WorldWideScience

Sample records for structure formation ii

  1. Flow structure formation in an ion-unmagnetized plasma: The HYPER-II experiments

    Science.gov (United States)

    Terasaka, K.; Tanaka, M. Y.; Yoshimura, S.; Aramaki, M.; Sakamoto, Y.; Kawazu, F.; Furuta, K.; Takatsuka, N.; Masuda, M.; Nakano, R.

    2015-01-01

    The HYPER-II device has been constructed in Kyushu University to investigate the flow structure formation in an ion-unmagnetized plasma, which is an intermediate state of plasma and consists of unmagnetized ions and magnetized electrons. High density plasmas are produced by electron cyclotron resonance heating, and the flow field structure in an inhomogeneous magnetic field is investigated with a directional Langmuir probe method and a laser-induced fluorescence method. The experimental setup has been completed and the diagnostic systems have been installed to start the experiments. A set of coaxial electrodes will be introduced to control the azimuthal plasma rotation, and the effect of plasma rotation to generation of rectilinear flow structure will be studied. The HYPER-II experiments will clarify the overall flow structure in the inhomogeneous magnetic field and contribute to understanding characteristic feature of the intermediate state of plasma.

  2. Cu(II) promotes amyloid pore formation

    International Nuclear Information System (INIS)

    Zhang, Hangyu; Rochet, Jean-Christophe; Stanciu, Lia A.

    2015-01-01

    The aggregation of α-synuclein is associated with dopamine neuron death in Parkinson's disease. There is controversy in the field over the question of which species of the aggregates, fibrils or protofibrils, are toxic. Moreover, compelling evidence suggested the exposure to heavy metals to be a risk of PD. Nevertheless, the mechanism of metal ions in promoting PD remains unclear. In this research, we investigated the structural basis of Cu(II) induced aggregation of α-synuclein. Using transmission electron microscopy experiments, Cu(II) was found to promote in vitro aggregation of α-synuclein by facilitating annular protofibril formation rather than fibril formation. Furthermore, neuroprotective baicalein disaggregated annular protofibrils accompanied by considerable decrease of β-sheet content. These results strongly support the hypothesis that annular protofibrils are the toxic species, rather than fibrils, thereby inspiring us to search novel therapeutic strategies for the suppression of the toxic annular protofibril formation. - Highlights: • Cu(II) promoted the annular protofibril formation of α-synuclein in vitro. • Cu(II) postponed the in vitro fibrillization of α-synuclein. • Neuroprotective baicalein disaggregated annular protofibrils

  3. Cu(II) promotes amyloid pore formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hangyu, E-mail: hangyuz@uw.edu [Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 (United States); Rochet, Jean-Christophe [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 (United States); Stanciu, Lia A. [Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2015-08-14

    The aggregation of α-synuclein is associated with dopamine neuron death in Parkinson's disease. There is controversy in the field over the question of which species of the aggregates, fibrils or protofibrils, are toxic. Moreover, compelling evidence suggested the exposure to heavy metals to be a risk of PD. Nevertheless, the mechanism of metal ions in promoting PD remains unclear. In this research, we investigated the structural basis of Cu(II) induced aggregation of α-synuclein. Using transmission electron microscopy experiments, Cu(II) was found to promote in vitro aggregation of α-synuclein by facilitating annular protofibril formation rather than fibril formation. Furthermore, neuroprotective baicalein disaggregated annular protofibrils accompanied by considerable decrease of β-sheet content. These results strongly support the hypothesis that annular protofibrils are the toxic species, rather than fibrils, thereby inspiring us to search novel therapeutic strategies for the suppression of the toxic annular protofibril formation. - Highlights: • Cu(II) promoted the annular protofibril formation of α-synuclein in vitro. • Cu(II) postponed the in vitro fibrillization of α-synuclein. • Neuroprotective baicalein disaggregated annular protofibrils.

  4. Conversion of Phase II Unsteady Aerodynamics Experiment Data to Common Format; TOPICAL

    International Nuclear Information System (INIS)

    Hand, M. M.

    1999-01-01

    A vast amount of aerodynamic, structural, and turbine performance data were collected during three phases of the National Renewable Energy Laboratory's Unsteady Aerodynamics Experiment (UAE). To compare data from the three phases, a similar format of engineering unit data is required. The process of converting Phase II data from a previous engineering unit format to raw integer counts is discussed. The integer count files can then be input to the new post-processing software, MUNCH. The resulting Phase II engineering unit files are in a common format with current and future UAE engineering unit files. An additional objective for changing the file format was to convert the Phase II data from English units to SI units of measurement

  5. Temperature-dependent structural changes in intrinsically disordered proteins: formation of alpha-helices or loss of polyproline II?

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Nørholm, Ann-Beth; Hendus-Altenburger, Ruth

    2010-01-01

    temperature, which most likely reflects formation of transient alpha-helices or loss of polyproline II (PPII) content. Using three IDPs, ACTR, NHE1, and Spd1, we show that the temperature-induced structural change is common among IDPs and is accompanied by a contraction of the conformational ensemble...... with increasing temperature, and accordingly these were not responsible for the change in the CD spectra. In contrast, the nonhelical regions exhibited a general temperature-dependent structural change that was independent of long-range interactions. The temperature-dependent CD spectroscopic signature of IDPs...

  6. Small Galactic H II regions. II. The molecular clouds and star formation

    International Nuclear Information System (INIS)

    Hunter, D.A.; Thronson, H.A. Jr.; Wilton, C.

    1990-01-01

    CO maps of molecular clouds associated with 11 small Galactic H II regions are presented and compared with IR images obtained by IRAS. The molecular masses of the clouds are computed and compared with the masses of the stellar content. The mapped clouds have masses of 1000-60,000 solar and are typical of the more numerous, smaller Galactic molecular clouds. All of the clouds have recently made massive OB stars, and many have complex spatial and kinematic structures. The coincidence of IRAS sources and CO peaks suggests that many of the clouds have sites of star formation other than the optically visible H II region. Star-formation efficiencies are uncertain, with values for the clouds ranging from 0.02 to 0.6 with an average value of 0.2. There is no trend of the upper stellar mass limit with Galactic radius and with molecular cloud mass. 53 refs

  7. Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.

    Science.gov (United States)

    Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo

    2010-09-09

    Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.

  8. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate.

    Science.gov (United States)

    Song, Jia; Jia, Shao-Yi; Yu, Bo; Wu, Song-Hai; Han, Xu

    2015-08-30

    Abiotic oxidation of Fe(II) is a common pathway in the formation of Fe (hydr)oxides under natural conditions, however, little is known regarding the presence of arsenate on this process. In hence, the effect of arsenate on the precipitation of Fe (hydr)oxides during the oxidation of Fe(II) is investigated. Formation of arsenic-containing Fe (hydr)oxides is constrained by pH and molar ratios of As:Fe during the oxidation Fe(II). At pH 6.0, arsenate inhibits the formation of lepidocrocite and goethite, while favors the formation of ferric arsenate with the increasing As:Fe ratio. At pH 7.0, arsenate promotes the formation of hollow-structured Fe (hydr)oxides containing arsenate, as the As:Fe ratio reaches 0.07. Arsenate effectively inhibits the formation of magnetite at pH 8.0 even at As:Fe ratio of 0.01, while favors the formation of lepidocrocite and green rust, which can be latterly degenerated and replaced by ferric arsenate with the increasing As:Fe ratio. This study indicates that arsenate and low pH value favor the slow growth of dense-structured Fe (hydr)oxides like spherical ferric arsenate. With the rapid oxidation rate of Fe(II) at high pH, ferric (hydr)oxides prefer to precipitate in the formation of loose-structured Fe (hydr)oxides like lepidocrocite and green rust. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Scope Oriented Thermoeconomic analysis of energy systems. Part II: Formation Structure of Optimality for robust design

    International Nuclear Information System (INIS)

    Piacentino, Antonio; Cardona, Ennio

    2010-01-01

    This paper represents the Part II of a paper in two parts. In Part I the fundamentals of Scope Oriented Thermoeconomics have been introduced, showing a scarce potential for the cost accounting of existing plants; in this Part II the same concepts are applied to the optimization of a small set of design variables for a vapour compression chiller. The method overcomes the limit of most conventional optimization techniques, which are usually based on hermetic algorithms not enabling the energy analyst to recognize all the margins for improvement. The Scope Oriented Thermoeconomic optimization allows us to disassemble the optimization process, thus recognizing the Formation Structure of Optimality, i.e. the specific influence of any thermodynamic and economic parameter in the path toward the optimal design. Finally, the potential applications of such an in-depth understanding of the inner driving forces of the optimization are discussed in the paper, with a particular focus on the sensitivity analysis to the variation of energy and capital costs and on the actual operation-oriented design.

  10. Structure of photosystem II and substrate binding at room temperature.

    Science.gov (United States)

    Young, Iris D; Ibrahim, Mohamed; Chatterjee, Ruchira; Gul, Sheraz; Fuller, Franklin; Koroidov, Sergey; Brewster, Aaron S; Tran, Rosalie; Alonso-Mori, Roberto; Kroll, Thomas; Michels-Clark, Tara; Laksmono, Hartawan; Sierra, Raymond G; Stan, Claudiu A; Hussein, Rana; Zhang, Miao; Douthit, Lacey; Kubin, Markus; de Lichtenberg, Casper; Long Vo, Pham; Nilsson, Håkan; Cheah, Mun Hon; Shevela, Dmitriy; Saracini, Claudio; Bean, Mackenzie A; Seuffert, Ina; Sokaras, Dimosthenis; Weng, Tsu-Chien; Pastor, Ernest; Weninger, Clemens; Fransson, Thomas; Lassalle, Louise; Bräuer, Philipp; Aller, Pierre; Docker, Peter T; Andi, Babak; Orville, Allen M; Glownia, James M; Nelson, Silke; Sikorski, Marcin; Zhu, Diling; Hunter, Mark S; Lane, Thomas J; Aquila, Andy; Koglin, Jason E; Robinson, Joseph; Liang, Mengning; Boutet, Sébastien; Lyubimov, Artem Y; Uervirojnangkoorn, Monarin; Moriarty, Nigel W; Liebschner, Dorothee; Afonine, Pavel V; Waterman, David G; Evans, Gwyndaf; Wernet, Philippe; Dobbek, Holger; Weis, William I; Brunger, Axel T; Zwart, Petrus H; Adams, Paul D; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Sauter, Nicholas K; Kern, Jan; Yachandra, Vittal K; Yano, Junko

    2016-12-15

    Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn 4 CaO 5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S 0 to S 4 ), in which S 1 is the dark-stable state and S 3 is the last semi-stable state before O-O bond formation and O 2 evolution. A detailed understanding of the O-O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S 1 ), two-flash illuminated (2F; S 3 -enriched), and ammonia-bound two-flash illuminated (2F-NH 3 ; S 3 -enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S 1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn 4 CaO 5 cluster in the S 2 and S 3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O-O bond formation mechanisms.

  11. Crystal structure representations for machine learning models of formation energies

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Felix [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Lindmaa, Alexander [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden; von Lilienfeld, O. Anatole [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439; Armiento, Rickard [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden

    2015-04-20

    We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a dataset of 3938 crystal structures obtained from the Materials Project. For training sets consisting of 3000 crystals, the generalization error in predicting formation energies of new structures corresponds to (i) 0.49, (ii) 0.64, and (iii) 0.37eV/atom for the respective representations.

  12. Template Syntheses, Crystal Structures and Supramolecular Assembly of Hexaaza Macrocyclic Copper(II) Complexes

    International Nuclear Information System (INIS)

    Kim, Taehyung; Kim, Ju Chang; Lough, Alan J.

    2013-01-01

    Two new hexaaza macrocyclic copper(II) complexes were prepared by a template method and structurally characterized. In the solid state, they were self-assembled by intermolecular interactions to form the corresponding supramolecules 1 and 2, respectively. In the structure of 1, the copper(II) macrocycles are bridged by a tp ligand to form a macrocyclic copper(II) dimer. The dimer extends its structure by intermolecular forces such as hydrogen bonds and C-H···π interactions, resulting in the formation of a double stranded 1D supramolecule. In 2, the basic structure is a monomeric copper(II) macrocycle with deprotonated imidazole pendants. An undulated 1D hydrogen bonded array is achieved through hydrogen bonds between imidazole pendants and secondary amines, where the imidazole pendants act as a hydrogen bond acceptor. The 1D hydrogen bonded supramolecular chain is supported by C-H···π interactions between the methyl groups of acetonitrile ligands and imidazole pendants of the copper(II) macrocycles. In both complexes, the introduction of imidazoles to the macrocycle as a pendant plays an important role for the formation of supramolecules, where they act as intermolecular hydrogen bond donors and/or acceptors, C-H···π and π-π interactions

  13. The Formation of Metal (M=Co(II), Ni(II), and Cu(II)) Complexes by Aminosilanes Immobilized within Mesoporous Molecular Sieves

    International Nuclear Information System (INIS)

    Park, Dong Ho; Park, Sung Soo; Choe, Sang Joon

    1999-01-01

    The immobilization of APTMS(3-(2-aminoethylamino)propyltrimethoxysilane) and AAPTMS(3-(2-(2-aminoethyl) aminoethylamino)propyltrimethoxysilane) on the surface of high quality mesoporous molecular sieves MCM-41 and MCM-48 have been confirmed by F.T.-IR spectroscopy, Raman spectroscopy, 29 Si solid state NMR, and a surface polarity measurement using Reichardt's dye. The formation of metal (Co(II), Ni(II), and Cu(II)) complexes by immobilized aminosilanes have been investigated by photoacoustic spectroscopy(PAS). The assignment of UV-Vis. PAS bands makes it possible to identify the structure of metal complexes within mesoporous molecular sieves. Co(II) ion may be coordinated mainly in a tetrahedral symmetry by two APTMS onto MCM-41, and in an octahedral one by two AAPTMS. Both Ni(II) and Cu(II) coordinated by aminosilanes within MCM-41 form possibly the octahedral complexes such as [Ni(APTMS) 2 (H 2 O) 2 ] 2+ , [Ni(AAPTMS) 2 ] 2+ , [Cu(APTMS) 2 (H 2 O) 2 ] 2+ , and [Cu(AAPTMS)(H 2 O) 3 ] 2+ , respectively. The PAS band shapes of complexes onto MCM-48 are similar to those of corresponding MCM-41 with the variation of PAS intensity. Most of metal ion(II) within MCM-41 and MCM-48 are coordinated by aminosilanes without the impregnation on the surface

  14. The Reliability of [C II] as a Star Formation Rate Indicator

    Directory of Open Access Journals (Sweden)

    De Looze Ilse

    2011-09-01

    Full Text Available We present a calibration of the star formation rate (SFR as a function of the [C II] 157.74 μm luminosity for a sample of 24 star-forming galaxies in the nearby universe. In order to calibrate the SFR against the line luminosity, we rely on both GALEX FUV data, which is an ideal tracer of the unobscured star formation, and Spitzer MIPS 24 μm, to probe the dust-enshrouded fraction of star formation. For this sample of normal star-forming galaxies, the [C II] luminosity correlates well with the star formation rate. However, the extension of this relation to more quiescent (Hα EW≤10 Å or ultra luminous galaxies (LTIR ≥1012 L⊙ should be handled with caution, since these objects show a non-linearity in the L[C II]-to-LFIR ratio as a function of LFIR (and thus, their star formation activity. Two possible scenarios can be invoked to explain the tight correlation between the [C II] emission and the star formation activity on a global galaxy-scale. The first interpretation could be that the [C II] emission from photo dissociation regions arises from the immediate surroundings of actively star-forming regions and contributes a more or less constant fraction on a global galaxy-scale. Alternatively, we consider the possibility that the [C II] emission is associated to the cold interstellar medium, which advocates an indirect link with the star formation activity in a galaxy through the Schmidt law.

  15. Mediator structure and rearrangements required for holoenzyme formation.

    Science.gov (United States)

    Tsai, Kuang-Lei; Yu, Xiaodi; Gopalan, Sneha; Chao, Ti-Chun; Zhang, Ying; Florens, Laurence; Washburn, Michael P; Murakami, Kenji; Conaway, Ronald C; Conaway, Joan W; Asturias, Francisco J

    2017-04-13

    The conserved Mediator co-activator complex has an essential role in the regulation of RNA polymerase II transcription in all eukaryotes. Understanding the structure and interactions of Mediator is crucial for determining how the complex influences transcription initiation and conveys regulatory information to the basal transcription machinery. Here we present a 4.4 Å resolution cryo-electron microscopy map of Schizosaccharomyces pombe Mediator in which conserved Mediator subunits are individually resolved. The essential Med14 subunit works as a central backbone that connects the Mediator head, middle and tail modules. Comparison with a 7.8 Å resolution cryo-electron microscopy map of a Mediator-RNA polymerase II holoenzyme reveals that changes in the structure of Med14 facilitate a large-scale Mediator rearrangement that is essential for holoenzyme formation. Our study suggests that access to different conformations and crosstalk between structural elements are essential for the Mediator regulation mechanism, and could explain the capacity of the complex to integrate multiple regulatory signals.

  16. Crystal Structure of Rat Carnitine Palmitoyltransferase II (CPT-II)

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao,Y.; Jogl, G.; Esser, V.; Tong, L.

    2006-01-01

    Carnitine palmitoyltransferase II (CPT-II) has a crucial role in the {beta}-oxidation of long-chain fatty acids in mitochondria. We report here the crystal structure of rat CPT-II at 1.9 Angstroms resolution. The overall structure shares strong similarity to those of short- and medium-chain carnitine acyltransferases, although detailed structural differences in the active site region have a significant impact on the substrate selectivity of CPT-II. Three aliphatic chains, possibly from a detergent that is used for the crystallization, were found in the structure. Two of them are located in the carnitine and CoA binding sites, respectively. The third aliphatic chain may mimic the long-chain acyl group in the substrate of CPT-II. The binding site for this aliphatic chain does not exist in the short- and medium-chain carnitine acyltransferases, due to conformational differences among the enzymes. A unique insert in CPT-II is positioned on the surface of the enzyme, with a highly hydrophobic surface. It is likely that this surface patch mediates the association of CPT-II with the inner membrane of the mitochondria.

  17. Crystal structure of bis(4-acetylanilinium tetrachloridomercurate(II

    Directory of Open Access Journals (Sweden)

    Manickam Thairiyaraja

    2015-12-01

    Full Text Available The structure of the title salt, (C8H10NO2[HgCl4], is isotypic with that of the cuprate(II and cobaltate(II analogues. The asymmetric unit contains one 4-acetylanilinium cation and one half of a tetrachloridomercurate(II anion (point group symmetry m. The Hg—Cl distances are in the range 2.4308 (7–2.5244 (11 Å and the Cl—Hg—Cl angles in the range of 104.66 (2–122.94 (4°, indicating a considerable distortion of the tetrahedral anion. In the crystal, cations are linked by an intermolecular N—H...O hydrogen-bonding interaction, leading to a C(8 chain motif with the chains extending parallel to the b axis. There is also a π–π stacking interaction with a centroid-to-centroid distance of 3.735 (2 Å between neighbouring benzene rings along this direction. The anions lie between the chains and interact with the cations through intermolecular N—H...Cl hydrogen bonds, leading to the formation of a three-dimensional network structure.

  18. ICC Type II large-format FPA detector assemblies

    Science.gov (United States)

    Clynne, Thomas H.; Powers, Thomas P.

    1997-08-01

    ICC presents a new addition to their integrated detector assembly product line with the announcement of their type II large format staring class FPA units. A result of internally funded research and development, the ICC type II detector assembly can accommodate all existing large format staring class PtSi, InSb and MCT focal planes, up to 640 by 480. Proprietary methodologies completely eliminate all FPA stresses to allow for maximum FPA survivability. Standard optical and cryocooler interfaces allow for the use of BEI, AEG, TI SADA Hughes/Magnavox and Joule Thompson coolers. This unit has been qualified to the current SADA II thermal environmental specifications and was tailored around ICC's worldwide industry standard type IV product. Assembled in a real world flexible manufacturing environment, this unit features a wide degree of adaptability and can be easily modified to a user's specifications via standard options and add-ons that include optical interfaces, electrical interfaces and window/filter material selections.

  19. The Mechanism of Redox Reaction between Palladium(II Complex Ions and Potassium Formate in Acidic Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Wojnicki M.

    2017-06-01

    Full Text Available The kinetics studies of redox reaction between palladium(II chloride complex ions and potassium formate in acidic aqueous solutions was investigated. It was shown, that the reduction reaction of Pd(II is selective in respect to Pd(II complex structure. The kinetic of the process was monitored spectrophotometrically. The influence of chloride ions concentration, Pd(II initial concentration, reductant concentration, ionic strength as well as the temperature were investigated in respect to the process dynamics. Arrhenius equation parameters were determined and are equal to 65.8 kJ/mol, and A = 1.12×1011 s−1.

  20. The role of order-disorder transitions in the quest for molecular multiferroics: structural and magnetic neutron studies of a mixed valence iron(II)-iron(III) formate framework.

    Science.gov (United States)

    Cañadillas-Delgado, Laura; Fabelo, Oscar; Rodríguez-Velamazán, J Alberto; Lemée-Cailleau, Marie-Hélène; Mason, Sax A; Pardo, Emilio; Lloret, Francesc; Zhao, Jiong-Peng; Bu, Xian-He; Simonet, Virginie; Colin, Claire V; Rodríguez-Carvajal, Juan

    2012-12-05

    Neutron diffraction studies have been carried out to shed light on the unprecedented order-disorder phase transition (ca. 155 K) observed in the mixed-valence iron(II)-iron(III) formate framework compound [NH(2)(CH(3))(2)](n)[Fe(III)Fe(II)(HCOO)(6)](n). The crystal structure at 220 K was first determined from Laue diffraction data, then a second refinement at 175 K and the crystal structure determination in the low temperature phase at 45 K were done with data from the monochromatic high resolution single crystal diffractometer D19. The 45 K nuclear structure reveals that the phase transition is associated with the order-disorder of the dimethylammonium counterion that is weakly anchored in the cavities of the [Fe(III)Fe(II)(HCOO)(6)](n) framework. In the low-temperature phase, a change in space group from P31c to R3c occurs, involving a tripling of the c-axis due to the ordering of the dimethylammonium counterion. The occurrence of this nuclear phase transition is associated with an electric transition, from paraelectric to antiferroelectric. A combination of powder and single crystal neutron diffraction measurements below the magnetic order transition (ca. 37 K) has been used to determine unequivocally the magnetic structure of this Néel N-Type ferrimagnet, proving that the ferrimagnetic behavior is due to a noncompensation of the different Fe(II) and Fe(III) magnetic moments.

  1. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)

    Science.gov (United States)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  2. Melanoidin formation in ethanolic monosaccharide – arylamine – copper (II systems

    Directory of Open Access Journals (Sweden)

    Cherepanov I. S.

    2017-09-01

    Full Text Available Results of studying of melanoidin formation regularities at interaction of D-glucose and D-xylose with p-amino benzoic acid (PABA in acidic ethanolic media have been presented; features of the chosen threefold systems are, firstly, existence of the low-active amino-compound of benzene series, secondly, presence of catalytic amounts of the biogenic metal. Regularities of melanoidins structure formation from similar systems are almost not studied, at the same time some important biological properties are predicted for them that demands research of reactions' kinetics and development of techniques of their directional synthesis. Studying has been carried out by synthetic methods in total with a sample drawing technique with UV-Vis-spectrophotometry filing and engaging of FTIR-spectroscopy. Based on electronic spectra analysis more intensive melanoidin formation in case of reaction from D-xylose has been shown, this can be bound to steric hindrance and to ability of aldopentoses to give more reactionary capable intermediates in comparison with aldohexoses. The accelerating role of copper (II ions as the complexing center catalyzing both formation and degradation of the intermediate products at different reaction stages has been confirmed, at the same time the accelerating action is considerably shown since copper ion concentrations about 60 mg/l, but Cu(II chelation degree by final products is low. The effect of solvent has been noted, in particular the influence of ethanol on nature of amino-carbonyl interactions manifested in strengthening of carbohydrates tendency to re-cyclization, it also probably accelerates melanoidin formation. The data obtained have shown the percent of carbohydrates direct destruction (caramelization in the presented conditions is insignificant, that allows developing based on the present researches target synthetic techniques for melanoidin products' preparation.

  3. Sequestration and Distribution Characteristics of Cd(II by Microcystis aeruginosa and Its Role in Colony Formation

    Directory of Open Access Journals (Sweden)

    Xiangdong Bi

    2016-01-01

    Full Text Available To investigate the sequestration and distribution characteristics of Cd(II by Microcystis aeruginosa and its role in Microcystis colony formation, M. aeruginosa was exposed to six different Cd(II concentrations for 10 days. Cd(II exposure caused hormesis in the growth of M. aeruginosa. Low concentrations of Cd(II significantly induced formation of small Microcystis colonies (P93% of Cd(II was sequestrated in the groups with lower added concentrations of Cd(II. More than 80% of the sequestrated Cd(II was bioadsorbed by bEPS. The Pearson correlation coefficients of exterior and interior factors related to colony formation of M. aeruginosa revealed that Cd(II could stimulate the production of IPS and bEPS via increasing Cd(II bioaccumulation and bioadsorption. Increased levels of cross-linking between Cd(II and bEPS stimulated algal cell aggregation, which eventually promoted the formation of Microcystis colonies.

  4. Reaction of Pb(II) and Zn(II) with Ethyl Linoleate To Form Structured Hybrid Inorganic–Organic Complexes: A Model for Degradation in Historic Paint Films

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; Berrie, Barbara H. (NGA); (Bordeaux)

    2016-09-23

    To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K+, Zn2+, Pb2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm–1 for Pb(II) and ca. 1580 cm–1 for Zn(II) are consistent with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.

  5. Sequestration and Distribution Characteristics of Cd(II) by Microcystis aeruginosa and Its Role in Colony Formation.

    Science.gov (United States)

    Bi, Xiangdong; Yan, Ran; Li, Fenxiang; Dai, Wei; Jiao, Kewei; Zhou, Qixing; Liu, Qi

    2016-01-01

    To investigate the sequestration and distribution characteristics of Cd(II) by Microcystis aeruginosa and its role in Microcystis colony formation, M. aeruginosa was exposed to six different Cd(II) concentrations for 10 days. Cd(II) exposure caused hormesis in the growth of M. aeruginosa . Low concentrations of Cd(II) significantly induced formation of small Microcystis colonies ( P bEPS) contents of M. aeruginosa significantly ( P 93% of Cd(II) was sequestrated in the groups with lower added concentrations of Cd(II). More than 80% of the sequestrated Cd(II) was bioadsorbed by bEPS. The Pearson correlation coefficients of exterior and interior factors related to colony formation of M. aeruginosa revealed that Cd(II) could stimulate the production of IPS and bEPS via increasing Cd(II) bioaccumulation and bioadsorption. Increased levels of cross-linking between Cd(II) and bEPS stimulated algal cell aggregation, which eventually promoted the formation of Microcystis colonies.

  6. THE FORMATION OF IRIS DIAGNOSTICS. II. THE FORMATION OF THE Mg II h and k LINES IN THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Leenaarts, J.; Pereira, T. M. D.; Carlsson, M.; De Pontieu, B. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Uitenbroek, H., E-mail: jorritl@astro.uio.no, E-mail: tiago.pereira@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: bdp@lmsal.com, E-mail: huitenbroek@nso.edu [NSO/Sacramento Peak P.O. Box 62 Sunspot, NM 88349-0062 (United States)

    2013-08-01

    NASA's Interface Region Imaging Spectrograph (IRIS) small explorer mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h and k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations requires forward modeling of Mg II h and k line formation from three-dimensional (3D) radiation-magnetohydrodynamic (RMHD) models. This paper is the second in a series where we undertake this modeling. We compute the vertically emergent h and k intensity from a snapshot of a dynamic 3D RMHD model of the solar atmosphere, and investigate which diagnostic information about the atmosphere is contained in the synthetic line profiles. We find that the Doppler shift of the central line depression correlates strongly with the vertical velocity at optical depth unity, which is typically located less than 200 km below the transition region (TR). By combining the Doppler shifts of the h and k lines we can retrieve the sign of the velocity gradient just below the TR. The intensity in the central line depression is anti-correlated with the formation height, especially in subfields of a few square Mm. This intensity could thus be used to measure the spatial variation of the height of the TR. The intensity in the line-core emission peaks correlates with the temperature at its formation height, especially for strong emission peaks. The peaks can thus be exploited as a temperature diagnostic. The wavelength difference between the blue and red peaks provides a diagnostic of the velocity gradients in the upper chromosphere. The intensity ratio of the blue and red peaks correlates strongly with the average velocity in the upper chromosphere. We conclude that the Mg II h and k lines are excellent probes of the very upper chromosphere just below the TR, a height regime that is impossible to probe with other spectral lines. They also provide decent temperature and velocity diagnostics of the middle

  7. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)

    Science.gov (United States)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  8. Influence of crystal structure on the CoII diffusion behavior in the Zn1-xCoxO system

    International Nuclear Information System (INIS)

    Peiteado, M.; Makovec, D.; Villegas, M.; Caballero, A.C.

    2008-01-01

    The solid state interaction of the Zn 1-x Co x O nominal system is investigated by means of diffusion couples and analysis of co-precipitated samples. The formation of a homogeneous Co:ZnO solid solution is found to be determined by the crystal structure from which Co II ions diffuse into the wurtzite lattice. No diffusion is observed whenever the CoO rock-salt structure is formed from the Co II precursor. On the contrary, the diffusion from the Co 3 O 4 spinel phase is feasible but has a limited temperature range defined by the reduction at a high temperature of Co III -Co II , since this process again leads to the formation of the rock-salt structure. However, when using a highly reactive and homogeneous co-precipitated starting powder, neither the spinel phase nor the rock-salt structure is formed, and a Co II :ZnO solid solution is obtained, which remains stable up to high temperatures. - Graphical abstract: Maximum diffusion distance for the ZnO-CoO x couple as a function of temperature. Dashed gray lines represent the temperature values at which the transformations between CoO and Co 3 O 4 compounds take place

  9. The Structure of the Young Star Cluster NGC 6231. II. Structure, Formation, and Fate

    Science.gov (United States)

    Kuhn, Michael A.; Getman, Konstantin V.; Feigelson, Eric D.; Sills, Alison; Gromadzki, Mariusz; Medina, Nicolás; Borissova, Jordanka; Kurtev, Radostin

    2017-12-01

    The young cluster NGC 6231 (stellar ages ˜2-7 Myr) is observed shortly after star formation activity has ceased. Using the catalog of 2148 probable cluster members obtained from Chandra, VVV, and optical surveys (Paper I), we examine the cluster’s spatial structure and dynamical state. The spatial distribution of stars is remarkably well fit by an isothermal sphere with moderate elongation, while other commonly used models like Plummer spheres, multivariate normal distributions, or power-law models are poor fits. The cluster has a core radius of 1.2 ± 0.1 pc and a central density of ˜200 stars pc-3. The distribution of stars is mildly mass segregated. However, there is no radial stratification of the stars by age. Although most of the stars belong to a single cluster, a small subcluster of stars is found superimposed on the main cluster, and there are clumpy non-isotropic distributions of stars outside ˜4 core radii. When the size, mass, and age of NGC 6231 are compared to other young star clusters and subclusters in nearby active star-forming regions, it lies at the high-mass end of the distribution but along the same trend line. This could result from similar formation processes, possibly hierarchical cluster assembly. We argue that NGC 6231 has expanded from its initial size but that it remains gravitationally bound.

  10. Dual pathway for angiotensin II formation in human internal mammary arteries

    NARCIS (Netherlands)

    Voors, A. A.; Pinto, Y. M.; Buikema, H.; Urata, H.; Oosterga, M.; Rooks, G.; Grandjean, J. G.; Ganten, D.; van Gilst, W. H.

    1998-01-01

    1. Angiotensin converting enzyme (ACE) is thought to be the main enzyme to convert antiotensin I to the vasoactive angiotensin II. Recently, in the human heart, it was found that the majority of angiotensin II formation was due to another enzyme, identified as human heart chymase. In the human

  11. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts.

    Science.gov (United States)

    Burger, Dylan; Montezano, Augusto C; Nishigaki, Nobuhiro; He, Ying; Carter, Anthony; Touyz, Rhian M

    2011-08-01

    Circulating microparticles are increased in cardiovascular disease and may themselves promote oxidative stress and inflammation. Molecular mechanisms underlying their formation and signaling are unclear. We investigated the role of reactive oxygen species (ROS), Rho kinase, and lipid rafts in microparticle formation and examined their functional significance in endothelial cells (ECs). Microparticle formation from angiotensin II (Ang II)-stimulated ECs and apolipoprotein E(-/-) mice was assessed by annexin V or by CD144 staining and electron microscopy. Ang II promoted microparticle formation and increased EC O(2)(-) generation and Rho kinase activity. Ang II-stimulated effects were inhibited by irbesartan (Ang II receptor type I blocker) and fasudil (Rho kinase inhibitor). Methyl-β-cyclodextrin and nystatin, which disrupt lipid rafts/caveolae, blocked microparticle release. Functional responses, assessed in microparticle-stimulated ECs, revealed increased O(2)(-) production, enhanced vascular cell adhesion molecule/platelet-EC adhesion molecule expression, and augmented macrophage adhesion. Inhibition of epidermal growth factor receptor blocked the prooxidative and proinflammatory effects of microparticles. In vitro observations were confirmed in apolipoprotein E(-/-) mice, which displayed vascular inflammation and high levels of circulating endothelial microparticles, effects that were reduced by apocynin. We demonstrated direct actions of Ang II on endothelial microparticle release, mediated through NADPH oxidase, ROS, and Rho kinase targeted to lipid rafts. Microparticles themselves stimulated endothelial ROS formation and inflammatory responses. Our findings suggest a feedforward system whereby Ang II promotes EC injury through its own endothelial-derived microparticles.

  12. Synthesis, structure and fluorescence properties of a novel 3D Sr(II) coordination polymer

    Science.gov (United States)

    Tan, Yu-Hui; Xu, Qing; Gu, Zhi-Feng; Gao, Ji-Xing; Wang, Bin; Liu, Yi; Yang, Chang-Shan; Tang, Yun-Zhi

    2016-09-01

    Solvothermal reaction of 2,2‧-bipyridine-5,5‧-dicarboxylic acid (H2bpdc) and SrCl2 affords a novel coordination polymer [Sr(Hbpdc)2]n1. X-ray structure determination shows that 1 exhibits a novel three-dimensional network. The unique Sr II cation sits on a two-fold axis and coordinated by four O-atom donors from four Hbptc- ligands and four N-atom donors from two Hbptc- ligands in distorted dodecahedral geometry. In 1 each Sr II cation connects to six different Hbptc- ligands and each Hbptc- ligand bridges three different Sr II cations which results in the formation of a three-dimensional polymeric structure. Corresponding to the free ligand, the fluorescent emission of complex 1 display remarkable "Einstain" shifts, which may be attributed to the coordination interaction of Sr atoms, thus reduce the rigidity of pyridyl rings.

  13. Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation.

    Science.gov (United States)

    Tang, Yuanzhi; Zeiner, Carolyn A; Santelli, Cara M; Hansel, Colleen M

    2013-04-01

    Microbially mediated oxidation of Mn(II) to Mn(III/IV) oxides influences the cycling of metals and remineralization of carbon. Despite the prevalence of Mn(II)-bearing minerals in nature, little is known regarding the ability of microbes to oxidize mineral-hosted Mn(II). Here, we explored oxidation of the Mn(II)-bearing mineral rhodochrosite (MnCO3 ) and characteristics of ensuing Mn oxides by six Mn(II)-oxidizing Ascomycete fungi. All fungal species substantially enhanced rhodochrosite dissolution and surface modification. Mineral-hosted Mn(II) was oxidized resulting in formation of Mn(III/IV) oxides that were all similar to δ-MnO2 but varied in morphology and distribution in relation to cellular structures and the MnCO3 surface. For four fungi, Mn(II) oxidation occurred along hyphae, likely mediated by cell wall-associated proteins. For two species, Mn(II) oxidation occurred via reaction with fungal-derived superoxide produced at hyphal tips. This pathway ultimately resulted in structurally unique Mn oxide clusters formed at substantial distances from any cellular structure. Taken together, findings for these two fungi strongly point to a role for fungal-derived organic molecules in Mn(III) complexation and Mn oxide templation. Overall, this study illustrates the importance of fungi in rhodochrosite dissolution, extends the relevance of biogenic superoxide-based Mn(II) oxidation and highlights the potential role of mycogenic exudates in directing mineral precipitation. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Synthesis and characterisation of the Fe(II-III) hydroxy-formate green rust

    International Nuclear Information System (INIS)

    Refait, P.; Abdelmoula, M.; Genin, J.-M. R.; Jeannin, M.

    2006-01-01

    A new methodology was envisioned in order to prepare green rust compounds build on organic anions that could intervene in microbiologically influenced corrosion processes of iron and steel. The formate ion was chosen as an example. The formation of rust was simulated by the oxidation of aqueous suspensions of Fe(OH) 2 precipitated from Fe(II) lactate and sodium hydroxide, in the presence of sodium formate to promote the formation of the corresponding green rust. The evolution of the precipitate with time was followed by transmission Moessbauer spectroscopy at 15 K. It was observed that the initial hydroxide was transformed into a new GR compound. Its spectrum is composed of three quadrupole doublets, D 1 (δ = 1.28 mm s -1 , Δ = 2.75 mm s -1 ) and D 2 (δ = 1.28 mm s -1 , Δ 2.48 mm s -1 ) that correspond to Fe(II) and D 3 (δ = 0.49 mm s -1 , Δ = 0.37 mm s -1 ) that corresponds to Fe(III). The relative area of D 3 , close to the proportion of Fe(III) in the GR, was found at 28.5 ± 1.5% (∼2/7). Raman spectroscopy confirmed that the intermediate compound was a Fe(II-III) hydroxy-formate, GR(HCOO - ).

  15. Investigation on the formation of monomethylmercury(II) in the Elbe

    International Nuclear Information System (INIS)

    Ebinghaus, R.; Wilken, R.D.; Gisder, P.

    1994-01-01

    Very little is known about transformation reactions of pollutants attached to suspended materials in the Elbe. In the present study, the influence of bacteria present in suspended particulate matter and in Elbe sediments, on dynamic transformations of mercury species was investigated. The formation of highly toxic monomethylmercury is more effective in the presence of organotin, - lead and arsenic compounds, via transmethylation reactions, than in the presence of biogenic methyldonors. Under oxic conditions, bacteria isolated from suspended particulate matter decompose methlmercury very rapidly to inorganic Hg(II), which is immobilized by the cells. In sediments, redox potential and pH value are important for the formation of methylmercury. Under anoxic conditions a pH of 6.5 is advantageous for the methylation of mercury(II)ions. (orig.) [de

  16. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.

    Science.gov (United States)

    Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara

    2004-07-21

    The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.

  17. Metal-ion exchange induced structural transformation as a way of forming novel Ni(II)− and Cu(II)−salicylaldimine structures

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jing-Yun, E-mail: jyunwu@ncnu.edu.tw; Tsai, Chi-Jou; Chang, Ching-Yun; Wu, Yung-Yuan

    2017-02-15

    A Zn(II)−salicylaldimine complex [Zn(L{sup salpyca})(H{sub 2}O)]{sub n} (1, where H{sub 2}L{sup salpyca}=4-hydroxy-3-(((pyridin-2-yl)methylimino)methyl)benzoic acid), with a one-dimensional (1D) chain structure, has been successfully converted to a discrete Ni(II)−salicylaldimine complex [Ni(L{sup salpyca})(H{sub 2}O){sub 3}] (2) and an infinite Cu(II)−salicylaldimine complex ([Cu(L{sup salpyca})]·3H{sub 2}O){sub n} (3) through a metal-ion exchange induced structural transformation process. However, such processes do not worked by Mn(II) and Co(II) ions. Solid-state structure analyses reveal that complexes 1–3 form comparable coordinative or supramolecular zigzag chains running along the crystallographic [201] direction. In addition, replacing Zn(II) ion by Ni(II) and Cu(II) ions caused changes in coordination environment and sphere of metal centers, from a 5-coordinate intermediate geometry of square pyramidal and trigonal bipyramidal in 1 to a 6-coordinate octahedral geometry in 2, and to a 4-coordiante square planar geometry in 3. This study shows that metal-ion exchange serves as a very efficient way of forming new coordination complexes that may not be obtained through direct synthesis. - Graphical abstract: A Zn(II)−salicylaldimine zigzag chain has been successfully converted to a Ni(II)−salicylaldimine supramolecular zigzag chain and a Cu(II)−salicylaldimine coordinative zigzag chain through metal-ion exchange induced structural transformations, which is not achieved by Mn(II) and Co(II) ions.

  18. Standard molar enthalpies of formation of copper(II) β-diketonates and monothio-β-diketonates

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Santos, Luis M.N.B.F.

    2006-01-01

    The standard (p o =0.1MPa) molar enthalpies of formation of the crystalline complexes of dibenzoylmethane (Hdbm), thenoyltrifluoroacetone (Httfa), monothiodibenzoylmethane (HdbmS), and monothiothenoyltrifluoroacetone (HttfaS) of copper(II) were determined, at T=298.15K, by high precision solution-reaction calorimetry. The standard molar enthalpies of sublimation of the copper(II) β-diketonate complexes were measured by high-temperature Calvet microcalorimetry. From the standard molar enthalpies of formation of the complexes in the gaseous state, the mean molar dissociation enthalpies copper(II)-ligand, m >(Cu-L), were derived. Δ f H m o (cr)Δ cr g H m o kJ.mol -1 kJ.mol -1 Bis(dibenzoylmethanate)copper(II), Cu(dbm) 2 -364.0+/-3.9230.7+/-8.2Bis(thenoyltrifluoroacetonate)copper(II), Cu(ttfa) 2 -1824.3+/-8.3167.9+/-7.4Bis(monothiodibenzoylmethanate)copper(II), Cu(dbmS) 2 35.6+/-7.7[241+/-15]Bis(monothiothenoyltrifluoroacetonate) copper(II), Cu(ttfaS) 2 -1405.7+/-8.3[177+/-15

  19. Pseudomonas aeruginosa Exhibits Deficient Biofilm Formation in the Absence of Class II and III Ribonucleotide Reductases Due to Hindered Anaerobic Growth.

    Science.gov (United States)

    Crespo, Anna; Pedraz, Lucas; Astola, Josep; Torrents, Eduard

    2016-01-01

    Chronic lung infections by the ubiquitous and extremely adaptable opportunistic pathogen Pseudomonas aeruginosa correlate with the formation of a biofilm, where bacteria grow in association with an extracellular matrix and display a wide range of changes in gene expression and metabolism. This leads to increased resistance to physical stress and antibiotic therapies, while enhancing cell-to-cell communication. Oxygen diffusion through the complex biofilm structure generates an oxygen concentration gradient, leading to the appearance of anaerobic microenvironments. Ribonucleotide reductases (RNRs) are a family of highly sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides, and they constitute the only de novo pathway for the formation of the building blocks needed for DNA synthesis and repair. P. aeruginosa is one of the few bacteria encoding all three known RNR classes (Ia, II, and III). Class Ia RNRs are oxygen dependent, class II are oxygen independent, and class III are oxygen sensitive. A tight control of RNR activity is essential for anaerobic growth and therefore for biofilm development. In this work we explored the role of the different RNR classes in biofilm formation under aerobic and anaerobic initial conditions and using static and continuous-flow biofilm models. We demonstrated the importance of class II and III RNR for proper cell division in biofilm development and maturation. We also determined that these classes are transcriptionally induced during biofilm formation and under anaerobic conditions. The molecular mechanism of their anaerobic regulation was also studied, finding that the Anr/Dnr system is responsible for class II RNR induction. These data can be integrated with previous knowledge about biofilms in a model where these structures are understood as a set of layers determined by oxygen concentration and contain cells with different RNR expression profiles, bringing us a step closer to the understanding of this

  20. Lead(ii) soaps: crystal structures, polymorphism, and solid and liquid mesophases.

    Science.gov (United States)

    Martínez-Casado, F J; Ramos-Riesco, M; Rodríguez-Cheda, J A; Redondo-Yélamos, M I; Garrido, L; Fernández-Martínez, A; García-Barriocanal, J; da Silva, I; Durán-Olivencia, M; Poulain, A

    2017-07-05

    The long-chain members of the lead(ii) alkanoate series or soaps, from octanoate to octadecanoate, have been thoroughly characterized by means of XRD, PDF analysis, DSC, FTIR, ssNMR and other techniques, in all their phases and mesophases. The crystal structures at room temperature of all of the members of the series are now solved, showing the existence of two polymorphic forms in the room temperature crystal phase, different to short and long-chain members. Only nonanoate and decanoate present both forms, and this polymorphism is proven to be monotropic. At higher temperature, these compounds present a solid mesophase, defined as rotator, a liquid crystal phase and a liquid phase, all of which have a similar local arrangement. Since some lead(ii) soaps appear as degradation compounds in oil paintings, the solved crystal structures of lead(ii) soaps can now be used as fingerprints for their detection using X-ray diffraction. Pair distribution function analysis on these compounds is very similar in the same phases and mesophases for the different members, showing the same short range order. This observation suggests that this technique could also be used in the detection of these compounds in disordered phases or in the initial stages of formation in paintings.

  1. Standard molar enthalpies of formation of nickel(II) {beta}-diketonates and monothio-{beta}-diketonates

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro da Silva, Manuel A.V. [Centro de Investigacao em Quimica, Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)]. E-mail: risilva@fc.up.pt; Santos, Luis M.N.B.F. [Centro de Investigacao em Quimica, Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Giera, Edward [Faculty of Chemistry, Wroclaw University, ul. F. Joliot-Curie 14, 50-383 Wroclaw (Poland)

    2007-03-15

    The standard (p{sup o}=0.1MPa) molar enthalpies of formation of the crystalline diaquobis(dibenzoylmethanate)nickel(II), Ni(dbm){sub 2}(H{sub 2}O){sub 2}, diaquobis(thenoyltrifluoroacetonate)nickel(II), Ni(ttfa){sub 2}(H{sub 2}O){sub 2} bis(monothiodibenzoylmethanate)nickel(II), Ni(dbmS){sub 2} and bis(monothiothenoyltrifluoroacetonate)nickel(II), Ni(HttfaS){sub 2} were determined, at T=298.15K, by high precision solution-reaction calorimetry. The standard molar enthalpy of sublimation of the monothiothenoyltrifluoroacetone (HttfaS) complex was measured by high-temperature Calvet microcalorimetry. From the standard molar enthalpies of formation of the complexes in the gaseous state, the mean nickel(II)-ligand molar dissociation enthalpies, (Ni-L), were derived. {delta}{sub f}H{sub m}{sup o}(cr)/(kJ.mol{sup -1})Diaquobis(dibenzoylmethanate)nickel(II), Ni(dbm){sub 2}(H{sub 2}O){sub 2}-993.3+/-3.8Diaquobis(thenoyltrifluoroacetonate)nickel(II), Ni(ttfa){sub 2}(H{sub 2}O){sub 2}-2452.0+/-8.3Bis(monothiodibenzoylmethanate)nickel(II), Ni(dbmS){sub 2}-42.1+/-5.9Bis(monothiothenoyltrifluoroacetonate)nickel(II), Ni(ttfaS){sub 2}-1473.5+/-8.1.

  2. Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state

    Energy Technology Data Exchange (ETDEWEB)

    Osterman, Ilya A.; Khabibullina, Nelli F.; Komarova, Ekaterina S.; Kasatsky, Pavel; Kartsev, Victor G.; Bogdanov, Alexey A.; Dontsova, Olga A.; Konevega, Andrey L.; Sergiev, Petr V.; Polikanov, Yury S. (InterBioScreen); (UIC); (MSU-Russia); (Kurchatov)

    2017-05-13

    The emergence of multi-drug resistant bacteria is limiting the effectiveness of commonly used antibiotics, which spurs a renewed interest in revisiting older and poorly studied drugs. Streptogramins A is a class of protein synthesis inhibitors that target the peptidyl transferase center (PTC) on the large subunit of the ribosome. In this work, we have revealed the mode of action of the PTC inhibitor madumycin II, an alanine-containing streptogramin A antibiotic, in the context of a functional 70S ribosome containing tRNA substrates. Madumycin II inhibits the ribosome prior to the first cycle of peptide bond formation. It allows binding of the tRNAs to the ribosomal A and P sites, but prevents correct positioning of their CCA-ends into the PTC thus making peptide bond formation impossible. We also revealed a previously unseen drug-induced rearrangement of nucleotides U2506 and U2585 of the 23S rRNA resulting in the formation of the U2506•G2583 wobble pair that was attributed to a catalytically inactive state of the PTC. The structural and biochemical data reported here expand our knowledge on the fundamental mechanisms by which peptidyl transferase inhibitors modulate the catalytic activity of the ribosome.

  3. Structure of the Ni(II) complex of Escherichia coli peptide deformylase and suggestions on deformylase activities depending on different metal(II) centres.

    Science.gov (United States)

    Yen, Ngo Thi Hai; Bogdanović, Xenia; Palm, Gottfried J; Kühl, Olaf; Hinrichs, Winfried

    2010-02-01

    Crystal structures of polypeptide deformylase (PDF) of Escherichia coli with nickel(II) replacing the native iron(II) have been solved with chloride and formate as metal ligands. The chloro complex is a model for the correct protonation state of the hydrolytic hydroxo ligand and the protonated status of the Glu133 side chain as part of the hydrolytic mechanism. The ambiguity that recently some PDFs have been identified with Zn(2+) ion as the active-site centre whereas others are only active with Fe(2+) (or Co(2+), Ni(2+) is discussed with respect to Lewis acid criteria of the metal ion and substrate activation by the CD loop.

  4. Hydroxyl Radical Formation from HULIS and Fe(II) Interactions: Fulvic Acid-Fe(II) Complexes in Simulated and Human Lung Fluids

    Science.gov (United States)

    Gonzalez, D.

    2017-12-01

    Inhalation of fine particulate matter (PM2.5) has long been associated with adverse health outcomes. However, the causative agents and underlying mechanisms for these health effects have yet to be identified. One hypothesis is that PM2.5 deposited in the alveoli produce an excess of highly reactive radicals, leading to oxidative stress. The OH radical may be the most physiologically damaging, capable of oxidizing of lipids, proteins and DNA. Due to the variability and uncertainty in PM2.5 composition, the components that contribute to OH formation are not well understood. Soluble Fe is a component of PM2.5that produces OH under physiological conditions. Humic-like substances are water soluble organics found in biomass burning and tobacco smoke. Humic-like substances are capable of binding to Fe and enhancing OH formation, but this chemistry is not well understood. In this work, we use soil derived fulvic acid as a surrogate for Humic-like substances and investigate its effect on OH formation from Fe(II) under conditions relevant to the lungs. We use a fluorescent OH trapping probe, chemical kinetics and thermodynamic modeling to investigate OH formation from fulvic acid and Fe(II) dissolved in simulated and human lung fluids. In simulated lung fluid, we find that fulvic acid binds to Fe(II) and enhances the rate of key reactions that form OH. When fulvic acid is added to human lung fluids containing Fe(II), an enhancement of OH formation is observed. In human lung fluid, fulvic acid and metal binding proteins compete for Fe binding. These metal binding proteins are typically not found in simulated lung fluids. Results show that fulvic acid strongly binds Fe(II) and catalyzes key reactions that form OH in both simulated and human lung fluids. These results may help explain the role of Humic-like substances and Fe in oxidative stress and adverse health outcomes. Furthermore, we suggest that future studies employ simulated lung fluids containing metal binding proteins

  5. Standard molar enthalpies of formation of copper(II) {beta}-diketonates and monothio-{beta}-diketonates

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro da Silva, Manuel A.V. [Centro de Investigacao em Quimica, Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)]. E-mail: risilva@fc.up.pt; Santos, Luis M.N.B.F. [Centro de Investigacao em Quimica, Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)

    2006-07-15

    The standard (p{sup o}=0.1MPa) molar enthalpies of formation of the crystalline complexes of dibenzoylmethane (Hdbm), thenoyltrifluoroacetone (Httfa), monothiodibenzoylmethane (HdbmS), and monothiothenoyltrifluoroacetone (HttfaS) of copper(II) were determined, at T=298.15K, by high precision solution-reaction calorimetry. The standard molar enthalpies of sublimation of the copper(II) {beta}-diketonate complexes were measured by high-temperature Calvet microcalorimetry. From the standard molar enthalpies of formation of the complexes in the gaseous state, the mean molar dissociation enthalpies copper(II)-ligand, (Cu-L), were derived. {delta}{sub f}H{sub m}{sup o} (cr){delta}{sub cr}{sup g}H{sub m}{sup o} kJ.mol{sup -1}kJ.mol{sup -1}Bis(dibenzoylmethanate)copper(II), Cu(dbm){sub 2}-364.0+/-3.9230.7+/-8.2Bis(thenoyltrifluoroacetonate)copper(II), Cu(ttfa){sub 2}-1824.3+/-8.3167.9+/-7.4Bis(monothiodibenzoylmethanate)copper(II), Cu(dbmS){sub 2}35.6+/-7.7[241+/-15]Bis(monothiothenoyltrifluoroacetonate) copper(II), Cu(ttfaS){sub 2}-1405.7+/-8.3[177+/-15].

  6. EPR study of complex formation between copper (II) ions and sympathomimetic amines in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Preoteasa, E.A. [Inst. of Atomic Physics, IFIN, Bucharest (Romania); Duliu, O.G.; Grecu, V.V. [Bucharest, Univ. (Romania). Dept. of Atomic and Nuclear Physics

    1997-07-01

    The complex formation between sympathomimetic amines (SA): adrenaline (AD), noradrenaline (NA), dopamine (DA), ephedrine (ED) and p-tyramine (pTA), and Cu(II) ion in aqueous solution has been studied by X-band EPR at room temperature. Excepting pTA, all investigated SA yielded two types of complexes in different pH domains. All complexes consistent with a ligand fields having a distorted octahedral symmetry, i.e., hexacoordination of Cu(II). The covalence coefficient calculated from the isotropic g and A values has shown strong ionic sigma-type ligand bonds. A structural model with the Cu(II) ion bound by four catecholic O(hydroxy) atoms for the low pH complexes of AD, NA and DA is proposed. For the high pH complexes of the former compounds as well as for both Ed complexes, the authors suppose Cu(II) bound by two N (amino) and two O (hydroxy) atoms. The spectra are consistent to water binding on the longitudinal octahedron axis in all compounds excepting the high pH complex of Ed, where OH2- ions are bound. Possible implications for the SA-cell receptors interactions are discussed.

  7. THE SECOND SURVEY OF THE MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD BY NANTEN. II. STAR FORMATION

    International Nuclear Information System (INIS)

    Kawamura, Akiko; Mizuno, Yoji; Minamidani, Tetsuhiro; Mizuno, Norikazu; Onishi, Toshikazu; Fukui, Yasuo; Fillipovic, Miroslav D.; Staveley-Smith, Lister; Kim, Sungeun; Mizuno, Akira

    2009-01-01

    We studied star formation activities in the molecular clouds in the Large Magellanic Cloud. We have utilized the second catalog of 272 molecular clouds obtained by NANTEN to compare the cloud distribution with signatures of massive star formation including stellar clusters, and optical and radio H II regions. We find that the molecular clouds are classified into three types according to the activities of massive star formation: Type I shows no signature of massive star formation; Type II is associated with relatively small H II region(s); and Type III with both H II region(s) and young stellar cluster(s). The radio continuum sources were used to confirm that Type I giant molecular clouds (GMCs) do not host optically hidden H II regions. These signatures of massive star formation show a good spatial correlation with the molecular clouds in the sense that they are located within ∼100 pc of the molecular clouds. Among possible ideas to explain the GMC types, we favor that the types indicate an evolutionary sequence; i.e., the youngest phase is Type I, followed by Type II, and the last phase is Type III, where the most active star formation takes place leading to cloud dispersal. The number of the three types of GMCs should be proportional to the timescale of each evolutionary stage if a steady state of massive star and cluster formation is a good approximation. By adopting the timescale of the youngest stellar clusters, 10 Myr, we roughly estimate the timescales of Types I, II, and III to be 6 Myr, 13 Myr, and 7 Myr, respectively, corresponding to a lifetime of 20-30 Myr for the GMCs with a mass above the completeness limit, 5 x 10 4 M sun .

  8. Structural diversity and fluorescence properties of three 2-sulfoterephthalate Cd{sup II}/Zn{sup II} coordination polymers employing 1,4-bisbenzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yixia, E-mail: renyixia1@163.com; Chai, Hongmei; Tang, Long; Hou, Xiangyang; Wang, Jijiang

    2016-02-15

    Three novel coordination polymers, namely, [Cd(2-Hstp)(1,4-bbi)(H{sub 2}O){sub 2}]·3H{sub 2}O (1), [Cd{sub 1.5}(2-stp)(1,4-bbi)(H{sub 2}O){sub 2}]·H{sub 2}O (2) and [Zn{sub 2}(2-stp)(μ{sub 2}-OH)(1,4-bbi){sub 1.5}(H{sub 2}O)]·6H{sub 2}O (3) (2-H{sub 3}stp is equal to 2-sulfoterephthalate and 1,4-bisbenzimidazole is equal to 1,4-bbi), have been synthesized by hydrothermal reaction. The structural analyses show that 1 and 2 possess different structural features despite the same raw materials, which are 1D chain structure featuring 6-member-water H-bonds cluster and 3D bbi-pillared wavy-like layer framework, respectively. As changing the metal ion to zinc ion, 3 exhibits 3D stp-pillared layer architecture, which discovers the effect of the central metal ions on the formation of metal–organic frameworks. The fluorescence studies show that the emissions of the coordination polymers are attributed to the ligand π–π* transition, which means they could be potential fluorescence materials. - Graphical abstract: Three new Cd{sup II}/Zn{sup II} 2-sulfoterephthalate (2-H{sub 3}stp) complexes with 1,4-bisbenzimidazole (1,4-bbi) are described. Complex 1 exhibits one-dimensional chain-like structure, 2 is a three-dimensional bbi-pillared wavy-like layer framework, while 3 is a three-dimensional stp-pillared layer architecture. Fluorescence spectra exhibit the π–π* transition of two organic ligands. - Highlights: • Three Cd{sup II}/Mn{sup II} 2-sulfoterephthalate complexes containing 1,4-bisbenzimidazole. • Different structural features despite the same raw materials for 1 and 2. • Fluorescence spectra exhibit the π–π* transition of organic ligands.

  9. Star Formation and Young Population of the H II Complex Sh2-294

    Science.gov (United States)

    Samal, M. R.; Pandey, A. K.; Ojha, D. K.; Chauhan, N.; Jose, J.; Pandey, B.

    2012-08-01

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 μm observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H2 (2.12 μm) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H2 emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass (<4 M ⊙) YSOs; however, we also detected a massive YSO (~9 M ⊙) of Class I nature, embedded in a cloud of visual extinction of ~24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age ~ 4.5 × 106 yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a ~4 × 106 yr B0 main-sequence star.

  10. STAR FORMATION AND YOUNG POPULATION OF THE H II COMPLEX Sh2-294

    International Nuclear Information System (INIS)

    Samal, M. R.; Pandey, A. K.; Chauhan, N.; Jose, J.; Ojha, D. K.; Pandey, B.

    2012-01-01

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 μm observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H 2 (2.12 μm) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H 2 emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass ( ☉ ) YSOs; however, we also detected a massive YSO (∼9 M ☉ ) of Class I nature, embedded in a cloud of visual extinction of ∼24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age ∼ 4.5 × 10 6 yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a ∼4 × 10 6 yr B0 main-sequence star.

  11. NMR structures of anti-HIV D-peptides derived from the N-terminus of viral chemokine vMIP-II

    International Nuclear Information System (INIS)

    Mori, Mayuko; Liu Dongxiang; Kumar, Santosh; Huang Ziwei

    2005-01-01

    The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus has unique biological activities in that it blocks the cell entry by several different human immunodeficiency virus type 1 (HIV-1) strains via chemokine receptors including CXCR4 and CCR5. In this paper, we report the solution structure of all-D-amino acid peptides derived from the N-terminus of vMIP-II, which have been shown to have strong CXCR4 binding activity and potently inhibit HIV-1 entry via CXCR4, by using long mixing time two-dimensional nuclear Overhauser enhancement spectroscopy experiments. Both of all-D-peptides vMIP-II (1-10) and vMIP-II (1-21), which are designated as DV3 and DV1, respectively, have higher CXCR4 binding ability than their L-peptide counterparts. They are partially structured in aqueous solution, displaying a turn-like structure over residues 5-8. The small temperature coefficients of His-6 amide proton for both peptides also suggest the formation of a small hydrophobic pocket centered on His-6. The structural features of DV3 are very similar to the reported solution structure of all-L-peptide vMIP-II (1-10) [M.P. Crump, E. Elisseeva, J. Gong, I. Clark-Lewis, B.D. Sykes, Structure/function of human herpesvirus-8 MIP-II (1-71) and the antagonist N-terminal segment (1-10), FEBS Lett. 489 (2001) 171], which is consistent with the notion that D- and L-enantiomeric peptides can adopt mirror image conformations. The NMR structures of the D-peptides provide a structural basis to understand their mechanism of action and design new peptidomimetic analogs to further explore the structure-activity relationship of D-peptide ligand binding to CXCR4

  12. Telomerase deficiency in bone marrow-derived cells attenuates angiotensin II-induced abdominal aortic aneurysm formation.

    Science.gov (United States)

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Cohn, Dianne; Heywood, Elizabeth B; Jones, Karrie L; Lovett, David H; Howatt, Deborah A; Daugherty, Alan; Bruemmer, Dennis

    2011-02-01

    Abdominal aortic aneurysms (AAA) are an age-related vascular disease and an important cause of morbidity and mortality. In this study, we sought to determine whether the catalytic component of telomerase, telomerase reverse transcriptase (TERT), modulates angiotensin (Ang) II-induced AAA formation. Low-density lipoprotein receptor-deficient (LDLr-/-) mice were lethally irradiated and reconstituted with bone marrow-derived cells from TERT-deficient (TERT-/-) mice or littermate wild-type mice. Mice were placed on a diet enriched in cholesterol, and AAA formation was quantified after 4 weeks of Ang II infusion. Repopulation of LDLr-/- mice with TERT-/- bone marrow-derived cells attenuated Ang II-induced AAA formation. TERT-deficient recipient mice revealed modest telomere attrition in circulating leukocytes at the study end point without any overt effect of the donor genotype on white blood cell counts. In mice repopulated with TERT-/- bone marrow, aortic matrix metalloproteinase-2 (MMP-2) activity was reduced, and TERT-/- macrophages exhibited decreased expression and activity of MMP-2 in response to stimulation with Ang II. Finally, we demonstrated in transient transfection studies that TERT overexpression activates the MMP-2 promoter in macrophages. TERT deficiency in bone marrow-derived macrophages attenuates Ang II-induced AAA formation in LDLr-/- mice and decreases MMP-2 expression. These results point to a previously unrecognized role of TERT in the pathogenesis of AAA.

  13. Modeling the fusion of cylindrical bioink particles in post bioprinting structure formation

    Science.gov (United States)

    McCune, Matt; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2015-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method to describe the shape evolution and biomechanical relaxation processes in multicellular systems. Thus, CPD is a useful tool to predict the outcome of post-printing structure formation in bioprinting. The predictive power of CPD has been demonstrated for multicellular systems composed of spherical bioink units. Experiments and computer simulations were related through an independently developed theoretical formalism based on continuum mechanics. Here we generalize the CPD formalism to (i) include cylindrical bioink particles often used in specific bioprinting applications, (ii) describe the more realistic experimental situation in which both the length and the volume of the cylindrical bioink units decrease during post-printing structure formation, and (iii) directly connect CPD simulations to the corresponding experiments without the need of the intermediate continuum theory inherently based on simplifying assumptions. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  14. Spiral chain structure of high pressure selenium-II' and sulfur-II from powder x-ray diffraction

    International Nuclear Information System (INIS)

    Fujihisa, Hiroshi; Yamawaki, Hiroshi; Sakashita, Mami; Yamada, Takahiro; Honda, Kazumasa; Akahama, Yuichi; Kawamura, Haruki; Le Bihan, Tristan

    2004-01-01

    The structure of high pressure phases, selenium-II ' (Se-II ' ) and sulfur-II (S-II), for α-Se 8 (monoclinic Se-I) and α-S 8 (orthorhombic S-I) was studied by powder x-ray diffraction experiments. Se-II ' and S-II were found to be isostructural and to belong to the tetragonal space group I4 1 /acd, which is made up of 16 atoms in the unit cell. The structure consisted of unique spiral chains with both 4 1 and 4 3 screws. The results confirmed that the structure sequence of the pressure-induced phase transitions for the group VIb elements depended on the initial molecular form. The chemical bonds of the phases are also discussed from the interatomic distances that were obtained

  15. Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects.

    Science.gov (United States)

    Chen, Wei; Qu, Mingbo; Zhou, Yong; Yang, Qing

    2018-02-23

    Chitin is a linear homopolymer of N -acetyl-β-d-glucosamines and a major structural component of insect cuticles. Chitin hydrolysis involves glycoside hydrolase family 18 (GH18) chitinases. In insects, chitin hydrolysis is essential for periodic shedding of the old cuticle ecdysis and proceeds via a pathway different from that in the well studied bacterial chitinolytic system. Group II chitinase (ChtII) is a widespread chitinolytic enzyme in insects and contains the greatest number of catalytic domains and chitin-binding domains among chitinases. In Lepidopterans, ChtII and two other chitinases, ChtI and Chi-h, are essential for chitin hydrolysis. Although ChtI and Chi-h have been well studied, the role of ChtII remains elusive. Here, we investigated the structure and enzymology of Of ChtII, a ChtII derived from the insect pest Ostrinia furnacalis We present the crystal structures of two catalytically active domains of Of ChtII, Of ChtII-C1 and Of ChtII-C2, both in unliganded form and complexed with chitooligosaccharide substrates. We found that Of ChtII-C1 and Of ChtII-C2 both possess long, deep substrate-binding clefts with endochitinase activities. Of ChtII exhibited structural characteristics within the substrate-binding cleft similar to those in Of Chi-h and Of ChtI. However, Of ChtII lacked structural elements favoring substrate binding beyond the active sites, including an extra wall structure present in Of Chi-h. Nevertheless, the numerous domains in Of ChtII may compensate for this difference; a truncation containing one catalytic domain and three chitin-binding modules ( Of ChtII-B4C1) displayed activity toward insoluble polymeric substrates that was higher than those of Of Chi-h and Of ChtI. Our observations provide the last piece of the puzzle of chitin hydrolysis in insects. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. CHROMIUM(II) AMIDES - SYNTHESIS AND STRUCTURES

    NARCIS (Netherlands)

    EDEMA, JJH; GAMBAROTTA, S; MEETSMA, A; SPEK, AL; SMEETS, WJJ; CHIANG, MY

    1993-01-01

    A novel class of mono- and di-meric chromium(II) amides has been prepared and characterized. Reaction of [CrCl2(thf)2] (thf = tetrahydrofuran) with 2 equivalents of M(NR2) (R = C6H11, Pr(i), Ph, or phenothiazinyl; M = Li or Na) allowed the formation of the homoleptic amides [{Cr(mu-NR2)(NR2)}2] (R =

  17. Synthesis and structural characterisation of iron(II) and copper(II) diphosphates containing flattened metal oxotetrahedra

    Energy Technology Data Exchange (ETDEWEB)

    Keates, Adam C. [School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1B,. UK (United Kingdom); Wang, Qianlong [Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom); Weller, Mark T., E-mail: m.t.weller@bath.ac.uk [Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom)

    2014-02-15

    Single crystal and bulk polycrystalline forms of K{sub 2}MP{sub 2}O{sub 7} (M=Fe(II), Cu(II)) have been synthesised and their structures determined from single crystal X-ray diffraction data. Both compounds crystallize in the tetragonal system, space group P-42{sub 1}m. Their structures are formed from infinite sheets of linked oxopolyhedra of the stoichiometry [MP{sub 2}O{sub 7}]{sup 2−} with potassium cations situated between the layers. The MO{sub 4} tetrahedra share oxygen atoms with [P{sub 2}O{sub 7}]{sup 4−} diphosphate groups and the potassium ions have KO{sub 8} square prismatic geometry. In both compounds the M(II) centre has an unusual strongly flattened, tetrahedral coordination to oxygen, as a result of the Jahn–Teller (JT) effect for the high spin d{sup 6} Fe(II) and p-orbital mixing or a second order JT effect for d{sup 9} Cu(II) centres in four fold coordination. The uncommon transition metal ion environments found in these materials are reflected in their optical absorption spectra and magnetism data. - Graphical abstract: The structures of the tetragonal polymorphs of K{sub 2}MP{sub 2}O{sub 7}, M=Cu(II), Fe(II), consist of infinite sheets of stoichiometry [MP{sub 2}O{sub 7}]{sup 2−}, formed from linked pyrophosphate groups and MO{sub 4} tetrahedra, separated by potassium ions. In both compounds the unusual tetrahedral coordination of the M(II) centre is strongly flattened as a result of Jahn–Teller (JT) effects for high spin, d{sup 6} Fe(II) and p-orbital mixing and second-order JT effects for d{sup 9} Cu(II). Display Omitted - Highlights: • Tetrahedral copper and iron(II) coordinated by oxygen. • New layered phosphate structure. • Jahn–Teller and d{sup 10} distorted coordinations.

