Fluid Solvation Theory (IST), which is implemented using both site-based and grid-based approaches. The package also extends the applicability of solvation analysis calculations to multiple molecular dynamics (MD) simulation programs by using existing cross-platform tools for parsing MD parameter and trajectory files. SSTMap is implemented in Python and contains both command-line tools and a Python module to facilitate flexibility in setting up calculations and for automated generation of large data sets involving analysis of multiple solutes. Output is generated in formats compatible with popular Python data science packages. This tool will be used by the molecular modeling community for computational analysis of water in problems of biophysical interest such as ligand binding and protein function.

  2. Molecular Modeling of Myrosinase from Brassica oleracea: A Structural Investigation of Sinigrin Interaction

    Directory of Open Access Journals (Sweden)

    Sathishkumar Natarajan

    2015-12-01

    Full Text Available Myrosinase, which is present in cruciferous plant species, plays an important role in the hydrolysis of glycosides such as glucosinolates and is involved in plant defense. Brassicaceae myrosinases are diverse although they share common ancestry, and structural knowledge about myrosinases from cabbage (Brassica oleracea was needed. To address this, we constructed a three-dimensional model structure of myrosinase based on Sinapis alba structures using Iterative Threading ASSEmbly Refinement server (I-TASSER webserver, and refined model coordinates were evaluated with ProQ and Verify3D. The resulting model was predicted with β/α fold, ten conserved N-glycosylation sites, and three disulfide bridges. In addition, this model shared features with the known Sinapis alba myrosinase structure. To obtain a better understanding of myrosinase–sinigrin interaction, the refined model was docked using Autodock Vina with crucial key amino acids. The key nucleophile residues GLN207 and GLU427 were found to interact with sinigrin to form a hydrogen bond. Further, 20-ns molecular dynamics simulation was performed to examine myrosinase–sinigrin complex stability, revealing that residue GLU207 maintained its hydrogen bond stability throughout the entire simulation and structural orientation was similar to that of the docked state. This conceptual model should be useful for understanding the structural features of myrosinase and their binding orientation with sinigrin.

  3. The molecular structure of 4-methylpyridine-N-oxide: Gas-phase electron diffraction and quantum chemical calculations

    Science.gov (United States)

    Belova, Natalya V.; Girichev, Georgiy V.; Kotova, Vitaliya E.; Korolkova, Kseniya A.; Trang, Nguyen Hoang

    2018-03-01

    The molecular structure of 4-methylpiridine-N-oxide, 4-MePyO, has been studied by gas-phase electron diffraction monitored by mass spectrometry (GED/MS) and quantum chemical (DFT) calculations. Both, quantum chemistry and GED analyses resulted in CS molecular symmetry with the planar pyridine ring. Obtained molecular parameters confirm the hyperconjugation in the pyridine ring and the sp2 hybridization concept of the nitrogen and carbon atoms in the ring. The experimental geometric parameters are in a good agreement with the parameters for non-substituted N-oxide and reproduced very closely by DFT calculations. The presence of the electron-donating CH3 substituent in 4-MePyO leads to a decrease of the ipso-angle and to an increase of r(N→O) in comparison with the non-substituted PyO. Electron density distribution analysis has been performed in terms of natural bond orbitals (NBO) scheme. The nature of the semipolar N→O bond is discussed.

  4. Reactions driving conformational movements (molecular motors) in gels: conformational and structural chemical kinetics.

    Science.gov (United States)

    Otero, Toribio F

    2017-01-18

    In this perspective the empirical kinetics of conducting polymers exchanging anions and solvent during electrochemical reactions to get dense reactive gels is reviewed. The reaction drives conformational movements of the chains (molecular motors), exchange of ions and solvent with the electrolyte and structural (relaxation, swelling, shrinking and compaction) gel changes. Reaction-driven structural changes are identified and quantified from electrochemical responses. The empirical reaction activation energy (E a ), the reaction coefficient (k) and the reaction orders (α and β) change as a function of the conformational energy variation during the reaction. This conformational energy becomes an empirical magnitude. E a , k, α and β include and provide quantitative conformational and structural information. The chemical kinetics becomes structural chemical kinetics (SCK) for reactions driving conformational movements of the reactants. The electrochemically stimulated conformational relaxation model describes empirical results and some results from the literature for biochemical reactions. In parallel the development of an emerging technological world of soft, wet, multifunctional and biomimetic tools and anthropomorphic robots driven by reactions of the constitutive material, as in biological organs, can be now envisaged being theoretically supported by the kinetic model.

  5. On the nodal structure of atomic and molecular Wigner functions

    International Nuclear Information System (INIS)

    Dahl, J.P.; Schmider, H.

    1996-01-01

    In previous work on the phase-space representation of quantum mechanics, we have presented detailed pictures of the electronic one-particle reduced Wigner function for atoms and small molecules. In this communication, we focus upon the nodal structure of the function. On the basis of the simplest systems, we present an expression which relates the oscillatory decay of the Wigner function solely to the dot product of the position and momentum vector, if both arguments are large. We then demonstrate the regular behavior of nodal patterns for the larger systems. For the molecular systems, an argument analogous to the open-quotes bond-oscillatory principleclose quotes for momentum densities links the nuclear framework to an additional oscillatory term in momenta parallel to bonds. It is shown that these are visible in the Wigner function in terms of characteristic nodes

  6. Structural Probing and Molecular Modeling of the A3 Adenosine Receptor: A Focus on Agonist Binding

    Science.gov (United States)

    Ciancetta, Antonella; Jacobson, Kenneth A.

    2017-01-01

    Adenosine is an endogenous modulator exerting its functions through the activation of four adenosine receptor (AR) subtypes, termed A1, A2A, A2B and A3, which belong to the G protein-coupled receptor (GPCR) superfamily. The human A3AR (hA3AR) subtype is implicated in several cytoprotective functions. Therefore, hA3AR modulators, and in particular agonists, are sought for their potential application as anti-inflammatory, anticancer, and cardioprotective agents. Structure-based molecular modeling techniques have been applied over the years to rationalize the structure-activity relationships (SARs) of newly emerged A3AR ligands, guide the subsequent lead optimization, and interpret site-directed mutagenesis (SDM) data from a molecular perspective. In this review, we showcase selected modeling-based and guided strategies that were applied to elucidate the binding of agonists to the A3AR and discuss the challenges associated with an accurate prediction of the receptor extracellular vestibule through homology modeling from the available X-ray templates. PMID:28287473

  7. Molecular clouds and galactic spiral structure

    International Nuclear Information System (INIS)

    Dame, T.M.

    1983-01-01

    Galactic CO line emission at 115 GHz has been surveyed in the region 12 0 less than or equal to l less than or equal to 60 0 and -1 0 less than or equal to b less than or equal to 1 0 in order to study the distribution of molecular clouds in the inner galaxy; an inner strip 0 0 .5 wide has been sampled every beamwidth (0 0 .125), the rest every two beamwidths. Comparison of the survey with similar HI data reveals a detailed correlation with the most intense 21-cm features, implying that the CO and HI trace the same galactic features and have the same large-scale kinematics. To each of the classical 21-cm (HI) spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is developed in which all of the CO emission from the inner galaxy arises from spiral arms. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide. A variety of methods are employed to estimate distances and masses for the largest clouds detected by the inner-galaxy survey and a catalogue is compiled. The catalogued clouds, the largest of which have masses of several 10 6 M/sub sunmass/ and linear dimensions in excess of 100 pc, are found to be excellent spiral-arm tracers. One of the nearest of the clouds, that associated with the supernova remnant W44, is fully mapped in both CO and 13 CO and is discussed in detail

  8. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    Science.gov (United States)

    Knoers, Nine V A M; Monnens, Leo A H

    2006-02-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide (protein). In addition, several basic and frequently used general molecular tools, such as restriction enzymes, Southern blotting, DNA amplification and sequencing are discussed, in order to lay the foundations for the forthcoming chapters.

  9. The effect of high hydrostatic pressure treatment on the molecular structure of starches with different amylose content.

    Science.gov (United States)

    Szwengiel, Artur; Lewandowicz, Grażyna; Górecki, Adrian R; Błaszczak, Wioletta

    2018-02-01

    The effect of high hydrostatic pressure processing (650MPa/9min) on molecular mass distribution, and hydrodynamic and structural parameters of amylose (maize, sorghum, Hylon VII) and amylopectin (waxy maize, amaranth) starches was studied. The starches were characterized by high-performance size-exclusion chromatography (HPSEC) equipped with static light scattering and refractive index detectors and by Fourier Transform Infrared (FTIR) spectroscopy. Significant changes were observed in molecular mass distribution of pressurized waxy maize starch. Changes in branches/branch frequency, intrinsic viscosity, and radius of gyration were observed for all treated starches. The combination of SEC and FTIR data showed that α-1,6-glycosidic bonds are more frequently split in pressurized amaranth, Hylon VII, and waxy maize starch, while in sorghum and maize starches, the α-1,4 bonds are most commonly split. Our results show that the structural changes found for pressurized starches were more strongly determined by the starch origin than by the processing applied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Electronic structure and partial charge distribution of Doxorubicin in different molecular environments.

    Science.gov (United States)

    Poudel, Lokendra; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Podgornik, Rudolf; Steinmetz, Nicole F; Ching, Wai-Yim

    2015-05-18

    The electronic structure and partial charge of doxorubicin (DOX) in three different molecular environments-isolated, solvated, and intercalated in a DNA complex-are studied by first-principles density functional methods. It is shown that the addition of solvating water molecules to DOX, together with the proximity to and interaction with DNA, has a significant impact on the electronic structure as well as on the partial charge distribution. Significant improvement in estimating the DOX-DNA interaction energy is achieved. The results are further elucidated by resolving the total density of states and surface charge density into different functional groups. It is concluded that the presence of the solvent and the details of the interaction geometry matter greatly in determining the stability of DOX complexation. Ab initio calculations on realistic models are an important step toward a more accurate description of the long-range interactions in biomolecular systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Protonated o-semiquinone radical as a mimetic of the humic acids native radicals: A DFT approach to the molecular structure and EPR properties

    Science.gov (United States)

    Witwicki, Maciej; Jezierska, Julia

    2012-06-01

    Organic radicals are known to be an indispensable component of the humic acids (HA) structure. In HA two forms of radicals, stable (native) and short-lived (transient), are identified. Importantly, these radical forms can be easily differentiated by electron paramagnetic resonance (EPR) spectroscopy. This article provides a DFT-based insight into the electronic and molecular structure of the native radicals. The molecular models including an increase of the radical aromaticity and the hydrogen bonding between the radical and other functional groups of HA are taken under investigation. In consequence the interesting pieces of information on the structure of the native radical centers in HA are revealed and discussed, especially in terms of differences between the electronic structure of the native and transient forms.

  12. Molecular Complex of Lumiflavin and 2-Aminobenzoic Acid : Crystal Structure, Crystal Spectra, and Solution Properties

    OpenAIRE

    Shieh, Huey-Sheng; Ghisla, Sandro; Hanson, Louise Karle; Ludwig, Martha L.; Nordman, Christer E.

    1981-01-01

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N402●C7H7N02●H2O)crystallizes from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 Å, c = 7.045 Å, α = 95.44°, β = 95.86°, and γ = 105.66°. The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating l...

  13. Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Castanon, J.; Bomboi, F. [Sapienza–Università di Roma, P.le A. Moro 5, 00185 Roma (Italy); Rovigatti, L. [Rudolf Peierls C.T.P., University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria); Zanatta, M. [Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); CNR-ISC, UOS Sapienza–Università di Roma, I-00186 Roma (Italy); Paciaroni, A. [Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); Comez, L. [Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); IOM-CNR, UOS Perugia c/o Dipartimento di Fisica e Geologia, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); Porcar, L. [Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9 (France); Jafta, C. J. [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Fadda, G. C. [Laboratoire Léon Brillouin, LLB, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Bellini, T. [Department of Medical Biotechnology and Translational Medicine, Università di Milano, I-20133 Milano (Italy); Sciortino, F., E-mail: francesco.sciortino@uniroma1.it [Sapienza–Università di Roma, P.le A. Moro 5, 00185 Roma (Italy); CNR-ISC, UOS Sapienza–Università di Roma, I-00186 Roma (Italy)

    2016-08-28

    DNA oligomers with properly designed sequences self-assemble into well defined constructs. Here, we exploit this methodology to produce bulk quantities of tetravalent DNA nanostars (each one composed of 196 nucleotides) and to explore the structural signatures of their aggregation process. We report small-angle neutron scattering experiments focused on the evaluation of both the form factor and the temperature evolution of the scattered intensity at a nanostar concentration where the system forms a tetravalent equilibrium gel. We also perform molecular dynamics simulations of one isolated tetramer to evaluate the form factor numerically, without resorting to any approximate shape. The numerical form factor is found to be in very good agreement with the experimental one. Simulations predict an essentially temperature-independent form factor, offering the possibility to extract the effective structure factor and its evolution during the equilibrium gelation.

  14. Molecular dynamics simulation of chemical sputtering of hydrogen atom on layer structured graphite

    International Nuclear Information System (INIS)

    Ito, A.; Wang, Y.; Irle, S.; Morokuma, K.; Nakamura, H.