  18. Synthesis and structural characterisation of iron(II) and copper(II) diphosphates containing flattened metal oxotetrahedra

    International Nuclear Information System (INIS)

    Keates, Adam C.; Wang, Qianlong; Weller, Mark T.

    2014-01-01

    Single crystal and bulk polycrystalline forms of K 2 MP 2 O 7 (M=Fe(II), Cu(II)) have been synthesised and their structures determined from single crystal X-ray diffraction data. Both compounds crystallize in the tetragonal system, space group P-42 1 m. Their structures are formed from infinite sheets of linked oxopolyhedra of the stoichiometry [MP 2 O 7 ] 2− with potassium cations situated between the layers. The MO 4 tetrahedra share oxygen atoms with [P 2 O 7 ] 4− diphosphate groups and the potassium ions have KO 8 square prismatic geometry. In both compounds the M(II) centre has an unusual strongly flattened, tetrahedral coordination to oxygen, as a result of the Jahn–Teller (JT) effect for the high spin d 6 Fe(II) and p-orbital mixing or a second order JT effect for d 9 Cu(II) centres in four fold coordination. The uncommon transition metal ion environments found in these materials are reflected in their optical absorption spectra and magnetism data. - Graphical abstract: The structures of the tetragonal polymorphs of K 2 MP 2 O 7 , M=Cu(II), Fe(II), consist of infinite sheets of stoichiometry [MP 2 O 7 ] 2− , formed from linked pyrophosphate groups and MO 4 tetrahedra, separated by potassium ions. In both compounds the unusual tetrahedral coordination of the M(II) centre is strongly flattened as a result of Jahn–Teller (JT) effects for high spin, d 6 Fe(II) and p-orbital mixing and second-order JT effects for d 9 Cu(II). Display Omitted - Highlights: • Tetrahedral copper and iron(II) coordinated by oxygen. • New layered phosphate structure. • Jahn–Teller and d 10 distorted coordinations

  19. Structural properties of MHC class II ligands, implications for the prediction of MHC class II epitopes.

    Directory of Open Access Journals (Sweden)

    Kasper Winther Jørgensen

    2010-12-01

    Full Text Available Major Histocompatibility class II (MHC-II molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Prediction of MHC class II ligands is complicated by the open binding cleft of the MHC class II molecule, allowing binding of peptides extending out of the binding groove. Furthermore, only a few HLA-DR alleles have been characterized with a sufficient number of peptides (100-200 peptides per allele to derive accurate description of their binding motif. Little work has been performed characterizing structural properties of MHC class II ligands. Here, we perform one such large-scale analysis. A large set of SYFPEITHI MHC class II ligands covering more than 20 different HLA-DR molecules was analyzed in terms of their secondary structure and surface exposure characteristics in the context of the native structure of the corresponding source protein. We demonstrated that MHC class II ligands are significantly more exposed and have significantly more coil content than other peptides in the same protein with similar predicted binding affinity. We next exploited this observation to derive an improved prediction method for MHC class II ligands by integrating prediction of MHC- peptide binding with prediction of surface exposure and protein secondary structure. This combined prediction method was shown to significantly outperform the state-of-the-art MHC class II peptide binding prediction method when used to identify MHC class II ligands. We also tried to integrate N- and O-glycosylation in our prediction methods but this additional information was found not to improve prediction performance. In summary, these findings strongly suggest that local structural properties influence antigen processing and/or the accessibility of peptides to the MHC class II molecule.

  20. The roles of tertiary amine structure, background organic matter and chloramine species on NDMA formation.

    Science.gov (United States)

    Selbes, Meric; Kim, Daekyun; Ates, Nuray; Karanfil, Tanju

    2013-02-01

    N-nitrosodimethylamine (NDMA), a probable human carcinogen, is a disinfection by-product that has been detected in chloraminated and chlorinated drinking waters and wastewaters. Formation mechanisms and precursors of NDMA are still not well understood. The main objectives of this study were to systematically investigate (i) the effect of tertiary amine structure, (ii) the effect of background natural organic matter (NOM), and (iii) the roles of mono vs. dichloramine species on the NDMA formation. Dimethylamine (DMA) and 20 different tertiary aliphatic and aromatic amines were carefully examined based on their functional groups attached to the basic DMA structure. The wide range (0.02-83.9%) of observed NDMA yields indicated the importance of the structure of tertiary amines, and both stability and electron distribution of the leaving group of tertiary amines on NDMA formation. DMA associated with branched alkyl groups or benzyl like structures having only one carbon between the ring and DMA structure consistently gave higher NDMA yields. Compounds with electron withdrawing groups (EWG) reacted preferentially with monochloramine, whereas compounds with electron donating group (EDG) showed tendency to react with dichloramine to form NDMA. When the selected amines were present in NOM solutions, NDMA formation increased for compounds with EWG while decreased for compounds with EDG. This impact was attributed to the competitions between NOM and amines for chloramine species. The results provided additional information to the commonly accepted mechanism for NDMA formation including chloramine species reacting with tertiary amines and the role of the leaving group on overall NDMA conversion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Simultaneous determination of Hg(II)-Ag(I)-Cd(II) by conductometric titration using the formation of ternary complex

    International Nuclear Information System (INIS)

    Hayashida, Ichiro; Yoshida, Hitoshi; Taga, Mitsuhiko; Hikime, Seiichiro

    1979-01-01

    A conductometric determination of Hg(II), Ag(I) and Cd(II) was carried out by using the insoluble ternary complex formation of the metal ions with iodide ion in the presence of 1,10-phenanthroline (phen). Recommended procedure is as follows; An aliquot of sample solution containing (14 -- 29) mg of Hg(II), (8 -- 16) mg of Ag(I), and (9 -- 17) mg of Cd(II) transfered into a 100 ml beaker. Add to acetate buffer and stoichiometric amounts of phen (40% ethanol-water solution). Amounts of nitrate ion which was estimated separately by other titration with 0.1 M Ag(phen) 2 complex (40% ethanol-water solution) are adjusted in the range of (4.0 -- 6.0) mM. The sample solution is titrated with 0.1 M KI standard solution at the rate of 0.20 ml/min or less. The titration curve showed three end-points corresponding to the formation of (1) Hg(phen) 2 I 2 , (2) Ag(phen)I, and (3) Cd(phen) 2 I 2 . The relative standard deviation was less than 0.8%, when the pH value was controlled at 4.0 -- 4.5 (acetate buffer) and the nitrate concentration was adjusted in the range of (4.0 -- 6.0)mM. The effect of diverse ions on the determination was also investigated in detail. (author)

  2. Stellar Population and Star Formation History of the Distant Galactic H II Regions NGC 2282 and Sh2-149

    Science.gov (United States)

    Dutta, S.; Mondal, S.; Jose, J.; Das, R. K.

    2017-06-01

    We present here the recent results on two distant Galactic H II regions, namely NGC 2282 and Sh2-149, obtained with multiwavelength observations. Our optical spectroscopic analysis of the bright sources have been used to identify the massive members, and to derive the fundamental parameters such as age and distance of these regions. Using IR color-color criteria and Hα-emission properties, we have identified and classified the candidate young stellar objects (YSOs) in these regions. The 12CO(1-0) continuum maps along with the K-band extinction maps, and spatial distribution of YSOs are used to investigate the structure and morphology of the molecular cloud associated with these H II regions. Overall analysis of these regions suggests that the star formation occurs at the locations of the denser gas, and we also find possible evidences of the induced star formation due to the feedback from massive stars to its surrounding molecular medium.

  3. Orientational structure formation of silk fibroin with anisotropic properties in solutions

    International Nuclear Information System (INIS)

    Kholmuminov, A.A.

    2008-06-01

    Key words:silk fibroin, dissolution, solution's model systems, gelation, orientational crystallization, optical polarization, longitudinal stream, α - β transition, structure formation, phase transformations, relaxation, anisotropy of swelling and desorption, thermo- and biodegradation. Subjects of the inquiry: silk fibroin is the main subject of investigation. Fibroin's solutions were obtained on the base of water and organic solvents, containing salts. Comparative investigations were carried out by using biosolution - secretion of silkworm, solutions of silk sericin, cotton cellulose, methylcellulose, polystyrene and (co) polycrylonitrile. Aim of the inquiry: the elucidation of the regularities of silk fibroin anisotropic structures formation in the direct generation of orientational ordering in solutions taking into account of influences of its the molecular structures, configuration information, α - β conformational transformations, and development jointly using polarization-optical and hydrodynamic methods to control of structure formation. And also definition of possibility fields for use biopolymers anisotropic structure formation principles. Method of inquiry: birefringence, dispersion optical rotation, circular dichroism, polarization- ultramicroscope, ultracentrifuge, viscosimetry, potentiometry, differential thermal analysis, chromatography, x-ray analysis, spectroscopy. The results achieved and their novelty: the physical regularity amorphous-crystalline fibroin dissolutions in salt-containing solvents based on chains melting, distribution and redistribution were recognized; fibroin statistical parameters, molecular-mass and conformational characteristics were established; It was shown that fibroin molecules turned into fully uncoiled and oriented state with the breakdown decay of α-spiral chain sections by I type phase transition mechanism, but in oriented state with α-spiral conservation by II type transition; the presence of longitudinal field

  4. Making the invisible visible: improved electrospray ion formation of metalloporphyrins/-phthalocyanines by attachment of the formate anion (HCOO(-)).

    Science.gov (United States)

    Hitzenberger, Jakob Felix; Dammann, Claudia; Lang, Nina; Lungerich, Dominik; García-Iglesias, Miguel; Bottari, Giovanni; Torres, Tomás; Jux, Norbert; Drewello, Thomas

    2016-02-21

    A protocol is developed for the coordination of the formate anion (HCOO(-)) to neutral metalloporphyrins (Pors) and -phthalocyanines (Pcs) containing divalent metals as a means to improve their ion formation in electrospray ionization (ESI). This method is particularly useful when the oxidation of the neutral metallomacrocycle fails. While focusing on Zn(II)Pors and Zn(II)Pcs, we show that formate is also readily attached to Mn(II), Mg(II) and Co(II)Pcs. However, for the Co(II)Pc secondary reactions can be observed. Upon collision-induced dissociation (CID), Zn(II)Por/Pc·formate supramolecular complexes can undergo the loss of CO2 in combination with transfer of a hydride anion (H(-)) to the zinc metal center. Further dissociation leads to electron transfer and hydrogen atom loss, generating a route to the radical anion of the Zn(II)Por/Pc without the need for electrochemical reduction, although the Zn(II)Por/Pc may have a too low electron affinity to allow electron transfer directly from the formate anion. In addition to single Por molecules, multi Por arrays were successfully analyzed by this method. In this case, multiple addition of formate occurs, giving rise to multiply charged species. In these multi Por arrays, complexation of the formate anion occurs by two surrounding Por units (sandwich). Therefore, the maximum attainment of formate anions in these arrays corresponds to the number of such sandwich complexes rather than the number of porphyrin moieties. The same bonding motif leads to dimers of the composition [(Zn(II)Por/Pc)2·HCOO](-). In these, the formate anion can act as a structural probe, allowing the distinction of isomeric ions with the formate bridging two macrocycles or being attached to a dimer of directly connected macrocycles.

  5. Exciplex formation of copper(II) octaethylporphyrin revealed by pulsed x-rays

    International Nuclear Information System (INIS)

    Chen, L.X.; Shaw, G.B.; Liu, T.; Jennings, G.; Attenkofer, K.

    2004-01-01

    The triplet excited structures of Cu(II) octaethylporphyrin (CuOEP) in toluene and in 1:1 mixture of toluene and tetrahydrofuran (THF) were investigated by time-domain laser pulse pump, X-ray pulse probe X-ray absorption spectroscopy (pump-probe XAS) at room temperature using X-rays from a third generation synchrotron source with 100-ps time resolution. The transient optical absorption measurements indicate a strong solvent dependency of the triplet excited state lifetime due to the presence of oxygen-containing solvent molecules. While the ground state CuOEP molecules remain square-planar in both solvents, the attenuation of a peak attributed to the 1s → 4p z transition at the Cu K-edge for the laser excited CuOEP in the THF/toluene mixture revealed the penta-coordinated exciplex formation which is responsible for the shortening of the triplet excited state lifetime. Meanwhile, the average Cu-N distance in the triplet excited state is lengthened by 0.03 (angstrom) due to ligation with a THF solvent molecule, which agrees with a domed coordination structure for copper in the penta-coordinated exciplex.

  6. Effect of Cell Sheet Manipulation Techniques on the Expression of Collagen Type II and Stress Fiber Formation in Human Chondrocyte Sheets.

    Science.gov (United States)

    Wongin, Sopita; Waikakul, Saranatra; Chotiyarnwong, Pojchong; Siriwatwechakul, Wanwipa; Viravaidya-Pasuwat, Kwanchanok

    2018-03-01

    Cell sheet technology is applied to human articular chondrocytes to construct a tissue-like structure as an alternative treatment for cartilage defect. The effect of a gelatin manipulator, as a cell sheet transfer system, on the quality of the chondrocyte sheets was investigated. The changes of important chondrogenic markers and stress fibers, resulting from the cell sheet manipulation, were also studied. The chondrocyte cell sheets were constructed with patient-derived chondrocytes using a temperature-responsive polymer and a gelatin manipulator as a transfer carrier. The properties of the cell sheets, including sizes, expression levels of collagen type II and I, and the localization of the stress fibers, were assessed and compared with those of the cell sheets harvested without the gelatin manipulator. Using the gelatin manipulator, the original size of the chondrocyte cell sheets was retained with abundant stress fibers, but with a decrease in the expression of collagen type II. Without the gelatin manipulator, although the cell shrinkage occurred, the cell sheet with suppressed stress fiber formation showed significantly higher levels of collagen type II. These results support our observations that stress fiber formation in chondrocyte cell sheets affected the production of chondrogenic markers. These densely packed tissue-like structures possessed a good chondrogenic activity, indicating their potential for use in autologous chondrocyte implantation to treat cartilage defects.

  7. Structural and kinematic analysis from Montevideo Formation rocks

    International Nuclear Information System (INIS)

    Masquelin, E.; Gutierrez, L.; Sienra, M.

    2004-01-01

    The main purpose of this work is to bring new advances about structural and kinematic analysis from Montevideo Formation rocks. This information was collected by means of the classic methodology used for metamorphic terrains: (i) to recognize the nature of the protoliths, (ii) to discriminate the diversity of intrusive rocks and their relative age, (iii) to evaluate the intensity of strain, and (iv) to find the relationship between this strain and related displacements, in accordance to the unified theory for ductile shear zones. The exposed results show that there are not enough evidences to prove that the layering found in para-amphibolites and para-gneisses is the bedding surface. Although various lava primary structures were presented, these structures do not bring the bedding plane directly, and sedimentary structures are suspicious. In the other hand, the strain has proved to be very intense, by the development of isoclinal folds (may be intrafolial), highly strained veins of plagioclase-bearing gneiss and the boudinage of the duplicated sequence parallel to the axes of D2 later folds. The D2 fold axes parallel direction could be acted as the transport direction of a major strike-slip shear zone, striking N70 0 E. The fact is that various ductile flow vorticity indicators were found in para-amphibolites showing a dextral shear sense [es

  8. Cosmological Structure Formation: From Dawn till Dusk

    DEFF Research Database (Denmark)

    Heneka, Caroline Samantha

    Cosmology has entered an era where a plethora data is available on structure formation to constrain astrophysics and underlying cosmology. This thesis strives to both investigate new observables and modeling of the Epoch of Reionization, as well as to constrain dark energy phenomenology with mass......Cosmology has entered an era where a plethora data is available on structure formation to constrain astrophysics and underlying cosmology. This thesis strives to both investigate new observables and modeling of the Epoch of Reionization, as well as to constrain dark energy phenomenology...... with massive galaxy clusters, traveling from the dawn of structure formation, when the first galaxies appear, to its dusk, when a representative part of the mass in the Universe is settled in massive structures. This hunt for accurate constraints on cosmology is complemented with the demonstration of novel...... Bayesian statistical tools and kinematical constraints on dark energy. Starting at the dawn of structure formation, we study emission line fluctuations, employing semi-numerical simulations of cosmological volumes of their line emission, in order to cross-correlate fluctuations in brightness. This cross...

  9. Formation of Mixed-Ligand Complexes of Metals(II) with Monoamine Complexones and Amino Acids in Solution

    Science.gov (United States)

    Pyreu, D. F.; Gridchin, S. N.

    2018-05-01

    The formation of mixed-ligand complexes in the M(II)-Nta, Ida-L (M = Cu(II), Ni, Zn, Co(II), L = Ser, Thr, Asp, Arg, Asn) systems, where Ida and Nta are the residues of iminodiacetic and nitrilotriacetic acids, respectively, is studied using pH measurements, calorimetry and spectrophotometry. The thermodynamic parameters (log K, Δr G 0, Δr H, Δr S) of their formation at 298.15 K and ionic strength I = 0.5 (KNO3) are determined. The most likely scenario of amino acid residue coordination in the composition of mixed complexes is discussed.

  10. Young stellar population and ongoing star formation in the H II complex Sh2-252

    Science.gov (United States)

    Jose, Jessy; Pandey, A. K.; Samal, M. R.; Ojha, D. K.; Ogura, K.; Kim, J. S.; Kobayashi, N.; Goyal, A.; Chauhan, N.; Eswaraiah, C.

    2013-07-01

    In this paper, an extensive survey of the star-forming complex Sh2-252 has been undertaken with an aim to explore its hidden young stellar population as well as to understand the structure and star formation history for the first time. This complex is composed of five prominent embedded clusters associated with the subregions A, C, E, NGC 2175s and Teu 136. We used Two Micron All Sky Survey-near-infrared and Spitzer-Infrared Array Camera, Multiband Imaging Photometer for Spitzer photometry to identify and classify the young stellar objects (YSOs) by their infrared (IR) excess emission. Using the IR colour-colour criteria, we identified 577 YSOs, of which, 163 are Class I, 400 are Class II and 14 are transition disc YSOs, suggesting a moderately rich number of YSOs in this complex. Spatial distribution of the candidate YSOs shows that they are mostly clustered around the subregions in the western half of the complex, suggesting enhanced star formation activity towards its west. Using the spectral energy distribution and optical colour-magnitude diagram-based age analyses, we derived probable evolutionary status of the subregions of Sh2-252. Our analysis shows that the region A is the youngest (˜0.5 Myr), the regions B, C and E are of similar evolutionary stage (˜1-2 Myr) and the clusters NGC 2175s and Teu 136 are slightly evolved (˜2-3 Myr). Morphology of the region in the 1.1 mm map shows a semicircular shaped molecular shell composed of several clumps and YSOs bordering the western ionization front of Sh2-252. Our analyses suggest that next generation star formation is currently under way along this border and that possibly fragmentation of the matter collected during the expansion of the H II region as one of the major processes is responsible for such stars. We observed the densest concentration of YSOs (mostly Class I, ˜0.5 Myr) at the western outskirts of the complex, within a molecular clump associated with water and methanol masers and we suggest that it

  11. Endoplasmic Reticulum Stress-Associated Lipid Droplet Formation and Type II Diabetes

    Directory of Open Access Journals (Sweden)

    Xuebao Zhang

    2012-01-01

    Full Text Available Diabetes mellitus (DM, a metabolic disorder characterized by hyperglycemia, is caused by insufficient insulin production due to excessive loss of pancreatic β cells (type I diabetes or impaired insulin signaling due to peripheral insulin resistance (type II diabetes. Pancreatic β cell is the only insulin-secreting cell type that has highly developed endoplasmic reticulum (ER to cope with high demands of insulin synthesis and secretion. Therefore, ER homeostasis is crucial to the proper function of insulin signaling. Accumulating evidence suggests that deleterious ER stress and excessive intracellular lipids in nonadipose tissues, such as myocyte, cardiomyocyte, and hepatocyte, cause pancreatic β-cell dysfunction and peripheral insulin resistance, leading to type II diabetes. The excessive deposition of lipid droplets (LDs in specialized cell types, such as adipocytes, hepatocytes, and macrophages, has been found as a hallmark in ER stress-associated metabolic diseases, including obesity, diabetes, fatty liver disease, and atherosclerosis. However, much work remains to be done in understanding the mechanism by which ER stress response regulates LD formation and the pathophysiologic role of ER stress-associated LD in metabolic disease. This paper briefly summarizes the recent advances in ER stress-associated LD formation and its involvement in type II diabetes.

  12. Dual pathway for angiotensin II formation in human internal mammary arteries

    NARCIS (Netherlands)

    Voors, AA; Pinto, YM; Buikema, H; Urata, H; Oosterga, M; Roos, G; Grandjean, JG; Ganten, D; van Gilst, WH

    1 Angiotensin converting enzyme (ACE) is thought to be the main enzyme to convect antiotensin I to the vasoactive angiotensin II. Recently, in the human heart, it was found that the majority of angiotensin ZI formation was due to another enzyme, identified as human heart chymase. In the human

  13. High precision measurements of hyperfine structure in Tm II, N2+ and Sc II

    International Nuclear Information System (INIS)

    Mansour, N.B.; Dinneen, T.P.; Young, L.

    1988-01-01

    We have applied the technique of collinear fast-ion-beam laser spectroscopy to measure the hyperfine structure (hfs) in Sc II, Tm II and N 2 + . Laser induced fluorescence was observed from a 50 keV ion beam which was superimposed with the output of an actively stabilized ring dye laser (rms bandwidth 2 and the excited 3d4p configuration of Sc II and in the 4f 13 6s and 4f 13 5d configurations of the Tm II. The fine and hyperfine structure of N 2 + has been observed in the (0,1) and (1,2) band of B 2 Σ/sub u/ + /minus/X 2 Σ/sub g/ + system. Higher resolution measurements of the metastable 3d 2 configuration in Sc II were also made by laser-rf double resonance. The experimental results will be compared with those obtained by multiconfiguration Hartree-Fock ab-initio calculations. 15 refs., 4 figs., 5 tabs

  14. Comparison of integral cross section values of several cross section libraries in the SAND-II format

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.

    1978-01-01

    A comparison of some integral cross section values for several cross section libraries in the SAND-II format is presented. The integral cross section values are calculated with aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross section libraries used have all the SAND-II format. (author)

  15. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV.

    Science.gov (United States)

    Hong, Yooseong; Legge, Raymond L; Zhang, S; Chen, P

    2003-01-01

    Atomic force microscopy (AFM) and axisymmetric drop shape analysis-profile (ASDA-P) were used to investigate the mechanism of self-assembly of peptides. The peptides chosen consisted of 16 alternating hydrophobic and hydrophilic amino acids, where the hydrophilic residues possess alternating negative and positive charges. Two types of peptides, AEAEAKAKAEAEAKAK (EAK16-II) and AEAEAEAEAKAKAKAK (EAK16-IV), were investigated in terms of nanostructure formation through self-assembly. The experimental results, which focused on the effects of the amino acid sequence and pH, show that the nanostructures formed by the peptides are dependent on the amino acid sequence and the pH of the solution. For pH conditions around neutrality, one of the peptides used in this study, EAK16-IV, forms globular assemblies and has lower surface tension at air-water interfaces than another peptide, EAK16-II, which forms fibrillar assemblies at the same pH. When the pH is lowered below 6.5 or raised above 7.5, there is a transition from globular to fibrillar structures for EAK16-IV, but EAK16-II does not show any structural transition. Surface tension measurements using ADSA-P showed different surface activities of peptides at air-water interfaces. EAK16-II does not show a significant difference in surface tension for the pH range between 4 and 9. However, EAK16-IV shows a noticeable decrease in surface tension at pH around neutrality, indicating that the formation of globular assemblies is related to the molecular hydrophobicity.

  16. H ii REGION G46.5-0.2: THE INTERPLAY BETWEEN IONIZING RADIATION, MOLECULAR GAS, AND STAR FORMATION

    International Nuclear Information System (INIS)

    Paron, S.; Ortega, M. E.; Dubner, G.; Petriella, A.; Giacani, E.; Yuan, Jing-Hua; Li, Jin Zeng; Liu, Hongli; Huang, Ya Fang; Zhang, Si-Ju; Wu, Yuefang

    2015-01-01

    H ii regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing toward the ionizing sources, and cometary globules of dense gas where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic H ii region located at about 4 kpc, is an excellent target for performing this kind of study. Using public molecular data extracted from the Galactic Ring Survey ( 13 CO J = 1–0) and from the James Clerk Maxwell Telescope data archive ( 12 CO, 13 CO, C 18 O J = 3–2, HCO + , and HCN J = 4–3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment, and the young stellar objects (YSOs) placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in the direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission toward its open border. We found that about 10′ to the southwest of G46 there are some pillar-like features, shining at 8 μm and pointing toward the H ii region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several YSOs likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and another mostly composed of Class I type YSOs located just ahead of the pillar-like features, strongly suggesting an age gradient in the YSO distribution

  17. H II Region G46.5-0.2: The Interplay between Ionizing Radiation, Molecular Gas, and Star Formation

    Science.gov (United States)

    Paron, S.; Ortega, M. E.; Dubner, G.; Yuan, Jing-Hua; Petriella, A.; Giacani, E.; Zeng Li, Jin; Wu, Yuefang; Liu, Hongli; Huang, Ya Fang; Zhang, Si-Ju

    2015-06-01

    H ii regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing toward the ionizing sources, and cometary globules of dense gas where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic H ii region located at about 4 kpc, is an excellent target for performing this kind of study. Using public molecular data extracted from the Galactic Ring Survey (13CO J = 1-0) and from the James Clerk Maxwell Telescope data archive (12CO, 13CO, C18O J = 3-2, HCO+, and HCN J = 4-3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment, and the young stellar objects (YSOs) placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in the direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission toward its open border. We found that about 10‧ to the southwest of G46 there are some pillar-like features, shining at 8 μm and pointing toward the H ii region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several YSOs likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and another mostly composed of Class I type YSOs located just ahead of the pillar-like features, strongly suggesting an age gradient in the YSO distribution.

  18. Synthesis, structure, and magnetic properties of two 1-D helical coordination polymeric Cu(II) complexes

    Science.gov (United States)

    Bian, He-Dong; Yang, Xiao-E.; Yu, Qing; Chen, Zi-Lu; Liang, Hong; Yan, Shi-Ping; Liao, Dai-Zheng

    2008-01-01

    Two helical coordination polymeric copper(II) complexes bearing amino acid Schiff bases HL or HL', which are condensed from 2-hydroxy-1-naphthaldehyde with 2-aminobenzoic acid or L-valine, respectively, have been prepared and characterised by X-ray crystallography. In [CuL] n ( 1) the copper(II) atoms are bridged by syn- anti carboxylate groups giving infinite 1-D right-handed helical chains which are further connected by weak C-H⋯Cu interactions to build a 2-D network. While in [CuL'] n ( 2) the carboxylate group acts as a rare monatomic bridge to connect the adjacent copper(II) atoms leading to the formation of a left-handed helical chain. Magnetic susceptibility measurements indicate that 1 exhibits weak ferromagnetic interactions whereas an antiferromagnetic coupling is established for 2. The magnetic behavior can be satisfactorily explained on the basis of the structural data.

  19. Two new Zn(II) and Cd(II) coordinastion polymers based on amino-tetrazole and phenylcarboxylate: Syntheses, topological structures and photoluminescent properties

    International Nuclear Information System (INIS)

    Liu, Dong-Sheng; Sui, Yan; Chen, Weng-Tong; Huang, Jian-Gen; Chen, Jian-Zhong; Huang, Chang-Cang

    2012-01-01

    Two Zn(II) and Cd(II) compounds with the in-situ generated ligand of 5-amino-tetrazolate (atz − ) were prepared from the hydrothermal reactions of the corresponding Cd or Zn(II) salts with phenylcarboxylate, and characterized by elemental analysis, IR spectroscopy, and TGA. The results of X-ray crystallographic analysis reveal that compound [Zn 2 (BZA)(atz) 2 (OH)] n (1) (BZA=benzoic acid) presents a two-dimensional (2D) “hcb” topological network constructed from the ZnN 2 O 2 tetrahedra. In compound [Cd 6 (atz) 6 (PTA) 3 ] n (2) (PTA=terephthalic acid), the identical [Cd 3 (atz) 3 )] 3+ n clusters are connected by atz ligands to generate a 2D cationic layer, and the neighboring cationic layers are pillared by PTA giving birth to 3D network. After simplifying, the complicated 3D network of 2 can be presented as an unprecedented (4, 4, 10)-connected trinodal topology. The formations of the structures show a good example that using the combination of the in-situ generated ligand and other coligand synthetic strategy can construct interesting topological structures. The thermal stabilities and fluorescent properties of the complexes have also been studied. - Graphical abstract: Two d 10 metal complexes have been synthesized by employing mixed-ligand synthetic approach. Complex 1 presents a 2D “hcb” topological network. Complex 2 shows an unprecedented (4, 4, 10)-connected trinodal topology. Highlights: ► Coligand synthetic strategy was applied to obtain new MOFs with useful properties. ► Two new Zn(II) and Cd(II) complexes were constructed from the mixed-ligand. ► Topologically, compound 2 presented an unprecedented (4, 4, 10)-connected trinodal topology. ► The two compounds may be excellent candidates for potential photoactive material.

  20. Complex formation of hypoxanthine and 6-mercaptopurine with Cd(II) ion

    International Nuclear Information System (INIS)

    Perello, L.; Borras, J.; Soto, L.; Gordo, F.J.; Gordo, J.C.

    1984-01-01

    Reaction of Cd(II) ion with hypoxanthine (H 2 Y) and with 6-mercaptopurine (H 2 MP) in dioxane-water (50%) leads to the formation of CdY x 2H 2 O and Cd(HMP) 2 x 2H 2 O, respectively. In methanolic medium Cd(II) and H 2 MP give Cd(MP) x H 2 O. These compounds have been characterized by chemical analysis, IR spectra and thermogravimetric analysis. The stability constant of CdY complex at 25 +- 0.1 0 C and 1M ionic strength with NaClO 4 in dioxane-water medium is logβ = 10.25 +- 0.05. (Author)

  1. Influence of Exciplex formation on the electroluminescent properties of dimeric Zn (II) bis-2-(2'-hydroxyphenyl) benzoxazole complex and monomeric Zn (II) 2-(1'-hydroxynaphthyl) benzothiazole complex

    Science.gov (United States)

    Prakash, Sattey; Anand, R. S.; Manoharan, S. Sundar

    2011-10-01

    In this paper we present the factors affecting electroluminescent properties of Zinc complexes of oxazole & thiazole derivatives. Electroluminescent spectra of the Zinc (II) complex of bis-[2-(2'-hydroxyphenyl) benzoxazole], [Zn (HPBO)2]2 and 2-(1'-hydroxynaphthyl) benzothiazole [Zn (HNBT)2] show unusual broadening and shows structural and photophysical similarity with [Zn (HPBT)2]2, a dimeric complex. The [Zn (HPBO)2]2 complex as an emissive layer in the device structure ITO /PEDOT:PSS /TPD (30nm) /[Zn (HPBO)2]2 (60nm) /BCP (6nm) /Ca (3nm) /Al (200nm) shows a broad bluish green emission, with a full width at half maxima (FWHM1˜70nm). The EL spectra is much broader compared to the PL spectra because of exciplex formation at the interfacial region between the emissive layer (EML) & hole transport layer (HTL). We also show the device performance of Zinc 2-(1'-hydroxynaphthyl) benzothiazole [Zn (HNBT)2] complex as emissive layer. Distinctly this device shows a broad greenish yellow emission with a peak maxima at 535nm and 690nm, owing to the exciplex formation between electron transport layer (ETL) and emissive layer (EML), which is in sharp contrast to the exciplex formation across the HTL-EML interface observed for the [Zn (HPBO)2]2 complex.

  2. Profile structures of TJ-II stellarator plasmas

    NARCIS (Netherlands)

    Herranz, J.; Pastor, I.; Castejon, F.; de la Luna, E.; Garcia-Cortes, I.; Barth, C. J.; Ascasibar, E.; Sanchez, J.; Tribaldos, V.

    2000-01-01

    Fine structures are found in the TJ-II stellarator electron temperature and density profiles, when they are measured using a high spatial resolution Thomson scattering system. These structures consist of peaks and valleys superimposed to a smooth average. Some irregularities remain in an ensemble

  3. On the importance of cotranscriptional RNA structure formation

    Science.gov (United States)

    Lai, Daniel; Proctor, Jeff R.; Meyer, Irmtraud M.

    2013-01-01

    The expression of genes, both coding and noncoding, can be significantly influenced by RNA structural features of their corresponding transcripts. There is by now mounting experimental and some theoretical evidence that structure formation in vivo starts during transcription and that this cotranscriptional folding determines the functional RNA structural features that are being formed. Several decades of research in bioinformatics have resulted in a wide range of computational methods for predicting RNA secondary structures. Almost all state-of-the-art methods in terms of prediction accuracy, however, completely ignore the process of structure formation and focus exclusively on the final RNA structure. This review hopes to bridge this gap. We summarize the existing evidence for cotranscriptional folding and then review the different, currently used strategies for RNA secondary-structure prediction. Finally, we propose a range of ideas on how state-of-the-art methods could be potentially improved by explicitly capturing the process of cotranscriptional structure formation. PMID:24131802

  4. Differential Effect of Solution Conditions on the Conformation of the Actinoporins Sticholysin II and Equinatoxin II

    Directory of Open Access Journals (Sweden)

    EDSON V.F. FAUTH

    2014-12-01

    Full Text Available Actinoporins are a family of pore-forming proteins with hemolytic activity. The structural basis for such activity appears to depend on their correct folding. Such folding encompasses a phosphocholine binding site, a tryptophan-rich region and the activity-related N-terminus segment. Additionally, different solution conditions are known to be able to influence the pore formation by actinoporins, as for Sticholysin II (StnII and Equinatoxin II (EqtxII. In this context, the current work intends to characterize the influence of distinct solution conditions in the conformational behavior of these proteins through molecular dynamics (MD simulations. The obtained data offer structural insights into actinoporins dynamics in solution, characterizing its conformational behavior at the atomic level, in accordance with previous experimental data on StnII and EqtxII hemolytic activities.

  5. STAR FORMATION ACTIVITY IN THE GALACTIC H II REGION Sh2-297

    International Nuclear Information System (INIS)

    Mallick, K. K.; Ojha, D. K.; Dewangan, L. K.; Samal, M. R.; Pandey, A. K.; Bhatt, B. C.; Ghosh, S. K.; Tamura, M.

    2012-01-01

    We present a multiwavelength study of the Galactic H II region Sh2-297, located in the Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm –3 and 9.15 × 10 5 cm –6 pc using the radio continuum observations at 610 and 1280 MHz, and Very Large Array archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area ∼7.'5 × 7.'5 centered on Sh2-297 using grism slitless spectroscopy (to identify the Hα emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color and color-magnitude (CM) diagrams, giving 50 red sources (H – K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be ∼0.1-2 M ☉ and 0.5-2 Myr using optical (V/V–I) and NIR (J/J–H) CM diagrams. The mean age of the YSOs is found to be ∼1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1-25 mag) from literature and NIR data for the region, spectral energy distribution models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star toward the cold dark cloud LDN1657A located west of Sh2-297.

  6. Star Formation Activity in the Galactic H II Region Sh2-297

    Science.gov (United States)

    Mallick, K. K.; Ojha, D. K.; Samal, M. R.; Pandey, A. K.; Bhatt, B. C.; Ghosh, S. K.; Dewangan, L. K.; Tamura, M.

    2012-11-01

    We present a multiwavelength study of the Galactic H II region Sh2-297, located in the Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm-3 and 9.15 × 105 cm-6 pc using the radio continuum observations at 610 and 1280 MHz, and Very Large Array archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area ~7farcm5 × 7farcm5 centered on Sh2-297 using grism slitless spectroscopy (to identify the Hα emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color and color-magnitude (CM) diagrams, giving 50 red sources (H - K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be ~0.1-2 M ⊙ and 0.5-2 Myr using optical (V/V-I) and NIR (J/J-H) CM diagrams. The mean age of the YSOs is found to be ~1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1-25 mag) from literature and NIR data for the region, spectral energy distribution models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star toward the cold dark cloud LDN1657A located west of Sh2-297.

  7. Cross section library DOSCROS77 (in the SAND-II format)

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.; Borg, N.J.C.M. van der.

    1977-08-01

    The dosimetry cross section library DOSCROS77 is documented with tables, plots and cross section values averaged over a few reference spectra. This library is based on the ENDF/B-IV dosimetry file, supplemented with some other evaluations. The total number of reaction cross section sets incorporated in this library is 49 (+3 cover cross sections sets). The cross section data are available in a format which is suitable for the program SAND-II

  8. Comparison of integral cross section values of several cross section libraries in the SAND-II format

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.

    1976-09-01

    A comparison of some integral cross-section values for several cross-section libraries in the SAND-II format is presented. The integral cross-section values are calculated with the aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross-section libraries used have all the SAND-II format. Discrepancies between cross-sections in the different libraries are indicated but not discussed

  9. Structure and reactivity of a mononuclear gold(II) complex

    Science.gov (United States)

    Preiß, Sebastian; Förster, Christoph; Otto, Sven; Bauer, Matthias; Müller, Patrick; Hinderberger, Dariush; Hashemi Haeri, Haleh; Carella, Luca; Heinze, Katja

    2017-12-01

    Mononuclear gold(II) complexes are very rare labile species. Transient gold(II) species have been suggested in homogeneous catalysis and in medical applications, but their geometric and electronic structures have remained essentially unexplored: even fundamental data, such as the ionic radius of gold(II), are unknown. Now, an unprecedentedly stable neutral gold(II) complex of a porphyrin derivative has been isolated, and its structural and spectroscopic features determined. The gold atom adopts a 2+2 coordination mode in between those of gold(III) (four-coordinate square planar) and gold(I) (two-coordinate linear), owing to a second-order Jahn-Teller distortion enabled by the relativistically lowered 6s orbital of gold. The reactivity of this gold(II) complex towards dioxygen, nitrosobenzene and acids is discussed. This study provides insight on the ionic radius of gold(II), and allows it to be placed within the homologous series of nd9 Cu/Ag/Au divalent ions and the 5d8/9/10 Pt/Au/Hg 'relativistic' triad in the periodic table.

  10. Spiral structure and star formation. II. Stellar lifetimes and cloud kinematics

    International Nuclear Information System (INIS)

    Hausman, M.A.; Roberts, W.W. Jr.

    1984-01-01

    We present further results of our model, introduced in Paper I, of star formation and star-gas interactions in the cloud-dominated ISMs of spiral density wave galaxies. The global density distribution and velocity field of the gas clouds are virtually independent of stellar parameters and even of mean free path for the wide range of values studied, but local density variations are found which superficially resemble cloud complexes. Increasing the average life span of ''spiral tracer'' stellar associations beyond about 20 Myr washes out the spiral pattern which younger associations show. Allowing clouds to form several successive associations (sequential star formation) slightly increases the frequency of interarm, young-star spurs and substantially increases the average star formation rate. The mean velocity field of clouds shows tipped oval streamlines, similar to both continuum gas dynamical models and stellar-kinematic models of spiral density waves. These streamlines are almost ballistic orbits except close to the spiral arms. Newly formed stellar associations leave the spiral density peak with initial tangential velocitie shigher than ''postshock'' values and do not fall back into the ''preshock'' region. By varying our stellar parametes within physically reasonable limits, we may reproduce spiral galaxies with a wide range of morphological appearaces

  11. Effects of lead(II) on the extracellular polysaccharide (EPS) production and colony formation of cultured Microcystis aeruginosa.

    Science.gov (United States)

    Bi, Xiang-dong; Zhang, Shu-lin; Dai, Wei; Xing, Ke-zhing; Yang, Fan

    2013-01-01

    To investigate the effects of lead(II) on the production of extracellular polysaccharides (EPS), including bound extracellular polysaccharides (bEPS) and soluble extracellular polysaccharides (sEPS), and the colony formation of Microcystis aeruginosa, cultures of M. aeruginosa were exposed to four concentrations (5.0, 10.0, 20.0 and 40.0 mg/L) of lead(II) for 10 d under controlled laboratory conditions. The results showed that 5.0 and 10.0 mg/L lead(II) stimulated M. aeruginosa growth throughout the experiment while 20.0 and 40.0 mg/L lead(II) inhibited M. aeruginosa growth in the first 2 d exposure and then stimulated it. As compared to the control group, significant increases in the bEPS and sEPS production were observed in 20.0 and 40.0 mg/L lead(II) treatments (P bEPS production, which conversely promoted colony formation, suggesting that heavy metals might be contributing to the bloom-forming of M. aeruginosa in natural conditions.

  12. Complex formation of hypoxanthine and 6-mercaptopurine with Cd(II) ion

    Energy Technology Data Exchange (ETDEWEB)

    Perello, L.; Borras, J.; Soto, L.; Gordo, F.J.; Gordo, J.C. (Valencia Univ. (Spain))

    1984-01-01

    Reaction of Cd(II) ion with hypoxanthine (H/sub 2/Y) and with 6-mercaptopurine (H/sub 2/MP) in dioxane-water (50%) leads to the formation of CdY x 2H/sub 2/O and Cd(HMP)/sub 2/ x 2H/sub 2/O, respectively. In methanolic medium Cd(II) and H/sub 2/MP give Cd(MP) x H/sub 2/O. These compounds have been characterized by chemical analysis, IR spectra and thermogravimetric analysis. The stability constant of CdY complex at 25 +- 0.1/sup 0/C and 1M ionic strength with NaClO/sub 4/ in dioxane-water medium is log..beta.. = 10.25 +- 0.05.

  13. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  14. Two-dimensional layer architecture assembled by Keggin polyoxotungstate, Cu(II)-EDTA complex and sodium linker: Synthesis, crystal structures, and magnetic properties

    International Nuclear Information System (INIS)

    Liu Hong; Xu Lin; Gao Guanggang; Li Fengyan; Yang Yanyan; Li Zhikui; Sun Yu

    2007-01-01

    Reaction of Keggin polyoxotungstate with copper(II)-EDTA (EDTA=ethylenediamine tetraacetate) complex under mild conditions led to the formation of hybrid inorganic-organic compounds Na 4 (OH)[(Cu 2 EDTA)PW 12 O 40 ].17H 2 O (1) and Na 4 [(Cu 2 EDTA)SiW 12 O 40 ].19H 2 O (2). The single-crystal X-ray diffraction analyses reveal their two structural features: (1) one-dimensional chain structure consisting of Keggin polyoxotungstate and copper(II)-EDTA complex; (2) Two-dimensional layer architecture assembled by the one-dimensional chain structure and sodium linker. The results of magnetic measurements in the temperature range 300-2 K indicated the existence of ferromagnetic exchange interactions between the Cu II ions for both compounds. In addition, TGA analysis, IR spectra, and electrochemical properties were also investigated to well characterize these two compounds. - Graphical abstract: Two new polyoxometalate-based hybrids, Na 4 (OH)[Cu 2 (EDTA)PW 12 O 40 ].17H 2 O (1) and Na 4 [Cu 2 (EDTA)SiW 12 O 40 ].19H 2 O (2), have been synthesized and structurally characterized, which consist of one-dimensional chain structure assembled by Keggin polyoxotungstate and copper(II)-EDTA complex. The chains are further connected to form two-dimensional layer architecture assembled by the one-dimensional chain structure and sodium linker

  15. Engineering characterization of ground motion. Task II: Soil structure interaction effects on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Luco, J E; Wong, H L [Structural and Earthquake Engineering Consultants, Inc., Sierra Madre, CA (United States); Chang, C -Y; Power, M S; Idriss, I M [Woodward-Clyde Consultants, Walnut Creek, CA (United States)

    1986-08-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the U.S. Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study, which is presented in Vol. 1 of NUREG/CR-3805, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in Vols. 2 through of NUREG/CR-3805 as follows: Vol. 2 effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects; Vol. 3 observational data on spatial variations of earthquake ground motions; Vol. 4 soil-structure interaction effects on structural response; and Vol. 5, summary based on Tasks I and II studies. This report presents the results of the Vol. 4 studies.

  16. Palladium(II)-Stabilized Pyridine-2-Diazotates: Synthesis, Structural Characterization, and Cytotoxicity Studies.

    Science.gov (United States)

    Tskhovrebov, Alexander G; Vasileva, Anna A; Goddard, Richard; Riedel, Tina; Dyson, Paul J; Mikhaylov, Vladimir N; Serebryanskaya, Tatiyana V; Sorokoumov, Viktor N; Haukka, Matti

    2018-02-05

    Well-defined diazotates are scarce. Here we report the synthesis of unprecedented homoleptic palladium(II) diazotate complexes. The palladium(II)-mediated nitrosylation of 2-aminopyridines with NaNO 2 results in the formation of metal-stabilized diazotates, which were found to be cytotoxic to human ovarian cancer cells.

  17. Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals.

    Science.gov (United States)

    Zhang, Zhen; Zhang, Zhongming; Chen, Hong; Liu, Jin; Liu, Chang; Ni, Hong; Zhao, Changsong; Ali, Muhammad; Liu, Fan; Li, Lin

    2015-06-03

    In this manuscript, we report that a bacterial multicopper oxidase (MCO266) catalyzes Mn(II) oxidation on the cell surface, resulting in the surface deposition of Mn(III) and Mn(IV) oxides and the gradual formation of bulky oxide aggregates. These aggregates serve as nucleation centers for the formation of Mn oxide micronodules and Mn-rich sediments. A soil-borne Escherichia coli with high Mn(II)-oxidizing activity formed Mn(III)/Mn(IV) oxide deposit layers and aggregates under laboratory culture conditions. We engineered MCO266 onto the cell surfaces of both an activity-negative recipient and wild-type strains. The results confirmed that MCO266 governs Mn(II) oxidation and initiates the formation of deposits and aggregates. By contrast, a cell-free substrate, heat-killed strains, and intracellularly expressed or purified MCO266 failed to catalyze Mn(II) oxidation. However, purified MCO266 exhibited Mn(II)-oxidizing activity when combined with cell outer membrane component (COMC) fractions in vitro. We demonstrated that Mn(II) oxidation and aggregate formation occurred through an oxygen-dependent biotic transformation process that requires a certain minimum Mn(II) concentration. We propose an approximate electron transfer pathway in which MCO266 transfers only one electron to convert Mn(II) to Mn(III) and then cooperates with other COMC electron transporters to transfer the other electron required to oxidize Mn(III) to Mn(IV).

  18. Ru(II)-polypyridyl surface functionalised gold nanoparticles as DNA targeting supramolecular structures and luminescent cellular imaging agents.

    Science.gov (United States)

    Martínez-Calvo, Miguel; Orange, Kim N; Elmes, Robert B P; la Cour Poulsen, Bjørn; Williams, D Clive; Gunnlaugsson, Thorfinnur

    2016-01-07

    The development of Ru(II) functionalized gold nanoparticles 1–3·AuNP is described. These systems were found to be mono-disperse with a hydrodynamic radius of ca. 15 nm in water but gave rise to the formation of higher order structures in buffered solution. The interaction of 1–3·AuNP with DNA was also studied by spectroscopic and microscopic methods and suggested the formation of large self-assembly structures in solution. The uptake of 1–3·AuNP by cancer cells was studied using both confocal fluorescence as well as transmission electron microscopy (TEM), with the aim of investigating their potential as tools for cellular biology. These systems displaying a non-toxic profile with favourable photophysical properties may have application across various biological fields including diagnostics and therapeutics.

  19. Structure of diphosphine complexes of Co(II) in solutions of organic compounds

    International Nuclear Information System (INIS)

    Saraev, V.V.; Mandyuk, I.M.; Ratovskii, G.V.; Dmitrieva, T.V.; Shmidt, F.K.

    1987-01-01

    The structure of the dichloride complexes of cobalt(II) with 1,2-bis(diphenylphosphino)ethane (DPPE) and 1,1-bis(diphenylphosphino)methane (DPPM) in organic solvents has been investigated by ESR and electronic spectroscopy. It has been shown that the low-spin complex Co(DPPE) 2 Cl 2 exists in dichloroethane and ethanol solutions in the form of a trigonal bipyramid. Cobalt dichloride reacts with DPPM to form 1:1 and 1:2 complexes, between which there is an equilibrium in a dichloroethane solution. The equilibrium is displaced under the action of the free diphosphine toward the formation of the 1:2 complex. Elimination of the diphosphine from the coordination sphere of cobalt occurs in an ethanol solution

  20. H ii REGION G46.5-0.2: THE INTERPLAY BETWEEN IONIZING RADIATION, MOLECULAR GAS, AND STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Paron, S.; Ortega, M. E.; Dubner, G.; Petriella, A.; Giacani, E. [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Yuan, Jing-Hua; Li, Jin Zeng; Liu, Hongli; Huang, Ya Fang; Zhang, Si-Ju [National Astronomical Observatories, Chinese Academy of Sciences, 20 A Datun Road, Chaoyang District, Beijing 100012 (China); Wu, Yuefang, E-mail: sparon@iafe.uba.ar [Department of Astronomy, Peking University, 100871 Beijing (China)

    2015-06-15

    H ii regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing toward the ionizing sources, and cometary globules of dense gas where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic H ii region located at about 4 kpc, is an excellent target for performing this kind of study. Using public molecular data extracted from the Galactic Ring Survey ({sup 13}CO J = 1–0) and from the James Clerk Maxwell Telescope data archive ({sup 12}CO, {sup 13}CO, C{sup 18}O J = 3–2, HCO{sup +}, and HCN J = 4–3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment, and the young stellar objects (YSOs) placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in the direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission toward its open border. We found that about 10′ to the southwest of G46 there are some pillar-like features, shining at 8 μm and pointing toward the H ii region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several YSOs likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and another mostly composed of Class I type YSOs located just ahead of the pillar-like features, strongly suggesting an age gradient in the YSO distribution.

  1. Data structures II essentials

    CERN Document Server

    Smolarski, Dennis C

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Data Structures II includes sets, trees, advanced sorting, elementary graph theory, hashing, memory management and garbage collection, and appendices on recursion vs. iteration, alge

  2. Formation of structures in the very early universe

    International Nuclear Information System (INIS)

    Bertolami Neto, O.; Marques, G.C.; Ventura, I.

    1984-01-01

    An alternative picture of cosmological phase transition is sketched and its implications to the formation of structures in the very early Universe is studied. It is shown that the condensation of walls at high temperatures leads to fluctuations which are in accordance to all necessary conditions to the formation of structures in the Universe. Furthermore the number of aglutination centers is roughly equal to the numbers of great structures observed in the Universe today. (Author) [pt

  3. The Effects of Subsurface Bioremediation on Soil Structure, Colloid Formation, and Contaminant Transport

    Science.gov (United States)

    Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.

    2016-12-01

    Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.

  4. Structure and decomposition of the silver formate Ag(HCO2)

    International Nuclear Information System (INIS)

    Puzan, Anna N.; Baumer, Vyacheslav N.; Mateychenko, Pavel V.

    2017-01-01

    Crystal structure of the silver formate Ag(HCO 2 ) has been determined (orthorhombic, sp.gr. Pccn, a=7.1199(5), b=10.3737(4), c=6.4701(3)Å, V=477.88(4) Å 3 , Z=8). The structure contains isolated formate ions and the pairs Ag 2 2+ which form the layers in (001) planes (the shortest Ag–Ag distances is 2.919 in the pair and 3.421 and 3.716 Å between the nearest Ag atoms of adjacent pairs). Silver formate is unstable compound which decompose spontaneously vs time. Decomposition was studied using Rietveld analysis of the powder diffraction patterns. It was concluded that the diffusion of Ag atoms leads to the formation of plate-like metal particles as nuclei in the (100) planes which settle parallel to (001) planes of the silver formate matrix. - Highlights: • Silver formate Ag(HCO 2 ) was synthesized and characterized. • Layered packing of Ag-Ag pairs in the structure was found. • Decomposition of Ag(HCO 2 ) and formation of metal phase were studied. • Rietveld-refined micro-structural characteristics during decomposition reveal the space relationship between the matrix structure and forming Ag phase REPLACE with: Space relationship between the matrix structure and forming Ag phase.

  5. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Science.gov (United States)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-09-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  6. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    International Nuclear Information System (INIS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-01-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10 -5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  7. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Energy Technology Data Exchange (ETDEWEB)

    Chumakov, Yu. M., E-mail: chumakov.xray@phys.asm.md [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Tsapkov, V. I. [State University of Moldova (Moldova, Republic of); Jeanneau, E. [Universite Claude Bernard, Laboratoire des Multimateriaux et Interfaces (France); Bairac, N. N. [State University of Moldova (Moldova, Republic of); Bocelli, G. [National Research Council (IMEM-CNR), Institute of Materials for Electronics and Magnetism (Italy); Poirier, D.; Roy, J. [Centre Hospitalier Universitaire de Quebec (CHUQ) (Canada); Gulea, A. P. [State University of Moldova (Moldova, Republic of)

    2008-09-15

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10{sup -5} mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  8. Self-regulating star formation and disk structure

    International Nuclear Information System (INIS)

    Dopita, M.A.

    1987-01-01

    Star formation processes determine the disk structure of galaxies. Stars heavier than about 1 solar mass determine the chemical evolution of the system and are produced at a rate which maintains (by the momentum input of the stars) the phase structure, pressure, and vertical velocity dispersion of the gas. Low mass stars are produced quiescently within molecular clouds, and their associated T-Tauri winds maintain the support of molecular clouds and regulate the star formation rate. Inefficient cooling suppresses this mode of star formation at low metallicity. Applied to the solar neighborhood, such a model can account for age/metallicity relationships, the increase in the O/Fe ratio at low metallicity, the paucity of metal-poor G and K dwarf stars, the missing mass in the disk and, possibly, the existence of a metal-poor thick disk. For other galaxies, it accounts for constant w-velocity dispersion of the gas, the relationship between gas content and specific rates of star formation, the surface brightness/metallicity relationship and for the shallow radial gradients in both star formation rates and HI content. 71 references

  9. Structure formation control of foam concrete

    Science.gov (United States)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya; Syrkin, Oleg

    2017-01-01

    The process of predetermined foam concrete structure formation is considered to be a crucial issue from the point of process control and it is currently understudied thus defining the need for additional research. One of the effective ways of structure formation control in naturally hardening foam concrete is reinforcement with dispersed fibers or introduction of plasticizers. The paper aims at studying the patterns of influence of microreinforcing and plasticizing additives on the structure and performance properties of foam concrete. Preparation of foam concrete mix has been conducted using one-step technology. The structure of modified foam concrete has been studied by means of electron microscopy. The cellular structure of foam concrete samples with the additives is homogeneous; the pores are uniformly distributed over the total volume. It has been revealed that introduction of the Neolas 5.2 plasticizer and microreinforcing fibers in the foam concrete mixture in the amount of 0.4 - 0.1 % by weight of cement leads to reduction of the average pore diameter in the range of 45.3 to 30.2 microns and the standard deviation of the pore average diameter from 23.6 to 9.2 in comparison with the sample without additive. Introduction of modifying additives has stimulated formation of a large number of closed pores. Thus porosity of conditionally closed pores has increased from 16.06 % to 34.48 %, which has lead to increase of frost resistance brand of foam concrete from F15 to F50 and to reduction of its water absorption by weight by 20 %.

  10. Controlling Non-Equilibrium Structure Formation on the Nanoscale.

    Science.gov (United States)

    Buchmann, Benedikt; Hecht, Fabian Manfred; Pernpeintner, Carla; Lohmueller, Theobald; Bausch, Andreas R

    2017-12-06

    Controlling the structure formation of gold nanoparticle aggregates is a promising approach towards novel applications in many fields, ranging from (bio)sensing to (bio)imaging to medical diagnostics and therapeutics. To steer structure formation, the DNA-DNA interactions of DNA strands that are coated on the surface of the particles have become a valuable tool to achieve precise control over the interparticle potentials. In equilibrium approaches, this technique is commonly used to study particle crystallization and ligand binding. However, regulating the structural growth processes from the nano- to the micro- and mesoscale remains elusive. Here, we show that the non-equilibrium structure formation of gold nanoparticles can be stirred in a binary heterocoagulation process to generate nanoparticle clusters of different sizes. The gold nanoparticles are coated with sticky single stranded DNA and mixed at different stoichiometries and sizes. This not only allows for structural control but also yields access to the optical properties of the nanoparticle suspensions. As a result, we were able to reliably control the kinetic structure formation process to produce cluster sizes between tens of nanometers up to micrometers. Consequently, the intricate optical properties of the gold nanoparticles could be utilized to control the maximum of the nanoparticle suspension extinction spectra between 525 nm and 600 nm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis, NMR characterization, X-ray crystal structure of Co(II) Ni(II) and Cu(II) complexes of a pyridine containing self-assembling

    International Nuclear Information System (INIS)

    Ranjbar, M.; Taghavipour, M.; Moghimi, A.; Aghabozorg, H.

    2002-01-01

    In the recent years, the self-assembling systems have been attracted chemists. The intermolecular bond in such systems mainly consists of ion pairing and hydrogen bonding [1,2]. The reaction between self-assembling system liquid LH 2 (py dc=2,6-pyridinedicarboxylic acid and py da=2,6- pyridine diamin) with cobalt (II) nitrate, nickel (II) chloride, and copper (II) acetate in water leads to the formation of self- assemble coordination complexes, [py da.H] 2 [M(py dc) 2 ]. H 2 O, M=Co(II),Ni(II), and Cu(II). The characterization was performed using elemental analysis, ESI mass spectroscopy, 1 H and 13 C NMR and X-ray crystallography. The crystal systems are monoclinic with space group P2 1 /n and four molecules per unit cell. These complexes shows 13 C NMR resonances of cationic counter ion [(py dc,H)] + in DMSO- d 6 but no signal corresponding to the two coordinated ligands [py dc] 2- The metal atoms are six-coordinated with a distorted octahedral geometry. The two [py de] 2- units are almost perpendicular to each other

  12. Structural characterization and antioxidant properties of Cu(II) and Ni(II) complexes derived from dicyandiamide

    Science.gov (United States)

    Kertmen, Seda Nur; Gonul, Ilyas; Kose, Muhammet

    2018-01-01

    New Cu(II) and Ni(II) complexes derived from dicyandiamide were synthesized and characterised by spectroscopic and analytical methods. Molecular structures of the complexes were determined by single crystal X-ray diffraction studies. In the complexes, the Cu(II) or Ni(II) ions are four-coordinate with a slight distorted square planar geometry. The ligands (L-nPen and L-iPen) derived from dicyandiamide formed via nucleophilic addition of alcohol solvent molecule in the presence Cu(II) or Ni(II) ions. Complexes were stabilised by intricate array of hydrogen bonding interactions. Antioxidant activity of the complexes was evaluated by DPPH radical scavenging and CUPRAC methods. The complexes exhibit antioxidant activity, however, their activities were much lower than standard antioxidants (Vitamin C and trolox).

  13. TIDAL TAILS OF MINOR MERGERS. II. COMPARING STAR FORMATION IN THE TIDAL TAILS OF NGC 2782

    Energy Technology Data Exchange (ETDEWEB)

    Knierman, Karen A.; Scowen, Paul; Veach, Todd; Groppi, Christopher [School of Earth and Space Exploration, Arizona State University, 550 E. Tyler Mall, Room PSF-686 (P.O. Box 871404), Tempe, AZ 85287-1404 (United States); Mullan, Brendan; Charlton, Jane [Department of Astronomy and Astrophysics, Penn State University, 525 Davey Lab, University Park, PA (United States); Konstantopoulos, Iraklis [Australian Astronomical Observatory, P.O. Box 915, North Ryde NSW 1670 (Australia); Knezek, Patricia M., E-mail: karen.knierman@asu.edu, E-mail: paul.scowen@asu.edu, E-mail: tveach@asu.edu, E-mail: cgroppi@asu.edu, E-mail: mullan@astro.psu.edu, E-mail: iraklis@aao.gov.au, E-mail: pknezek@noao.edu [WIYN Consortium, Inc., 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)

    2013-09-10

    The peculiar spiral NGC 2782 is the result of a minor merger with a mass ratio {approx}4: 1 occurring {approx}200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun. However, deep UBVR and H{alpha} narrowband images show evidence of recent star formation in the western tail, though it lacks massive star clusters and cluster complexes. Using Herschel PACS spectroscopy, we discover 158 {mu}m [C II] emission at the location of the three most luminous H{alpha} sources in the eastern tail, but not at the location of the even brighter H{alpha} source in the western tail. The western tail is found to have a normal star formation efficiency (SFE), but the eastern tail has a low SFE. The lack of CO and [C II] emission suggests that the western tail H II region may have a low carbon abundance and be undergoing its first star formation. The western tail is more efficient at forming stars, but lacks massive clusters. We propose that the low SFE in the eastern tail may be due to its formation as a splash region where gas heating is important even though it has sufficient molecular and neutral gas to make massive star clusters. The western tail, which has lower gas surface density and does not form high-mass star clusters, is a tidally formed region where gravitational compression likely enhances star formation.

  14. TIDAL TAILS OF MINOR MERGERS. II. COMPARING STAR FORMATION IN THE TIDAL TAILS OF NGC 2782

    International Nuclear Information System (INIS)

    Knierman, Karen A.; Scowen, Paul; Veach, Todd; Groppi, Christopher; Mullan, Brendan; Charlton, Jane; Konstantopoulos, Iraklis; Knezek, Patricia M.

    2013-01-01

    The peculiar spiral NGC 2782 is the result of a minor merger with a mass ratio ∼4: 1 occurring ∼200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun. However, deep UBVR and Hα narrowband images show evidence of recent star formation in the western tail, though it lacks massive star clusters and cluster complexes. Using Herschel PACS spectroscopy, we discover 158 μm [C II] emission at the location of the three most luminous Hα sources in the eastern tail, but not at the location of the even brighter Hα source in the western tail. The western tail is found to have a normal star formation efficiency (SFE), but the eastern tail has a low SFE. The lack of CO and [C II] emission suggests that the western tail H II region may have a low carbon abundance and be undergoing its first star formation. The western tail is more efficient at forming stars, but lacks massive clusters. We propose that the low SFE in the eastern tail may be due to its formation as a splash region where gas heating is important even though it has sufficient molecular and neutral gas to make massive star clusters. The western tail, which has lower gas surface density and does not form high-mass star clusters, is a tidally formed region where gravitational compression likely enhances star formation

  15. [C II] 158 μm EMISSION AS A STAR FORMATION TRACER

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Camus, R.; Bolatto, A. D.; Wolfire, M. G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Smith, J. D. [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Croxall, K. V. [Department of Astronomy, The Ohio State University, 4051 McPherson Laboratory, 140 West 18th Avenue, Columbus, OH 43210 (United States); Kennicutt, R. C.; Boquien, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Helou, G. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Walter, F.; Meidt, S. E. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Leroy, A. K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Draine, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Brandl, B. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Armus, L. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Sandstrom, K. M. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Aniano, G. [Institut d' Astrophysique Spatiale, CNRS (UMR8617) Université Paris-Sud 11, Batiment 121, Orsay (France); Hunt, L. K. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Galametz, M. [European Southern Observatory, Karl Schwarzschild Strasse 2, D-85748 Garching (Germany); and others

    2015-02-10

    The [C II] 157.74 μm transition is the dominant coolant of the neutral interstellar gas, and has great potential as a star formation rate (SFR) tracer. Using the Herschel KINGFISH sample of 46 nearby galaxies, we investigate the relation of [C II] surface brightness and luminosity with SFR. We conclude that [C II] can be used for measurements of SFR on both global and kiloparsec scales in normal star-forming galaxies in the absence of strong active galactic nuclei (AGNs). The uncertainty of the Σ{sub [C} {sub II]} – Σ{sub SFR} calibration is ±0.21 dex. The main source of scatter in the correlation is associated with regions that exhibit warm IR colors, and we provide an adjustment based on IR color that reduces the scatter. We show that the color-adjusted Σ{sub [C} {sub II]} – Σ{sub SFR} correlation is valid over almost five orders of magnitude in Σ{sub SFR}, holding for both normal star-forming galaxies and non-AGN luminous infrared galaxies. Using [C II] luminosity instead of surface brightness to estimate SFR suffers from worse systematics, frequently underpredicting SFR in luminous infrared galaxies even after IR color adjustment (although this depends on the SFR measure employed). We suspect that surface brightness relations are better behaved than the luminosity relations because the former are more closely related to the local far-UV field strength, most likely the main parameter controlling the efficiency of the conversion of far-UV radiation into gas heating. A simple model based on Starburst99 population-synthesis code to connect SFR to [C II] finds that heating efficiencies are 1%-3% in normal galaxies.

  16. Orogenic structural inheritance and rifted passive margin formation

    Science.gov (United States)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  17. Cation Effects on the Layer Structure of Biogenic Mn-Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, M.; Ginder-Vogel, M; Parikh, S; Feng, X; Sparks, D

    2010-01-01

    Biologically catalyzed Mn(II) oxidation produces biogenic Mn-oxides (BioMnO{sub x}) and may serve as one of the major formation pathways for layered Mn-oxides in soils and sediments. The structure of Mn octahedral layers in layered Mn-oxides controls its metal sequestration properties, photochemistry, oxidizing ability, and topotactic transformation to tunneled structures. This study investigates the impacts of cations (H{sup +}, Ni(II), Na{sup +}, and Ca{sup 2+}) during biotic Mn(II) oxidation on the structure of Mn octahedral layers of BioMnO{sub x} using solution chemistry and synchrotron X-ray techniques. Results demonstrate that Mn octahedral layer symmetry and composition are sensitive to previous cations during BioMnO{sub x} formation. Specifically, H{sup +} and Ni(II) enhance vacant site formation, whereas Na{sup +} and Ca{sup 2+} favor formation of Mn(III) and its ordered distribution in Mn octahedral layers. This study emphasizes the importance of the abiotic reaction between Mn(II) and BioMnO{sub x} and dependence of the crystal structure of BioMnO{sub x} on solution chemistry.

  18. Crystal structure of bis(4-acetylanilinium tetrachloridocobaltate(II

    Directory of Open Access Journals (Sweden)

    Manickam Thairiyaraja

    2015-12-01

    Full Text Available The structure of the title salt, (C8H10NO2[CoCl4], is isotypic with the analogous cuprate(II structure. The asymmetric unit contains one 4-acetylanilinium cation and one half of a tetrachloridocobaltate(II anion for which the CoII atom and two Cl− ligands lie on a mirror plane. The Co—Cl distances in the distorted tetrahedral anion range from 2.2519 (6 to 2.2954 (9 Å and the Cl—Co—Cl angles range from 106.53 (2 to 110.81 (4°. In the crystal, cations are self-assembled by intermolecular N—H...O hydrogen-bonding interactions, leading to a C(8 chain motif with the chains running parallel to the b axis. π–π stacking interactions between benzene rings, with a centroid-to-centroid distance of 3.709 Å, are also observed along this direction. The CoCl42− anions are sandwiched between the cationic chains and interact with each other through intermolecular N—H...Cl hydrogen-bonding interactions, forming a three-dimensional network structure.

  19. Nickel(II) and copper(II) complexes of N,N-dialkyl-N‧-3-chlorobenzoylthiourea: Synthesis, characterization, crystal structures, Hirshfeld surfaces and antimicrobial activity

    Science.gov (United States)

    Binzet, Gun; Gumus, Ilkay; Dogen, Aylin; Flörke, Ulrich; Kulcu, Nevzat; Arslan, Hakan

    2018-06-01

    We synthesized four new N,N-dialkyl-N‧-3-chlorobenzoylthiourea ligands (Alkyl: Dimethyl, diethyl, di-n-propyl and di-n-butyl) and their metal complexes with copper and nickel atoms. The structure of all synthesized compounds was fully characterized by physicochemical, spectroscopic and single crystal X-ray diffraction analysis techniques. The physical, spectral and analytical data of the newly synthesized metal complexes have shown the formation of 1:2 (metal:ligand) ratio. The benzoylthiourea ligands coordinate with metal atoms through oxygen and sulphur atoms. The metal atoms are in slightly distorted square-planar coordination geometry in Ni(II) or Cu(II) complex. Two oxygen and two sulphur atoms are mutually cis to each other in Ni(II) or Cu(II) complex. The intermolecular contacts in the compounds, which are HL1 and HL3, were examined by Hirshfeld surfaces and fingerprint plots using the data obtained from X-ray single crystal diffraction measurement. Besides these, their antimicrobial activities against Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and anti-yeast activity (Candida glabrata, Candida parapsilosis and Candida albicans) were investigated. This exhibited some promising results towards testing organism. Among all the compounds, Ni(L1)2 complex showed high activity against Bacillus subtilis with MIC values at 7.81 μg/mL.

  20. Catecholase activity of dicopper(II)-bispidine complexes: stabilities and structures of intermediates, kinetics and reaction mechanism.