    2008-10-01

    Chemical sputtering of hydrogen atom on graphite was simulated using molecular dynamics. Especially, the layer structure of the graphite was maintained by interlayer intermolecular interaction. Three kinds of graphite surfaces, flat (0 0 0 1) surface, armchair (1 1 2-bar 0) surface and zigzag (1 0 1-bar 0) surface, are dealt with as targets of hydrogen atom bombardment. In the case of the flat surface, graphene layers were peeled off one by one and yielded molecules had chain structures. On the other hand, C 2 H 2 and H 2 are dominant yielded molecules on the armchair and zigzag surfaces, respectively. In addition, the interaction of a single hydrogen isotope on a single graphene is investigated. Adsorption, reflection and penetration rates are obtained as functions of incident energy and explain hydrogen retention on layered graphite. (author)

  15. Statistical discovery of site inter-dependencies in sub-molecular hierarchical protein structuring.

    Science.gov (United States)

    Durston, Kirk K; Chiu, David Ky; Wong, Andrew Kc; Li, Gary Cl

    2012-07-13

    Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families. The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function. Our results

  16. Molecular sieving through a graphene nanopore: non-equilibrium molecular dynamics simulation

    Institute of Scientific and Technical Information of China (English)

    Chengzhen Sun; Bofeng Bai

    2017-01-01

    Two-dimensional graphene nanopores have shown great promise as ultra-permeable molecular sieves based on their size-sieving effects.We design a nitrogen/hydrogen modified graphene nanopore and conduct a transient non-equilibrium molecular dynamics simulation on its molecular sieving effects.The distinct time-varying molecular crossing numbers show that this special nanopore can efficiently sieve CO2 and H2S molecules from CH4 molecules with high selectivity.By analyzing the molecular structure and pore functionalization-related molecular orientation and permeable zone in the nanopore,density distribution in the molecular adsorption layer on the graphene surface,as well as other features,the molecular sieving mechanisms of graphene nanopores are revealed.Finally,several implications on the design of highly-efficient graphene nanopores,especially for determining the porosity and chemical functionalization,as gas separation membranes are summarized based on the identified phenomena and mechanisms.

  17. Molecular Basis of Protein Structure in Proanthocyanidin and Anthocyanin-Enhanced Lc-transgenic Alfalfa in Relation to Nutritive Value Using Synchrotron-Radiation FTIR Microspectroscopy: A Novel Approach

    International Nuclear Information System (INIS)

    Yu, P.; Jonker, A.; Gruber, M.

    2009-01-01

    To date there has been very little application of synchrotron radiation-based Fourier transform infrared microspectroscopy (SRFTIRM) to the study of molecular structures in plant forage in relation to livestock digestive behavior and nutrient availability. Protein inherent structure, among other factors such as protein matrix, affects nutritive quality, fermentation and degradation behavior in both humans and animals. The relative percentage of protein secondary structure influences protein value. A high percentage of e-sheets usually reduce the access of gastrointestinal digestive enzymes to the protein. Reduced accessibility results in poor digestibility and as a result, low protein value. The objective of this study was to use SRFTIRM to compare protein molecular structure of alfalfa plant tissues transformed with the maize Lc regulatory gene with non-transgenic alfalfa protein within cellular and subcellular dimensions and to quantify protein inherent structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling. Protein molecular structure revealed by this method included a-helices, e-sheets and other structures such as e-turns and random coils. Hierarchical cluster analysis and principal component analysis of the synchrotron data, as well as accurate spectral analysis based on curve fitting, showed that transgenic alfalfa contained a relatively lower (P 0.05) in the ratio of a-helices to e-sheets (average: 1.4) and higher (P 0.05) in the vibrational intensity of protein amide I (average of 24) and amide II areas (average of 10) and their ratio (average of 2.4) compared with non-transgenic alfalfa. Cluster analysis and principal component analysis showed no significant differences between the two genotypes in the broad molecular fingerprint region, amides I and II regions, and the carbohydrate molecular region, indicating they are highly related to each other. The results suggest that transgenic Lc-alfalfa leaves contain similar

  18. Laboratory Information Systems in Molecular Diagnostics: Why Molecular Diagnostics Data are Different.

    Science.gov (United States)

    Lee, Roy E; Henricks, Walter H; Sirintrapun, Sahussapont J

    2016-03-01

    Molecular diagnostic testing presents new challenges to information management that are yet to be sufficiently addressed by currently available information systems for the molecular laboratory. These challenges relate to unique aspects of molecular genetic testing: molecular test ordering, informed consent issues, diverse specimen types that encompass the full breadth of specimens handled by traditional anatomic and clinical pathology information systems, data structures and data elements specific to molecular testing, varied testing workflows and protocols, diverse instrument outputs, unique needs and requirements of molecular test reporting, and nuances related to the dissemination of molecular pathology test reports. By satisfactorily addressing these needs in molecular test data management, a laboratory information system designed for the unique needs of molecular diagnostics presents a compelling reason to migrate away from the current paper and spreadsheet information management that many molecular laboratories currently use. This paper reviews the issues and challenges of information management in the molecular diagnostics laboratory.

  19. High-Resolution Imaging of Dense Gas Structure and Kinematics in Nearby Molecular Clouds with the CARMA Large Area Star Formation Survey

    Science.gov (United States)

    Storm, Shaye

    This thesis utilizes new observations of dense gas in molecular clouds to develop an empirical framework for how clouds form structures which evolve into young cores and stars. Previous observations show the general turbulent and hierarchical nature of clouds. However, current understanding of the star formation pathway is limited by existing data that do not combine angular resolution needed to resolve individual cores with area coverage required to capture entire star-forming regions and with tracers that can resolve gas motions. The original contributions of this thesis to astrophysical research are the creation and analysis of the largest-area high-angular-resolution maps of dense gas in molecular clouds to-date, and the development of a non-binary dendrogram algorithm to quantify the hierarchical nature and three-dimensional morphology of cloud structure. I first describe the CARMA Large Area Star Formation Survey, which provides spectrally imaged N2H+, HCO+, and HCN (J = 1→0) emission across diverse regions of the Perseus and Serpens Molecular Clouds. I then present a detailed analysis of the Barnard 1 and L1451 regions in Perseus. A non-binary dendrogram analysis of Barnard 1 N2H emission and all L1451 emission shows that the most hierarchically complex gas corresponds with sub-regions actively forming young stars. I estimate the typical depth of molecular emission in each region using the spatial and kinematic properties of dendrogram-identified structures. Barnard 1 appears to be a sheet-like region at the largest scales with filamentary substructure, while the L1451 region is composed of more spatially distinct ellipsoidal structures. I then do a uniform comparison of the hierarchical structure and young stellar content of all five regions. The more evolved regions with the most young stellar objects (YSOs) and strongest emission have formed the most hierarchical levels. However, all regions show similar mean branching properties at each level