    Science.gov (United States)

    Born, Karin; Comba, Peter; Daubinet, André; Fuchs, Alexander; Wadepohl, Hubert

    2007-01-01

    A mechanism for the oxidation of 3,5-di-tert-butylcatechol (dtbc) with dioxygen to the corresponding quinone (dtbq), catalyzed by bispidine-dicopper complexes (bispidines are various mono- and dinucleating derivatives of 3,7-diazabicyclo[3.3.1]nonane with bis-tertiary-amine-bispyridyl or bis-tertiary-amine-trispyridyl donor sets), is proposed on the basis of (1) the stoichiometry of the reaction as well as the stabilities and structures [X-ray, density functional theory (B3LYP, TZV)] of the bispidine-dicopper(II)-3,4,5,6-tetrachlorcatechol intermediates, (2) formation kinetics and structures (molecular mechanics, MOMEC) of the end-on peroxo-dicopper(II) complexes and (3) kinetics of the stoichiometric (anaerobic) and catalytic (aerobic) copper-complex-assisted oxidation of dtbc. This involves (1) the oxidation of the dicopper(I) complexes with dioxygen to the corresponding end-on peroxo-dicopper(II) complexes, (2) coordination of dtbc as a bridging ligand upon liberation of H(2)O(2) and (3) intramolecular electron transfer to produce dtbq, which is liberated, and the dicopper(I) catalyst. Although the bispidine complexes have reactivities comparable to those of recently published catalysts with macrocyclic ligands, which seem to reproduce the enzyme-catalyzed process in various reaction sequences, a strikingly different oxidation mechanism is derived from the bispidine-dicopper-catalyzed reaction.

  1. Synthesis and characterization of two new zinc(II) coordination polymers with bidentate flexible ligands: Formation of a 2D structure with (44.62)-sql topology

    Science.gov (United States)

    Lalegani, Arash; Khaledi Sardashti, Mohammad; Gajda, Roman; Woźniak, Krzysztof

    2017-12-01

    Zinc(II) coordination polymers [Zn(bip)2(NCS)2]n (1) and [Zn(μ-bbd)(N3)2]n (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethylpyrazolyl)butane (bbd) and 1,3-bis(imidazolyl)propane (bip), mono-anionic NCS- or N3-ligand and zinc(II) chloride salts. The results of the X-ray analyses demonstrate that in the structure of 1, the zinc(II) ion is located on an inversion center and exhibits an ZnN6 octahedral arrangement while, in the structure of 2, the zinc(II) ion adopts an ZnN4 tetrahedral geometry. In the polymer 1, the NCS groups are terminally N-bonded to the metal center and the each bip with anti-gauche conformation acts as bridging connecting four zinc(II) ions to form a two-dimensional network with a sql [point symbol (44.62)] topology while, in the polymer 1, the N3 groups are terminally bonded to the metal center and each bbd with anti-anti-anti conformation acts as bridging ligand connecting two zinc(II) ions to form a one-dimensional zig-zag chain. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analyses of polymers were also presented.

  2. Syntheses, structural characterization and spectroscopic studies of cadmium(II)-metal(II) cyanide complexes with 4-(2-aminoethyl)pyridine

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Hökelek, Tuncer

    2017-02-01

    Three new cadmium(II)-metal(II) cyanide complexes, [Cd(4aepy)2(H2O)2][Ni(CN)4] (1), [Cd(4aepy)2(H2O)2][Pd(CN)4] (2) and [Cd(4aepy)2(H2O)2][Pt(CN)4] (3) [4aepy = 4-(2-aminoethyl)pyridine], have been synthesized and characterized by elemental, thermal, FT-IR and Raman spectral analyses. The crystal structures of 1 and 2 have been determined by single crystal X-ray diffraction technique, in which they crystallize in the monoclinic system and C2/c space group. The M(II) [M(II) = Ni(II), Pd(II) and Pt(II)] ions are coordinated with the carbon atoms of the four cyanide groups in the square planar geometries and the [M(CN)4]2- ions act as counter ions. The Cd(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. 3D supramolecular structures of 1 and 2 were occurred by M⋯π and hydrogen bonding (Nsbnd H⋯N and Osbnd H⋯N) interactions. Vibrational assignments of all the observed bands were given and the spectral properties were also supported the crystal structures of the complexes. A possible decompositions of the complexes were investigated in the temperature range 30-800 °C in the static atmosphere.

  3. Structural and bioinformatic characterization of an Acinetobacter baumannii type II carrier protein

    International Nuclear Information System (INIS)

    Allen, C. Leigh; Gulick, Andrew M.

    2014-01-01

    The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented. Microorganisms produce a variety of natural products via secondary metabolic biosynthetic pathways. Two of these types of synthetic systems, the nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), use large modular enzymes containing multiple catalytic domains in a single protein. These multidomain enzymes use an integrated carrier protein domain to transport the growing, covalently bound natural product to the neighboring catalytic domains for each step in the synthesis. Interestingly, some PKS and NRPS clusters contain free-standing domains that interact intermolecularly with other proteins. Being expressed outside the architecture of a multi-domain protein, these so-called type II proteins present challenges to understand the precise role they play. Additional structures of individual and multi-domain components of the NRPS enzymes will therefore provide a better understanding of the features that govern the domain interactions in these interesting enzyme systems. The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented here. Comparison with the closest structural homologs of other carrier proteins identifies the requirements for a conserved glycine residue and additional important sequence and structural requirements within the regions that interact with partner proteins

  4. Structural and bioinformatic characterization of an Acinetobacter baumannii type II carrier protein

    Energy Technology Data Exchange (ETDEWEB)

    Allen, C. Leigh; Gulick, Andrew M., E-mail: gulick@hwi.buffalo.edu [University at Buffalo, Buffalo, NY 14203 (United States)

    2014-06-01

    The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented. Microorganisms produce a variety of natural products via secondary metabolic biosynthetic pathways. Two of these types of synthetic systems, the nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), use large modular enzymes containing multiple catalytic domains in a single protein. These multidomain enzymes use an integrated carrier protein domain to transport the growing, covalently bound natural product to the neighboring catalytic domains for each step in the synthesis. Interestingly, some PKS and NRPS clusters contain free-standing domains that interact intermolecularly with other proteins. Being expressed outside the architecture of a multi-domain protein, these so-called type II proteins present challenges to understand the precise role they play. Additional structures of individual and multi-domain components of the NRPS enzymes will therefore provide a better understanding of the features that govern the domain interactions in these interesting enzyme systems. The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented here. Comparison with the closest structural homologs of other carrier proteins identifies the requirements for a conserved glycine residue and additional important sequence and structural requirements within the regions that interact with partner proteins.

  5. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II.

    Directory of Open Access Journals (Sweden)

    Vinay Pathak

    Full Text Available Singlet oxygen (1O2 is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII. Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.

  6. Triggering the formation of the supergiant H II region NGC 604 in M 33

    Science.gov (United States)

    Tachihara, Kengo; Gratier, Pierre; Sano, Hidetoshi; Tsuge, Kisetsu; Miura, Rie E.; Muraoka, Kazuyuki; Fukui, Yasuo

    2018-05-01

    Formation mechanism of a supergiant H II region NGC 604 is discussed in terms of collision of H I clouds in M 33. An analysis of the archival H I data obtained with the Very Large Array (VLA) reveals complex velocity distributions around NGC 604. The H I clouds are composed of two velocity components separated by ˜20 km s-1 for an extent of ˜700 pc, beyond the size of the the H II region. Although the H I clouds are not easily separated in velocity with some mixed component represented by merged line profiles, the atomic gas mass amounts to 6 × 106 M_{⊙} and 9 × 106 M_{⊙} for each component. These characteristics of H I gas and the distributions of dense molecular gas in the overlapping regions of the two velocity components suggest that the formation of giant molecular clouds and the following massive cluster formation have been induced by the collision of H I clouds with different velocities. Referring to the existence of a gas bridging feature connecting M 33 with M 31 reported by large-scale H I surveys, the disturbed atomic gas possibly represents the result of past tidal interaction between the two galaxies, which is analogous to the formation of the R 136 cluster in the LMC.

  7. Flexible Structure Control Scheme of a UAVs Formation to Improve the Formation Stability During Maneuvers

    Directory of Open Access Journals (Sweden)

    Kownacki Cezary

    2017-09-01

    Full Text Available One of the issues related to formation flights, which requires to be still discussed, is the stability of formation flight in turns, where the aerodynamic conditions can be substantially different for outer vehicles due to varying bank angles. Therefore, this paper proposes a decentralized control algorithm based on a leader as the reference point for followers, i.e. other UAVs and two flocking behaviors responsible for local position control, i.e. cohesion and repulsion. But opposite to other research in this area, the structure of the formation becomes flexible (structure is being reshaped and bent according to actual turn radius of the leader. During turns the structure is bent basing on concentred circles with different radiuses corresponding to relative locations of vehicles in the structure. Simultaneously, UAVs' air-speeds must be modified according to the length of turn radius to achieve the stability of the structure. The effectiveness of the algorithm is verified by the results of simulated flights of five UAVs.

  8. Data base formation for important components of reactor TRIGA MARK II

    International Nuclear Information System (INIS)

    Jordan, R.; Mavko, B.; Kozuh, M.

    1992-01-01

    The paper represents specific data base formation for reactor TRIGA MARK II in Podgorica. Reactor operation data from year 1985 to 1990 were collected. Two groups of collected data were formed. The first group includes components data and the second group covers data of reactor scrams. Time related and demand related models were used for data evaluation. Parameters were estimated by classical method. Similar data bases are useful everywhere where components unavailabilities may have severe drawback. (author) [sl

  9. How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Whalen, Daniel J. [Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth (United Kingdom); Wollenberg, Katharina M. J.; Glover, Simon C. O.; Klessen, Ralf S., E-mail: ken.chen@nao.ac.jp [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg (Germany)

    2017-08-01

    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.

  10. Bifurcation of learning and structure formation in neuronal maps

    DEFF Research Database (Denmark)

    Marschler, Christian; Faust-Ellsässer, Carmen; Starke, Jens

    2014-01-01

    to map formation in the laminar nucleus of the barn owl's auditory system. Using equation-free methods, we perform a bifurcation analysis of spatio-temporal structure formation in the associated synaptic-weight matrix. This enables us to analyze learning as a bifurcation process and follow the unstable...... states as well. A simple time translation of the learning window function shifts the bifurcation point of structure formation and goes along with traveling waves in the map, without changing the animal's sound localization performance....

  11. Sequestration of chelated copper by structural Fe(II): Reductive decomplexation and transformation of Cu{sup II}-EDTA

    Energy Technology Data Exchange (ETDEWEB)

    He, Hongping [State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092 (China); Wu, Deli, E-mail: wudeli@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092 (China); Zhao, Linghui [State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092 (China); Luo, Cong [School of Civil and Environmental Engineering, Georgia Institute of Technology, GA 30332 (United States); Dai, Chaomeng; Zhang, Yalei [State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092 (China)

    2016-05-15

    Highlights: • Structural Fe(II) was found to reveal high sequestration potential in various chelated copper. • Chelated copper was reduced to Cu(0) and Cu{sub 2}O by =Fe(II), whcih was oxidized to Fe{sub 2}O{sub 3}·H{sub 2}O. • Both electron transfer and surface =Fe(II) were found to be crucial during chelated copper reduction. • The indispensible role of reductive decomplexation was identified in chelated copper sequestration. - Abstract: Chelated coppers, such as Cu{sup II}-EDTA, are characteristically refractory and difficult to break down because of their high stability and solubility. Cu{sup II}–EDTA sequestration by structural Fe(II) (=Fe(II)) was investigated intensively in this study. Up to 101.21 mgCu(II)/gFe(II) was obtained by =Fe(II) in chelated copper sequestration under near neutral pH condition (pH 7.70). The mechanism of Cu{sup II}-EDTA sequestration by =Fe(II) was concluded as follows: 3Cu{sup II}–EDTA + 7=Fe(II) + 9H{sub 2}O → Cu(0) ↓ + Cu{sub 2}O ↓ (the major product) + 2Fe{sub 2}O{sub 3}·H{sub 2}O ↓ + 3Fe{sup II}–EDTA +14H{sup +} Novel results strongly indicate that Cu{sup II} reductive transformation induced by surface =Fe(II) was mainly responsible for chelated copper sequestration. Cu(0) generation was initially facilitated, and subsequent reduction of Cu(II) into Cu(I) was closely combined with the gradual increase of ORP (Oxidation-Reduction Potential). Cu-containing products were inherently stable, but Cu{sub 2}O would be reoxidized to Cu(II) with extra-aeration, resulting in the release of copper, which was beneficial to Cu reclamation. Concentration diminution of Cu{sup II}–EDTA within the electric double layer and competitive adsorption were responsible for the negative effects of Ca{sup 2+}, Mg{sup 2+}. By generating vivianite, PO{sub 4}{sup 3−} was found to decrease surface =Fe(II) content. This study is among the first ones to identify the indispensible role of reductive decomplexation in chelated copper

  12. Fibre structure of decametric type II radio bursts as a manifestation of emission propagation effects in a disturbed near-solar plasma

    OpenAIRE

    A. N. Afanasiev

    2009-01-01

    This paper addresses the fine structure of solar decametric type II radio bursts in the form of drifting narrowband fibres on the dynamic spectrum. Observations show that this structure appears in those events where there is a coronal mass ejection (CME) traveling in the near-solar space ahead of the shock wave responsible for the radio burst. The diversity in observed morphology of fibres and values of their parameters implies that the fibres may be caused by different formation mechanisms. ...

  13. Canine hippocampal formation composited into three-dimensional structure using MPRAGE.

    Science.gov (United States)

    Jung, Mi-Ae; Nahm, Sang-Soep; Lee, Min-Su; Lee, In-Hye; Lee, Ah-Ra; Jang, Dong-Pyo; Kim, Young-Bo; Cho, Zang-Hee; Eom, Ki-Dong

    2010-07-01

    This study was performed to anatomically illustrate the living canine hippocampal formation in three-dimensions (3D), and to evaluate its relationship to surrounding brain structures. Three normal beagle dogs were scanned on a MR scanner with inversion recovery segmented 3D gradient echo sequence (known as MP-RAGE: Magnetization Prepared Rapid Gradient Echo). The MRI data was manually segmented and reconstructed into a 3D model using the 3D slicer software tool. From the 3D model, the spatial relationships between hippocampal formation and surrounding structures were evaluated. With the increased spatial resolution and contrast of the MPRAGE, the canine hippocampal formation was easily depicted. The reconstructed 3D image allows easy understanding of the hippocampal contour and demonstrates the structural relationship of the hippocampal formation to surrounding structures in vivo.

  14. STRUCTURAL STUDY OF BIS(2,6-BIS(PYRAZOL-3-YLPYRIDINENICKEL(II BY CALORIMETRY AND EXAFS SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Kristian H Sugiyarto

    2010-06-01

    Full Text Available The main aim of this work is to reveal the complex formation of 2,6-bis(pyrazol-3-ylpyridine, bpp, with nickel(II perchlorate in DMF by calorimetric stepwise complex formation and then followed by EXAFS spectrometry. It was found that the complex formation follows two stepwise pathways namely the formation of mono pyrazolyl-pyridine, [Ni(DMF3 bpp]2+, and bis pyrazolyl-pyridine, [Ni(bpp2]2+;  the formation constants being  log β1 = 6.57, and log β2 = 5.02, and the total value of log β  = 11.58. The final formation of six-coordinated compound was confirmed by EXAFS analysis with the mean Ni-Nbpp bond length of 2.0646(0.0014 Å.   Keywords: nickel(II, bpp, EXAFS

  15. Structure and Chromosomal Organization of Yeast Genes Regulated by Topoisomerase II.

    Science.gov (United States)

    Joshi, Ricky S; Nikolaou, Christoforos; Roca, Joaquim

    2018-01-03

    Cellular DNA topoisomerases (topo I and topo II) are highly conserved enzymes that regulate the topology of DNA during normal genome transactions, such as DNA transcription and replication. In budding yeast, topo I is dispensable whereas topo II is essential, suggesting fundamental and exclusive roles for topo II, which might include the functions of the topo IIa and topo IIb isoforms found in mammalian cells. In this review, we discuss major findings of the structure and chromosomal organization of genes regulated by topo II in budding yeast. Experimental data was derived from short (10 min) and long term (120 min) responses to topo II inactivation in top-2 ts mutants. First, we discuss how short term responses reveal a subset of yeast genes that are regulated by topo II depending on their promoter architecture. These short term responses also uncovered topo II regulation of transcription across multi-gene clusters, plausibly by common DNA topology management. Finally, we examine the effects of deactivated topo II on the elongation of RNA transcripts. Each study provides an insight into the particular chromatin structure that interacts with the activity of topo II. These findings are of notable clinical interest as numerous anti-cancer therapies interfere with topo II activity.

  16. Structure and decomposition of the silver formate Ag(HCO{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Puzan, Anna N., E-mail: anna_puzan@mail.ru; Baumer, Vyacheslav N.; Mateychenko, Pavel V.

    2017-02-15

    Crystal structure of the silver formate Ag(HCO{sub 2}) has been determined (orthorhombic, sp.gr. Pccn, a=7.1199(5), b=10.3737(4), c=6.4701(3)Å, V=477.88(4) Å{sup 3}, Z=8). The structure contains isolated formate ions and the pairs Ag{sub 2}{sup 2+} which form the layers in (001) planes (the shortest Ag–Ag distances is 2.919 in the pair and 3.421 and 3.716 Å between the nearest Ag atoms of adjacent pairs). Silver formate is unstable compound which decompose spontaneously vs time. Decomposition was studied using Rietveld analysis of the powder diffraction patterns. It was concluded that the diffusion of Ag atoms leads to the formation of plate-like metal particles as nuclei in the (100) planes which settle parallel to (001) planes of the silver formate matrix. - Highlights: • Silver formate Ag(HCO{sub 2}) was synthesized and characterized. • Layered packing of Ag-Ag pairs in the structure was found. • Decomposition of Ag(HCO{sub 2}) and formation of metal phase were studied. • Rietveld-refined micro-structural characteristics during decomposition reveal the space relationship between the matrix structure and forming Ag phase REPLACE with: Space relationship between the matrix structure and forming Ag phase.

  17. Mechanism and conditions of the chessboard structure formation

    International Nuclear Information System (INIS)

    Ni, Yong; Khachaturyan, Armen G.

    2008-01-01

    The observations of the pseudo-periodical chessboard (CB) microstructure in metal and ceramic solid solutions indicate that this is a general phenomenon. We propose a theory and three-dimensional (3-D) computational modeling explaining the origin of the CB microstructure in the cubic → tetragonal decomposition. The 3-D modeling demonstrates that the formation of two-phase CB structures is contingent on the formation of a compositionally stabilized precursor state with the tweed structure that is spontaneously formed at the initial stage of the transformation. The modeling has shown that this tweed structure is a distribution of spatially correlated tetragonal nanodomains whose spatial arrangement has the CB topological features. This precursor tweed structure serves as a template for the precipitation of the equilibrium cubic phase. The CB-like tweed template channels the microstructure evolution towards the two-phase CB structure whose complex and detailed 3-D geometry is in excellent agreement with electron microscopic observations. The thermodynamic analysis and obtained evolution sequences allow us to formulate the necessary thermodynamic, structural and kinetic conditions for the CB structure formation. Reasons for its relative stability are discussed. It is also shown that the coherency between the cubic and tetragonal phases comprising the CB structure produces the stress-induced tetragonality of the cubic phase, orthorhombicity of the tetragonal phase, and rotations of cubic phase rods. These effects should diminish and disappear upon lifting of coherency

  18. Wavelengths, energy levels and hyperfine structure of Mn II and Sc II.

    Science.gov (United States)

    Nave, Gillian; Pickering, Juliet C.; Townley-Smith, Keeley I. M.; Hala, .

    2015-08-01

    For many decades, the Atomic Spectroscopy Groups at the National Institute of Standards and Technology (NIST) and Imperial College London (ICL) have measured atomic data of astronomical interest. Our spectrometers include Fourier transform (FT) spectrometers at NIST and ICL covering the region 1350 Å to 5.5 μm and a 10.7-m grating spectrometer at NIST covering wavelengths from 300 - 5000 Å. Sources for these spectra include high-current continuous and pulsed hollow cathode (HCL) lamps, Penning discharges, and sliding spark discharges. Recent work has focused on the measurement and analysis of wavelengths, energy levels, and hyperfine structure (HFS) constants for iron-group elements. The analysis of FT spectra of Cr I, Mn I, and Mn II is being led by ICL and is described in a companion poster [1]. Current work being led by NIST includes the analysis of HFS in Mn II, analysis of Mn II in the vacuum ultraviolet, and a comprehensive analysis of Sc II.Comprehensive HFS constants for Mn II are needed for the interpretation of stellar spectra and incorrect abundances may be obtained when HFS is omitted. Holt et al. [2] have measured HFS constants for 59 levels of Mn II using laser spectroscopy. We used FT spectra of Mn/Ni and Mn/Cu HCLs covering wavelength ranges from 1350 Å to 5.4 μm to confirm 26 of the A constants of Holt et al. and obtain values for roughly 40 additional levels. We aim to obtain HFS constants for the majority of lines showing significant HFS that are observed in chemically-peculiar stars.Spectra of Sc HCLs have been recorded from 1800 - 6700 Å using a vacuum ultraviolet FT spectrometer at NIST. Additional measurements to cover wavelengths above 6700 Å and below 1800 Å are in progress. The spectra are being analyzed by NIST and Alighar Muslim University, India in order to derive improved wavelengths, energy levels, and hyperfine structure parameters.This work was partially supported by NASA, the STFC and PPARC (UK), the Royal Society of the UK

  19. Formation control of unicycle robots using virtual structure approach

    NARCIS (Netherlands)

    Sadowska, A.D.; Huijberts, H.J.C.; Kostic, D.; Wouw, van de N.; Nijmeijer, H.

    2011-01-01

    This paper addresses the problem of formation control of groups of unicycle robots with possibly time-varying formation shapes. To solve the problem, we propose two simple distributed formation control algorithms based on the virtual structure approach. We prove exponential convergence of error

  20. Zeolite-encapsulated Co(II), Mn(II), Cu(II) and Cr(III) salen complexes as catalysts for efficient selective oxidation of benzyl alcohol

    Science.gov (United States)

    Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.

    2018-01-01

    Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.

  1. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II oxalate precursor layers

    Directory of Open Access Journals (Sweden)

    Kai Rückriem

    2016-06-01

    Full Text Available Copper(II oxalate grown on carboxy-terminated self-assembled monolayers (SAM using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS. Helium ion microscopy (HIM reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor.

  2. Solvation structure determination of nickel(II) ion in six nitriles using extended X-ray absorption fine structure spectroscopy

    International Nuclear Information System (INIS)

    Inada, Yasuhiro; Funahashi, Shigenobu

    1997-01-01

    The solvation structures of the nickel(II) ion in six nitriles have been determined using X-ray absorption fine structure spectroscopy. The coordination number and the Ni-N bond length are 6 and 206.9 ± 0.6 pm in acetonitrile, 5.9 ± 0.2 and 206.9 ± 0.6 pm in propionitrile, 6.0 ± 0.2 and 206.8 ± 0.6 pm in butyronitrile, 6.0 ± 0.2 and 206.8 ± 0.6 pm in isobutyronitrile, 6.0 ± 0.2 and 206.8 ± 0.6 pm in valeronitrile, and 6.0 ± 0.2 and 206.5 ± 0.7 pm in benzonitrile, respectively. The structure parameters around the nickel(II) ion in all the nitriles are not affected by the bulkiness of the nitrile molecules. On the basis of the obtained structure parameters, we have discussed the structural characteristics around the nickel(II) ion with nitrogen and oxygen donor solvents and the reaction mechanisms for nitrile exchange on the nickel(II) ion. (author)

  3. Influence of Hybrid Perovskite Fabrication Methods on Film Formation, Electronic Structure, and Solar Cell Performance

    Science.gov (United States)

    Schnier, Tobias; Emara, Jennifer; Olthof, Selina; Meerholz, Klaus

    2017-01-01

    Hybrid organic/inorganic halide perovskites have lately been a topic of great interest in the field of solar cell applications, with the potential to achieve device efficiencies exceeding other thin film device technologies. Yet, large variations in device efficiency and basic physical properties are reported. This is due to unintentional variations during film processing, which have not been sufficiently investigated so far. We therefore conducted an extensive study of the morphology and electronic structure of a large number of CH3NH3PbI3 perovskite where we show how the preparation method as well as the mixing ratio of educts methylammonium iodide and lead(II) iodide impact properties like film formation, crystal structure, density of states, energy levels, and ultimately the solar cell performance. PMID:28287555

  4. Synthesis, crystal structures and properties of new homoleptic Ni(II)/Pd(II) β-oxodithioester chelates

    Science.gov (United States)

    Yadav, Chote L.; Manar, Krishna K.; Yadav, Manoj K.; Tiwari, Neeraj; Singh, Rakesh K.; Drew, Michael G. B.; Singh, Nanhai

    2018-05-01

    Six new cis-chelate complexes, [M(L)2] (L = methyl-3-hydroxy-3-(furyl)-2-propenedithioate L1, M = Ni(II) 1, Pd(II) 4; methyl-3-hydroxy-3-(thiophenyl)-2-propenedithioate L2, M = Ni(II) 2, Pd(II) 5 and methyl-3-hydroxy-3-(phenyl)-2-propenedithioate L3, M = Ni(II) 3, Pd(II) 6 have been prepared and characterized by elemental analyses, spectroscopy (IR, UV-Vis., 1H and 13C{1H} NMR). The structures of 2-6 have been revealed by X-ray crystallography. In all the crystal structures, the metal has four-coordinate slightly distorted square planar geometry with a cis-configuration of the ligands. Anti-leishmanial properties of the complexes have been studied; 2, 3 and 6 showed potential anti-promastigote and anti-amastigote activities with IC50 values of 1.70 ± 0.50, 1.62 ± 0.19, 9.20 ± 2.16 μg/mL and IC50 2.50 ± 0.10, 2.05 ± 0.40, 12.84 ± 3.46 μg/mL respectively. Cytotoxicity assays on these complexes showed toxicity on the promastigotes but less toxicity against RAW 264.7 cell lines at different concentrations. Palladium complexes 4, 5 and 6 show luminescent characteristics in CH2Cl2 solution at room temperature. Complexes 1-6 are weakly conducting (σrt = 10-4-10-6 S cm-1, Ea = 0.19-1.13 eV) but show semiconducting behavior in the solid phase.

  5. Kinetics and equilibria for the formation of a new DNA metal-intercalator: the cyclic polyamine Neotrien/copper(II) complex.

    Science.gov (United States)

    Biver, Tarita; Secco, Fernando; Tinè, Maria Rosaria; Venturini, Marcella

    2004-01-01

    A study has been performed of the kinetics and equilibria involved in complex formation between the macrocyclic polyamine 2,5,8,11-tetraaza[12]-[12](2,9)[1,10]-phenanthrolinophane (Neotrien) and Cu(II) in acidic aqueous solution and ionic strength 0.5 M (NaCl), by means of the stopped-flow method and UV spectrophotometry. Spectrophotometric titrations and kinetic experiments revealed that the binding of Cu(II) to Neotrien gives rise to several 1:1 complexes differing in their degree of protonation. Under the experimental hydrogen ion concentration range investigated, complexation occurs by two parallel paths: (a) M2+ + (H4L)4+ (MH4L)6+ and (b) M2+ + (H3L)3+ (MH3L)5+. The rate constants values found for complex formation, by paths (a) and (b), are much lower than the values expected from water exchange at copper(II) and other amine/Cu(II) complexation kinetic constants. Kinetic experiments at different NaCl concentrations indicated that this finding was not due to chloride ion competition in complex formation with Neotrien, but it was related to a ring rigidity effect. As the phenanthroline moiety could, in principle, interact with nucleic acids by intercalation or external binding, some preliminary measurements concerned with the possible interactions occurring between the Cu(II)/Neotrien complex and calf thymus DNA (CT-DNA) have also been carried out. The absorption spectra of the Cu(II)/Neotrien complex change upon addition of CT-DNA at pH 7.0, revealing the occurrence of complex-nucleic acid interactions. Moreover, fluorescence titrations, carried out by adding the Cu(II)/Neotrien complex to CT-DNA, previously saturated with ethidium bromide (EB), show that the Cu(II)/Neotrien complex is able to displace EB from DNA, suggesting the complex is able to intercalate into the polynucleotide and then to cleave the phosphodiester bond of DNA.

  6. Tripodal polyphosphine ligands as inductors of chelate ring-opening processes in mononuclear palladium(II) and platinum(II) compounds. The X-ray crystal structure of two derivatives containing dangling phosphorus.

    Science.gov (United States)

    Fernández-Anca, Damián; García-Seijo, M Inés; García-Fernández, M Esther

    2010-03-07

    The reaction of NP(3) (tris[2-(diphenylphosphino)ethyl]amine and PP(3) (tris[2-(diphenylphosphino)ethyl]phosphine) with the five-coordinate complexes [PdCl(NP(3))]Cl (1) and [MX(PP(3))]X [M = Pd: X = Cl(2), Br(3), I(4); M = Pt: X = Cl(5), Br(6), I(7)], respectively, followed by (31)P{(1)H}NMR when X = Cl, led to the formation of unprecedented four-coordinate halides in a 1 : 2 metal to ligand ratio, [M(AP(3))(2)]X(2) [A = N, M = Pd: X = Cl(8); A = P, M = Pd: X = Cl(9), Br(10), I(11); A = P, M = Pt: X = Cl(12), Br(13), I (14)], containing reactive dangling phosphorus. Given the non characterised precursors [M(ONO(2))(PP(3))](NO(3))], the interaction between the heteronuclear species [MAg(NO(3))(3)(PP(3))] [M = Pd(15), Pt(16)] and PP(3) was explored. It was found that the addition of 1 equivalent of phosphine afforded [MAg(NO(3))(PP(3))(2)](NO(3))(2) [M = Pd(15*), Pt(16*)] containing Ag(I) bound to two dangling phosphorus while the reaction with 2 equivalents led to the complexes [M(PP(3))(2)](NO(3))(2) [M = Pd (17), Pt (18)] in coexistence with [Ag(2)(mu-PP(3))(2)](NO(3))(2). The fate of Ag(I) on the reaction of the mixed metal compounds with excess PP(3) consisted of preventing dissociation, observed in solution for halides, and acting as an assistant for crystallization. Colourless single crystals of 18 and 10, studied by X-ray diffraction, were afforded by reaction of 16 with 4 equivalents of PP(3) and from solutions of 10 in chloroform coexisting with red crystals of 3, respectively. The structures revealed the presence of dications [M(PP(3))(2)](2+) that show two five-membered chelate rings to M(II) in a square-planar arrangement and four uncoordinated phosphine arms with the counter anions being symmetrically placed at 4.431 (Br(-)) and 13.823 (NO(3)(-)) A from M(II) above and below its coordination, MP(4), plane. Complexes 9 and 12 were shown to undergo an interesting reactivity in solution versus group 11 monocations. The reactions consisted of conversions

  7. Crystal structures of salicylideneguanylhydrazinium chloride and its copper(II) and cobalt(III) chloride complexes

    International Nuclear Information System (INIS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Bocelli, G.; Antosyak, B. Ya.; Shova, S. G.; Gulea, A. P.

    2006-01-01

    The crystal structures of salicylideneguanylhydrazinium chloride hydrate hemiethanol solvate (I), salicylideneguanylhydrazinium trichloroaquacuprate(II) (II), and bis(salicylideneguanylhydrazino)cobalt(III) chloride trihydrate (III) are determined using X-ray diffraction. The structures of compounds I, II, and III are solved by direct methods and refined using the least-squares procedure in the anisotropic approximation for the non-hydrogen atoms to the final factors R = 0.0597, 0.0212, and 0.0283, respectively. In the structure of compound I, the monoprotonated molecules and chlorine ions linked by hydrogen bonds form layers aligned parallel to the (010) plane. In the structure of compound II, the salicylaldehyde guanylhydrazone cations and polymer chains consisting of trichloroaquacuprate(II) anions are joined by an extended three-dimensional network of hydrogen bonds. In the structure of compound III, the [Co(LH) 2 ] + cations, chloride ions, and molecules of crystallization water are linked together by a similar network

  8. Processes and problems in secondary star formation

    International Nuclear Information System (INIS)

    Klein, R.I.; Whitaker, R.W.; Sandford, M.T. II

    1985-01-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding intercloud gas flows leading to nonlinear inhomogeneous cloud structures in an initially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation-driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation-driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in -- 1-3 x 10/sup 4/ yr and could account for the recent evidence for new massive star formation in several ultracompact H II regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multi-dimensional calculations of coupled processes. Important nonlinear interactions include hydrodynamics, radiation transport, and magnetic fields

  9. A new photoactive Ru(II)tris(2,2'-bipyridine) templated Zn(II) benzene-1,4-dicarboxylate metal organic framework: structure and photophysical properties.

    Science.gov (United States)

    Whittington, Christi L; Wojtas, Lukasz; Gao, Wen-Yang; Ma, Shengqian; Larsen, Randy W

    2015-03-28

    It has now been demonstrated that Ru(ii)tris(2,2'-bipyridine) (RuBpy) can be utilized to template the formation of new metal organic framework (MOF) materials containing crystallographically resolved RuBpy clusters with unique photophysical properties. Two such materials, RWLC-1 and RWLC-2, have now been reported from our laboratory and are composed of RuBpy encapsulated in MOFs composed of Zn(ii) ions and 1,3,5-tris(4-carboxyphenyl)benzene ligands (C. L. Whittington, L. Wojtas and R. W. Larsen, Inorg. Chem., 2014, 53, 160-166). Here, a third RuBpy templated photoactive MOF is described (RWLC-3) that is derived from the reaction between Zn(ii) ions and 1,4-dicarboxybenzene in the presence of RuBpy. Single Crystal X-ray diffraction studies determined the position of RuBpy cations within the crystal lattice. The RWLC-3 structure is described as a 2-fold interpenetrated pillared honeycomb network (bnb) containing crystallographically resolved RuBpy clusters. The two bnb networks are weakly interconnected. The encapsulated RuBpy exhibits two emission decay lifetimes (τ-fast = 120 ns, τ-slow = 453 ns) and a bathochromic shift in the steady state emission spectrum relative to RuBpy in ethanol.

  10. Discourse, Paragraph, and Sentence Structure in Selected Philippine Languages. Final Report. Volume II, Sentence Structure.

    Science.gov (United States)

    Longacre, Robert E.

    Volume II of "Discourse, Paragraph, and Sentence Structure in Selected Philippine Languages" begins with an explanation of certain assumptions and postulates regarding sentence structure. A detailed treatment of systems of sentence structure and the parameters of such systems follows. Data in the various indigenous languages are…

  11. Types of tectonic structures, sedimentary volcanogenetic formations of a mantle, favourable processes for exogenetic and polygenetic uranium deposits formation

    International Nuclear Information System (INIS)

    Danchev, V.I.; Komarnitskij, G.M.; Levin, V.N.; Shumlyanskij, V.A.

    1985-01-01

    Factors, affecting mineralization processes are considered. Characteristic features of uranium-bearing provinces are as follows: the presence of crust of continental type; deep-seated tectonic structures-rises and saggings, roofs, gneiss domes, rift zones and transform fractures; specialization for uranium of sedimentary and magmatic formations; the presence of manifestation regions of deep thermal and gaseous flow, etc. In uranium-bearing provinces territories favourable for the manifestation of different types of uranium mineralization: metamorphogenetic, polygenetic and exogenetic ones, are singled out. Different epochs of uranium ore formation are established. In sedimentary masses tectonic regime and climate are of special importance, and for epigenetic deposits, formed with an aid of underground waters-hydrogeological conditions. In the limits of the main structural elements of the Earth crust and geotectonic structures of higher orders the following types of sedimentary and volcanic formations can be singled out: 1-formations with exogenous uranium mineralization; 2-formations, accumulated in the epochs of epigenous ore formation; 3-formations fav ourable for epigenous uranium deposit formation; 4-formations unfavourable for the formation and localization of uranium mineralization

  12. Other Species in the Aqueous Environment of a Peptide Can Invert its Intrinsic Solvated Polyproline II/Beta Propensity: Implications for Amyloid Formation.

    Science.gov (United States)

    Mirkin, Noemi G; Krimm, Samuel

    2016-02-02

    As we have previously shown, the predominance of the polyproline II conformation in the circular dichroism spectra of aqueous polypeptides is related to its lower energy than that of the beta conformation. In order to test whether this is still the case in the presence of additional components in the medium, we have calculated the energy difference between these two conformations in an alanine-dipeptide/twelve-water system without and with the addition of an HCl molecule. We find in the latter case that the beta conformer is of lower energy than the polyproline II. Energy profiles near the minima in both cases also permit conclusions about the relative entropies of these structures. These results emphasize the importance of considering the peptide-plus-medium state as the relevant entity in determining the structural properties of such systems. Such an inversion could be relevant to the formation of amyloid and could thus lead to new strategies for studying its role in the development of neurodegenerative diseases. This article is protected by copyright. All rights reserved. © 2016 Wiley Periodicals, Inc.

  13. Structures formation through self-organized accretion on cosmic strings

    International Nuclear Information System (INIS)

    Murdzek, R.

    2009-01-01

    In this paper, we shall show that the formation of structures through accretion by a cosmic string is driven by a natural feed-back mechanism: a part of the energy radiated by accretions creates a pressure on the accretion disk itself. This phenomenon leads to a nonlinear evolution of the accretion process. Thus, the formation of structures results as a consequence of a self-organized growth of the accreting central object.

  14. Structure and Function of Cu(I)- and Zn(II)-ATPases

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Grønberg, Christina; Autzen, Henriette Elisabeth

    2015-01-01

    Copper and zinc are micronutrients essential for the function of many enzymes while also being toxic at elevated concentrations. Cu(I)- and Zn(II)-transporting P-type ATPases of subclass 1B are of key importance for the homeostasis of these transition metals, allowing ion transport across cellular...... membranes at the expense of ATP. Recent biochemical studies and crystal structures have significantly improved our understanding of the transport mechanisms of these proteins, but many details about their structure and function remain elusive. Here we compare the Cu(I)- and Zn(II)-ATPases, scrutinizing...

  15. Nonlinear soil-structure interaction analysis of SIMQUAKE II. Final report

    International Nuclear Information System (INIS)

    Vaughan, D.K.; Isenberg, J.

    1982-04-01

    This report describes an analytic method for modeling of soil-structure interaction (SSI) for nuclear power plants in earthquakes and discusses its application to SSI analyses of SIMQUAKE II. The method is general and can be used to simulate a three-dimensional structural geometry, nonlinear site characteristics and arbitrary input ground shaking. The analytic approach uses the soil island concept to reduce SSI models to manageable size and cost. Nonlinear constitutive behavior of the soil is represented by the nonlinear, kinematic cap model. In addition, a debonding-rebonding soil-structure interface model is utilized to represent nonlinear effects which singificantly alter structural response in the SIMQUAKE tests. STEALTH, an explicit finite difference code, is used to perform the dynamic, soil-structure interaction analyses. Several two-dimensional posttest SSI analyses of model containment structures in SIMQUAKE II are performed and results compared with measured data. These analyses qualify the analytic method. They also show the importance of including debonding-rebonding at the soil-structure interface. Sensitivity of structural response to compaction characteristics of backfill material is indicated

  16. Propagating star formation and irregular structure in spiral galaxies

    International Nuclear Information System (INIS)

    Mueller, M.W.; Arnett, W.D.

    1976-01-01

    A simple model is proposed which describes the irregular optical appearance often seen in late-type spiral galaxies. If high-mass stars produce spherical shock waves which induce star formation, new high-mass stars will be born which, in turn, produce new shock waves. When this process operates in a differentially rotating disk, our numerical model shows that large-scale spiral-shaped regions of star formation are built up. The structure is seen to be most sensitive to a parameter which governs how often a region of the interstellar medium can undergo star formation. For a proper choice of this parameter, large-scale features disappear before differential rotation winds them up. New spiral features continuously form, so some spiral structure is seen indefinitely. The structure is not the classical two-armed symmetric spiral pattern which the density-wave theory attempts to explain, but it is asymmetric and disorderly.The mechanism of propagating star formation used in our model is consistent with observations which connect young OB associations with expanding shells of gas. We discuss the possible interaction of this mechanism with density waves

  17. Crystal structure of the sweet-tasting protein thaumatin II at 1.27 A

    International Nuclear Information System (INIS)

    Masuda, Tetsuya; Ohta, Keisuke; Tani, Fumito; Mikami, Bunzo; Kitabatake, Naofumi

    2011-01-01

    Highlights: → X-ray crystallographic structure of sweet-tasting protein, thaumatin II, was determined at a resolution of 1.27 A. → The overall structure of thaumatin II is similar to that of thaumatin I, but a slight shift of the Cα atom of G96 in thaumatin II was observed. → The side chain of two critical residues, 67 and 82, for sweetness was modeled in two alternative conformations. → The flexibility and fluctuation of side chains at 67 and 82 seems to be suitable for interaction of thaumatin molecules with sweet receptors. -- Abstract: Thaumatin, an intensely sweet-tasting protein, elicits a sweet taste sensation at 50 nM. Here the X-ray crystallographic structure of one of its variants, thaumatin II, was determined at a resolution of 1.27 A. Overall structure of thaumatin II is similar to thaumatin I, but a slight shift of the Cα atom of G96 in thaumatin II was observed. Furthermore, the side chain of residue 67 in thaumatin II is highly disordered. Since residue 67 is one of two residues critical to the sweetness of thaumatin, the present results suggested that the critical positive charges at positions 67 and 82 are disordered and the flexibility and fluctuation of these side chains would be suitable for interaction of thaumatin molecules with sweet receptors.

  18. Crystal structure of the sweet-tasting protein thaumatin II at 1.27 A

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Tetsuya, E-mail: t2masuda@kais.kyoto-u.ac.jp [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Department Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Uji, Kyoto 611-0011 (Japan); Ohta, Keisuke; Tani, Fumito [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Department Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kitabatake, Naofumi [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Department Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-07-08

    Highlights: {yields} X-ray crystallographic structure of sweet-tasting protein, thaumatin II, was determined at a resolution of 1.27 A. {yields} The overall structure of thaumatin II is similar to that of thaumatin I, but a slight shift of the C{alpha} atom of G96 in thaumatin II was observed. {yields} The side chain of two critical residues, 67 and 82, for sweetness was modeled in two alternative conformations. {yields} The flexibility and fluctuation of side chains at 67 and 82 seems to be suitable for interaction of thaumatin molecules with sweet receptors. -- Abstract: Thaumatin, an intensely sweet-tasting protein, elicits a sweet taste sensation at 50 nM. Here the X-ray crystallographic structure of one of its variants, thaumatin II, was determined at a resolution of 1.27 A. Overall structure of thaumatin II is similar to thaumatin I, but a slight shift of the C{alpha} atom of G96 in thaumatin II was observed. Furthermore, the side chain of residue 67 in thaumatin II is highly disordered. Since residue 67 is one of two residues critical to the sweetness of thaumatin, the present results suggested that the critical positive charges at positions 67 and 82 are disordered and the flexibility and fluctuation of these side chains would be suitable for interaction of thaumatin molecules with sweet receptors.

  19. One-dimensional Co(II)/Ni(II) complexes of 2-hydroxyisophthalate: Structures and magnetic properties

    International Nuclear Information System (INIS)

    Wang, Kai; Zou, Hua-Hong; Chen, Zi-Lu; Zhang, Zhong; Sun, Wei-Yin; Liang, Fu-Pei

    2015-01-01

    The solvothermal reactions of 2-hydroxyisophthalic acid (H 3 ipO) with M(NO 3 ) 2 ∙6H 2 O (M=Co, Ni) afforded two complexes [Co 2 (HipO) 2 (Py) 2 (H 2 O) 2 ] (1) and [Ni(HipO)(Py)H 2 O] (2) (Py=pyridine). They exhibit similar zig-zag chain structures with the adjacent two metal centers connected by a anti-syn bridging carboxylate group from the HipO 2− ligand. The magnetic measurements reveal the dominant antiferromagnetic interactions and spin-canting in 1 while ferromagnetic interactions in 2. Both of them exhibit magnetocaloric effect (MCE) with the resulting entropy changes (−ΔS m ) of 12.51 J kg −1 K −1 when ΔH=50 kOe at 3 K for 1 and 11.01 J kg −1 K −1 when ΔH=50 kOe at 3 K for 2, representing the rare examples of one-dimensional complexes with MCE. - Graphical abstract: Synopsis: Two Co(II)/Ni(II) complexes with zig-zag chain structures have been reported. 1-Co shows cant-antiferromagnetism while 2-Ni shows ferromagnetism. Magnetocaloric effect is also found in both of them. - Highlights: • Two one-dimensional Co(II)/Ni(II) complexes were solvothermally synthesized. • The Co-complex exhibits canted antiferromagnetism. • The Ni-complex exhibits ferromagnetism. • Both of the complexes display magnetocaloric effect

  20. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations

    Science.gov (United States)

    Ward, Logan; Liu, Ruoqian; Krishna, Amar; Hegde, Vinay I.; Agrawal, Ankit; Choudhary, Alok; Wolverton, Chris

    2017-07-01

    While high-throughput density functional theory (DFT) has become a prevalent tool for materials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.

  1. Hyperfine Structure and Isotope Shifts in Dy II

    Directory of Open Access Journals (Sweden)

    Dylan F. Del Papa

    2017-01-01

    Full Text Available Using fast-ion-beam laser-fluorescence spectroscopy (FIBLAS, we have measured the hyperfine structure (hfs of 14 levels and an additional four transitions in Dy II and the isotope shifts (IS of 12 transitions in the wavelength range of 422–460 nm. These are the first precision measurements of this kind in Dy II. Along with hfs and IS, new undocumented transitions were discovered within 3 GHz of the targeted transitions. These atomic data are essential for astrophysical studies of chemical abundances, allowing correction for saturation and the effects of blended lines. Lanthanide abundances are important in diffusion modeling of stellar interiors, and in the mechanisms and history of nucleosynthesis in the universe. Hfs and IS also play an important role in the classification of energy levels, and provide a benchmark for theoretical atomic structure calculations.

  2. Crystal structure of bis(N,N,N′,N′-tetramethylguanidinium tetrachloridocuprate(II

    Directory of Open Access Journals (Sweden)

    Mamadou Ndiaye

    2016-07-01

    Full Text Available In the structure of the title salt, (C5H14N32[CuCl4], the CuII atom in the anion lies on a twofold rotation axis. The tetrachloridocuprate(II anion adopts a flattened tetrahedral coordination environment and interacts electrostatically with the tetramethylguanidinium cation. The crystal packing is additionally consolidated through N—H...Cl and C—H...Cl hydrogen bonds, resulting in a three-dimensional network structure.

  3. New Cu (II), Co(II) and Ni(II) complexes of chalcone derivatives: Synthesis, X-ray crystal structure, electrochemical properties and DFT computational studies

    Science.gov (United States)

    Tabti, Salima; Djedouani, Amel; Aggoun, Djouhra; Warad, Ismail; Rahmouni, Samra; Romdhane, Samir; Fouzi, Hosni

    2018-03-01

    The reaction of nickel(II), copper(II) and cobalt(II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) leads to a series of new complexes: Ni(L)2(NH3), Cu(L)2(DMF)2 and Co(L)2(H2O). The crystal structure of the Cu(L)2(DMF)2 complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexes were investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH3CN solutions, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couples. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces. HOMO/LUMO energy level and the global reactivity descriptors quantum parameters are also calculated. The electrophilic and nucleophilic potions in the complex surface are theoretically evaluated by molecular electrostatic potential and Mulliken atomic charges analysis.

  4. Simulating the formation of cosmic structure.

    Science.gov (United States)

    Frenk, C S

    2002-06-15

    A timely combination of new theoretical ideas and observational discoveries has brought about significant advances in our understanding of cosmic evolution. Computer simulations have played a key role in these developments by providing the means to interpret astronomical data in the context of physical and cosmological theory. In the current paradigm, our Universe has a flat geometry, is undergoing accelerated expansion and is gravitationally dominated by elementary particles that make up cold dark matter. Within this framework, it is possible to simulate in a computer the emergence of galaxies and other structures from small quantum fluctuations imprinted during an epoch of inflationary expansion shortly after the Big Bang. The simulations must take into account the evolution of the dark matter as well as the gaseous processes involved in the formation of stars and other visible components. Although many unresolved questions remain, a coherent picture for the formation of cosmic structure is now beginning to emerge.

  5. C ii RADIATIVE COOLING OF THE GALATIC DIFFUSE INTERSTELLAR MEDIUM: INSIGHT INTO THE STAR FORMATION IN DAMPED Ly α SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Nirupam [Department of Physics and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302 (India); Frank, Stephan; Mathur, Smita [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Carilli, Christopher L. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Menten, Karl M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Wolfe, Arthur M., E-mail: nroy@physics.iisc.ernet.in [Department of Physics and Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92093 (United States)

    2017-01-10

    The far-infrared [C ii] 158 μ m fine structure transition is considered to be a dominant coolant in the interstellar medium (ISM). For this reason, under the assumption of a thermal steady state, it may be used to infer the heating rate and, in turn, the star formation rate (SFR) in local as well as in high redshift systems. In this work, radio and ultraviolet observations of the Galactic ISM are used to understand whether C ii is indeed a good tracer of the SFR. For a sample of high Galactic latitude sightlines, direct measurements of the temperature indicate the presence of C ii in both the cold and the warm phases of the diffuse interstellar gas. The cold gas fraction (∼10%–50% of the total neutral gas column density) is not negligible even at high Galactic latitude. It is shown that to correctly estimate the SFR, C ii cooling in both phases should hence be considered. The simple assumption, that the [C ii] line originates only from either the cold or the warm phase, significantly underpredicts or overpredicts the SFR, respectively. These results are particularly important in the context of Damped Ly α systems for which a similar method is often used to estimate the SFR. The derived SFRs in such cases may not be reliable if the temperature of the gas under consideration is not constrained independently.

  6. Formation of disorientations in dislocation structures during plastic deformation

    DEFF Research Database (Denmark)

    Pantleon, W.

    2002-01-01

    Disorientations developing during plastic deformation in dislocation structures are investigated. Based on expected mechanisms for the formation of different types of dislocation boundaries (statistical trapping of dislocations or differently activated slip systems) the formation of the disorient...

  7. The environment and star formation of H II region Sh2-163: a multi-wavelength study

    Science.gov (United States)

    Yu, Naiping; Wang, Jun-Jie; Li, Nan

    2014-12-01

    To investigate the environment of H II region Sh2-163 and search for evidence of triggered star formation in this region, we performed a multi-wavelength study of this H II region. Most of our data were taken from large-scale surveys: 2MASS, CGPS, MSX and SCUBA. We also made CO molecular line observations, using the 13.7-m telescope. The ionized region of Sh2-163 is detected by both the optical and radio continuum observations. Sh2-163 is partially bordered by an arc-like photodissociation region (PDR), which is coincident with the strongest optical and radio emissions, indicating interactions between the H II region and the surrounding interstellar medium. Two molecular clouds were discovered on the border of the PDR. The morphology of these two clouds suggests they are compressed by the expansion of Sh2-163. In cloud A, we found two molecular clumps. And it seems star formation in clump A2 is much more active than in clump A1. In cloud B, we found new outflow activities and massive star(s) are forming inside. Using 2MASS photometry, we tried to search for embedded young stellar object (YSO) candidates in this region. The very good agreement between CO emission, infrared shell and YSOs suggest that it is probably a star formation region triggered by the expansion of Sh2-163. We also found the most likely massive protostar related to IRAS 23314+6033.

  8. M(II)-dipyridylamide-based coordination frameworks (M=Mn, Co, Ni): Structural transformation

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Biing-Chiau; Selvam, TamilSelvi; Tsai, Miao-Hsin

    2016-11-15

    A series of 1-D double-zigzag (([M(papx){sub 2}(H{sub 2}O){sub 2}](ClO{sub 4}){sub 2}){sub n}; M=Mn, x=s (1), x=o (3); M=Co, x=s (4), x=o (5); M=Ni, x=s (6), x=o (7)) and 2-D polyrotaxane ([Mn(paps){sub 2}(ClO{sub 4}){sub 2}]{sub n} (2)) frameworks were synthesized by reactions of M(ClO{sub 4}){sub 2} (M=Mn, Co, and Ni) with papx (paps, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenylthioether; papo, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenyl ether), which have been isolated and structurally characterized by X-ray diffraction. Based on powder X-ray diffraction (PXRD) experiments, heating the double-zigzag frameworks underwent structural transformation to give the respective polyrotaxane ones. Moreover, grinding the solid samples of the respective polyrotaxanes in the presence of moisture also resulted in the total conversion to the original double-zigzag frameworks. In this study, we have successfully extended studies to Mn{sup II}, Co{sup II}, and Ni{sup II} frameworks from the previous Zn{sup II}, Cd{sup II}, and Cu{sup II} ones, and interestingly such structural transformation is able to be proven experimentally by powder and single-crystal X-ray diffraction studies as well. - Graphical abstract: 1-D double-zigzag and 2-D polyrotaxane frameworks of M(II)-papx (x=s, o; M=Mn, Co, Ni) frameworks can be interconverted by heating and grinding in the presence of moiture, and such structural transformation has be proven experimentally by powder and single-crystal X-ray diffraction studies.

  9. Kinetically guided colloidal structure formation

    OpenAIRE

    Hecht, Fabian M.; Bausch, Andreas R.

    2016-01-01

    The well-studied self-organization of colloidal particles is predicted to result in a variety of fascinating applications. Yet, whereas self-assembly techniques are extensively explored, designing and producing mesoscale-sized objects remains a major challenge, as equilibration times and thus structure formation timescales become prohibitively long. Asymmetric mesoscopic objects, without prior introduction of asymmetric particles with all its complications, are out of reach––due to the underl...

  10. Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots.

    Science.gov (United States)

    Zubairova, Laily D; Nabiullina, Roza M; Nagaswami, Chandrasekaran; Zuev, Yuriy F; Mustafin, Ilshat G; Litvinov, Rustem I; Weisel, John W

    2015-12-04

    Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1-0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis.

  11. Structural diversity of three Cu(II) compounds based on a new tripodal zwitterionic ligand: Syntheses, structures and properties

    Science.gov (United States)

    Zhou, Jie; Zhao, Jing-Song; Feng, Jing; Zhang, Xiao-Feng; Xu, Jian; Du, Lin; Xie, Ming-Jin; Zhao, Qi-Hua

    2018-03-01

    An exploration of reactions of 1,1‧,1″-(benzene-1,3,5-triyltris(methylene))tris(4-carboxypyridinium)-tribromide (H3LBr3) with Cu(II) salt under different pH conditions has led to the formation of three complexes, [Cu(HL)2(H2O)3]·4(ClO4)·3H2O (1), [Cu2(HL)(μ3-OH)(μ2-H2O)(H2O)2]·4(ClO4)·6H2O (2), and [Cu3(L)2Cl6(H2O)4]·4H2O (3). Single-crystal X-ray analyses revealed that complex 1 displays a discrete mononuclear structure with the ligand in a bowl-shaped configuration. Complex 2 possesses a tetranuclear 1D beaded chain structure. While complex 3 features a discrete trinuclear 'H-type' structure with the ligand in a chair-like configuration. The distinct compositions and structures of 1-3 are mainly ascribed to the different pH values of the reaction solution, the influences of anions, as well as the configurations which the zwitterion ligands adopt. The magnetic properties of 2, and the photoluminescence properties of 2, and 3 have been investigated. Moreover, powder X-ray diffraction, infrared spectroscopy, and elemental analysis were also performed.

  12. Structural control of void formation in dual phase steels

    DEFF Research Database (Denmark)

    Azuma, Masafumi

    The objective of this study is to explore the void formation mechanisms and to clarify the influence of the hardness and structural parameters (volume fraction, size and morphology) of martensite particles on the void formation and mechanical properties in dual phase steels composed of ferrite...... and (iii) strain localization. The critical strain for void formation depends on hardness of the martensite, but is independent of the volume fraction, shape, size and distribution of the martensite. The strain partitioning between the martensite and ferrite depends on the volume fraction and hardness...... of the martensite accelerates the void formation in the martensite by enlarging the size of voids both in the martensite and ferrite. It is suggested that controlling the hardness and structural parameters associated with the martensite particles such as morphology, size and volume fraction are the essential...

  13. Structural and Molecular Properties of Insect Type II Motor Axon Terminals

    Directory of Open Access Journals (Sweden)

    Bettina Stocker

    2018-03-01

    Full Text Available A comparison between the axon terminals of octopaminergic efferent dorsal or ventral unpaired median neurons in either desert locusts (Schistocerca gregaria or fruit flies (Drosophila melanogaster across skeletal muscles reveals many similarities. In both species the octopaminergic axon forms beaded fibers where the boutons or varicosities form type II terminals in contrast to the neuromuscular junction (NMJ or type I terminals. These type II terminals are immunopositive for both tyramine and octopamine and, in contrast to the type I terminals, which possess clear synaptic vesicles, only contain dense core vesicles. These dense core vesicles contain octopamine as shown by immunogold methods. With respect to the cytomatrix and active zone peptides the type II terminals exhibit active zone-like accumulations of the scaffold protein Bruchpilot (BRP only sparsely in contrast to the many accumulations of BRP identifying active zones of NMJ type I terminals. In the fruit fly larva marked dynamic changes of octopaminergic fibers have been reported after short starvation which not only affects the formation of new branches (“synaptopods” but also affects the type I terminals or NMJs via octopamine-signaling (Koon et al., 2011. Our starvation experiments of Drosophila-larvae revealed a time-dependency of the formation of additional branches. Whereas after 2 h of starvation we find a decrease in “synaptopods”, the increase is significant after 6 h of starvation. In addition, we provide evidence that the release of octopamine from dendritic and/or axonal type II terminals uses a similar synaptic machinery to glutamate release from type I terminals of excitatory motor neurons. Indeed, blocking this canonical synaptic release machinery via RNAi induced downregulation of BRP in neurons with type II terminals leads to flight performance deficits similar to those observed for octopamine mutants or flies lacking this class of neurons (Brembs et al., 2007.

  14. Shape Memory Alloy-Based Periodic Cellular Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  15. Syntheses, structures, and properties of imidazolate-bridged Cu(II)-Cu(II) and Cu(II)-Zn(II) dinuclear complexes of a single macrocyclic ligand with two hydroxyethyl pendants.

    Science.gov (United States)

    Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia

    2003-09-22

    The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.

  16. Structural basis for hyperactivity of cN-II mutants

    Czech Academy of Sciences Publication Activity Database

    Hnízda, Aleš; Škerlová, Jana; Šinalová, Martina; Pachl, Petr; Man, Petr; Novák, Petr; Fábry, Milan; Řezáčová, Pavlína; Veverka, Václav

    2015-01-01

    Roč. 22, č. 1 (2015), s. 4 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] Institutional support: RVO:61388963 ; RVO:68378050 ; RVO:61388971 Keywords : cN-II mutants * enzyme hyperactivity Subject RIV: CE - Biochemistry

  17. Fourier imaging of non-linear structure formation

    Energy Technology Data Exchange (ETDEWEB)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2017-04-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  18. Fourier imaging of non-linear structure formation

    International Nuclear Information System (INIS)

    Brandbyge, Jacob; Hannestad, Steen

    2017-01-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  19. The Taxonomy of Blue Amorphous Galaxies. II. Structure and Evolution

    Science.gov (United States)

    Marlowe, Amanda T.; Meurer, Gerhardt R.; Heckman, Timothy M.

    1999-09-01

    Dwarf galaxies play an important role in our understanding of galaxy formation and evolution, and starbursts are believed to affect the structure and evolution of dwarf galaxies strongly. We have therefore embarked on a systematic study of 12 of the nearest dwarf galaxies thought to be undergoing bursts of star formation. These were selected primarily by their morphological type (blue ``amorphous'' galaxies). We show that these blue amorphous galaxies are not physically distinguishable from dwarfs selected as starbursting by other methods, such as blue compact dwarfs (BCDs) and H II galaxies. All these classes exhibit surface brightness profiles that are exponential in the outer regions (r>~1.5re) but often have a predominantly central blue excess, suggesting a young burst in an older, redder galaxy. Typically, the starbursting ``cores'' are young (~107-108 yr) events compared to the older (~109-1010 yr) underlying galaxy (the ``envelope''). The ratio of the core to envelope in blue light ranges from essentially zero to about 2. These starbursts are therefore modest events involving only a few percent of the stellar mass. The envelopes have surface brightnesses that are much higher than typical dwarf irregular (dI) galaxies, so it is unlikely that there is a straightforward evolutionary relation between typical dIs and dwarf starburst galaxies. Instead we suggest that amorphous galaxies may repeatedly cycle through starburst and quiescent phases, corresponding to the galaxies with strong and weak/absent cores, respectively. Once amorphous galaxies use up the available gas (either through star formation or galactic winds) so that star formation is shut off, the faded remnants would strongly resemble dwarf elliptical galaxies. However, in the current cosmological epoch, this is evidently a slow process that is the aftermath of a series of many weak, recurring bursts. Present-day dE's must have experienced more rapid and intense evolution than this in the distant past.

  20. Rational assembly of Pb(II)/Cd(II)/Mn(II) coordination polymers based on flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gao-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Chong-Bo, E-mail: cbliu@nchu.edu.cn [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Liu, Hong [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Robbins, Julianne; Zhang, Z. John [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Yin, Hong-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wen, Hui-Liang [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Wang, Yu-Hua [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2015-05-15

    Six new coordination polymers, namely, [Pb(L)(H{sub 2}O)] (1), [Pb(L)(phen)] (2), [Pb{sub 2}(L){sub 2}(4,4′-bipy){sub 0.5}] (3), [Cd(L)(phen)] (4), [Cd(L)(4,4′-bipy)]·H{sub 2}O (5) and [Mn(L)(4,4′-bipy)]·H{sub 2}O (6) have been synthesized by the hydrothermal reaction of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) with Pb(II)/Cd(II)/Mn(II) in the presence of ancillary ligands 4,4′-bipyridine (4,4′-bipy) or 1,10-phenanthroline (phen). Complexes 1 and 4–6 exhibit 2-D structures, and complexes 2–3 display 3-D frameworks, of which L{sup 2−} ligands join metal ions to single-stranded helical chains of 1, 3–6 and double-stranded helical chains of 2. Complexes 2 and 3 also contain double-stranded Metal–O helices. Topology analysis reveals that complexes 1 and 4 both represent 4-connected sql net, 2 represents 6-connected pcu net, 3 exhibits a novel (3,12)-connected net, while 5 and 6 display (3,5)-connected gek1 net. The six complexes exhibit two kinds of inorganic–organic connectivities: I{sup 0}O{sup 2} for 1, 4–6, and I{sup 1}O{sup 2} for 2–3. The photoluminescent properties of 4–5 and the magnetic properties of 6 have been investigated. - Graphical abstract: Six new Pb(II)/Cd(II)/Mn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent and magnetic properties have been investigated. - Highlights: • Six novel M(II) coordination polymers with 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid and N-donor ligands. • Complexes 1–6 show diverse intriguing helical characters. • The luminescent properties of complexes 1–5 were investigated. • Complex 6 shows antiferromagnetic coupling.

  1. Surface Structures Formed by a Copper(II Complex of Alkyl-Derivatized Indigo

    Directory of Open Access Journals (Sweden)

    Akinori Honda

    2016-10-01

    Full Text Available Assembled structures of dyes have great influence on their coloring function. For example, metal ions added in the dyeing process are known to prevent fading of color. Thus, we have investigated the influence of an addition of copper(II ion on the surface structure of alkyl-derivatized indigo. Scanning tunneling microscope (STM analysis revealed that the copper(II complexes of indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore, 2D chirality was observed.

  2. Spiral Structure and Global Star Formation Processes in M 51

    Science.gov (United States)

    Gruendl, Robert A.

    1994-12-01

    The nearby grand design spiral galaxy, M 51, is an obvious proving ground for studies of spiral structure and large scale star formation processes. New near--infrared observations of M 51 made with COB (Cryogenic Optical Bench) on the Kitt Peak 1.3m allow us to examine the stellar distribution and the young star formation regions as well as probe regions of high extinction such as dust lanes. We also present an analysis of the kinematics of the ionized gas observed with the Maryland--Caltech Imaging Fabry Perot. The color information we derive from the near--infrared bands provides a more accurate tracer of extinction than optical observations. We find that the dust extinction and CO emission in the arms are well correlated. Our kinematic data show unambiguously that these dense gas concentrations are associated with kinematic perturbations. In the inner disk, these perturbations are seen to be consistent with the streaming motions predicted by classical density wave theory. The dust lanes, and presumably the molecular arms, form a narrow ridge that matches these velocity perturbations wherever the viewing angle is appropriate. This interpretation requires that the corotation radius be inward of the outer tidal arms. The outer tidal arms however show streaming velocities of the sign that would be expected interior to the corotation point. This can be reconciled if the outer arms are part of a second spiral pattern, most likely due to the interaction with the companion NGC 5195. The near--infrared observations also show emission from the massive star forming regions. These observations are less affected by extinction than optical observations of H II regions and show clearly that the sites of massive star formation are correlated with but downstream from the concentrations of dense molecular material. This provides clear evidence that the ISM has been organized by the streaming motions which have in turn triggered massive star formation.

  3. Heterometallic Pd(II)-Ni(II) complexes with meso-substituted dibenzotetraaza[14]annulene: double C-H bond activation and formation of a rectangular tetradibenzotetraaza[14]annulene.

    Science.gov (United States)

    Khaledi, Hamid; Olmstead, Marilyn M; Fukuda, Takamitsu; Ali, Hapipah Mohd

    2014-11-03

    Three isomeric 2[Pd(II)-Ni(II)] metal complexes, derived from indoleninyl meso-substituted dibenzotetraaza[14]annulene, were synthesized. The resulting dimers feature Ni···Ni or, alternatively, Ni···π interactions in staggered or slipped cofacial structures. A remarkable insertion of palladium into two different C-H bonds yielded a 4[Pd(II)-Ni(II)] rectangular complex with dimensions of 8.73 × 10.38 Å.

  4. Physiology, Fe(II oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions

    Directory of Open Access Journals (Sweden)

    Elizabeth D. Swanner

    2015-10-01

    Full Text Available Evidence for Fe(II oxidation and deposition of Fe(III-bearing minerals from anoxic or redox-stratified Precambrian oceans has received support from decades of sedimentological and geochemical investigation of Banded Iron Formations (BIF. While the exact mechanisms of Fe(II oxidation remains equivocal, reaction with O2 in the marine water column, produced by cyanobacteria or early oxygenic phototrophs, was likely. In order to understand the role of cyanobacteria in the deposition of Fe(III minerals to BIF, we must first know how planktonic marine cyanobacteria respond to ferruginous (anoxic and Fe(II-rich waters in terms of growth, Fe uptake and homeostasis, and Fe mineral formation. We therefore grew the common marine cyanobacterium Synechococcus PCC 7002 in closed bottles that began anoxic, and contained Fe(II concentrations that span the range of possible concentrations in Precambrian seawater. These results, along with cell suspension experiments, indicate that Fe(II is likely oxidized by this strain via chemical oxidation with oxygen produced during photosynthesis, and not via any direct enzymatic or photosynthetic pathway. Imaging of the cell-mineral aggregates with scanning electron microscopy (SEM and confocal laser scanning microscopy (CLSM are consistent with extracellular precipitation of Fe(III (oxyhydroxide minerals, but that >10% of Fe(III sorbs to cell surfaces rather than precipitating. Proteomic experiments support the role of reactive oxygen species (ROS in Fe(II toxicity to Synechococcus PCC 7002. The proteome expressed under low Fe conditions included multiple siderophore biosynthesis and siderophore and Fe transporter proteins, but most siderophores are not expressed during growth with Fe(II. These results provide a mechanistic and quantitative framework for evaluating the geochemical consequences of perhaps life’s greatest metabolic innovation, i.e. the evolution and activity of oxygenic photosynthesis, in ferruginous

  5. Crystal structures of complexes of NAD+-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    International Nuclear Information System (INIS)

    Filippova, E. V.; Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-01-01

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI 2 with the coupled reduction of nicotinamide adenine dinucleotide (NAD + ). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD + -azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state

  6. Data base formation for important components of reactor TRIGA MARK II

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, R; Mavko, B; Kozuh, M [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    The paper represents specific data base formation for reactor TRIGA MARK II in Podgorica. Reactor operation data from year 1985 to 1990 were collected. Two groups of collected data were formed. The first group includes components data and the second group covers data of reactor scrams. Time related and demand related models were used for data evaluation. Parameters were estimated by classical method. Similar data bases are useful everywhere where components unavailabilities may have severe drawback. (author) [Slovenian] V referatu smo prikazali raziskavo, v okviru katere smo za raziskovalni reaktor TRIGA MARK II v Podgorici izoblikovali specificno bazo podatkov. Zbrali smo podatke obratovanja reaktorja od leta 1985 do 1990. Rezultate raziskave dogodkov smo razdelili v dve glavni skupini. V prvo spadajo obratovalni podatki o komponentah, v drugo skupino pa spadajo zagoni oz. zaustavitve reaktorja. Podatke smo ovrednotili z modelom v casovnem prostoru in z modelom na zahtevo. Parametre modelov smo dolocili s klasicno metodo. Opisane baze podatkov so uporabne povsod, kjer so lahko posledice nezanesljivega delovanja sistemov velike. [author].

  7. New Mn(II, Ni(II, Cd(II, Pb(II complexes with 2-methylbenzimidazole and other ligands. Synthesis, spectroscopic characterization, crystal structure, magnetic susceptibility and biological activity studies

    Directory of Open Access Journals (Sweden)

    Shayma A. Shaker

    2016-11-01

    Full Text Available Synthesis and characterization of Mn(II, Ni(II, Cd(II and Pb(II mixed ligand complexes of 2-methylbenzimidazole with other ligands have been reported. The structure of the ligands and their complexes was investigated using elemental analysis, IR, UV–Vis, (1H, 13C NMR spectroscopy, molar conductivity and magnetic susceptibility measurements. In all the studies of complexes, the 2-methylbenzimidazole behaves as a neutral monodentate ligand which is coordinated with the metal ions through the N atom. While benzotriazole behaves as a neutral bidentate ligand which is coordinated with the Ni(II ion through the two N atoms. Moreover, the N-acetylglycine behaves as a bidentate ligand which is coordinated with the Mn(II, Ni(II and Pb(II ions through the N atom and the terminal carboxyl oxygen atom. The magnetic and spectral data indicate the tetrahedral geometry for Mn(II complex, irregular tetrahedral geometry for Pb(II complex and octahedral geometry for Ni(II complex. The X-ray single crystal diffraction method was used to confirm a centrosymmetric dinuclear Cd(II complex as each two metal ions are linked by a pair of thiocyanate N = S bridge. Two 2-methylbenzimidazole N-atom donors and one terminal thiocyanate N atom complete a highly distorted square pyramid geometry around the Cd atom. Besides, different cell types were used to determine the inhibitory effect of Mn(II, Ni(II, Cd(II and Pb(II complexes on cell growth using MTT assay. Cd(II complex showed cytotoxic effect on various types of cancer cell lines with different EC50 values.

  8. FORMATION OF ORGANIZATIONAL AND ECONOMIC INTEGRATED STRUCTURES IN THE ALUMINUM INDUSTRY

    Directory of Open Access Journals (Sweden)

    S. B. Kazbekova

    2013-01-01

    Full Text Available The paper reveals the theoretical foundations of economic efficiency of production and integrated structures formation. Their advantages are demonstrated by the example of the formation of vertically integrated structures in the aluminium industry in the framework created by smelting aluminium cluster inKazakhstan. Also examines the valuable experience gained in the organization of such structures in theRussian Federationin recent years

  9. Study on Formation Mechanism of Fayalite (Fe2SiO4) by Solid State Reaction in Sintering Process

    Science.gov (United States)

    Wang, Zhongbing; Peng, Bing; Zhang, Lifeng; Zhao, Zongwen; Liu, Degang; Peng, Ning; Wang, Dawei; He, Yinghe; Liang, Yanjie; Liu, Hui

    2018-04-01

    The sintering behaviors among SiO2, FeS and Fe3O4 were detected to reveal the formation mechanism of Fe2SiO4. The results indicated that the formation mechanism is divided into five steps: (1) migration of O2- induced by S2- under a reducing atmosphere; (2) formation of Fe3O4- β ; (3) migration of Fe(II) into a ferrite cluster structure to gain oxygen and form Fe3- x O4; (4) Fe(II) invaded the silicon atomic position and released Si(IV); and (5) formation of the stable structure of Fe2SiO4 through chemical diffusion between cations of Fe(II) and Si(IV). These findings can provide theoretical support for controlling the process of the recovery of valuable metals in copper slag through the combined roasting modification-magnetic separation process.

  10. Composite Structure Monitoring using Direct Write Sensors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase II project seeks to develop and demonstrate a suite of sensor products to monitor the health of composite structures. Sensors will be made using...

  11. The structure and formation of natural categories

    Science.gov (United States)

    Fisher, Douglas; Langley, Pat

    1990-01-01

    Categorization and concept formation are critical activities of intelligence. These processes and the conceptual structures that support them raise important issues at the interface of cognitive psychology and artificial intelligence. The work presumes that advances in these and other areas are best facilitated by research methodologies that reward interdisciplinary interaction. In particular, a computational model is described of concept formation and categorization that exploits a rational analysis of basic level effects by Gluck and Corter. Their work provides a clean prescription of human category preferences that is adapted to the task of concept learning. Also, their analysis was extended to account for typicality and fan effects, and speculate on how the concept formation strategies might be extended to other facets of intelligence, such as problem solving.

  12. Importance of intrinsic properties of dense caseinate dispersions for structure formation.

    Science.gov (United States)

    Manski, Julita M; van Riemsdijk, Lieke E; van der Goot, Atze J; Boom, Remko M

    2007-11-01

    Rheological measurements of dense calcium caseinate and sodium caseinate dispersions (> or =15%) provided insight into the factors determining shear-induced structure formation in caseinates. Calcium caseinate at a sufficiently high concentration (30%) was shown to form highly anisotropic structures during shearing and concurrent enzymatic cross-linking. In contrast, sodium caseinate formed isotropic structures using similar processing conditions. The main difference between the two types of caseinates is the counterion present, and as a consequence, the size of structural elements and their interactions. The rheological behavior of calcium caseinate and sodium caseinate reflected these differences, yielding non-monotonic and shear thinning flow behavior for calcium caseinate whereas sodium caseinate behaved only slightly shear thinning. It appears that the intrinsic properties of the dense caseinate dispersions, which are reflected in their rheological behavior, affect the structure formation that was found after applying shear. Therefore, rheological measurements are useful to obtain an indication of the structure formation potential of caseinate dispersions.

  13. SPITZER ANALYSIS OF H II REGION COMPLEXES IN THE MAGELLANIC CLOUDS: DETERMINING A SUITABLE MONOCHROMATIC OBSCURED STAR FORMATION INDICATOR

    International Nuclear Information System (INIS)

    Lawton, B.; Gordon, K. D.; Meixner, M.; Sewilo, M.; Shiao, B.; Babler, B.; Bracker, S.; Meade, M.; Block, M.; Engelbracht, C. W.; Misselt, K.; Bolatto, A. D.; Carlson, L. R.; Hora, J. L.; Robitaille, T.; Indebetouw, R.; Madden, S. C.; Oey, M. S.; Oliveira, J. M.; Vijh, U. P.

    2010-01-01

    H II regions are the birth places of stars, and as such they provide the best measure of current star formation rates (SFRs) in galaxies. The close proximity of the Magellanic Clouds allows us to probe the nature of these star forming regions at small spatial scales. To study the H II regions, we compute the bolometric infrared flux, or total infrared (TIR), by integrating the flux from 8 to 500 μm. The TIR provides a measure of the obscured star formation because the UV photons from hot young stars are absorbed by dust and re-emitted across the mid-to-far-infrared (IR) spectrum. We aim to determine the monochromatic IR band that most accurately traces the TIR and produces an accurate obscured SFR over large spatial scales. We present the spatial analysis, via aperture/annulus photometry, of 16 Large Magellanic Cloud (LMC) and 16 Small Magellanic Cloud (SMC) H II region complexes using the Spitzer Space Telescope's IRAC (3.6, 4.5, 8 μm) and MIPS (24, 70, 160 μm) bands. Ultraviolet rocket data (1500 and 1900 A) and SHASSA Hα data are also included. All data are convolved to the MIPS 160 μm resolution (40 arcsec full width at half-maximum), and apertures have a minimum radius of 35''. The IRAC, MIPS, UV, and Hα spatial analysis are compared with the spatial analysis of the TIR. We find that nearly all of the LMC and SMC H II region spectral energy distributions (SEDs) peak around 70 μm at all radii, from ∼10 to ∼400 pc from the central ionizing sources. As a result, we find the following: the sizes of H II regions as probed by 70 μm are approximately equal to the sizes as probed by TIR (∼70 pc in radius); the radial profile of the 70 μm flux, normalized by TIR, is constant at all radii (70 μm ∼ 0.45TIR); the 1σ standard deviation of the 70 μm fluxes, normalized by TIR, is a lower fraction of the mean (0.05-0.12 out to ∼220 pc) than the normalized 8, 24, and 160 μm normalized fluxes (0.12-0.52); and these results are the same for the LMC and the

  14. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim

    2014-12-03

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  15. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim; Chasparis, Georgios; Shamma, Jeff S.

    2014-01-01

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  16. Mechanism of structural type formation of rare earth polychalcogenides

    International Nuclear Information System (INIS)

    Kuz'micheva, G.M.; Eliseev, A.A.; Khalina, S.Yu.

    1981-01-01

    It proved to be possible to obtain the structural motives not only of all the known polychalcogenides of rare earth elements but to forecast compounds not yet existing on the basis of two initial structural motives. All the structural motives can be divided into superstructures and polytypes as to the mechanism of their formation [ru

  17. Influence of organics and silica on Fe(II) oxidation rates and cell-mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox - Implications for Fe(II) oxidation in ancient oceans

    Science.gov (United States)

    Gauger, Tina; Byrne, James M.; Konhauser, Kurt O.; Obst, Martin; Crowe, Sean; Kappler, Andreas

    2016-06-01

    Most studies on microbial phototrophic Fe(II) oxidation (photoferrotrophy) have focused on purple bacteria, but recent evidence points to the importance of green-sulfur bacteria (GSB). Their recovery from modern ferruginous environments suggests that these photoferrotrophs can offer insights into how their ancient counterparts grew in Archean oceans at the time of banded iron formation (BIF) deposition. It is unknown, however, how Fe(II) oxidation rates, cell-mineral aggregate formation, and Fe-mineralogy vary under environmental conditions reminiscent of the geological past. To address this, we studied the Fe(II)-oxidizer Chlorobium ferrooxidans KoFox, a GSB living in co-culture with the heterotrophic Geospirillum strain KoFum. We investigated the mineralogy of Fe(III) metabolic products at low/high light intensity, and in the presence of dissolved silica and/or fumarate. Silica and fumarate influenced the crystallinity and particle size of the produced Fe(III) minerals. The presence of silica also enhanced Fe(II) oxidation rates, especially at high light intensities, potentially by lowering Fe(II)-toxicity to the cells. Electron microscopic imaging showed no encrustation of either KoFox or KoFum cells with Fe(III)-minerals, though weak associations were observed suggesting co-sedimentation of Fe(III) with at least some biomass via these aggregates, which could support diagenetic Fe(III)-reduction. Given that GSB are presumably one of the most ancient photosynthetic organisms, and pre-date cyanobacteria, our findings, on the one hand, strengthen arguments for photoferrotrophic activity as a likely mechanism for BIF deposition on a predominantly anoxic early Earth, but, on the other hand, also suggest that preservation of remnants of Fe(II)-oxidizing GSB as microfossils in the rock record is unlikely.

  18. Structural and IR-spectroscopic characterization of cadmium and lead(II) acesulfamates

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, Gustavo A.; Piro, Oscar E. [Univ. Nacional de La Plata (Argentina). Dept. de Fisica y Inst. IFLP (CONICET- CCT-La Plata); Parajon-Costa, Beatriz S.; Baran, Enrique J. [Univ. Nacional de La Plata (Argentina). Centro de Quimica Inorganica (CEQUINOR/CONICET- CCT-La Plata)

    2017-07-01

    Cadmium and lead(II) acesulfamate, Cd(C{sub 4}H{sub 4}NO{sub 4}S){sub 2} . 2H{sub 2}O and Pb(C{sub 4}H{sub 4}NO{sub 4}S){sub 2}, were prepared by the reaction of acesulfamic acid and the respective metal carbonates in aqueous solution, and characterized by elemental analysis. Their crystal structures were determined by single crystal X-ray diffraction methods. The Cd(II) compound crystallizes in the monoclinic space group P2{sub 1}/c with Z=4 and the corresponding Pb(II) salt in the triclinic space group P anti 1 with Z=2. In both salts, acesulfamate acts both as a bi-dentate ligand through its nitrogen and carbonyl oxygen atoms and also as a mono-dentate ligand through this same oxygen atom, giving rise to polymeric structures; in the Pb(II) salt the ligand also binds the cation through its sulfoxido oxygen atoms. The FTIR spectra of the compounds were recorded and are briefly discussed. Some comparisons with other related acesulfamate and saccharinate complexes are made.

  19. Incommensurate composite crystal structure of scandium-II

    International Nuclear Information System (INIS)

    Fujihisa, Hiroshi; Gotoh, Yoshito; Yamawaki, Hiroshi; Sakashita, Mami; Takeya, Satoshi; Honda, Kazumasa; Akahama, Yuichi; Kawamura, Haruki

    2005-01-01

    The long-unknown crystal structure of the high pressure phase scandium-II was solved by powder x-ray diffraction and was found to have tetragonal host channels along the c axis and guest chains that are incommensurate with the host, as well as the high pressure phases of Ba, Sr, Bi, and Sb. The pressure dependences of the lattice constants, the incommensurability, the atomic distances, and the atomic volume were investigated

  20. Electronic structure and formation energy of a vacancy in aluminum

    International Nuclear Information System (INIS)

    Chakraborty, B.; Siegel, R.W.

    1981-11-01

    The electronic structure of a vacancy in Al was calculated self-consistently using norm-conserving ionic pseudopotentials obtained from ab initio atomic calculations. A 27-atom-site supercell containing 1 vacancy and 26 atoms was used to simulate the environment of the vacancy. A vacancy formation energy of 1.5 eV was also calculated (cf. the experimental value of 0.66 eV). The effects of the supercell and the nature of the ionic potential on the resulting electronic structure and formation energy are discussed. Results for the electronic structure of a divacancy are also presented. 3 figures

  1. Formation of cellular structure in beryllium at plastic working

    International Nuclear Information System (INIS)

    Papirov, I.I.; Nikolaenko, A.A.; Shokurov, V.S.; Pikalov, A.I.

    2013-01-01

    Conditions of cellular structure formation are investigated at various kinds of deformation and heat treatment of beryllium ingots. It is shown that the cellular structure plays the important role in formation of complex of physical mechanical properties of beryllium. Influence of impurity, various conditions of deformation (temperature, squeezing degree) and heat treatments on substructure, texture and mechanical properties of metal is investigated. Optimum conditions of rolling and heat treatments of beryllium are defined. The way of sign-variable cyclic deformation of beryllium ingots is offered for reception quasi-isotropic fine-grained metal. Physical-mechanical properties of ultra fine-grained metal are studied

  2. Myosin II dynamics are regulated by tension in intercalating cells.

    Science.gov (United States)

    Fernandez-Gonzalez, Rodrigo; Simoes, Sérgio de Matos; Röper, Jens-Christian; Eaton, Suzanne; Zallen, Jennifer A

    2009-11-01

    Axis elongation in Drosophila occurs through polarized cell rearrangements driven by actomyosin contractility. Myosin II promotes neighbor exchange through the contraction of single cell boundaries, while the contraction of myosin II structures spanning multiple pairs of cells leads to rosette formation. Here we show that multicellular actomyosin cables form at a higher frequency than expected by chance, indicating that cable assembly is an active process. Multicellular cables are sites of increased mechanical tension as measured by laser ablation. Fluorescence recovery after photobleaching experiments show that myosin II is stabilized at the cortex in regions of increased tension. Myosin II is recruited in response to an ectopic force and relieving tension leads to a rapid loss of myosin, indicating that tension is necessary and sufficient for cortical myosin localization. These results demonstrate that myosin II dynamics are regulated by tension in a positive feedback loop that leads to multicellular actomyosin cable formation and efficient tissue elongation.

  3. Copper(II) and palladium(II) complexes with tridentate NSO donor Schiff base ligand: Synthesis, characterization and structures

    Science.gov (United States)

    Kumar, Sujit Baran; Solanki, Ankita; Kundu, Suman

    2017-09-01

    Mononuclear copper(II) complex [CuL2] and palladium(II) complexes [Pd(X)L] where X = benzoate(bz) or salicylate(sal) and HL = 2-(methylthio)phenylimino)methyl)phenol, a Schiff base ligand with NSO coordination sites have been synthesized and characterized by microanalyses, IR, UV-Visible spectra, conductivity measurement and magnetic studies. Crystal structures of all the complexes have been solved by single crystal X-ray diffraction studies and showed that there are two molecules in a unit cell in the [CuL2] complex - one molecule has square planar geometry whereas second molecule has distorted square pyramidal geometry and palladium(II) complexes have distorted square planar geometry.

  4. STRUCTURE FORMATION PRINCIPLES OF INTERFERENCE BEAM SPLITTERS

    Directory of Open Access Journals (Sweden)

    L. A. Gubanova

    2012-01-01

    Full Text Available The methodology of interference beam splitters construction, formed by symmetric cells of dielectric layers is considered. The methodology of short-wave and long-wave interference beam splitters formation is given. The impact analysis of symmetric cells number and their structure on output parameters is considered.

  5. Complexation of 1,3-dimorpholinopropane with Hg(II) and Zn(II) salts: Synthese, crystal structures and antibacterial studies

    Czech Academy of Sciences Publication Activity Database

    Goudarziafshar, H.; Yousefi, S.; Abbasityula, Y.; Dušek, Michal; Eigner, Václav; Rezaeivala, M.; Özbek, N.

    2015-01-01

    Roč. 31, č. 6 (2015), s. 1076-1084 ISSN 1001-4861 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : crystal structure * 1,3-dimorpholinopropane * antibacterial activity * Hg(II) complex * Zn(II) complex Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.488, year: 2015

  6. Structural formation of aluminide phases on titanium alloy during annealing

    International Nuclear Information System (INIS)

    Mamaeva, A.A.; Romankov, S.E.; Sagdoldina, Zh.

    2006-01-01

    Full text: The aluminum layer on the surface of titanium alloy has been formed by thermal deposition. The structural formation of aluminide phases on the surface has been studied. The sequence of structural transformations at the Ti/Al interface is limited by the reaction temperature and time. The sequence of aluminide phase formation is occurred in compliance with Ti-Al equilibrium phase diagram. At the initial stages at the Ti/Al interface the Al3Ti alloy starts forming as a result of interdiffusion, and gradually the whole aluminum films is spent on the formation of this layer. The Al3Ti layer decomposes with the increase of temperature (>600C). At 800C the two-phase (Ti3Al+TiAl) layer is formed on the titanium surface. The TiAl compound is unstable and later on with the increase of the exposure time at 800C gradually transforms into the Ti3Al. The chain of these successive transformations leads to the formation of the continuous homogeneous layer consisting of the Ti3Al compound on the surface. At temperatures exceeding the allotropic transformation temperature (>900C) the Ti3Al compound starts decomposing. All structural changes taking place at the Ti/Al interface are accompanied by considerable changes in micro hardness. The structure of initial substrate influences on kinetics of phase transformation and microstructure development. (author)

  7. Crystal structure of a looped-chain CoII coordination polymer: catena-poly[[bis(nitrato-κOcobalt(II]bis[μ-bis(pyridin-3-ylmethylsulfane-κ2N:N′

    Directory of Open Access Journals (Sweden)

    Suk-Hee Moon

    2017-11-01

    Full Text Available The asymmetric unit of the title compound, [Co(NO32(C12H12N2S2]n, contains a bis(pyridin-3-ylmethylsulfane (L ligand, an NO3− anion and half a CoII cation, which lies on an inversion centre. The CoII cation is six-coordinated, being bound to four pyridine N atoms from four symmetry-related L ligands. The remaining coordination sites are occupied by two O atoms from two symmetry-related nitrate anions in a monodentate manner. Thus, the CoII centre adopts a distorted octahedral geometry. Two symmetry-related L ligands are connected by two symmetry-related CoII cations, forming a 20-membered cyclic dimer, in which the CoII atoms are separated by 10.2922 (7 Å. The cyclic dimers are connected to each other by sharing CoII atoms, giving rise to the formation of an infinite looped chain propagating along the [101] direction. Intermolecular C—H...π (H...ring centroid = 2.89 Å interactions between one pair of corresponding L ligands and C—H...O hydrogen bonds between the L ligands and the nitrate anions occur in the looped chain. In the crystal, adjacent looped chains are connected by intermolecular π–π stacking interactions [centroid-to-centroid distance = 3.8859 (14 Å] and C—H...π hydrogen bonds (H...ring centroid = 2.65 Å, leading to the formation of layers parallel to (101. These layers are further connected through C—H...O hydrogen bonds between the layers, resulting in the formation of a three-dimensional supramolecular architecture.

  8. Urotensin II increases foam cell formation by repressing ABCA1 expression through the ERK/NF-κB pathway in THP-1 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Wu, Jian-Feng [Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Tang, Yan-Yan; Zhang, Min; Li, Yuan [Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan (China); Chen, Kong; Zeng, Meng-Ya [Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Yao, Feng; Xie, Wei [Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan (China); Zheng, Xi-Long [Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1 (Canada); Zeng, Gao-Feng, E-mail: qichingnudou@tom.com [Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Tang, Chao-Ke, E-mail: tangchaoke@qq.com [Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan (China)

    2014-10-03

    Highlights: • U II reduces cholesterol efflux in THP-1 macrophages. • U II decreases the expression of ABCA1. • Inhibition of the ERK/NF-κB pathway reduces U II effects on ABCA1 expression and cholesterol efflux. - Abstract: Objective: Foam cell formation in the arterial wall plays a key role in the development of atherosclerosis. Recent studies showed that Urotensin II (U II) is involved in the pathogenesis of atherosclerosis. Here we examined the effects of human U II on ATP-binding cassette transporter A1 (ABCA1) expression and the underlying mechanism in THP-1 macrophages. Methods and results: Cultured THP-1 macrophages were treated with U II, followed by measuring the intracellular lipid contents, cholesterol efflux and ABCA1 levels. The results showed that U II dramatically decreased ABCA1 levels and impaired cholesterol efflux. However, the effects of U II on ABCA1 protein expression and cellular cholesterol efflux were partially reversed by inhibition of extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa B (NF-κB) activity, suggesting the potential roles of ERK1/2 and NF-κB in ABCA1 expression, respectively. Conclusion: Our current data indicate that U II may have promoting effects on the progression of atherosclerosis, likely through suppressing ABCA1 expression via activation of the ERK/NF-κB pathway and reducing cholesterol efflux to promote macrophage foam cell formation.

  9. Electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clays. Role in U and Hg(II) transformations

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Michelle [Univ. of Iowa, Iowa City, IA (United States)

    2016-08-31

    During this project, we investigated Fe electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clay minerals. We used selective chemical extractions, enriched Fe isotope tracer experiments, computational molecular modeling, and Mössbauer spectroscopy. Our findings indicate that structural Fe(III) in clay minerals is reduced by aqueous Fe(II) and that electron transfer occurs when Fe(II) is sorbed to either basal planes and edge OH-groups of clay mineral. Findings from highly enriched isotope experiments suggest that up to 30 % of the Fe atoms in the structure of some clay minerals exhanges with aqueous Fe(II). First principles calculations using a small polaron hopping approach suggest surprisingly fast electron mobility at room temperature in a nontronite clay mineral and are consistent with temperature dependent Mössbauer data Fast electron mobility suggests that electrons may be able to conduct through the mineral fast enough to enable exchange of Fe between the aqueous phase and clay mineral structure. over the time periods we observed. Our findings suggest that Fe in clay minerals is not as stable as previously thought.

  10. Crystal structure of metallo DNA duplex containing consecutive Watson-Crick-like T-Hg(II)-T base pairs.

    Science.gov (United States)

    Kondo, Jiro; Yamada, Tom; Hirose, Chika; Okamoto, Itaru; Tanaka, Yoshiyuki; Ono, Akira

    2014-02-24

    The metallo DNA duplex containing mercury-mediated T-T base pairs is an attractive biomacromolecular nanomaterial which can be applied to nanodevices such as ion sensors. Reported herein is the first crystal structure of a B-form DNA duplex containing two consecutive T-Hg(II)-T base pairs. The Hg(II) ion occupies the center between two T residues. The N3-Hg(II) bond distance is 2.0 Å. The relatively short Hg(II)-Hg(II) distance (3.3 Å) observed in consecutive T-Hg(II)-T base pairs suggests that the metallophilic attraction could exist between them and may stabilize the B-form double helix. To support this, the DNA duplex is largely distorted and adopts an unusual nonhelical conformation in the absence of Hg(II). The structure of the metallo DNA duplex itself and the Hg(II)-induced structural switching from the nonhelical form to the B-form provide the basis for structure-based design of metal-conjugated nucleic acid nanomaterials. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    International Nuclear Information System (INIS)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua; Yu, Hai-Tao

    2016-01-01

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H_2bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2′-bipy)(H_2O)]_n (1), [Cd(bzgluO)(2,4′-bipy)_2(H_2O)·3H_2O]_n (2), [Cd(bzgluO)(phen)·H_2O]_n (3), [Cd(bzgluO)(4,4′-bipy)(H_2O)]_n (4), [Cd(bzgluO)(bpp)(H_2O)·2H_2O]_n (5) were synthesized (2,2′-bipy=2,2′-bipyridine, 2,4′-bipy=2,4′-bipyridine, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1–2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π–π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π–π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H_2bzgluO. Luminescent properties of 1–5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated. - Graphical abstract: Five new Cd(II) metal coordination compounds with H_2bzgluO and different N-donor ligands were synthesized and characterized. Compounds 1, 2 and 3 present 1D structures, compounds 4 and 5 display 2D networks. Results indicate that auxiliary ligands and coordination modes of H_2bzgluO play an important role in governing the formation of final frameworks, and the hydrogen-bonding and π–π stacking interactions contribute the formation of the diverse supramolecular architectures. Furthermore, the different crystal structures influence the emission spectra significantly. - Highlights: • It is rarely reported that complexes prepared with N-benzoyl-L-glutamic acid. • Each complex displays diverse structures and different supramolecular

  12. A symbiosis-dedicated SYNTAXIN OF PLANTS 13II isoform controls the formation of a stable host-microbe interface in symbiosis.

    Science.gov (United States)

    Huisman, Rik; Hontelez, Jan; Mysore, Kirankumar S; Wen, Jiangqi; Bisseling, Ton; Limpens, Erik

    2016-09-01

    Arbuscular mycorrhizal (AM) fungi and rhizobium bacteria are accommodated in specialized membrane compartments that form a host-microbe interface. To better understand how these interfaces are made, we studied the regulation of exocytosis during interface formation. We used a phylogenetic approach to identify target soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (t-SNAREs) that are dedicated to symbiosis and used cell-specific expression analysis together with protein localization to identify t-SNAREs that are present on the host-microbe interface in Medicago truncatula. We investigated the role of these t-SNAREs during the formation of a host-microbe interface. We showed that multiple syntaxins are present on the peri-arbuscular membrane. From these, we identified SYNTAXIN OF PLANTS 13II (SYP13II) as a t-SNARE that is essential for the formation of a stable symbiotic interface in both AM and rhizobium symbiosis. In most dicot plants, the SYP13II transcript is alternatively spliced, resulting in two isoforms, SYP13IIα and SYP13IIβ. These splice-forms differentially mark functional and degrading arbuscule branches. Our results show that vesicle traffic to the symbiotic interface is specialized and required for its maintenance. Alternative splicing of SYP13II allows plants to replace a t-SNARE involved in traffic to the plasma membrane with a t-SNARE that is more stringent in its localization to functional arbuscules. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Cd(II and Pb(II complexes of the polyether ionophorous antibiotic salinomycin

    Directory of Open Access Journals (Sweden)

    Tanabe Makoto

    2011-09-01

    Full Text Available Abstract Background The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II ions in in vivo experiments, despite so far no Pb(II-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their in vitro complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II and lead(II. Results New metal(II complexes of the polyether ionophorous antibiotic salinomycin with Cd(II and Pb(II ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa undergoes a reaction with heavy metal(II ions to form [Cd(Sal2(H2O2] (1 and [Pb(Sal(NO3] (2, respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield 1. Two salinomycin anions occupy the equatorial plane of the Cd(II center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II cation. Complex 2 consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation. Conclusion The formation of the salinomycin heavy metal(II complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock

  14. Cd(II) and Pb(II) complexes of the polyether ionophorous antibiotic salinomycin

    Science.gov (United States)

    2011-01-01

    Background The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II) ions in in vivo experiments, despite so far no Pb(II)-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their in vitro complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II) and lead(II). Results New metal(II) complexes of the polyether ionophorous antibiotic salinomycin with Cd(II) and Pb(II) ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa) undergoes a reaction with heavy metal(II) ions to form [Cd(Sal)2(H2O)2] (1) and [Pb(Sal)(NO3)] (2), respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II) ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield 1. Two salinomycin anions occupy the equatorial plane of the Cd(II) center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II) cation. Complex 2 consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation. Conclusion The formation of the salinomycin heavy metal(II) complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock farming

  15. Residue Phe112 of the Human-Type Corrinoid Adenosyltransferase (PduO) Enzyme of Lactobacillus reuteri Is Critical to the Formation of the Four-Coordinate Co(II) Corrinoid Substrate and to the Activity of the Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Mera, Paola E.; St. Maurice, Martin; Rayment, Ivan; Escalante-Semerena, Jorge C.; UW

    2009-06-08

    ATP:Corrinoid adenosyltransferases (ACAs) catalyze the transfer of the adenosyl moiety from ATP to cob(I)alamin via a four-coordinate cob(II)alamin intermediate. At present, it is unknown how ACAs promote the formation of the four-coordinate corrinoid species needed for activity. The published high-resolution crystal structure of the ACA from Lactobacillus reuteri (LrPduO) in complex with ATP and cob(II)alamin shows that the environment around the alpha face of the corrin ring consists of bulky hydrophobic residues. To understand how these residues promote the generation of the four-coordinate cob(II)alamin, variants of the human-type ACA enzyme from L. reuteri (LrPduO) were kinetically and structurally characterized. These studies revealed that residue Phe112 is critical in the displacement of 5,6-dimethylbenzimidazole (DMB) from its coordination bond with the Co ion of the ring, resulting in the formation of the four-coordinate species. An F112A substitution resulted in a 80% drop in the catalytic efficiency of the enzyme. The explanation for this loss of activity was obtained from the crystal structure of the mutant protein, which showed cob(II)alamin bound in the active site with DMB coordinated to the cobalt ion. The crystal structure of an LrPduO(F112H) variant showed a DMB-off/His-on interaction between the corrinoid and the enzyme, whose catalytic efficiency was 4 orders of magnitude lower than that of the wild-type protein. The analysis of the kinetic parameters of LrPduO(F112H) suggests that the F112H substitution negatively impacts product release. Substitutions of other hydrophobic residues in the Cbl binding pocket did not result in significant defects in catalytic efficiency in vitro; however, none of the variant enzymes analyzed in this work supported AdoCbl biosynthesis in vivo.

  16. Vesicles and vesicle gels - structure and dynamics of formation

    International Nuclear Information System (INIS)

    Gradzielski, M

    2003-01-01

    Vesicles constitute an interesting morphology formed by self-aggregating amphiphilic molecules. They exhibit a rich structural variety and are of interest both from a fundamental point of view (for studying closed bilayer systems) and from a practical point of view (whenever one is interested in the encapsulation of active molecules). In many circumstances vesicular structures have to be formed by external forces, but of great interest are amphiphilic systems, where they form spontaneously. Here the question arises of whether this means that they are also thermodynamically stable structures, which at least in some systems appears to be the case. If such vesicles are well defined in size, it is possible to pack them densely and thereby form vesicle gels that possess highly elastic properties even for relatively low volume fractions of amphiphile. Conditions for the formation and the microstructure of such vesicle gels have been studied in some detail for the case of unilamellar vesicles. Another important and topical issue is the dynamics of vesicle formation/breakdown, as the understanding of the transition process will open the way to a deeper understanding of their stability and also allow controlling of the structures formed, by means of their formation processes. Significant progress in the study of the transformation processes has been achieved, in particular by means of time-resolved scattering experiments. (topical review)

  17. Structural modification of silicon during the formation process of porous silicon

    International Nuclear Information System (INIS)

    Martin-Palma, R.J.; Pascual, L.; Landa-Canovas, A.R.; Herrero, P.; Martinez-Duart, J.M.

    2005-01-01

    Direct examination of porous silicon (PS) by the use of high resolution transmission electron microscopy (HRTEM) allowed us to perform a deep insight into the formation mechanisms of this material. In particular, the structure of the PS/Si interface and that of the silicon nanocrystals that compose porous silicon were analyzed in detail. Furthermore, image processing was used to study in detail the structure of PS. The mechanism of PS formation and lattice matching between the PS layer and the Si substrate is analyzed and discussed. Finally, a formation mechanism for PS based on the experimental observations is proposed

  18. Spontaneous Self-Formation of 3D Plasmonic Optical Structures.

    Science.gov (United States)

    Choi, Inhee; Shin, Yonghee; Song, Jihwan; Hong, SoonGweon; Park, Younggeun; Kim, Dongchoul; Kang, Taewook; Lee, Luke P

    2016-08-23

    Self-formation of colloidal oil droplets in water or water droplets in oil not only has been regarded as fascinating fundamental science but also has been utilized in an enormous number of applications in everyday life. However, the creation of three-dimensional (3D) architectures by a liquid droplet and an immiscible liquid interface has been less investigated than other applications. Here, we report interfacial energy-driven spontaneous self-formation of a 3D plasmonic optical structure at room temperature without an external force. Based on the densities and interfacial energies of two liquids, we simulated the spontaneous formation of a plasmonic optical structure when a water droplet containing metal ions meets an immiscible liquid polydimethylsiloxane (PDMS) interface. At the interface, the metal ions in the droplet are automatically reduced to form an interfacial plasmonic layer as the liquid PDMS cures. The self-formation of both an optical cavity and integrated plasmonic nanostructure significantly enhances the fluorescence by a magnitude of 1000. Our findings will have a huge impact on the development of various photonic and plasmonic materials as well as metamaterials and devices.

  19. Salt-modulated structure formation in a dense calcium caseinate system

    NARCIS (Netherlands)

    Grabowska, K.J.; Goot, van der A.J.; Boom, R.M.

    2012-01-01

    A 30 wt% calcium caseinate dispersion can be transformed in an anisotropic and fibrous structure by applying well-defined flow and enzymatic gelation. The formation of an anisotropic structure is thought to be due to the micellar structure of the caseinate and the mild adhesion between the micelles

  20. Structure and properties of dichloro(L-proline)cadmium(II) hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, Yasuhiko; Inomata, Yoshie; Takeuchi, Toshio [Jochi Univ., Tokyo (Japan). Faculty of Science and Technology

    1983-07-01

    An X-ray diffraction study of the title complex has been carried out. The crystal is orthorhombic, with the space group P2/sub 1/2/sub 1/2/sub 1/; Z=4, a=10.021(3), b=13.562(4), c=7.298(3) A. Block-diagonal least-squares refinements have led to the final R value of 0.035. The structure is very similar to that of dichloro(4-hydroxy-L-proline) cadmium(II), which has a one-dimensional polymer bridged by chlorine atoms and a carboxyl group like an infinite folding screen. The thermal behavior is, however, different from that of dichloro(4-hydroxy-L-proline) cadmium(II). The difference is likely to be due to a difference of the crystal structure, whether it contains intermolecular hydrogen bonds or not.

  1. Study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel

    International Nuclear Information System (INIS)

    Ismailova, M.M.; Egorova, L.A.; Khamidov, B.O.

    1993-01-01

    Present article is devoted to study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel. The condition of cobalt in various rate of oxidation in acrylamide aqueous solutions was studied. The concentration conditions of stability of system Co(II)-Co(III) were defined. The composition of coordination compounds of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel was determined.

  2. Crystal structure of the coordination polymer [FeIII2{PtII(CN4}3

    Directory of Open Access Journals (Sweden)

    Maksym Seredyuk

    2015-01-01

    Full Text Available The title complex, poly[dodeca-μ-cyanido-diiron(IIItriplatinum(II], [FeIII2{PtII(CN4}3], has a three-dimensional polymeric structure. It is built-up from square-planar [PtII(CN4]2− anions (point group symmetry 2/m bridging cationic [FeIIIPtII(CN4]+∞ layers extending in the bc plane. The FeII atoms of the layers are located on inversion centres and exhibit an octahedral coordination sphere defined by six N atoms of cyanide ligands, while the PtII atoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octahedral and square-planar coordination, respectively, lead to a corrugated organisation of the layers. The distance between neighbouring [FeIIIPtII(CN4]+∞ layers corresponds to the length a/2 = 8.0070 (3 Å, and the separation between two neighbouring PtII atoms of the bridging [PtII(CN4]2− groups corresponds to the length of the c axis [7.5720 (2 Å]. The structure is porous with accessible voids of 390 Å3 per unit cell.

  3. Thermodynamics and kinetics of RNA tertiary structure formation in the junctionless hairpin ribozyme.

    Science.gov (United States)

    White, Neil A; Hoogstraten, Charles G

    2017-09-01

    The hairpin ribozyme consists of two RNA internal loops that interact to form the catalytically active structure. This docking transition is a rare example of intermolecular formation of RNA tertiary structure without coupling to helix annealing. We have used temperature-dependent surface plasmon resonance (SPR) to characterize the thermodynamics and kinetics of RNA tertiary structure formation for the junctionless form of the ribozyme, in which loops A and B reside on separate molecules. We find docking to be strongly enthalpy-driven and to be accompanied by substantial activation barriers for association and dissociation, consistent with the structural reorganization of both internal loops upon complex formation. Comparisons with the parallel analysis of a ribozyme variant carrying a 2'-O-methyl modification at the self-cleavage site and with published data in other systems reveal a surprising diversity of thermodynamic signatures, emphasizing the delicate balance of contributions to the free energy of formation of RNA tertiary structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    Science.gov (United States)

    Braun, Hans-Georg; Meyer, Evelyn

    2013-01-01

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233

  5. Mechanisms of bands and spirals formation during the drying of watery solutions of mercury (II) chloride with agar-agar

    International Nuclear Information System (INIS)

    Suarez-DomInguez, Edgardo Jonathan; Betancourt-Mar, Juvencio Alberto

    2005-01-01

    It is proposed two mechanisms to explain the formation of periodic and non periodic bands and spirals as thin films of gelatinous aqueous solutions of mercury (II) chloride are dried. The first mechanism supposes an homogeneous drying, where the height of the film decreases at constant rate, forming Liesegang bands. The second mechanism implies a non homogeneous drying where an evaporation front drives the formation of periodic bands and spirals

  6. Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II

    Science.gov (United States)

    Fedorenko, S. G.; Burshtein, A. I.

    2014-09-01

    Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics.

  7. Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II

    Energy Technology Data Exchange (ETDEWEB)

    Fedorenko, S. G. [Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk (Russian Federation); Burshtein, A. I. [Weizmann Institute of Science, 76100, Rehovot (Israel)

    2014-09-21

    Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics.

  8. Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II

    International Nuclear Information System (INIS)

    Fedorenko, S. G.; Burshtein, A. I.

    2014-01-01

    Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics

  9. Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators.

    Science.gov (United States)

    Tõugu, Vello; Karafin, Ann; Zovo, Kairit; Chung, Roger S; Howells, Claire; West, Adrian K; Palumaa, Peep

    2009-09-01

    Aggregation of amyloid-beta (Abeta) peptides is a central phenomenon in Alzheimer's disease. Zn(II) and Cu(II) have profound effects on Abeta aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Abeta(42) fibrillization and initiate formation of non-fibrillar Abeta(42) aggregates, and that the inhibitory effect of Zn(II) (IC(50) = 1.8 micromol/L) is three times stronger than that of Cu(II). Medium and high-affinity metal chelators including metallothioneins prevented metal-induced Abeta(42) aggregation. Moreover, their addition to preformed aggregates initiated fast Abeta(42) fibrillization. Upon prolonged incubation the metal-induced aggregates also transformed spontaneously into fibrils, that appear to represent the most stable state of Abeta(42). H13A and H14A mutations in Abeta(42) reduced the inhibitory effect of metal ions, whereas an H6A mutation had no significant impact. We suggest that metal binding by H13 and H14 prevents the formation of a cross-beta core structure within region 10-23 of the amyloid fibril. Cu(II)-Abeta(42) aggregates were neurotoxic to neurons in vitro only in the presence of ascorbate, whereas monomers and Zn(II)-Abeta(42) aggregates were non-toxic. Disturbed metal homeostasis in the vicinity of zinc-enriched neurons might pre-dispose formation of metal-induced Abeta aggregates, subsequent fibrillization of which can lead to amyloid formation. The molecular background underlying metal-chelating therapies for Alzheimer's disease is discussed in this light.

  10. A 3D complex containing novel 2D CuII-azido layers: Structure, magnetic properties and effects of “Non-innocent” reagent

    International Nuclear Information System (INIS)

    Gao, Xue-Miao; Guo, Qian; Zhao, Jiong-Peng; Liu, Fu-Chen

    2012-01-01

    A novel copper-azido coordination polymer, [Cu 2 (N 3 ) 3 (L)] n (1, HL=pyrazine-2-carboxylic acid), has been synthesized by hydrothermal reaction with “Non-innocent” reagent in the aqueous solution. In the reaction system, Cu II ions are avoided to reduce to Cu I ions due to the existence of Nd III . It is found that the complex is a 3D structure based on two double EO azido bridged trimmers and octahedron Cu II ions, in which the azide ligands take on EO and μ 1,1,3 mode to form Cu II -azido 2D layers, furthermore L ligands pillar 2D layers into an infinite 3D framework with the Schläfli symbol of {4;6 2 }4{4 2 ;6 12 ;8 10 ;10 4 }{4 2 ;6 4 }. Magnetic studies revealed that the interactions between the Cu II ions in the trimmer are ferromagnetic for the Cu–N–Cu angle nearly 98°, while the interactions between the trimmer and octahedron Cu II ion are antiferromgantic and result in an antiferromagnetic state. - Graphical abstract: A 3D complex containing novel 2D Cu II -azido layers, [Cu 2 (N 3 ) 3 (L)] n (HL=pyrazine-2-carboxylic acid), was synthesized by hydrothermal reaction and exhibit interesting structure and magnetic properties. Highlights: ► “Non-innocent” reagents plays a key role in the process of formation of this complex. ► 2D layer is formed only by Cu II ions and azido ligands. ► Pyrazine-2-carboxylate ligands reinforce 2D layers and pillar them into an infinite 3D framework. ► Magnetic study indicates that alternating FM–AF coupling exists in the complex.

  11. Electron internal transport barrier formation and dynamics in the plasma core of the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, T [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Krupnik, L [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Dreval, N [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Melnikov, A [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow, Russia (Russian Federation); Khrebtov, S M [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Hidalgo, C [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Milligen, B van [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Castejon, F [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); AscasIbar, E [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Eliseev, L [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow, Russia (Russian Federation); Chmyga, A A [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Komarov, A D [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Kozachok, A S [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Tereshin, V [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine)

    2004-01-01

    The influence of magnetic topology on the formation of electron internal transport barriers (e-ITBs) has been studied experimentally in electron cyclotron heated plasmas in the stellarator TJ-II. e-ITB formation is characterized by an increase in core electron temperature and plasma potential. The positive radial electric field increases by a factor of 3 in the central plasma region when an e-ITB forms. The experiments reported demonstrate that the formation of an e-ITB depends on the magnetic configuration. Calculations of the modification of the rotational transform due to plasma current lead to the interpretation that the formation of an e-ITB can be triggered by positioning a low order rational surface close to the plasma core region. In configurations without any central low order rational, no barrier is formed for any accessible value of heating power. Different mechanisms associated with neoclassical/turbulent bifurcations and kinetic effects are put forward to explain the impact of magnetic topology on radial electric fields and confinement.

  12. Theoretical modeling of the electronic structure and exchange interactions in Cu(II)Pc

    Science.gov (United States)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.; Wang, Hai; Wu, Zhenlin; Gardener, Jules; Heutz, Sandrine; Jones, Tim; Aeppli, Gabriel

    2012-12-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine (Cu(II)Pc) crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green's function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α- and β-phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  13. Synthesis, spectroscopic and DNA binding ability of Co{sup II}, Ni{sup II}, Cu{sup II} and Zn{sup II} complexes of Schiff base ligand (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol. X-ray crystal structure determination of cobalt (II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Yarkandi, Naeema H. [Chemistry Department, Faculty of Applied Science, Umm Al–Qura University, Makkah (Saudi Arabia); El-Ghamry, Hoda A., E-mail: helghamrymo@yahoo.com [Chemistry Department, Faculty of Applied Science, Umm Al–Qura University, Makkah (Saudi Arabia); Chemistry Department, Faculty of Science, Tanta University, Tanta (Egypt); Gaber, Mohamed [Chemistry Department, Faculty of Science, Tanta University, Tanta (Egypt)

    2017-06-01

    A novel Schiff base ligand, (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol (HL), has been designed and synthesized in addition to its metal chelates [Co(L){sub 2}]·l2H{sub 2}O, [Ni(L)Cl·(H{sub 2}O){sub 2}].5H{sub 2}O, [Cu(L)Cl] and [Zn(L)(CH{sub 3}COO)]. The structures of the isolated compounds have been confirmed and identified by means of different spectral and physicochemical techniques including CHN analysis, {sup 1}H &{sup 13}C NMR, mass spectral analysis, molar conductivity measurement, UV–Vis, infrared, magnetic moment in addition to TGA technique. The infrared spectral results ascertained that the ligand acts as monobasic tridentate binding to the metal centers via deprotonated hydroxyl oxygen, azomethine and imidazole nitrogen atoms. The UV–Vis, magnetic susceptibility and molar conductivity data implied octahedral geometry for Co(II) & Ni(II) complexes, tetrahedral for Zn(II) complex and square planar for Cu(II) complex. X-ray structural analysis of Co(II) complex 1 has been reported and discussed. Moreover, the type of interaction between the ligand & its complexes towards salmon sperm DNA (SS-DNA) has been examined by the measurement of absorption spectra and viscosity which confirmed that the ligand and its complexes interact with DNA via intercalation interaction as concluded from the values of binding constants (K{sub b}). - Highlights: • Synthesis of Co{sup II}, Ni{sup II}, Cu{sup II} and Zn{sup II} complexes of the Schiff base ligand based on 2-(aminomethyl)benzimidazole moiety. • The constitutions and structures of the ligand and complexes were elucidated. • Molecular structure of Co{sup II} complex was confirmed by single crystal X-ray diffraction method. • The ligand and its complexes interact with SS-DNA via intercalation mods.

  14. Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety

    Science.gov (United States)

    Shafaatian, Bita; Mousavi, S. Sedighe; Afshari, Sadegh

    2016-11-01

    New dimer complexes of zinc(II), copper(II) and nickel(II) were synthesized using the Schiff base ligand which was formed by the condensation of 2-aminothiophenol and 2-hydroxy-5-methyl benzaldehyde. This tridentate Schiff base ligand was coordinated to the metal ions through the NSO donor atoms. In order to prevent the oxidation of the thiole group during the formation of Schiff base and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structure of the Schiff base ligand showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff base as a new double Schiff base ligand. The molar conductivity values of the complexes in dichloromethane implied the presence of non-electrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were also studied in dichloromethane. The products were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of the double Schiff base was determined by single crystal X-ray diffraction. Furthermore, the density functional theory (DFT) calculations were performed at the B3LYP/6-31G(d,p) level of theory for the determination of the optimized structures of Schiff base complexes.

  15. Thermodynamic model of Ni(II) solubility, hydrolysis and complex formation with ISA

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Siso, Maria Rosa; Duro, Lara; Bruno, Jordi [Amphos21, Barcelona (Spain); Gaona, Xavier; Altmaier, Marcus [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Nuclear Waste Disposal

    2018-04-01

    The solubility of β-Ni(OH){sub 2}(cr) was investigated at T=(22±2) C in the absence and presence of α-isosaccharinic acid (ISA), the main degradation product of cellulose under alkaline pH conditions. Batch solubility experiments were performed from undersaturation conditions under inert gas (Ar) atmosphere. Solubility experiments in the absence of ISA were conducted in 0.5 and 3.0 M NaCl-NaOH solutions at 7.5 ≤ pH{sub m} ≤ 13 (with pH{sub m} = -log{sub 10}[H{sup +}]). XRD analyses of selected solid phases collected after completing the solubility experiments (∼300 days) confirmed that β-Ni(OH){sub 2}(cr) remains as solid phase controlling the solubility of Ni(II) in all investigated conditions. Based on the slope analysis (log{sub 10}[Ni] vs. pH{sub m}) of the solubility data and solid phase characterization, the equilibrium reactions β-Ni(OH){sub 2}(cr)+2 H{sup +} <=> Ni{sup 2+}+2 H{sub 2}O(l) and β-Ni(OH){sub 2}(cr) <=> Ni(OH){sub 2}(aq) were identified as controlling the solubility of Ni(II) within the investigated pH{sub m} region. The conditional equilibrium constants determined from the solubility experiments at different ionic strengths were evaluated with the specific ion interaction theory (SIT). In contrast to the current thermodynamic selection in the NEA-TDB, solubility data collected in the present work does not support the formation of the anionic hydrolysis species Ni(OH){sub 3}{sup -} up to pH{sub m} ≤ 13.0. Solubility experiments in the presence of ISA were conducted in 0.5 M NaCl-NaOH-NaISA solutions with 0.01 M ≤ [NaISA] ≤ 0.2 M and 9 ≤ pH{sub m} ≤ 13. XRD analyses confirmed that β-Ni(OH){sub 2}(cr) is also the solid phase controlling the solubility of Ni(II) in the presence of ISA. Solubility data of all investigated systems can be properly explained with chemical and thermodynamic models including the formation of the complexes NiOHISA(aq), Ni(OH){sub 2}ISA{sup -} and Ni(OH){sub 3}ISA{sup 2-}. The reported data confirm

  16. Formation of nanoscale tungsten oxide structures and colouration ...

    Indian Academy of Sciences (India)

    The X-ray diffraction, together with transmission electron microscopic studies have revealed formation of regular polyhedral nanocrystalline ..... For molecular structure and orientation determination, the ... self-similarity within a complicated system. ..... Hummel R I 1997 Handbook of optical properties: Optics of small particles ...

  17. Syntheses, Crystal Structures and Thermal Behaviors of Two Supramolecular Salamo-Type Cobalt(II and Zinc(II Complexes

    Directory of Open Access Journals (Sweden)

    Gang Li

    2017-07-01

    Full Text Available This paper reports the syntheses of two new complexes, [Co(L1(H2O2] (1 and [{Zn(L2(μ-OAcZn(n-PrOH}2] (2, from asymmetric halogen-substituted Salamo-type ligands H2L1 and H3L2, respectively. Investigation of the crystal structure of complex 1 reveals that the complex includes one Co(II ion, one (L12− unit and two coordinated water molecules. Complex 1 shows slightly distorted octahedral coordination geometry, forming an infinite 2D supramolecular structure by intermolecular hydrogen bond and π–π stacking interactions. Complex 2 contains four Zn(IIions, two completely deprotonated (L23− moieties, two coordinated μ-OAc− ions and n-propanol molecules. The Zn(II ions in complex 2 display slightly distorted trigonal bipyramidal or square pyramidal geometries.

  18. Non-bonding interactions and non-covalent delocalization effects play a critical role in the relative stability of group 12 complexes arising from interaction of diethanoldithiocarbamate with the cations of transition metals Zn(II), Cd(II), and Hg(II): a theoretical study.

    Science.gov (United States)

    Bahrami, Homayoon; Farhadi, Saeed; Siadatnasab, Firouzeh

    2016-07-01

    The chelating properties of diethanoldithiocarbamate (DEDC) and π-electron flow from the nitrogen atom to the sulfur atom via a plane-delocalized π-orbital system (quasi ring) was studied using a density functional theory method. The molecular structure of DEDC and its complexes with Zn(II), Cd(II), and Hg(II) were also considered. First, the geometries of this ligand and DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) were optimized, and the formation energies of these complexes were then calculated based on the electronic energy, or sum of electronic energies, with the zero point energy of each species. Formation energies indicated the DEDC-Zn(II) complex as the most stable complex, and DEDC-Cd(II) as the least stable. Structural data showed that the N1-C2 π-bond was localized in the complexes rather than the ligand, and a delocalized π-bond over S7-C2-S8 was also present. The stability of DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) complexes increased in the presence of the non-specific effects of the solvent (PCM model), and their relative stability did not change. There was π-electron flow or resonance along N1-C2-S7 and along S7-C2-S8 in the ligand. The π-electron flow or resonance along N1-C2-S7 was abolished when the metal interacted with sulfur atoms. Energy belonging to van der Waals interactions and non-covalent delocalization effects between the metal and sulfur atoms of the ligand was calculated for each complex. The results of nucleus-independent chemical shift (NICS) indicated a decreasing trend as Zn(II) Hg(II) for the aromaticity of the quasi-rings. Finally, by ignoring van der Waals interactions and non-covalent delocalization effects between the metal and sulfur atoms of the ligand, the relative stability of the complexes was changed as follows:[Formula: see text] Graphical Abstract Huge electronic cloud localized on Hg(II) in the Hg(II)-DEDC complex.

  19. Separation and recovery of lead from a low concentration solution of lead(II) and zinc(II) using the hydrolysis production of poly styrene-co-maleic anhydride.

    Science.gov (United States)

    Liang, Xing; Su, Yibing; Yang, Ying; Qin, Wenwu

    2012-02-15

    The PbZn separation/preconcentration technique, based on the complex formation reaction of Pb(II) and Zn(II), using a copolymer poly(styrene-co-maleic anhydride) (PSMA), without adding any carrier element was developed. The effects of several experimental parameters such as solution pH, temperature and adsorption time were studied. The experimental results show that the PSMA resin-Pb equilibrium was achieved in 2 min and the Pb(II) loading capacity is up to 641.62 mg g(-1) in aqueous solution under optimum conditions, which is much higher than the Zn(II) loading capacity within 80 min. The adsorption test for Pb(II) indicates that PSMA can recover Pb(II) from a mixed solution of Pb(II), Zn(II) and light metals such as Ca(II) and Mg(II) with higher adsorption rate and larger selective coefficient. A further study indicates that PSMA as chelating resins recovering Pb(II) can be regenerated via mineral acid (6M H(2)SO(4)). PSMA was synthesized by radical polymerization and tested as an adsorbent for the selective recovery of Pb(II). In addition, the formation procedure and structure of Pb-PSMA complex were also studied. Both the PSMA and the Pb-PSMA complex were characterized by means of FTIR spectroscopy, elemental analysis, gel permeation chromatography (GPC) and atomic absorption spectrometry (AAS). Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Universal Scaling Relations in Scale-Free Structure Formation

    Science.gov (United States)

    Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.

    2018-04-01

    A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM∝M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters and even dark matter halos. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power law tail of dA/d lnΣ∝Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D∝R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM halos) tend to a ρ∝R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation and detailed "full physics" hydrodynamical simulations. We find that these power-laws are good first order descriptions in all cases.

  1. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    Directory of Open Access Journals (Sweden)

    Hans-Georg Braun

    2013-02-01

    Full Text Available The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO, molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups.

  2. Formation of coherent structures in a class of realistic 3D unsteady flows

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Clercx, H.J.H.; Klapp, J.; Medina, A.; Cros, A.; Vargas, C.

    2013-01-01

    The formation of coherent structures in three-dimensional (3D) unsteady laminar flows in a cylindrical cavity is reviewed. The discussion concentrates on two main topics: the role of symmetries and fluid inertia in the formation of coherent structures and the ramifications for the Lagrangian

  3. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides.

    Science.gov (United States)

    Jong, Tony; Parry, David L

    2004-07-01

    The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.

  4. Syntheses, crystal structures and spectroscopic properties of copper(II)-tetracyanometallate(II) complexes with nicotinamide and isonicotinamide ligands

    Science.gov (United States)

    Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer

    2015-09-01

    Four new one dimensional (1D) cyanide complexes, namely {[Cu(NH3)4(μ-na)][M‧(CN)4]}n and {[Cu(NH3)2(ina)2M‧(μ-CN)2(CN)2]}n (M‧(II) = Pd (1 and 3) or Pt (2 and 4), na:nicotinamide and ina:isonicotinamide) have been synthesized and characterized by elemental, spectral (FT-IR and Raman), and thermal (TG, DTG and DTA) analyses. The crystal structures of complexes 1-3 have been determined by single crystal X-ray diffraction technique. In complexes 1 and 2, na ligand is coordinated to the adjacent Cu(II) ions as a bridging ligand, giving rise to 1D linear cationic chain and the [M‧(CN)4]2- anionic complex acts as a counter ion. Complexes 3 and 4 are also 1D linear chain in which two cyanide ligands bridged neighboring M‧(II) and Cu(II) ions, while ina ligand is coordinated Cu(II) ion through nitrogen atom of pyridine ring. In the complexes, the Cu(II) ions adopt distorted octahedral geometries, while M‧(II) ions are four coordinated with four carbon atoms from cyanide ligands in square-planar geometries. The adjacent chains are further stacked through intermolecular hydrogen bond, Nsbnd Hṡṡṡπ, Csbnd H⋯M‧ and M‧⋯π interactions to form 3D supramolecular networks. Vibration assignments are given for all the observed bands. In addition, thermal stabilities of the compounds are also discussed.

  5. Mg II-Absorbing Galaxies in the UltraVISTA Survey

    Science.gov (United States)

    Stroupe, Darren; Lundgren, Britt

    2018-01-01

    Light that is emitted from distant quasars can become partially absorbed by intervening gaseous structures, including galaxies, in its path toward Earth, revealing information about the chemical content, degree of ionization, organization and evolution of these structures through time. In this project, quasar spectra are used to probe the halos of foreground galaxies at a mean redshift of z=1.1 in the COSMOS Field. Mg II absorption lines in Sloan Digital Sky Survey quasar spectra are paired with galaxies in the UltraVISTA catalog at an impact parameter less than 200 kpc. A sample of 77 strong Mg II absorbers with a rest-frame equivalent width ≥ 0.3 Å and redshift from 0.34 < z < 2.21 are investigated to find equivalent width ratios of Mg II, C IV and Fe II absorption lines, and their relation to the impact parameter and the star formation rates, stellar masses, environments and redshifts of their host galaxies.

  6. In situ formation of p–n junction: A novel principle for photoelectrochemical sensor and its application for mercury(II) ion detection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guang-Li, E-mail: glwang@jiangnan.edu.cn; Liu, Kang-Li; Dong, Yu-Ming; Li, Zai-Jun; Zhang, Chi

    2014-05-01

    Graphical abstract: The first example of photoelectrochemial sensing based on the formation of p–n junction. The in situ formation of HgS on the surface of ZnS triggers an obvious enhancement of anodic photocurrent of Cysteine-capped ZnS quantum dots (QDs), which leads to a highly sensitive and selective photoelectrochemical method for the sensing of trace mercuric(II) ions. Highlights: • The first example of photoelectrochemial sensing based on p–n junction formation. • The in situ formation of HgS on ZnS leading to obviously enhanced photocurrent. • The method was highly sensitive and selective. Abstract: The discovery and development of photoelectrochemical sensors with novel principles are of great significance to realize sensitive and low-cost detection. In this paper, a new photoelectrochemial sensor based on the in situ formation of p–n junction was designed and used for the accurate determination of mercury(II) ions. Cysteine-capped ZnS quantum dots (QDs) was assembled on the surface of indium tin oxide (ITO) electrode based on the electrostatic interaction between Poly(diallyldimethylammonium chloride) (PDDA) and Cys-capped ZnS QDs. The in situ formation of HgS, a p-type semiconductor, on the surface of ZnS facilitated the charge carrier transport and promoted electron-hole separation, triggered an obviously enhanced anodic photocurrent of Cys-capped ZnS QDs. The formation of p–n junction was confirmed by P–N conductive type discriminator measurements and current–voltage (I–V) curves. The photoelectrochemical method was used for the sensing of trace mercuric (II) ions with a linear concentration of 0.01 to 10.0 µM and a detection limit of 4.6 × 10⁻⁹ mol/L. It is expected that the present study can serve as a foundation to the application of p–n heterojunction to photoelectrochemical sensors and it might be easily extended to more exciting sensing systems by photoelectrochemistry.

  7. Structure and membrane organization of photosystem II in green plants

    NARCIS (Netherlands)

    Hankamer, B; Barber, J; Boekema, EJ

    1997-01-01

    Photosystem II (PSII) is the pigment protein complex embedded in the thylakoid membrane of higher plants, algae, and cyanobacteria that uses solar energy to drive the photosynthetic water-splitting reaction. This chapter reviews the primary, secondary, tertiary, and quaternary structures of PSII as

  8. Eight joint BER II and BESSY II users meeting. Abstracts

    International Nuclear Information System (INIS)

    2016-01-01

    The following topics were dealt with: Accelerator operation and projecs, photon science and instrumentation at BESSY II, status of energy materials in-situ Lab at BESSY II, high resolution spectrometer PEAXIS at BESSY II, sample environment at BESSY II, molecular control mechanisms in the Brr2 RNA helicase for efficient and regulated splicing, the Li conversion reaction of 4CoFe_2O_4 nanoparticles, buried interfaces in lithium ion batteries probed with HAXPES, ARPES studies of the STO(001) 2DEG, all-in/all-out magnetic order in rare earth iridates, oxygen reduction reaction on graphene in Li-air batteries, electronic order in high-T_c superconductors, in-siu observation of novel switching phenomena in highly porous metal-organic frameworks, photoinduced demagnetization and insulator-to-metal transition in ferromagnetic insulating BaFeO_3 thin films, ARPES measurement of the ferroelectric bulk Rashba system GeTe, bisphenol A on Cu(111) and Ag(111), reverse water-gas shift or Sabathier methanation on N(110), structural studies of molecular machines, multi-MHz time-of-flight electronic band-structure imaging of graphene on Ir(111), diffusion pathways in ion conductors, ground-state potential energy surfaces around selected atoms from resonant inelastic X-ray scattering, solar energy in an emerging country, in-situ neutron analysis of electrode materials for electrochemical energy storage, structure and transport properties in thermoelectric skutterudites, investigation of the interphase formation on solid lithium-ion conductors by neutron reflectometry, load partitin and damage characterization of cast AlSi_1_2CuMgNi alloy with ceramic reinforcement, methane adsorption in highly porous metal-organics, structure and magnetic interactions in dimer system Ba_(_3_-_x_)Sr_xCr_2O_8, distribution of S in C-S nanocomposites, current status of HFM-EXED FACITIY; SPIN NEAMTICITY IN s=1/2 frustrated zigzag chaIN β-TeVO_4, electronic properties of U(Ru_0_._9_2Rh_0_._0_8)_2Si_2 in

  9. Thermal-structural response of EBR-II major components under reactor operational transients

    International Nuclear Information System (INIS)

    Chang, L.K.; Lee, M.J.

    1983-01-01

    Until recently, the LMFBR safety research has been focused primarily on severe but highly unlikely accident, such as hypothetical-core-disruptive accidents (HCDA's), and not enough attention has been given to accident prevention, which is less severe but more likely sequence. The objective of the EBR-II operational reliability testing (ORT) is to demonstrate that the reactor can be designed and operated to prevent accident. A series of mild duty cycles and overpower transients were designed for accident prevention tests. An assessment of the EBR-II major plant components has been performed to assure structural integrity of the reactor plant for the ORT program. In this paper, the thermal-structural response and structural evaluation of the reactor vessel, the reactor-vessel cover, the intermediate heat exchanger (IHX) and the superheater are presented

  10. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua, E-mail: songhuihua@mail.hebtu.edu.cn; Yu, Hai-Tao, E-mail: haitaoyu@mail.hebtu.edu.cn

    2016-01-15

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H{sub 2}bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2′-bipy)(H{sub 2}O)]{sub n} (1), [Cd(bzgluO)(2,4′-bipy){sub 2}(H{sub 2}O)·3H{sub 2}O]{sub n} (2), [Cd(bzgluO)(phen)·H{sub 2}O]{sub n} (3), [Cd(bzgluO)(4,4′-bipy)(H{sub 2}O)]{sub n} (4), [Cd(bzgluO)(bpp)(H{sub 2}O)·2H{sub 2}O]{sub n} (5) were synthesized (2,2′-bipy=2,2′-bipyridine, 2,4′-bipy=2,4′-bipyridine, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1–2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π–π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π–π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H{sub 2}bzgluO. Luminescent properties of 1–5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated. - Graphical abstract: Five new Cd(II) metal coordination compounds with H{sub 2}bzgluO and different N-donor ligands were synthesized and characterized. Compounds 1, 2 and 3 present 1D structures, compounds 4 and 5 display 2D networks. Results indicate that auxiliary ligands and coordination modes of H{sub 2}bzgluO play an important role in governing the formation of final frameworks, and the hydrogen-bonding and π–π stacking interactions contribute the formation of the diverse supramolecular architectures. Furthermore, the different crystal structures influence the emission spectra significantly. - Highlights: • It is rarely reported that complexes prepared with N-benzoyl-L-glutamic acid

  11. Structural insights into the light-driven auto-assembly process of the water-oxidizing Mn4CaO5-cluster in photosystem II.

    Science.gov (United States)

    Zhang, Miao; Bommer, Martin; Chatterjee, Ruchira; Hussein, Rana; Yano, Junko; Dau, Holger; Kern, Jan; Dobbek, Holger; Zouni, Athina

    2017-07-18

    In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn 4 CaO 5 -cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn 4 CaO 5 -cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water molecules largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn 4 CaO 5 -cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn 4 CaO 5 -cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate.

  12. STAR FORMATION IN SELF-GRAVITATING DISKS IN ACTIVE GALACTIC NUCLEI. II. EPISODIC FORMATION OF BROAD-LINE REGIONS

    International Nuclear Information System (INIS)

    WangJianmin; Du Pu; Ge Junqiang; Hu Chen; Baldwin, Jack A.; Ferland, Gary J.

    2012-01-01

    This is the second in a series of papers discussing the process and effects of star formation in the self-gravitating disk around the supermassive black holes in active galactic nuclei (AGNs). We have previously suggested that warm skins are formed above the star-forming (SF) disk through the diffusion of warm gas driven by supernova explosions. Here we study the evolution of the warm skins when they are exposed to the powerful radiation from the inner part of the accretion disk. The skins initially are heated to the Compton temperature, forming a Compton atmosphere (CAS) whose subsequent evolution is divided into four phases. Phase I is the duration of pure accumulation supplied by the SF disk. During phase II clouds begin to form due to line cooling and sink to the SF disk. Phase III is a period of preventing clouds from sinking to the SF disk through dynamic interaction between clouds and the CAS because of the CAS overdensity driven by continuous injection of warm gas from the SF disk. Finally, phase IV is an inevitable collapse of the entire CAS through line cooling. This CAS evolution drives the episodic appearance of broad-line regions (BLRs). We follow the formation of cold clouds through the thermal instability of the CAS during phases II and III, using linear analysis. Since the clouds are produced inside the CAS, the initial spatial distribution of newly formed clouds and angular momentum naturally follow the CAS dynamics, producing a flattened disk of clouds. The number of clouds in phases II and III can be estimated, as well as the filling factor of clouds in the BLR. Since the cooling function depends on the metallicity, the metallicity gradients that originate in the SF disk give rise to different properties of clouds in different radial regions. We find from the instability analysis that clouds have column density N H ∼ 22 cm –2 in the metal-rich regions whereas they have N H ∼> 10 22 cm –2 in the metal-poor regions. The metal-rich clouds

  13. Energy Levels, wavelengths and hyperfine structure measurements of Sc II

    Science.gov (United States)

    Hala, Fnu; Nave, Gillian

    2018-01-01

    Lines of singly ionized Scandium (Sc II) along with other Iron group elements have been observed [1] in the region surrounding the massive star Eta Carinae [2,3] called the strontium filament (SrF). The last extensive analysis of Sc II was the four-decade old work of Johansson & Litzen [4], using low-resolution grating spectroscopy. To update and extend the Sc II spectra, we have made observation of Sc/Ar, Sc/Ne and Sc/Ge/Ar hollow cathode emission spectrum on the NIST high resolution FT700 UV/Vis and 2 m UV/Vis/IR Fourier transform spectrometers (FTS). More than 850 Sc II lines have been measured in the wavelength range of 187 nm to 3.2 μm. connecting a total of 152 energy levels. The present work also focuses to resolve hyperfine structure (HFS) in Sc II lines. We aim to obtain accurate transition wavelengths, improved energy levels and HFS constants of Sc II. The latest results from work in progress will be presented.Reference[1] Hartman H, Gull T, Johansson S and Smith N 2004 Astron. Astrophys. 419 215[2] Smith N, Morse J A and Gull T R 2004 Astrophys. J. 605 405[3] Davidson K and Humphreys R M 1997 Annu. Rev. Astron. Astrophys. 35[4] Johansson S and Litzén U 1980 Phys. Scr. 22 49

  14. Electrochemical, spectroscopic, and photophysical properties of structurally diverse polyazine-bridged Ru(II),Pt(II) and Os(II),Ru(II),Pt(II) supramolecular motifs.

    Science.gov (United States)

    Knoll, Jessica D; Arachchige, Shamindri M; Wang, Guangbin; Rangan, Krishnan; Miao, Ran; Higgins, Samantha L H; Okyere, Benjamin; Zhao, Meihua; Croasdale, Paul; Magruder, Katherine; Sinclair, Brian; Wall, Candace; Brewer, Karen J

    2011-09-19

    Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at

  15. I. Structural studies of termite defense secretions. II. Structural studies of natural products of marine nudibranchs. [Kempene, tridachione

    Energy Technology Data Exchange (ETDEWEB)

    Solheim, B.A.

    1977-12-01

    Three families of termites have the ability to produce a sticky secretion that envelopes and immobilizes the enemy. In the family Termitidae the secretion contains the diterpenoid hydrocarbons, kempene I and kempene II. The molecular structure of kempene II from the termite, Nasutitermes kempae, is described in detail. Another species of termite, Cubitermes umbratus, contained the diterpenoid hydrocarbon biflora-4,10-19,15-triene in the secretion and this compound is described. Studies were also conducted on the mucous secretion of the pedal gland of the marine nudibranch, Tidachiella diomedea. Tridachione, a substituted ..gamma..-pyrone, was isolated in the pure state and its molecular structure is described in detail. (HLW)

  16. Room temperature femtosecond X-ray diffraction of photosystem II microcrystals

    Science.gov (United States)

    Kern, Jan; Alonso-Mori, Roberto; Hellmich, Julia; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Sellberg, Jonas; Lassalle-Kaiser, Benedikt; Gildea, Richard J.; Glatzel, Pieter; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; McQueen, Trevor A.; DiFiore, Dörte; Fry, Alan R.; Messerschmidt, Marc; Miahnahri, Alan; Schafer, Donald W.; Seibert, M. Marvin; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Messinger, Johannes; Sauter, Nicholas K.; Zouni, Athina; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.