  20. Nanomaterials under extreme environments: A study of structural and dynamic properties using reactive molecular dynamics simulations

    Science.gov (United States)

    Shekhar, Adarsh

    Nanotechnology is becoming increasingly important with the continuing advances in experimental techniques. As researchers around the world are trying to expand the current understanding of the behavior of materials at the atomistic scale, the limited resolution of equipment, both in terms of time and space, act as roadblocks to a comprehensive study. Numerical methods, in general and molecular dynamics, in particular act as able compliment to the experiments in our quest for understanding material behavior. In this research work, large scale molecular dynamics simulations to gain insight into the mechano-chemical behavior under extreme conditions of a variety of systems with many real world applications. The body of this work is divided into three parts, each covering a particular system: 1) Aggregates of aluminum nanoparticles are good solid fuel due to high flame propagation rates. Multi-million atom molecular dynamics simulations reveal the mechanism underlying higher reaction rate in a chain of aluminum nanoparticles as compared to an isolated nanoparticle. This is due to the penetration of hot atoms from reacting nanoparticles to an adjacent, unreacted nanoparticle, which brings in external heat and initiates exothermic oxidation reactions. 2) Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near amorphous silica. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The pit contains a large number of silanol groups and its volume is found to be directly proportional to the volume of the nanobubble. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated. 3) The structure and dynamics of water confined in

  1. Molecular details of secretory phospholipase A2 from flax (Linum usitatissimum L.) provide insight into its structure and function.

    Science.gov (United States)

    Gupta, Payal; Dash, Prasanta K

    2017-09-11

    Secretory phospholipase A 2 (sPLA 2 ) are low molecular weight proteins (12-18 kDa) involved in a suite of plant cellular processes imparting growth and development. With myriad roles in physiological and biochemical processes in plants, detailed analysis of sPLA 2 in flax/linseed is meagre. The present work, first in flax, embodies cloning, expression, purification and molecular characterisation of two distinct sPLA 2 s (I and II) from flax. PLA 2 activity of the cloned sPLA 2 s were biochemically assayed authenticating them as bona fide phospholipase A 2 . Physiochemical properties of both the sPLA 2 s revealed they are thermostable proteins requiring di-valent cations for optimum activity.While, structural analysis of both the proteins revealed deviations in the amino acid sequence at C- & N-terminal regions; hydropathic study revealed LusPLA 2 I as a hydrophobic protein and LusPLA 2 II as a hydrophilic protein. Structural analysis of flax sPLA 2 s revealed that secondary structure of both the proteins are dominated by α-helix followed by random coils. Modular superimposition of LusPLA 2 isoforms with rice sPLA 2 confirmed monomeric structural preservation among plant phospholipase A 2 and provided insight into structure of folded flax sPLA 2 s.

  2. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations.

    Science.gov (United States)

    Anandakrishnan, Ramu; Aguilar, Boris; Onufriev, Alexey V

    2012-07-01

    The accuracy of atomistic biomolecular modeling and simulation studies depend on the accuracy of the input structures. Preparing these structures for an atomistic modeling task, such as molecular dynamics (MD) simulation, can involve the use of a variety of different tools for: correcting errors, adding missing atoms, filling valences with hydrogens, predicting pK values for titratable amino acids, assigning predefined partial charges and radii to all atoms, and generating force field parameter/topology files for MD. Identifying, installing and effectively using the appropriate tools for each of these tasks can be difficult for novice and time-consuming for experienced users. H++ (http://biophysics.cs.vt.edu/) is a free open-source web server that automates the above key steps in the preparation of biomolecular structures for molecular modeling and simulations. H++ also performs extensive error and consistency checking, providing error/warning messages together with the suggested corrections. In addition to numerous minor improvements, the latest version of H++ includes several new capabilities and options: fix erroneous (flipped) side chain conformations for HIS, GLN and ASN, include a ligand in the input structure, process nucleic acid structures and generate a solvent box with specified number of common ions for explicit solvent MD.

  3. Molecular structure and spectroscopic properties of 4-nitrocatechol at different pH: UV-visible, Raman, DFT and TD-DFT calculations

    International Nuclear Information System (INIS)

    Cornard, Jean-Paul; Rasmiwetti; Merlin, Jean-Claude

    2005-01-01

    We investigated theoretically, by density functional theoretical calculations and by vibrational and electronic spectroscopies, the structure and the molecular spectroscopic properties of the 4-nitrocatechol molecule with varying pH. The lower energy stable structures of the neutral, monoanion and dianion forms were compared, and influence of water solvation was examined. The Raman and UV-visible spectra of 4-nitrocatechol and of its singly deprotonated form were recorded by varying the pH from 2 to 9. A calculation of the vibrational frequencies has allowed a complete assignment of the Raman spectra of the two forms of 4-nitrocatechol, and has permitted to investigate the evolution of vibrational normal modes upon deprotonation. Based on the molecular orbital analysis and the time dependent DFT (TD-DFT) calculations, we discussed the electronic structure and the assignment of the absorption bands in the electronic spectra of 4-nitrocatechol and mono-deprotonated 4-nitrocatechol

  4. Molecular mechanics of DNA bricks: in situ structure, mechanical properties and ionic conductivity

    International Nuclear Information System (INIS)

    Slone, Scott Michael; Li, Chen-Yu; Aksimentiev, Aleksei; Yoo, Jejoong

    2016-01-01

    The DNA bricks method exploits self-assembly of short DNA fragments to produce custom three-dimensional objects with subnanometer precision. In contrast to DNA origami, the DNA brick method permits a variety of different structures to be realized using the same library of DNA strands. As a consequence of their design, however, assembled DNA brick structures have fewer interhelical connections in comparison to equivalent DNA origami structures. Although the overall shape of the DNA brick objects has been characterized and found to conform to the features of the target designs, the microscopic properties of DNA brick objects remain yet to be determined. Here, we use the all-atom molecular dynamics method to directly compare the structure, mechanical properties and ionic conductivity of DNA brick and DNA origami structures different only by internal connectivity of their consistituent DNA strands. In comparison to equivalent DNA origami structures, the DNA brick structures are found to be less rigid and less dense and have a larger cross-section area normal to the DNA helix direction. At the microscopic level, the junction in the DNA brick structures are found to be right-handed, similar to the structure of individual Holliday junctions (HJ) in solution, which contrasts with the left-handed structure of HJ in DNA origami. Subject to external electric field, a DNA brick plate is more leaky to ions than an equivalent DNA origami plate because of its lower density and larger cross-section area. Overall, our results indicate that the structures produced by the DNA brick method are fairly similar in their overall appearance to those created by the DNA origami method but are more compliant when subject to external forces, which likely is a consequence of their single crossover design. (paper)

  5. Structural, vibrational and theoretical studies of anilinium trichloroacetate: New hydrogen bonded molecular crystal with nonlinear optical properties

    Science.gov (United States)

    Tanak, H.; Pawlus, K.; Marchewka, M. K.; Pietraszko, A.

    2014-01-01

    In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of the potential nonlinear optical (NLO) material anilinium trichloroacetate. The FT-IR and FT-Raman spectra of the compound have been recorded together between 4000-80 cm-1 and 3600-80 cm-1 regions, respectively. The compound crystallizes in the noncentrosymmetric space group of monoclinic system. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with 6-311++G(d,p) as higher basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. DSC measurements on powder samples do not indicate clearly on the occurrence of phase transitions in the temperature 113-293 K. The Kurtz and Perry powder reflection technique appeared to be very effective in studies of second-order nonlinear optical properties of the molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, frontier orbitals and thermodynamic properties were also performed at 6-311++G(d,p) level of theory. For title crystal the SHG efficiency was estimated by Kurtz-Perry method to be deff = 0.70 deff (KDP).

  6. Relationship of carbohydrates and lignin molecular structure spectral profiles to nutrient profile in newly developed oats cultivars and barley grain

    Science.gov (United States)

    Prates, Luciana Louzada; Refat, Basim; Lei, Yaogeng; Louzada-Prates, Mariana; Yu, Peiqiang

    2018-01-01

    The objectives of this study were to quantify the chemical profile and the magnitude of differences in the oat and barley grain varieties developed by Crop Development Centre (CDC) in terms of Cornell Net Carbohydrate Protein System (CNCPS) carbohydrate sub-fractions: CA4 (sugars), CB1 (starch), CB2 (soluble fibre), CB3 (available neutral detergent fibre - NDF), and CC (unavailable carbohydrate); to estimate the energy values; to detect the lignin and carbohydrate (CHO) molecular structure profiles in CDC Nasser and CDC Seabiscuit oat and CDC Meredith barley grains by using Fourier transform infrared attenuated total reflectance (FTIR-ATR); to develop a model to predict nutrient supply based on CHO molecular profile. Results showed that NDF, ADF and CHO were greater (P 0.05) for oat and barley grains as well as non-structural CHO. However, cellulosic compounds peak area and height were greater (P < 0.05) in oat than barley grains. Multiple regressions were determined to predict nutrient supply by using lignin and CHO molecular profiles. It was concluded that although there were some differences between oat and barley grains, CDC Nasser and CDC Meredith presented similarities related to chemical and molecular profiles, indicating that CDC Meredith barley could be replaced for CDC Nasser as ruminant feed. The FTIR was able to identify functional groups related to CHO molecular spectral in oat and barley grains and FTIR-ATR results could be used to predict nutrient supply in ruminant livestock systems.

  7. Exploration of structural stability in deleterious nsSNPs of the XPA gene: A molecular dynamics approach

    Directory of Open Access Journals (Sweden)

    N NagaSundaram

    2011-01-01

    Full Text Available Background: Distinguishing the deleterious from the massive number of non-functional nsSNPs that occur within a single genome is a considerable challenge in mutation research. In this approach, we have used the existing in silico methods to explore the mutation-structure-function relationship in the XPA gene. Materials and Methods: We used the Sorting Intolerant From Tolerant (SIFT, Polymorphism Phenotyping (PolyPhen, I-Mutant 2.0, and the Protein Analysis THrough Evolutionary Relationships methods to predict the effects of deleterious nsSNPs on protein function and evaluated the impact of mutation on protein stability by Molecular Dynamics simulations. Results: By comparing the scores of all the four in silico methods, nsSNP with an ID rs104894131 at position C108F was predicted to be highly deleterious. We extended our Molecular dynamics approach to gain insight into the impact of this non-synonymous polymorphism on structural changes that may affect the activity of the XPA gene. Conclusion: Based on the in silico methods score, potential energy, root-mean-square deviation, and root-mean-square fluctuation, we predict that deleterious nsSNP at position C108F would play a significant role in causing disease by the XPA gene. Our approach would present the application of in silico tools in understanding the functional variation from the perspective of structure, evolution, and phenotype.

  8. Structure characterization of the central repetitive domain of high molecular weight gluten proteins .1. Model studies using cyclic and linear peptides

    NARCIS (Netherlands)

    VanDijk, AA; VanWijk, LL; VanVliet, A; Haris, P; VanSwieten, E; Tesser, GI; Robillard, GT

    The high molecular weight (HMW) proteins from wheat contain a repetitive domain that forms 60-80% of their sequence. The consensus peptides PGQGQQ and GYYPTSPQQ form more than 90% of the domain; both are predicted to adopt beta-turn structure. This paper describes the structural characterization of

  9. Insights into structural and dynamical features of water at halloysite interfaces probed by DFT and classical molecular dynamics simulations.

    Science.gov (United States)

    Presti, Davide; Pedone, Alfonso; Mancini, Giordano; Duce, Celia; Tiné, Maria Rosaria; Barone, Vincenzo

    2016-01-21

    Density functional theory calculations and classical molecular dynamics simulations have been used to investigate the structure and dynamics of water molecules on kaolinite surfaces and confined in the interlayer of a halloysite model of nanometric dimension. The first technique allowed us to accurately describe the structure of the tetrahedral-octahedral slab of kaolinite in vacuum and in interaction with water molecules and to assess the performance of two widely employed empirical force fields to model water/clay interfaces. Classical molecular dynamics simulations were used to study the hydrogen bond network structure and dynamics of water adsorbed on kaolinite surfaces and confined in the halloysite interlayer. The results are in nice agreement with the few experimental data available in the literature, showing a pronounced ordering and reduced mobility of water molecules at the hydrophilic octahedral surfaces of kaolinite and confined in the halloysite interlayer, with respect to water interacting with the hydrophobic tetrahedral surfaces and in the bulk. Finally, this investigation provides new atomistic insights into the structural and dynamical properties of water-clay interfaces, which are of fundamental importance for both natural processes and industrial applications.

  10. Structural, Dynamic, and Vibrational Properties during Heat Transfer in Si/Ge Superlattices: A Car-Parrinello Molecular Dynamics Study

    OpenAIRE

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2016-01-01

    The structural, dynamic, and vibrational properties during the heat transfer process in Si/Ge superlattices, are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) ar...