    2012-01-01

    Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This light-driven, four-photon reaction is catalyzed by the Mn4CaO5 cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism. However, the necessity for collecting data at room temperature, especially for studying the transient steps during the O–O bond formation, requires the development of new methodologies. In this paper we report room temperature X-ray diffraction data of PS II microcrystals obtained using ultrashort (< 50 fs) 9 keV X-ray pulses from a hard X-ray free electron laser, namely the Linac Coherent Light Source. The results presented here demonstrate that the ”probe before destroy” approach using an X-ray free electron laser works even for the highly-sensitive Mn4CaO5 cluster in PS II at room temperature. We show that these data are comparable to those obtained in synchrotron radiation studies as seen by the similarities in the overall structure of the helices, the protein subunits and the location of the various cofactors. This work is, therefore, an important step toward future studies for resolving the structure of the Mn4CaO5 cluster without any damage at room temperature, and of the reaction intermediates of PS II during O–O bond formation. PMID:22665786

  17. Orientational structure formation of silk fibroin with anisotropic properties in solutions; Orientastionnoe strukturoobrazovanie fibroina shelka s anizotropnymi svojstvami v rastvorakh

    Energy Technology Data Exchange (ETDEWEB)

    Kholmuminov, A A [AS RU, Institute of Polymer Chemistry and Physics, Tashkent (Uzbekistan)

    2008-06-15

    Key words:silk fibroin, dissolution, solution's model systems, gelation, orientational crystallization, optical polarization, longitudinal stream, {alpha} - {beta} transition, structure formation, phase transformations, relaxation, anisotropy of swelling and desorption, thermo- and biodegradation. Subjects of the inquiry: silk fibroin is the main subject of investigation. Fibroin's solutions were obtained on the base of water and organic solvents, containing salts. Comparative investigations were carried out by using biosolution - secretion of silkworm, solutions of silk sericin, cotton cellulose, methylcellulose, polystyrene and (co) polycrylonitrile. Aim of the inquiry: the elucidation of the regularities of silk fibroin anisotropic structures formation in the direct generation of orientational ordering in solutions taking into account of influences of its the molecular structures, configuration information, {alpha} - {beta} conformational transformations, and development jointly using polarization-optical and hydrodynamic methods to control of structure formation. And also definition of possibility fields for use biopolymers anisotropic structure formation principles. Method of inquiry: birefringence, dispersion optical rotation, circular dichroism, polarization- ultramicroscope, ultracentrifuge, viscosimetry, potentiometry, differential thermal analysis, chromatography, x-ray analysis, spectroscopy. The results achieved and their novelty: the physical regularity amorphous-crystalline fibroin dissolutions in salt-containing solvents based on chains melting, distribution and redistribution were recognized; fibroin statistical parameters, molecular-mass and conformational characteristics were established; It was shown that fibroin molecules turned into fully uncoiled and oriented state with the breakdown decay of {alpha}-spiral chain sections by I type phase transition mechanism, but in oriented state with {alpha}-spiral conservation by II type transition; the

  18. Waste disposal of HYLIFE II structure: Issues and assessment

    International Nuclear Information System (INIS)

    Lee, J.D.

    1992-01-01

    Initial analysis has shown that by using 304 stainless steel (SS) a significant fraction (92 wt%) of the structural mass in the initial HYLIFE-II design could be disposed of by shallow burial. And if all the structural components are mixed together and treated as one entity, all of it could be disposed of by shallow burial. Two other types of SSs assessed, Mn-modified 316 and Prime Candidate Alloy (PCA), were found to require disposal by deep geologic burial of most of the structural mass. The presents of Nb and Mo in Mn-modified 316 and Prime Candidate Alloy (PCA), were found to dominate the generation of long term wastes produced and their presence should be avoided

  19. DNA structure in human RNA polymerase II promoters

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1998-01-01

    with a very low level of sequence similarity. The sequences, which include both TATA-containing and TATA-less promoters, are aligned by hidden Markov models. Using three different models of sequence-derived DNA bendability, the aligned promoters display a common structural profile with bendability being low...... protein in a manner reminiscent of DNA in a nucleosome. This notion is further supported by the finding that the periodic bendability is caused mainly by the complementary triplet pairs CAG/CTG and GGC/GCC, which previously have been found to correlate with nucleosome positioning. We present models where......The fact that DNA three-dimensional structure is important for transcriptional regulation begs the question of whether eukaryotic promoters contain general structural features independently of what genes they control. We present an analysis of a large set of human RNA polymerase II promoters...

  20. Structure of the P{sub II} signal transduction protein of Neisseria meningitidis at 1.85 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Charles E. [Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Sainsbury, Sarah; Berrow, Nick S.; Alderton, David [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Saunders, Nigel J. [The Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Stammers, David K. [Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Owens, Raymond J., E-mail: ray@strubi.ox.ac.uk [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2006-06-01

    The structure of the P{sub II} signal transduction protein of N. meningitidis at 1.85 Å resolution is described. The P{sub II} signal transduction proteins GlnB and GlnK are implicated in the regulation of nitrogen assimilation in Escherichia coli and other enteric bacteria. P{sub II}-like proteins are widely distributed in bacteria, archaea and plants. In contrast to other bacteria, Neisseria are limited to a single P{sub II} protein (NMB 1995), which shows a high level of sequence identity to GlnB and GlnK from Escherichia coli (73 and 62%, respectively). The structure of the P{sub II} protein from N. meningitidis (serotype B) has been solved by molecular replacement to a resolution of 1.85 Å. Comparison of the structure with those of other P{sub II} proteins shows that the overall fold is tightly conserved across the whole population of related proteins, in particular the positions of the residues implicated in ATP binding. It is proposed that the Neisseria P{sub II} protein shares functions with GlnB/GlnK of enteric bacteria.

  1. The formation of dissipative structures in polymers as a model of synergy

    Directory of Open Access Journals (Sweden)

    Khanchich Oleg A.

    2016-01-01

    Full Text Available Synergetic is an interdisciplinary area and describes the emergence of various kinds of structures, using the representation of the natural sciences. In this paper we studied the conditions for the appearance of thermodynamically stable amorphous-crystalline supramolecular structures on the basis of practical importance for the production of heat-resistant high-strength polymer fibers semi-rigid systems. It is found that in the process of structure formation in the coagulation of the polymer from solutions having supramolecular structures area a definite geometric shape and dimensions. Pattern formation in such systems can simulate the processes studied synergy. This is occurring in the process of self-organization of dissipative structures, transitions from one structure to another. This most discussed matter of self-organization on the “optical” scale level, are observed spherulites have a “correct” form and certain geometric dimensions comparable to the wavelength of visible light. Previously, this polymer does not crystallize at all considered. It is shown that for the study of supramolecular structures are the most convenient and informative experimental approaches are polarization-optical methods, which are directly “tuned” to the optical anisotropy of the structure and morphology. The great advantage of these methods is also possible to study the kinetics of structure formation processes without interfering the system under study.

  2. CHARACTERISTICS OF STRUCTURE FORMATION IN COOKED SAUSAGE PRODUCTS USING SONOCHEMICAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    A. M. Yevtushenko

    2016-01-01

    Full Text Available This paper studies the features of formation of sausage product structure in the process of cooking. It is shown that the viscosity of sausage meat varies in a complex manner and has three characteristic areas. The characteristic parameters that determine the formation of the structure of sausages for each area were found. It is established that the use of the cavitation brine gives the finished product a gentle consistence, elasticity and distinct taste that makes it more preferable for the consumer.

  3. Photoionization-regulated star formation and the structure of molecular clouds

    Science.gov (United States)

    Mckee, Christopher F.

    1989-01-01

    A model for the rate of low-mass star formation in Galactic molecular clouds and for the influence of this star formation on the structure and evolution of the clouds is presented. The rate of energy injection by newly formed stars is estimated, and the effect of this energy injection on the size of the cloud is determined. It is shown that the observed rate of star formation appears adequate to support the observed clouds against gravitational collapse. The rate of photoionization-regulated star formation is estimated and it is shown to be in agreement with estimates of the observed rate of star formation if the observed molecular cloud parameters are used. The mean cloud extinction and the Galactic star formation rate per unit mass of molecular gas are predicted theoretically from the condition that photionization-regulated star formation be in equilibrium. A simple model for the evolution of isolated molecular clouds is developed.

  4. Crystal structure of a looped-chain CoII coordination polymer: catena-poly[[bis-(nitrato-κO)cobalt(II)]bis-[μ-bis-(pyridin-3-ylmeth-yl)sulfane-κ2N:N'

    Science.gov (United States)

    Moon, Suk-Hee; Seo, Joobeom; Park, Ki-Min

    2017-11-01

    The asymmetric unit of the title compound, [Co(NO 3 ) 2 (C 12 H 12 N 2 S) 2 ] n , contains a bis-(pyridin-3-ylmeth-yl)sulfane ( L ) ligand, an NO 3 - anion and half a Co II cation, which lies on an inversion centre. The Co II cation is six-coordinated, being bound to four pyridine N atoms from four symmetry-related L ligands. The remaining coordination sites are occupied by two O atoms from two symmetry-related nitrate anions in a monodentate manner. Thus, the Co II centre adopts a distorted octa-hedral geometry. Two symmetry-related L ligands are connected by two symmetry-related Co II cations, forming a 20-membered cyclic dimer, in which the Co II atoms are separated by 10.2922 (7) Å. The cyclic dimers are connected to each other by sharing Co II atoms, giving rise to the formation of an infinite looped chain propagating along the [101] direction. Inter-molecular C-H⋯π (H⋯ring centroid = 2.89 Å) inter-actions between one pair of corresponding L ligands and C-H⋯O hydrogen bonds between the L ligands and the nitrate anions occur in the looped chain. In the crystal, adjacent looped chains are connected by inter-molecular π-π stacking inter-actions [centroid-to-centroid distance = 3.8859 (14) Å] and C-H⋯π hydrogen bonds (H⋯ring centroid = 2.65 Å), leading to the formation of layers parallel to (101). These layers are further connected through C-H⋯O hydrogen bonds between the layers, resulting in the formation of a three-dimensional supra-molecular architecture.

  5. STAR FORMATION LAWS AND THRESHOLDS FROM INTERSTELLAR MEDIUM STRUCTURE AND TURBULENCE

    International Nuclear Information System (INIS)

    Renaud, Florent; Kraljic, Katarina; Bournaud, Frédéric

    2012-01-01

    We present an analytical model of the relation between the surface density of gas and star formation rate in galaxies and clouds, as a function of the presence of supersonic turbulence and the associated structure of the interstellar medium (ISM). The model predicts a power-law relation of index 3/2, flattened under the effects of stellar feedback at high densities or in very turbulent media, and a break at low surface densities when ISM turbulence becomes too weak to induce strong compression. This model explains the diversity of star formation laws and thresholds observed in nearby spirals and their resolved regions, the Small Magellanic Cloud, high-redshift disks and starbursting mergers, as well as Galactic molecular clouds. While other models have proposed interstellar dust content and molecule formation to be key ingredients to the observed variations of the star formation efficiency, we demonstrate instead that these variations can be explained by ISM turbulence and structure in various types of galaxies.

  6. Investigation of detergent effects on the solution structure of spinach Light Harvesting Complex II

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Mateus B; Smolensky, Dmitriy; Heller, William T; O' Neill, Hugh, E-mail: hellerwt@ornl.gov, E-mail: oneillhm@ornl.gov [Center for Structural Molecular Biology, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2010-11-01

    The properties of spinach light harvesting complex II (LHC II), stabilized in the detergents Triton X-100 (TX100) and n-Octyl-{beta}-D-Glucoside (BOG), were investigated by small-angle neutron scattering (SANS). The LHC II-BOG scattering curve overlaid well with the theoretical scattering curve generated from the crystal structure of LHC II indicating that the protein preparation was in its native functional state. On the other hand, the simulated LHC II curve deviated significantly from the LHC II-TX100 experimental data. Analysis by circular dichroism spectroscopy supported the SANS analysis and showed that LHC II-TX100 is inactivated. This investigation has implications for extracting and stabilizing photosynthetic membrane proteins for the development of biohybrid photoconversion devices.

  7. Water-insoluble Silk Films with Silk I Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Q.; Hu, X; Wang, X; Kluge, J; Lu, S; Cebe, P; Kaplan, D

    2010-01-01

    Water-insoluble regenerated silk materials are normally produced by increasing the {beta}-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the core surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and {alpha}-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 C, without crystallization above the T{sub g}, but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low {beta}-sheet content.

  8. Plasma turbulence. Structure formation, selection rule, dynamic response and dynamics transport

    International Nuclear Information System (INIS)

    Ito, Sanae I.

    2010-01-01

    The five-year project of Grant-in-Aid for Specially Promoted Research entitled general research on the structure formation and selection rule in plasma turbulence had brought many outcomes. Based on these outcomes, the Grant-in-Aid for Scientific Research (S) program entitled general research on dynamic response and dynamic transport in plasma turbulence has started. In the present paper, the state-of-the-art of the research activities on the structure formation, selection rule and dynamics in plasma turbulence are reviewed with reference to outcomes of these projects. (author)

  9. Compact stellar object: the formation and structure

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, S.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Full text: The formation of compact objects is viewed at the final stages of stellar evolution. The supernova explosion events are then focalized to explain the formation of pulsars, hybrid neutron star and the limit case of the latter, the quark stars. We discuss the stability and structure of these objects in connection with the properties of the hadron and quark-gluon plasma equation of state. The hadron-quark phase transition in deep interior of these objects is discussed taking into account the implications on the density distribution of matter along the radial direction. The role of neutrinos confinement in the ultradense stellar medium in the early stages of pulsar formation is another interesting aspect to be mentioned in this presentation. Recent results for maximum mass of compact stellar objects for different forms of equations of state will be shown, presenting some theoretical predictions for maximum mass of neutron stars allowed by different equations of state assigned to dense stellar medium. Although a density greater than few times the nuclear equilibrium density appears in deep interior of the core, at the crust the density decreases by several orders of magnitude where a variety of hadronic states appears, the 'pasta'-states of hadrons. More externally, a lattice of nuclei can be formed permeated not only by electrons but also by a large amount of free neutrons and protons. These are possible structure of neutron star crust to have the density and pressures with null values at the neutron star surface. The ultimate goal of this talk is to give a short view of the compact star area for students and those who are introducing in this subject. (author)

  10. In-situ observation of structure formation in polymer processing

    International Nuclear Information System (INIS)

    Murase, Hiroki

    2009-01-01

    In-situ X-ray scattering in polymer processing is a crucial method to elucidate the mechanism of structure formation in the process. Fiber spinning is one such process primarily imposing extensional deformation on polymeric melt at the spin-line during rapid cooling. In-situ small-angle X-ray scattering using synchrotron radiation on the spinning process allows direct observation of the transient structure developing in the process. (author)

  11. Inorganic and organic structures as interleavers among [bis(1-methyl-3-(p-carboxylatephenyl)triazenide 1-oxide)Ni(II)] complexes to form supramolecular arrangements

    Science.gov (United States)

    Santos, Aline Joana Rolina Wohlmuth Alves; dos Santos Hackbart, Helen Cristina; Giacomini, Gabriela Xavier; Bersch, Patrícia; Paraginski, Gustavo Luiz; Hörner, Manfredo

    2016-12-01

    Alternative compounds to capture metal ions are triazenes 1-oxide since they are basic compounds O(N) with negative charge in the deprotonated form. The proximity of both coordination sites (O and N) enables these compounds to have good chelating ability and a tendency to stabilize in the formation of rings with soft and hard transition metal ions. The structure analysis by single crystal X-ray diffraction of compounds (1) and (2) demonstrate the formation of 3D supramolecular arrangements through ion-ion, ion-dipolo and dipolo-dipolo interactions. In one of them, there are [(H2O)2(CH3CH3SO)K2]2+ as linkers of polymerization and, in another complex, there are [(H2O)(CH3CH3SO)Ni(H2O)6]2+ as a linker of polymerization. These linkers act in the polymerization of the novel mononuclear complex [bis(1-methyl (p-carboxylatephenyl) triazenide 1-oxide) NiII] (3). The crystallography analysis of (1) and (2) showed distorted quadratic geometry for Ni (II), thus, there are two axial positions available in Ni (II) to be used in catalysis studies and as sensor or biosensor. In addition, this study shows the support of this novel mononuclear complex of Ni (II) (3) on protonated chitosan chains (4). The compounds (3) and (4) were characterized by spectroscopic analysis, infrared (IR) and energy dispersive X-ray detector (EDS), and by differential scanning calorimetry analysis (DSC). The specificity of ligand 1-methyl (p-carboxyphenyl) triazene 1-oxide to capture potassium and nickel ions will be tested at different pH values, as well as the capacity of the triazenide 1-oxide of Ni (II) complex, supported on chitosan polymer, or not, to act as a catalyst for organic reactions and biomimetic organic reactions.

  12. Importance of intrinsic properties of dense caseinate dispersions for structure formation

    NARCIS (Netherlands)

    Manski, J.M.; Riemsdijk, van L.E.; Goot, van der A.J.; Boom, R.M.

    2007-01-01

    Rheological measurements of dense calcium caseinate and sodium caseinate dispersions (15%) provided insight into the factors determining shear-induced structure formation in caseinates. Calcium caseinate at a sufficiently high concentration (30%) was shown to form highly anisotropic structures

  13. Frequency formats, probability formats, or problem structure? A test of the nested-sets hypothesis in an extensional reasoning task

    Directory of Open Access Journals (Sweden)

    William P. Neace

    2008-02-01

    Full Text Available Five experiments addressed a controversy in the probability judgment literature that centers on the efficacy of framing probabilities as frequencies. The natural frequency view predicts that frequency formats attenuate errors, while the nested-sets view predicts that highlighting the set-subset structure of the problem reduces error, regardless of problem format. This study tested these predictions using a conjunction task. Previous studies reporting that frequency formats reduced conjunction errors confounded reference class with problem format. After controlling this confound, the present study's findings show that conjunction errors can be reduced using either a probability or a frequency format, that frequency effects depend upon the presence of a reference class, and that frequency formats do not promote better statistical reasoning than probability formats.

  14. The Latent Symptom Structure of the Beck Depression Inventory-II in Outpatients with Major Depression

    Science.gov (United States)

    Quilty, Lena C.; Zhang, K. Anne; Bagby, R. Michael

    2010-01-01

    The Beck Depression Inventory-II (BDI-II) is a self-report instrument frequently used in clinical and research settings to assess depression severity. Although investigators have examined the factor structure of the BDI-II, a clear consensus on the best fitting model has not yet emerged, resulting in different recommendations regarding how to best…

  15. Modulated structure formation in demixing paraffin blends

    International Nuclear Information System (INIS)

    Gilbert, E.P.

    2002-01-01

    Small angle scattering (SANS and SAXS) and differential scanning calorimetry have been measured from C 28 :C 36 normal paraffin mixtures of varying composition quenched from the melt. Satellite peaks are observed in the SAXS whose offset in Q, relative to Bragg diffraction peaks associated with the average structure, are composition dependent. The offset is close to the position of the most intense peak observed in SANS. Scattering from the quenched structures is consistent with a correlated displacement and substitutional disorder model yielding modulations that are incommensurate with the average lattice. DSC shows an additional endotherm in the mixtures that is not present in the pure components and is associated with this superstructure formation. (orig.)

  16. Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of Co(II)- picolinate complex

    Energy Technology Data Exchange (ETDEWEB)

    Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Avcı, Davut; Atalay, Yusuf

    2015-11-15

    A cobalt(II) complex of picolinate was synthesized, and its structure was fully characterized by the applying of X-ray diffraction method as well as FT-IR, FT-Raman and UV–vis spectroscopies. In order to both support the experimental results and convert study to more advanced level, density functional theory calculations were performed by using B3LYP level. Single crystal X-ray structural analysis shows that cobalt(II) ion was located to the center of distorted octahedral geometry. The C=O, C=C and C=N stretching vibrations were found as highly active and strong peaks, inducing the molecular charge transfer within Co(II) complex. The small energy gap between frontier molecular orbital energies was another indicator of molecular charge transfer interactions within Co(II) complex. The nonlinear optical properties of Co(II) complex were investigated at DFT/B3LYP level, and the hypepolarizability parameter was found to be decreased due to the presence of inversion symmetry. The natural bond orbital (NBO) analysis was performed to investigate molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength for Co(II) complex. Finally, molecular electrostatic potential (MEP) and spin density distributions for Co(II) complex were evaluated. - Highlights: • Co(II) complex of picolinate was prepared. • Its FT-IR, FT-Raman and UV–vis spectra were measured. • DFT calculations were performed to support experimental results. • Small HOMO-LUMO energy gap is an indicator of molecular charge transfer. • Spin density localized on Co(II) as well as O and N atoms.

  17. Structural and magnetic characterization of mixed valence Co(II, III)xZn1−xO epitaxial thin films

    International Nuclear Information System (INIS)

    Negi, D.S.; Loukya, B.; Dileep, K.; Sahu, R.; Shetty, S.; Kumar, N.; Ghatak, J.; Pachauri, N.; Gupta, A.; Datta, R.

    2014-01-01

    In this article, we report on the Co atom incorporation, secondary phase formation and composition-dependent magnetic and optical properties of mixed valence Co(II, III) x Zn 1−x O epitaxial thin films grown by pulsed laser deposition. The intended total Co concentration is varied between ∼6–60 at.% with relatively higher concentration of +3 over +2 charge state. Mixed valence Co(II, III) shows high solubility in ZnO (up to 38 at.%) and ferromagnetism is observed in samples with total Co incorporation of ∼29 and 38 at.%. Electron diffraction pattern and high resolution transmission electron microscopy images reveal single crystalline nature of the thin films with wurtzite structure. Co oxide interlayer, with both rock salt and spinel structure, are observed to be formed between the substrate and wurtzite film for total Co concentration at ∼17 at.% and above. Magnetization shows composition dependence with a saturation moment value of ∼93 emu cm −3 and a coercive field of ∼285 Oe observed for ∼38 at.% Co:ZnO films. Ferromagnetism was not observed for films with Co concentration 17 and 9 at.%. The Co oxide interlayer does not show any ferromagnetism. All the films are n-type with carrier concentration ∼10 19 cm −3 . The observed magnetism is probably resulting from direct antiferromagntic exchange interaction between Co 2+ and Co 3+ ions favored by heavy Co alloying giving rise to ferrimagnetism in the system. - Highlights: • Mixed valence Co doped ZnO ferromagnetic single crystal thin film. • Secondary phase formation in terms of CoO and Co3O4 and magnetism is observed only for high Co alloying. • Cathodoluminescence (CL) data showing increase in band gap with Co concentrations

  18. BOOK REVIEW: Structures in the Universe by Exact Methods: Formation, Evolutions, Interactions (Cambridge Monographs on Mathematical Physics) Structures in the Universe by Exact Methods: Formation, Evolutions, Interactions (Cambridge Monographs on Mathematical Physics)

    Science.gov (United States)

    Coley, Alan

    2010-05-01

    In this book the use of inhomogeneous models in cosmology, both in modelling structure formation and interpreting cosmological observations, is discussed. The authors concentrate on exact solutions, and particularly the Lemaitre-Tolman (LT) and Szekeres models (the important topic of averaging is not discussed). The book serves to demonstrate that inhomogeneous metrics can generate realistic models of cosmic structure formation and nonlinear evolution and shows that general relativity has a lot more to offer to cosmology than just the standard spatially homogeneous FLRW model. I would recommend this book to people working in theoretical cosmology. In the introduction (and in the concluding chapter and throughout the book) a reasonable discussion of the potential problems with the standard FLRW cosmology is presented, and a list of examples illustrating the limitations of standard FLRW cosmology are discussed (including potential problems with perturbation methods). In particular, the authors argue that the assumptions of isotropy and spatial homogeneity (and consequently the Copernican principle) must be properly challenged and revisited. Indeed, it is possible for `good old general relativity' to be used to explain cosmological observations without introducing speculative elements. In part I of the book the necessary background is presented (readers need a background in general relativity theory at an advanced undergraduate or graduate level). There is a good (and easy to read) review of the exact spherically symmetric dust Lemaitre-Tolman model (LT) (often denoted the LTB model) and the Lemaitre and Szekeres models. Light propogation (i.e. null geodesics, for both central and off-center observers) in exact inhomogeneous (LT) models is reviewed. In part II a number of applications of exact inhomogeneous models are presented (taken mainly from the authors' own work). In chapter 4, the evolution of exact inhomogeneous models (primarily the LT model, but also the

  19. Structural studies on a non-toxic homologue of type II RIPs from ...

    Indian Academy of Sciences (India)

    Structural studies on a non-toxic homologue of type II RIPs from bitter gourd: Molecular basis of non-toxicity, conformational selection and glycan structure. MS accepted http://www.ias.ac.in/jbiosci. THYAGESHWAR CHANDRAN, ALOK SHARMA and M VIJAYAN. J. Biosci. 40(5), October 2015, 929–941, © Indian Academy of ...

  20. Crystal structures of bis(cyanido)bis(N,N Prime -diethylthiourea-{kappa}S) mercury(II) and bis(cyanido)bis(N,N Prime -dipropylthiourea-{kappa}S) mercury(II)

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Saeed, E-mail: saeed_a786@hotmail.com; Sadaf, Haseeba [University of Engineering and Technology, Department of Chemistry (Pakistan); Altaf, Muhammad; Stoeckli-Evans, Helen [University of Neuchatel, Institute of Physics (Switzerland); Seerat-ur-Rehman [University of Engineering and Technology, Department of Chemistry (Pakistan); Bashir, Sarfaraz Ahmed [Government College Asghar Mall, Department of Chemistry (Pakistan)

    2013-09-15

    Two mercury(II) complexes containing cyanide and, N,N Prime -diethylthiourea (detu) and N,N Prime -dipropylthiourea (dprtu) ligands, [(detu){sub 2}Hg(CN){sub 2}] (1) and [(dprtu){sub 2}Hg(CN){sub 2}] (2), respectively, have been prepared and characterized by X-ray crystallography. In the both complexes Hg atom lies on a 2-fold rotation axis, and is coordinated to the sulfur atoms of two thiourea ligands and to two cyanide carbon atoms. Both have a distorted tetrahedral environment with bond angles about the Hg atoms in the range of 93.41(4) Degree-Sign -146.75(19) Degree-Sign . In the crystal structures symmetry related molecules are linked via N-H-N hydrogen bonds resulting in the formation of a two-dimensional network in 1, while in 2 a double stranded one-dimensional chain is formed.

  1. Mononuclear mercury(II) complexes containing bipyridine derivatives and thiocyanate ligands: Synthesis, characterization, crystal structure determination, and luminescent properties

    Science.gov (United States)

    Amani, Vahid; Alizadeh, Robabeh; Alavije, Hanieh Soleimani; Heydari, Samira Fadaei; Abafat, Marzieh

    2017-08-01

    A series of mercury(II) complexes, [Hg(Nsbnd N)(SCN)2] (Nsbnd N is 4,4‧-dimethyl-2,2‧-bipyridine in 1, 5,5‧-dimethyl-2,2‧-bipyridine in 2, 6,6‧-dimethyl-2,2‧-bipyridine in 3 and 6-methyl-2,2‧-bipyridine in 4), were prepared from the reactions of Hg(SCN)2 with mentioned ligands in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurement by methanol diffusion into a DMSO solution. The four complexes were thoroughly characterized by spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), elemental analysis (CHNS) and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the mercury(II) cation is four-coordinated in a distorted tetrahedral configuration by two S atoms from two thiocyanate anions and two N atoms from one chelating 2,2‧-bipyridine derivative ligand. Also, in these complexes intermolecular interactions, for example Csbnd H⋯N hydrogen bonds (in 1-4), Csbnd H⋯S hydrogen bonds (in 1, 2 and 4), π … π interactions (in 2-4), Hg⋯N interactions (in 2) and S⋯S interactions (in 4), are effective in the stabilization of the crystal structures and the formation of the 3D supramolecular complexes. Furthermore, the luminescence spectra of the title complexes show that the intensity of their emission bands are stronger than the emission bands for the free bipyridine derivative ligands.

  2. Physical phenomena stipulating nucleus formation, growth and structure films

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, L N [AN SSSR, Novosibirsk. Inst. Fiziki Poluprovodnikov

    1975-03-01

    This review is concerned with the physical phenomena responsible for the nucleation, growth and structure of films. Emphasis is placed on the study of films of solid-metal systems, semiconductors (In, As, Cd, Se, CdS), and dielectrics. The following problems are discussed in the paper: general regularities of the thermodynamics and kinetics of film formation, methods of obtaining a solid film, the process of film formation, the rate of growth of individual grains. The critical film thickness and its measurement are also considered. The results of investigating the process of formation of mono- and polycrystalline films are discussed. It is concluded, on the basis of studies into the relaxation processes accompanying the growth of films, that an insight into these processes will permits improving film properties.

  3. How relevant are assembled equilibrium samples in understanding structure formation during lipid digestion?

    Science.gov (United States)

    Phan, Stephanie; Salentinig, Stefan; Hawley, Adrian; Boyd, Ben J

    2015-10-01

    Lipid-based formulations are gaining interest for use as drug delivery systems for poorly water-soluble drug compounds. During digestion, the lipolysis products self-assemble with endogenous surfactants in the gastrointestinal tract to form colloidal structures, enabling enhanced drug solubilisation. Although earlier studies in the literature focus on assembled equilibrium systems, little is known about structure formation under dynamic lipolysis conditions. The purpose of this study was to investigate the likely colloidal structure formation in the small intestine after the ingestion of lipids, under equilibrium and dynamic conditions. The structural aspects were studied using small angle X-ray scattering and dynamic light scattering, and were found to depend on lipid composition, lipid chain length, prandial state and emulsification. Incorporation of phospholipids and lipolysis products into bile salt micelles resulted in swelling of the structure. At insufficient bile salt concentrations, a co-existing lamellar phase was observed, due to a reduction in the solubilisation capacity for lipolysis products. Emulsification accelerated the rate of lipolysis and structure formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Density perturbations for running vacuum: a successful approach to structure formation and to the σ8-tension

    Science.gov (United States)

    Gómez-Valent, Adrià; Peracaula, Joan Solà

    2018-04-01

    Recent studies suggest that dynamical dark energy (DDE) provides a better fit to the rising affluence of modern cosmological observations than the concordance model (ΛCDM) with a rigid cosmological constant, Λ. Such is the case with the running vacuum models (RVMs) and to some extent also with a simple XCDM parametrization. Apart from the cosmic microwave background (CMB) anisotropies, the most crucial datasets potentially carrying the DDE signature are: i) baryonic acoustic oscillations (BAO), and ii) direct large scale structure (LSS) formation data (i.e. the observations on f(z)σ8(z) at different redshifts). As it turns out, analyses mainly focusing on CMB and with insufficient BAO+LSS input, or those just making use of gravitational weak-lensing data for the description of structure formation, generally fail to capture the DDE signature, whereas the few existing studies using a rich set of CMB+BAO+LSS data (see in particular Solà, Gómez-Valent & de Cruz Pérez 2015, 2017; and Zhao et al. 2017) do converge to the remarkable conclusion that DDE might well be encoded in the current cosmological observations. Being the issue so pressing, here we explain both analytically and numerically the origin of the possible hints of DDE in the context of RVMs, which arise at a significance level of 3 - 4σ. By performing a detailed study on the matter and vacuum perturbations within the RVMs, and comparing with the XCDM, we show why the running vacuum fully relaxes the existing σ8-tension and accounts for the LSS formation data much better than the concordance model.

  5. A new Pb{sup II}(ethylenediaminetetraacetate) coordination polymer with a two-dimensional layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, D., E-mail: iamzd@hpu.edu.cn; Zhang, R. H.; Li, F. F. [Henan Polytechnic University, Department of Physics and Chemistry (China)

    2016-12-15

    A new Pb{sup II}−edta{sup 4–} coordination polymer, Pb{sub 2}(edta)(H{sub 2}O){sub 0.76} (edta{sup 4–} = ethylenediaminetetraacetate) was synthesized under hydrothermal condition. Single crystal X-ray analysis reveals that it represents a novel two-dimensional (2D) Pb{sup 2+}–edta{sup 4–} layer structure with a (4,8{sup 2})-topology. Each edta{sup 4–} ligand employs its four carboxylate O and two N atoms to chelate one Pb{sup II} atom (hexa-coordinated) and connects five Pb{sup II} atoms (ennea-coordinated) via its four carboxylate groups to form 2D layer framework. Adjacent layers are packed into the overall structure through vander Waals interactions.

  6. Four Mixed-Ligand Zn(II Three-Dimensional Metal-Organic Frameworks: Synthesis, Structural Diversity, and Photoluminescent Property

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    2017-11-01

    Full Text Available Assemblies of four three-dimensional (3D mixed-ligand coordination polymers (CPs having formulas, {[Zn2(bdc2(4-bpdh]·C2H5OH·2H2O}n (1, [Zn(bdc(4-bpdh]n (2, {[Zn2(bdc2(4-bpdh2]·(4-bpdh}n (3, and {[Zn(bdc(4-bpdh]·C2H5OH}n (4 (bdc2− = dianion of 1,4-benzenedicarboxylic acid, 4-bpdh = 2,5-bis(4-pyridyl-3,4-diaza-2,4-hexadiene have been synthesized and structurally characterized by single-crystal X-ray diffraction method. Structural determination reveals that the coordination numbers (geometry of Zn(II ions in 1, 2, 3, and 4 are five (distorted square-pyramidal (SP, six (distorted octahedral (Oh, five (trigonal-bipyramidal (TBP, and four (tetrahedral (Td, respectively, and are bridged by 4-bpdh with bis-monodentate coordination mode and bdc2− ligands with bis-bidentate in 1, chelating/bidentate in 2, bis-monodentate and bis-bidentate in 3, and bis-monodentate in 4, to generate two-fold interpenetrating 3D cube-like metal-organic framework (MOF with pcu topology, non-interpenetrating 3D MOF, two-fold interpenetrating 3D rectangular-box-like MOF with pcu topology and five-fold interpenetrating diamondoid-like MOF with dia topology, respectively. These different intriguing architectures indicate that the coordination numbers and geometries of Zn(II ions, coordination modes of bdc2− ligand, and guest molecules play important roles in the construction of MOFs and the formation of the structural topologies and interpenetrations. Thermal stabilities, and photoluminescence study of 1–4 were also studied in detail. The complexes exhibit ligands based photoluminescence properties at room temperature.

  7. Synthesis of high-surface-area γ-Al2O3 from aluminum scrap and its use for the adsorption of metals: Pb(II), Cd(II) and Zn(II)

    International Nuclear Information System (INIS)

    Asencios, Yvan J.O.; Sun-Kou, María R.

    2012-01-01

    Highlights: ► Aluminum hydroxide obtained from aluminum scrap led to the formation of gamma alumina. ► Acidic pH of precipitation favored the formation of small particles of high surface areas. ► Higher aging temperature favored the formation of large structures of large pore sizes. ► Higher aging temperature generated symmetrical solids of regular hexagonal prism forms. ► Aluminas of large pores adsorbed metals as following: Pb (1.75 Å) > Cd (1.54 Å) > Zn (1.38 Å). - Abstract: Several types of alumina were synthesized from sodium aluminate (NaAlO 2 ) by precipitation with sulfuric acid (H 2 SO 4 ) and subsequently calcination at 500 °C to obtain γ-Al 2 O 3 . The precursor aluminate was derived from aluminum scrap. The various γ-Al 2 O 3 synthesized were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), adsorption–desorption of N 2 (S BET ) and scanning electron microscopy (SEM). XRD revealed that distinct phases of Al 2 O 3 were formed during thermal treatment. Moreover, it was observed that conditions of synthesis (pH, aging time and temperature) strongly affect the physicochemical properties of the alumina. A high-surface-area alumina (371 m 2 g −1 ) was synthesized under mild conditions, from inexpensive raw materials. These aluminas were tested for the adsorption of Cd(II), Zn(II) and Pb(II) from aqueous solution at toxic metal concentrations, and isotherms were determined.

  8. GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin; Tan, Jonathan C. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Loo, Sven Van [School of Physics and Astronomy, University of Leeds (United Kingdom); Christie, Duncan [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Collins, David [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2017-02-01

    We investigate giant molecular cloud collisions and their ability to induce gravitational instability and thus star formation. This mechanism may be a major driver of star formation activity in galactic disks. We carry out a series of 3D, magnetohydrodynamics (MHD), adaptive mesh refinement simulations to study how cloud collisions trigger formation of dense filaments and clumps. Heating and cooling functions are implemented based on photo-dissociation region models that span the atomic-to-molecular transition and can return detailed diagnostic information. The clouds are initialized with supersonic turbulence and a range of magnetic field strengths and orientations. Collisions at various velocities and impact parameters are investigated. Comparing and contrasting colliding and non-colliding cases, we characterize morphologies of dense gas, magnetic field structure, cloud kinematic signatures, and cloud dynamics. We present key observational diagnostics of cloud collisions, especially: relative orientations between magnetic fields and density structures, like filaments; {sup 13}CO( J = 2-1), {sup 13}CO( J = 3-2), and {sup 12}CO( J = 8-7) integrated intensity maps and spectra; and cloud virial parameters. We compare these results to observed Galactic clouds.

  9. Synthesis and characterization of chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), cadmium(II) and dioxouranium(VI) complexes of 4(2-pyridyl)-1-(2,4-dihydroxybenzaldehyde)-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    Abu El-Reash, G.M.; Ibrahim, M.M.; Kenawy; El-Ayaan, Usama; Khattab, M.A.

    1994-01-01

    A few complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and dioxouranium(VI) with 4(2-pyridyl)-1-(2,4-dihydroxybenzaldehyde)-3-thiosemicarbazone have been synthesised and characterized on the basis of elemental analysis, IR, electronic NMR, and magnetic moment data. An octahedral structure is proposed for the Cr(III), Fe(III), Co(II) and Ni(H 3 PBT) 2 Cl 2 .2H 2 O complexes; a tetrahedral structure for the Mn(II) and Ni 2 (PBT)OAc.H 2 0 complexes and a square planar structure for the Cu(II) complexes. The antimicrobial and antifungal activities of H 3 PBT and of its metal(II) complexes are investigated. The results reveal that H 3 PBT exhibits greater antimicrobial activities than its complexes. (author). 34 refs., 4 figs., 2 tabs

  10. 2-Aminopyridinium (2-aminopyridinetrichloridonickelate(II

    Directory of Open Access Journals (Sweden)

    T. Balasubramanian

    2008-04-01

    Full Text Available In the title compound, (C5H7N2[NiCl3(C5H6N2], the NiII atom is four-coordinated by three chloride anions and one N atom of a 2-aminopyridine ligand, forming a distorted tetrahedral coordination. In the crystal structure, cations and complex anions are linked into chains along the a, b and c axes by N—H...Cl hydrogen bonds, leading to the formation of a three-dimensional framework.

  11. Dependence of the enthalpies of formation of glycylglycinate complexes of nickel(II) on the composition of a mixed water-dimethylsulfoxide solvent

    Science.gov (United States)

    Naumov, V. V.; Kovaleva, Yu. A.; Isaeva, V. A.; Usacheva, T. R.; Sharnin, V. A.

    2014-06-01

    The heat effects of the complexation reactions of nickel(II) with a glycylglycinate ion in a water-dimethylsulfoxide solvent in a range of compositions of 0.00-0.60 molar parts of dimethylsulfoxide (DMSO) (an ionic strength of 0.1 was maintained using sodium perchlorate) were determined by means of calorimetry at 298.15 K. It is established that the exothermicity of complexation reactions rises by the first two steps and falls upon the addition of a third glycylglycinate anion with an increase in the concentration of DMSO. It is shown that the formation of mono- and bis-glycylglycinate complexes of nickel(II) in a water-DMSO solvent is determined mostly by the enthalpic contribution. It is concluded that the formation of tris-ligand complexes is more associated with the entropic contribution.

  12. Amelotin Gene Structure and Expression during Enamel Formation in the Opossum Monodelphis domestica

    Science.gov (United States)

    Gasse, Barbara; Liu, Xi; Corre, Erwan; Sire, Jean-Yves

    2015-01-01

    Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein family, which also includes the enamel matrix proteins amelogenin, ameloblastin and enamelin. Although AMTN is supposed to play an important role in enamel formation, data were long limited to the rodents, in which it is expressed during the maturation stage. Recent comparative studies in sauropsids and amphibians revealed that (i) AMTN was expressed earlier, i.e. as soon as ameloblasts are depositing the enamel matrix, and (ii) AMTN structure was different, a change which mostly resulted from an intraexonic splicing in the large exon 8 of an ancestral mammal. The present study was performed to know whether the differences in AMTN structure and expression in rodents compared to non-mammalian tetrapods dated back to an early ancestral mammal or were acquired later in mammalian evolution. We sequenced, assembled and screened the jaw transcriptome of a neonate opossum Monodelphis domestica, a marsupial. We found two AMTN transcripts. Variant 1, representing 70.8% of AMTN transcripts, displayed the structure known in rodents, whereas variant 2 (29.2%) exhibited the nonmammalian tetrapod structure. Then, we studied AMTN expression during amelogenesis in a neonate specimen. We obtained similar data as those reported in rodents. These findings indicate that more than 180 million years ago, before the divergence of marsupials and placentals, changes occurred in AMTN function and structure. The spatiotemporal expression was delayed to the maturation stage of amelogenesis and the intraexonic splicing gave rise to isoform 1, encoded by variant 1 and lacking the RGD motif. The ancestral isoform 2, housing the RGD, was initially conserved, as demonstrated here in a marsupial, then secondarily lost in the placental lineages. These findings bring new elements towards our understanding of the non-prismatic to prismatic enamel transition that occurred at the onset of

  13. Amelotin Gene Structure and Expression during Enamel Formation in the Opossum Monodelphis domestica.

    Directory of Open Access Journals (Sweden)

    Barbara Gasse

    Full Text Available Amelotin (AMTN is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein family, which also includes the enamel matrix proteins amelogenin, ameloblastin and enamelin. Although AMTN is supposed to play an important role in enamel formation, data were long limited to the rodents, in which it is expressed during the maturation stage. Recent comparative studies in sauropsids and amphibians revealed that (i AMTN was expressed earlier, i.e. as soon as ameloblasts are depositing the enamel matrix, and (ii AMTN structure was different, a change which mostly resulted from an intraexonic splicing in the large exon 8 of an ancestral mammal. The present study was performed to know whether the differences in AMTN structure and expression in rodents compared to non-mammalian tetrapods dated back to an early ancestral mammal or were acquired later in mammalian evolution. We sequenced, assembled and screened the jaw transcriptome of a neonate opossum Monodelphis domestica, a marsupial. We found two AMTN transcripts. Variant 1, representing 70.8% of AMTN transcripts, displayed the structure known in rodents, whereas variant 2 (29.2% exhibited the nonmammalian tetrapod structure. Then, we studied AMTN expression during amelogenesis in a neonate specimen. We obtained similar data as those reported in rodents. These findings indicate that more than 180 million years ago, before the divergence of marsupials and placentals, changes occurred in AMTN function and structure. The spatiotemporal expression was delayed to the maturation stage of amelogenesis and the intraexonic splicing gave rise to isoform 1, encoded by variant 1 and lacking the RGD motif. The ancestral isoform 2, housing the RGD, was initially conserved, as demonstrated here in a marsupial, then secondarily lost in the placental lineages. These findings bring new elements towards our understanding of the non-prismatic to prismatic enamel transition that occurred at

  14. Inert-Gas Condensed Co-W Nanoclusters: Formation, Structure and Magnetic Properties

    Science.gov (United States)

    Golkar-Fard, Farhad Reza

    Rare-earth permanent magnets are used extensively in numerous technical applications, e.g. wind turbines, audio speakers, and hybrid/electric vehicles. The demand and production of rare-earth permanent magnets in the world has in the past decades increased significantly. However, the decrease in export of rare-earth elements from China in recent time has led to a renewed interest in developing rare-earth free permanent magnets. Elements such as Fe and Co have potential, due to their high magnetization, to be used as hosts in rare-earth free permanent magnets but a major challenge is to increase their magnetocrystalline anisotropy constant, K1, which largely drives the coercivity. Theoretical calculations indicate that dissolving the 5d transition metal W in Fe or Co increases the magnetocrystalline anisotropy. The challenge, though, is in creating a solid solution in hcp Co or bcc Fe, which under equilibrium conditions have negligible solubility. In this dissertation, the formation, structure, and magnetic properties of sub-10 nm Co-W clusters with W content ranging from 4 to 24 atomic percent were studied. Co-W alloy clusters with extended solubility of W in hcp Co were produced by inert gas condensation. The different processing conditions such as the cooling scheme and sputtering power were found to control the structural state of the as-deposited Co-W clusters. For clusters formed in the water-cooled formation chamber, the mean size and the fraction crystalline clusters increased with increasing power, while the fraction of crystalline clusters formed in the liquid nitrogen-cooled formation chamber was not as affected by the sputtering power. For the low W content clusters, the structural characterization revealed clusters predominantly single crystalline hcp Co(W) structure, a significant extension of W solubility when compared to the equilibrium solubility, but fcc Co(W) and Co3W structures were observed in very small and large clusters, respectively. At high

  15. PROPERTY OF THE LARGE FORMAT DIGITAL AERIAL CAMERA DMC II

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2012-07-01

    Full Text Available Z/I Imaging introduced with the DMC II 140, 230 and 250 digital aerial cameras with a very large format CCD for the panchromatic channel. The CCDs have with 140 / 230 / 250 mega pixel a size not available in photogrammetry before. CCDs in general have a very high relative accuracy, but the overall geometry has to be checked as well as the influence of not flat CCDs. A CCD with a size of 96mm × 82mm must have a flatness or knowledge of flatness in the range of 1μm if the camera accuracy in the range of 1.3μm shall not be influenced. The DMC II cameras have been evaluated with three different flying heights leading to 5cm, 9cm and 15cm or 20cm GSD, crossing flight lines and 60% side lap. The optimal test conditions guaranteed the precise determination of the object coordinates as well as the systematic image errors. All three camera types show only very small systematic image errors, ranging in the root mean square between 0.12μm up to 0.3μm with extreme values not exceeding 1.6μm. The remaining systematic image errors, determined by analysis of the image residuals and not covered by the additional parameters, are negligible. A standard deviation of the object point heights below the GSD, determined at independent check points, even in blocks with just 20% side lap and 60% end lap is standard. Corresponding to the excellent image geometry the object point coordinates are only slightly influenced by the self calibration. For all DMCII types the handling of image models for data acquisition must not be supported by an improvement of the image coordinates by the determined systematic image errors. Such an improvement up to now is not standard for photogrammetric software packages. The advantage of a single monolithic CCD is obvious. An edge analysis of pan-sharpened DMC II 250 images resulted in factors for the effective resolution below 1.0. The result below 1.0 is only possible by contrast enhancement, but this requires with low image noise

  16. Structure formation cosmic rays: Identifying observational constraints

    Directory of Open Access Journals (Sweden)

    Prodanović T.

    2005-01-01

    Full Text Available Shocks that arise from baryonic in-fall and merger events during the structure formation are believed to be a source of cosmic rays. These "structure formation cosmic rays" (SFCRs would essentially be primordial in composition, namely, mostly made of protons and alpha particles. However, very little is known about this population of cosmic rays. One way to test the level of its presence is to look at the products of hadronic reactions between SFCRs and the ISM. A perfect probe of these reactions would be Li. The rare isotope Li is produced only by cosmic rays, dominantly in αα → 6Li fusion reactions with the ISM helium. Consequently, this nuclide provides a unique diagnostic of the history of cosmic rays. Exactly because of this unique property is Li affected most by the presence of an additional cosmic ray population. In turn, this could have profound consequences for the Big-Bang nucleosynthesis: cosmic rays created during cosmic structure formation would lead to pre-Galactic Li production, which would act as a "contaminant" to the primordial 7Li content of metalpoor halo stars. Given the already existing problem of establishing the concordance between Li observed in halo stars and primordial 7Li as predicted by the WMAP, it is crucial to set limits to the level of this "contamination". However, the history of SFCRs is not very well known. Thus we propose a few model-independent ways of testing the SFCR species and their history, as well as the existing lithium problem: 1 we establish the connection between gamma-ray and Li production, which enables us to place constraints on the SFCR-made lithium by using the observed Extragalactic Gamma-Ray Background (EGRB; 2 we propose a new site for testing the primordial and SFCR-made lithium, namely, low-metalicity High-Velocity Clouds (HVCs, which retain the pre-Galactic composition without any significant depletion. Although using one method alone may not give us strong constraints, using them in

  17. Structure Formation Mechanisms during Solid Ti with Molten Al Interaction

    International Nuclear Information System (INIS)

    Gurevich, L; Pronichev, D; Trunov, M

    2016-01-01

    The study discuses advantages and disadvantages of previously proposed mechanisms of the formation of structure between solid Ti and molten Al and presents a new mechanism based on the reviewed and experimental data. The previously proposed mechanisms were classified into three groups: mechanisms of precipitation, mechanisms of destruction and mechanisms of chemical interaction between intermetallics and melt. The reviewed mechanisms did not explain the formation of heterogeneous interlayer with globular aluminide particles and thin layers of pure Al, while the present study reveals variation in the solid Ti/molten Al reaction kinetics during various phases of laminated metal-intermetallic composite formation. The proposed mechanism considers formed during composite fabrication thin oxide interlayers between Ti and Al evolution and its impact on the intermetallic compound formation and explains the initial slow rate of intermetallic interlayer formation and its subsequent acceleration when the oxide foils are ruptured. (paper)

  18. Co-sequestration of Zn(II) and phosphate by γ-Al{sub 2}O{sub 3}: From macroscopic to microscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xuemei [School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206 (China); Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, 230031, Hefei (China); Tan, Xiaoli [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, 230031, Hefei (China); Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Alsaedi, Ahmed [NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Wang, Xiangke, E-mail: xkwang@ipp.ac.cn [School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206 (China); NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China)

    2015-10-30

    Highlights: • How the Zn and phosphate behave in each other’s presence is elucidated. • Surface speciation of Zn(II) is affected by the presence of phosphate. • Combining macroscopic study with EXAFS can determine the Zn(II) surface speciation. • The enhanced Zn(II) sorption is mainly due to ternary surface complexation at 0.19 mmol P/L and pH 6.5. • Phosphate ions prevent the formation of an Zn–Al LDH phase at pH 8.0. - Abstract: Little information is available concerning co-sorbing oxyanion and metal contaminants in the environment, yet in most metal-contaminated areas, co-contamination by phosphate is common. In this study, the mutual effects of phosphate and Zn(II) on their interaction with γ-Al{sub 2}O{sub 3} are investigated by batch experiments and X-ray absorption fine structure spectroscopy (XAFS) technique. The results show that the co-sorption of phosphate on γ-Al{sub 2}O{sub 3} modifies both the extent of Zn(II) sorption and the local atomic structures of sorbed Zn(II) ions. Multiple mechanisms are involved in Zn(II) retention in the presence of phosphate, including electrostatic interaction, binary and ternary surface complexation, and the formation of Zn(II)-phosphate polynuclear complexes. At pH 6.5, type III ternary surface complexation occurs concurrently with binary Zn-alumina surface complexation at low phosphate concentrations, whereas the formation of type III ternary surface complexes is promoted as the phosphate concentration increases. With further increasing phosphate concentration, Zn(II)-phosphate polynuclear complexes are formed. At pH 8.0, Zn dominantly forms type III ternary surface complexes in the presence of phosphate. The results of this study indicate the variability of Zn complexation on oxide surface and the importance of combining macroscopic observations with XAFS capable of determining metal complex formation mechanism for ternary system.

  19. Exogenous surfactant application in a rat lung ischemia reperfusion injury model: effects on edema formation and alveolar type II cells

    Directory of Open Access Journals (Sweden)

    Richter Joachim

    2008-01-01

    Full Text Available Abstract Background Prophylactic exogenous surfactant therapy is a promising way to attenuate the ischemia and reperfusion (I/R injury associated with lung transplantation and thereby to decrease the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However, there is little information on the mode by which exogenous surfactant attenuates I/R injury of the lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells. Methods Rats were randomly assigned to a control, Celsior (CE or Celsior + surfactant (CE+S group (n = 5 each. In both Celsior groups, the lungs were flush-perfused with Celsior and subsequently exposed to 4 h of extracorporeal ischemia at 4°C and 50 min of reperfusion at 37°C. The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups or immediately after sacrifice (Control, the lungs were fixed by vascular perfusion and processed for light and electron microscopy. Stereology was used to quantify edematous changes as well as alterations of the alveolar epithelial type II cells. Results Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of variation: CE: 160 mm3 (0.61 vs. CE+S: 4 mm3 (0.75; p 3 (0.90 vs. CE+S: 0 mm3; p 3 (0.39 vs. CE+S: 268 mm3 (0.43; p 3(0.10 and CE+S (481 μm3(0.10 compared with controls (323 μm3(0.07; p Conclusion Intratracheal surfactant application before I/R significantly reduces the intraalveolar edema formation and development of atelectases but leads to an increased development of

  20. Formation of cross-cutting structures with different porosity on thick silicon wafers

    Directory of Open Access Journals (Sweden)

    Vera A. Yuzova

    2017-06-01

    The second type pass-through structures include a macroporous silicon layer with a thickness of 250 μm which interlock in the depth of the silicon wafer to form a cavity with a size of 4–8 μm. For the formation of the second type structures we only used the first one of the abovementioned stages, the etching time being longer, i.e. 210 min. All the etching procedures were carried out in a cooling chamber at 5 °C. The developed technology will provided for easier and more reliable formation of the monolithic structures of membrane-electrode assembly micro fuel cells.

  1. The formation of a core-periphery structure in heterogeneous financial networks

    NARCIS (Netherlands)

    van der Leij, M.; in 't Veld, D.; Hommes, C.

    2016-01-01

    Recent empirical evidence suggests that financial networks exhibit a core-periphery network structure. This paper aims at giving an explanation for the emergence of such a structure using network formation theory. We propose a simple model of the overnight interbank lending market, in which banks

  2. The n-propyl 3-azido-2,3-dideoxy-β-D-arabino-hexopyranoside: Syntheses, crystal structure, physical properties and stability constants of their complexes with Cu(II), Ni(II) and VO(II)

    Science.gov (United States)

    Barabaś, Anna; Madura, Izabela D.; Marek, Paulina H.; Dąbrowska, Aleksandra M.

    2017-11-01

    The structure, conformation and configuration of the n-propyl 3-azido-2,3-dideoxy-β-D-arabino-hexopyranoside (BAra-nPr) were determined by 1H NMR, 13C NMR, and IR spectroscopy, as well as by optical rotation. The crystal structure was confirmed by single-crystal X-ray diffraction studies at room temperature. The compound crystallizes in P21 space group symmetry of the monoclinic system. The molecule has a 4C1 chair conformation with azide group in the equatorial position both in a solution as well as in the crystal. The spatial arrangement of azide group is compared to other previously determined azidosugars. The hydrogen bonds between the hydroxyl group of sugar molecules lead to a ribbon structure observed also for the ethyl homolog. The packing of ribbons is dependent on the alkyl substituent length and with the elongation changes from pseudohexagonal to lamellar. Acidity constants for the n-propyl 3-azido-2,3-dideoxy-β-D-arabino-hexopyranoside (BAra-nPr) in an aqueous solution were evaluated by the spectrophotometric and potentiometric titrations methods. Title compound exhibit blue absorption with the maximum wavelengths in the range of 266 nm and 306 nm. Based on these measurements we showed equilibria existing in a particular solution and a distribution of species which have formed during the titration. We also investigated interactions between Cu(II), Ni(II) and VO(II) and title compound (as ligand L) during complexometric titration. On these bases we identified that in [CuII-BAra-nPr]2+ the ratio of the ligand L to metal ion M(II) was 3:1, while in [NiII-BAra-nPr]2+ and [VOII-BAra-nPr]2+ complexes 2:1 ratios were found. The cumulative stability constants (as log β) occurring in an aqueous solution for the complexes of BAra-nPr with Cu(II), Ni(II) and VO(IV) were 14.57; 11.71 and 4.20, respectively.

  3. Modulated structure formation in demixing paraffin blends

    CERN Document Server

    Gilbert, E P

    2002-01-01

    Small angle scattering (SANS and SAXS) and differential scanning calorimetry have been measured from C sub 2 sub 8 :C sub 3 sub 6 normal paraffin mixtures of varying composition quenched from the melt. Satellite peaks are observed in the SAXS whose offset in Q, relative to Bragg diffraction peaks associated with the average structure, are composition dependent. The offset is close to the position of the most intense peak observed in SANS. Scattering from the quenched structures is consistent with a correlated displacement and substitutional disorder model yielding modulations that are incommensurate with the average lattice. DSC shows an additional endotherm in the mixtures that is not present in the pure components and is associated with this superstructure formation. (orig.)

  4. EGCG Inhibited Lipofuscin Formation Based on Intercepting Amyloidogenic β-Sheet-Rich Structure Conversion.

    Directory of Open Access Journals (Sweden)

    Shuxian Cai

    Full Text Available Lipofuscin (LF is formed during lipid peroxidation and sugar glycosylation by carbonyl-amino crosslinks with biomacrolecules, and accumulates slowly within postmitotic cells. The environmental pollution, modern dietary culture and lifestyle changes have been found to be the major sources of reactive carbonyl compounds in vivo. Irreversible carbonyl-amino crosslinks induced by carbonyl stress are essentially toxiferous for aging-related functional losses in modern society. Results show that (--epigallocatechin gallate (EGCG, the main polyphenol in green tea, can neutralize the carbonyl-amino cross-linking reaction and inhibit LF formation, but the underlying mechanism is unknown.We explored the mechanism of the neutralization process from protein, cell, and animal levels using spectrofluorometry, infrared spectroscopy, conformation antibodies, and electron microscopy. LF demonstrated an amyloidogenic β-sheet-rich with antiparallel structure, which accelerated the carbonyl-amino crosslinks formation and disrupted proteolysis in both PC12 cells and D-galactose (D-gal-induced brain aging mice models. Additionally, EGCG effectively inhibited the formation of the amyloidogenic β-sheet-rich structure of LF, and prevented its conversion into toxic and on-pathway aggregation intermediates, thereby cutting off the carbonyl-amino crosslinks.Our study indicated that the amyloidogenic β-sheet structure of LF may be the core driving force for carbonyl-amino crosslinks further formation, which mediates the formation of amyloid fibrils from native state of biomacrolecules. That EGCG exhibits anti-amyloidogenic β-sheet-rich structure properties to prevent the LF formation represents a novel strategy to impede the development of degenerative processes caused by ageing or stress-induced premature senescence in modern environments.

  5. MAPS OF MASSIVE CLUMPS IN THE EARLY STAGE OF CLUSTER FORMATION: TWO MODES OF CLUSTER FORMATION, COEVAL OR NON-COEVAL?

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Aya E.; Saito, Masao; Mauersberger, Rainer; Kawabe, Ryohei [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Kurono, Yasutaka; Naoi, Takahiro, E-mail: ahiguchi@alma.cl [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-03-10

    We present maps of seven young massive molecular clumps within five target regions in C{sup 18}O (J = 1-0) line emission, using the Nobeyama 45 m telescope. These clumps, which are not associated with clusters, lie at distances between 0.7 and 2.1 kpc. We find C{sup 18}O clumps with radii of 0.5-1.7 pc, masses of 470-4200 M{sub Sun }, and velocity widths of 1.4-3.3 km s{sup -1}. All of the clumps are massive and approximately in virial equilibrium, suggesting they will potentially form clusters. Three of our target regions are associated with H II regions (CWHRs), while the other two are unassociated with H II regions (CWOHRs). The C{sup 18}O clumps can be classified into two morphological types: CWHRs with a filamentary or shell-like structure and spherical CWOHRs. The two CWOHRs have systematic velocity gradients. Using the publicly released WISE database, Class I and Class II protostellar candidates are identified within the C{sup 18}O clumps. The fraction of Class I candidates among all YSO candidates (Class I+Class II) is {>=}50% in CWHRs and {<=}50% in CWOHRs. We conclude that effects from the H II regions can be seen in (1) the spatial distributions of the clumps: filamentary or shell-like structure running along the H II regions; (2) the velocity structures of the clumps: large velocity dispersion along shells; and (3) the small age spreads of YSOs. The small spreads in age of the YSOs show that the presence of H II regions tends to trigger coeval cluster formation.

  6. Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Christopher D. [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States); Tu, Chingkuang [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States); McKenna, Robert, E-mail: rmckenna@ufl.edu [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States)

    2014-06-01

    The structure of human carbonic anhydrase II in complex with cholate has been determined to 1.54 Å resolution. Elucidation of the novel inhibition mechanism of cholate will aid in the development of a nonsulfur-containing, isoform-specific therapeutic agent. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO{sub 2} into bicarbonate and a proton. Human isoform CA II (HCA II) is abundant in the surface epithelial cells of the gastric mucosa, where it serves an important role in cytoprotection through bicarbonate secretion. Physiological inhibition of HCA II via the bile acids contributes to mucosal injury in ulcerogenic conditions. This study details the weak biophysical interactions associated with the binding of a primary bile acid, cholate, to HCA II. The X-ray crystallographic structure determined to 1.54 Å resolution revealed that cholate does not make any direct hydrogen-bond interactions with HCA II, but instead reconfigures the well ordered water network within the active site to promote indirect binding to the enzyme. Structural knowledge of the binding interactions of this nonsulfur-containing inhibitor with HCA II could provide the template design for high-affinity, isoform-specific therapeutic agents for a variety of diseases/pathological states, including cancer, glaucoma, epilepsy and osteoporosis.

  7. A Comparative Observational Study of YSO Classification in Four Small Star-forming H ii Regions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung-Ju; Choi, Minho; Kang, Miju [Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 34055 (Korea, Republic of); Kerton, C. R., E-mail: sjkang@kasi.re.kr, E-mail: kerton@iastate.edu [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)

    2017-08-10

    We have developed a new young stellar object (YSO) identification and classification technique using mid-infrared Wide-field Infrared Survey Explorer (WISE) data. We compare this new technique with previous WISE YSO detection and classification methods that used either infrared colors or spectral energy distribution slopes. In this study, we also use the new technique to detect and examine the YSO population associated with four small H ii regions: KR 7, KR 81, KR 120, and KR 140. The relatively simple structure of these regions allows us to effectively use both spatial and temporal constraints to identify YSOs that are potential products of triggered star formation. We are also able to identify regions of active star formation around these H ii regions that are clearly not influenced by the H ii region expansion, and thus demonstrate that star formation is on-going on megayear timescales in some of these molecular clouds.

  8. [Fungal community structure in phase II composting of Volvariella volvacea].

    Science.gov (United States)

    Chen, Changqing; Li, Tong; Jiang, Yun; Li, Yu

    2014-12-04

    To understand the fungal community succession during the phase II of Volvariella volvacea compost and clarify the predominant fungi in different fermentation stages, to monitor the dynamic compost at the molecular level accurately and quickly, and reveal the mechanism. The 18S rDNA-denaturing gradient gel electrophoresis (DGGE) and sequencing methods were used to analyze the fungal community structure during the course of compost. The DGGE profile shows that there were differences in the diversity of fungal community with the fermentation progress. The diversity was higher in the stages of high temperature. And the dynamic changes of predominant community and relative intensity was observed. Among the 20 predominant clone strains, 9 were unknown eukaryote and fungi, the others were Eurotiales, Aspergillus sp., Melanocarpus albomyces, Colletotrichum sp., Rhizomucor sp., Verticillium sp., Penicillium commune, Microascus trigonosporus and Trichosporon lactis. The 14 clone strains were detected in the stages of high and durative temperature. The fungal community structure and predominant community have taken dynamic succession during the phase II of Volvariella volvacea compost.

  9. Fixed geometric formation structure in formation control problem for group of robots with dynamically changing number of robots in the group

    Directory of Open Access Journals (Sweden)

    N. S. Morozova

    2015-01-01

    Full Text Available The article considers a problem of the decentralization-based approach to formation control of a group of agents, which simulate mobile autonomous robots. The agents use only local information limited by the covering range of their sensors. The agents have to build and maintain the formation, which fits to the defined target geometric formation structure with desired accuracy during the movement to the target point. At any point in time the number of agents in the group can change unexpectedly (for example, as a result of the agent failure or if a new agent joins the group.The aim of the article is to provide the base control rule, which solves the formation control problem, and to develop its modifications, which provide the correct behavior in case the agent number in the group is not equal to the size of the target geometric formation structure. The proposed base control rule, developed by the author, uses the method of involving virtual leaders. The coordinates of the virtual leaders and also the priority to follow the specific leader are calculated by each agent itself according to specific rules.The following results are presented in the article: the base control rule for solving the formation control problem, its modifications for the cases when the number of agents is greater/less than the size of the target geometric formation structure and also the computer modeling results proving the efficiency of the modified control rules. The specific feature of the control rule, developed by the author, is that each agent itself calculates the virtual leaders and each agent performs dynamic choice of the place within the formation (there is no predefined one-to-one relation between agents and places within the geometric formation structure. The results, provided in this article, can be used in robotics for developing control algorithms for the tasks, which require preserving specific relational positions among the agents while moving. One of the

  10. Glycation induces formation of amyloid cross-beta structure in albumin.

    Science.gov (United States)

    Bouma, Barend; Kroon-Batenburg, Loes M J; Wu, Ya-Ping; Brünjes, Bettina; Posthuma, George; Kranenburg, Onno; de Groot, Philip G; Voest, Emile E; Gebbink, Martijn F B G

    2003-10-24

    Amyloid fibrils are components of proteinaceous plaques that are associated with conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis. Amyloid polypeptides share a specific quarternary structure element known as cross-beta structure. Commonly, fibrillar aggregates are modified by advanced glycation end products (AGE). In addition, AGE formation itself induces protein aggregation. Both amyloid proteins and protein-AGE adducts bind multiligand receptors, such as receptor for AGE, CD36, and scavenger receptors A and B type I, and the serine protease tissue-type plasminogen activator (tPA). Based on these observations, we hypothesized that glycation induces refolding of globular proteins, accompanied by formation of cross-beta structure. Using transmission electron microscopy, we demonstrate here that glycated albumin condensates into fibrous or amorphous aggregates. These aggregates bind to amyloid-specific dyes Congo red and thioflavin T and to tPA. In contrast to globular albumin, glycated albumin contains amino acid residues in beta-sheet conformation, as measured with circular dichroism spectropolarimetry. Moreover, it displays cross-beta structure, as determined with x-ray fiber diffraction. We conclude that glycation induces refolding of initially globular albumin into amyloid fibrils comprising cross-beta structure. This would explain how glycated ligands and amyloid ligands can bind to the same multiligand "cross-beta structure" receptors and to tPA.

  11. Eight joint BER II and BESSY II users meeting. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    The following topics were dealt with: Accelerator operation and projecs, photon science and instrumentation at BESSY II, status of energy materials in-situ Lab at BESSY II, high resolution spectrometer PEAXIS at BESSY II, sample environment at BESSY II, molecular control mechanisms in the Brr2 RNA helicase for efficient and regulated splicing, the Li conversion reaction of 4CoFe{sub 2}O{sub 4} nanoparticles, buried interfaces in lithium ion batteries probed with HAXPES, ARPES studies of the STO(001) 2DEG, all-in/all-out magnetic order in rare earth iridates, oxygen reduction reaction on graphene in Li-air batteries, electronic order in high-T{sub c} superconductors, in-siu observation of novel switching phenomena in highly porous metal-organic frameworks, photoinduced demagnetization and insulator-to-metal transition in ferromagnetic insulating BaFeO{sub 3} thin films, ARPES measurement of the ferroelectric bulk Rashba system GeTe, bisphenol A on Cu(111) and Ag(111), reverse water-gas shift or Sabathier methanation on N(110), structural studies of molecular machines, multi-MHz time-of-flight electronic band-structure imaging of graphene on Ir(111), diffusion pathways in ion conductors, ground-state potential energy surfaces around selected atoms from resonant inelastic X-ray scattering, solar energy in an emerging country, in-situ neutron analysis of electrode materials for electrochemical energy storage, structure and transport properties in thermoelectric skutterudites, investigation of the interphase formation on solid lithium-ion conductors by neutron reflectometry, load partitin and damage characterization of cast AlSi{sub 12}CuMgNi alloy with ceramic reinforcement, methane adsorption in highly porous metal-organics, structure and magnetic interactions in dimer system Ba{sub (3-x)}Sr{sub x}Cr{sub 2}O{sub 8}, distribution of S in C-S nanocomposites, current status of HFM-EXED FACITIY; SPIN NEAMTICITY IN s=1/2 frustrated zigzag chaIN β-TeVO{sub 4}, electronic

  12. Processes and problems in secondary star formation

    International Nuclear Information System (INIS)

    Klein, R.I.; Whitaker, R.W.; Sandford, M.T. II.

    1984-03-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of the observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding inter-cloud gas flows leading to non-linear inhomogeneous cloud structures in an intially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in congruent to 1-3 x 10 4 years and could account for the recent evidence for new massive star formation in several UCHII regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multiple dimensional calculations of coupled processes. The important non-linear interactions include hydrodynamics, radiation transport, and magnetic fields

  13. A study on complex formation of cadmium(II) ions, 8

    International Nuclear Information System (INIS)

    Matsui, Haruo; Hirabayashi, Yoshihiro

    1984-01-01

    In the potentiometric titration of the solution containing a cadmium(II) ion and an amino acid, white precipitates often appear in the test solution, and they disturb the emf measurements. Such precipitates were formes in the solutions, pH ranging 7.5--8.5, during the course of titrations of the test solutions containing cadmium(II) ion and amino acid such as glycine, α-alanine. 2-aminobutanoic acid, 3-aminobutanoic acid, 4-aminobutanoic acid, 2-aminopentanoic acid, 5-aminopentanoic acid, 2-aminohexanoic acid, 6-aminohexanoic acid, aspartic acid, glutamic acid, asparagine, or glutamine. The identification of the precipitates obtained from the solutions containing cadmium(II) ion and L-aspartic acid, 4-aminobutanoic acid, or 6-aminohexanoic acid were carried out by both of elemental analysis and the infrared spectroscopy. These results indicated that the precipitate obtained from the solution containing cadmium(II) ion and L-aspartic acid was 1:1 cadmium(II)-L-aspartic acid complex and did not contain any cadmium(II) hydroxide, and other two precipitates were mostly cadmium(II) hydroxide and contained a little cadmium(II)-amino acid complexes. (author)

  14. Anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Li-Wei [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Luo, Tzuoo-Tsair [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Wang, Chih-Min [Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan (China); Lee, Gene-Hsiang; Peng, Shie-Ming [Department of Chemistry, National Taiwan University, Taipei 107, Taiwan (China); Liu, Yen-Hsiang [Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan (China); Lee, Sheng-Long [Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Lu, Kuang-Lieh [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China)

    2016-07-15

    A Cd(II)–organic framework {[Cd_2(tpim)_4(SO_4)(H_2O)_2]·(SO_4)·21H_2O}{sub n} (1) was synthesized by reacting CdSO{sub 4}·8/3H{sub 2}O and 2,4,5-tri(4-pyridyl)imidazole (tpim) under hydrothermal conditions. A structural analysis showed that compound 1 adopts a layered structure in which the [Cd(tpim){sub 2}]{sub n} chains are linked by sulfate anions. These 2D layers are further packed into a 3D supramolecular framework via π–π interactions. The structure contains two types of SO{sub 4}{sup 2−} anions, i.e., bridging SO{sub 4}{sup 2−} and free SO{sub 4}{sup 2−} anions, the latter of which are included in the large channels of the framework. Compound 1 exhibits interesting anion exchange behavior. In the presence of SCN{sup −} anions, both the bridging and free SO{sub 4}{sup 2−} anions in 1 were completely exchanged by SCN{sup −} ligands to form a 1D species [Cd(tpim){sub 2}(SCN){sub 2}] (1A), in which the SCN{sup –} moieties function as a monodentate ligand. On the other hand, when compound 1 was ion exchanged with N{sub 3}{sup −} anions in aqueous solution, the bridging SO{sub 4}{sup 2−} moieties remained intact, and only the free guest SO{sub 4}{sup 2−} were replaced by N{sub 3}{sup −} anions. The gas adsorption behavior of the activated compound 1 was also investigated. - Highlights: • An interesting anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework is reported. • The sulfate-incorporated 2D layer compound exhibits very different anion exchange behavior with respect to SCN{sup −} and N{sub 3}{sup −}. • Both the bridging and free SO{sub 4}{sup 2−} anions in the 2D structure were completely exchanged by SCN{sup −} ligands, resulting in the formation of a 1D species. However, in the case of N{sub 3}{sup −} anions, only the free guest SO{sub 4}{sup 2−} in the structure was replaced.

  15. Unsaturated b-ketoesters and their Ni(II, Cu(II and Zn(II complexes

    Directory of Open Access Journals (Sweden)

    MUHAMMED BASHEER UMMATHUR

    2009-03-01

    Full Text Available A new series of b-ketoesters in which the keto group is attached to the olefinic linkage were synthesized by the reaction of methyl acetoacetate and aromatic aldehydes under specified conditions. The existence of these compounds predominantly in the intramolecularly hydrogen bonded enol form was well demonstrated from their IR, 1H-NMR and mass spectral data. Details on the formation of their [ML2] complexes with Ni(II, Cu(II and Zn(II and the nature of the bonding are discussed on the basis of analytical and spectral data.

  16. Cu(II) and Co(II) complexes of benzimidazole derivative: Structures, catecholase like activities and interaction studies with hydrogen peroxide

    Science.gov (United States)

    Kumari, Babli; Adhikari, Sangita; Matalobos, Jesús Sanmartín; Das, Debasis

    2018-01-01

    Present study describes the synthesis and single crystal X-ray structures of two metal complexes of benzimidazole derivative (PBI), viz. the Cu(II) complex, [Cu(PBI)2(NCS)]ClO4 (1) and a Co(II) complex, [Co(PBI)2(NCS)1.75Cl0.25] (2). The Cu(II) complex (1) shows catecholase like activity having Kcat = 1.84 × 104 h-1. Moreover, interactions of the complexes with hydrogen peroxide have been investigated using fluorescence spectroscopy. The interaction constant of 1 and 2 for H2O2 are 6.67 × 102 M-1 and 1.049 × 103 M-1 while their detection limits for H2O2 are 3.37 × 10-7 M and 2.46 × 10-7 M respectively.

  17. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Celal [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Gundogdu, Ali [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Bulut, Volkan Numan [Department of Chemistry, Giresun Faculty of Art and Science, Karadeniz Technical University, 28049 Giresun (Turkey); Soylak, Mustafa [Department of Chemistry, Faculty of Art and Science, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: soylak@erciyes.edu.tr; Elci, Latif [Department of Chemistry, Faculty of Art and Science, Pamukkale University, 20020 Denizli (Turkey); Sentuerk, Hasan Basri [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Tuefekci, Mehmet [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2007-07-19

    A new method using a column packed with Amberlite XAD-2010 resin as a solid-phase extractant has been developed for the multi-element preconcentration of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), and Pb(II) ions based on their complex formation with the sodium diethyldithiocarbamate (Na-DDTC) prior to flame atomic absorption spectrometric (FAAS) determinations. Metal complexes sorbed on the resin were eluted by 1 mol L{sup -1} HNO{sub 3} in acetone. Effects of the analytical conditions over the preconcentration yields of the metal ions, such as pH, quantity of Na-DDTC, eluent type, sample volume and flow rate, foreign ions etc. have been investigated. The limits of detection (LOD) of the analytes were found in the range 0.08-0.26 {mu}g L{sup -1}. The method was validated by analyzing three certified reference materials. The method has been applied for the determination of trace elements in some environmental samples.

  18. Synthesis, structural characterization, and pro-apoptotic activity of 1-indanone thiosemicarbazone platinum(II) and palladium(II) complexes: potential as antileukemic agents.

    Science.gov (United States)

    Gómez, Natalia; Santos, Diego; Vázquez, Ramiro; Suescun, Leopoldo; Mombrú, Alvaro; Vermeulen, Monica; Finkielsztein, Liliana; Shayo, Carina; Moglioni, Albertina; Gambino, Dinorah; Davio, Carlos

    2011-08-01

    In the search for alternative chemotherapeutic strategies against leukemia, various 1-indanone thiosemicarbazones, as well as eight novel platinum(II) and palladium(II) complexes, with the formula [MCl₂(HL)] and [M(HL)(L)]Cl, derived from two 1-indanone thiosemicarbazones were synthesized and tested for antiproliferative activity against the human leukemia U937 cell line. The crystal structure of [Pt(HL1)(L1)]Cl·2MeOH, where L1=1-indanone thiosemicarbazone, was solved by X-ray diffraction. Free thiosemicarbazone ligands showed no antiproliferative effect, but the corresponding platinum(II) and palladium(II) complexes inhibited cell proliferation and induced apoptosis. Platinum(II) complexes also displayed selective apoptotic activity in U937 cells but not in peripheral blood monocytes or the human hepatocellular carcinoma HepG2 cell line used to screen for potential hepatotoxicity. Present findings show that, in U937 cells, 1-indanone thiosemicarbazones coordinated to palladium(II) were more cytotoxic than those complexed with platinum(II), although the latter were found to be more selective for leukemic cells suggesting that they are promising compounds with potential therapeutic application against hematological malignancies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fibronectin alters the rate of formation and structure of the fibrin matrix.

    Science.gov (United States)

    Ramanathan, Anand; Karuri, Nancy

    2014-01-10

    Plasma fibronectin is a vital component of the fibrin clot; however its role on clot structure is not clearly understood. The goal of this study was to examine the influence of fibronectin on the kinetics of formation, structural characteristics and composition of reconstituted fibrin clots or fibrin matrices. Fibrin matrices were formed by adding thrombin to 1, 2 or 4 mg/ml fibrinogen supplemented with 0-0.4 mg/ml fibronectin. The rate of fibrin matrix formation was then monitored by measuring light absorbance properties at different time points. Confocal microscopy of fluorescein conjugated fibrinogen was used to visualize the structural characteristics of fibrin matrices. The amount of fibronectin in fibrin matrices was determined through electrophoresis and immunoblotting of solubilized matrices. Fibronectin concentration positively correlated with the initial rate of fibrin matrix formation and with steady state light absorbance values of fibrin matrices. An increase in fibronectin concentration resulted in thinner and denser fibers in the fibrin matrices. Electrophoresis and immunoblotting showed that fibronectin was covalently and non-covalently bound to fibrin matrices and in the form of high molecular weight multimers. The formation of fibronectin multimers was attributed to cross-linking of fibronectin by trace amounts Factor XIIIa. These findings are novel because they link results from light absorbance studies to microcopy analyses and demonstrate an influence of fibronectin on fibrin matrix structural characteristics. This data is important in developing therapies that destabilize fibrin clots. Copyright © 2014. Published by Elsevier Inc.

  20. Investigation of non-corrin cobalt(II)-containing sites in protein structures of the Protein Data Bank.

    Science.gov (United States)

    Abriata, Luciano Andres

    2013-04-01

    Protein X-ray structures with non-corrin cobalt(II)-containing sites, either natural or substituting another native ion, were downloaded from the Protein Data Bank and explored to (i) describe which amino acids are involved in their first ligand shells and (ii) analyze cobalt(II)-donor bond lengths in comparison with previously reported target distances, CSD data and EXAFS data. The set of amino acids involved in Co(II) binding is similar to that observed for catalytic Zn(II) sites, i.e. with a large fraction of carboxylate O atoms from aspartate and glutamate and aromatic N atoms from histidine. The computed Co(II)-donor bond lengths were found to depend strongly on structure resolution, an artifact previously detected for other metal-donor distances. Small corrections are suggested for the target bond lengths to the aromatic N atoms of histidines and the O atoms of water and hydroxide. The available target distance for cysteine (Scys) is confirmed; those for backbone O and other donors remain uncertain and should be handled with caution in refinement and modeling protocols. Finally, a relationship between both Co(II)-O bond lengths in bidentate carboxylates is quantified.

  1. Evaluation of the NCPDP Structured and Codified Sig Format for e-prescriptions.

    Science.gov (United States)

    Liu, Hangsheng; Burkhart, Q; Bell, Douglas S

    2011-01-01

    To evaluate the ability of the structure and code sets specified in the National Council for Prescription Drug Programs Structured and Codified Sig Format to represent ambulatory electronic prescriptions. We parsed the Sig strings from a sample of 20,161 de-identified ambulatory e-prescriptions into variables representing the fields of the Structured and Codified Sig Format. A stratified random sample of these representations was then reviewed by a group of experts. For codified Sig fields, we attempted to map the actual words used by prescribers to the equivalent terms in the designated terminology. Proportion of prescriptions that the Format could fully represent; proportion of terms used that could be mapped to the designated terminology. The fields defined in the Format could fully represent 95% of Sigs (95% CI 93% to 97%), but ambiguities were identified, particularly in representing multiple-step instructions. The terms used by prescribers could be codified for only 60% of dose delivery methods, 84% of dose forms, 82% of vehicles, 95% of routes, 70% of sites, 33% of administration timings, and 93% of indications. The findings are based on a retrospective sample of ambulatory prescriptions derived mostly from primary care physicians. The fields defined in the Format could represent most of the patient instructions in a large prescription sample, but prior to its mandatory adoption, further work is needed to ensure that potential ambiguities are addressed and that a complete set of terms is available for the codified fields.

  2. STAR FORMATION IN DISK GALAXIES. II. THE EFFECT OF STAR FORMATION AND PHOTOELECTRIC HEATING ON THE FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.

    2011-01-01

    We investigate the effect of star formation and diffuse photoelectric heating on the properties of giant molecular clouds (GMCs) formed in high-resolution (∼ H,c >100 cm -3 are identified as GMCs. Between 1000 and 1500 clouds are created in the simulations with masses M>10 5 M sun and 180-240 with masses M>10 6 M sun in agreement with estimates of the Milky Way's population. We find that the effect of photoelectric heating is to suppress the fragmentation of the interstellar medium, resulting in a filamentary structure in the warm gas surrounding clouds. This environment suppresses the formation of a retrograde rotating cloud population, with 88% of the clouds rotating prograde with respect to the galaxy after 300 Myr. The diffuse heating also reduces the initial star formation rate (SFR), slowing the conversation of gas into stars. We therefore conclude that the interstellar environment plays an important role in the GMC evolution. Our clouds live between 0 and 20 Myr with a high infant mortality (t' < 3 Myr) due to cloud mergers and star formation. Other properties, including distributions of mass, size, and surface density, agree well with observations. Collisions between our clouds are common, occurring at a rate of ∼ 1/4 of the orbital period. It is not clear whether such collisions trigger or suppress star formation at our current resolution. Our SFR is a factor of 10 higher than observations in local galaxies. This is likely due to the absence of localized feedback in our models.

  3. Graphitic structure formation in ion implanted polyetheretherketone

    Energy Technology Data Exchange (ETDEWEB)

    Tavenner, E., E-mail: tazman1492@gmail.com [Creative Polymers Pty. Ltd., 41 Wilkinson Street, Toowoomba, Queensland 4350 (Australia); Chemical Committee, Surface Chemical Analysis, Standards (Australia); Wood, B. [Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland 4072 (Australia); Chemical Committee, Surface Chemical Analysis, Standards (Australia); Curry, M.; Jankovic, A.; Patel, R. [Center for Applied Science and Engineering, Missouri State University, 524 North Boonville Avenue, Springfield, MO 65806 (United States)

    2013-10-15

    Ion implantation is a technique that is used to change the electrical, optical, hardness and biocompatibility of a wide range of inorganic materials. This technique also imparts similar changes to organic or polymer based materials. With polymers, ion implantation can produce a carbon enriched volume. Knowledge as to the nature of this enrichment and its relative concentration is necessary to produce accurate models of the physical properties of the modified material. One technique that can achieve this is X-ray photoelectron spectroscopy. In this study the formation of graphite like structures in the near surface of polyetheretherketone by ion implantation has been elucidated from detailed analysis of the C 1s and valence band peak structures generated by X-ray photoelectron spectroscopy. Further evidence is given by both Rutherford backscatter spectroscopy and elastic recoil detection.

  4. Structural and magnetic characterization of three tetranuclear Cu(II) complexes with face-sharing-dicubane/double-open-cubane like core framework

    International Nuclear Information System (INIS)

    Paul, Aparup; Bertolasi, Valerio; Figuerola, Albert; Manna, Subal Chandra

    2017-01-01

    Three novel tetranuclear copper(II) complexes namely [Cu 4 (L 1 ) 4 ]∙2(dmf) (1), [Cu 4 (L 1 ) 4 ] (2) and [Cu 4 (L 2 ) 2 (HL 2 ) 2 (H 2 O) 2 ]∙2(ClO 4 )·6(H 2 O) (3) (H 2 L 1 , (E)−2-((1-hydroxybutan-2-ylimino)methyl)phenol; H 2 L 2 , (E)−2-((1-hydroxybutan-2-ylimino)methyl)−6-methoxyphenol)) were synthesized from the self-assembly of copper(II) perchlorate and the tridentate Schiff base ligands. The structural determination reveals that crystallizes in the monoclinic system with space group C2/c, whereas both the and crystallize in the triclinic system with space group P-1. and possess face-sharing dicubane core, on the other hand complex 3 has double open cubane core structure. The copper(II) ions in the cubane core are in distorted square planar geometries, and weak π…π and C–H…π interactions lead to formation of a 2D supramolecular architecture for and . At room temperature and , exhibit fluorescence with a quantum yield (Φ s ) of 0.47, 0.49 and 0.38, respectively. Variable temperature magnetic susceptibility measurements in the range 2–300 K indicate an overall weak antiferromagnetic exchange coupling in all complexes. The PHI program was used to study their magnetic behaviour. In agreement with their face-sharing dicubane structure, a Hamiltonian of the type H =– J 1 (S 1 S 2 +S 1 S 2’ +S 1' S 2 +S 1' S 2’ ) – J 2 S 1 S 1’ , where S 1 = S 1’ = S 2 = S 2’ = S Cu =1/2, was used for studying and . Simulations performed suggest magnetic exchange constants with values close to J 1 =−20 cm −1 and J 2 =0 cm -1 for these complexes. On the other hand, the spin Hamiltonian H =– J 1 (S 1 S 4 +S 2 S 3 ) – J 2 (S 1 S 3 +S 2 S 4 ) – J 3 S 1 S 2 , where S 1 = S 2 = S 3 = S 4 = S Cu =1/2, was used to study the magnetic behaviour of the double open cubane core of and a good agreement between the experimental and simulated results was found by using the parameters g 1 = g 2 =2.20, g 3 = g 4 =2.18, J 1 =−36 cm -1 , J 2

  5. Formation of hydrogen bonds precedes the rate-limiting formation of persistent structure in the folding of ACBP

    DEFF Research Database (Denmark)

    Teilum, K; Kragelund, B B; Knudsen, J

    2000-01-01

    A burst phase in the early folding of the four-helix two-state folder protein acyl-coenzyme A binding protein (ACBP) has been detected using quenched-flow in combination with site-specific NMR-detected hydrogen exchange. Several of the burst phase structures coincide with a structure consisting...... of eight conserved hydrophobic residues at the interface between the two N and C-terminal helices. Previous mutation studies have shown that the formation of this structure is rate limiting for the final folding of ACBP. The burst phase structures observed in ACBP are different from the previously reported...

  6. Formation and structure of V-Zr amorphous alloy thin films

    KAUST Repository

    King, Daniel J M; Middleburgh, Simon C.; Liu, A. C Y; Tahini, Hassan Ali; Lumpkin, Gregory R.; Cortie, Michael B.

    2015-01-01

    . Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution

  7. Structural Fluctuations and Thermophysical Properties of Molten II-VI Compounds

    Science.gov (United States)

    Su, Ching-Hua; Zhu, Shen; Li, Chao; Scripa, R.; Lehoczky, Sandra L.; Kim, Y. W.; Baird, J. K.; Lin, B.; Ban, Heng; Benmore, Chris

    2003-01-01

    The objectives of the project are to conduct ground-based experimental and theoretical research on the structural fluctuations and thermophysical properties of molten II-VI compounds to enhance the basic understanding of the existing flight experiments in microgravity materials science programs as well as to study the fundamental heterophase fluctuation phenomena in these melts by: 1) conducting neutron scattering analysis and measuring quantitatively the relevant thermophysical properties of the II-VI melts (such as viscosity, electrical conductivity, thermal diffusivity and density) as well as the relaxation characteristics of these properties to advance the understanding of the structural properties and the relaxation phenomena in these melts and 2) performing theoretical analyses on the melt systems to interpret the experimental results. All the facilities required for the experimental measurements have been procured, installed and tested. It has long been recognized that liquid Te presents a unique case having properties between those of metals and semiconductors. The electrical conductivity for Te melt increases rapidly at melting point, indicating a semiconductor-metal transition. Te melts comprise two features, which are usually considered to be incompatible with each other: covalently bound atoms and metallic-like behavior. Why do Te liquids show metallic behavior? is one of the long-standing issues in liquid metal physics. Since thermophysical properties are very sensitive to the structural variations of a melt, we have conducted extensive thermophysical measurements on Te melt.

  8. General principles for the formation of dust self-organizing structures. Dust collective attraction and plasma crystal formation

    International Nuclear Information System (INIS)

    Tsytovich, V.N.

    2005-01-01

    It is demonstrated that a homogeneous dusty plasma is universally unstable to form structures. The effect of collective grain attraction is a basic phenomenon for the proposed new paradigm (general principles) for the plasma crystal formation

  9. AstroNet-II International Final Conference

    CERN Document Server

    Masdemont, Josep

    2016-01-01

    These are the proceedings of the "AstroNet-II International Final Conference". This conference was one of the last milestones of the Marie-Curie Research Training Network on Astrodynamics "AstroNet-II", that has been funded by the European Commission under the Seventh Framework Programme. The aim of the conference, and thus this book, is to communicate work on astrodynamics problems to an international and specialised audience. The results are presented by both members of the network and invited specialists. The topics include: trajectory design and control, attitude control, structural flexibility of spacecraft and formation flying. The book addresses a readership across the traditional boundaries between mathematics, engineering and industry by offering an interdisciplinary and multisectorial overview of the field.

  10. PROPERTIES OF BULGELESS DISK GALAXIES. II. STAR FORMATION AS A FUNCTION OF CIRCULAR VELOCITY

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Linda C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Martini, Paul; Wong, Man-Hong [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Lisenfeld, Ute [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, 18071 Granada (Spain); Boeker, Torsten [European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Schinnerer, Eva, E-mail: lwatson@cfa.harvard.edu [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-06-01

    We study the relation between the surface density of gas and star formation rate in 20 moderately inclined, bulgeless disk galaxies (Sd-Sdm Hubble types) using CO(1-0) data from the IRAM 30 m telescope, H I emission line data from the VLA/EVLA, H{alpha} data from the MDM Observatory, and polycyclic aromatic hydrocarbon emission data derived from Spitzer IRAC observations. We specifically investigate the efficiency of star formation as a function of circular velocity (v{sub circ}). Previous work found that the vertical dust structure and disk stability of edge-on, bulgeless disk galaxies transition from diffuse dust lanes with large scale heights and gravitationally stable disks at v{sub circ} < 120 km s{sup -1} (M{sub *} {approx}< 10{sup 10} M{sub Sun }) to narrow dust lanes with small scale heights and gravitationally unstable disks at v{sub circ} > 120 km s{sup -1}. We find no transition in star formation efficiency ({Sigma}{sub SFR}/{Sigma}{sub Hi+H{sub 2}}) at v{sub circ} = 120 km s{sup -1} or at any other circular velocity probed by our sample (v{sub circ} = 46-190 km s{sup -1}). Contrary to previous work, we find no transition in disk stability at any circular velocity in our sample. Assuming our sample has the same dust structure transition as the edge-on sample, our results demonstrate that scale height differences in the cold interstellar medium of bulgeless disk galaxies do not significantly affect the molecular fraction or star formation efficiency. This may indicate that star formation is primarily affected by physical processes that act on smaller scales than the dust scale height, which lends support to local star formation models.

  11. Poly[tetraaqua-μ3-pyridine-3,5-dicarboxylato-strontium(II

    Directory of Open Access Journals (Sweden)

    Shirin Daneshvar

    2008-02-01

    Full Text Available The reaction of strontium(II nitrate with the proton-transfer compound (pdaH2(py-3,5-dc·H2O (where pda = propane-1,3-diamine and py-3,5-dcH2 = pyridine-3,5-dicarboxylic acid leads to the formation of the title polymeric compound, [Sr(C7H3NO4(H2O4]n. The propane-1,3-diaminium cation is not incorporated in this crystal structure. The SrII atom lies on an inversion centre and is eight-coordinated by four O atoms from three py-3,5-dc ligands and four O atoms from four coordinated water molecules. The coordination polyhedron of the SrII atom is a distorted dodecahedron. These binuclear units are connected via the carboxylate O atoms to build a one-dimensional polymeric chain. In the crystal structure, non-covalant interactions consisting of hydrogen bonds (X—H...O, with X = O and C and π–π stacking interactions [3.4604 (19 Å] connect the various components to form a supramolecular structure.

  12. Structure formation in turbulent plasmas - test of nonlinear processes in plasma experiments

    International Nuclear Information System (INIS)

    Itoh, S.-I.; Yagi, Masatoshi; Inagaki, Shigeru

    2009-01-01

    Full text: Recent developments in plasma physics, either in the fusion research in a new era of ITER, or in space and in astro-physics, the world-wide and focused research has been developed on the subject of structural formation in turbulent plasma being associated with electro-magnetic field formation. Keys for the progress were a change of the physics view from the 'linear, local and deterministic' picture to the description based on 'nonlinear instability, nonlocal interaction and probabilistic excitation' for the turbulent state, and the integration of the theory-simulation-experiment. In this presentation, we first briefly summarize the theory of microscopic turbulence and mesoscale fluctuations and selection rules. In addition, the statistical formation of large-scale structure/deformation by turbulence is addressed. Then, the experimental measurements of the mesoscale structures (e.g., zonal flows, zonal fields, streamer and transport interface) and of the nonlinear interactions among them in turbulent plasmas are reported. Confirmations by, and new challenges from, the experiments are overviewed. Work supported by the Grant-in-Aid for Specially-Promoted Research (16002005). (author)

  13. The Origins of [C ii] Emission in Local Star-forming Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Croxall, K. V. [Department of Astronomy, The Ohio State University, 4051 McPherson Laboratory, 140 W. 18th Avenue, Columbus, OH, 43210 (United States); Smith, J. D. [Max-Planck-Institut fur Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pellegrini, E. [Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606 (United States); Groves, B. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Bolatto, A.; Wolfire, M. G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Herrera-Camus, R. [Max-Planck-Institut für extraterrestrische Physik, Giessen-bachstr., D-85748 Garching (Germany); Sandstrom, K. M. [Center for Astrophysics and Space Sciences, Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Draine, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Armus, L. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Boquien, M. [Unidad de Astronomía, Fac. Cs. Básicas, Universidad de Antofagasta, Avda. U. de Antofagasta 02800, Antofagasta (Chile); Brandl, B. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Dale, D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Galametz, M. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu—CNRS—Université Paris Diderot, CEA-Saclay, 91191, Gif-sur-Yvette (France); Hunt, L., E-mail: jd.smith@utoledo.edu [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze (Italy); and others

    2017-08-20

    The [C ii] 158 μ m fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [C ii] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [C ii] emission remains unclear because C{sup +} can be found in multiple phases of the interstellar medium. Here we measure the fractions of [C ii] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [N ii] 205 μ m fine-structure line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [C ii]/[N ii] 122 μ m. Using the FIR [C ii] and [N ii] emission detected by the KINGFISH (Key Insights on Nearby Galaxies: a Far- Infrared Survey with Herschel ) and Beyond the Peak Herschel programs, we show that 60%–80% of [C ii] emission originates from neutral gas. We find that the fraction of [C ii] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and has a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [C ii] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided.

  14. Structures and Heats of Formation of Simple Alkaline Earth Metal Compounds II: Fluorides, Chlorides, Oxides, and Hydroxides for Ba, Sr, and Ra.

    Science.gov (United States)

    Vasiliu, Monica; Hill, J Grant; Peterson, Kirk A; Dixon, David A

    2018-01-11

    Geometry parameters, vibrational frequencies, heats of formation, bond dissociation energies, cohesive energies, and selected fluoride affinities (difluorides) are predicted for the late alkaline earth (Sr, Ba, and Ra) oxides, fluorides, chlorides, and hydroxides at the coupled cluster theory CCSD(T) level. Additional corrections (scalar relativistic and pseudopotential corrections, vibrational zero-point energies, and atomic spin-orbit effects) were included to accurately calculate the total atomization energies and heats of formation following the Feller-Peterson-Dixon methodology. The calculated values are compared to the experimental data where available. In some cases, especially for Ra compounds, there are no experimental results, or the experimental energetics and geometries are not reliable or have very large error bars. All of the Sr, Ba, and Ra difluorides, dichlorides, and dihydroxides are bent structures with the OMO bond angles decreasing going down the group. The cohesive energies of bulk Be dihalides are predicted to be quite low, while those of Ra are relatively large. The fluoride affinities show that the difluorides are moderately strong Lewis acids and that such trifluorides may form under the appropriate experimental conditions.

  15. Formation of Outburst Structure in Hot Dip Galvannealed Coatings on IF Steels

    Directory of Open Access Journals (Sweden)

    Kollárová, M.

    2007-01-01

    Full Text Available Outburst structure in two industrially produced hot dip galvanized interstitial free steel sheets for automotive industry after additional annealing has been examined. Ti IF steel was found to form weak outburst structure in the early stage of annealing, followed by frontal growth of Fe-Zn phases during further heating. The high reactivity of this steel was confirmed by rapid G-phase formation. Under the same conditions, Ti-Nb-P IF steel exhibited frontal growth of Fe-Zn compounds without G-phase formation due to relatively high phosphorous content, which is known as inhibitor of Fe-Zn reaction, but simultaneously significant occurrence of undesired outburst structures was recorded. It was assumed that the phosphorous content was insufficient and/or ferrite grain was very fine.

  16. Atomic structure and formation of CuZrAl bulk metallic glasses and composites

    International Nuclear Information System (INIS)

    Kaban, I.; Jóvári, P.; Escher, B.; Tran, D.T.; Svensson, G.; Webb, M.A.; Regier, T.Z.; Kokotin, V.; Beuneu, B.; Gemming, T.; Eckert, J.

    2015-01-01

    Graphical abstract: Partial radial distribution functions for Cu 47.5 Zr 47.5 Al 5 metallic glass and relevant crystal structures. - Abstract: Cu 47.5 Zr 47.5 Al 5 metallic glass is studied experimentally by high-energy X-ray diffraction, neutron diffraction with isotopic substitution, electron diffraction and X-ray absorption spectroscopy. The atomic structure of the glass is modeled by reverse Monte-Carlo and molecular dynamics simulations. RMC modeling of seven experimental datasets enabled reliable separation of all partial pair distribution functions for Cu 47.5 Zr 47.5 Al 5 metallic glass. A peculiar structural feature of the ternary alloy is formation of the strong Al–Zr bonds, which are supposed to determine its high viscosity and enhanced bulk glass formation. Analysis of the local atomic order in Cu 47.5 Zr 47.5 Al 5 glass and Cu 10 Zr 7 , CuZr 2 and CuZr B2 crystalline structures elucidates their similarities and differences explaining the phase formation sequence by devitrification of the glass.

  17. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    Science.gov (United States)

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  18. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1.

    Science.gov (United States)

    Dippon, Urs; Pantke, Claudia; Porsch, Katharina; Larese-Casanova, Phil; Kappler, Andreas

    2012-06-19

    The mobility of toxic metals and the transformation of organic pollutants in the environment are influenced and in many cases even controlled by iron minerals. Therefore knowing the factors influencing iron mineral formation and transformation by Fe(II)-oxidizing and Fe(III)-reducing bacteria is crucial for understanding the fate of contaminants and for the development of remediation technologies. In this study we followed mineral formation by the nitrate-reducing Fe(II)-oxidizing strain Acidovorax sp. BoFeN1 in the presence of the crystalline Fe(III) (oxyhydr)oxides goethite, magnetite and hematite added as potential nucleation sites. Mössbauer spectroscopy analysis of minerals precipitated by BoFeN1 in (57)Fe(II)-spiked microbial growth medium showed that goethite was formed in the absence of mineral additions as well as in the presence of goethite or hematite. The presence of magnetite minerals during Fe(II) oxidation induced the formation of magnetite in addition to goethite, while the addition of humic substances along with magnetite also led to goethite but no magnetite. This study showed that mineral formation not only depends on the aqueous geochemical conditions but can also be affected by the presence of mineral nucleation sites that initiate precipitation of the same underlying mineral phases.

  19. Glass formation via structural fragmentation of a 2D coordination network.

    Science.gov (United States)

    Umeyama, D; Funnell, N P; Cliffe, M J; Hill, J A; Goodwin, A L; Hijikata, Y; Itakura, T; Okubo, T; Horike, S; Kitagawa, S

    2015-08-18

    The structure of a glass obtained by the melt quenching of a two-dimensional (2D) coordination network was examined. X-ray analyses disclosed a 2D-to-0D structural transformation before and after glass formation. The mechanism is unique to coordination compounds, as it is characterized by labile and flexible coordination bonds.

  20. Hexaaquanickel(II tetraaquabis(μ-pyridine-2,6-dicarboxylatobis(pyridine-2,6-dicarboxylatotrinickelate(II octahydrate

    Directory of Open Access Journals (Sweden)

    Javad Safaei-Ghomi

    2010-08-01

    Full Text Available The title compound, [Ni(H2O6][Ni3(C7H3NO44(H2O4]·8H2O, was obtained by the reaction of nickel(II nitrate hexahydrate with pyridine-2,6-dicarboxylic acid (pydcH2 and 1,10-phenanothroline (phen in an aqueous solution. The latter ligand is not involved in formation of the title complex. There are three different NiII atoms in the asymmetric unit, two of which are located on inversion centers, and thus the [Ni(H2O6]2+ cation and the trinuclear {[Ni(pydc2]2-μ-Ni(H2O4}2− anion are centrosymmetric. All NiII atoms exhibit an octahedral coordination geometry. Various interactions, including numerous O—H...O and C—H...O hydrogen bonds and C—O...π stacking of the pyridine and carboxylate groups [3.570 (1, 3.758 (1 and 3.609 (1 Å], are observed in the crystal structure.

  1. Organic carboxylate anions effect on the structures of a series of Mn(II) complexes based on 2-phenylimidazo[4,5-f]1,10-phenanthroline ligand

    International Nuclear Information System (INIS)

    Wang Xiuli; Chen Yongqiang; Liu Guocheng; Lin Hongyan; Zhang Jinxia

    2009-01-01

    In our efforts to tune the structures of Mn(II) complexes by selection of organic carboxylic acid ligands, six new complexes [Mn(PIP) 2 Cl 2 ] (1), [Mn(PIP) 2 (4,4'-bpdc)(H 2 O)].2H 2 O (2), [Mn(PIP) 2 (1,4-bdc)] (3), [Mn(PIP)(1,3-bdc)] (4), [Mn(PIP) 2 (2,6-napdc)].H 2 O (5), and [Mn(PIP)(1,4-napdc)].H 2 O (6) were obtained, where PIP=2-phenylimidazo[4,5-f]1,10-phenanthroline, 4,4'-H 2 bpdc=biphenyl-4,4'-dicarboxylic acid, 1,4-H 2 bdc=benzene-1,4-dicarboxylic acid, 1,3-H 2 bdc=benzene-1,3-dicarboxylic acid, 2,6-H 2 napdc=2,6-naphthalenedicarboxylic acid, 1,4-H 2 napdc=1,4-naphthalenedicarboxylic acid. All complexes have been structurally characterized by IR, elemental analyses, and single crystal X-ray diffraction. Structural analyses show that complexes 1 and 2 possess mononuclear structures, complexes 3, 4, and 5 feature chain structures, and complex 6 exhibits a 2D (4,4) network. The structural difference of 1-6 indicates that organic carboxylate anions play important roles in the formation of such coordination architectures. Furthermore, the thermal properties of complexes 1-6 and the magnetic property of 4 have been investigated. - Graphical Abstract: Through selecting organic carboxylate anions, six Mn(II) complexes have been synthesized under hydrothermal conditions and characterized by single crystal X-ray diffraction.

  2. Preliminary Guideline for the High Temperature Structure Integrity Assessment Procedure Part II. High Temperature Structural Integrity Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Kim, J. B.; Lee, H. Y.; Park, C. G.; Joo, Y. S.; Koo, G. H.; Kim, S. H

    2007-02-15

    A high temperature structural integrity assessment belongs to the Part II of a whole preliminary guideline for the high temperature structure. The main contents of this guideline are the evaluation procedures of the creep-fatigue crack initiation and growth in high temperature condition, the high temperature LBB evaluation procedure, and the inelastic evaluations of the welded joints in SFR structures. The methodologies for the proper inelastic analysis of an SFR structures in high temperatures are explained and the guidelines of inelastic analysis options using ANSYS and ABAQUS are suggested. In addition, user guidelines for the developed NONSTA code are included. This guidelines need to be continuously revised to improve the applicability to the design and analysis of the SFR structures.

  3. Anisotropic formation and distribution of stacking faults in II-VI semiconductor nanorods.

    Science.gov (United States)

    Hughes, Steven M; Alivisatos, A Paul

    2013-01-09

    Nanocrystals of cadmium selenide exhibit a form of polytypism with stable forms in both the wurtzite and zinc blende crystal structures. As a result, wurtzite nanorods of cadmium selenide tend to form stacking faults of zinc blende along the c-axis. These faults were found to preferentially form during the growth of the (001) face, which accounts for 40% of the rod's total length. Since II-VI semiconductor nanorods lack inversion symmetry along the c-axis of the particle, the two ends of the nanorod may be identified by this anisotropic distribution of faults.

  4. Coordination structure of adsorbed Zn(II) at Water-TiO2 interfaces

    Energy Technology Data Exchange (ETDEWEB)

    He, G.; Pan, G.; Zhang, M.; Waychunas, G.A.

    2011-01-15

    The local structure of aqueous metal ions on solid surfaces is central to understanding many chemical and biological processes in soil and aquatic environments. Here, the local coordination structure of hydrated Zn(II) at water-TiO{sub 2} interfaces was identified by extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) spectroscopy combined with density functional theory (DFT) calculations. A nonintegral coordination number of average {approx}4.5 O atoms around a central Zn atom was obtained by EXAFS analysis. DFT calculations indicated that this coordination structure was consistent with the mixture of 4-coordinated bidentate binuclear (BB) and 5-coordinated bidentate mononuclear (BM) metastable equilibrium adsorption (MEA) states. The BB complex has 4-coordinated Zn, while the monodentate mononuclear (MM) complex has 6-coordinated Zn, and a 5-coordinated adsorbed Zn was found in the BM adsorption mode. DFT calculated energies showed that the lower-coordinated BB and BM modes were thermodynamically more favorable than the higher-coordinated MM MEA state. The experimentally observed XANES fingerprinting provided additional direct spectral evidence of 4- and 5-coordinated Zn-O modes. The overall spectral and computational evidence indicated that Zn(II) can occur in 4-, 5-, and 6-oxygen coordinated sites in different MEA states due to steric hindrance effects, and the coexistence of different MEA states formed the multiple coordination environments.

  5. The role of milk proteins in the structure formation of dairy products

    Directory of Open Access Journals (Sweden)

    Olga Rybak

    2015-04-01

    Full Text Available Introduction. The structure of dairy products is a complex of proteins, fat, minerals and water that determines the texture and sensory properties of the product. Material and methods. The fermented milks (using the example of yogurt, cheese, ice cream, aerated milk and frozen fruit desserts have been researched. Scientific articles, published during 2000 and 2014 years, as well as theses and monographs of dairy science have been analysed too. Methodology of the investigation is based upon the use of the methods of analysis, comparison and synthesis. Results and discussion. The scientific understanding of the milk proteins’ role in the structure formation of dairy product has been summarized. Negligible changes of structure as a result of compositional or technological changes can lead to shifts in the stability, texture and rheology of products, which are closely related to each other. The allowance of these properties has significant influence on the manufacturing. Acid coagulation is a major functional property of milk proteins, which used in the structure formation of cheese and fermented dairy products. However, the form and properties of milk curd depend on the heat treatment of milk before fermentation. Milk proteins exhibit other functional properties (emulsification and partial coalescence of fat globules, aeration and foam stability during a churning, viscosity increasing of external phase in the development of structure in the ice cream, aerated milk and frozen fruit desserts. Conclusions. It is expedient to use results into a further study of the structure formation mechanism of dairy products and the development of recommendations in order to an efficient production.

  6. The role of milk proteins in the structure formation of dairy products

    Directory of Open Access Journals (Sweden)

    Olga Rybak

    2014-09-01

    Full Text Available Introduction. The structure of dairy products is a complex of proteins, fat, minerals and water that determines the texture and sensory properties of the product. Material and methods. The fermented milks (using the example of yogurt, cheese, ice cream, aerated milk and frozen fruit desserts have been researched. Scientific articles, published during 2000 and 2014 years, as well as theses and monographs of dairy science have been analysed too. Methodology of the investigation is based upon the use of the methods of analysis, comparison and synthesis. Results and discussion. The scientific understanding of the milk proteins’ role in the structure formation of dairy product has been summarized. Negligible changes of structure as a result of compositional or technological changes can lead to shifts in the stability, texture and rheology of products, which are closely related to each other. The allowance of these properties has significant influence on the manufacturing. Acid coagulation is a major functional property of milk proteins, which used in the structure formation of cheese and fermented dairy products. However, the form and properties of milk curd depend on the heat treatment of milk before fermentation. Milk proteins exhibit other functional properties (emulsification and partial coalescence of fat globules, aeration and foam stability during a churning, viscosity increasing of external phase in the development of structure in the ice cream, aerated milk and frozen fruit desserts. Conclusions. It is expedient to use results into a further study of the structure formation mechanism of dairy products and the development of recommendations in order to an efficient production.

  7. The role of milk proteins in the structure formation of dairy products

    Directory of Open Access Journals (Sweden)

    O. Rybak

    2015-05-01

    Full Text Available Introduction. The structure of dairy products is a complex of proteins, fat, minerals and water that determines the texture and sensory properties of the product. Material and methods. The fermented milks (using the example of yogurt, cheese, ice cream, aerated milk and frozen fruit desserts have been researched. Scientific articles, published during 2000 and 2014 years, as well as theses and monographs of dairy science have been analysed too. Methodology of the investigation is based upon the use of the methods of analysis, comparison and synthesis. Results and discussion. The scientific understanding of the milk proteins’ role in the structure formation of dairy product has been summarized. Negligible changes of structure as a result of compositional or technological changes can lead to shifts in the stability, texture and rheology of products, which are closely related to each other. The allowance of these properties has significant influence on the manufacturing. Acid coagulation is a major functional property of milk proteins, which used in the structure formation of cheese and fermented dairy products. However, the form and properties of milk curd depend on the heat treatment of milk before fermentation. Milk proteins exhibit other functional properties (emulsification and partial coalescence o f fatglobules, aeration and foam stability during a churning, viscosity increasing of external phase in the development of structure in the ice cream, aerated milk and frozen fruit desserts. Conclusions.It is expedient to use results into a further study of the structure formation mechanism of dairy products and the development of recommendations in order to an efficient production.

  8. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine

    Science.gov (United States)

    Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  9. Indolenine meso-substituted dibenzotetraaza[14]annulene and its coordination chemistry toward the transition metal ions Mn(III), Fe(III), Co(II), Ni(II), Cu(II), and Pd(II).

    Science.gov (United States)

    Khaledi, Hamid; Olmstead, Marilyn M; Ali, Hapipah Mohd; Thomas, Noel F

    2013-02-18

    A new dibenzotetraaza[14]annulene bearing two 3,3-dimethylindolenine fragments at the meso positions (LH(2)), has been synthesized through a nontemplate method. X-ray crystallography shows that the whole molecule is planar. The basicity of the indolenine ring permits the macrocycle to be protonated external to the core and form LH(4)(2+)·2Cl(-). Yet another structural modification having strong C-H···π interactions was found in the chloroform solvate of LH(2). The latter two modifications are accompanied by a degree of nonplanar distortion. The antiaromatic core of the macrocycle can accommodate a number of metal ions, Mn(III), Fe(III), Co(II), Ni(II) and Cu(II), to form complexes of [Mn(L)Br], [Mn(L)Cl], [Fe(LH(2))Cl(2)](+)·Cl(-), [Co(L)], [Ni(L)], and [Cu(L)]. In addition, the reaction of LH(2) with the larger Pd(II) ion leads to the formation of [Pd(2)(LH(2))(2)(OAc)(4)] wherein the macrocycle acts as a semiflexible ditopic ligand to coordinate pairs of metal ions via its indolenine N atoms into dinuclear metallocycles. The compounds LH(2), [Co(L)], and [Ni(L)] are isostructural and feature close π-stacking as well as linear chain arrangements in the case of the metal complexes. Variable temperature magnetic susceptibility measurements showed thermally induced paramagnetism in [Ni(L)].

  10. Evidence of the layer structure formation of chitosan microtubes by the Liesegang ring mechanism

    Science.gov (United States)

    Babicheva, T. S.; Gegel, N. O.; Shipovskaya, A. B.

    2018-04-01

    In the work, an experiment was performed to simulate the process of chitosan microtube formation through the interphase polysalt -> polybase chemical reaction, on the one hand, and the formation of spatially separated structures under the conditions of reactive diffusion of one of the components, on the other hand. The formation of alternating dark and light bands or concentric rings of the chitosan polybase as a result of the polymer-analogous transformation is visualized by optical microscopy. The results obtained confirm our assumption that the layered structure of our chitosan microtubes is formed according to the Liesegang reaction mechanism.

  11. Thermostability and photophysical properties of mixed-ligand carboxylate/benzimidazole Zn(II)-coordination polymers

    International Nuclear Information System (INIS)

    Barros, Bráulio Silva; Chojnacki, Jaroslaw; Macêdo Soares, Antonia Alice; Kulesza, Joanna; Lourenço da Luz, Leonis; Júnior, Severino Alves

    2015-01-01

    The reaction between Zn(NO 3 ) 2 ·6H 2 O or Zn(CH 3 COO) 2 ·2H 2 O and isophthalic acid (1,3-H 2 bdc) in the presence of benzimidazole (Hbzim) in dimethylformamide (DMF)/ethanol (EtOH)/H 2 O solvent mixture at room temperature yielded two structurally different coordination polymers: [Zn 2 (1,3-bdc) 2 (Hbzim) 2 ] (1) and [Zn 2 (1,3-bdc)(bzim) 2 ] (2). (1) is a 2D-layered framework with a molecule of benzimidazole coordinated to the Zn center, whereas (2) is a 3D framework with benzimidazolate species acting as a co-ligand and bridging two Zn(II) ions. Reactions performed at 90 °C led to the formation of coordination polymers structurally similar to (2), independently of the Zn(II) source used. In the absence of benzimidazole, the reaction between ZnAc 2 .2H 2 O and 1,3-H 2 bdc at 90 °C resulted in the formation of (3), a 3D coordination polymer Zn(HCOO) 3 (Me 2 NH 2 + ). It was observed that the thermostability and the photophysical properties of (1) and (2) are strongly dependent on the coordination modes and packing of benzimidazole in the solid state. These materials present photoluminescence in the wide range of the spectrum, from UV to IR. A full understanding of a physical process occurring in these intriguing systems, including complete energy level diagrams with possible transitions were provided. - Graphical abstract: Display Omitted - Highlights: • Structurally different Zn(II)-coordination polymers were prepared. • The formation of frameworks was counter anion and temperature dependent. • Photoluminescence in the wide range of the spectrum, from UV to IR was observed. • Thermostability and luminescence depended on bzim packing in the structure

  12. Biologically active new Fe(II, Co(II, Ni(II, Cu(II, Zn(II and Cd(II complexes of N-(2-thienylmethylenemethanamine

    Directory of Open Access Journals (Sweden)

    C. SPÎNU

    2008-04-01

    Full Text Available Iron(II, cobalt(II, nickel (II, copper (II, zinc(II and cadmium(II complexes of the type ML2Cl2, where M is a metal and L is the Schiff base N-(2-thienylmethylenemethanamine (TNAM formed by the condensation of 2-thiophenecarboxaldehyde and methylamine, were prepared and characterized by elemental analysis as well as magnetic and spectroscopic measurements. The elemental analyses suggest the stoichiometry to be 1:2 (metal:ligand. Magnetic susceptibility data coupled with electronic, ESR and Mössbauer spectra suggest a distorted octahedral structure for the Fe(II, Co(II and Ni(II complexes, a square-planar geometry for the Cu(II compound and a tetrahedral geometry for the Zn(II and Cd(II complexes. The infrared and NMR spectra of the complexes agree with co-ordination to the central metal atom through nitrogen and sulphur atoms. Conductance measurements suggest the non-electrolytic nature of the complexes, except for the Cu(II, Zn(II and Cd(II complexes, which are 1:2 electrolytes. The Schiff base and its metal chelates were screened for their biological activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and the metal chelates were found to possess better antibacterial activity than that of the uncomplexed Schiff base.

  13. Complex Formation in a Liquid-Liquid Extraction System Containing Cobalt(II), 4-(2-Pyridylazo)resorcinol, and Nitron

    OpenAIRE

    Racheva, Petya Vassileva; Gavazov, Kiril Blazhev; Lekova, Vanya Dimitrova; Dimitrov, Atanas Nikolov

    2013-01-01

    Complex formation and liquid-liquid extraction were studied in a system containing cobalt(II), 4-(2-pyridylazo)resorcinol (PAR), 1,4-diphenyl-3-(phenylamino)-1H-1,2,4-triazole (Nitron, Nt), water, and chloroform. The effect of some experimental parameters (pH, shaking time, concentration of PAR, and concentration of Nt) was systematically investigated, and the optimum conditions for cobalt extraction as an ion-association complex, (NtH+)[Co3+(PAR)2], were found. The following key equilibrium ...

  14. Roles of calcium/calmodulin-dependent kinase II in long-term memory formation in crickets.

    Directory of Open Access Journals (Sweden)

    Makoto Mizunami

    Full Text Available Ca(2+/calmodulin (CaM-dependent protein kinase II (CaMKII is a key molecule in many systems of learning and memory in vertebrates, but roles of CaMKII in invertebrates have not been characterized in detail. We have suggested that serial activation of NO/cGMP signaling, cyclic nucleotide-gated channel, Ca(2+/CaM and cAMP signaling participates in long-term memory (LTM formation in olfactory conditioning in crickets, and here we show participation of CaMKII in LTM formation and propose its site of action in the biochemical cascades. Crickets subjected to 3-trial conditioning to associate an odor with reward exhibited memory that lasts for a few days, which is characterized as protein synthesis-dependent LTM. In contrast, animals subjected to 1-trial conditioning exhibited memory that lasts for only several hours (mid-term memory, MTM. Injection of a CaMKII inhibitor prior to 3-trial conditioning impaired 1-day memory retention but not 1-hour memory retention, suggesting that CaMKII participates in LTM formation but not in MTM formation. Animals injected with a cGMP analogue, calcium ionophore or cAMP analogue prior to 1-trial conditioning exhibited 1-day retention, and co-injection of a CaMKII inhibitor impaired induction of LTM by the cGMP analogue or that by the calcium ionophore but not that by the cAMP analogue, suggesting that CaMKII is downstream of cGMP production and Ca(2+ influx and upstream of cAMP production in biochemical cascades for LTM formation. Animals injected with an adenylyl cyclase (AC activator prior to 1-trial conditioning exhibited 1-day retention. Interestingly, a CaMKII inhibitor impaired LTM induction by the AC activator, although AC is expected to be a downstream target of CaMKII. The results suggest that CaMKII interacts with AC to facilitate cAMP production for LTM formation. We propose that CaMKII serves as a key molecule for interplay between Ca(2+ signaling and cAMP signaling for LTM formation, a new role of Ca

  15. Picosecond kinetics of the electron-hole layers formation in wide-bandgap II-VI type-II heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, E.V.; Zaitsev, S.V.; Tartakovskii, I.I.; Maksimov, A.A. [Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow region (Russian Federation); Yakovlev, D.R. [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Experimentelle Physik II, Technische Universitaet Dortmund (Germany); Waag, A. [Institute of Semiconductor Technology, Braunschweig Technical University, 38106 Braunschweig (Germany)

    2010-06-15

    Considerable slowdown of luminescence kinetics of the direct optical transition was discovered in ZnSe/BeTe type-II heterostructures under high levels of optical pumping. The effect is attributed to forming of a potential barrier for holes in the ZnSe layer due to band bending at high densities of spatially separated carriers. That results in a longer time of the photoexcited holes energy relaxation to their ground state in the BeTe layer. The decrease of overlapping of electron and hole wavefunctions in the ZnSe layer in thick ZnSe/BeTe structures at high levels of optical excitation reveals an additional important effect, that leads to sufficient retardation of radiative recombination time for photoexcited carriers (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Synthesis and structural characterization of nickel(II), cobalt(II), Zinc(II), manganese(II), cadmium(II) and uranium(VI) complexes of α-oximinoacetoacet-o/p-anisidide thiosemicarbazone

    International Nuclear Information System (INIS)

    Patel, P.S.; Patel, M.M.; Ray, R.M.

    1993-01-01

    A few metal complexes of α-oximinoacetoacet-o/p-anisidide thiosemicarbazones (OAOATS)/(OAPATS) with Ni(II), Co(II), Zn(II), Mn(II), Hg(II), Cd(II) and UO 2 (II) have been prepared and characterized by elemental analyses, conductivity, differential scanning calorimetry study, thermogravimetric analyses and infrared and electronic spectral measurements in conjunction with magnetic susceptibility measurements at room temperature. They have also been tested for their antimicrobial activities. (author). 24 refs., 2 tabs

  17. Formation of beads-on-a-string structures during break-up of viscoelastic filaments

    Science.gov (United States)

    Bhat, Pradeep P.; Appathurai, Santosh; Harris, Michael T.; Pasquali, Matteo; McKinley, Gareth H.; Basaran, Osman A.

    2010-08-01

    Break-up of viscoelastic filaments is pervasive in both nature and technology. If a filament is formed by placing a drop of saliva between a thumb and forefinger and is stretched, the filament's morphology close to break-up corresponds to beads of several sizes interconnected by slender threads. Although there is general agreement that formation of such beads-on-a-string (BOAS) structures occurs only for viscoelastic fluids, the underlying physics remains unclear and controversial. The physics leading to the formation of BOAS structures is probed by numerical simulation. Computations reveal that viscoelasticity alone does not give rise to a small, satellite bead between two much larger main beads but that inertia is required for its formation. Viscoelasticity, however, enhances the growth of the bead and delays pinch-off, which leads to a relatively long-lived beaded structure. We also show for the first time theoretically that yet smaller, sub-satellite beads can also form as seen in experiments.

  18. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.

    Science.gov (United States)

    Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N

    2003-09-01

    Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.

  19. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers

    International Nuclear Information System (INIS)

    Monier, M.; Ayad, D.M.; Sarhan, A.A.

    2010-01-01

    The graft copolymerization of ethyl acrylate (EA) onto natural wool fibers initiated by potassium persulphate and Mohr's salt redox initiator system in limited aqueous medium was carried out in heterogeneous media. Ester groups of the grafted copolymers were partially converted into hydrazide function groups followed by hydrazone formation through reaction with isatin. Also the application of the modified fibers for metal ion uptake was studied using Cu(II), Hg(II) and Ni(II). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction.

  20. Separation and recovery of lead from a low concentration solution of lead(II) and zinc(II) using the hydrolysis production of poly styrene-co-maleic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xing; Su, Yibing [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou (China); Yang, Ying, E-mail: Yangying@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou (China); Qin, Wenwu [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Separation and recovery of Pb(II) from a solution of Pb(II) and Zn(II) was performed. Black-Right-Pointing-Pointer Pb(II) can be recovered using the hydrolysis production of poly styrene-co-maleic anhydride. Black-Right-Pointing-Pointer The adsorption capacity of the PSMA resin for Pb(II) is 641.62 mg g{sup -1}. Black-Right-Pointing-Pointer Pb(II) can be recovered through desorption of Pb-PSMA into Pb(II) ion and the solid PSMA resin. Black-Right-Pointing-Pointer The resin can be repeatedly used through desorption by an inorganic acid condition (6 M H{sub 2}SO{sub 4}). - Abstract: The Pb-Zn separation/preconcentration technique, based on the complex formation reaction of Pb(II) and Zn(II), using a copolymer poly(styrene-co-maleic anhydride) (PSMA), without adding any carrier element was developed. The effects of several experimental parameters such as solution pH, temperature and adsorption time were studied. The experimental results show that the PSMA resin-Pb equilibrium was achieved in 2 min and the Pb(II) loading capacity is up to 641.62 mg g{sup -1} in aqueous solution under optimum conditions, which is much higher than the Zn(II) loading capacity within 80 min. The adsorption test for Pb(II) indicates that PSMA can recover Pb(II) from a mixed solution of Pb(II), Zn(II) and light metals such as Ca(II) and Mg(II) with higher adsorption rate and larger selective coefficient. A further study indicates that PSMA as chelating resins recovering Pb(II) can be regenerated via mineral acid (6 M H{sub 2}SO{sub 4}). PSMA was synthesized by radical polymerization and tested as an adsorbent for the selective recovery of Pb(II). In addition, the formation procedure and structure of Pb-PSMA complex were also studied. Both the PSMA and the Pb-PSMA complex were characterized by means of FTIR spectroscopy, elemental analysis, gel permeation chromatography (GPC) and atomic absorption spectrometry (AAS).

  1. Mechanochemical formation of heterogeneous diamond structures during rapid uniaxial compression in graphite

    Science.gov (United States)

    Kroonblawd, Matthew P.; Goldman, Nir

    2018-05-01

    We predict mechanochemical formation of heterogeneous diamond structures from rapid uniaxial compression in graphite using quantum molecular dynamics simulations. Ensembles of simulations reveal the formation of different diamondlike products starting from thermal graphite crystal configurations. We identify distinct classes of final products with characteristic probabilities of formation, stress states, and electrical properties and show through simulations of rapid quenching that these products are nominally stable and can be recovered at room temperature and pressure. Some of the diamond products exhibit significant disorder and partial closure of the energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (i.e., the HOMO-LUMO gap). Seeding atomic vacancies in graphite significantly biases toward forming products with small HOMO-LUMO gap. We show that a strong correlation between the HOMO-LUMO gap and disorder in tetrahedral bonding configurations informs which kinds of structural defects are associated with gap closure. The rapid diffusionless transformation of graphite is found to lock vacancy defects into the final diamond structure, resulting in configurations that prevent s p3 bonding and lead to localized HOMO and LUMO states with a small gap.

  2. Structure of a Complete Mediator-RNA Polymerase II Pre-Initiation Complex.

    Science.gov (United States)

    Robinson, Philip J; Trnka, Michael J; Bushnell, David A; Davis, Ralph E; Mattei, Pierre-Jean; Burlingame, Alma L; Kornberg, Roger D

    2016-09-08

    A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A series of Cd(II) complexes with π-π stacking and hydrogen bonding interactions: Structural diversities by varying the ligands

    International Nuclear Information System (INIS)

    Wang Xiuli; Zhang Jinxia; Liu Guocheng; Lin Hongyan

    2011-01-01

    Seven new Cd(II) complexes consisting of different phenanthroline derivatives and organic acid ligands, formulated as [Cd(PIP) 2 (dnba) 2 ] (1), [Cd(PIP)(ox)].H 2 O (2), [Cd(PIP)(1,4-bdc)(H 2 O)].4H 2 O (3), [Cd(3-PIP) 2 (H 2 O) 2 ].4H 2 O (4), [Cd 2 (3-PIP) 4 (4,4'-bpdc)(H 2 O) 2 ].5H 2 O (5), [Cd(3-PIP)(nip)(H 2 O)].H 2 O (6), [Cd 2 (TIP) 4 (4,4'-bpdc)(H 2 O) 2 ].3H 2 O (7) (PIP=2-phenylimidazo[4,5-f]1,10-phenanthroline, 3-PIP=2-(3-pyridyl)imidazo[4,5-f]1,10-phenanthroline, TIP=2-(2-thienyl)imidazo[4,5-f]1,10-phenanthroline, Hdnba=3,5-dinitrobenzoic acid, H 2 ox=oxalic acid, 1,4-H 2 bdc=benzene-1,4-dicarboxylic acid, 4,4'-H 2 bpdc=biphenyl-4,4'-dicarboxylic acid, H 2 nip=5-nitroisophthalic acid) have been synthesized under hydrothermal conditions. Complexes 1 and 4 possess mononuclear structures; complexes 5 and 7 are isostructural and have dinuclear structures; complexes 2 and 3 feature 1D chain structures; complex 6 contains 1D double chain, which are further extended to a 3D supramolecular structure by π-π stacking and hydrogen bonding interactions. The N-donor ligands with extended π-system and organic acid ligands play a crucial role in the formation of the final supramolecular frameworks. Moreover, thermal properties and fluorescence of 1-7 are also investigated. -- Graphical abstract: Seven new supramolecular architectures have been successfully isolated under hydrothermal conditions by reactions of different phen derivatives and Cd(II) salts together with organic carboxylate anions auxiliary ligands. Display Omitted Research highlights: → Complexes 1-7 are 0D or 1D polymeric structure, the π-π stacking and H-bonding interactions extend the complexes into 3D supramolecular network. To our knowledge, systematic study on π-π stacking and H-bonding interactions in cadmium(II) complexes are still limited. → The structural differences among the title complexes indicate the importance of N-donor chelating ligands for the creation of molecular

  4. Numerical modeling of formation of helical structures in reversed-field-pinch plasma

    International Nuclear Information System (INIS)

    Mizuguchi, N.; Ichiguchi, K.; Todo, Y.; Sanpei, A.; Oki, K.; Masamune, S.; Himura, H.

    2012-11-01

    Nonlinear three-dimensional magnetohydrodynamic(MHD) simulations have been executed for the low-aspect-ratio reversed-field-pinch (RFP) plasma to reveal the physical mechanism of the formation processes of helical structures. The simulation results show a clear formation of n=4 structure as a result of dominant growth of resistive modes, where n represents the toroidal mode number. The resultant relaxed helical state consists of a unique bean-shaped and hollow pressure profile in the poloidal cross section for both cases of resonant and non-resonant triggering instability modes. The results are partially comparable to the experimental observations. The physical mechanisms of those processes are examined. (author)

  5. Formation of Structure in the Universe

    Science.gov (United States)

    Bahcall, John; Fisher, Karl; Miralda-Escude, Jordi; Strauss, Michael; Weinberg, David

    1997-01-01

    This grant supported research by the investigators through summer salary support for Strauss and Weinberg, support for graduate students at Princeton University and Ohio State University, and travel, visitor, and publication support for the investigators. The grant originally had a duration of 1 year, and it was extended (without additional funding) for an additional year. The impact of the grant was considerable given its relatively modest duration and funding level, in part because it provided 'seed' funding to get Strauss and Weinberg started at new institutions, and in part because it was combined with support from subsequent grants. Here we summarize progress in the three general areas described in the grant proposal: Lyman alpha absorbers and the intergalactic medium, galaxy formation; and large scale structure.

  6. MMTF-An efficient file format for the transmission, visualization, and analysis of macromolecular structures.

    Directory of Open Access Journals (Sweden)

    Anthony R Bradley

    2017-06-01

    Full Text Available Recent advances in experimental techniques have led to a rapid growth in complexity, size, and number of macromolecular structures that are made available through the Protein Data Bank. This creates a challenge for macromolecular visualization and analysis. Macromolecular structure files, such as PDB or PDBx/mmCIF files can be slow to transfer, parse, and hard to incorporate into third-party software tools. Here, we present a new binary and compressed data representation, the MacroMolecular Transmission Format, MMTF, as well as software implementations in several languages that have been developed around it, which address these issues. We describe the new format and its APIs and demonstrate that it is several times faster to parse, and about a quarter of the file size of the current standard format, PDBx/mmCIF. As a consequence of the new data representation, it is now possible to visualize structures with millions of atoms in a web browser, keep the whole PDB archive in memory or parse it within few minutes on average computers, which opens up a new way of thinking how to design and implement efficient algorithms in structural bioinformatics. The PDB archive is available in MMTF file format through web services and data that are updated on a weekly basis.

  7. Solubility studies of oxovanadium(V) formate and vanadyl formate in aqueous medium

    International Nuclear Information System (INIS)

    Tripathi, V.S.; Bairwa, K.K.; Naik, D.B.; Raje, N.H.; Bera, S.

    2014-01-01

    The solubility of oxovanadium(V) formate and vanadyl formate in aqueous medium has been determined. These compounds are important for preparation of strong reducing V(II) compounds which are used in stainless steel based nuclear power plants for decontamination

  8. Complexes of Cu(II), Ni(II), Co(II), oxovanadium(IV) and dioxouranium(VI) with N,N'-ethylenebis (2-hydroxy-4-methylpropiophenoneimine)

    International Nuclear Information System (INIS)

    Patel, M.M.; Patel, M.R.; Patel, M.N.; Patel, R.P.

    1982-01-01

    Complexes of Cu(II), Ni(II), Co(II), oxovanadium(IV) and dioxouranium(VI) with the schiff base, N,N'-ethylenebis(2-hydroxy-4-methylpropiophenoneimine)(4-MeOHPEN), have been synthesised and characterised on the basis of elemental analyses, conductivity, magnetic moment, electronic and infrared spectral data. Square-planar structures are suggested for Cu(II), Ni(II) and Co(II) complexes while a distorted square-pyramidal structure is suggested for the oxovanadium(IV) complex. (author)

  9. The structure of the local interstellar medium. VI. New Mg II, Fe II, and Mn II observations toward stars within 100 pc

    International Nuclear Information System (INIS)

    Malamut, Craig; Redfield, Seth; Linsky, Jeffrey L.; Wood, Brian E.; Ayres, Thomas R.

    2014-01-01

    We analyze high-resolution spectra obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope toward 34 nearby stars (≤100 pc) to record Mg II, Fe II, and Mn II absorption due to the local interstellar medium (LISM). Observations span the entire sky, probing previously unobserved regions of the LISM. The heavy ions studied in this survey produce narrow absorption features that facilitate the identification of multiple interstellar components. We detected one to six individual absorption components along any given sight line, and the number of absorbers roughly correlates with the pathlength. This high-resolution near-ultraviolet (NUV) spectroscopic survey was specifically designed for sight lines with existing far-UV (FUV) observations. The FUV spectra include many intrinsically broad absorption lines (i.e., of low atomic mass ions) and are often observed at medium resolution. The LISM NUV narrow-line absorption component structure presented here can be used to more accurately interpret the archival FUV observations. As an example of this synergy, we present a new analysis of the temperature and turbulence along the line of sight toward ε Ind. The new observations of LISM velocity structure are also critical in the interpretation of astrospheric absorption derived from fitting the saturated H I Lyα profile. As an example, we reanalyze the spectrum of λ And and find that this star likely does have an astrosphere. Two stars in the sample that have circumstellar disks (49 Cet and HD141569) show evidence for absorption due to disk gas. Finally, the substantially increased number of sight lines is used to test and refine the three-dimensional kinematic model of the LISM and search for previously unidentified clouds within the Local Bubble. We find that every prediction made by the Redfield and Linsky kinematic model of the LISM is confirmed by an observed component in the new lines of sight.

  10. Direct synthesis of II-VI compound nanocrystals in polymer matrix

    International Nuclear Information System (INIS)

    Antolini, F.; Di Luccio, T.; Laera, A.M.; Mirenghi, L.; Piscopiello, E.; Re, M.; Tapfer, L.

    2007-01-01

    The production of II-VI semiconductor compound - polymer matrix nanocomposites by a direct in-situ thermolysis process is described. Metal-thiolate precursor molecules embedded in a polymer matrix decompose by a thermal annealing and the nucleation of semiconductor nanocrystals occurs. It is shown that the nucleation of nanoparticles and the formation of the nanocomposite can be also achieved by laser beam irradiation; this opens the way towards a ''lithographic'' in-situ nanocomposite production process. A possible growth and nanocomposite formation mechanism, describing the structural and chemical transformation of the precursor molecules, their decomposition and the formation of the nanoparticles, is presented. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. II ZWICKY 23 AND FAMILY: A GROUP IN INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, Elizabeth M. H.; Gallagher III, John S. [Department of Astronomy, University of Wisconsin-Madison and 475 North Charter Street, Madison, WI 53706 (United States); Cigan, Phillip J. [Cardiff University School of Physics and Astronomy Queen’s Buildings, The Parade, Cardiff, Cf24 3AA (United Kingdom); Rudie, Gwen C., E-mail: elizabeth@thewehners.net, E-mail: jsg@astro.wisc.edu, E-mail: CiganP@cardiff.ac.uk, E-mail: gwen@obs.carnegiescience.edu [The Observatories of the Carnegie Institution for Science and 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2016-09-01

    II Zw 23 (UGC 3179) is a luminous (M{sub B}  ∼ −21) nearby compact narrow emission line starburst galaxy with blue optical colors and strong emission lines. We present a photometric and morphological study of II Zw 23 and its interacting companion, KPG103a, using data obtained with the WIYN 3.5 m telescope in combination with a WFPC2 image from the Hubble Space Telescope archives. II Zw 23 has a highly disturbed outer structure with long trails of debris that may be contributing material toward the production of tidal dwarfs. Its central regions appear disky, a structure that is consistent with the overall rotation pattern observed in the H α velocity field measured from Densepak observations obtained with WIYN. We find additional evidence for interaction in this system, including the discovery of a new tidal loop extending from an associated dwarf galaxy, which appears to be in the process of disrupting along its orbit. We also present H α equivalent widths and discuss the relative star formation rates across this interacting system.