  11. Preparation of Ultrahigh Molecular Weight Polyethylene/Graphene Nanocomposite In situ Polymerization via Spherical and Sandwich Structure Graphene/Sio2 Support

    Science.gov (United States)

    Su, Enqi; Gao, Wensheng; Hu, Xinjun; Zhang, Caicai; Zhu, Bochao; Jia, Junji; Huang, Anping; Bai, Yongxiao

    2018-04-01

    Reduced graphene oxide/SiO2 (RGO/SiO2) serving as a novel spherical support for Ziegler-Natta (Z-N) catalyst is reported. The surface and interior of the support has a porous architecture formed by RGO/SiO2 sandwich structure. The sandwich structure is like a brick wall coated with a graphene layer of concreted as skeleton which could withstand external pressures and endow the structure with higher support stabilities. After loading the Z-N catalyst, the active components anchor on the surface and internal pores of the supports. When the ethylene molecules meet the active centers, the molecular chains grow from the surface and internal catalytic sites in a regular and well-organized way. And the process of the nascent molecular chains filled in the sandwich structure polymerization could ensure the graphene disperse uniformly in the polymer matrix. Compared with traditional methods, the porous spherical graphene support of this strategy has far more advantages and could maintain an intrinsic graphene performance in the nanocomposites.

  12. Discovery of Novel Inhibitors for Nek6 Protein through Homology Model Assisted Structure Based Virtual Screening and Molecular Docking Approaches

    Directory of Open Access Journals (Sweden)

    P. Srinivasan

    2014-01-01

    Full Text Available Nek6 is a member of the NIMA (never in mitosis, gene A-related serine/threonine kinase family that plays an important role in the initiation of mitotic cell cycle progression. This work is an attempt to emphasize the structural and functional relationship of Nek6 protein based on homology modeling and binding pocket analysis. The three-dimensional structure of Nek6 was constructed by molecular modeling studies and the best model was further assessed by PROCHECK, ProSA, and ERRAT plot in order to analyze the quality and consistency of generated model. The overall quality of computed model showed 87.4% amino acid residues under the favored region. A 3 ns molecular dynamics simulation confirmed that the structure was reliable and stable. Two lead compounds (Binding database ID: 15666, 18602 were retrieved through structure-based virtual screening and induced fit docking approaches as novel Nek6 inhibitors. Hence, we concluded that the potential compounds may act as new leads for Nek6 inhibitors designing.

  13. The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations

    KAUST Repository

    Wang, N; Komvopoulos, K

    2014-01-01

    The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures

  14. Molecular structures of some 8-isoanalogues of steroid estrogens

    International Nuclear Information System (INIS)

    Starova, G.L.; Eliseev, I.I.; Abusalimov, Sh.N.; Tsogoeva, S.B.; Shavva, A.G.

    2001-01-01

    The molecular structures of three steroids, namely, 17β-acetoxy-3-methoxy-8-isoestra-1,3,5(10)-triene (I), 17β-acetoxy-3-methoxy-7α-methyl-8-isoestra-1,3,5(10)-triene (II), and 17β-acetoxy-3-methoxy-1-methyl-8-isoestra-1,3,5(10)-triene (III), are determined by X-ray diffraction analysis. It is shown that the substituents in the A and B rings of the compounds of the 8-iso series have a slight effect on the conformation of the steroid skeleton as a whole, which manifests itself only in insignificant distortions of the B and D rings. The methyl group in the 1-position (compound III) affects the geometric parameters of the steroid nucleus less than the same substituent in the 7-position (compound II). A sharp decrease in the uterotropic activity of compounds II and III (compared to compound I) revealed in biological studies can be attributed to unfavorable steric interactions of the substituents in the A and B rings with the estradiol receptor

  15. Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study.

    Science.gov (United States)

    Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K

    2017-11-21

    We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (C d ) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of C d with positive and negative surface potentials.

  16. Combined Ligand/Structure-Based Virtual Screening and Molecular Dynamics Simulations of Steroidal Androgen Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Yuwei Wang

    2017-01-01

    Full Text Available The antiandrogens, such as bicalutamide, targeting the androgen receptor (AR, are the main endocrine therapies for prostate cancer (PCa. But as drug resistance to antiandrogens emerges in advanced PCa, there presents a high medical need for exploitation of novel AR antagonists. In this work, the relationships between the molecular structures and antiandrogenic activities of a series of 7α-substituted dihydrotestosterone derivatives were investigated. The proposed MLR model obtained high predictive ability. The thoroughly validated QSAR model was used to virtually screen new dihydrotestosterones derivatives taken from PubChem, resulting in the finding of novel compounds CID_70128824, CID_70127147, and CID_70126881, whose in silico bioactivities are much higher than the published best one, even higher than bicalutamide. In addition, molecular docking, molecular dynamics (MD simulations, and MM/GBSA have been employed to analyze and compare the binding modes between the novel compounds and AR. Through the analysis of the binding free energy and residue energy decomposition, we concluded that the newly discovered chemicals can in silico bind to AR with similar position and mechanism to the reported active compound and the van der Waals interaction is the main driving force during the binding process.

  17. Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments.

    Science.gov (United States)

    Chaudhary, Prem Prashant; Brablcová, Lenka; Buriánková, Iva; Rulík, Martin

    2013-09-01

    Methanogenic archaeal communities existing in freshwater sediments are responsible for approximately 50 % of the total global emission of methane. This process contributes significantly to global warming and, hence, necessitates interventional control measures to limit its emission. Unfortunately, the diversity and functional interactions of methanogenic populations occurring in these habitats are yet to be fully characterized. Considering several disadvantages of conventional culture-based methodologies, in recent years, impetus is given to molecular biology approaches to determine the community structure of freshwater sedimentary methanogenic archaea. 16S rRNA and methyl coenzyme M reductase (mcrA) gene-based cloning techniques are the first choice for this purpose. In addition, electrophoresis-based (denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and terminal restriction fragment length polymorphism) and quantitative real-time polymerase chain reaction techniques have also found extensive applications. These techniques are highly sensitive, rapid, and reliable as compared to traditional culture-dependent approaches. Molecular diversity studies revealed the dominance of the orders Methanomicrobiales and Methanosarcinales of methanogens in freshwater sediments. The present review discusses in detail the status of the diversity of methanogens and the molecular approaches applied in this area of research.

  18. Magnetohydrodynamic Models of Molecular Tornadoes

    Science.gov (United States)

    Au, Kelvin; Fiege, Jason D.

    2017-07-01

    Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.

  19. Magnetohydrodynamic Models of Molecular Tornadoes

    Energy Technology Data Exchange (ETDEWEB)

    Au, Kelvin; Fiege, Jason D., E-mail: fiege@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba Winnipeg, MB R3T 2N2 (Canada)

    2017-07-10

    Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.

  20. Evaluating Molecular Properties Involved in Transport of Small Molecules in Stratum Corneum: A Quantitative Structure-Activity Relationship for Skin Permeability.