  12. Tandem Mass Spectrometry and Ion Mobility Reveals Structural Insight into Eicosanoid Product Ion Formation.

    Science.gov (United States)

    Di Giovanni, James P; Barkley, Robert M; Jones, David N M; Hankin, Joseph A; Murphy, Robert C

    2018-04-23

    Ion mobility measurements of product ions were used to characterize the collisional cross section (CCS) of various complex lipid [M-H] - ions using traveling wave ion mobility mass spectrometry (TWIMS). TWIMS analysis of various product ions derived after collisional activation of mono- and dihydroxy arachidonate metabolites was found to be more complex than the analysis of intact molecular ions and provided some insight into molecular mechanisms involved in product ion formation. The CCS observed for the molecular ion [M-H] - and certain product ions were consistent with a folded ion structure, the latter predicted by the proposed mechanisms of product ion formation. Unexpectedly, product ions from [M-H-H 2 O-CO 2 ] - and [M-H-H 2 O] - displayed complex ion mobility profiles suggesting multiple mechanisms of ion formation. The [M-H-H 2 O] - ion from LTB 4 was studied in more detail using both nitrogen and helium as the drift gas in the ion mobility cell. One population of [M-H-H 2 O] - product ions from LTB 4 was consistent with formation of covalent ring structures, while the ions displaying a higher CCS were consistent with a more open-chain structure. Using molecular dynamics and theoretical CCS calculations, energy minimized structures of those product ions with the open-chain structures were found to have a higher CCS than a folded molecular ion structure. The measurement of product ion mobility can be an additional and unique signature of eicosanoids measured by LC-MS/MS techniques. Graphical Abstract ᅟ.

  13. Tandem Mass Spectrometry and Ion Mobility Reveals Structural Insight into Eicosanoid Product Ion Formation

    Science.gov (United States)

    Di Giovanni, James P.; Barkley, Robert M.; Jones, David N. M.; Hankin, Joseph A.; Murphy, Robert C.

    2018-04-01

    Ion mobility measurements of product ions were used to characterize the collisional cross section (CCS) of various complex lipid [M-H]- ions using traveling wave ion mobility mass spectrometry (TWIMS). TWIMS analysis of various product ions derived after collisional activation of mono- and dihydroxy arachidonate metabolites was found to be more complex than the analysis of intact molecular ions and provided some insight into molecular mechanisms involved in product ion formation. The CCS observed for the molecular ion [M-H]- and certain product ions were consistent with a folded ion structure, the latter predicted by the proposed mechanisms of product ion formation. Unexpectedly, product ions from [M-H-H2O-CO2]- and [M-H-H2O]- displayed complex ion mobility profiles suggesting multiple mechanisms of ion formation. The [M-H-H2O]- ion from LTB4 was studied in more detail using both nitrogen and helium as the drift gas in the ion mobility cell. One population of [M-H-H2O]- product ions from LTB4 was consistent with formation of covalent ring structures, while the ions displaying a higher CCS were consistent with a more open-chain structure. Using molecular dynamics and theoretical CCS calculations, energy minimized structures of those product ions with the open-chain structures were found to have a higher CCS than a folded molecular ion structure. The measurement of product ion mobility can be an additional and unique signature of eicosanoids measured by LC-MS/MS techniques. [Figure not available: see fulltext.

  14. EVOLUTION OF GASEOUS DISK VISCOSITY DRIVEN BY SUPERNOVA EXPLOSION. II. STRUCTURE AND EMISSIONS FROM STAR-FORMING GALAXIES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Yan Changshuo; Wang Jianmin

    2010-01-01

    High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the Hα, Hβ, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can be intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to ∼1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of ∼10 8 yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as ∼100 km s -1 in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of Hα, Hβ, [O III], and [N II], and Hα brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive

  15. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers

    Energy Technology Data Exchange (ETDEWEB)

    Monier, M., E-mail: monierchem@yahoo.com [Chemistry Department, Drexel University, Philadelphia, PA (United States); Chemistry Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Ayad, D.M.; Sarhan, A.A. [Chemistry Department, Faculty of Science, Mansoura University, Mansoura (Egypt)

    2010-04-15

    The graft copolymerization of ethyl acrylate (EA) onto natural wool fibers initiated by potassium persulphate and Mohr's salt redox initiator system in limited aqueous medium was carried out in heterogeneous media. Ester groups of the grafted copolymers were partially converted into hydrazide function groups followed by hydrazone formation through reaction with isatin. Also the application of the modified fibers for metal ion uptake was studied using Cu(II), Hg(II) and Ni(II). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction.

  16. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers.

    Science.gov (United States)

    Monier, M; Ayad, D M; Sarhan, A A

    2010-04-15

    The graft copolymerization of ethyl acrylate (EA) onto natural wool fibers initiated by potassium persulphate and Mohr's salt redox initiator system in limited aqueous medium was carried out in heterogeneous media. Ester groups of the grafted copolymers were partially converted into hydrazide function groups followed by hydrazone formation through reaction with isatin. Also the application of the modified fibers for metal ion uptake was studied using Cu(II), Hg(II) and Ni(II). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction. 2009 Elsevier B.V. All rights reserved.

  17. Synthetic hydroxyapatites doped with Zn(II) studied by X-ray diffraction, infrared, Raman and thermal analysis

    Science.gov (United States)

    Guerra-López, José R.; Echeverría, Gustavo A.; Güida, Jorge A.; Viña, Raúl; Punte, Graciela

    2015-06-01

    Calcium hydroxyapatite (CaHap) formation when different amounts of Zn(II) are present in the mother solution has been investigated by atomic absorption, infrared and Raman spectroscopies, X-ray diffraction and thermal analysis (DTA and TG). The studied samples have been synthesized at T=95 °C and pH 9 in air. The analysis of the results have shown that the pure CaHap sample crystallizes in the monoclinic form P21/b. Concentrations up to 20% of Zn(II) in the mother solution, equivalent to smaller concentrations in solid (up to 9.1% in wt), favor the formation of the hexagonal apatite, P63/m, while Zn(II) concentrations higher than 20% in solution help an amorphous phase development where vibrational spectra indicated coexistence of two phases: an apatite and ZnNH4PO4·H2O. Infrared data of thermal treated samples endorse that HPO42- ion had not been incorporated in Zn(II) doped samples during the synthesis process. Present results also allow to conclude that Zn(II) cation exhibits a preference to occupy the Ca2 site of the apatite structure and induces water adsorption and a small quantity of CO32- cation incorporation, leading to formation of a less crystalline Ca deficient apatite.

  18. Molecular structure impacts on secondary organic aerosol formation from glycol ethers

    Science.gov (United States)

    Li, Lijie; Cocker, David R.

    2018-05-01

    Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA

  19. Sorption Mechanisms of Cesium on Cu II2Fe II(CN) 6and Cu II3[Fe III(CN) 6] 2Hexacyanoferrates and Their Relation to the Crystalline Structure

    Science.gov (United States)

    Ayrault, S.; Jimenez, B.; Garnier, E.; Fedoroff, M.; Jones, D. J.; Loos-Neskovic, C.

    1998-12-01

    CuII2FeII(CN)6·xH2O and CuII3[FeIII(CN)6]2·xH2O can be prepared with reproducible chemical compositions and structures after careful washing. They have cubicFmoverline3mstructures with iron vacancies. In CuII2FeII(CN)6, copper occupies two different sites: Cu1 in position 4blinked to Fe through the CN groups, and Cu2 not linked to the CN groups and partially occupying the interstitial 24epositions. The second type of site is not present in CuII3[FeIII(CN)6]2. Sorption kinetics and isotherms were determined for cesium on both hexacyanoferrates by batch experiments. On CuII3[FeIII(CN)6]2, the maximum uptake is only 0.073 Cs/Fe (at./at.). On CuII2FeII(CN)6, the uptake reaches 1.5 Cs/Fe. The sorption kinetics include at least two steps: at1/2variation until approximately 72 h and then a slow evolution studied up to 6 months. The sorption mechanism is complex. The main process seems to be diffusion of ion pairs, followed by a reorganization of the solid, resulting in one or more new solid phases. The presence of the Cu2 site seems to play a favorable role in the sorption. Owing to its good midterm stability and the first rapid step of exchange, CuII2FeII(CN)6·xH2O seems to be one of the most promising compounds for the recovery of cesium from nuclear liquid wastes.

  20. Structure Learning and Statistical Estimation in Distribution Networks - Part II

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Deepjyoti [Univ. of Texas, Austin, TX (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-13

    Limited placement of real-time monitoring devices in the distribution grid, recent trends notwithstanding, has prevented the easy implementation of demand-response and other smart grid applications. Part I of this paper discusses the problem of learning the operational structure of the grid from nodal voltage measurements. In this work (Part II), the learning of the operational radial structure is coupled with the problem of estimating nodal consumption statistics and inferring the line parameters in the grid. Based on a Linear-Coupled(LC) approximation of AC power flows equations, polynomial time algorithms are designed to identify the structure and estimate nodal load characteristics and/or line parameters in the grid using the available nodal voltage measurements. Then the structure learning algorithm is extended to cases with missing data, where available observations are limited to a fraction of the grid nodes. The efficacy of the presented algorithms are demonstrated through simulations on several distribution test cases.

  1. Synthesis, structure and some properties of a manganese(II) benzoate containing diimine

    Science.gov (United States)

    Paul, Pranajit; Roy, Subhadip; Sarkar, Sanjoy; Chowdhury, Shubhamoy; Purkayastha, R. N. Dutta; Raghavaiah, Pallepogu; McArdle, Patrick; Deb, Lokesh; Devi, Sarangthem Indira

    2015-12-01

    A new monomeric manganese(II) benzoate complex containing nitrogen donor 2,2‧-bipyridine, [Mn(OBz)2(bipy)(H2O)] (OBz = benzoate, bipy = 2,2‧-bipyridine) has been synthesized from aqueous methanol medium and characterized by analytical, spectroscopic and single crystal X-ray diffraction studies. The compound exhibits moderate to appreciable antimicrobial activity. The complex crystallizes in space group P21/n. Mn(II) atom is ligated by two N atoms of bipyridine, three O atoms from a monodentate and a bidentate benzoate ligand and a water molecule forming distorted octahedral structure. The coordinated water molecule forms intramolecular hydrogen bonds and links the monomer molecules into hydrogen bonded dimer. The hydrogen bonded dimers are involved in intermolecular C-H···O and π-π stacking interactions. Density functional theory (DFT) computation was carried out to compute the frequencies of relevant vibrational modes and electronic properties, the results are in compliance with the experimentally obtained structural and spectral data.

  2. The molecular complex associated with the Galactic H II region Sh2-90: a possible site of triggered star formation

    Science.gov (United States)

    Samal, M. R.; Zavagno, A.; Deharveng, L.; Molinari, S.; Ojha, D. K.; Paradis, D.; Tigé, J.; Pandey, A. K.; Russeil, D.

    2014-06-01

    Aims: We investigate the star formation activity in the molecular complex associated with the Galactic H ii region Sh2-90. Methods: We obtain the distribution of the ionized and cold neutral gas using radio-continuum and Herschel observations. We use near-infrared and Spitzer data to investigate the stellar content of the complex. We discuss the evolutionary status of embedded massive young stellar objects (MYSOs) using their spectral energy distribution. Results: The Sh2-90 region presents a bubble morphology in the mid-infrared. Radio observations suggest it is an evolved H ii region with an electron density ~144 cm-3, emission measure ~ 6.7 × 104 cm-6 pc and an ionized mass ~55 M⊙. From Herschel and CO (J = 3 - 2) observations we found that the H ii region is part of an elongated extended molecular cloud (H2 column density ≥ 3 × 1021 cm-2 and dust temperature 18-27 K) of total mass ≥ 1 × 104 M⊙. We identify the ionizing cluster of Sh2-90, the main exciting star being an O8-O9 V star. Five cold dust clumps, four mid-IR blobs around B stars, and a compact H ii region are found at the edge of the bubble. The velocity information derived from CO data cubes suggest that most of them are associated with the Sh2-90 region. One hundred and twenty-nine low mass (≤3 M⊙) YSOs have been identified, and they are found to be distributed mostly in the regions of high column density. Four candidate Class 0/I MYSOs have been found. We suggest that multi-generation star formation is present in the complex. From evidence of interaction, time scales involved, and evolutionary status of stellar/protostellar sources, we argue that the star formation at the edges of Sh2-90 might have been triggered. However, several young sources in this complex are probably formed by some other processes. Full Table 5 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A122

  3. Formation of the self-assembled structures by the ultrasonic cavitation erosion-corrosion effect on carbon steel

    Directory of Open Access Journals (Sweden)

    Dayun Yan

    2015-11-01

    Full Text Available The cavitation erosion-corrosion effect on the metal surface always forms irregular oxide structures. In this study, we reported the formation of regular self-assembled structures of amorphous nanoparticles around the cavitation erosion pits on carbon steel upon the ultrasonic cavitation in methylene blue solution. Each self-assembled structure was composed of linearly aligned nanoparticles of about 100 nm. The formation of self-assembled structures might be due to the combined effect of corrosion, specific sonochemical reaction in methylene blue solution, and the magnetic domain structures on the carbon steel.

  4. Nonlinear structure formation with the environmentally dependent dilaton

    International Nuclear Information System (INIS)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Shaw, Douglas J.; Li, Baojiu

    2011-01-01

    We have studied the nonlinear structure formation of the environmentally dependent dilaton model using N-body simulations. We find that the mechanism of suppressing the scalar fifth force in high-density regions works very well. Within the parameter space allowed by the solar-system tests, the dilaton model predicts small deviations of the matter power spectrum and the mass function from their ΛCDM counterparts. The importance of taking full account of the nonlinearity of the model is also emphasized.

  5. Synthesis, spectroscopic and DNA binding ability of CoII, NiII, CuII and ZnII complexes of Schiff base ligand (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol. X-ray crystal structure determination of cobalt (II) complex.

    Science.gov (United States)

    Yarkandi, Naeema H; El-Ghamry, Hoda A; Gaber, Mohamed

    2017-06-01

    A novel Schiff base ligand, (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol (HL), has been designed and synthesized in addition to its metal chelates [Co(L) 2 ]·l2H 2 O, [Ni(L)Cl·(H 2 O) 2 ].5H 2 O, [Cu(L)Cl] and [Zn(L)(CH 3 COO)]. The structures of the isolated compounds have been confirmed and identified by means of different spectral and physicochemical techniques including CHN analysis, 1 H & 13 C NMR, mass spectral analysis, molar conductivity measurement, UV-Vis, infrared, magnetic moment in addition to TGA technique. The infrared spectral results ascertained that the ligand acts as monobasic tridentate binding to the metal centers via deprotonated hydroxyl oxygen, azomethine and imidazole nitrogen atoms. The UV-Vis, magnetic susceptibility and molar conductivity data implied octahedral geometry for Co(II) & Ni(II) complexes, tetrahedral for Zn(II) complex and square planar for Cu(II) complex. X-ray structural analysis of Co(II) complex 1 has been reported and discussed. Moreover, the type of interaction between the ligand & its complexes towards salmon sperm DNA (SS-DNA) has been examined by the measurement of absorption spectra and viscosity which confirmed that the ligand and its complexes interact with DNA via intercalation interaction as concluded from the values of binding constants (K b ). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Four thiophene-pyridyl-amide-based Zn{sup II}/Cd{sup II} coordination polymers: Assembly, structures, photocatalytic properties and fluorescent recognition for Fe{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiu-Li; Wu, Xiao-Mei; Liu, Guo-Cheng; Li, Qiao-Min; Lin, Hong-Yan; Wang, Xiang

    2017-05-15

    By tuning metal ions and combining with different dicarboxylates, four new semi-rigid thiophene-bis-pyridyl-bis-amide-based coordination polymers, namely, [Zn(3-bptpa)(1,3-BDC)]·DMA·2H{sub 2}O (1), [Zn(3-bptpa)(5-MIP)] (2), [Cd(3-bptpa)(1,3-BDC)]·2H{sub 2}O (3) and [Cd(3-bptpa)(5-MIP)]·4H{sub 2}O (4) (3-bptpa=N,N′-bis(pyridine-3-yl)thiophene-2,5-dicarboxamide, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid, 5-H{sub 2}MIP=5-methylisophthalic acid, DMA=N,N-dimethylacetamide), were solvothermally/hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction analyses, IR spectra, UV–vis diffuse-reflectance spectra (DRS), powder X-ray diffraction (PXRD) and thermal gravimetric analyses (TG). The structural analysis reveals that Zn-complexes 1 and 2 are similar 2D networks. While Cd-complexes 3 and 4 exhibit similar 2-fold interpenetrating 3D α-Po frameworks with the (4{sup 12}·6{sup 3}) topology. The photocatalytic properties for the degradation of methylene blue (MB) under ultraviolet light irradiation of the title complexes have been investigated in detail. Furthermore, the luminescent sensing behaviors for metal cations of 1–4 have been studied, the results indicate that 3 is an excellent fluorescent probe, with high sensitivity, selectivity, and simple regeneration, for environmentally relevant Fe{sup 3+} ions. - Graphical abstract: Four Zn{sup II}/Cd{sup II} coordination polymers with a thiophene-pyridyl-amide ligand have been prepared. The photocatalytic activities and fluorescent sensing properties for metal ions of the title complexes have been investigated. - Highlights: • Four coordination polymers with thiophene-pyridyl-amide ligands have been obtained. • The central metal ions play an important role in the formation of the frameworks. • The photoluminescent sensing and the photocatalytic properties have been investigated.

  7. Tin( ii ) ketoacidoximates: synthesis, X-ray structures and processing to tin( ii ) oxide

    KAUST Repository

    Khanderi, Jayaprakash

    2015-10-21

    Tin(ii) ketoacidoximates of the type [HONCRCOO]Sn (R = Me 1, CHPh 2) and (MeONCMeCOO)Sn] NH·2HO 3 were synthesized by reacting pyruvate- and hydroxyl- or methoxylamine RONH (R = H, Me) with tin(ii) chloride dihydrate SnCl·2HO. The single crystal X-ray structure reveals that the geometry at the Sn atom is trigonal bipyramidal in 1, 2 and trigonal pyramidal in 3. Inter- or intramolecular hydrogen bonding is observed in 1-3. Thermogravimetric (TG) analysis shows that the decomposition of 1-3 to SnO occurs at ca. 160 °C. The evolved gas analysis during TG indicates complete loss of the oximato ligand in one step for 1 whereas a small organic residue is additionally removed at temperatures >400 °C for 2. Above 140 °C, [HONC(Me)COO]Sn (1) decomposes in air to spherical SnO particles of size 10-500 nm. Spin coating of 1 on Si or a glass substrate followed by heating at 200 °C results in a uniform film of SnO. The band gap of the produced SnO film and nanomaterial was determined by diffuse reflectance spectroscopy to be in the range of 3.0-3.3 eV. X-ray photoelectron spectroscopy indicates surface oxidation of the SnO film to SnO in ambient atmosphere.

  8. Unprecedented Hexanuclear Cobalt(II Nonsymmetrical Salamo-Based Coordination Compound: Synthesis, Crystal Structure, and Photophysical Properties

    Directory of Open Access Journals (Sweden)

    Zong-Li Ren

    2018-03-01

    Full Text Available A novel hexanuclear Co(II coordination compound with a nonsymmetrical Salamo-type bisoxime ligandH4L, namely [{Co3(HL(MeO(MeOH2(OAc2}2]·2MeOH, was prepared and characterized by elemental analyses, UV–vis, IR and fluorescence spectra, and X-ray single-crystal diffraction analysis. Each Co(II is hexacoordinated, and possesses a distorted CoO6 or CoO4N2 octahedrons. The Co(II coordination compound possesses a self-assembled infinite 2D supramolecular structure with the help of the intermolecular C–H···O interactions. Meanwhile, the photophysical properties of the Co(II coordination compound were studied.

  9. Temperature and emission-line structure at the edges of H II regions

    International Nuclear Information System (INIS)

    Mallik, D.C.V.

    1975-01-01

    Models of ionization fronts located at the edges of expanding H ii regions are presented. These fronts are of the weak D-type and are preceded by shocks in the H i clouds. Since the energy input time is smaller than the cooling time, the gas is found to heat up to a high temperature immediately following ionization. At the trailing edge of the front, the temperature decreases and the ionized gas merges with the main bulk of the nebula where the physical processes are in equilibrium. The emission in O ii and N ii lines is greatly enhanced because of the high temperature at the front. The emission in these and other important lines is calculated and compared with Hβ. Effects of different velocities of flow, of different exciting stars, and of different gas densities on the structure of the fronts are also investigated

  10. COMPOSITIONAL AND SUBSTANTIAL STRUCTURE OF THE MEDICAL DOCUMENT: FORMATION STAGES

    Directory of Open Access Journals (Sweden)

    Romashova Olga Vladimirovna

    2015-03-01

    Full Text Available The article deals with the compositional and substantial structure of the ambulatory medical record, or "case history", which has being formed for a long time. The author allocates the three main periods in the formation of this medical document: the first period (the beginning of the 19th century – 1920s is connected with the origin and formation; the second period (1920-1980s is marked by emergence of the normative legal acts regulating registration and maintaining; the third period (1980s – up to the present is associated with the cancellation of regulations and the introduction of the new order of the Ministry of Health of the USSR that changed the document's form and name. It is determined that the composition of the case history consists of the title page and the main part. The following processes take place in the course of ambulatory medical record's formation: strengthening formalization, increase in the number of pattern text fragments, increase in the text's volume, and the implementation of bigger number of functions. The author reveals the main (informative and cumulative, accounting and additional (scientific, controlling, legal, financial functions of the document. The implementation of these functions is reflected in the compositional and substantial structure of the document text and is conditioned by a number of extralinguistic factors.

  11. IONIZED GAS KINEMATICS AT HIGH RESOLUTION. V. [Ne ii], MULTIPLE CLUSTERS, HIGH EFFICIENCY STAR FORMATION, AND BLUE FLOWS IN HE 2–10

    International Nuclear Information System (INIS)

    Beck, Sara; Turner, Jean; Lacy, John; Greathouse, Thomas

    2015-01-01

    We measured the 12.8 μm [Ne ii] line in the dwarf starburst galaxy He 2–10 with the high-resolution spectrometer TEXES on the NASA IRTF. The data cube has a diffraction-limited spatial resolution of ∼1″ and a total velocity resolution, including thermal broadening, of ∼5 km s −1 . This makes it possible to compare the kinematics of individual star-forming clumps and molecular clouds in the three dimensions of space and velocity, and allows us to determine star formation efficiencies. The kinematics of the ionized gas confirm that the starburst contains multiple dense clusters. From the M/R of the clusters and the ≃30%–40% star formation efficiencies, the clusters are likely to be bound and long lived, like globulars. Non-gravitational features in the line profiles show how the ionized gas flows through the ambient molecular material, as well as a narrow velocity feature, which we identify with the interface of the H ii region and a cold dense clump. These data offer an unprecedented view of the interaction of embedded H ii regions with their environment

  12. SPITZER VIEW OF YOUNG MASSIVE STARS IN THE LARGE MAGELLANIC CLOUD H II COMPLEXES. II. N 159

    International Nuclear Information System (INIS)

    Chen, C.-H. Rosie; Indebetouw, Remy; Chu, You-Hua; Gruendl, Robert A.; Seale, Jonathan P.; Testor, Gerard; Heitsch, Fabian; Meixner, Margaret; Sewilo, Marta

    2010-01-01

    The H II complex N 159 in the Large Magellanic Cloud is used to study massive star formation in different environments, as it contains three giant molecular clouds (GMCs) that have similar sizes and masses but exhibit different intensities of star formation. We identify candidate massive young stellar objects (YSOs) using infrared photometry, and model their spectral energy distributions to constrain mass and evolutionary state. Good fits are obtained for less evolved Type I, I/II, and II sources. Our analysis suggests that there are massive embedded YSOs in N 159B, a maser source, and several ultracompact H II regions. Massive O-type YSOs are found in GMCs N 159-E and N 159-W, which are associated with ionized gas, i.e., where massive stars formed a few Myr ago. The third GMC, N 159-S, has neither O-type YSOs nor evidence of previous massive star formation. This correlation between current and antecedent formation of massive stars suggests that energy feedback is relevant. We present evidence that N 159-W is forming YSOs spontaneously, while collapse in N 159-E may be triggered. Finally, we compare star formation rates determined from YSO counts with those from integrated Hα and 24 μm luminosities and expected from gas surface densities. Detailed dissection of extragalactic GMCs like the one presented here is key to revealing the physics underlying commonly used star formation scaling laws.

  13. The formation of structure in the Universe

    CERN Document Server

    Efstathiou, G P

    1995-01-01

    The discovery of temperature anisotropies in the microwave background radiation by the COBE satellite provides the first direct detection of fluctuations in the early universe. I will review more recent experiments, espacially those designed to detect anisotropies on angular scales of less than a degree,corresponding to fluctuations with physical sizes of superclusters of galaxies. I will describe the COBRAS/SAMBA satellite that is under consideration by ESA for possible launch in 2003 and show how measurements of the background anisotropies can be linked with observations of the present day galaxy ditribution to construct models of structure formation extending from the very early universe to the present day.

  14. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein II addresses the relationship between structural integrity and ligand binding

    International Nuclear Information System (INIS)

    Vaezeslami, Soheila; Jia, Xiaofei; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H.

    2008-01-01

    A water network stabilizes the structure of cellular retionic acid binding protein II. The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending from Arg111 deep inside the cavity to the α2 helix at its entrance. This chain of interactions acts as a ‘pillar’ that maintains the integrity of the protein. The disruption of the water network upon loss of Arg111 leads to decreased structural integrity of the protein. A water-mediated network can be re-established by introducing the hydrophilic Glu121 inside the cavity, which results in a rigid protein with the α2 helix adopting an altered conformation compared with wild-type CRABPII

  15. Theoretical modeling of the electronic structure and exchange interactions in a Cu(II)Pc one-dimensional chain

    Science.gov (United States)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.

    2011-07-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine [Cu(II)Pc] crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green’s function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap, and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α and β phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  16. Testing Structure Formation in the Universe via Coupled Matter Fluids

    African Journals Online (AJOL)

    kagoyire

    the universe is dominated by two “dark” components- dark matter. (DM) and dark energy (DE)- that contribute about 26% and 69% respectively to the total cosmic energy budget, raises key questions about the nature of the “dark-sector” and large-scale structure formation (Planck Collaboration XVI, 2014). Motivated by a ...

  17. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag

    International Nuclear Information System (INIS)

    Xue Yongjie; Hou Haobo; Zhu Shujing

    2009-01-01

    Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01 M NaNO 3 . In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84 mM in the single element system and 0.21 mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH 50 (the pH at which 50% adsorption occurs) was found to follow the sequence Zn > Cu > Pb > Cd in single-element systems, but Pb > Cu > Zn > Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems

  18. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Xue Yongjie [School of Resource and Environment Science, Wuhan University, Hubei, Wuhan (China); Wuhan Kaidi Electric Power Environmental Protection Co. Ltd., Hubei, Wuhan (China)], E-mail: xueyj@mail.whut.edu.cn; Hou Haobo; Zhu Shujing [School of Resource and Environment Science, Wuhan University, Hubei, Wuhan (China)

    2009-02-15

    Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01 M NaNO{sub 3}. In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84 mM in the single element system and 0.21 mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH{sub 50} (the pH at which 50% adsorption occurs) was found to follow the sequence Zn > Cu > Pb > Cd in single-element systems, but Pb > Cu > Zn > Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems.

  19. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag.

    Science.gov (United States)

    Xue, Yongjie; Hou, Haobo; Zhu, Shujing

    2009-02-15

    Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01M NaNO(3). In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84mM in the single element system and 0.21mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH(50) (the pH at which 50% adsorption occurs) was found to follow the sequence Zn>Cu>Pb>Cd in single-element systems, but Pb>Cu>Zn>Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems.

  20. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures

    Science.gov (United States)

    Sloma, Michael F.; Mathews, David H.

    2016-01-01

    RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. PMID:27852924

  1. The Dimanganese(II) Site of Bacillus subtilis Class Ib Ribonucleotide Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Boal, Amie K.; Cotruvo, Jr., Joseph A.; Stubbe, JoAnne; Rosenzweig, Amy C. (MIT); (NWU)

    2014-10-02

    Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn{sub 2}{sup III}-Y{sm_bullet}, in their homodimeric NrdF ({beta}2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn{sub 2}{sup II} form of NrdF is an important component in understanding O{sub 2}-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli Mn{sub 2}{sup II}-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 {angstrom} resolution crystal structure of Bacillus subtilis Mn{sub 2}{sup II}-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the {beta}2 dimer are distinct from those observed in E. coli Mn{sub 2}{sup II}-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn{sub 2}{sup II} cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn{sub 2}{sup III}-Y{sm_bullet} cofactor assembly in class Ib RNRs.

  2. Synthesis and crystal structure of two lead (II) complexes with 1,10-phenanthroline ligand

    International Nuclear Information System (INIS)

    Olivera, Fiorella L.; Santillan, Guillermo A.

    2012-01-01

    Two coordination complexes have been synthesized by the reaction of lead nitrate (II) with 1,10-phenanthroline in methanol/water. The crystals of these complexes were obtained by using the diffusion method and structurally characterized by X-ray single crystal diffraction. Both complexes crystallized in the monoclinic space group P2 1 /c. The analysis by crystal X-ray diffraction reveals that in both complexes the coordination around the lead (II) ion is a distorted octahedral structure where the ion is bonded to the heterocyclic nitrogen atoms of chelating ligand 1,10-phenanthroline, three oxygen atoms of three nitrate groups and one oxygen from the water molecule. The difference between the complexes lies in the way of nitrate ion in presence of carboxylic acid aromatics. In addition, the crystal structure of complexes can be regarded as a 3D coordination polymer through Pb-O weak interactions, hydrogen bonds and π-π stacking interactions. (author).

  3. Kinetics and mechanism of solid-phase reactions of formation of yttrium ferrite with garnet structure

    Energy Technology Data Exchange (ETDEWEB)

    Pashchenko, V P; Yakushevskaya, F T; Chalyi, V P

    1977-04-01

    The perovskite phase is formed in the process of ferrogarnet formation both from the mixture of Y and Fe oxides and from mutually precipitated carbonates. The amount of the perovskite phase decreases with increasing duration of annealing. The process of the ferritoformation in the investigated systems can be presented as isovalent cationic substitution on the basis of the crystalline structure of Y/sub 2/O/sub 3/ with the formation of the perovskite structure. When the Fe concentration in orthoferrite increases, the phase with a garnet structure is formed.

  4. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    International Nuclear Information System (INIS)

    Kuznetsov, P. V.; Vlasov, I. V.; Sklyarova, E. A.; Smekalina, T. V.

    2015-01-01

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability

  5. Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis

    International Nuclear Information System (INIS)

    Liu, Peng; Le, Jiawei; Wang, Lanlan; Pan, Tieying; Lu, Xilan; Zhang, Dexiang

    2016-01-01

    Highlights: • Curve-fitting method was used to quantify the accurate contents of structural carbon. • Effect of carbon structure in coal with different rank on formation of pyrolysis tar was studied. • Numerical interrelation between carbon types in coal structure and tar yield is elaborated. • Effect of carbon structure on formation of liquid alkane during coal pyrolysis is discussed. - Abstract: The relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis were discussed extensively. The pyrolysis tests were carried out in a tube reactor at 873 K and keep 15 min. The carbon distribution in coals was investigated by solid state "1"3C nuclear magnetic resonance (N.M.R.). The curve-fitting method was used to quantify the accurate contents of structural carbon. The alkanes in coal tar were analyzed by Gas Chromatograph–Mass Spectrometer (GC–MS). The results show that oxygen-linked aromatic carbon decreases with the increasing of coal rank. The aliphatic carbon contents of Huainan (HN) coal are 44.20%, the highest among the four coals. The carbon types in coal structure have a significant influence on the formation of tar and liquid alkane. The coal tar yields are related to the aliphatic substituted aromatic carbon, CH_2/CH_3 ratio and oxygen-linked carbon in coal so that the increasing order of tar yield is Inner Mongolia lignite (IM, 6.30 wt.%) < Sinkiang coal (SK, 7.55 wt.%) < Shenmu coal (SM, 12.84 wt.%) < HN (16.29 wt.%). The highest contents of oxygen-linked aromatic carbon in IM lead to phenolic compound of 41.06% in IM-tar. The contents of alkane in SM-tar are the highest because the appropriate CH_2/CH_3 ratio and the highest aliphatic side chains on aromatic rings in SM leading to generate aliphatic hydrocarbon with medium molecular weight easily. The mechanism on formation of tar and liquid alkane plays an important role in guiding the industrialization of pyrolysis-based poly-generation producing tar with high

  6. Materials science in microelectronics II the effects of structure on properties in thin films

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    The subject matter of thin-films - which play a key role in microelectronics - divides naturally into two headings: the processing / structure relationship, and the structure / properties relationship. Part II of 'Materials Science in Microelectronics' focuses on the latter of these relationships, examining the effect of structure on the following: Electrical properties Magnetic properties Optical properties Mechanical properties Mass transport properties Interface and junction properties Defects and properties Captures the importance of thin films to microelectronic development Examines the cause / effect relationship of structure on thin film properties.

  7. Low-temperature Synthesis of Tin(II) Oxide From Tin(II) ketoacidoximate Precursor

    KAUST Repository

    Alshankiti, Buthainah

    2015-04-01

    Sn (II) oxide finds numerous applications in different fields such as thin film transistors1, solar cells2 and sensors.3 In this study we present the fabrication of tin monoxide SnO by using Sn (II) ketoacid oximate complexes as precursors. Tin (II) ketoacidoximates of the type [HON=CRCOO]2Sn where R= Me 1, R= CH2Ph 2, and [(MeON=CMeCOO)3Sn]- NH4 +.2H2O 3 were synthesized by in situ formation of the ketoacid oximate ligand. The crystal structures were determined via single crystal X- ray diffraction of the complexes 1-3 revealed square planar and square pyramidal coordination environments for the Sn atom. Intramolecular hydrogen bonding is observed in all the complexes. Furthermore, the complexes were characterized by Infrared (IR), Nuclear Magnetic Resonance (NMR) and elemental analysis. From thermogravimetric analysis of 1-3, it was found that the complexes decomposed in the range of 160 – 165 oC. Analysis of the gases evolved during decomposition indicated complete loss of the oximato ligand in one step and the formation of SnO. Spin coating of 1 on silicon or glass substrate show uniform coating of SnO. Band gaps of SnO films were measured and found to be in the range of 3.0 – 3.3 eV by UV-Vis spectroscopy. X-ray photoelectron spectroscopy indicated surface oxidation of the SnO film. Heating 1 above 140 oC in air gives SnO of size ranging from 10 – 500 nm and is spherical in shape. The SnO nanomaterial is characterized by powder X-ray diffraction(XRD), Raman spectroscopy, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM).

  8. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    International Nuclear Information System (INIS)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-01-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL 2 (H 2 O) 2 ] n ·2nH 2 O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H 2 adbc), terephthalic acid (H 2 tpa), thiophene-2,5-dicarboxylic acid (H 2 tdc) and 1,4-benzenedithioacetic acid (H 2 bdtc), four 3D structures [Co 2 L 2 (adbc)] n ·nH 2 O (2), [Co 2 L 2 (tpa)] n (3), [Co 2 L 2 (tdc)] n (4), [Co 2 L 2 (bdtc)(H 2 O)] n (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions

  9. Structural mechanisms of formation of adiabatic shear bands

    Directory of Open Access Journals (Sweden)

    Mikhail Sokovikov

    2016-10-01

    Full Text Available The paper focuses on the experimental and theoretical study of plastic deformation instability and localization in materials subjected to dynamic loading and high-velocity perforation. We investigate the behavior of samples dynamically loaded during Hopkinson-Kolsky pressure bar tests in a regime close to simple shear conditions. Experiments were carried out using samples of a special shape and appropriate test rigging, which allowed us to realize a plane strain state. Also, the shear-compression specimens proposed in were investigated. The lateral surface of the samples was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. Use of a transmission electron microscope for studying the surface of samples showed that in the regions of strain localization there are parts taking the shape of bands and honeycomb structure in the deformed layer. The process of target perforation involving plug formation and ejection was investigated using a high-speed infra-red camera. A specially designed ballistic set-up for studying perforation was used to test samples in different impulse loading regimes followed by plastic flow instability and plug ejection. Changes in the velocity of the rear surface at different time of plug ejection were analyzed by Doppler interferometry techniques. The microstructure of tested samples was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The subsequent processing of 3D deformation relief data enabled estimation of the distribution of plastic strain gradients at different time of plug formation and ejection. It has been found that in strain localization areas the subgrains are elongated taking the shape of bands and undergo fragmentation leading to the formation of super-microcrystalline structure, in which the

  10. Mn(HPO3): A new manganese (II) phosphite with a condensed structure

    International Nuclear Information System (INIS)

    Chung, U-Chan; Mesa, Jose L.; Pizarro, Jose L.; Jubera, Veronique; Lezama, Luis; Arriortua, Maria I.; Rojo, Teofilo

    2005-01-01

    A new manganese (II) phosphite with the formula Mn(HPO 3 ) has been synthesised under mild hydrothermal conditions and autogenous pressure. Large pink coloured single crystals were obtained, allowing the resolution of the structure by x-ray diffraction. Mn(HPO 3 ) crystallises in the P2 1 /c monoclinic space group with a=8.036(3) A, b=8.240(3) A, c=10.410(3) A, β=124.73(3) deg. and Z=8. The structure consists of a three-dimensional, compact framework of edge sharing MnO 6 octahedra linked to phosphite groups via oxygens. The presence of the phosphite anion has been confirmed by IR spectroscopy. Mn(HPO 3 ) presents a high thermal stability limit of 580 deg. C, before rapid transformation to Mn 2 P 2 O 7 occurs. Photoluminescence and diffuse reflectance spectroscopy studies show the presence of high spin Mn(II) in significantly distorted octahedral coordination with Dq and Racah parameters of Dq=820, B=910 and C=3135 cm -1 . The ESR spectra, performed at different temperatures, are isotropic with a g-value of 2.00(1). Magnetic measurements indicate global antiferromagnetic interactions with a ferromagnetic transition at 15 K, attributed to a canting of the antiferromagneticaly aligned spins. - Graphical abstract: Crystal structure of Mn(HPO 3 )

  11. CO2 sequestration using principles of shell formation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Woo; Jang, Young-Nam [CO2 Sequestration Research Department, Korea Institute of Geoscience and Mineral Resources (Korea, Republic of); Lee, Si-Hyun; Lim, Kyoung-Soo; Jeong, Soon-Kwan [Energy Conservation Research Department of Clean Energy System Research Center, Korea Institute of Energy Research (Korea, Republic of)

    2011-06-15

    The biomimetic sequestration of carbon dioxide to reduce the CO2 emitted into the atmosphere is introduced in this paper. Bivalve shells are used as a good model of CO2 sequestration in this paper, because the shell is derived from the calcium ions and CO2 in seawater. Carbonic anhydrase, hemocyte from diseased shell (HDS) and extrapallial fluid (EFP) are involved in shell formation. This paper compares the soluble protein extracted from Crassostrea gigas with bovine carbonic anhydrase II in terms of their ability to promote CO2 hydration and the production of calcium precipitates. The result demonstrates that HDS has more functional groups to bind calcium ions in aqueous systems, and a different process of calcium precipitation, than does bovine carbonic anhydrase II. To understand molecular weight and secondary protein structure, mass-spectroscopic analysis (MALDI-TOF) and circular dichroism (CD) analysis were used. With regard to EPF, EPF related to shell formation is composed of several fractions and plays a role in sequestration of CO2.

  12. Structural and magnetic characterization of three tetranuclear Cu(II) complexes with face-sharing-dicubane/double-open-cubane like core framework

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Aparup [Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, West Bengal (India); Bertolasi, Valerio [Dipartimento di Scienze Chimiche e Farmaceutiche, Centro di Strutturistica Diffrattometrica, Università di Ferrara, Via L. Borsari, 46, 44100 Ferrara (Italy); Figuerola, Albert [Departament de Química Inorgànica i Orgànica (Secció de Química Inorgànica) and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Manna, Subal Chandra, E-mail: scmanna@mail.vidyasagar.ac.in [Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, West Bengal (India)

    2017-05-15

    Three novel tetranuclear copper(II) complexes namely [Cu{sub 4}(L{sup 1}){sub 4}]∙2(dmf) (1), [Cu{sub 4}(L{sup 1}){sub 4}] (2) and [Cu{sub 4}(L{sup 2}){sub 2}(HL{sup 2}){sub 2}(H{sub 2}O){sub 2}]∙2(ClO{sub 4})·6(H{sub 2}O) (3) (H{sub 2}L{sup 1}, (E)−2-((1-hydroxybutan-2-ylimino)methyl)phenol; H{sub 2}L{sup 2}, (E)−2-((1-hydroxybutan-2-ylimino)methyl)−6-methoxyphenol)) were synthesized from the self-assembly of copper(II) perchlorate and the tridentate Schiff base ligands. The structural determination reveals that crystallizes in the monoclinic system with space group C2/c, whereas both the and crystallize in the triclinic system with space group P-1. and possess face-sharing dicubane core, on the other hand complex 3 has double open cubane core structure. The copper(II) ions in the cubane core are in distorted square planar geometries, and weak π…π and C–H…π interactions lead to formation of a 2D supramolecular architecture for and . At room temperature and , exhibit fluorescence with a quantum yield (Φ{sub s}) of 0.47, 0.49 and 0.38, respectively. Variable temperature magnetic susceptibility measurements in the range 2–300 K indicate an overall weak antiferromagnetic exchange coupling in all complexes. The PHI program was used to study their magnetic behaviour. In agreement with their face-sharing dicubane structure, a Hamiltonian of the type H =– J{sub 1}(S{sub 1}S{sub 2}+S{sub 1}S{sub 2’}+S{sub 1'}S{sub 2}+S{sub 1'}S{sub 2’}) – J{sub 2}S{sub 1}S{sub 1’}, where S{sub 1} = S{sub 1’} = S{sub 2} = S{sub 2’} = S{sub Cu} =1/2, was used for studying and . Simulations performed suggest magnetic exchange constants with values close to J{sub 1} =−20 cm{sup −1} and J{sub 2} =0 cm{sup -1} for these complexes. On the other hand, the spin Hamiltonian H =– J{sub 1}(S{sub 1}S{sub 4}+S{sub 2}S{sub 3}) – J{sub 2}(S{sub 1}S{sub 3}+S{sub 2}S{sub 4}) – J{sub 3}S{sub 1}S{sub 2}, where S{sub 1} = S{sub 2} = S{sub 3} = S{sub 4

  13. Synthesis, crystal structure of and DFT calculations on bisglycinato-bis[p-(hydroxymethylpyridine]nickel(II

    Directory of Open Access Journals (Sweden)

    FANG FANG JIAN

    2010-09-01

    Full Text Available The main aim of this study was to investigate the relationship between mIn tA new Ni(II complex of bisglycinato-bis[p-(hydroxylmethylpy-ridine] was synthesized and characterized by elemental analysis, IR, UV–Vis spectroscopy and X-ray single crystal diffraction analysis. The thermal stability of the title complex was also determined. The complex adopts a distorted octahedral geometry and possesses inversion symmetry with the Ni(II ion as the center of inversion. Density function theory (DFT calculations of the structure, electronic absorption spectra, electron structure and natural population analysis (NPA at the B3LYP/LANL2DZ level of theory were performed. The predicted geometric parameters and electronic spectra were compared with the experimental values and they supported each other. The NPA results indicate that the electronic transitions were mainly derived from the contribution of an intra-ligand (IL transition, a ligand-to-metal charge transfer (LMCT transition and a d-d transition. The electron structure calculations suggest that the central Ni(II ion uses its 4s and 3d orbitals to form covalent bonds with coordinated N and O atoms. The calculated bond orders are also consistent with the thermal decomposition results. Based on vibrational analysis, the thermodynamic properties of the title complex were predicted and the correlative equations between these thermodynamic properties and temperature are also reported.

  14. Structure, magnetic properties, polarized neutron diffraction, and theoretical study of a copper(II) cubane.

    Science.gov (United States)

    Aronica, Christophe; Chumakov, Yurii; Jeanneau, Erwann; Luneau, Dominique; Neugebauer, Petr; Barra, Anne-Laure; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Tercero, Javier; Ruiz, Eliseo

    2008-01-01

    The paper reports the synthesis, X-ray and neutron diffraction crystal structures, magnetic properties, high field-high frequency EPR (HF-EPR), spin density and theoretical description of the tetranuclear CuII complex [Cu4L4] with cubane-like structure (LH2=1,1,1-trifluoro-7-hydroxy-4-methyl-5-aza-hept-3-en-2-one). The simulation of the magnetic behavior gives a predominant ferromagnetic interaction J1 (+30.5 cm(-1)) and a weak antiferromagnetic interaction J2 (-5.5 cm(-1)), which correspond to short and long Cu-Cu distances, respectively, as evidence from the crystal structure [see formulate in text]. It is in agreement with DFT calculations and with the saturation magnetization value of an S=2 ground spin state. HF-EPR measurements at low temperatures (5 to 30 K) provide evidence for a negative axial zero-field splitting parameter D (-0.25+/-0.01 cm(-1)) plus a small rhombic term E (0.025+/-0.001 cm(-1), E/D = 0.1). The experimental spin distribution from polarized neutron diffraction is mainly located in the basal plane of the CuII ion with a distortion of yz-type for one CuII ion. Delocalization on the ligand (L) is observed but to a smaller extent than expected from DFT calculations.

  15. Myosin II Motor Activity in the Lateral Amygdala Is Required for Fear Memory Consolidation

    Science.gov (United States)

    Gavin, Cristin F.; Rubio, Maria D.; Young, Erica; Miller, Courtney; Rumbaugh, Gavin

    2012-01-01

    Learning induces dynamic changes to the actin cytoskeleton that are required to support memory formation. However, the molecular mechanisms that mediate filamentous actin (F-actin) dynamics during learning and memory are poorly understood. Myosin II motors are highly expressed in actin-rich growth structures including dendritic spines, and we have…

  16. Structural Fluctuation and Thermophysical Properties of Molten II-VI Compounds

    Science.gov (United States)

    2003-01-01

    The objectives of the project is to conduct ground-based experimental and theoretical research on the structural fluctuations and thermophysical properties of molten II-VI compounds to enhance the basic understanding of the existing flight experiments in microgravity materials science programs and to study the fundamental heterophase fluctuations phenomena in these melts by: 1) Conducting neutron scattering analysis and measuring quantitatively the relevant thermophysical properties of the II-VI melts such as viscosity, electrical conductivity, thermal diffusivity and density as well as the relaxation characteristics of these properties to advance the understanding of the structural properties and the relaxation phenomena in these melts and 2) Performing theoretical analyses on the melt systems to interpret the experimental results. All the facilities required for the experimental measurements have been procured, installed and tested. A relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the sample, was observed for the first time. An apparatus based on the transient torque induced by a rotating magnetic field has been developed to determine the viscosity and electrical conductivity of semiconducting liquids. Viscosity measurements on molten tellurium showed similar relaxation behavior as the measured diffusivity. Neutron scattering experiments were performed on the HgTe and HgZnTe melts and the results on pair distribution showed better resolution than previous reported.

  17. TP Atlas: integration and dissemination of advances in Targeted Proteins Research Program (TPRP)-structural biology project phase II in Japan.

    Science.gov (United States)

    Iwayanagi, Takao; Miyamoto, Sei; Konno, Takeshi; Mizutani, Hisashi; Hirai, Tomohiro; Shigemoto, Yasumasa; Gojobori, Takashi; Sugawara, Hideaki

    2012-09-01

    The Targeted Proteins Research Program (TPRP) promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan is the phase II of structural biology project (2007-2011) following the Protein 3000 Project (2002-2006) in Japan. While the phase I Protein 3000 Project put partial emphasis on the construction and maintenance of pipelines for structural analyses, the TPRP is dedicated to revealing the structures and functions of the targeted proteins that have great importance in both basic research and industrial applications. To pursue this objective, 35 Targeted Proteins (TP) Projects selected in the three areas of fundamental biology, medicine and pharmacology, and food and environment are tightly collaborated with 10 Advanced Technology (AT) Projects in the four fields of protein production, structural analyses, chemical library and screening, and information platform. Here, the outlines and achievements of the 35 TP Projects are summarized in the system named TP Atlas. Progress in the diversified areas is described in the modules of Graphical Summary, General Summary, Tabular Summary, and Structure Gallery of the TP Atlas in the standard and unified format. Advances in TP Projects owing to novel technologies stemmed from AT Projects and collaborative research among TP Projects are illustrated as a hallmark of the Program. The TP Atlas can be accessed at http://net.genes.nig.ac.jp/tpatlas/index_e.html .

  18. Excimer Formation Dynamics of Dipyrenyldecane in Structurally Different Ionic Liquids.

    Science.gov (United States)

    Yadav, Anita; Pandey, Siddharth

    2017-12-07

    Ionic liquids, being composed of ions alone, may offer alternative pathways for molecular aggregation. These pathways could be controlled by the chemical structure of the cation and the anion of the ionic liquids. Intramolecular excimer formation dynamics of a bifluorophoric probe, 1,3-bis(1-pyrenyl)decane [1Py(10)1Py], where the fluorophoric pyrene moieties are separated by a long decyl chain, is investigated in seven different ionic liquids in 10-90 °C temperature range. The long alkyl separator allows for ample interaction with the solubilizing milieu prior to the formation of the excimer. The ionic liquids are composed of two sets, one having four ionic liquids of 1-butyl-3-methylimidazolium cation ([bmim + ]) with different anions and the other having four ionic liquids of bis(trifluoromethylsulfonyl)imide anion ([Tf 2 N - ]) with different cations. The excimer-to-monomer emission intensity ratio (I E /I M ) is found to increase with increasing temperature in sigmoidal fashion. Chemical structure of the ionic liquid controls the excimer formation efficiency, as I E /I M values within ionic liquids with the same viscosities are found to be significantly different. The excited-state intensity decay kinetics of 1Py(10)1Py in ionic liquids do not adhere to a simplistic Birk's scheme, where only one excimer conformer forms after excitation. The apparent rate constants of excimer formation (k a ) in highly viscous ionic liquids are an order of magnitude lower than those reported in organic solvents. In general, the higher the viscosity of the ionic liquid, the more sensitive is the k a to the temperature with higher activation energy, E a . The trend in E a is found to be similar to that for activation energy of the viscous flow (E a,η ). Stokes-Einstein relationship is not followed in [bmim + ] ionic liquids; however, with the exception of [choline][Tf 2 N], it is found to be followed in [Tf 2 N - ] ionic liquids suggesting the cyclization dynamics of 1Py(10)1Py

  19. Structural and quantitative aspects of radical formation after heavy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Dusemund, B; Hoffmann, A K; Weiland, B; Huettermann, J [Klinikum Homburg (Germany). Fachrichtung Biophysik

    1997-09-01

    In this report the authors present a summary of their recent attempts aiming at clarifying some basic structural and quantitative aspects of free radical formation in DNA constituents and in DNA as well as of product analysis from nucleotide model compounds. (orig./MG)

  20. Sub-structure formation in starless cores

    Science.gov (United States)

    Toci, C.; Galli, D.; Verdini, A.; Del Zanna, L.; Landi, S.

    2018-02-01

    Motivated by recent observational searches of sub-structure in starless molecular cloud cores, we investigate the evolution of density perturbations on scales smaller than the Jeans length embedded in contracting isothermal clouds, adopting the same formalism developed for the expanding Universe and the solar wind. We find that initially small amplitude, Jeans-stable perturbations (propagating as sound waves in the absence of a magnetic field) are amplified adiabatically during the contraction, approximately conserving the wave action density, until they either become non-linear and steepen into shocks at a time tnl, or become gravitationally unstable when the Jeans length decreases below the scale of the perturbations at a time tgr. We evaluate analytically the time tnl at which the perturbations enter the non-linear stage using a Burgers' equation approach, and we verify numerically that this time marks the beginning of the phase of rapid dissipation of the kinetic energy of the perturbations. We then show that for typical values of the rms Mach number in molecular cloud cores, tnl is smaller than tgr, and therefore density perturbations likely dissipate before becoming gravitational unstable. Solenoidal modes grow at a faster rate than compressible modes, and may eventually promote fragmentation through the formation of vortical structures.

  1. The Process of Word Formation and Phrase Structure of Android Application Names

    OpenAIRE

    Handayani, Heny

    2013-01-01

    Android is an operating system for mobile device, such as smartphones and tablet computers that was developed by Google. In this era, android is a popular operating system that is searched by people because of necessary of information. The process and structure of android application names are interesting to be analyzed since they have different structure of words in general. The purpose research is to describe and explain which word formation processes and phrase structure that are commonly ...

  2. Synthesis, structure, properties and immobilization on a gold surface of the monoribbed-functionalized tris-dioximate cobalt(II) clathrochelates and an electrocatalytic hydrogen production from H+ ions.

    Science.gov (United States)

    Voloshin, Y Z; Belov, A S; Vologzhanina, A V; Aleksandrov, G G; Dolganov, A V; Novikov, V V; Varzatskii, O A; Bubnov, Y N

    2012-05-28

    The cycloaddition of the mono- and dichloroglyoximes to the cobalt(II) bis-α-benzyldioximate afforded the cobalt(II) mono- and dichloroclathrochelates in moderate yields (40-60%). These complexes undergo nucleophilic substitution of their reactive chlorine atoms with aliphatic amines, alcohols and thiolate anions. In the case of ethylenediamine and 1,2-ethanedithiol, only the macrobicyclic products with α,α'-N(2)- and α,α'-S(2)-alicyclic six-numbered ribbed fragments were obtained. The cobalt(II) cage complexes with terminal mercapto groups were synthesized using aliphatic dithiols. The crystal and molecular structures of the six cobalt(II) clathrochelates were obtained by X-ray diffraction. Their CoN(6)-coordination polyhedra possess a geometry intermediate between a trigonal prism and a trigonal antiprism, and the encapsulated cobalt(II) ions are shifted from their centres due to the structural Jahn-Teller effect with the Co-N distances varying significantly (by 0.10-0.26 Å). The electrochemistry of the complexes obtained was studied by cyclic voltammetry (CV). The anodic waves correspond to the quasi-reversible Co(2+/3+) oxidations, whereas the cathodic ranges contain the quasi-reversibile waves assigned to the Co(2+/+) reductions; all the cobalt(i)-containing clathrochelate anions formed are stable in the CV time scale. The electrocatalytic properties of the cobalt complexes obtained were studied in the production of hydrogen from H(+) ions: the addition of HClO(4) resulted in the formation of the same catalytic cathodic reduction Co(2+/+) waves. The controlled-potential electrolysis with gas chromatography analysis confirmed the production of H(2) in high Faraday yields. The efficiency of this electrocatalytic process was enhanced by an immobilization of the complexes with terminal mercapto groups on a surface of the working gold electrode.

  3. Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation.

    Science.gov (United States)

    Fishburn, James; Tomko, Eric; Galburt, Eric; Hahn, Steven

    2015-03-31

    Formation of the RNA polymerase II (Pol II) open complex (OC) requires DNA unwinding mediated by the transcription factor TFIIH helicase-related subunit XPB/Ssl2. Because XPB/Ssl2 binds DNA downstream from the location of DNA unwinding, it cannot function using a conventional helicase mechanism. Here we show that yeast TFIIH contains an Ssl2-dependent double-stranded DNA translocase activity. Ssl2 tracks along one DNA strand in the 5' → 3' direction, implying it uses the nontemplate promoter strand to reel downstream DNA into the Pol II cleft, creating torsional strain and leading to DNA unwinding. Analysis of the Ssl2 and DNA-dependent ATPase activity of TFIIH suggests that Ssl2 has a processivity of approximately one DNA turn, consistent with the length of DNA unwound during transcription initiation. Our results can explain why maintaining the OC requires continuous ATP hydrolysis and the function of TFIIH in promoter escape. Our results also suggest that XPB/Ssl2 uses this translocase mechanism during DNA repair rather than physically wedging open damaged DNA.

  4. Hydrate phase equilibrium and structure for (methane + ethane + tetrahydrofuran + water) system

    International Nuclear Information System (INIS)

    Sun Changyu; Chen Guangjin; Zhang Lingwei

    2010-01-01

    The separation of methane and ethane through forming hydrate is a possible choice in natural gas, oil processing, or ethylene producing. The hydrate formation conditions of five groups of (methane + ethane) binary gas mixtures in the presence of 0.06 mole fraction tetrahydrofuran (THF) in water were obtained at temperatures ranging from (277.7 to 288.2) K. In most cases, the presence of THF in water can lower the hydrate formation pressure of (methane + ethane) remarkably. However, when the composition of ethane is as high as 0.832, it is more difficult to form hydrate than without THF system. Phase equilibrium model for hydrates containing THF was developed based on a two-step hydrate formation mechanism. The structure of hydrates formed from (methane + ethane + THF + water) system was also determined by Raman spectroscopy. When THF concentration in initial aqueous solution was only 0.06 mole fraction, the coexistence of structure I hydrate dominated by ethane and structure II hydrate dominated by THF in the hydrate sample was clearly demonstrated by Raman spectroscopic data. On the contrary, only structure II hydrate existed in the hydrate sample formed from (methane + ethane + THF + water) system when THF concentration in initial aqueous solution was increased to 0.10 mole fraction. It indicated that higher THF concentration inhibited the formation of structure I hydrate dominated by ethane and therefore lowered the trapping of ethane in hydrate. It implies a very promising method to increase the separation efficiency of methane and ethane.

  5. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.

    Science.gov (United States)

    Qi, Jing; Lan, Huachun; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-06-15

    The coagulation/flocculation/flotation (C/F/F) process is becoming a popular method for algae-laden water treatment. However, the efficiency of flotation is highly dependent on the ability of the preceding coagulation/flocculation process to form flocculated algae flocs. This study aims to improve the Microcystis aeruginosa flotation efficiency from algae cell and organic matter aspects by applying Fe(II)-regulated pretreatment enhanced Al coagulation process. The ability of the C/F/F process to remove cyanobacterial cells can be enhanced from 8% to 99% at a Fe(II) dose of 30 μM. The Al dose needed can be reduced by more than half while achieving successful flotation. The introduced Fe(II) after KMnO 4 can not only realize moderate pre-oxidation of cyanobacterial cells, but also form in-situ Fe(III). The DOC value can also be decreased significantly due to the formation of in-situ Fe(III), which is more efficient in dissolved organic matter (DOM) removal compared with pre-formed Fe(III). In addition, the gradually hydrolyzed in-situ Fe(III) can facilitate the hydrolysis of Al as a dual-coagulant and promote the clustering and cross-linking of Al hydrolyzates, which can enhance the formation of size-controlled algae flocs. Finally, the size-controlled algae flocs can be effectively floated by the bubbles released in the flotation process due to the efficient collision and attachment between flocs and bubbles. Therefore, the efficient flotation of algae cell and organic matter can be realized by the Fe(II) regulated moderate pre-oxidation of M. aeruginosa and formation of size-controlled algae flocs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. PRE-RIFT COMPRESSIONAL STRUCTURES AS A CONTROL ON PASSIVE MARGIN FORMATION

    DEFF Research Database (Denmark)

    Schiffer, Christian; Petersen, Kenni Dinesen

    Passive margins are commonly separated into volcanic and non-volcanic modes, each with a distinct formation mechanism and structure. Both form the transition from continental to oceanic crust. Large amounts of geophysical data at passive margins show that the tapering continental crust is often u...

  7. Small scale structure formation in chameleon cosmology

    International Nuclear Information System (INIS)

    Brax, Ph.; Bruck, C. van de; Davis, A.C.; Green, A.M.

    2006-01-01

    Chameleon fields are scalar fields whose mass depends on the ambient matter density. We investigate the effects of these fields on the growth of density perturbations on sub-galactic scales and the formation of the first dark matter halos. Density perturbations on comoving scales R<1 pc go non-linear and collapse to form structure much earlier than in standard ΛCDM cosmology. The resulting mini-halos are hence more dense and resilient to disruption. We therefore expect (provided that the density perturbations on these scales have not been erased by damping processes) that the dark matter distribution on small scales would be more clumpy in chameleon cosmology than in the ΛCDM model

  8. Solid solutions of platinum(II) and palladium(II) oxalato-complex salt as precursors of nanoalloys

    Science.gov (United States)

    Zadesenets, A. V.; Asanova, T. I.; Vikulova, E. S.; Filatov, E. Yu.; Plyusnin, P. E.; Baidina, I. A.; Asanov, I. P.; Korenev, S. V.

    2013-03-01

    A solid solution of platinum (II) and palladium (II) oxalato-complex salt, (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O, has been synthesized and studied as a precursor for preparing bimetallic PtPd nanoparticles through its thermal decomposition. The smallest homogenous bimetallic PtPd nanoparticles were found to form in hydrogen and helium atmospheres. The annealing temperature and time have low effect on the bimetallic particles size. Comparative analysis of structural and thermal properties of the solid solution and individual Pt, Pd oxalato-complex salts was performed to investigate a mechanism of thermal decomposition of (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O. Based on in situ X-ray photoemission spectroscopy investigation it was proposed a mechanism of formation of bimetallic PtPd nanoparticles from the solid-solution oxalato-complex salt during thermal decomposition.

  9. Formation and thermodynamic stability of (polymer + porphyrin) supramolecular structures in aqueous solutions

    International Nuclear Information System (INIS)

    Costa, Viviana C.P. da; Hwang, Barrington J.; Eggen, Spencer E.; Wallace, Megan J.; Annunziata, Onofrio

    2014-01-01

    Highlights: • Thermodynamic stability of a (polymer + porphyrin) supramolecular structure was characterized. • Isothermal titration calorimetry provided two ways to determine reaction enthalpies. • Exothermic (polymer + porphyrin) binding competes with porphyrin self-association. • (Polymer + porphyrin) binding is entropically favored with respect to porphyrin self-association. • Spectral shifts show importance of porphyrin central hydrogens in polymer binding. - Abstract: Optical properties of porphyrins can be tuned through (polymer + porphyrin) (host + guest) binding in solution. This gives rise to the formation of supramolecular structures. In this paper, the formation, thermodynamic stability and spectroscopic properties of (polymer + porphyrin) supramolecular structures and their competition with porphyrin self-association were investigated by both isothermal titration calorimetry (ITC) and absorption spectroscopy. Specifically, reaction enthalpies and equilibrium constants were measured for meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS) self-association and TPPS binding to the polymer poly(vinylpyrrolidone) (PVP, 40 kg/mol) in aqueous solutions at pH 7 and three different temperatures (12, 25 and 37 °C). ITC, compared to spectroscopic techniques, provides two independent means to determine reaction enthalpies: direct measurements and Van’t Hoff plot. This was used as a criterion to assess that (1) self-association of TPPS is limited to the formation of dimers and (2) TPPS binds to PVP in its monomeric state only. The formation of TPPS dimers and (PVP + TPPS) supramolecular structures are both enthalpically driven. However, (polymer + porphyrin) binding was found to be entropically favored compared to dimerization. Furthermore, the reaction enthalpies of these two processes significantly depend on temperature. This behavior was attributed to hydrophobic interactions. Finally, the limiting absorption spectra of monomeric, dimeric and polymer

  10. Beyond the ENDF format: A modern nuclear database structure. SG38 meeting, NEA Headquarters, 29-30 November 2012

    International Nuclear Information System (INIS)

    McNabb, D.; Zerkin, V.; Mattoon, C.; Koning, A.; Brown, D.; Leal, L.; Sublet, J.C.; Coste-Delclaux, M.; Capote, R.; Forrest, R.; Kodeli, I.; Trkov, A.; Beck, B.; Haeck, W.; Fukahori, T.; Mills, R.W.; White, M.C.; Cullen, D.E.

    2012-11-01

    WPEC subgroup 38 (SG38) was formed to develop a new structure for storing nuclear reaction data, that is meant to eventually replace ENDF-6 as the standard way to store and share evaluations. The work of SG38 covers the following tasks: Designing flexible, general-purpose data containers; Determining a logical and easy-to-understand top-level hierarchy for storing evaluated nuclear reaction data; Creating a particle database for storing particles, masses and level schemes; Specifying the infrastructure (plotting, processing, etc.) that must accompany the new structure; Developing an Application Programming Interface or API to allow other codes to access data stored in the new structure; Specifying what tests need to be implemented for quality assurance of the new structure and associated infrastructure; Ensuring documentation and governance of the structure and associated infrastructure. This document is the proceedings of the SG38 meeting, held at the NEA Headquarters on 29-30 November 2012. It comprises all the available presentations (slides) given by the participants as well as 3 reports: A - Welcome and Introduction: - Purpose and goals for SG38 (D. McNabb); - Lessons from ENDF, EXFOR and other formats (V. Zerkin); - Lessons from first LLNL attempt at defining a new nuclear data structure (C. Mattoon); - Example of "2"3"9Pu data B - Purpose of the new data structure: - GND: Purpose of the new data structure (A. Koning); - Purpose of the new data structure: Dave's Perspective (D. Brown); C - Nuclear Data System Overview: - ENDF File uses in AMPX (L. Leal); D - Benefits and requirements for data evaluation and processing: - Benefits and requirements (J.C. Sublet); - CEA/DEN contribution (M. Coste-Delclaux); - Proposals from the IAEA-NDS (V. Zerkin, R. Capote, R. Forrest); - User View on the ENDF Formats and Data Processing (I. Kodeli); - On the ENDF Formats and Data Processing - report (A. Trkov); E - Format perspective, organization and requirements for basic

  11. Macrocyclic receptor showing extremely high Sr(II)/Ca(II) and Pb(II)/Ca(II) selectivities with potential application in chelation treatment of metal intoxication.

    Science.gov (United States)

    Ferreirós-Martínez, Raquel; Esteban-Gómez, David; Tóth, Éva; de Blas, Andrés; Platas-Iglesias, Carlos; Rodríguez-Blas, Teresa

    2011-04-18

    Herein we report a detailed investigation of the complexation properties of the macrocyclic decadentate receptor N,N'-Bis[(6-carboxy-2-pyridil)methyl]-4,13-diaza-18-crown-6 (H(2)bp18c6) toward different divalent metal ions [Zn(II), Cd(II), Pb(II), Sr(II), and Ca(II)] in aqueous solution. We have found that this ligand is especially suited for the complexation of large metal ions such as Sr(II) and Pb(II), which results in very high Pb(II)/Ca(II) and Pb(II)/Zn(II) selectivities (in fact, higher than those found for ligands widely used for the treatment of lead poisoning such as ethylenediaminetetraacetic acid (edta)), as well as in the highest Sr(II)/Ca(II) selectivity reported so far. These results have been rationalized on the basis of the structure of the complexes. X-ray crystal diffraction, (1)H and (13)C NMR spectroscopy, as well as theoretical calculations at the density functional theory (B3LYP) level have been performed. Our results indicate that for large metal ions such as Pb(II) and Sr(II) the most stable conformation is Δ(δλδ)(δλδ), while for Ca(II) our calculations predict the Δ(λδλ)(λδλ) form being the most stable one. The selectivity that bp18c6(2-) shows for Sr(II) over Ca(II) can be attributed to a better fit between the large Sr(II) ions and the relatively large crown fragment of the ligand. The X-ray crystal structure of the Pb(II) complex shows that the Δ(δλδ)(δλδ) conformation observed in solution is also maintained in the solid state. The Pb(II) ion is endocyclically coordinated, being directly bound to the 10 donor atoms of the ligand. The bond distances to the donor atoms of the pendant arms (2.55-2.60 Å) are substantially shorter than those between the metal ion and the donor atoms of the crown moiety (2.92-3.04 Å). This is a typical situation observed for the so-called hemidirected compounds, in which the Pb(II) lone pair is stereochemically active. The X-ray structures of the Zn(II) and Cd(II) complexes show that

  12. Synthesis, structures and properties of the new lithium cobalt(II) phosphate Li4Co(PO4)2

    International Nuclear Information System (INIS)

    Glaum, R.; Gerber, K.; Schulz-Dobrick, M.; Herklotz, M.; Scheiba, F.; Ehrenberg, H.

    2012-01-01

    α-Li 4 Co(PO 4 ) 2 has been synthesized and crystallized by solid-state reactions. The new phosphate crystallizes in the monoclinic system (P2 1 /a, Z=4, a=8.117(3) Å, b=10.303(8) Å, c=8.118(8) Å, β=104.36(8) Å) and is isotypic to α-Li 4 Zn(PO 4 ) 2 . The structure of α-Li 4 Co(PO 4 ) 2 has been determined from single-crystal X-ray diffraction data {R 1 =0.040, wR 2 =0.135, 2278 unique reflections with F o >4σ(F o )}. The crystal structure, which might be regarded as a superstructure of the wurtzite structure type, is build of layers of regular CoO 4 , PO 4 and Li1O 4 tetrahedra. Lithium atoms Li2, Li3 and Li4 are located between these layers. Thermal investigations by in-situ XRPD, DTA/TG and quenching experiments suggest decomposition followed by formation and phase transformation of Li 4 Co(PO 4 ) 2 : α-Li 4 Co(PO 4 ) 2 ⟹ 442°C β-Li 3 PO 4 +LiCoPO 4 ⇌ 773°C β-Li 4 Co(PO 4 ) 2 ⟹ quenchingto25°C α-Li 4 Co(PO 4 ) 2 According to HT-XRPD at θ=850°Cβ-Li 4 Co(PO 4 ) 2 (Pnma, Z=2, 10.3341(8) Å, b=6.5829(5) Å, c=5.0428(3) Å) is isostructural to γ-Li 3 PO 4 . The powder reflectance spectrum of α-Li 4 Co(PO 4 ) 2 shows the typical absorption bands for the tetrahedral chromophore [Co II O 4 ]. - Graphical abstract: The complex formation and decomposition behavior of Li 4 Co(PO 4 ) 2 with temperature has been elucidated. The crystal structure of its α-phase was determined from single crystal data, HT-XRPD allowed derivation of a structure model for the β-phase. Both modifications belong to the Li 3 PO 4 structure family. Highlights: ► Li 4 Co(PO 4 ) 2 exhibits complex thermal behavior. ► The new phosphate belongs to the Li 3 PO 4 structure family. ► A single-crystal structure analysis is provided for the metastable α-Li 4 Co(PO 4 ) 2 . ► From HT-XRPD data a cation distribution model is developed for β-Li 4 Co(PO 4 ) 2 . ► No electrochemical delithiation is observed up to 5 V.

  13. Inferring Enceladus' ice shell strength and structure from Tiger Stripe formation

    Science.gov (United States)

    Rhoden, A.; Hurford, T., Jr.; Spitale, J.; Henning, W. G.

    2017-12-01

    The tiger stripe fractures (TSFs) of Enceladus are four, roughly parallel, linear fractures that correlate with plume sources and high heat flows measured by Cassini. Diurnal variations of plume eruptions along the TSFs strongly suggest that tides modulate the eruptions. Several attempts have been made to infer Enceladus' ice shell structure, and the mechanical process of plume formation, by matching variations in the plumes' eruptive output with tidal stresses for different interior models. Unfortunately, the many, often degenerate, unknowns make these analyses non-unique. Tidal-interior models that best match the observed plume variability imply very low tidal stresses (<14 kPa), much lower than the 1 MPa tensile strength of ice implied by lab experiments or the 100 kPa threshold inferred for Europa's ice. In addition, the interior models that give the best matches are inconsistent with the constraints from observed librations. To gain more insight into the interior structure and rheology of Enceladus and the role of tidal stress in the development of the south polar terrain, we utilize the orientations of the TSFs themselves as observational constraints on tidal-interior models. While the initial formation of the TSFs has previously been attributed to tidal stress, detailed modeling of their formation has not been performed until now. We compute tidal stresses for a suite of rheologically-layered interior models, consistent with Enceladus' observed librations, and apply a variety of failure conditions. We then compare the measured orientations at 6391 points along the TSFs with the predicted orientations from the tidal models. Ultimately, we compute the likelihood of forming the TSFs with tidal stresses for each model and failure condition. We find that tidal stresses are a good match to the observed orientations of the TSFs and likely led to their formation. We also find that the model with the highest likelihood changes depending on the failure criterion

  14. Antibacterial Co(II, Ni(II, Cu(II and Zn(II complexes with biacetyl-derived Schiff bases

    Directory of Open Access Journals (Sweden)

    MUHAMMAD IMRAN

    2010-08-01

    Full Text Available The condensation reactions of biacetyl with ortho-hydroxyaniline and 2-aminobenzoic acid to form bidendate NO donor Schiff bases were studied. The prepared Schiff base ligands were further utilized for the formation of metal chelates having the general formula [ML2(H2O2] where M = Co(II, Ni(II, Cu(II and Zn(II and L = HL1 and HL2. These new compounds were characterized by conductance measurements, magnetic susceptibility measurements, elemental analysis, and IR, 1H-NMR, 13C-NMR and electronic spectroscopy. Both Schiff base ligands were found to have a mono-anionic bidentate nature and octahedral geometry was assigned to all metal complexes. All the complexes contained coordinated water which was lost at 141–160 °C. These compounds were also screened for their in vitro antibacterial activity against four bacterial species, namely: Escherichia coli, Staphylococcus aureus, Salmonella typhi and Bacillus subtilis. The metal complexes were found to have greater antibacterial activity than the uncomplexed Schiff base ligands.

  15. Chapter 3. Physicochemical aspects of structure formation and physico technical properties of materials obtained from soil-cement mixtures. 3.1. Formation features of nucleuses of binding materials

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    It is determined that structure formation of hardening systems depends on their thermodynamic stability. According to the investigations author concluded that probability of nucleuses formation depended on surface energy of new formations, chemical potential, temperature and value of interphase energy.

  16. Two interpenetrating Cu{sup II}/Ni{sup II}-coordinated polymers based on an unsymmetrical bifunctional N/O-tectonic: Syntheses, structures and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong-Liang [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China); Wu, Ya-Pan [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Li, Dong-Sheng, E-mail: lidongsheng1@126.com [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Dong, Wen-Wen [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Zhou, Chun-Sheng [Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China)

    2015-03-15

    Two new interpenetrating Cu{sup II}/Ni{sup II} coordination polymers, based on a unsymmetrical bifunctional N/O-tectonic 3-(pyrid-4′-yl)-5-(4″-carbonylphenyl)-1,2,4-triazolyl (H{sub 2}pycz), ([Cu-(Hpycz){sub 2}]·2H{sub 2}O){sub n} (1) and ([Ni(Hpycz){sub 2}]·H{sub 2}O){sub n} (2), have been solvothermally synthesized and structure characterization. Single crystal X-ray analysis indicates that compound 1 shows 2-fold parallel interpenetrated 4{sup 4}-sql layers with the same handedness. The overall structure of 1 is achiral—in each layer of doubly interpenetrating nets, the two individual nets have the opposite handedness to the corresponding nets in the adjoining layers—while 2 features a rare 8-fold interpenetrating 6{sup 6}-dia network that belongs to class IIIa interpenetration. In addition, compounds 1 and 2 both show similar paramagnetic characteristic properties. - Graphical abstract: Two new Cu(II)/Ni(II) coordination polymers present 2D parallel 2-fold interpenetrated 4{sup 4}-sql layers and a rare 3D 8-fold interpenetrating 6{sup 6}-dia network. In addition, magnetic susceptibility measurements show similar paramagnetic characteristic for two complexes. - Highlights: • A new unsymmetrical bifunctional N/O-tectonic as 4-connected spacer. • A 2-fold parallel interpenetrated sql layer with the same handedness. • A rare 8-fold interpenetrating dia network (class IIIa)

  17. New manganese (II) structures derived from 2,6-dichlorobenzoic acid: Syntheses, crystal structures and magnetism

    International Nuclear Information System (INIS)

    Esteves, D.; Tedesco, J.C.D.; Pedro, S.S.; Cruz, C.; Reis, M.S.; Brandão, P.

    2014-01-01

    One novel coordination polymer [Mn 2 (μ-2,6-DCBA) 3 (μ 2 -CH 3 CO 2 ) 2 (2H 2 O)]·2H 2 O (2,6-DCBA = 2,6-dichlorobenzoato) (compound 1) has been synthesized by self-assembly of bridging ligand 2,6-dichlorobenzoic acid and manganese acetate tetrahydrate. Single crystal X-ray diffraction analysis reveals that this compound crystallizes in space group P2 1 /c with a = 10.1547(7), b = 24.5829(2), c = 12.6606(2) Å, β = 93.707(3), V = 3153.9(3) Å 3 and Z = 4. The Mn(II) ions are connected by 2,6-DCBA and acetate group in μ-bridging mode to form 1D chains. Two water molecules are in the inter-layer space forming strong hydrogen bonds originating 2D layer structure. The preparation of this compound is very sensitive to the synthesis conditions, mainly to the solution pH and solvent yielding other two compounds 2 and 3. In compound 1 Mn(II) atoms in octahedral coordination are arranged in a zig–zag chain, with a trimeric structure repeated periodically along the chain, giving two exchange parameters: J 1 related to a syn–syn bond; and J 2 related to a bond of type anti–anti. A theoretical model was developed and then fitted to the magnetic susceptibility data, revealing an antiferromagnetic arrangement along the chain

  18. Acceptors in II-IV Semiconductors - Incorporation and Complex Formation

    CERN Multimedia

    2002-01-01

    A strong effort is currently devoted to the investigation of defects and the electrical activation of dopant atoms in II-VI semiconductors. In particular, the knowledge about the behaviour of acceptors, prerequisite for the fabrication of p-type semiconductors, is rather limited. The perturbed $\\,{\\gamma\\gamma}$ -angular correlation technique (PAC) and the photoluminescence spectroscopy (PL) using the radioactive isotopes $^{77}\\!$Br and $^{111}\\!$Ag will be applied for investigating the behaviour of acceptor dopant atoms and their interactions with defects in II-VI semiconductors. The main topic will be the identification of the technical conditions for the incorporation of electrically active acceptors in the II-VI semiconductors ~ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe with particular emphasis on the compounds~ CdTe, ZnSe, and ZnTe. The investigations will be supplemented by first exploratory PL experiments with the group V acceptors $^{71}\\!$As and $^{121}\\!$Sb. With help of the probe $^{111}\\!$Ag, the pos...

  19. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms

    Science.gov (United States)

    Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael

    2016-09-01

    Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.

  20. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael

    2016-09-09

    Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.

  1. Synthesis and characterization of polychelates of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), oxovanadium(IV) and dioxouranium(VI) with 2,4-dihydroxybenzaldehyde-urea-formaldehyde polymer

    International Nuclear Information System (INIS)

    Patel, G.C.; Pancholi, H.B.; Patel, M.M.

    1991-01-01

    Polychelates of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), oxovandium(IV) and dioxouranium(VI) with 2,4-dihydroxybenzaldehyde (2,4-DB)-urea(U)-formaldehyde(F) polymer (2,4-DBUF) have been prepared. Elemental analyses of the polychelates indicate a metal:ligand ratio of 1:2. The structures of the polychelates have been assigned on the basis of their elemental analyses, IR, reflectance spectra, magnetic moment, thermal data and their electrical conductivity behaviour. (author). 1 tab., 18 refs

  2. The Role of Angiotensin II in Parietal Epithelial Cell Proliferation and Crescent Formation in Glomerular Diseases.

    Science.gov (United States)

    Rizzo, Paola; Novelli, Rubina; Rota, Cinzia; Gagliardini, Elena; Ruggiero, Barbara; Rottoli, Daniela; Benigni, Ariela; Remuzzi, Giuseppe

    2017-11-01

    Crescentic glomerulonephritis (GN) is a devastating disease with rapidly progressive deterioration in kidney function, which, histologically, manifests as crescent formation in most glomeruli. We previously found that crescents derive from the aberrant proliferation and migration of parietal epithelial cells (PECs)/progenitor cells, and that the angiotensin (ang) II/ang II type-1 (AT 1 ) receptor pathway may participate, together with the stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor 4 axis, in the development of those lesions. Herein, we elucidated sequential events and cellular and molecular interactions occurring during crescentic lesion onset and evolution. By analyzing kidney biopsy specimens of patients with extracapillary GN, divided according to the grade of glomerular lesions, we found that the accumulation of macrophages expressing matrix metalloproteinase-12 started manifesting in glomeruli affected by early-stage lesions, whereas AT 1 receptor expression could not be detected. In glomeruli with advanced lesions, AT 1 receptor expression increased markedly, and the up-regulation of SDF-1, and its receptor C-X-C chemokine receptor 7, was documented on podocytes and PECs, respectively. In vitro studies were instrumental to demonstrating the role of ang II in inducing podocyte SDF-1 production, which ultimately activates PECs. The present findings support the possibility that angiotensin-converting enzyme inhibitor treatment might limit PEC activation and reduce the frequency and extension of crescents in extracapillary GN. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Structure of the Hydrated Platinum(II) Ion And the Cis-Diammine-Platinum(II) Complex in Acidic Aqueous Solution: An EXAFS Study

    Energy Technology Data Exchange (ETDEWEB)

    Jalilehvand, F.; Laffin, L.J.

    2009-05-18

    Careful analysis of Pt L{sub 3}-edge extended X-ray absorption fine structure (EXAFS) spectra shows that the hydrated platinum(II) ion in acidic (HClO{sub 4}) aqueous solution binds four water molecules with the Pt-O bond distance 2.01(2) {angstrom} and one (or two) in the axial position at 2.39(2) {angstrom}. The weak axial water coordination is in accordance with the unexpectedly small activation volume previously reported for water exchange in an interchange mechanism with associative character. The hydrated cis-diammineplatinum(II) complex has a similar coordination environment with two ammine and two aqua ligands strongly bound with Pt-O/N bond distances of 2.01(2) {angstrom} and, in addition, one (or two) axial water molecule at 2.37(2) {angstrom}. This result provides a new basis for theoretical computational studies aiming to connect the function of the anticancer drug cis-platin to its ligand exchange reactions, where usually four-coordinated square planar platinum(II) species are considered as the reactant and product. {sup 195}Pt NMR spectroscopy has been used to characterize the Pt(II) complexes.

  4. Formation of the molecular crystal structure during the vacuum sublimation of paracetamol

    Science.gov (United States)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2015-04-01

    The results from structural and thermal studies on the formation of molecular crystals during the vacuum sublimation of paracetamol from its vapor phase are given. It is established that the vapor-crystal phase transition proceeds in a complicated way as the superposition of two phase transitions: a first-order phase transition with a change in density, and a second-order phase transition with a change in ordering. It is shown that the latter is a smeared phase transition that proceeds with the formation of a pretransitional phase that is irreversibly dissipated during phase transformation, leading to the formation of crystals of the rhombic syngony. Data from differential scanning calorimetry and X-ray diffraction analysis are presented along with microphotographs.

  5. Perovskite structures in the formation of nano-rods in REBa2Cu3O7-δ films self-organization to perovskite structures

    International Nuclear Information System (INIS)

    Mukaida, Masashi; Kai, Hideki; Shingai, Yuki

    2009-01-01

    Cubic perovskite structure has been found to play an important role for the nano-rod formation in REBa 2 Cu 3 O 7-δ films. BaWO 4 , with a sheelite structure, and BaNb 2 O 6 , with a tungsten bronze structure, were doped into REBa 2 Cu 3 O 7-δ targets. Laser-deposited, these materials form nano-rods in REBa 2 Cu 3 O 7-δ films accompanied by Ln elements, resulting in the composition of a pseudo-cubic perovskite structure. This was confirmed by selected area electron diffraction patterns (SADP) and composition mapping using energy-dispersive X-ray spectroscopy scanning transmission electron microscope (EDS-STEM) analysis. BaWO 4 with a sheelite structure, and BaNb 2 O 6 with a tungsten bronze structure, doped into targets no longer retain their structures, but can form pseudo-cubic perovskite structures in laser-deposited REBa 2 Cu 3 O 7-δ films. The perovskite crystal structure is thought to be important for nano-rod formation in the laser deposited REBa 2 Cu 3 O 7-δ film. (author)

  6. The investigation formation of complexes of Fe(III) and Fe(II) in the water solution of imidazole at 298 K

    International Nuclear Information System (INIS)

    Radjabov, U.R.; Yusupov, Z.N.; Sharipov, I.Kh.

    2001-01-01

    C H lm=0.1 mol/l, C F e(II)=1·10 - 4 m ol/l and iron sterns: 0.10, 0.25, 0.50 and 1.00 mol/l. It is established that in the investigated systems form at different on composition mono-, polynuclear, homo-- and heterovalent coordination compounds. In aids of the oxidation function accurate the composition, defined the constants formation and domination sphere of complex forms

  7. Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe; Reynaud, Stéphanie; Pigeon, Florent [Université de Lyon, CNRS, UMR5516, Laboratoire Hubert Curien, Université de Saint Etienne, Jean Monnet, F-42023 Saint-Etienne (France); Maurice, Claire; Quey, Romain [Ecole Nationale Supérieure des Mines de Saint-Etienne, CNRS, UMR5307, Laboratoire Georges Friedel, F-42023 Saint-Etienne (France)

    2014-04-28

    The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.

  8. Comparing M31 and Milky Way satellites: The extended star formation histories of Andromeda II and Andromeda XVI

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Skillman, Evan D.; McQuinn, Kristen B. W. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN (United States); Hidalgo, Sebastian L.; Monelli, Matteo; Gallart, Carme; Aparicio, Antonio [Instituto de Astrofísica de Canarias. Vía Láctea s/n., E-38200 La Laguna, Tenerife, Canary Islands (Spain); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); McConnachie, Alan; Stetson, Peter B. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Bernard, Edouard J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Boylan-Kolchin, Michael [Astronomy Department, University of Maryland, College Park, MD (United States); Cassisi, Santi [INAF-Osservatorio Astronomico di Collurania, Teramo (Italy); Cole, Andrew A. [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania (Australia); Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Irwin, Mike [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Martin, Nicolas F. [Observatoire astronomique de Strasbourg, Universit de Strasbourg, CNRS, UMR 7550, 11 rue de l' Universit, F-67000 Strasbourg (France); Mayer, Lucio [Institut für Theoretische Physik, University of Zurich, Zürich (Switzerland); Navarro, Julio F., E-mail: drw@ucsc.edu [Department of Physics and Astronomy, University of Victoria, BC V8P 5C2 (Canada)

    2014-07-01

    We present the first comparison between the lifetime star formation histories (SFHs) of M31 and Milky Way (MW) satellites. Using the Advanced Camera for Surveys on board the Hubble Space Telescope, we obtained deep optical imaging of Andromeda II (And II; M{sub V} = –12.0; log(M {sub *}/M {sub ☉}) ∼ 6.7) and Andromeda XVI (And XVI; M{sub V} = –7.5; log(M {sub *}/M {sub ☉}) ∼ 4.9) yielding color-magnitude diagrams that extend at least 1 mag below the oldest main-sequence turnoff, and are similar in quality to those available for the MW companions. And II and And XVI show strikingly similar SFHs: both formed 50%-70% of their total stellar mass between 12.5 and 5 Gyr ago (z ∼ 5-0.5) and both were abruptly quenched ∼5 Gyr ago (z ∼ 0.5). The predominance of intermediate age populations in And XVI makes it qualitatively different from faint companions of the MW and clearly not a pre-reionization fossil. Neither And II nor And XVI appears to have a clear analog among MW companions, and the degree of similarity in the SFHs of And II and And XVI is not seen among comparably faint-luminous pairs of MW satellites. These findings provide hints that satellite galaxy evolution may vary substantially among hosts of similar stellar mass. Although comparably deep observations of more M31 satellites are needed to further explore this hypothesis, our results underline the need for caution when interpreting satellite galaxies of an individual system in a broader cosmological context.

  9. Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis

    Science.gov (United States)

    Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep

    2002-01-01

    Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (P<0.05 vs. baseline). This loss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (P<0.05). Bone histomorphometry indicated increases in endocortical and cancellous bone formation rates and in trabecular thickness. These results demonstrate that short-term administration of the IGF-II/IGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.

  10. Determination of Ni(II) crystal structure by powder x-ray diffraction ...

    African Journals Online (AJOL)

    X-ray powder diffraction pattern was used to determine the length of the unit cell, “a”, the lattice structure type, and the number of atoms per unit cell of Ni(II) crystal. The “a” value was determined to be 23.66 ± 0.005 Å, particle size of 34.87 nm, volume 13.24 Å and Strain value ε = 9.8 x 10-3. The cell search on PXRD patterns ...

  11. Trans-ligand-dependent arrangement (bent or linear) of Pt II-bound dialkylcyanamide ligands: Molecular structure of trans-dichloro(dimethylcyanamide)(dimethyl sulfoxide)platinum(II)

    Science.gov (United States)

    Anisimova, Tatyana B.; Bokach, Nadezhda A.; Fritsky, Igor O.; Haukka, Matti

    2011-11-01

    The title compound, trans-[PtCl 2(NCNMe 2)(Me 2SO)], is the first example of the structurally characterized Pt II species having the nitrile and the sulfoxide ligands in the trans-position to each other. The most significant feature of this structure is the non-linear arrangement of the Pt sbnd N1 sbnd C1 fragment providing the rare case of the bent form of the dialkylcyanamide ligand.

  12. Instability of a Lamellar Phase under Shear Flow: Formation of Multilamellar Vesicles

    Science.gov (United States)

    Courbin, L.; Delville, J. P.; Rouch, J.; Panizza, P.

    2002-09-01

    The formation of closed-compact multilamellar vesicles (referred to in the literature as the ``onion texture'') obtained upon shearing lamellar phases is studied using small-angle light scattering and cross-polarized microscopy. By varying the shear rate γ ˙, the gap cell D, and the smectic distance d, we show that: (i)the formation of this structure occurs homogeneously in the cell at a well-defined wave vector qi, via a strain-controlled process, and (ii)the value of qi varies as (dγ ˙/D)1/3. These results strongly suggest that formation of multilamellar vesicles may be monitored by an undulation (buckling) instability of the membranes, as expected from theory.

  13. STRUCTURAL MODIFICATION OF NEW FORMATIONS IN CEMENT MATRIX USING CARBON NANOTUBE DISPERSIONS AND NANOSILICA

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2017-01-01

    Full Text Available Complex nanodispersed systems with multi-walled carbon nanotubes and nanodispersed silica have a significant impact on the processes of hydration, hardening and strength gain of construction composites predetermining their durability. While using a scanning electron microscope with an attachment for X-ray microanalysis and a device for infrared spectral analysis investigations have shown that the main effect of the cement matrix modification in the case of adding complex nanodispersed systems is provided by direct influence of hydration processes with subsequent crystallization of new formations. It has been noted that while adding carbon nanotube dispersion and nanosized silica a binding matrix is structured in the form of an extremely dense shell from crystalline hydrate new formations on the surface of solid phases that provides strong binding matrix in cement concrete. The addition effect of carbon nanotubes has been analyzed and quantitatively assessed through an investigation for every case of one sample with nanotubes and one sample without them with the help of a nanoindenter and scanning electron microscope. It is necessary to solve rather complicated challenging task in order to assess quantitatively the addition effect of CNT on material characteristics at a micromechanical level. At the same time it is possible to investigate surface of a concrete sample with one-micron resolution. In this case it is necessary to prepare samples for nanoindentation with exclusion of all CNT defectable effects that have been shown by a SEM. So in this case more adequate method for assessment must be a picoindenter , which combines a test method for nanoindentation with an optical SEM potential. Such equipment is in the stage of in-situ testing process at the Vienna University of Technology. The investigation is based on the fact that the main modification effect of mineral binding matrix while using incorporated complex nanodispersed systems and

  14. Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II and 2-oxoglutarate-dependent dioxygenase EctD.

    Directory of Open Access Journals (Sweden)

    Klaus Reuter

    2010-05-01

    Full Text Available As a response to high osmolality, many microorganisms synthesize various types of compatible solutes. These organic osmolytes aid in offsetting the detrimental effects of low water activity on cell physiology. One of these compatible solutes is ectoine. A sub-group of the ectoine producer's enzymatically convert this tetrahydropyrimidine into a hydroxylated derivative, 5-hydroxyectoine. This compound also functions as an effective osmostress protectant and compatible solute but it possesses properties that differ in several aspects from those of ectoine. The enzyme responsible for ectoine hydroxylation (EctD is a member of the non-heme iron(II-containing and 2-oxoglutarate-dependent dioxygenases (EC 1.14.11. These enzymes couple the decarboxylation of 2-oxoglutarate with the formation of a high-energy ferryl-oxo intermediate to catalyze the oxidation of the bound organic substrate. We report here the crystal structure of the ectoine hydroxylase EctD from the moderate halophile Virgibacillus salexigens in complex with Fe(3+ at a resolution of 1.85 A. Like other non-heme iron(II and 2-oxoglutarate dependent dioxygenases, the core of the EctD structure consists of a double-stranded beta-helix forming the main portion of the active-site of the enzyme. The positioning of the iron ligand in the active-site of EctD is mediated by an evolutionarily conserved 2-His-1-carboxylate iron-binding motif. The side chains of the three residues forming this iron-binding site protrude into a deep cavity in the EctD structure that also harbours the 2-oxoglutarate co-substrate-binding site. Database searches revealed a widespread occurrence of EctD-type proteins in members of the Bacteria but only in a single representative of the Archaea, the marine crenarchaeon Nitrosopumilus maritimus. The EctD crystal structure reported here can serve as a template to guide further biochemical and structural studies of this biotechnologically interesting enzyme family.

  15. SGC method for predicting the standard enthalpy of formation of pure compounds from their molecular structures

    International Nuclear Information System (INIS)

    Albahri, Tareq A.; Aljasmi, Abdulla F.

    2013-01-01

    Highlights: • ΔH° f is predicted from the molecular structure of the compounds alone. • ANN-SGC model predicts ΔH° f with a correlation coefficient of 0.99. • ANN-MNLR model predicts ΔH° f with a correlation coefficient of 0.90. • Better definition of the atom-type molecular groups is presented. • The method is better than others in terms of combined simplicity, accuracy and generality. - Abstract: A theoretical method for predicting the standard enthalpy of formation of pure compounds from various chemical families is presented. Back propagation artificial neural networks were used to investigate several structural group contribution (SGC) methods available in literature. The networks were used to probe the structural groups that have significant contribution to the overall enthalpy of formation property of pure compounds and arrive at the set of groups that can best represent the enthalpy of formation for about 584 substances. The 51 atom-type structural groups listed provide better definitions of group contributions than others in the literature. The proposed method can predict the standard enthalpy of formation of pure compounds with an AAD of 11.38 kJ/mol and a correlation coefficient of 0.9934 from only their molecular structure. The results are further compared with those of the traditional SGC method based on MNLR as well as other methods in the literature

  16. Theory of structure formation in snowfields motivated by penitentes, suncups, and dirt cones.

    Science.gov (United States)

    Betterton, M D

    2001-05-01

    Penitentes and suncups are structures formed as snow melts, typically high in the mountains. When the snow is dirty, dirt cones and other structures can form instead. Building on previous field observations and experiments, this paper presents a theory of ablation morphologies, and the role of surface dirt in determining the structures formed. The glaciological literature indicates that sunlight, heating from air, and dirt all play a role in the formation of structure on an ablating snow surface. The present paper formulates a minimal model for the formation of ablation morphologies as a function of measurable parameters and considers the linear stability of this model. The dependence of ablation morphologies on weather conditions and initial dirt thickness is studied, focusing on the initial growth of perturbations away from a flat surface. We derive a single-parameter expression for the melting rate as a function of dirt thickness, which agrees well with a set of measurements by Driedger. An interesting result is the prediction of a dirt-induced traveling instability for a range of parameters.

  17. Molecular gas in the H II-region complex RCW 166: Possible evidence for an early phase of cloud-cloud collision prior to the bubble formation

    Science.gov (United States)

    Ohama, Akio; Kohno, Mikito; Fujita, Shinji; Tsutsumi, Daichi; Hattori, Yusuke; Torii, Kazufumi; Nishimura, Atsushi; Sano, Hidetoshi; Yamamoto, Hiroaki; Tachihara, Kengo; Fukui, Yasuo

    2018-05-01

    Young H II regions are an important site for the study of O star formation based on distributions of ionized and molecular gas. We reveal that two molecular clouds at ˜48 km s-1 and ˜53 km s-1 are associated with the H II regions G018.149-00.283 in RCW 166 by using the JCMT CO High-Resolution Survey (COHRS) of the 12CO(J = 3-2) emission. G018.149-00.283 comprises a bright ring at 8 μm and an extended H II region inside the ring. The ˜48 km s-1 cloud delineates the ring, and the ˜53 km s-1 cloud is located within the ring, indicating a complementary distribution between the two molecular components. We propose a hypothesis that high-mass stars within G018.149-00.283 were formed by triggering during cloud-cloud collision at a projected velocity separation of ˜5 km s-1. We argue that G018.149-00.283 is in an early evolutionary stage, ˜0.1 Myr after the collision according to the scheme detailed by Habe and Ohta (1992, PASJ, 44, 203), which will be followed by a bubble formation stage like RCW 120. We also suggest that nearby H II regions N21 and N22 are candidates for bubbles possibly formed by cloud-cloud collision. Inoue and Fukui (2013, ApJ, 774, L31) showed that the interface gas becomes highly turbulent and realizes a high-mass accretion rate of 10-3-10-4 M⊙ yr-1 by magnetohydrodynamical numerical simulations, which offers an explanation of the O-star formation. The fairly high frequency of cloud-cloud collision in RCW 166 is probably due to the high cloud density in this part of the Scutum arm.

  18. Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase.

    Science.gov (United States)

    Rudolf, Jeffrey D; Dong, Liao-Bin; Cao, Hongnan; Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Chang, Chin-Yuan; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2016-08-31

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg(2+)-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.

  19. Dark Energy and Structure Formation

    International Nuclear Information System (INIS)

    Singh, Anupam

    2010-01-01

    We study the gravitational dynamics of dark energy configurations. We report on the time evolution of the dark energy field configurations as well as the time evolution of the energy density to demonstrate the gravitational collapse of dark energy field configurations. We live in a Universe which is dominated by Dark Energy. According to current estimates about 75% of the Energy Density is in the form of Dark Energy. Thus when we consider gravitational dynamics and Structure Formation we expect Dark Energy to play an important role. The most promising candidate for dark energy is the energy density of fields in curved space-time. It therefore become a pressing need to understand the gravitational dynamics of dark energy field configurations. We develop and describe the formalism to study the gravitational collapse of fields given any general potential for the fields. We apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting evolution equations which determine the time evolution of field configurations as well as the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our universe.

  20. Fe(II)-induced transformation from ferrihydrite to lepidocrocite and goethite

    International Nuclear Information System (INIS)

    Liu Hui; Li Ping; Zhu Meiying; Wei Yu; Sun Yuhan

    2007-01-01

    The transformation of Fe(II)-adsorbed ferrihydrite was studied. Data tracking the formation of products as a function of pH, temperature and time is presented. The results indicate that trace of Fe(II) adsorbed on ferrihydrite can accelerate its transformation obviously. The products are lepidocrocite and/or goethite and/or hematite, which is different from those without Fe(II). That is, Fe(II) not only accelerates the transformation of ferrihydrite but also leads to the formation of lepidocrocite by a new path. The behavior of Fe(II) is shown in two aspects-catalytic dissolution-reprecipitation and catalytic solid-state transformation. The results indicate that a high temperature and a high pH(in the range from 5 to 9) are favorable to solid-state transformation and the formation of hematite, while a low temperature and a low pH are favorable to dissolution-reprecipitation mechanism and the formation of lepidocrocite. Special attentions were given to the formation mechanism of lepidocrocite and goethite. - Graphical abstract: Fe(II)-adsorbed ferrihydrite can rapidly transform into lepidocrocite or/and goethite or/and hematite. Which product dominates depends on the transformation conditions of ferrihydrite such as temperature, pH, reaction time, etc. In the current system, there exist two transformation mechanisms. One is dissolution/reprecipitation and the other is solid-state transformation. The transformation mechanisms from Fe(II)-adsorbed ferrihydrite to lepidocrocite and goethite were investigated

  1. Soft-Sediment Deformation Structures Interpreted as Seismites in the Kolankaya Formation, Denizli Basin (SW Turkey)

    Science.gov (United States)

    Topal, Savaş; Özkul, Mehmet

    2014-01-01

    The NW-trending Denizli basin of the SW Turkey is one of the neotectonic grabens in the Aegean extensional province. It is bounded by normal faults on both southern and northern margins. The basin is filled by Neogene and Quaternary terrestrial deposits. Late Miocene- Late Pliocene aged Kolankaya formation crops out along the NW trending Karakova uplift in the Denizli basin. It is a typical fluviolacustrine succession that thickens and coarsens upward, comprising poorly consolidated sand, gravelly sand, siltstone and marl. Various soft-sediment deformation structures occur in the formation, especially in fine- to medium grained sands, silts and marls: load structures, flame structures, clastic dikes (sand and gravely-sand dike), disturbed layers, laminated convolute beds, slumps and synsedimentary faulting. The deformation mechanism and driving force for the soft-sediment deformation are related essentially to gravitational instability, dewatering, liquefaction-liquidization, and brittle deformation. Field data and the wide lateral extent of the structures as well as regional geological data show that most of the deformation is related to seismicity and the structures are interpreted as seismites. The existence of seismites in the Kolankaya Formation is evidence for continuing tectonic activity in the study area during the Neogene and is consistent with the occurrence of the paleoearthquakes of magnitude >5. PMID:25152909

  2. Bifunctional RuII -Complex-Catalysed Tandem C-C Bond Formation: Efficient and Atom Economical Strategy for the Utilisation of Alcohols as Alkylating Agents.

    Science.gov (United States)

    Roy, Bivas Chandra; Chakrabarti, Kaushik; Shee, Sujan; Paul, Subhadeep; Kundu, Sabuj

    2016-12-12

    Catalytic activities of a series of functional bipyridine-based Ru II complexes in β-alkylation of secondary alcohols using primary alcohols were investigated. Bifunctional Ru II complex (3 a) bearing 6,6'-dihydroxy-2,2'-bipyridine (6DHBP) ligand exhibited the highest catalytic activity for this reaction. Using significantly lower catalyst loading (0.1 mol %) dehydrogenative carbon-carbon bond formation between numerous aromatic, aliphatic and heteroatom substituted alcohols were achieved with high selectivity. Notably, for the synthesis of β-alkylated secondary alcohols this protocol is a rare one-pot strategy using a metal-ligand cooperative Ru II system. Remarkably, complex 3 a demonstrated the highest reactivity compared to all the reported transition metal complexes in this reaction. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Phase equilibrium measurements and the tuning behavior of new sII clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Woongchul; Park, Seongmin; Ro, Hyeyoon; Koh, Dong-Yeun; Seol, Jiwoong [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, Daejeon 305-701 (Korea, Republic of); Lee, Huen, E-mail: h_lee@kaist.ac.kr [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, Daejeon 305-701 (Korea, Republic of); Graduate School of EEWS, KAIST, Daejeon 305-701 (Korea, Republic of)

    2012-01-15

    Graphical abstract: Pyrrolidine and piperidine act as sII clathrate hydrate formers under methane gas. Highlights: > New sII clathrate hydrate formers were proposed: pyrrolidine and piperidine. > Formation of gas hydrate with methane as help gas was confirmed. > NMR, Raman, and XRD patterns were analyzed to identify the hydrate structures. > We measured (L + H + V) phase equilibrium with proposed hydrate formers. > Tuning phenomena increase gas storage in (pyrrolidine + CH{sub 4}) clathrate hydrates. - Abstract: We suggest two types of new amine-type sII formers: pyrrolidine and piperidine. These guest compounds fail to form clathrate hydrate structures with host water, but instead have to combine with light gaseous guest molecules (methane) for enclathration. First, two binary clathrate hydrates of (pyrrolidine + methane) and (piperidine + methane) were synthesized at various amine concentrations. {sup 13}C NMR and Raman analysis were done to identify the clathrate hydrate structure and guest distribution over sII-S and sII-L cages. XRD was also used to find the exact structure and corresponding cell parameters. At a dilute pyrrolidine concentration of less than 5.56 mol%, the tuning phenomenon is observed such that methane molecules surprisingly occupy sII-L cages. At the critical guest concentration of about 0.1 mol%, the cage occupancy ratio reaches the maximum of approximately 0.5. At very dilute guest concentration below 0.1 mol%, the methane molecules fail to occupy large cages on account of their rarefied distribution in the network. Direct-release experiments were performed to determine the actual guest compositions in the clathrate hydrate phases. Finally, we measured the clathrate hydrate phase equilibria of (pyrrolidine + methane) and (piperidine + methane).

  4. Phase equilibrium measurements and the tuning behavior of new sII clathrate hydrates

    International Nuclear Information System (INIS)

    Shin, Woongchul; Park, Seongmin; Ro, Hyeyoon; Koh, Dong-Yeun; Seol, Jiwoong; Lee, Huen

    2012-01-01

    Graphical abstract: Pyrrolidine and piperidine act as sII clathrate hydrate formers under methane gas. Highlights: → New sII clathrate hydrate formers were proposed: pyrrolidine and piperidine. → Formation of gas hydrate with methane as help gas was confirmed. → NMR, Raman, and XRD patterns were analyzed to identify the hydrate structures. → We measured (L + H + V) phase equilibrium with proposed hydrate formers. → Tuning phenomena increase gas storage in (pyrrolidine + CH 4 ) clathrate hydrates. - Abstract: We suggest two types of new amine-type sII formers: pyrrolidine and piperidine. These guest compounds fail to form clathrate hydrate structures with host water, but instead have to combine with light gaseous guest molecules (methane) for enclathration. First, two binary clathrate hydrates of (pyrrolidine + methane) and (piperidine + methane) were synthesized at various amine concentrations. 13 C NMR and Raman analysis were done to identify the clathrate hydrate structure and guest distribution over sII-S and sII-L cages. XRD was also used to find the exact structure and corresponding cell parameters. At a dilute pyrrolidine concentration of less than 5.56 mol%, the tuning phenomenon is observed such that methane molecules surprisingly occupy sII-L cages. At the critical guest concentration of about 0.1 mol%, the cage occupancy ratio reaches the maximum of approximately 0.5. At very dilute guest concentration below 0.1 mol%, the methane molecules fail to occupy large cages on account of their rarefied distribution in the network. Direct-release experiments were performed to determine the actual guest compositions in the clathrate hydrate phases. Finally, we measured the clathrate hydrate phase equilibria of (pyrrolidine + methane) and (piperidine + methane).

  5. Crystal structure of dichloridobis(dimethyl N-cyanodithioiminocarbonatecobalt(II

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2016-01-01

    Full Text Available The structure of the mononuclear title complex, [{(H3CS2C=NC[triple-bond] N}2CoCl2], consists of a CoII atom coordinated in a distorted tetrahedral manner by two Cl− ligands and the terminal N atoms of two dimethyl N-cyanodithioiminocarbonate ligands. The two organic ligands are almost coplanar, with a dihedral angle of 5.99 (6° between their least-squares planes. The crystal packing features pairs of inversion-related complexes that are held together through C—H...Cl and C—H...S interactions and π–π stacking [centroid-to-centroid distance = 3.515 (su? Å]. Additional C—H...Cl and C—H...S interactions, as well as Cl...S contacts < 3.6 Å, consolidate the crystal packing.

  6. Formation, structure, and stability of MHD intermediate shocks

    International Nuclear Information System (INIS)

    Wu, C.C.

    1990-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the author has recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear wave steepening from continuous waves. In this paper, the formation, structure and stability of intermediate shocks in dissipative MHD are considered in detail. The differences between the conventional theory and his are pointed out and clarified. He shows that all four types of intermediate shocks can be formed from smooth waves. He also shows that there are free parameters in the structure of the intermediate shocks, and that these parameters are related to the shock stability. In addition, he shows that a rotational discontinuity can not exist with finite width, indicate how this is related to the existence of time-dependent intermediate shocks, and show why the conventional theory is not a good approximation to dissipative MHD solutions whenever there is rotation in magnetic field

  7. Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes.

    Science.gov (United States)

    Saffert, Paul; Enenkel, Cordula; Wendler, Petra

    2017-01-01

    Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80-150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensitive factor), p97/VCP (valosin-containing protein), the Pex1/Pex6 complex and Hsp104 in eukaryotes and ClpB in bacteria. Tremendous efforts have been undertaken to understand the conformational dynamics of protein remodeling type II AAA+ complexes. A uniform mode of action has not been derived from these works. This review focuses on p97/VCP and the Pex1/6 complex, which both structurally remodel ubiquitinated substrate proteins. P97/VCP plays a role in many processes, including ER- associated protein degradation, and the Pex1/Pex6 complex dislocates and recycles the transport receptor Pex5 from the peroxisomal membrane during peroxisomal protein import. We give an introduction into existing knowledge about the biochemical and cellular activities of the complexes before discussing structural information. We particularly emphasize recent electron microscopy structures of the two AAA+ complexes and summarize their structural differences.

  8. Supramolecular structures on silica surfaces and their adsorptive properties.

    Science.gov (United States)

    Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F

    2005-05-01

    The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.

  9. Role of the synaptobrevin C terminus in fusion pore formation

    DEFF Research Database (Denmark)

    Ngatchou, Annita N; Kisler, Kassandra; Fang, Qinghua

    2010-01-01

    Neurotransmitter release is mediated by the SNARE proteins synaptobrevin II (sybII, also known as VAMP2), syntaxin, and SNAP-25, generating a force transfer to the membranes and inducing fusion pore formation. However, the molecular mechanism by which this force leads to opening of a fusion pore...... stimulation, the SNARE complex pulls the C terminus of sybII deeper into the vesicle membrane. We propose that this movement disrupts the vesicular membrane continuity leading to fusion pore formation. In contrast to current models, the experiments suggest that fusion pore formation begins with molecular...

  10. Conditions for the formation of pure birnessite during the oxidation of Mn(II) cations in aqueous alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Boumaiza, Hella [Laboratoire de Chimie des Matériaux et Catalyse, Faculté des Sciences de Tunis, Université El Manar (Tunisia); Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME)-UMR 7564, CNRS-Université de Lorraine, 405, rue de Vandoeuvre, 54600 Villers-lès-Nancy (France); Département de Génie Biologique et Chimique, Institut National des Sciences Appliquées et de Technologies (INSAT), Université de Carthage, Tunis (Tunisia); Coustel, Romain [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME)-UMR 7564, CNRS-Université de Lorraine, 405, rue de Vandoeuvre, 54600 Villers-lès-Nancy (France); Medjahdi, Ghouti [Institut Jean Lamour, Centre de Compétences Rayons X et Spectroscopie (X-Gamma), UMR 7198 CNRS-Université de Lorraine (France); Ruby, Christian, E-mail: Christian.ruby@univ-lorraine.fr [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME)-UMR 7564, CNRS-Université de Lorraine, 405, rue de Vandoeuvre, 54600 Villers-lès-Nancy (France); and others

    2017-04-15

    Birnessite was synthetized through redox reaction by mixing MnO{sub 4}{sup -}, Mn{sup 2+} and OH{sup -} solutions. The Mn(VII): Mn(II) ratio of 0.33 was chosen and three methods were used consisting in a quick mixing under vigorous stirring of two of the three reagents and then on the dropwise addition of the third one. The obtained solids were characterized by XRD, FTIR and XPS spectroscopies. Their average oxidation states were determined from ICP and CEC measurements while their surface properties were investigated by XPS. This study provides an increased understanding of the importance of dissolved oxygen in the formation of birnessite and hausmannite and shows the ways to obtain pure birnessite. The role of counter-ion ie. Na{sup +} or K{sup +} was also examined. - Graphical abstract: Pathways of birnessite formation. - Highlights: • Pure birnessite is prepared through a redox reaction. • Hausmannite formation is prevented by controlling dissolved O2. • The employed counterion influences the purity of birnessite. • Initial Mn(OH){sub 2} is oxidized by both MnO{sub 4}{sup -} and dissolved O{sub 2}.

  11. Equilibrium vortex structures of type-II/1 superconducting films with washboard pinning landscapes

    Science.gov (United States)

    Wei, C. A.; Xu, X. B.; Xu, X. N.; Wang, Z. H.; Gu, M.

    2018-05-01

    We numerically study the equilibrium vortex structures of type-II/1 superconducting films with a periodic quasi-one-dimensional corrugated substrate. We show as a function of substrate period and pinning strength that, the vortex system displays a variety of vortex phases including arrays consisted of vortex clumps with different morphologies, ordered vortex stripes parallel and perpendicular to pinning troughs, and ordered one-dimensional vortex chains. Our simulations are helpful in understanding the structural modulations for extensive systems with both competing interactions and competing periodicities.

  12. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: part II--Optimization of structural sensor placement.

    Science.gov (United States)

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-04-01

    The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.

  13. Correlation of reactivity with structural factors in a series of Fe(II) substituted cobalt ferrites

    International Nuclear Information System (INIS)

    Sileo, Elsa E.; Garcia Rodenas, Luis; Paiva-Santos, Carlos O.; Stephens, Peter W.; Morando, Pedro J.; Blesa, Miguel A.

    2006-01-01

    A series of powdered cobalt ferrites, Co x Fe 3- x O 4 with 0.66≤x II , were synthesized by a mild procedure, and their Fe and Co site occupancies and structural characteristics were explored using X-ray anomalous scattering and the Rietveld refinement method. The dissolution kinetics, measured in 0.1 M oxalic acid aqueous solution at 70 deg. C, indicate in all cases the operation of a contracting volume rate law. The specific rates increased with the Fe II content following approximately a second-order polynomial expression. This result suggests that the transfer of Fe III controls the dissolution rate, and that the leaching of a first layer of ions Co II and Fe II leaves exposed a surface enriched in slower dissolving octahedral Fe III ions. Within this model, inner vicinal lattice Fe II accelerates the rate of Fe III transfer via internal electron hopping. A chain mechanism, involving successive electron transfers, fits the data very well. - Graphical abstract: The electron exchange between octahedral Fe II and Fe III ions has important consequences on the specific dissolution rates. Display Omitted

  14. Formation and structure of V-Zr amorphous alloy thin films

    KAUST Repository

    King, Daniel J M

    2015-01-01

    Although the equilibrium phase diagram predicts that alloys in the central part of the V-Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V-Zr alloys deposited at room temperature by magnetron sputtering. The films were characterized by X-ray diffraction, transmission electron microscopy and computational methods. Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution of the elements, in agreement with the experimental results. In addition, the modelling effort provided insight into the probable atomic configurations of the amorphous structures allowing predictions of the average distance to the first and second nearest neighbours in the system.

  15. Structural myocardial changes in chronic heart failure of II functional class based on overweight and abdominal obesity

    Directory of Open Access Journals (Sweden)

    V. Z. Netyazhenko

    2014-04-01

    Full Text Available Abstract. 153 patients with CHF of II functional class, with normal weight, overweight and abdominal obesity I-III degrees Examined. Studied structural myocardial changes at CHF depending on the degree of excess weight. Structural changes of the heart, the extent and type of myocardial hypertrophy of left ventricle depending on the availability of overweight and obesity were revealed. Actuality. Chronic heart failure (CHF is characterized by a high mortality rate and frequency of hospitalization of patients, a significant decline in their quality of life and significant financial burden. CHF is a medical and social problem that a certain dominant in the near future all over the world, because the average life expectancy of patients with the diagnosis ranges from 1,7 to 7 years and the long-term observation is evidence of the increased risk of death, that 5 year more than four times the initial value. The main etiological factors of occurrence, progression and adverse exit of CHF are age, coronary heart disease (CHD, arterial hypertension, valvular heart disease, diabetes and obesity. In general, structural changes of heart in obesity can be divided into the following main components: left ventricle hypertrophy, changes in the structural composition of cardiac tissue, heart obesity, change of the sizes of the right ventricle and left atrium (PL, valvular heart disease. Research objective: to establish the structural changes of CHF of II functional class depending on the availability of overweight and abdominal type of obesity various degrees. Material and methods: 153 patients with CHF of II functional class were examined. Etiological factors of development CHF were hypertensive disease, chronic forms of CAD and the combination of these pathologies. The diagnosis of CHF installed according to WHO criteria, the European society of cardiology and the Association of cardiologists of Ukraine, and classified according to functional classification of

  16. The crystal structure of paramagnetic copper(ii) oxalate (CuC2O4):

    DEFF Research Database (Denmark)

    Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel

    2014-01-01

    Synthetic copper(ii) oxalate, CuC2O4, was obtained in a precipitation reaction between a copper(ii) solution and an aqueous solution of oxalic acid. The product was identified from its conventional X-ray powder patterns which match that of the copper mineral Moolooite reported to have...... the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(ii) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar....... The crystal structure consists of a random stacking of CuC2O4 micro-crystallites where half the Cu-atoms are placed at (2a) and the other half at (2b) positions with the corresponding oxalate molecules centred around the corresponding (2b) and (2a) site positions, respectively. The diffraction patterns...

  17. (II) COMPLEX COMPOUND

    African Journals Online (AJOL)

    user

    electrochemical sensors, as well as in various chromatographic ... were carried out using Jenway pH meter Model 3320 and a conductivity ... Figure 1: the proposed molecular structure of the copper (II) Schiff base complex. M = Cu (II) or Mn (II).

  18. Evolved H II regions

    International Nuclear Information System (INIS)

    Churchwell, E.

    1975-01-01

    A probable evolutionary sequence of H II regions based on six distinct types of observed objects is suggested. Two examples which may deviate from this idealized sequence, are discussed. Even though a size-mean density relation of H II regions can be used as a rough indication of whether a nebula is very young or evolved, it is argued that such a relation is not likely to be useful for the quantitative assignment of ages to H II regions. Evolved H II regions appear to fit into one of four structural types: rings, core-halos, smooth structures, and irregular or filamentary structures. Examples of each type are given with their derived physical parameters. The energy balance in these nebulae is considered. The mass of ionized gas in evolved H II regions is in general too large to trace the nebula back to single compact H II regions. Finally, the morphological type of the Galaxy is considered from its H II region content. 2 tables, 2 figs., 29 refs

  19. Golgi structure formation, function, and post-translational modifications in mammalian cells.

    Science.gov (United States)

    Huang, Shijiao; Wang, Yanzhuang

    2017-01-01

    The Golgi apparatus is a central membrane organelle for trafficking and post-translational modifications of proteins and lipids in cells. In mammalian cells, it is organized in the form of stacks of tightly aligned flattened cisternae, and dozens of stacks are often linked laterally into a ribbon-like structure located in the perinuclear region of the cell. Proper Golgi functionality requires an intact architecture, yet Golgi structure is dynamically regulated during the cell cycle and under disease conditions. In this review, we summarize our current understanding of the relationship between Golgi structure formation, function, and regulation, with focus on how post-translational modifications including phosphorylation and ubiquitination regulate Golgi structure and on how Golgi unstacking affects its functions, in particular, protein trafficking, glycosylation, and sorting in mammalian cells.

  20. Automated software system for checking the structure and format of ACM SIG documents

    Science.gov (United States)

    Mirza, Arsalan Rahman; Sah, Melike

    2017-04-01

    Microsoft (MS) Office Word is one of the most commonly used software tools for creating documents. MS Word 2007 and above uses XML to represent the structure of MS Word documents. Metadata about the documents are automatically created using Office Open XML (OOXML) syntax. We develop a new framework, which is called ADFCS (Automated Document Format Checking System) that takes the advantage of the OOXML metadata, in order to extract semantic information from MS Office Word documents. In particular, we develop a new ontology for Association for Computing Machinery (ACM) Special Interested Group (SIG) documents for representing the structure and format of these documents by using OWL (Web Ontology Language). Then, the metadata is extracted automatically in RDF (Resource Description Framework) according to this ontology using the developed software. Finally, we generate extensive rules in order to infer whether the documents are formatted according to ACM SIG standards. This paper, introduces ACM SIG ontology, metadata extraction process, inference engine, ADFCS online user interface, system evaluation and user study evaluations.

  1. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Science.gov (United States)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D.

    2016-08-01

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  2. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Directory of Open Access Journals (Sweden)

    Thomas M. Vlasic

    2016-08-01

    Full Text Available This work uses density functional theory (DFT to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane, at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  3. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-08-15

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  4. In situ transmission electron microscope observation of the formation of fuzzy structures on tungsten

    International Nuclear Information System (INIS)

    Miyamoto, M; Watanabe, T; Nagashima, H; Nishijima, D; Doerner, R P; Krasheninnikov, S I; Sagara, A; Yoshida, N

    2014-01-01

    To investigate the formation processes of tungsten nano-structures, so called fuzz, in situ transmission electron microscope observations during helium ion irradiation and high temperature annealing have been performed. The irradiation with 3 keV He + from room temperature to 1273 K is found to cause high-density helium bubbles in tungsten with no significant change in the surface structure. At higher temperatures, surface morphology changes were observed even without helium irradiation due probably to surface diffusion of tungsten atoms driven by surface tension. It is clearly shown that this morphology change is enhanced with helium irradiation, i.e. the formation of helium bubbles. (paper)

  5. Structural insight into activity enhancement and inhibition of H64A carbonic anhydrase II by imidazoles

    Directory of Open Access Journals (Sweden)

    Mayank Aggarwal

    2014-03-01

    Full Text Available Human carbonic anhydrases (CAs are zinc metalloenzymes that catalyze the hydration and dehydration of CO2 and HCO3−, respectively. The reaction follows a ping-pong mechanism, in which the rate-limiting step is the transfer of a proton from the zinc-bound solvent (OH−/H2O in/out of the active site via His64, which is widely believed to be the proton-shuttling residue. The decreased catalytic activity (∼20-fold lower with respect to the wild type of a variant of CA II in which His64 is replaced with Ala (H64A CA II can be enhanced by exogenous proton donors/acceptors, usually derivatives of imidazoles and pyridines, to almost the wild-type level. X-ray crystal structures of H64A CA II in complex with four imidazole derivatives (imidazole, 1-methylimidazole, 2-methylimidazole and 4-methylimidazole have been determined and reveal multiple binding sites. Two of these imidazole binding sites have been identified that mimic the positions of the `in' and `out' rotamers of His64 in wild-type CA II, while another directly inhibits catalysis by displacing the zinc-bound solvent. The data presented here not only corroborate the importance of the imidazole side chain of His64 in proton transfer during CA catalysis, but also provide a complete structural understanding of the mechanism by which imidazoles enhance (and inhibit when used at higher concentrations the activity of H64A CA II.

  6. Calcium-manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: lessons from simple models.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi

    2011-01-01

    The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Average [O II] nebular emission associated with Mg II absorbers: dependence on Fe II absorption

    Science.gov (United States)

    Joshi, Ravi; Srianand, Raghunathan; Petitjean, Patrick; Noterdaeme, Pasquier

    2018-05-01

    We investigate the effect of Fe II equivalent width (W2600) and fibre size on the average luminosity of [O II] λλ3727, 3729 nebular emission associated with Mg II absorbers (at 0.55 ≤ z ≤ 1.3) in the composite spectra of quasars obtained with 3 and 2 arcsec fibres in the Sloan Digital Sky Survey. We confirm the presence of strong correlations between [O II] luminosity (L_{[O II]}) and equivalent width (W2796) and redshift of Mg II absorbers. However, we show L_{[O II]} and average luminosity surface density suffer from fibre size effects. More importantly, for a given fibre size, the average L_{[O II]} strongly depends on the equivalent width of Fe II absorption lines and found to be higher for Mg II absorbers with R ≡W2600/W2796 ≥ 0.5. In fact, we show the observed strong correlations of L_{[O II]} with W2796 and z of Mg II absorbers are mainly driven by such systems. Direct [O II] detections also confirm the link between L_{[O II]} and R. Therefore, one has to pay attention to the fibre losses and dependence of redshift evolution of Mg II absorbers on W2600 before using them as a luminosity unbiased probe of global star formation rate density. We show that the [O II] nebular emission detected in the stacked spectrum is not dominated by few direct detections (i.e. detections ≥3σ significant level). On an average, the systems with R ≥ 0.5 and W2796 ≥ 2 Å are more reddened, showing colour excess E(B - V) ˜ 0.02, with respect to the systems with R < 0.5 and most likely trace the high H I column density systems.

  8. Unexpected formation and crystal structure of tetrakis(1H-pyrazole-κN2palladium(II dichloride

    Directory of Open Access Journals (Sweden)

    Thomas Wagner

    2014-12-01

    Full Text Available The title salt, [Pd(C3H4N24]Cl2, was obtained unexpectedly by the reaction of palladium(II dichloride with equimolar amounts of 1-chloro-1-nitro-2,2,2-tris(pyrazolylethane in methanol solution. The Pd2+ cation is located on an inversion centre and has a square-planar coordination sphere defined by four N atoms of four neutral pyrazole ligands. The average Pd—N distance is 2.000 (2 Å. The two chloride anions are not coordinating to Pd2+. They are connected to the complex cations through N—H...Cl hydrogen bonds. In addition, C—H...Cl hydrogen bonds are observed, leading to a three-dimensional linkage of cations and anions.

  9. Structure formation in pH-sensitive hydrogels composed of sodium caseinate and N,O-carboxymethyl chitosan.

    Science.gov (United States)

    Wei, Yanxia; Xie, Rui; Lin, Yanbin; Xu, Yunfei; Wang, Fengxia; Liang, Wanfu; Zhang, Ji

    2016-08-01

    The pH-sensitive hydrogels composed of sodium caseinate (SC) and N,O-carboxymethyl chitosan (NOCC) were prepared and a new method to characterize the gelation process was presented in this work. Reological tests suggested that RSC/NOCC=3/7 (the weight ratio of SC and NOCC) was the best ratio of hydrogel. The well-developed three-dimensional network structures in the hydrogel were confirmed by AFM. Two structural parameters, tIS and tCS, denoted as the initial and critical structure formation time, respectively, were used to provide an exact determination of the start of structure formation and description of gelation process. The gelation process strongly depended on temperature changes, a high temperature resulted in an early start of gelation. The non-kinetic model suggested the higher activation energy in the higher temperatures was disadvantageous to structure formation, and vice versa. Due to the smart gel reported here was very stable at room temperature, we believed that the gel is required for applications in drug delivery or could be exploited in the development of potential application as molecular switches in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Hierarchical ZnO with twinned structure: Morphology evolution, formation mechanism and properties

    International Nuclear Information System (INIS)

    Shi, Ruixia; Song, Xueling; Li, Jia; Yang, Ping

    2015-01-01

    Various hierarchical ZnO architectures constructed by twinned structures have been synthesized via a trisodium citrate assisted hydrothermal method on a large scale. The probable formation mechanisms of hierarchical ZnO structures with twinned structure were proposed and discussed. The hierarchical ZnO with twinned structures are composed of two hemispheres with a center concave junction to join them together at their waists. The ZnO microspheres with rough surfaces were obtained when the concentration of trisodium citrate is 0.1 M. However, the football-like microspheres consisted of hexagonal nanosheets were formed when adding glycerol into the water, which should be attributed to the slower nucleation and growth rate of nanocrystals. The hamburger-like ZnO with different aspect ratio and nonuniform ZnO microspheres were generated due to the different quantity of initial nuclei and growth units when simply modulating the concentration of trisodium citrate. The surface area of football-like ZnO is about 3.51 times of microspheres composed of irregular particles. However their photocatalytic performances are similar under UV light irradiation, which indicates that pore sizes of the sample have more important influences on the photocatalytic activity. - Highlights: • Hierarchical ZnO constructed by twinned structures have been synthesized. • The formation mechanisms of ZnO with twinned structure were discussed. • Football-like microspheres were obtained due to the slower nucleation and growth. • Hamburger-like ZnO was formed due to the amount of initial nuclei and growth units. • Pore sizes have important effects on the photocatalytic activity of sample

  11. Hierarchical ZnO with twinned structure: Morphology evolution, formation mechanism and properties

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ruixia; Song, Xueling; Li, Jia; Yang, Ping, E-mail: mse_yangp@ujn.edu.cn

    2015-04-15

    Various hierarchical ZnO architectures constructed by twinned structures have been synthesized via a trisodium citrate assisted hydrothermal method on a large scale. The probable formation mechanisms of hierarchical ZnO structures with twinned structure were proposed and discussed. The hierarchical ZnO with twinned structures are composed of two hemispheres with a center concave junction to join them together at their waists. The ZnO microspheres with rough surfaces were obtained when the concentration of trisodium citrate is 0.1 M. However, the football-like microspheres consisted of hexagonal nanosheets were formed when adding glycerol into the water, which should be attributed to the slower nucleation and growth rate of nanocrystals. The hamburger-like ZnO with different aspect ratio and nonuniform ZnO microspheres were generated due to the different quantity of initial nuclei and growth units when simply modulating the concentration of trisodium citrate. The surface area of football-like ZnO is about 3.51 times of microspheres composed of irregular particles. However their photocatalytic performances are similar under UV light irradiation, which indicates that pore sizes of the sample have more important influences on the photocatalytic activity. - Highlights: • Hierarchical ZnO constructed by twinned structures have been synthesized. • The formation mechanisms of ZnO with twinned structure were discussed. • Football-like microspheres were obtained due to the slower nucleation and growth. • Hamburger-like ZnO was formed due to the amount of initial nuclei and growth units. • Pore sizes have important effects on the photocatalytic activity of sample.

  12. Formation of carbon nano- and micro-structures on C+1 irradiated copper surfaces

    International Nuclear Information System (INIS)

    Ahmad, Shoaib

    2013-01-01

    A series of experiments has identified mechanisms of carbon nano- and micro-structure formation at room temperature, without catalyst and in the environment of immiscible metallic surroundings. The structures include threaded nano fibres, graphitic sheets and carbon onions. Copper as substrate was used due to its immiscibility with carbon. Energetic carbon ions (C + 1 ) of 0.2–2.0 MeV irradiated Cu targets. Cu substrates, apertures and 3 mm dia TEM Cu grids were implanted with the carbon. We observed wide range of μm-size structures formed on Cu grids and along the edges of the irradiated apertures. These are shown to be threaded nano fibers (TNF) of few μm thicknesses with lengths varying from 10 to 3000 μm. Secondary electron microscopy (SEM) identifies the μm-size structures while Confocal microscopy was used to learn about the mechanisms by which C + 1 irradiated Cu provides the growth environment. Huge carbon onions of diameters ranging from hundreds of nm to μm were observed in the as-grown and annealed samples. Transformations of the nanostructures were observed under prolonged electron irradiations of SEM and TEM. A mechanism for the formation of carbon nano- and micro-structures is proposed.

  13. Structural elucidation of the polysaccharide moiety of a glycopeptide (GLPCW-II) from Ganoderma lucidum fruiting bodies.

    Science.gov (United States)

    Ye, LiBin; Zhang, JingSong; Ye, XiJun; Tang, QingJiu; Liu, YanFang; Gong, ChunYu; Du, XiuJui; Pan, YingJie

    2008-03-17

    A water-soluble glycopeptide (GLPCW-II) was isolated from the fruiting bodies of Ganoderma lucidum by DEAE-Sepharose Fast-Flow and Sephacryl S-300 High Resolution Chromatography. The glycopeptide had a molecular weight of 1.2x10(4)Da (determined by HPLC), and consisted of approximately 90% carbohydrate and approximately 8% protein as determined using the phenol-sulfuric acid method and the BCA protein assay reagent kit, respectively. The polysaccharide moiety was composed mainly of D-Glc, L-Fuc, and D-Gal in the ratio of 1.00:1.09:4.09. To facilitate structure-activity studies, the structure of the GLPCW-II polysaccharide moiety was elucidated using 1H and 13C NMR spectroscopy including COSY, TOCSY, HMBC, HSQC, and ROESY, combined with GC-MS of methylated derivatives, and shown to consist of repeating units with the following structure: [Formula: see text].

  14. Characteristics of non-premixed oxygen-enhanced combustion: II. Flame structure effects on soot precursor kinetics resulting in soot-free flames

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, S.A.; Axelbaum, R.L. [Department of Energy, Environmental, Chemical Engineering, Washington University in St. Louis, St. Louis, MO (United States); Yablonsky, G. [Department of Energy, Environmental, Chemical Engineering, Washington University in St. Louis, St. Louis, MO (United States); Parks College, Saint Louis University, St. Louis, MO (United States)

    2010-09-15

    A detailed computational study was performed to understand the effects of the flame structure on the formation and destruction of soot precursors during ethylene combustion. Using the USC Mech Version II mechanism the contributions of different pathways to the formation of benzene and phenyl were determined in a wide domain of Z{sub st} values via a reverse-pathway analysis. It was shown that for conventional ethylene-air flames two sequential reversible reactions play primary roles in the propargyl (C{sub 3}H{sub 3}) chemistry, namely (1) C{sub 2}H{sub 2}+CH{sub 3}= pC{sub 3} H{sub 4}+H, (2) pC{sub 3} H{sub 4}= C{sub 3} H{sub 3}+ H with the corresponding overall endothermic reaction of propargyl formation (3) C{sub 2} H{sub 2}+CH{sub 3}= C{sub 3} H{sub 3}+2H. The contributions of these reactions to propyne (pC{sub 3}H{sub 4}) and propargyl formation and propargyl self-combination leading to benzene and phenyl were studied as a function of physical position, temperature, Z{sub st}, and H concentration. In particular, the role of H radicals on soot precursor destruction was studied in detail. At low Z{sub st}, Reactions 1 and 2 contribute significantly to propyne and propargyl formation on the fuel side of the radical pool at temperatures greater than approx. 1600 K. At higher local temperatures near the radical pool where the concentration of H is significant, the reverse reactions begin to dominate resulting in soot precursor destruction. As Z{sub st} is increased, these regions merge and only net propargyl consumption is observed. Based on the equilibrium constant of Reaction 3, a Z{sub st} value was estimated above which the rate of propargyl formation as a soot precursor is greatly reduced (Z{sub st} = 0.3). This condition compares well with the experimental results for permanently blue counterflow flames in the literature. (author)

  15. Structure formation in fibrous materials based on poly-3-hydroxybutyrate for traumatology

    Science.gov (United States)

    Olkhov, A. A.; Sklyanchuk, E. D.; Staroverova, O. V.; Abbasov, T. A.; Guryev, V. V.; Akatov, V. S.; Fadeyeva, I. S.; Fesenko, N. I.; Filatov, Yu. N.; Iordanskii, A. L.

    2015-10-01

    The paper reviews the structure formation of fibrous materials based on poly-3-hydroxybutyrate depending on parameters of electrospinning and characteristics of polymer solution. Fiber structure was studied by DSC, ESR and SEM. The molecular weight affects the diameter and uniformity of the fiber. An electromechanical impact leads to an orientation of crystalline structure in the fiber. The design of an artificial bioresorbable implant based on nano- and microfibers of poly-3-hydroxybutyrate is created. Dynamics of growth of mesenchymal stem cells on poly-3-hydroxybutyrate scaffolds is studied. Successful field tests of implants of the Achilles tendon in Wistar rats are conducted.

  16. Nonlocality of plasma fluctuations and transport in magnetically confined plasmas nonlocal plasma transport and radial structural formation

    International Nuclear Information System (INIS)

    Toi, Kazuo

    2002-01-01

    Experimental evidence and underlying physical processes of nonlocal characters and structural formation in magnetically confined toroidal plasmas are reviewed. Radial profiles of the plasmas exhibit characteristic structures, depending on the various confinement regimes. Profile stiffness subjected to some global constraint and rapid plasma responses to applied plasma perturbation result from nonlocal transport. Once the plasma is free from the constraint, the plasma state can be changed to a new state exhibiting various types of prominent structural formation such as an internal transport barrier. (author)

  17. Biological Superoxide In Manganese Oxide Formation

    Science.gov (United States)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.

    2011-12-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.

  18. II-VI semiconductor compounds

    CERN Document Server

    1993-01-01

    For condensed matter physicists and electronic engineers, this volume deals with aspects of II-VI semiconductor compounds. Areas covered include devices and applications of II-VI compounds; Co-based II-IV semi-magnetic semiconductors; and electronic structure of strained II-VI superlattices.

  19. Structures of the Mycobacterium tuberculosis GlpX protein (class II fructose-1,6-bisphosphatase): implications for the active oligomeric state, catalytic mechanism and citrate inhibition.

    Science.gov (United States)

    Wolf, Nina M; Gutka, Hiten J; Movahedzadeh, Farahnaz; Abad-Zapatero, Celerino

    2018-04-01

    The crystal structures of native class II fructose-1,6-bisphosphatase (FBPaseII) from Mycobacterium tuberculosis at 2.6 Å resolution and two active-site protein variants are presented. The variants were complexed with the reaction product fructose 6-phosphate (F6P). The Thr84Ala mutant is inactive, while the Thr84Ser mutant has a lower catalytic activity. The structures reveal the presence of a 222 tetramer, similar to those described for fructose-1,6/sedoheptulose-1,7-bisphosphatase from Synechocystis (strain 6803) as well as the equivalent enzyme from Thermosynechococcus elongatus. This homotetramer corresponds to a homologous oligomer that is present but not described in the crystal structure of FBPaseII from Escherichia coli and is probably conserved in all FBPaseIIs. The constellation of amino-acid residues in the active site of FBPaseII from M. tuberculosis (MtFBPaseII) is conserved and is analogous to that described previously for the E. coli enzyme. Moreover, the structure of the active site of the partially active (Thr84Ser) variant and the analysis of the kinetics are consistent with the previously proposed catalytic mechanism. The presence of metabolites in the crystallization medium (for example citrate and malonate) and in the corresponding crystal structures of MtFBPaseII, combined with their observed inhibitory effect, could suggest the existence of an uncharacterized inhibition of this class of enzymes besides the allosteric inhibition by adenosine monophosphate observed for the Synechocystis enzyme. The structural and functional insights derived from the structure of MtFBPaseII will provide critical information for the design of lead inhibitors, which will be used to validate this target for future chemical intervention.

  20. Structural, spectral, DFT and biological studies on macrocyclic mononuclear ruthenium (II) complexes

    Science.gov (United States)

    Muthukkumar, M.; Kamal, C.; Venkatesh, G.; Kaya, C.; Kaya, S.; Enoch, Israel V. M. V.; Vennila, P.; Rajavel, R.

    2017-11-01

    Macrocyclic mononuclear ruthenium (II) complexes have been synthesized by condensation method [Ru (L1, L2, L3) Cl2] L1 = (C36 H31 N9), L2= (C42H36N8), L3= (C32H32 N8)]. These ruthenium complexes have been established by elemental analyses and spectroscopic techniques (Fourier transform infrared spectroscopy (FT-IR), 1H- nuclear magnetic resonance (NMR), 13C- NMR and Electrospray ionization mass spectrometry (ESI-MS)). The coordination mode of the ligand has been confirmed and the octahedral geometry around the ruthenium ion has been revealed. Binding affinity and binding mode of ruthenium (II) complexes with Bovine serum Albumin (BSA) have been characterized by Emission spectra analysis. UV-Visible and fluorescence spectroscopic techniques have also been utilized to examine the interaction between ligand and its complexes L1, L2, & L3 with BSA. Chemical parameters and molecular structure of Ru (II) complexes L1H, L2H, & L3H have been determined by DFT coupled with B3LYP/6-311G** functional in both the gaseous and aqueous phases.