    Science.gov (United States)

    Chen, Chen-Peng; Chen, Chan-Cheng; Huang, Chia-Wen; Chang, Yen-Ching

    2018-04-15

    The skin permeability ( Kp ) defines the rate of a chemical penetrating across the stratum corneum. This value is widely used to quantitatively describe the transport of molecules in the outermost layer of epidermal skin and indicate the significance of skin absorption. This study defined a Kp quantitative structure-activity relationship (QSAR) based on 106 chemical substances of Kp measured using human skin and interpreted the molecular interactions underlying transport behavior of small molecules in the stratum corneum. The Kp QSAR developed in this study identified four molecular descriptors that described the molecular cyclicity in the molecule reflecting local geometrical environments, topological distances between pairs of oxygen and chlorine atoms, lipophilicity, and similarity to antineoplastics in molecular properties. This Kp QSAR considered the octanol-water partition coefficient to be a direct influence on transdermal movement of molecules. Moreover, the Kp QSAR identified a sub-domain of molecular properties initially defined to describe the antineoplastic resemblance of a compound as a significant factor in affecting transdermal permeation of solutes. This finding suggests that the influence of molecular size on the chemical's skin-permeating capability should be interpreted with other relevant physicochemical properties rather than being represented by molecular weight alone.

  1. Structural modeling of the distamycin A-d(CGCGAATTCGCG)2 complex using 2D NMR and molecular mechanics

    International Nuclear Information System (INIS)

    Pelton, J.G.; Wemmer, D.E.

    1988-01-01

    The structure of the distamycin A-d(CGCGAATTCGCG) 2 complex has been determined through a combination of SKEWSY and NOESY 2D NMR experiments and molecular mechanics calculations. NMR data provided upper bounds on many proton-proton pairs. The advantage of the SKEWSY/NOESY method is that small groups of strongly coupled spins can be treated accurately as isolated systems. The AMBER molecular mechanics package, modified to include the NMR constraints, was used in energy refinements. Distamycin A fits snugly into the 5'-AATT-3' minor-groove binding site. Structural analysis revealed van der Waals contacts between A5, A6, and A18 C2H and drug H3 protons, potential three-center hydrogen bonding between drug amide protons and adenine N3 and thymine O2 atoms analogous to the spine of hydration in the crystal structure of the free DNA, and stacking of the sugar O1' atoms of A6-C21, T7-T20, and T8-T19, over drug pyrrole rings 1, 2, and 3, respectively. In addition to hydrophobic effects, hydrogen bonding, and electrostatic interactions proposed by others, it is suggested that stacking interactions between DNA sugar O ' atoms and the three drug pyrrole rings contribute to the stability of the complex

  2. Neutron structure analyses and structural disorders of poly(p-phenylenebenzobisoxazole) and poly(p-phenylenebenzobisthiazole)

    International Nuclear Information System (INIS)

    Takahashi, Yasuhiro

    2001-01-01

    Poly(p-phenylenebenzobisoxazole)(PBO) and poly(p-phenylenebenzobisthiazole)(PBZT) are disordered with respect to the molecular heights. The molecular heights of PBO are disordered by 1/2 along the molecular axis, while the molecular heights of PBZT are disordered by 1/2 on the ac-plane and by every 1/5 on the bc-plane. Neutron structure analyses of both polymers were carried out for the c-projected structure in the temperature range 17 - 295K. The molecular structures of both polymers deviate from the planar structure. The crystal structures are less dependent on the temperature than the flexible polymers, polyethylene and poly(vinyl alcohol). (author)

  3. Structural analysis of CYP2C9 and CYP2C5 and an evaluation of commonly used molecular modeling techniques

    DEFF Research Database (Denmark)

    Afzelius, Lovisa; Raubacher, Florian; Karlén, Anders

    2004-01-01

    , newly built homology models, and repeated molecular dynamics simulations. The CPCA was based on molecular interaction fields focused on the active site regions of the proteins and include detailed amino acid analysis. The comparison of the CYP2C9 and CYP2C5 crystal structures revealed differences...... improved the similarity to the crystal target in some cases and could be recommended even though it requires a careful manual alignment process. The application of molecular dynamics simulations to highly flexible proteins such as cytochromes P450 is also explored and the information is extracted...... in the flexible regions such as the B-C and F-G loop and the N and C termini. Cross homology models of CYP2C9 and CYP2C5, using their respective crystal structures as templates, indicated that such models were more similar to their templates than to their target proteins. Inclusion of multiple templates slightly...

  4. Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach.

    Science.gov (United States)

    Zhang, Kaiming; Keane, Sarah C; Su, Zhaoming; Irobalieva, Rossitza N; Chen, Muyuan; Van, Verna; Sciandra, Carly A; Marchant, Jan; Heng, Xiao; Schmid, Michael F; Case, David A; Ludtke, Steven J; Summers, Michael F; Chiu, Wah

    2018-03-06

    Cryoelectron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy are routinely used to determine structures of macromolecules with molecular weights over 65 and under 25 kDa, respectively. We combined these techniques to study a 30 kDa HIV-1 dimer initiation site RNA ([DIS] 2 ; 47 nt/strand). A 9 Å cryo-EM map clearly shows major groove features of the double helix and a right-handed superhelical twist. Simulated cryo-EM maps generated from time-averaged molecular dynamics trajectories (10 ns) exhibited levels of detail similar to those in the experimental maps, suggesting internal structural flexibility limits the cryo-EM resolution. Simultaneous inclusion of the cryo-EM map and 2 H-edited NMR-derived distance restraints during structure refinement generates a structure consistent with both datasets and supporting a flipped-out base within a conserved purine-rich bulge. Our findings demonstrate the power of combining global and local structural information from these techniques for structure determination of modest-sized RNAs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The effect of structural changes on charge transfer states in a light-harvesting carotenoid-diaryl-porphyrin-C{sub 60} molecular triad

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, Marco [Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968 (United States); Basurto, Luis; Zope, Rajendra R. [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States); Baruah, Tunna, E-mail: tbaruah@utep.edu [Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968 (United States); Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States)

    2014-05-28

    We present a detailed study of charge transfer (CT) excited states for a large number of configurations in a light-harvesting Carotenoid-diaryl-Porphyrin-C{sub 60} (CPC{sub 60}) molecular triad. The chain-like molecular triad undergoes photoinduced charge transfer process exhibiting a large excited state dipole moment, making it suitable for application to molecular-scale opto-electronic devices. An important consideration is that the structural flexibility of the CPC{sub 60} triad impacts its dynamics in solvents. Since experimentally measured dipole moments for the triad of ∼110 D and ∼160 D strongly indicate a range in structural variability in the excited state, studying the effect of structural changes on the CT excited state energetics furthers the understanding of its charge transfer states. We have calculated the variation in the lowest CT excited state energies by performing a scan of possible variation in the structure of the triad. Some of these configurations were generated by incrementally scanning a 360° torsional (dihedral) twist at the C{sub 60}-porhyrin linkage and the porphyrin-carotenoid linkage. Additionally, five different CPC{sub 60} conformations were studied to determine the effect of pi-conjugation and particle-hole Coulombic attraction on the CT excitation energies. Our calculations show that configurational changes in the triad induces a variation of ∼0.6 eV in CT excited state energies in the gas-phase. The corresponding calculated excited state dipoles show a range of 47 D–188 D. The absorption spectra and density of states of these structures show little variation except for the structures where the porphyrin and aryl conjugation is changed.

  6. MOLECULAR STRUCTURE AND VIBRATIONAL FREQUENCIES OF

    Directory of Open Access Journals (Sweden)

    Fatih UCUN

    2009-02-01

    Full Text Available Abstract: The molecular structure, vibrational frequencies and the corresponding assignments of N-aminophthalimide (NAPH in the ground state have been calculated using the Hartree-Fock (HF and density functional methods (B3LYP with 6-31G (d, p basis set. The calculations were utilized in the CS symmetry of NAPH. The obtained vibrational frequencies and optimized geometric parameters (bond lengths and bond angles were seen to be in good agreement with the experimental data. The comparison of the observed and calculated results showed that B3LYP is superior to the scaled HF method. Theoretical infrared intensities and Raman activities were also reported. Key words: N-aminophthalimide; vibrations; IR spectra; Raman spectra; HF; DFT N-AMİNOFİTALOMİD'İN MOLEKÜLER YAPISI VE TİTREŞİM FREKANSLARI Özet: Temel haldeki N-aminofitalamidin (NAPH moleküler yapısı, titreşim frekansları ve uygun mod tanımlamaları, 6-31 G (d, p temel setli Hartree-Fock (HF ve yoğunluk fonksiyonu metodları (B3LYP kullanılarak hesaplandı. Hesaplamalar, NAPH'ın CS simetrisine uyarlandı. Elde edilen titreşim frekansları ve optimize geometrik parametreleri (bağ uzunlukları ve bağ açıları, deneysel değerlerle iyi bir uyum içinde olduğu görüldü. Deneysel ve teorik sonuçların karşılaştırılması, B3LYP'nin HF metodundan daha üstün olduğunu gösterdi. Ayrıca teorik infrared şiddetleri ve Raman aktiviteleri verildi. Anahtar Kelimeler: N-aminofitalamidin; titreşimler; IR spektrumu; Raman Spektrumu; HF; DFT

  7. Molecular dynamics study on the structure I clathrate-hydrate of methane + ethane mixture

    International Nuclear Information System (INIS)

    Erfan-Niya, Hamid; Modarress, Hamid; Zaminpayma, Esmaeil

    2011-01-01

    Molecular dynamics (MD) simulations are used to study the structure I stability of methane + ethane clathrate-hydrates at temperatures 273, 275 and 277 K. NVT- and NPT-ensembles are utilized in MD simulation, and each consists of 3 x 3 x 3 replica unit cells containing 46 water molecules which are considered as the host molecules and up to eight methane + ethane molecules considered as the guest molecules. In MD simulations for host-host interactions, the potential model used was a type of simple point charge (SPC) model, and for guest-guest and host-guest interactions the potential used was Lennard-Jones model. In the process of MD simulation, achieving equilibrium of the studied system was recognized by stability in calculated pressure for NVT-ensemble and volume for NPT-ensemble. To understand the characteristic configurations of the structure I hydrate, the radial distribution functions (RDFs) of host-host, host-guest and guest-guest molecules as well as other properties including kinetic energy, potential energy and total energy were calculated. The results show that guest molecules interaction with host molecules cannot decompose the hydrate structure, and these results are consistent with most previous experimental and theoretical investigations that methane + ethane mixtures form structure I hydrates over the entire mixture composition range.

  8. Nuclear molecular structure in heavy mass systems

    International Nuclear Information System (INIS)

    Arctaedius, T.; Bargholtz, C.

    1989-04-01

    A study is made of nuclear molecular configurations involving one heavy mass partner. The stability of these configurations to mass flow and to fission is investigated as well as their population in fusion reactions. It is concluded that shell effects in combination with the effects of angular momentum may be important in stabilizing certain configurations. A possible relation of these configurations to the so called superdeformed states is pointed out. The spectrum of rotational and vibrational trasitions within molecular configurations is investigated. For sufficiently mass-asymmetric systems the engergies of vibrational transitions are comparable to the neutron separation energy. Gamma radiation from such transitions may then be observable above the background of statistical transitions. The gamma spectrum and the directional distribution of the radioation following fusion reactions with 12 C and 16 O are calculated. (authors)

  9. Detect the sensitivity and response of protein molecular structure of whole canola seed (yellow and brown) to different heat processing methods and relation to protein utilization and availability using ATR-FT/IR molecular spectroscopy with chemometrics.

    Science.gov (United States)

    Samadi; Theodoridou, Katerina; Yu, Peiqiang

    2013-03-15

    The objectives of this experiment were to detect the sensitivity and response of protein molecular structure of whole canola seed to different heat processing [moisture (autoclaving) vs. dry (roasting) heating] and quantify heat-induced protein molecular structure changes in relation to protein utilization and availability. In this study, whole canola seeds were autoclaved (moisture heating) and dry (roasting) heated at 120 °C for 1h, respectively. The parameters assessed included changes in (1) chemical composition profile, (2) CNCPS protein subfractions (PA, PB1, PB2, PB3, PC), (3) intestinal absorbed true protein supply, (4) energy values, and (5) protein molecular structures (amide I, amide II, ratio of amide I to II, α-helix, β-sheet, ratio of α-helix to β-sheet). The results showed that autoclave heating significantly decreased (Pseed. Future study is needed to study response and impact of heat processing to each inherent layer of canola seed from outside to inside tissues and between yellow canola and brown canola. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Molecular Electronics

    DEFF Research Database (Denmark)

    Jennum, Karsten Stein

    This thesis includes the synthesis and characterisation of organic compounds designed for molecular electronics. The synthesised organic molecules are mainly based on two motifs, the obigo(phenyleneethynylenes) (OPE)s and tetrathiafulvalene (TTF) as shown below. These two scaffolds (OPE and TTF......) are chemically merged together to form cruciform-like structures that are an essential part of the thesis. The cruciform molecules were subjected to molecular conductance measurements to explore their capability towards single-crystal field-effect transistors (Part 1), molecular wires, and single electron......, however, was obtained by a study of a single molecular transistor. The investigated OPE5-TTF compound was captured in a three-terminal experiment, whereby manipulation of the molecule’s electronic spin was possible in different charge states. Thus, we demonstrated how the cruciform molecules could...

  11. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics.

    Science.gov (United States)

    Tanzi, Luana; Ramondo, Fabio; Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo

    2015-09-21

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.

  12. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics

    International Nuclear Information System (INIS)

    Tanzi, Luana; Ramondo, Fabio; Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo

    2015-01-01

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed